
PAC-Private Algorithms

Mayuri Sridhar
MIT CSAIL

Cambridge, MA, 02139
Email: mayuri@mit.edu

Hanshen Xiao
Purdue University/NVIDIA Research

West Lafayette, Indiana, 47907
Email: hsxiao.purdue@gmail.com

Srinivas Devadas
MIT CSAIL

Cambridge, MA, 02139
Email: devadas@mit.edu

Abstract—Provable privacy typically requires involved analysis
and is often associated with unacceptable accuracy loss. While
many empirical verification or approximation methods, such
as Membership Inference Attacks (MIA) and Differential
Privacy Auditing (DPA), have been proposed, these do not offer
rigorous privacy guarantees. In this paper, we apply recently-
proposed Probably Approximately Correct (PAC) Privacy to
give formal, mechanized, simulation-based proofs for a range
of practical, black-box algorithms: K-Means, Support Vector
Machines (SVM), Principal Component Analysis (PCA) and
Random Forests. To provide these proofs, we present a new
simulation algorithm that efficiently determines anisotropic noise
perturbation required for any given level of privacy. We provide
a proof of correctness for this algorithm and demonstrate that
anisotropic noise has substantive benefits over isotropic noise.

Stable algorithms are easier to privatize, and we demon-
strate privacy amplification resulting from introducing regular-
ization in these algorithms; meaningful privacy guarantees are
obtained with small losses in accuracy. We propose new tech-
niques in order to reduce instability in algorithmic output and
convert intractable geometric stability verification into efficient
deterministic stability verification. Thorough experiments are
included, and we validate our provable adversarial inference
hardness against state-of-the-art empirical attacks.

1. Introduction

The expansion of data collection and increasing complexity
of data processing are happening at unprecedented rates.
Concerns on information leakage are receiving increas-
ing attention, while privacy preservation is simultaneously
challenged by fast-paced and sophisticated advancements.
Efficient and widely-applicable risk quantification has be-
come a fundamental and urgent problem in privacy research.
Most existing provable privacy analyses of data processing
require strong assumptions. For example, Differential Privacy
(DP) [1] requires bounded sensitivity 1, which can only
be tightly computed in a few simple applications such as
aggregation or linear queries. Further, Maximal Leakage
(MaxL) [3] requires a white-box analysis of the likelihood

1. In the context of DP, sensitivity captures the worst-case influence of
an individual on the output, which is in general NP-hard to compute [2].

functions, which is often complex. Moreover, to ensure these
input-independent indistinguishability guarantees, artificial
modifications are typically required to decompose most
algorithms into multiple simpler and analyzable components,
such as mean estimation or majority voting to enable tractable
analysis; Differentially-Private Stochastic Gradient Descent
(DP-SGD) [4] and PATE [5] are representative examples.
Unfortunately, artificial modifications usually come with
limits on algorithms and data structures, and often with a
significant compromise on utility.

As a consequence, the lack of powerful risk quantification
tools heavily restricts the study and design of defensive
methods for leakage control, as the privacy implications of
many operations are not well-understood. Even for perturba-
tion, the most popular and straightforward privacy-preserving
technique, the minimal noise to produce required security pa-
rameters, largely remains open for most practical algorithms.
In addition, the definition of sensitive information varies
across different processing tasks and different individual
preferences. For example, for image data, people may worry
about whether the adversary can reconstruct sensitive face
features; for health data, the privacy objective can be the
relationship between certain associations between patients
and diseases; and in anonymous communication, identities
are sensitive. Universal risk quantification is thus highly
desirable to capture diverse and customized concerns.

Besides provable analyses, there is also a long line of
works focusing on empirical defenses against adversarial
inference. Privacy verification has been extensively studied,
in particular, for membership inference attacks (MIA) [6],
[7], [8]. For example, many operations such as regularization
[6], [9], data augmentation [10], [11], and model compres-
sion [12] are empirically shown to resist certain kinds of
attacks. However, qualitative analysis for those strategies is
challenging and largely remains open, especially in involved
data processing algorithms. Though carefully-designed em-
pirical simulations can provide meaningful approximations
of privacy risks with respect to specific adversarial strategies,
a rigorous proof is desired to show worst-case guarantees
against arbitrary adversaries. Closing this gap remains a key
and open problem in security and privacy research.

One recent effort to technically address the risk quantifi-
cation for black-box data processing is PAC Privacy [13].
From a statistical inference perspective, [13] develops a

new framework to semantically interpret privacy risk as
concrete inference hardness for a computationally-unbounded
adversary to recover sensitive information satisfying a certain
criterion, which can be arbitrarily selected. A set of new
tools are also established in [13] to provably convert the
objective inference hardness into simulatable quantities,
which enables high-confidence estimation from end-to-end
black-box simulations to provide a privacy proof. However,
as a theoretical solution to conduct privacy analysis for a
black-box processing, there are two important aspects of
PAC Privacy which have not been systematically explored.
First, how can we efficiently determine the (near-)optimal
anisotropic noise2 to add to each exposed output, and provide
an associated privacy proof? Second, how can we stabilize
a black-box data processing algorithm to provably produce
a stronger privacy guarantee or a sharpened utility-privacy
tradeoff?

In this paper, we contribute an initial comprehensive
study to answer these questions, as summarized below.

1) Novel algorithm for efficient simulation proofs: We
present an algorithm in Section 4 that adds anisotropic
noise and is more computationally efficient than the
algorithm (Algorithm 1) in [13] which requires running
Singular Value Decomposition (SVD) on the entire
output dimension which can be prohibitively expensive.
Efficiency is further enhanced through faster conver-
gence; our algorithm only needs to accurately estimate
variance of output along each direction, as opposed to
converging on a covariance matrix as in [13]. We prove
the correctness of our algorithm.

2) Efficient privatization for black-box algorithms:
We implement PAC-private versions of several classic
algorithms. We provide noise estimates and utility trade-
offs, demonstrating that these algorithms can generally
achieve meaningful privacy with a small losses in utility.
We show that adding anisotropic noise has significant
utility benefits over adding isotropic noise using l2-norm
estimation.

3) Sharpening privacy-utility tradeoffs: We first charac-
terize the root of instability in these classic algorithms,
and separate them into two large categories – superficial
and intrinsic. Then, we provide novel canonicalization
techniques to improve upon superficial instability, while
exploring classic and novel techniques, based on regu-
larization and data augmentation techniques, to improve
intrinsic instability. In particular, we show how the use
of a random unitary matrix in Principal Component
Analysis (PCA) can essentially eliminate superficial
instability.

4) Empirical verification for end-to-end privacy: Finally,
we provide experimental support, based on simulated
attacks to validate our privacy guarantees. We convert
the theoretical mutual information guarantees into pos-
terior guarantees and demonstrate that our privatized
algorithms more than satisfy these guarantees against
state-of-the-art attacks.

2. Noise varying across output dimensions.

2. Background

We first introduce the PAC Privacy model to describe
information leakage and privacy risk in general. Let X
denote the sensitive input, which is randomly generated
from a (possibly black-box) distribution D, and M denote
a (possibly black-box) processing mechanism, where the
output, M(X), is released and observed by an adversary.
We challenge the adversary as to whether they can return
some estimation X̃ satisfying a certain criterion, which can
be described by some indicator function ρ. Such an inference
challenge can be used to capture arbitrary privacy concerns
and customized leakage control that a user is comfortable
with. For example, to capture a membership inference attack
[6], ρ can be selected as ρ(X̃,X) = 1 if X̃ predicts the
membership of some particular datapoint u0 correctly in X;
ρ may also capture data reconstruction [14], [15] where we
may set ρ(X̃,X) = 1 iff ∥X − X̃∥2 ≤ 1, i.e., the adversary
can recover the input with error in l2-norm smaller than 1.
For side-channel attacks on a cryptographic protocol [16],
where X corresponds to the secret key, ρ can capture the
colliding bits between X and X̃ .

Now, given the data entropy, determined by D, and the
objective inference task, we can define the optimal a priori
success rate (1− δρo) that an adversary can return a satisfied
estimation before they observe the release M(X), i.e.,

δρo = infX̃o
Pr

X∼D
(ρ(X̃o, X) ̸= 1).

Similarly, we can define the posterior success rate (1−
δ) to capture the probability for an adversary to return a
satisfied estimation after observing the release. With the
above preparation, we can now formally define PAC Privacy.

Definition 1 ((δ, ρ,D) PAC Privacy [13]). For a processing
function M : X ∗ → O, some data distribution D, and
an inference criterion function ρ(·, ·), we say M satisfies
(δ, ρ,D)-PAC Privacy if the following experiment is impossi-
ble:

A user generates data X from distribution D and sends
M(X) to an informed adversary. The adversary who knows
D and M is asked to return an estimation X̂ on X such
that with probability at least (1− δ), ρ(X̂,X) = 1.

Equivalently, M can be defined as (∆fδ, ρ,D) PAC-
advantage private if the posterior advantage measured in
f -divergence satisfies

∆fδ = Df (1δ∥1δρo) = δρof(
δ

δρo
) + (1− δρo)f(

1− δ

1− δρo
),

where (1− δρo) represents the optimal prior success rate,

δρo = infX′∈X∗ Pr
X∼D

(ρ(X ′, X) ̸= 1),

and 1δ and 1δρo represent two Bernoulli distributions of
parameters δ and δρo , respectively. Here, Df is some f -
divergence.

In [13], Df is selected to be the KL-divergence and it is
shown that,

∆KLδ = DKL(1δ∥1δρo) ≤ MI
(
X;M(X)

)
, (1)

where MI(·, ·) represents mutual information and
DKL(1δ∥1δρo) = δ ln(δ

δρo
) + (1− δ) ln(1−δ

1−δρo).
We now define the standard Membership Inference Attack

(MIA) [6], formalized to match PAC Privacy below.

Definition 2 (Membership Inference Attack). Given a finite
data pool U = {u1, u2, · · · , uN} and some processing
mechanism M, X is an n-subset of U randomly selected. An
informed adversary is asked to return an n-subset X̂ as the
membership estimation of X after observing M(X). We say
M is resistant to (1− δi) individual membership inference
for the i-th datapoint ui, if for an arbitrary adversary,
PrX←U,X̃←M(X)(1ui∈X = 1ui∈X̂) ≤ 1− δi. Here, 1ui∈X

(1ui∈X̂) is an indicator which equals 1 if ui is in X (X̂).

In this paper, we will use PAC Privacy to provably
and automatically measure the privacy risk. We will also
qualitatively (and occasionally quantitatively) compare our
results to prior work with Differential Privacy (DP); its formal
definition is presented below.

Definition 3 ((ϵ, δ̄) Differential Privacy [1]). Given a data
universe X ∗, we say that two datasets S,S ′ ⊆ X ∗ are
adjacent, denoted as S ∼ S ′, if S = S ′ ∪ s or S ′ = S ∪ s
for some additional datapoint s. A randomized processing
function M is said to be (ϵ, δ̄)-differentially-private (DP)
if for any pair of adjacent datasets S,S ′ and any set o in
the output space O of M, it holds that Pr(M(S) ∈ o) ≤
eϵ · Pr(M(S ′) ∈ o) + δ̄.

We can interpret DP in a context of the posterior success
rate for successful membership inference. In the same setup
of Definition 2, if n = N

2
3, i.e., each datapoint is included

in X with probability 1/2, and M satisfies (ϵ, δ̄)-DP, then
by [17], [18], the posterior success rate (1 − δi) is upper
bounded by

1− δi ≤ 1− 1− δ̄

1 + eϵ
. (2)

3. Automatic Privatization

3.1. A Template for Provable Privacy

In this section, we present a formal template for privatiz-
ing black-box algorithms using PAC Privacy. The key steps
of this technique are summarized in Figure 1.

In particular, we consider any black-box algorithm M.
The goal of our template is to release Y = M(X) for a
secret input Xj . We want to bound the posterior advantage
the adversary gains upon observing Yj = M(Xj) by adding
noise to Yj . Yj is an arbitrary learned statistic about the
input Xj that is exposed to the adversary after appropriate
noise is added. We denote Xtrain as the complete training
dataset which Xj is sampled from. We denote

r :=
|Xj |

|Xtrain|

3. For the general case, one can perform similar reasoning by solving
a constrained linear program with respect to Type I and Type II errors as
described by Eqn. (1) in [17].

Figure 1. A simple 4-step process to automatically privatize a black-box
algorithm M. We first measure the stability of M by computing Yi =
M(Xi) on varying subsets of data Xi. We then use the variance of the
output distribution Yi to estimate the required noise necessary to privatize
M. Finally, we release a noisy version of the learned vector on a new,
random subset Xj .

as our subsampling rate; that is, r is the fraction of the
data that will be used to learn our released output Yj . For
our experiments, we choose r = 0.5, or 50%. Let D be the
uniformly random distribution over all possible r|Xtrain|-
sized subsets of Xtrain; as such, Xj is sampled from D.

We represent each x ∈ Xj as a vector, with its l2-norm
bounded by a known constant. In order to provide a private
representation of Y = M(X), we follow the framework
of PAC Privacy [13] to determine the minimal noise we
must add to the vector Y . We aim to minimize the noise to
maximize utility of the output vector Y . Following the steps
described in Figure 1, we can use the stability of M on
distinct Xi’s (which are drawn from the same distribution
D as Xj) to determine the required noise to provide privacy
for M(Xj).

To do this, we first compute M on distinct subsampled
datasets X1 . . . Xm, which are independent and identically
distributed subsets of Xtrain, drawn from the same distri-
bution as Xj , which means |Xi| = |Xj |. We denote m
as the round complexity of the noise estimation process.
The value of m is induced by the required precision of our
convergence guarantee. This computation produces output
vectors Y1 . . . Ym. We describe this in further detail in Sec-
tion 4. We can then use the variance of the Yi’s (along with
appropriate security parameters) to estimate the minimum
noise required to add to the output of M(Xj), in order
to provide a meaningful bound on the mutual information,
which in turn bounds the posterior advantage. An illustrative
instantiation of this procedure on the K-Means algorithm is
provided in Figure 2.

In our analysis, we make the conservative assumption
that the adversary knows D, meaning the adversary knows
Xtrain and the sampling strategy, which is not typically
true in the real world. Importantly, the computed posterior
advantage will hold for this adversary or a weaker one
with only partial or no knowledge of Xtrain. Note that the
sampled Xj is hidden from the adversary, and therefore the
participation of a particular data element in Xj is unknown
to the adversary.

Figure 2. To instantiate PAC-Private K-Means, we first start with our input dataset, Xtrain, of size n. We approximate the distribution D by drawing m
samples X1 . . . Xm, where each Xi is a random subset of Xtrain, with |Xi| = n/2. We then compute the learned centroids of each Xi. The variance
among these centroids determines the noise required to privatize our algorithm. When the centroids are close together, the algorithm is stable and thus, the
required noise to privatize it is small. Finally, we generate a new, random subset Xj and compute the corresponding centroids; Xj is the secret set that the
adversary wants to discover. We add the required noise and publicly release the perturbed centroids in the last step. The noise guarantees that the adversary
has a bounded advantage in identifying whether any individual datapoint was used to construct the final released centroids.

The posterior advantage holds for an arbitrary inference
task ρ on the input dataset X . The classic membership
attack by [6] defines a specific ρ, where the goal is to
determine whether a fixed sample x was included in X; that
is, ρ(X̄,X) = 1 if X̄ correctly predicts the membership of x.
Other attacks may include reconstruction attacks (recovering
X), norm estimation, or others, e.g., [14], [15].

We make a few key observations about this template:
1) M is treated as a black-box. The magnitude of the

added noise depends solely on the output distribution of
Yi’s. This allows us to generate a privacy template for
complex black-box algorithms in an instance-specific
(i.e., specific to Xtrain) manner.

2) We observe that the magnitude of added noise only
impacts the posterior advantage of the inference task.
We make no assumptions on the specific inference
task of the adversary; rather, PAC privacy allows us to
bound the mutual information between the output Y
and the secret input X , bounding the maximal posterior
advantage. We further discuss the relationship between
mutual information and the posterior advantage for
specific membership inference attacks in Section 8.

3) In order to meaningfully measure the (co)variance across
Yi’s, the outputs on varying inputs Xi must lie on the
same output space. In particular, we must canonicalize
our outputs. That is, if we assume Yi is a learned vector,
it must remain in the same order and even simpler,
the same length. For certain tasks, like regression, this
appears obvious, since a learned weight vector has
fixed dimension and order. However, for unsupervised
learning tasks (e.g., clustering), or certain classification
algorithms, this becomes non-trivial.

We can then use Equation (1) to convert the mutual
information guarantee to the maximal posterior advantage
for an arbitrary inference task. We can expand Equation (1)
below as

po ln

(
po
p

)
+ (1− po) ln

(
1− po
1− p

)
≤ MI(Xi;Yi) (3)

where p is the prior success rate and po is the posterior

Mutual Posterior Success Rate (po)
Information Prior p = 50% Prior p = 1%

1/128 56.241% 2.477%
1/64 58.815% 3.213%
1/32 62.434% 4.364%
1/16 67.490% 6.200%
1/8 74.464% 9.171%
1/4 83.789% 14.057%
1/2 95.181% 22.177%
1 100% 35.729%
2 100% 58.103%
4 100% 92.582%

TABLE 1. MUTUAL INFORMATION CAN BE RELATED TO THE
THEORETICAL MAXIMAL POSTERIOR SUCCESS RATE FOR DIFFERENT

PRIOR SUCCESS RATES USING EQUATION (3).

success rate. Table 1 provides the theoretical maximal
posterior success rates for two different prior success rates
of 50% and 1%. The prior success rate p for a subsampling
rate r equals max(r, 1 − r) for an individual membership
inference task; we choose r = 0.5 to minimize p to 50%.4
However, p can be much lower for a generalized membership
inference task for the same r (e.g., 1%) (cf. Appendix C).

We can use Equation (2) to interpret (ϵ, δ̄)-DP parameters
as posterior success rates. For example, a (0.36,0)-DP
((2.98,0)-DP) corresponds to a posterior success rate of
58.815% (95.181%) for a prior of 50%. This is useful in
calibrating mutual information in Table 1 with a DP ϵ.

3.2. Privacy vs. Utility

In this section, we discuss techniques to reduce the
instability in the outputs of our algorithms. That is, we
first classify varying causes of instability in the output
distributions for a black-box algorithm M:

1) Intrinsic instability: We denote an algorithm’s intrinsic
instability as instability that cannot be reduced without
semantically changing the output of the algorithm.

2) Superficial instability: We denote an algorithm’s su-
perficial instability as an instability in the output that

4. The prior success rate of positive identification of individual member-
ship equals r.

does not reflect a semantic difference in the output.
This can be addressed by canonicalizing our outputs,
by representing them in a consistent manner.

In this work, we explore techniques to reduce both types of
instability in a set of widely-used algorithms.

We first consider a simple example of superficial in-
stability in unsupervised learning algorithms. In general,
unsupervised learning algorithms provide a mechanism for
clustering. However, by definition, these clusters do not
have labels. Thus, an algorithm could return the same set of
clusters in any order; while the ordered vector appears very
different, the true result is semantically the same. In this
case, canonicalizing the output is near-trivial; we can simply
assign arbitrary labels to each cluster and choose labels to
minimize the variance across Yi’s.

We now consider an example of intrinsic instability. In
this, we consider the random forest algorithm [19]. The goal
of this algorithm is to classify different classes within a
dataset, by constructing several decision trees. Each decision
tree chooses a subset of features to train on; then, each
level of the tree splits the dataset into subsets in order to
minimize entropy or Gini impurity [19]. These algorithms
are known to be unstable, since small changes to the input
dataset can lead to significant changes in the threshold values.
In Section 5, we discuss how we modify this algorithm to
provide meaningful guarantees in our framework.

Finally, we note that in the classic non-private setting
for these algorithms, stability is useful primarily as a proxy
for understanding the generalizability of these algorithms.
However, in our setting, stability directly affects the utility
of the privatized algorithm, since it is inversely correlated
with the total added noise. This implies that efficiently
privatizing these algorithms involves an inner optimization
problem, similar to the hyperparameter search typically done
using cross-validation. We discuss heuristic strategies for
this search and empirical results in Section 6.

4. Efficiently Computing Anisotropic Noise

In this section, we formally describe a “best of both
worlds” algorithm that is as efficient as the isotropic noise
addition algorithm of [13] while computing anisotropic noise
that minimally affects utility. We then prove that the noise
mechanism satisfies the mutual information guarantees.

4.1. Noise Determination and Guarantees

The algorithm is described in full in Algorithm 1. We
denote n as the number of input elements, A as a unitary
projection matrix, τ as the precision required for convergence,
fτ as a function measuring whether our estimator for the
variance has converged, and d as the output dimension.
For any matrix X , we use the notation Xk to denote the
k’th column and X[i][j] to represent the element at row i
and column j. For a vector v, we denote v[i] as the i’th
element. In this algorithm, we compute a matrix G, with
dimension m × d, and σm[k] := V ar(Gk) represents our
estimate for the variance of M(X) along direction Ak. We

choose m such that m is large enough that our convergence
criterion, represented by fτ is satisfied. In particular, for our
experiments, we choose fτ to be the maximal element-wise
difference between σt and σt−1 with τ = 10−6, where
σt represents the empirical estimate of the variance in the
directions Ai for i ∈ [1, d] at round t. After computing ΣB,
we add Gaussian noise B ∼ N (0,ΣBAT) to each element of
the output M(X). For our experiments, we choose A = Id.

Algorithm 1 Anisotropic Noise Determination of Determin-
istic Mechanism M

Input: The input distribution D represented by Xtrain

and a sampling strategy, τ as the precision required for
convergence, fτ as the convergence function, deterministic
mechanism M : Xn → Yd, mutual information requirement
β, d× d unitary projection matrix A.

1) m := 1, σ0 := null, G := null.
2) while m ≤ 2 ∥ fτ (σm−1,σm) ≥ τ :

a) Draw Xm ∼ D.
b) ym := M(Xm).
c) Compute gm = [ym ·A1, ym ·A2, . . . , ym ·Ad].
d) Row append gm to G:

GT
m := gm.

e) Compute the vector σm where σm is a vector of
length d and σm[k] is the empirical variance of Gk.

f) m := m+ 1.
3) Calculate the required noise in each direction i as

ei :=

√
σm[i]

d∑
j=1

√
σm[j]

2β
for i ∈ [1, d].

4) Return a diagonal matrix ΣB, where ΣB[i][i] = ei.

Theorem 1. For an arbitrary deterministic mechanism M,
a public unitary matrix A, and Gaussian noise of the form
B ∼ N (0,ΣBAT), where σi = Var(M(X) ·Ai) and ΣB is
a diagonal matrix with entries

ei :=

√
σi

d∑
j=1

√
σj

2β
,

the output M(X) + B satisfies

MI(X;M(X) + B) ≤ β.

Proof. We first recall Theorem 3 of [13]; this theorem states
that

MI(X;M(X) + B) ≤ 1

2
ln det(Id +ΣM(X)Σ

−1
B).

We then note that

MI(X;M(X) + B) = MI(X;M(X)A+ BA),

since A is unitary and public.
By Hadamard’s inequality, since ΣM(X)A is positive

semi-definite,

det(ΣM(X)A) ≤ det(diag(ΣM(X)A)),

where diag(ΣM(X)A) is the diagonal matrix with the i’th
element σi. By construction, BA has variance ΣB, which is
a diagonal matrix with elements ei. Thus,

MI(X;M(X)A+ BA) ≤ 1

2
ln det(Id +ΣM(X)AΣ

−1
B)

≤ 1

2
ln det(Id + diag(ΣM(X)A)Σ

−1
B)

=
1

2
ln
∏
i

(1 + σi
2β

√
σi

∑
j

√
σj

)

=
1

2

∑
i

ln(1 +
2β

√
σi∑

j

√
σj

)

≤ 1

2

∑
i

2β
√
σi∑

j

√
σj

≤ β,

where the fifth inequality uses the fact that ln(1 + x) ≤ x.

Theorem 1 shows that if Algorithm 1 computes the exact
variance of M(X) over the directions Ai for i ∈ [1, d], we
can privatize any black-box mechanism M. The primary
advantage of Algorithm 1 is that it avoids building the
covariance matrix and subsequent SVD (as in Algorithm
1 of [13]), while determining sufficient anisotropic noise for
privacy. The optimal A for minimal noise can be determined
by estimating the covariance matrix and using SVD. However,
we note that Algorithm 1 computes an empirical estimate
on the variance, rather than the true variance. In practice,
using A = Id allows us to estimate σ for τ = 10−6 with
reasonably small m (cf. Section 7) for most algorithms.
However, unstable algorithms (e.g., decision trees) on large
datasets are very computationally expensive even in this
model. We therefore discuss an alternative, more efficient
approach where we compute the exact variance with a small
change in how the distribution D is constructed — see
Appendix B.

We can further provide tighter bounds on the required
noise when considering specific inference tasks, e.g., in-
dividual membership inference attacks (cf. Definition 2).
We use these individual privacy guarantees to provide a
quantitative comparison between PAC and DP for mean
estimation. A complete description of the modifications
required to Algorithm 1 for individual privacy is provided
in Appendix A.

5. Algorithms

In this section, we discuss several classic algorithms and
the required modifications to automatically privatize them.

For all the algorithms, we first normalize our data and
separate it into a training dataset and a test dataset. We then
measure “accuracy” (also referred to as utility) on the test
dataset. All randomized algorithms are run with a fixed seed.

5.1. Clustering: K-Means

The K-Means clustering algorithm, originally developed
by Lloyd in 1982, aims to partition an input set X into K
non-overlapping subsets or clusters [20], [21]. Each subset
i ∈ [1,K] is defined by its centroid, µi. The objective is to
minimize the sum-of-squares within each cluster, over all
the clusters, i.e.,

argmin
µ

n∑
i=0

min
µj

∥xi − µj∥2 .

That is, the classic algorithm outputs a list of centroids
corresponding to each cluster. We observe that K-Means
requires minimal changes to fit into our PAC privacy frame-
work. The xi’s are the secret input, and the learned centroids
µi’s are the exposed output.

In order to canonicalize the output, we simply order
these centroids by inferring appropriate cluster labels. For
supervised learning, we do this by choosing the label that
is best associated with each cluster. We then measure test
accuracy by comparing the inferred cluster label with the
true class label on the test dataset.

The K-Means algorithm is not inherently designed for
unbalanced datasets. To improve stability and generalization,
we explore oversampling techniques such as SMOTE to
automatically balance the classes [22].

5.2. Classification: SVM

Consider the multiclass support vector machine algo-
rithm [23], [24]. The linear support vector machine problem
solves the following optimization problem:

min
w,b

1

2
wTw + C

n∑
i=1

max(0, 1− yi(w
Txi + b)). (4)

Here, the xi’s are the features, and the yi’s are the labels;
these both correspond to the secret inputs. The learned
weight vector w, b is the exposed output.

We use the regularization weight C to trade off between
the hinge loss and the norm of the learned weight vector.
Without modification, the standard value of C used is 1. To
accommodate multiclass strategies, we consider a one-versus-
rest classification strategy. That is, we train K classifiers for
K different classes [25].

After the weight vector has been trained, we can use
it to compute a “per-class” score for a new point xi. The
predicted label ŷi is the class with the highest score. Similar
to K-Means, we measure the accuracy of the test dataset
by computing the class label predicted by SVM to the true
label.

We note that this algorithm may or may not have a lot
of superficial instability. That is, the learned weight vectors

are inherently ordered by the labels of their corresponding
classes; it thus requires almost no modification to fit into the
PAC privacy framework. However, there may be several near-
optimal solutions with no obvious ordering when regulariza-
tion is not applied appropriately. Strong regularization (low
values of C) can reduce the algorithm’s intrinsic instability,
though it may come with a utility tradeoff.

5.3. Dimensionality Reduction: PCA

Consider the classic dimensionality reduction algorithm,
principal component analysis (PCA) [26]. PCA is used to
decompose a multivariate dataset into orthogonal components
that explain the most variance.

Unlike the other algorithms considered, PCA is not
independently used for a regression or classification task;
rather, it is typically a subroutine. We consider an initial data
matrix X ∈ Rm×d, with m samples of dimension d, where
X ⊂ Xtrain is secret. We then reduce the dimensionality
of X to be in Rm×d′

using PCA; that is, we compute the
top d′ principal components and denote them as a matrix
S ∈ Rd′×d. S is the exposed output.

We observe that PCA has significant superficial instability.
In particular, we consider the subspace defined by the basis
vectors [0, 1] and [1, 0]; this subspace is R2. However, there
are an infinite number of basis vectors with the same span;
in fact, any two linearly-independent vectors span R2. This
implies that two calls to the PCA algorithm can return the
same subspace, represented by significantly different basis
vectors.

In order to canonicalize the basis vectors, we consider two
instances of the PCA algorithm and denote the returned basis
vectors as S1 and S2, where Si ∈ Rd′×d for i = 1, 2. We
observe that we can choose a unitary matrix M and compute
MS2 as an equivalent representation of the basis chosen by
S2. The goal is now to choose M in order to minimize the
distances between S1 and S2; we use this formulation and the
properties of singular value decomposition (SVD) to compute
the optimal M . We note that the SVD decomposition is
unique up to the sign of the right and left singular vectors.

Consider the following optimization problem:

min
M ;MTM=I

∥A−MB∥2F ,

where A,B are matrices of basis vectors, with dimensionality
d′ × d and M is any unitary matrix. We first observe that
this models our PCA problem exactly; that is, PCA returns
to us a set of d′ basis vectors with dimensionality d. We
can freely optimize over the matrix M as long as it remains
unitary, since M is simply a linear map.

Claim 1. The optimal choice for M is of the form M =
C[0 : d′, 0 : d′], where

C = VAV
T
B ,

and VA, VB are the right singular vectors of A and B,
respectively.

Proof. We prove this directly from the optimization problem.
That is, M is chosen to minimize

min
M ;MTM=I

∥A−MB∥2F ,

for fixed matrices A and B of dimension d′ × d. We
suppress the unitary requirement on M for succinctness
in the remainder of this argument. We first denote the SVDs
of A and B as UAΣAVA and UBΣBVB , respectively. We
observe that UA ∈ Rd′×d′

, ΣA ∈ Rd′×d, VA ∈ Rd×d. We
further note that ΣA has d′ real values on the diagonal and
the remaining entries are 0, since the underlying rank of A
is assumed to be d′. We can thus denote Σ−1A as the inverse
of ΣA where Σ−1A ΣA = [Id′ |0]. The same constraints follow
for B.

We then observe that

min
M

∥A−MB∥2F
= min

M
∥UAΣAVA −MUBΣBVB∥

= min
M

∥∥Σ−1A UT
AUAΣAVA − Σ−1A UT

AMUBΣBVB

∥∥
= min

M ′

∥∥[Id′ |0]−M ′[Id′ |0]VBV
T
A

∥∥ .
We note that the fourth equality switches from optimizing
over M to optimizing over a different matrix M ′ after
factoring out the relevant components of the SVD of B;
however, since M and M ′ are both free variables, this
does not affect correctness. The optimal solution for this is
M = VAV

T
B , truncated to the first d′ rows and columns.

By canonicalizing our output, we reduce the superficial
instability; “nearby” subspaces are represented by “nearby”
basis vectors. Without the appropriate canonicalization, the
PCA algorithm is very unstable and difficult to privatize.

For a given input Xtest, after running PCA, the projection
of Xtest is computed as XtestS

T , representing the best
projection of Xtest into the learned rank-d′ subspace. We
can then “restore” Xtest into the original rank-d subspace
by computing XtestS

TS, also known as the PCA inverse
transform; we denote this matrix as X ′ and calculate the
restoration error as

Restoration error (RE) :=
∥X ′ −Xtest∥

∥Xtest∥
. (5)

We use the restoration error as a proxy of our accuracy
metric for other downstream tasks, since low RE would
imply high success rate on any secondary task.

5.4. Boosting: Random Forest

As mentioned in Section 3, random forest algorithms
typically involve both superficial and intrinsic instability,
making them an interesting case study for our template.

We first describe the classic random forest algorithm [19]
and then describe our modifications for canonicalization.
The classic random forest algorithm is an ensemble learning
technique which combines several weak classifiers (decision
trees) to make an ensemble model which performs better

than any of the individual trees. Typically, these decision
trees are trained on subsets of the provided dataset and the
final classification is the plurality vote of the individual trees.
For each tree, the algorithm chooses a feature (or subset of
features) to split on. Then, the “value” to split on is chosen
to minimize a metric – in our case, we use the metric of
weighted entropy. The provided dataset is the secret input,
and the learned trees are the exposed output: a number of
trees with corresponding structures and weights.

In our setting, we require that the trees all have the
same structure. To simplify this, we ensure that all the trees
are complete and split on the same order of features. Thus,
our random forest algorithm has two hyperparameters: the
number of trees (a classic requirement for an ensemble
model) and the ordered list of the features to split on for
each tree, denoted here as L. The structure of a tree is fully
determined from the ordered set of features; that is, if there
are d features, then the tree will have exactly 2d leaf nodes.
Each node at level i will split on feature L[i]; the exact
value of the split threshold is determined by computing the
minimum weighted entropy across all possible values of the
feature L[i].

In particular, each possible “split” on the feature L[i]
at value v splits the dataset into two sets Sr(v) (containing
elements where feature L[i] has value ≥ v) and Sl(v)
(containing elements where feature L[i] has value < v).
We can calculate the entropy of each split as

H(S) =
∑
j

−pj log pj ,

where pj is the empirical probability of element j (the
frequency of item j in S divided by |S|). The total entropy
of a split can be calculated as

Hv := |Sl(v)|H(Sl(v)) + |Sr(v)|H(Sr(v)).

We then choose the split that minimizes the weighted entropy.
We consider the choice of ordered features akin to early

work in bagging schemes [27], where subsets of features were
chosen for each tree. We pass in all the data to each decision
tree and output a simple majority vote of the trees as the final
decision of our random forest. In this setting, the features xi

and the labels yi for our training data represent our secret
input. The coefficients of the learned trees represent the
exposed output. As with the prior algorithms, after the trees
are exposed, we can measure the test accuracy by comparing
the learned classification of a test data point to its true label.

We note that classic regularization schemes on decision
trees (or random forests) focus on pruning the depth of the
tree or allowing the tree to split on a maximum number of
features at each level [19]. Neither of these are consistent
with our framework. In particular, the former does not allow
for an efficient canonicalization since the trees will have
different structures. The latter is irrelevant for us, since our
trees split on a single feature at each level.

We use two techniques intended to increase the stability
of the random forest algorithm, following the form of
regularization and data augmentation defenses suggested in

[9] and [10]. First, we define a data augmentation defense.
That is, we first discretize the possible split values of each
level. Thus, the possible split values of a feature L[i] are
in the range [0, 1], evenly divided into 1/p segments of
length p, where p is a tunable hyperparameter (typically
0.01). Then, rather than just calculating the entropy of the
split, we calculate our final split value as

v := argmin
v

(1− w1)Hv + w1(Hv−p +Hv+p).

We denote the tuple (p, w1) as our augmentation regulariza-
tion parameter. If the entropies of the neighbors (v − p and
v + p) are also low, then this suggests that the split value
v is robust to small amounts of perturbation. Increasing the
weight w1 forces the algorithm to choose a split that is more
robust.

Second, we add l1 regularization, which adds a penalty
of the form |w2v| for any split value v. This follows the
classic l1 regularization scheme, where we encourage sparsity
in the learned split vector. This is especially important in
our setting; intuitively, we only want the complete tree to
learn a non-degenerate split if the change in entropy is
significant and thus, the learned split is stable. Thus, our
overall regularization parameter is of the form (p, w1, w2).

6. Experiments

6.1. Datasets

Iris dataset: The Iris dataset is available in the UC Irvine
Machine Learning Repository [28]. It is a classic dataset
used in machine learning for supervised and unsupervised
learning tasks. The goal is to classify three class of irises;
there are 50 instances of each class and 4 features; its small
size makes privatization difficult. We use 100 datapoints as
our training set and 50 as the test dataset.

Rice dataset: The Rice dataset is available in the UC
Irvine Machine Learning Repository [29]. It contains 3,810
instances of rice, from two distinct species: Osmancik and
Cammeo; the goal is to classify the species of rice. Each
example contains 7 features such as area, perimeter and
eccentricity. We use 70% of the dataset for training and the
remaining 30% as the test dataset.

Dry Bean dataset: The Dry Bean dataset is available
in the UC Irvine Machine Learning Repository. This dataset
contains seven different types of dry beans; there are 13,611
instances of data with 16 features each [30]. Example features
include area, perimeter and eccentricity. We use 70% of the
dataset for training and the remaining 30% as the test dataset.

CIFAR-10 dataset: Finally, we consider the CIFAR-10
dataset [31]. This dataset consists of 60,000 images across
10 classes. The classes represent varying objects (e.g., “cat”
or “deer”) and there are 6,000 images per class. Each image
is represented as a length-3072 vector. We use 50,000 images
as the training dataset and the remaining 10,000 as the test
dataset. We only use CIFAR-10 for the PCA algorithm;
images are not particularly appropriate for K-Means, SVM,
and Random Forest.

6.2. Experimental Design

For each of our experiments, we follow the template from
Figure 1. We first choose our required privacy guarantee,
represented by an upper bound on the mutual information
(MI) between the input and output to our algorithm, M.
In our experiments, we vary MI between 1

128 = 2−7 and
4 = 22. We then estimate the stability of M, on the training
data Xtrain. To do this, we repeatedly randomly sample
Xi ⊂ Xtrain where each Xi from i = 1 . . .m satisfies
|Xi| := 0.5|Xtrain|. We denote m as the round complexity
of the algorithm and we increment m until our estimator
satisfies our precision requirements, as shown in Algorithm 1.
We then compute the stability of M as a function of the
variance of M(Xi) over all subsets X1 . . . Xm. We use this
to compute the noise required to privatize M, which we
denote as ∆(M,MI).

For all of our algorithms (Mean, K-Means, SVM, PCA,
and Random Forest), we implement the noise estimation
algorithm of Section 4 to determine additive noise.

We measure the utility of the baseline and both the
isotropic and anisotropic privatized versions of M. In
particular, we first run M on the entire Xtrain and calculate
the accuracy of M(Xtrain) on the test dataset Xtest. This
provides our accuracy metric for the baseline non-private
algorithm; we denote this as the “baseline accuracy” of M.
Then, we construct two privatized algorithms by, respectively,
adding the required anisotropic noise and isotropic Gaussian
noise to each element of the trained vector M(Xj). The
required noise is sampled from a Gaussian with zero mean
and variance determined by Algorithm 1. This creates two
privatized trained vectors, MP (Xj) (anisotropic noise) and
MQ(Xj) (isotropic noise); we then compute the accuracy
of MP (Xj) and MQ(Xj) on Xtest; these are, respectively,
the anisotropic and isotropic “privatized accuracy” of M for
a single trial. Our results are averaged over 1000 trials for
each setting.

We now provide results across varying datasets and
algorithms. All code used is provided at https://github.com/
mayuri95/pac algs.

6.3. Warmup: Estimating the Mean

Mean estimation is simple enough that we can provide
a quantitative, head-to-head comparison between PAC and
DP, since DP does not require significant changes beyond l2-
norm clipping for bounded sensitivity. For our experiments,
we do a search to find the optimal clipping threshold to
minimize the overall distance between the privatized mean
estimate and the true mean. For a given clipping threshold
C and dataset size n, the global sensitivity for the mean
estimate is C/n. The required noise to provide an ϵ-DP
guarantee is then a Laplacian with scale C/(nϵ) [32].

In contrast to DP, which can use the entire dataset,
PAC requires an input distribution, which we derive from
subsampling. PAC does not require clipping. We chose the
subsampling rate r = 0.5 to minimize prior success rate for
an individual membership inference attack. (Any 0 < r < 1

can be used, with different privacy-utility tradeoffs; we do
not explore those here.)

To make a meaningful comparison, we compare DP and
PAC fixing the posterior success rate. A given posterior
success rate for membership inference can be translated to
a particular ϵ-DP guarantee using Equation (2). Similarly,
mutual information bounds and posterior success rates are
related by Equation (3) (also see Table 1). We can therefore
compare the expected l2 distance between DP and PAC
estimated means and the true means for the same success
rates in Table 2.

As discussed in Section 4, we compare DP with PAC
for both individual privacy and arbitrary inference tasks
(denoted as global privacy). For individual privacy, we
observe that most of the PAC error is due to subsampling
and there is little noise addition required for all values of
MI, as shown in the small gap between the l2 distance
after subsampling and after subsampling and anisotropic
privatization in Table 2. The overall error between DP and
PAC Individual Privacy is comparable for this task. The
difference between isotropic and anisotropic noise with PAC
Individual Privacy is negligible.

We observe that for PAC Global Privacy, the error for
small values of MI is larger than its corresponding DP
error. Isotropic noise with PAC Global Privacy increases
the l2-norm distance after privatization by up to 1.35×. It is
important to note that DP and PAC privacy guarantees are not
equivalent in the semantic sense; in particular, PAC Global
Privacy provides a posterior bound for arbitrary inference
tasks, e.g., the generalized membership attack discussed in
Appendix C.

6.4. K-Means

As previously discussed, we expect K-Means to be easily
compatible with the PAC Privacy framework; results are
provided in Figure 3.

We observe that the baseline accuracy on our test set
is above 90% for the Iris and Rice datasets. Even on small
datasets like Iris, we observe a negligible gap between the
baseline and privatized algorithms for MI ≥ 2−4. On the
Rice dataset, the centroids are quite stable and thus, we see
no meaningful difference between privatized accuracy and
the non-private baseline.

In the Dry Bean dataset, the underlying baseline accuracy
is quite low (≈ 70%). The anistropic privatized accuracy
nearly matches it at MI ≥ 1, but the isotropic accuracy
remains significantly worse. As discussed in Section 5, we
posit that the low baseline accuracy for Dry Bean is due to
the class imbalance. Thus, we explore using oversampling
techniques, as seen in Figure 4.

We observe negligible differences due to oversampling
for the Iris and Rice datasets, since the original datasets do
not have a class imbalance. However, in the Dry Bean dataset,
we first observe a significant increase (≈ 15%) in the baseline
accuracy. Moreover, we observe that the oversampling also
increases the stability of the algorithm. In particular, we
observe negligible utility differences between the anisotropic

https://github.com/mayuri95/pac_algs
https://github.com/mayuri95/pac_algs

Dataset Metric
ϵ = 1.64;

1− δ = 0.84;
MI = 1/4

ϵ = 0.73;
1− δ = 0.67;
MI = 1/16

ϵ = 0.36;
1− δ = 0.59;
MI = 1/64

Iris Differential Privacy (0.004, 0.024) (0.012, 0.05) (0.027, 0.098)
Iris PAC Individual Privacy (0.045, 0.045) (0.045, 0.045) (0.044, 0.048)
Iris PAC Global Privacy (0.044, 0.045) (0.043, 0.059) (0.045, 0.16)

Rice Differential Privacy (1.5 ×10−4, 0.0017) (5.0 ×10−4, 0.0037) (0.0017, 0.007)
Rice PAC Individual Privacy (0.0076, 0.0076) (0.0079, 0.0079) (0.0078, 0.0078)
Rice PAC Global Privacy (0.0078, 0.0078) (0.0078, 0.0081) (0.0079, 0.011)

Dry Bean Differential Privacy (2.9 ×10−4, 0.001) (2.9 ×10−4, 0.002) (9.3 ×10−4, 0.004)
Dry Bean PAC Individual Privacy (0.0054, 0.0054) (0.0054, 0.0054) (0.0054, 0.0054)
Dry Bean PAC Global Privacy (0.0053, 0.0054) (0.0055, 0.0056) (0.0054, 0.0069)

TABLE 2. QUANTITATIVE COMPARISON OF DP VS. PAC PRIVACY FOR PRIVATE MEAN ESTIMATION. WE PROVIDE PAC PRIVACY ESTIMATES FOR BOTH
GLOBAL AND INDIVIDUAL GUARANTEES AS DISCUSSED IN SECTION 4. DP USES δ̄ = 0 FOR VARYING POSTERIOR SUCCESS PROBABILITIES, (1− δ). DP
CELLS PROVIDE l2 DISTANCE AFTER CLIPPING AND AFTER CLIPPING AND PRIVATIZATION; PAC CELLS PROVIDE l2 DISTANCE AFTER SUBSAMPLING

AND AFTER SUBSAMPLING AND ANISTROPIC PRIVATIZATION USING ALGORITHM 1. ALL RESULTS ARE AVERAGED OVER 1000 TRIALS.

Figure 3. We plot the accuracy of the K-Means algorithm without privati-
zation in blue. We then show the anisotropic privatization in orange and
isotropic privatization in green. The accuracy is measured across mutual
information varying from 2−7 to 22. As expected, we observe better utility
using anisotropic noise across all datasets and mutual information values.
The Rice dataset is the easiest to privatize, while the Dry Bean dataset is
the hardest.

privatized accuracy and the baseline for MI ≥ 2−2, with a
privatized accuracy > 80%. We consider this a crucial win-
win situation, where stability techniques like oversampling
can improve both privacy and utility.

6.5. Support Vector Machines (SVM)

Our initial results on SVM, without any additional
regularization (C = 1.0), are summarized in Figure 5 5.

We first consider the Iris dataset. For sufficiently large
MI (> 1), the utility loss due to privatization is minimal.
However, when we tighten the mutual information guarantee,

5. The Dry Bean SVM experiments are run to a precision of τ = 10−5

for computational efficiency.

Figure 4. We observe a significant improvement in the Dry Bean baseline
accuracy from ≈ 70% to ≈ 85%. The algorithm also becomes easier to
privatize.

the magnitude of required noise increases until the utility
impact is quite severe – at an MI guarantee of 2−4, the
privatized algorithm has a utility ≈ 41%. The Dry Bean
dataset is a more stark example of this phenomenon — the
noise added is so large that the privatized utility does not
achieve > 50% until MI > 2. While the gap is not large,
the anisotropic utility is consistently better than the isotropic
counterpart.

We observe a similar trend on the Rice dataset for low MI
values. However, on the Rice dataset, the algorithm achieves
stability at MI ≈ 2−1, where both baseline and privatized
algorithms achieve accuracy of > 90%.

There are many possible reasons for the difference in
performance between the baseline and privatized algorithms.
We consider two main cases, corresponding to superficial
and intrinsic instability, respectively. We observe that many
sources of superficial instability can be resolved by regular-
ization. That is, regularization provides a technique to order

Figure 5. Without additional regularization, we observe that it is difficult to
privatize the Iris dataset (significant utility loss for MI ≤ 20) and nearly
impossible to privatize the Dry Bean dataset. The Rice dataset is easier to
privatize and shows minimal utility losses for MI > 2−2.

multiple solutions which provide similar utility, by simply
choosing the simplest one (lowest norm). However, increasing
regularization too much can interfere with the baseline results
– intuitively, we can prioritize simple solutions over those
with higher utility. Thus, this cannot successfully resolve
issues where the underlying algorithm is unstable due to
inherent instability, without a significant utility impact.

We experiment with the stability of the SVM algorithm
by increasing the regularization. We vary the regularization
parameter C from Equation (4) and our results are in
Figure 6.

We first consider the Iris dataset; the results here are
plotted for C = 0.05. We first observe that the non-private
version of the algorithm shows a decrease in accuracy, across
all possible mutual information bounds – that is, the baseline
accuracy drops from > 90% to ≈ 75%. This shows that
the regularization is strong enough to overpower the loss in
utility; that is, for the chosen value of C, the optimization
problem prefers a stable low-norm solution more than the
≈ 15% increase in accuracy. However, we observe that
the privatized version of the algorithm shows a significant
increase in accuracy, with minimal utility losses for MI as
low as 2−4. We observe similar results with the Dry Bean
dataset, although stronger regularization is required. That is,
we return to the privacy versus utility discussion, touched
upon in Section 3. In the non-private setting, C = 0.05 for
Iris represents regularization that is too strong since the error
on the test dataset is higher than with C = 1.0.

We observe our best results on the Rice dataset. In this
setting, we choose a regularization parameter of C = 0.05
– the baseline accuracy increases by 0.1% due to the reg-
ularization. Additionally, the stability of our algorithm is
improved significantly and we achieve negligible utility loss
in privatization. This suggests that even complex algorithms
with sufficiently large and representative datasets can achieve
stability with appropriate regularization techniques.

Figure 6. Regularization for SVM affects our datasets in significantly
different ways. In the Iris dataset, the baseline algorithm suffers a significant
utility loss due to the strong regularization (from > 90% to ≈ 75%).
However, the gap between the privatized and baseline accuracy decreases,
suggesting that strong regularization is optimal for tight mutual information
guarantees. We observe similar results on the Dry Bean data set which
achieves stability with small utility losses for MI ≥ 2−3 at C = 0.005.
In the Rice dataset, regularization removes instability from the algorithm
without any loss in baseline utility.

6.6. Principal Component Analysis

We then consider the principal component analysis
algorithm for dimensionality reduction. For this algorithm,
we evaluate its performance by measuring the distance
between the reconstructed test matrix X ′ and the original
test matrix Xtest as defined in Equation (5). We first explore
the underlying rank of the datasets.6 These results are
summarized in Figure 7.

Figure 7. We measure the percentage of explained variance by the top
principal components for each dataset. The Rice dataset has a total of 7
features, while the Dry Bean dataset has 16 features. The CIFAR-10 dataset
has 3072 features — we only plot the explained variance for the top 20
dimensions, which account for 70% of the total variance.

6. We do not use the Iris dataset due to its small dimension.

In general, we expect that the PCA algorithm will be
inherently unstable at tight MI guarantees when there are
several principal components with similar “importance”. That
is, if there are two principal components that both explain ≈
1% of the underlying variance, we expect that either could
be returned arbitrarily, even for extremely similar datasets.
We first investigate d = 1 in Figure 8.

Figure 8. We observe that our algorithm is stable on all the datasets for all
MI values. We observe a relatively low RE (< 20%) for the Rice and Dry
Bean datasets due to the significance of the top eigenvector. Meanwhile,
CIFAR-10 has a larger RE (≈ 40%), but similar stability guarantees.

As observed in Figure 7, most of the variance in the Rice
and Dry Bean dataset are explained in the first component.
Thus, we observe in Figure 8 that the restoration error is
< 20% for all mutual information values and we can largely
recover the original matrix. In contrast, less than 50% of
the variance of the CIFAR-10 dataset is explained by the
first component. Thus, this shows a much higher restoration
error ≈ 40%. Across all the datasets, we observe negligible
changes in RE for all mutual information values, indicating
that the algorithm is stable in identifying the top eigenvector.

We then consider the same algorithm with higher di-
mensions, as seen in Figure 9. Here, we observe that all
the datasets show a significant decrease in restoration error
for the non-private baseline; this is expected since we are
increasing the number of dimensions kept and thus, capturing
more of the variance in the original matrix.

For the Rice dataset, we observe that the anisotropic
noise achieves privatized RE ≤ 5% at MI ≥ 2−2, which is a
significant improvement over d = 1. The Dry Bean dataset
shows similar results, achieving RE ≤ 5% at MI = 2−3. This
suggests that we can privatize PCA on such large datasets
with large enough dimensions to capture most of the variance.
In both of these cases, we observe the benefit of anisotropic
noise — the corresponding isotropic algorithm often has
much worse results in higher dimensions.

The CIFAR-10 dataset, in contrast, can only be privatized
for d = 3. In particular, the eigenvectors for d > 3 have
similar “importance” and the stability of the algorithm drops
significantly (the l1 norm of the noise added from d = 3 to

Figure 9. We run PCA with varying numbers of components (d in the plots)
for the different datasets. With large d, the baseline restoration error drops
to near zero for Rice and Dry Bean. This indicates that we can privatize
these algorithms with negligible impact. In contrast, we choose d = 3 for
CIFAR-10 in order to provide meaningful privatized utility; however, the
baseline RE remains high due to the relatively low dimension. Increasing d
further significantly reduces the stability, making the privatized algorithm
unusable.

d = 4 increases by 100×). The anisotropic algorithm’s RE
for d = 3 varies from ≈ 55% for MI = 2−7 to ≈ 33% for
MI = 22, which is a small improvement over d = 1.

6.7. Random Forest

Finally, we consider the random forest algorithm. As
discussed in Section 5, the random forest algorithm is known
to be unstable and is quite difficult to adapt to our framework.

We first test the naı̈ve algorithm with no additional
regularization on the Iris and Rice datasets.7

Our results are summarized in Figure 10. We use a single
tree for the Iris dataset with depth 3. We use 3 trees for the
Rice dataset, with depth 3. In each iteration of the algorithm,
the chosen features for each tree are randomly sampled and
the variance across the threshold values is measured.

As expected, the privatized version of random forest
without additional regularization shows significant instability
for our datasets. Further investigation shows that there are
several possible causes for the instability within a tree:
• When there are a small number of samples that are

in a path, the optimal “threshold” value to split on is
unstable. We resolve this by providing regularization
penalties.

• The exact threshold value to split on can be noisy due
to the exact set of points that are observed. To improve
stability, we consider a fixed set of threshold values
with finite precision.

• The threshold values are sometimes unstable due to the
non-uniform spread of the feature values. To address
this, we calculate a weighted average of the entropy.

7. For this algorithm, we do not use the Dry Bean dataset for computa-
tional efficiency. See Appendix B for results on this dataset.

Figure 10. The naı̈ve random forest algorithm shows significant instability
on the Iris and Rice datasets. The Iris dataset achieves over 90% accuracy in
the non-private case, but shows a dramatic loss in utility (down to < 50%
for MI < 2−2) after privatization. The Rice dataset shows better results,
with ≈ 93% accuracy in the baseline and ≈ 73% accuracy after anisotropic
privatization at MI = 2−4.

We choose these three techniques in order to address the
issue that the trees cannot be pruned while maintaining a
canonical ordering that can be compared across iterations.
We now experiment with adding regularization of the form
(p, w1, w2) (cf. Section 5) for the Iris and Rice datasets.

Figure 11. On the Iris dataset, we achieve over 70% privatized utility for
MI > 2−3. In the Rice dataset there is a much smaller utility loss in the
baseline due to regularization (baseline accuracy is ≈ 87%). However,
the privatized accuracy increases to achieve similar utility due to the
improvements in stability.

We first consider the Iris dataset. As seen in Figure 11,
we add significant regularization; however, we note that
our baseline non-private accuracy actually increases by ≈
2% after regularization. Further, regularization improves the
privatized algorithm’s utility to ≥ 70% for MI > 2−3. We
observe that the anisotropic noise provides a significant utility
benefit over the isotropic setting.

We next analyze the Rice dataset. For this dataset, we
suffer a small utility loss (93% to 87% baseline accuracy) due
to our increased regularization. However, the improvement
in stability is significant; there is thus a negligible loss in
utility between the privatized and baseline algorithm after
the increased regularization for all MI values. This again
shows that unstable algorithms can be privatized with little
utility cost when the dataset is sufficiently large and stable.

Figure 12. We choose our trial complexity m for Algorithm 1 by measuring
the change in our variance estimate in each direction Ak . When all of
the directions are stabilized within 10−6, we return the current variance
estimate.

7. Convergence of Algorithm 1

In this section, we discuss our empirical convergence
guarantee. We observe that Theorem 1 provides a mutual
information bound when the variances are estimated exactly.
For practical guarantees, we choose trial complexity large
enough such that each element of the variance estimate
converges with very high precision (τ = 10−6). In particular,
we run our noise estimation algorithm and estimate our
variance vector after every 10 instances. The algorithm is
considered to have converged when none of the estimates in
our output vector have changed by more than τ . We choose
τ sufficiently small such that the impact of adding noise in
the order of τ is negligible. Results are shown in Figure 12.

Figure 12 provides the change in the first element of our
variance vector for varying algorithms on the Iris dataset.
We observe that the trial complexity varies across algorithms
and datasets. Stable algorithms (e.g., SVM with strong
regularization) converge more than 10× faster than SVM
without regularization.

Convergence on the complete covariance matrix would
require an order of magnitude more trials. In Appendix
B, we describe an alternate approach to true variance
computation that can be more efficient than a convergence-
based approach.

8. Empirical Privacy Estimation

Although PAC Privacy allows us to provably bound
the posterior advantage for any attack, in this section, we
focus on membership inference attacks for concreteness and
validation. The objective of membership inference attacks
(MIA) is defined in [6] as follows: given a machine learning
model and a single datapoint x, the goal is to determine
whether x was used to train the model.

For our purposes, we define our machine learning model
as the trained output vector Yi, representing some statistic
about our input data Xi ⊂ Xtrain. In K-Means, this vector

Figure 13. Empirical posterior advantage from LIRA over 1,000 trials.
The empirical posterior advantage of the subsampled algorithms are all
at most 11%. For the privatized algorithms, the empirical advantages are
always below the theoretical posterior advantages of Table 1. The K-Means
and naı̈ve SVM algorithm show the largest average reduction in posterior
advantage due to privatization of ≈ 3% over all values of MI.

corresponds to the list of centroids; for SVM, the vector
represents the list of hyperplanes separating the classes. We
vary the mutual information bound and focus on the Iris
dataset. We observe that our model is trained on a subset
Xj where |Xj | = 0.5(|Xtrain|) in all of our experiments.
This indicates that for any particular datapoint x, the prior
Pr[x ∈ Xj] = 0.5. Table 1 gives a theoretical maximal
posterior advantage, which can be compared to the empirical
advantage observed.

We consider the Likelihood-Ratio Attack (LIRA) as
described in [7] and adapt it to the K-Means and SVM
algorithms; details are provided in Appendix D. Our results
on the Iris dataset are summarized in Figure 13. PAC Privacy
is necessarily conservative; in Figure 13, the empirical
posterior advantages (denoted as pe) for the privatized
algorithms are significantly lower than the upper bounds
given by Table 1 across all mutual information bounds.

We observe a decrease in the privatized posterior advan-
tage across all the algorithms. In the K-Means algorithm,
we observe the most significant change, from ≈ 9.61% to
1.15% at MI = 1/64. In the SVM algorithms, the baseline
advantage of the non-private algorithm is significantly lower
at ≈ 5.4% without regularization and ≈ 4.3% at C = 0.05.
For C = 1.0, we observe an average decrease of ≈ 3% in
pe; for C = 0.05, the difference is ≈ 1.4%.

9. Related Work

Recent work in PAC Privacy addressed the formalization
of privacy guarantees provided by heuristic encoding algo-
rithms, and provided efficient estimation strategies for these
specialized encoding techniques [33].

Quantitative comparisons to DP for generic mean esti-
mation were provided in Section 6.3. For more complex

algorithms, small ϵ-DP guarantees are harder to provide and
often involve significant changes to algorithm implementation.
Even with white-box changes, the resulting algorithm often
requires a large dataset with small data dimension to provide
meaningful utility guarantees. In contrast, PAC provides
instance-specific guarantees with reasonable utility loss, even
when subsampling small datasets of ≈ 1,000 datapoints with
large output dimension. Given the substantial algorithmic
differences between DP white-boxed algorithms and the PAC
black-box approach, and the semantic difference in privacy
guarantees, we restrict ourselves to qualitative comparisons
between our PAC-privatized algorithms and state-of-the-art
DP algorithms for the various problems.

We first consider K-Means. Early work developed
DPLloyd [34], a DP version of Lloyd’s algorithm for K-
Means clustering. Intuitively, DPLloyd adds Laplacian noise
each time the approximate centroids are computed. We
observe that even for a simple algorithm, providing DP
required significant changes to the algorithmic structure, e.g.,
fixing the number of iterations for convergence. Further,
we observe that K-Means is known to be sensitive to the
initial centroids chosen; thus, DPLloyd requires a new private
initialization procedure as well.

We then consider SVM classifiers; there has been a
long history of developing SVMs with DP guarantees [35],
[36]. In general, these techniques use the SVM algorithm to
compute the optimal weight vector and add appropriate noise
to provide DP guarantees. However, as observed by [37],
large training sets led to large weight vectors with increased
noise. Moreover, often there were strong restrictions on the
objective function (e.g., convexity) to enable tight bounds
on the noise. [37] suggests a novel method in order to solve
the dual problem of SVM, which approaches the non-private
SVM accuracy for sufficiently large training sets. However,
note that this is still a white-box mechanism to achieve
privacy, i.e., Laplacian noise was added in each iteration
and in each iteration, an inner loop is required to choose the
pairs of dual variables to update.

Random forests with differential privacy have been
explored less extensively. [38] suggests that differentially-
private random forests can be constructed by allocating a
privacy budget across trees, and then across levels of each
tree. Each tree is “complete” when either all the features are
used, the remaining samples all belong to the same class or
when a maximum height is reached. [39] expands this work
and constructs differentially-private median forests, which
also improve the stability of the data structure. However,
they still observe significant utility losses for sufficiently
small ϵ.

Finally, we consider DP for identifying principal compo-
nents. [40] constructs a near-optimal technique for identifying
principal components while providing DP. Their technique
requires datasets with a large number of datapoints, but
the noise scales with the original dimension, making it
impractical for datasets with large dimension, even if the
true rank is constant. We further observe that their resulting
utility guarantees are upon a secondary classification task,
rather than the restoration of the original matrix task that we

evaluate on. In practice, we expect the latter to be a stronger
guarantee since a perfectly restored matrix would provide
the best utility guarantee on any secondary task.

10. Conclusions

We have shown how PAC Privacy can be applied to
privatize black-box algorithms by giving a template that can
be applied to virtually any algorithm. Using Algorithm 1 to
add anisotropic noise is critical to improving privacy-utility
tradeoffs.

An exciting aspect of PAC Privacy that is demonstrated
most clearly by our K-Means results is the potential win-
win situation in the algorithm tradeoff space. Stability with
respect to input changes is a desirable feature of algorithms,
because stable algorithms generalize better to new inputs and
have better worst cases. Concomitantly, stable algorithms
require less additive noise on their outputs for privatization.

One aspect that is worth exploring in the future is
the privacy-utility tradeoff at different subsampling rates.
Additional future work includes using the compositional
properties of mutual information [41] to tackle unstable
algorithms such as Stochastic Gradient Descent (SGD).
Algorithms can be broken down into phases, and noise is
added at the end of each phase. It is conservatively assumed
that the noisy outputs are exposed, similar to DP-SGD [4],
although in PAC Privacy the phases can be hundreds of
iterations and each phase can be treated as a black box.

11. Acknowledgements

We thank the anonymous reviewers for their detailed and
constructive feedback. This work was supported in part by
grants from Cisco Systems and Capital One. Mayuri Sridhar
was supported by the NDSEG fellowship from the DoD and
a MathWorks fellowship.

References

[1] C. Dwork, “Differential privacy,” in International colloquium on
automata, languages, and programming. Springer, 2006, pp. 1–12.

[2] X. Xiao and Y. Tao, “Output perturbation with query relaxation,”
Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 857–869,
2008.

[3] I. Issa, A. B. Wagner, and S. Kamath, “An operational approach
to information leakage,” IEEE Transactions on Information Theory,
vol. 66, no. 3, pp. 1625–1657, 2019.

[4] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, 2016, pp. 308–318.

[5] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Ú. Erlingsson, “Scalable private learning with pate,” arXiv preprint
arXiv:1802.08908, 2018.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[7] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1897–
1914.

[8] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[9] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with mem-
bership privacy using adversarial regularization,” in Proceedings of
the 2018 ACM SIGSAC conference on computer and communications
security, 2018, pp. 634–646.

[10] Y. Kaya and T. Dumitras, “When does data augmentation help
with membership inference attacks?” in International conference on
machine learning. PMLR, 2021, pp. 5345–5355.

[11] Y. Yin, K. Chen, L. Shou, and G. Chen, “Defending privacy against
more knowledgeable membership inference attackers,” in Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, 2021, pp. 2026–2036.

[12] Y. Wang, C. Wang, Z. Wang, S. Zhou, H. Liu, J. Bi, C. Ding, and
S. Rajasekaran, “Against membership inference attack: Pruning is all
you need,” in International Joint Conference on Artificial Intelligence,
2021.

[13] H. Xiao and S. Devadas, “Pac privacy: Automatic privacy measurement
and control of data processing,” in Advances in Cryptology – CRYPTO
2023: 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20–24, 2023, Proceedings,
Part II. Berlin, Heidelberg: Springer-Verlag, 2023, p. 611–644.
[Online]. Available: https://doi.org/10.1007/978-3-031-38545-2 20

[14] B. Balle, G. Cherubin, and J. Hayes, “Reconstructing training data
with informed adversaries,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 1138–1156.

[15] J. Hayes, S. Mahloujifar, and B. Balle, “Bounding training data
reconstruction in dp-sgd,” arXiv preprint arXiv:2302.07225, 2023.

[16] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache {Side-Channel} protection using hardware
transactional memory,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 217–233.

[17] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for
differential privacy,” in International conference on machine learning.
PMLR, 2015, pp. 1376–1385.

[18] T. Humphries, S. Oya, L. Tulloch, M. Rafuse, I. Goldberg, U. Hengart-
ner, and F. Kerschbaum, “Investigating membership inference attacks
under data dependencies,” in 2023 IEEE 36th Computer Security
Foundations Symposium (CSF), 2023, pp. 473–488.

[19] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: http://dx.doi.org/10.1023/A%
3A1010933404324

[20] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[21] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” vol. 8, 01 2007, pp. 1027–1035.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” J. Artif. Int. Res.,
vol. 16, no. 1, p. 321–357, jun 2002.

[23] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, no. 61, pp. 1871–1874, 2008.
[Online]. Available: http://jmlr.org/papers/v9/fan08a.html

[24] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, may 2011.
[Online]. Available: https://doi.org/10.1145/1961189.1961199

https://doi.org/10.1007/978-3-031-38545-2_20
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://jmlr.org/papers/v9/fan08a.html
https://doi.org/10.1145/1961189.1961199

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] K. Pearson, “Liii. on lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.
[Online]. Available: https://doi.org/10.1080/14786440109462720

[27] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[28] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI:
https://doi.org/10.24432/C56C76.

[29] I. Cınar and M. Koklu, “Classification of rice varieties using
artificial intelligence methods,” International Journal of Intelligent
Systems and Applications in Engineering, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:208105752

[30] M. Koklu and I. A. Özkan, “Multiclass classification of dry beans
using computer vision and machine learning techniques,” Comput.
Electron. Agric., vol. 174, p. 105507, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:219762890

[31] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[32] C. Dwork and A. Roth, “The algorithmic foundations of
differential privacy,” Found. Trends Theor. Comput. Sci., vol. 9,
no. 3–4, p. 211–407, aug 2014. [Online]. Available: https:
//doi.org/10.1561/0400000042

[33] H. Xiao, G. E. Suh, and S. Devadas, “Formal Privacy Proof of Heuristic
Encoding: The Possibility and Impossibility of Learnable Obfuscation,”
in Computer and Communications Security Conference, October 2024.

[34] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin, “Differentially private
k-means clustering,” in Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, ser. CODASPY ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
26–37. [Online]. Available: https://doi.org/10.1145/2857705.2857708

[35] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization,” J. Mach. Learn. Res., vol. 12,
no. null, p. 1069–1109, jul 2011.

[36] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft, “Learning
in a large function space: Privacy-preserving mechanisms for svm
learning,” Journal of Privacy and Confidentiality, vol. 4, no. 1, Jul.
2012. [Online]. Available: https://journalprivacyconfidentiality.org/
index.php/jpc/article/view/612

[37] Y. Zhang, Z. Hao, and S. Wang, “A differential privacy support vector
machine classifier based on dual variable perturbation,” IEEE Access,
vol. 7, pp. 98 238–98 251, 2019.

[38] A. Patil and S. Singh, “Differential private random forest,” in 2014
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2014, pp. 2623–2630.

[39] S. Consul and S. A. Williamson, “Differentially private random
forests for regression and classification,” 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:235365701

[40] K. Chaudhuri, A. Sarwate, and K. Sinha, “Near-optimal differentially
private principal components,” in Advances in Neural Information
Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2012/file/
f770b62bc8f42a0b66751fe636fc6eb0-Paper.pdf

[41] H. Xiao, “Automated and Provable Privatization for Black-Box
Processing,” Ph.D. dissertation, Massachusetts Institute of Technology,
August 2024.

[42] J. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Adv. Large Margin
Classif., vol. 10, 06 2000.

Appendix A.
Individual Privacy Guarantees

We can provide tighter bounds on the noise required
to privatize algorithms when considering specific inference
tasks.

In particular, for a d-dimensional mean estimation mech-
anism M, we may decompose M as M1, · · · ,Md, where
Mi is the i-th coordinate average of input X . We may follow
the composition results (Theorem 7) of [13] to upper bound
the mutual information of MI

(
X;M(X)

)
by the sum of the

KL divergence bound of each Mi(X).
In particular, for individual privacy where the adversary

aims to infer whether a datapoint x∗ is selected in the input
set or not, rather than calculating the empirical variance over
all possible subsets, we can simply compute the average
expected distance between sets which contain the point x∗
and sets which do not. Formally, as in [13], to calculate the
privacy guarantee for an individual point x∗, we compute

MI(x∗,M(X)[i] + B[i])
≤ EX∼X̄DKL(M(X)[i] + B[i]∥M(X̄[i]) + B[i])

≤
EX∼X̄

[∥∥M(X)[i]−M(X̄)[i]
∥∥2]

2ei
.

where X and X̄ are drawn from D and satisfy the constraint
that x∗ ∈ X and x∗ /∈ X̄ . For the tightest guarantees on noise
for a given X , we choose X̄ and X as adjacent datasets.

Now, when we add independent Gaussian noises B[1:d],
in a form N (0, ei), for i = 1, 2, · · · , d, to each coordinate,
to ensure that MI

(
X;M(X) + B

)
is upper bounded by β,

it suffices to select e[1:d] such that

d∑
i=1

σi

2ei
≤ β,

where σi := EX∼X̄
[∥∥M(X)[i]−M(X̄)[i]

∥∥2]. This en-
ables us to compute the anisotropic noise as in Theorem 1
where the optimal ei is of the form

ei =

√
σi

∑d
j=1

√
σj

2β
.

Finally, we note that we take the maximum ei over all
individual datapoints x∗ to provide an individual membership
guarantee for any chosen point.

Appendix B.
An Alternate Approach to Computing Noise

The approach described in Section 4 uses empirical
convergence guarantees to provide a tight variance estimate
for M(X), rather than the high-probability guarantee of
[13] which requires greater round complexity. In this section,
we describe a different approach to constructing D, which
provides computational efficiency and directly satisfies the
requirements of Theorem 1 by providing a method to
compute the true variance of M(X).

https://doi.org/10.1080/14786440109462720
https://api.semanticscholar.org/CorpusID:208105752
https://api.semanticscholar.org/CorpusID:219762890
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2857705.2857708
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/612
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/612
https://api.semanticscholar.org/CorpusID:235365701
https://proceedings.neurips.cc/paper_files/paper/2012/file/f770b62bc8f42a0b66751fe636fc6eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f770b62bc8f42a0b66751fe636fc6eb0-Paper.pdf

B.1. Constructing a Distribution D

First, consider sampling X1 · · ·Xm ⊂ Xtrain, which are
independent and identically distributed subsets of Xtrain

with |Xi| = |Xj | as before for a fixed choice of m. We
then define S as the set {X1 · · ·Xm}; throughout, we let
D denote the uniform distribution over S. Constructing S
to be all possible r|Xtrain| subsets of Xtrain matches the
construction of D in Section 4. As before, our noisy release
must be drawn from D. However, this choice of S is too
large for the true variance to be exactly computed.

Varying choices of S affect the prior of our adversary.
That is, if we choose S to be m uniformly random subsets
of size r|Xtrain|, then a randomly chosen element xi may
occur in over 50% of these subsets; the number of subsets
xi occurs in would follow the binomial distribution of m
tosses of a fair coin. This implies that certain membership
attacks would have a prior over 50%; for large m, the prior
will be overwhelmingly close to 50%.

However, the choice of S is free; that is, our privacy
guarantees hold as long as the chosen Xj is drawn uniformly
at random from the same set S that the Xi are subsampled
from (and the prior is appropriately calculated). For instance,
a simple instantiation of S for r = 0.5 is as follows:

1) Choose a random 0.5|Xtrain| subset of Xtrain that we
denote as X1.

2) Choose X2 := Xtrain \X1.
3) S = {X1, X2}, i.e., m = 2, and D corresponds to

drawing randomly from S.
For this choice of S and D, we observe that the prior for

any individual datapoint is exactly 50% since X1 and X2

are constructed to be disjoint. Moreover, this set is of size
2 and computing the true variance is easy. The adversary,
who is assumed to know D and S, has a prior probability
of 1

m of correctly guessing the chosen subset, and in this
case it is 1

2 , which is the same as guessing whether an
individual data element xa is in the chosen subset or not.
Knowing the chosen subset gives away the membership
information of all data elements in Xtrain, regardless of the
value of m. However, for the m = 2 case, knowing a single
element that was chosen (or not) gives away the chosen
subset and therefore the membership information of all data
elements! The correlation between the memberships of the
data elements decreases exponentially as m increases.

B.2. Noise Determination using True Variance

A slightly modified noise determination algorithm is
presented in Algorithm 2, which takes as input the distri-
bution D; in this model, this is represented exactly by the
uniform distribution over the set S. We denote S[k] as the
k’th element of the set S. All other terms are as before.

In practice, we construct S using m = 1024 possible
subsets made up of 512 distinct pairs (Xi, Xi+1), 1 ≤ i ≤
512, where each pair is disjoint as described above. This has
a prior for individual membership of exactly 50%, provides
empirical stability in performance (cf. Section B.3), and

Algorithm 2 Anisotropic Noise Determination of M Using
True Variance

Input: The input distribution D represented by the set of
subsets S , deterministic mechanism M : Xn → Yd, mutual
information requirement β, d× d unitary projection matrix
A.

1) m := |S|, G := [0]m×d
2) for k = 1, 2, . . . ,m:

a) Xk := S[k].
b) Compute yk = M(Xk).

3) for each k ∈ [1, . . .m] and i ∈ [1, . . . d], set

G[k][i] := yk ·Ai.

4) Compute the variance vector σm where σm is a vector
of length d and σm[i] is the variance of Gi.

5) Calculate the required noise in each direction i as

ei :=

√
σm[i]

d∑
j=1

√
σm[j]

2β
for i ∈ [1, d].

6) Return a diagonal matrix ΣB, where ΣB[i][i] = ei.

has exponentially small correlation between data elements.
This choice of m = 1024 allows us to efficiently privatize
large datasets (e.g., Dry Bean with over 10,000 datapoints)
even for complex algorithms like decision trees, which was
intractable for the prior approach. For this value of m = 1024,
the variance in performance across different S is small, and
we are able to match the results in the main body of the
paper for all algorithms and benchmarks. We provide further
results for the Dry Bean dataset when privatizing the Random
Forest algorithm in Figure 14.

Figure 14. On the Dry Bean dataset, without regularization, we achieve
82% accuracy in the baseline, but significant loss in privatized utility for
MI < 2−1. With regularization, although the baseline utility is lowered to
70%, we find negligible losses in privatized utility for MI ≥ 2−3.

B.3. Tradeoffs in Choosing m

Smaller choices of m show a much larger variance in the
noise estimates. For example, for m = 2, different random
instantiations of the set S can produce very different ΣB

from Algorithm 2. Increasing m leads to greater stability of
ΣB . Note that there are privacy guarantees even for m = 2;
we can bound the posterior advantage of the adversary in
guessing which subset was used. The prior and success rate
of reconstruction attacks decrease as m increases.

To compute the variance of noise estimates, we fix MI =
0.5 and consider the K-Means algorithm; we analyze the l1
norm of diag(ΣB), which represents the noise required to
privatize this algorithm. At m = 2, over 100 instantiations,
we observe that the norm of diag(ΣB) varies from 0.01 to
0.27. In contrast, at m = 128, the norm of diag(ΣB) varies
from 0.10 to 0.20. This indicates that, at m = 2, the particular
instantiation of S greatly affects the overall performance of
the privatized algorithm. We observe stronger versions of this
trend when we look at less stable algorithms. In particular,
when we consider decision trees without any regularization,
we observe that the norm of diag(ΣB) varies from 0.06 to
1.16 at m = 2. At m = 128, the norm of diag(ΣB) varies
between 0.64 and 0.86.

Small m is computationally more efficient, but provides
weaker privacy guarantees. It may require the addition of
smaller or greater noise in different trials. We defer a
fuller exploration of the tradeoffs between privacy, utility,
computation cost and choice of m to future work.

Appendix C.
A generalized membership attack

We observe that the prior guarantee of 0.5 is specific to
membership attacks where we try to identify the membership
of a single, specific datapoint x. Here, we consider a
generalization of the membership attack where we aim
to correctly identify the membership of any subset of
points, where the subset has size at least k. Consider an
attack that attempts to identify some fraction of bits of
a secret key. In this setting, a secret key consisting of n
bits is generated from a uniform random distribution and an
adversarial task focuses on identifying at least k bits correctly.
In this section, we primarily consider the prior for this
attack. In practice, the adversary may be able to view some
side channel, e.g., a timing, power, or cache side channel,
and this additional exposure via some mechanism M will
provide some posterior advantage that will correspond to
the calculated MI. In this setting, the adversary knows the
distribution that the secret key is drawn from, but it does
not necessarily have a compact representation as a uniform
distribution over a sufficiently small S.

Formally, the secret key is distributed uniformly at
random over all 2n possible bit vectors. That is, for any
particular bit i ∈ [1, n], we have a probability of 0.5 on
guessing the bit correctly. Our inference task is to then
construct a guess X ′, which is a bit vector of length n, such
that at least k indices in X ′ are classified correctly. For any
fixed size k, our prior probability becomes

p := 1−
k−1∑
k′=0

(
n

k′

)(
1

2

)n

. (6)

Figure 15. The prior from the generalized membership attack (Equation (6))
drops below 5% for k ≥ 59. This indicates that loose MI guarantees can
be meaningful for harder adversarial inference tasks.

In expectation, we guess n/2 bits correctly. However,
as k increases beyond n/2, our prior success probability
drops very quickly, as seen in Figure 15. When we consider
n = 100 and k = 63, our prior probability drops below
1%, providing meaningful posterior bounds for large values
of MI as discussed in Table 1. Thus, when we consider
k non-negligibly larger than n/2, this allows for loose MI
guarantees to still be meaningful. For example, a generalized
membership attack with n = 100, k = 70 and a mutual
information guarantee of 1, provides a ≤ 13.81% poste-
rior success guarantee, by solving Equation (3) given the
appropriate prior.

Appendix D.
Adapting LIRA to K-Means and SVM

The Likelihood-Ratio Attack by [7] exploits the idea
that when a model is trained on a particular point x, its
“confidence” on classifying x into a particular class or cluster
will be higher than on a point it is not trained on. The original
work by [7] exploits this by framing a membership attack as
a hypothesis test. Let ϕ(M(Xj), x) denote the confidence
score of M(Xj) on x. In this work, they sample many
subsets Xi and approximate the distribution of ϕ(M(Xi), x),
when x /∈ Xi. For the attack, they then consider a varying set
of thresholds t where the attack concludes x ∈ Xj if and only
if ϕ(M(Xj), x) ≥ t. Each threshold t has corresponding
true and false positive rates, and we simply consider the
maximum accuracy over all thresholds t, which represents
the maximum posterior advantage achievable by LIRA.

Unlike Carlini’s work, we do not directly produce con-
fidence values from our algorithms. We instead translate
our output vectors to approximate confidence values. For
the K-Means algorithm, we compute a confidence metric
ϕ(M(Xj), x) := 1 − d(x), where d(x) represents the
normalized distance to the cluster to which x is assigned. For
SVM, we use Platt calibration to translate the distance from
the point to the hyperplane into a confidence metric [42],
i.e.,

ϕ(M(Xj), x, i) =
1

1 + exp(−d(x, i))
,

where d(x, i) represents the distance between x and
the hyperplane for class i. Then, ϕ(M(Xj), x) =
maxi ϕ(M(Xj), x, i). We observe that the distribution of
ϕ(M(Xj), x) is not always Gaussian; we thus directly
approximate its CDF through 1,000 trials.

	Introduction
	Background
	Automatic Privatization
	A Template for Provable Privacy
	Privacy vs. Utility

	Efficiently Computing Anisotropic Noise
	Noise Determination and Guarantees

	Algorithms
	Clustering: K-Means
	Classification: SVM
	Dimensionality Reduction: PCA
	Boosting: Random Forest

	Experiments
	Datasets
	Experimental Design
	Warmup: Estimating the Mean
	K-Means
	Support Vector Machines (SVM)
	Principal Component Analysis
	Random Forest

	Convergence of Algorithm 1
	Empirical Privacy Estimation
	Related Work
	Conclusions
	Acknowledgements
	References
	Appendix A: Individual Privacy Guarantees
	Appendix B: An Alternate Approach to Computing Noise
	Constructing a Distribution D
	Noise Determination using True Variance
	Tradeoffs in Choosing m

	Appendix C: A generalized membership attack
	Appendix D: Adapting LIRA to K-Means and SVM

