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Abstract. Creating an adversary resilient construction of the Learned Bloom Filter
with provable guarantees is an open problem. We define a strong adversarial model
for the Learned Bloom Filter. Our adversarial model extends an existing adversarial
model designed for the Classical (i.e not “Learned”) Bloom Filter by prior work and
considers computationally bounded adversaries that run in probabilistic polynomial
time (PPT). Using our model, we construct an adversary resilient variant of the
Learned Bloom Filter called the Downtown Bodega Filter. We show that: if pseudo-
random permutations exist, then an Adversary Resilient Learned Bloom Filter may
be constructed with 2λ extra bits of memory and at most one extra pseudo-random
permutation in the critical path. We construct a hybrid adversarial model for the
case where a fraction of the query workload is chosen by an adversary. We show
realistic scenarios where using the Downtown Bodega Filter gives better performance
guarantees compared to alternative approaches in this hybrid model.
Keywords: Secret Key Cryptography · Adversarial Artificial Intelligence · Proba-
bilistic Data Structures.

1 Introduction
The Bloom Filter is a probabilistic data structure that solves the Approximate Membership
Query Problem. The data structure now known as the “Bloom” Filter was initially
proposed as method 2 in the section “Two Hash-Coding Methods with Allowable Errors”
in a 1970 paper by Burton H. Bloom [Blo70][CRJ10]. The Bloom Filter has applications in
databases, cryptography, computer networking, social networking [BGK+08], and network
security [MB04]. The Learned Bloom Filter is a novel data structure first proposed by
Kraska et al [KBC+18] in 2017. The Learned Bloom Filter can be thought of as a Bloom
Filter working in collaboration with a Learning Model. There are currently no known
provably secure constructions of the Learned Bloom Filter. Prior work [RAHDS21] has
left the security of the Learned Bloom Filter as an open problem.

In this section, we first summarize the original formulation of the Bloom Filter and
then provide background on the Learned Bloom Filter. Next, we outline the scope of this
work and provide a summary of our results. Lastly, we provide motivation for our results
and discuss related work.

1.1 The Bloom Filter
A Bloom Filter representing a set S may have false positives (s /∈ S may return true) but
does not have false negatives (s ∈ S is always true). The Learned Bloom Filter provides the
same correctness guarantees as the Bloom Filter, but with potentially better performance
for the same memory budget. We first discuss the (Classical) Bloom Filter, and then
discuss the Learned Bloom Filter.
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1.1.1 Classical Bloom Filter

Figure 1 provides a helpful illustration of a Bloom Filter and the insert and check operations
we introduce below.
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Figure 1: Example of a Bloom Filter with m = 8 and k = 2. Initially, all m bits are
unset. Each element xi is hashed k times, and each corresponding bit is set. To check each
element yi, the element is hashed k times. If any corresponding bit is unset, the element
yi is not in set S (with probability 1). If all corresponding bits are set, the element yi is
either in set S or the element yi has caused the Bloom Filter to return a false positive

Definition 1 (Bloom Filter). A Bloom Filter for representing set S with cardinality n is
a zero initialized array of m bits. A Bloom Filter requires k independent hash functions
hi such that the range of each hi is the set of integers {1, . . . , m} [MB04].

Most mathematical treatments such as Mitzenmacher Broder [MB04] make the con-
venient assumption that each hi maps each item in the universe to a random number
uniformly over the (integer) range [1, m]. In the remainder of this text, we shall refer to
this formulation of the Bloom Filter as the Classical Bloom Filter. This is to distinguish
it from the Learned Bloom Filter, which our results are focused on.

Operation 1 (Insert). For each element x ∈ S, the bits hi(x) are set to 1 for i ∈ [1, k].

If a bit already set to 1 is set to 1 again, its value remains 1 i.e a double set does not
flip the bit back to 0.

Operation 2 (Check). For an element x, we return true if all hi(x) map to bits that are
set to 1. If there exists an hi(x) that maps to a bit that is 0, we return false.

Learning 
Model

Backup 
Classical 
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Input Negatives

Positives
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Figure 2: Example of a Learned Bloom filter with a Learning Model and a Backup Classical
Bloom filter that only checks values that are with high probability negative in the Bloom
Filter Learning Model, to ensure a one-sided error bound (i.e only false positives and no
false negatives).

1.1.2 Learned Bloom Filter

The Learned Bloom Filter is a novel data structure proposed by Kraska et al [KBC+18] in
2017. Kraska et al suggest using a pre-filter ahead of the Classical Bloom Filter, where the
pre-filter is derived from a learning model. The learning model estimates the probability
of an element x being in the set S. This allows the use of a smaller (in terms of memory)
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Classical Bloom Filter compared to the case where a Classical Bloom Filter is used alone.
A mathematical model and guarantees for the Learned Bloom Filter were first provided by
Mitzenmacher [Mit18] in 2018. While Kraska et al used a neural network for the pre-filter,
Mitzenmacher generalizes the pre-filter to use any approach that estimates the probability
of an element x being in the set S. We use this generalized formulation of the Learned
Bloom Filter in this work. We introduce the Learned Bloom Filter using a self-contained
definition adapted from Mitzenmacher [Mit18]. We extend this definition in Section 2.2.

Definition 2 (Learned Bloom Filter). A Learned Bloom filter on a set of positive keys
K and negative keys U is a function f : U 7→ [0, 1] and threshold τ , where U is the
universe of possible query keys, and an associated Classical Bloom Filter B, referred to
as a Backup Classical Bloom filter. The Backup Classical Bloom Filter holds the set of
keys {z : z ∈ K, f(z) < τ}. For a query y, the Learned Bloom filter returns that y ∈ K if
f(y) ≥ τ , or if f(y) < τ and the Backup Classical Bloom Filter returns that y ∈ K. The
Learned Bloom filter returns y /∈ K otherwise.

The Learned Bloom Filter provides better performance on the false positive rate while
maintaining the guarantee of having no false negatives. We show an example of a Learned
Bloom Filter adapted from Mitzenmacher et al [Mit18] in figure 2.

1.2 Our Results
We introduce an adversarial model for the Learned Bloom Filter. Our model extends
the adversarial model for the Classical Bloom Filter introduced by Naor Yogev [NE19].
Using our adversarial model, we introduce the notion of an adversarial resilient Learned
Bloom Filter, as well as an adversarial reveal resilient Learned Bloom Filter. The precise
definitions and the adversarial model we introduce are provided in Section 2.

1.2.1 Secure Learned Bloom Filter

We introduce the first provably secure constructions of the Learned Bloom Filter and show
that using pseudo-random permutations, one can create provably secure constructions of
the Learned Bloom Filter with at most 2λ extra bits of memory, where λ is the security
parameter.

Theorem 1 (Secure Constructions). Let B be an (n, ϵ)-Sandwiched Learned Bloom Filter
using m bits of memory. If pseudo-random permutations exist, we show that there exists a
negligible function negl(·) such that for security parameter λ there exists an (n, ϵ+negl(λ))-
adversarial reveal resilient Learned Bloom Filter that uses m′ = m + 2λ bits of memory

This result is formally proved in Theorem 3 of Section 3.

1.2.2 Utility of the Secure Learned Bloom Filter

To explore the utility of the Secure Learned Bloom Filter, we introduce a hybrid model
where an adversary is allowed to choose αN queries out of a workload of N queries sent to
the Bloom Filter.

Theorem 2 (Performance in the Hybrid Model). For a given memory budget M =
mL + mA + mB + 2λ, any set S and corresponding training dataset D, in the hybrid
adversarial setting with given α = αP + αN , the expected false positive probability of a
Secure Learned Bloom Filter is lower than the expected false positive probability of a Secure
Classical Bloom Filter if the following holds true:

αP FPR(S′′, mA) + αN FPR(S′, mB) + (1− αP − αN )FPRDB(S,D, M)
< FPR(S, mL + mA + mB + λ)

(1)



4 Adversary Resilient Learned Bloom Filters

where S′ ⊂ S is the set of elements in S for which the Bloom Filter Learning Model L
returns negative, S′′ ⊂ S is the set of elements in S for which the Bloom Filter Learning
Model L returns positive, where the FPR is a function for the false positive probability of a
Secure Classical Bloom Filter, and FPRDB is the function for the false positive probability
of a Secure Learned Bloom Filter.

These results are formally proven in Theorem 6 of Section 5. In this result, when
we refer to a “Secure Learned Bloom Filter”, we refer in particular to the “Downtown
Bodega Filter” construction we define in Section 3.2. We demonstrate multiple settings
in a hybrid adversarial model where the Secure Learned Bloom Filter out-performs the
Secure Classical Bloom Filter (Section 5.4). The advantage of the Secure Learned Bloom
Filter compared to the Secure Classical Bloom Filter intricately depends on the number of
adversarial queries and the performance of the Bloom Filter Learning Model.

1.3 Motivation
The Bloom Filter and its variants have numerous applications in computing [TRL12] [MB04].
We borrow discussion on Bloom Filter applications from the survey by Tarkoma et
al [TRL12]. The Bloom Filter may be implemented in kernel space in a Linux network
driver for performant filtering of network packets. Loop detection in network protocols,
and multicast forwarding engines may also utilize the Bloom Filter. Deep Packet Scanners
and Packet Classifiers have also found the Bloom Filter helpful for improving efficiency.
The Bloom Filter may be used to detect heavy flows in network traffic from the vantage
point of a router. The Bloom Filter has also been used in the OPUS system [TRL12] that
stores a list of words that involve poor password choices encouraging users to select better
passwords. The Bloom Filter has also found success in the detection of hash tampering in
network attached disks. Google’s BigTable system uses the Bloom Filter to minimize disk
reads. Apache Hadoop also uses the Bloom Filter as an optimization in the reduce stage
of its map/reduce implementation. Other applications of the Bloom Filter include uses in
the realms of peer-to-peer networking, and caching.

A large number of the applications of the Bloom Filter involve critical infrastruc-
ture [GKL15]. It is possible to forge false positives in a naively implemented Bloom
Filter [GKL15] allowing an adversary to make the Bloom Filter deviate from its behavior.
Gerbet et al [GKL15] show practical attacks on the Scrapy web-spider, the Bitly Dablooms
spam filter, and the Squid web cache. Naor Yogev [NE19] motivate the need for securing
the Bloom Filter by considering a white-list of email addresses for the purposes of spam
filtering. In their scenario, an adversary that can forge false positives may easily infiltrate
the spam filter.

1.4 Related Work
Section 1.4.1 provides a thorough overview of prior work on adversarial models and security
of the Classical Bloom Filter. Similarly, Section 1.4.2 discusses prior work on the security
of the Learned Bloom Filter.

1.4.1 Classical Bloom Filter

Gerbet et al [GKL15] suggest practical attacks on the Classical Bloom Filter and the use
of universal hash functions and message authentication codes (MACs) to mitigate a subset
of those attacks. Naor Yogev [NE19] define an adversarial model for the Classical Bloom
Filter and use it to prove that (1) for computationally bounded adversaries, non-trivial
adversary resilient Bloom filters exist if and only if one-way functions exist, and (2) for
computationally unbounded adversaries, there exists a Classical Bloom Filter that is secure
against t queries while using only O(n log 1

ϵ + t) bits of memory. n is the size of the set
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and ϵ is the desired error. We borrow their idea of using Pseudorandom Permutations for
the Classical Bloom Filter and apply it to the Learned Bloom Filter.

Clayton et al [CPS19] analyze not only the Classical Bloom Filter, but also the Counting
Bloom Filter, and the Count-Min Sketch, in an adversarial setting. Clayton et al use a
stronger adversarial model than Naor Yogev [NE19], allowing an adversary to perform
insertions and giving an adversary access to the internal state of the Classical Bloom Filter.
Clayton et al propose the use of salts and keyed pseudo-random functions for securing
the Classical Bloom Filter. They do not address Learned Probabilistic Data Structures
including the Learned Bloom Filter. Both Naor Yogev, and Clayton et al, perform their
analysis in a game-based setting.

Filic et al [FPUV22] investigate the adversarial correctness and privacy of the Classical
Bloom Filter and an insertion-only variant of the Cuckoo Filter. They use a stronger
adversarial model than Naor Yogev [NE19] allowing an adversary to insert entries into
the Classical Bloom Filter and query for the internal state of the Classical Bloom Filter.
Unlike our work, Filic et al [FPUV22] do not address the adversarial correctness of the
Learned Bloom Filter or its variants. Filic et al [FPUV22] perform their analysis in a
simulator-based setting.

1.4.2 Learned Bloom Filter

The authors are only aware of one prior work that addresses the Learned Bloom Filter in
an adversarial setting, Reviriego et al [RAHDS21]. They propose a practical attack on the
Learned Bloom Filter. They suggest two possible mitigations for their proposed attack:
swapping to a Classical Bloom Filter upon detection of the attack, or adding a second
Backup Classical Bloom Filter. However, they do not provide any provable guarantees on
the performance of the Learned Bloom Filter in the presence of adversaries. They leave
the security of the Learned Bloom Filter as an open problem in their work.

2 Adversarial Model
We first describe the adversarial model of Naor Yogev [NE19] for the Classical Bloom
Filter and then use it as the basis for creating an adversarial model for the Learned Bloom
Filter. We refer to the adversarial model defined by Naor Yogev [NE19] as the classical
adversarial model. Section 2.1 contains a treatment of the classical adversarial model. We
also introduce a stronger adversary than the one described in Naor Yogev’s [NE19] model
that has access to the internal state of the Classical Bloom Filter. Section 2.2 introduces a
definition of the Learned Bloom Filter adapted from [Mit18] and discusses extensions to
the classical adversarial model to make it work with the Learned Bloom Filter.

2.1 Classical Adversarial Model
Let S be a finite set of cardinality n in a suitable finite universe U of cardinality u. Let M
be a compressed representation of S. Let r be any random string and MS

r be a compressed
representation of S with r. Let λ be a security parameter. Let A = (AC , AQ) be any
probabilistic polynomial time (PPT) adversary.

Definition 3 (Construction). We define C to be a setup algorithm such that C(1λ, S) = M .
We define Cr, the randomized version of C, to be a setup algorithm such that Cr(1λ, S) =
MS

r . Note that M and MS
r are both compressed representations of S, as defined above.

As a running example, consider the set S = {x} in a Classical Bloom Filter that uses 2
hash functions, h1, h2 and 4 bits such that h1(x) = 1 and h2(x) = 3. A trivial deterministic
setup algorithm, on input S, would then generate the representation MS

r = 1010.
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Definition 4 (Query). We are provided a set S and a compressed representation of that
set, MS

r (where r is any random string). We define Qs to be a query algorithm such that
Qs(MS

r , x) = 1 if x ∈ S, and Qs(MS
r , x) ∈ {0, 1} if x /∈ S. Qs may not be randomized and

may not change MS
r .

In our running example, a trivial query algorithm returns 1 if and only if all hashes for
an element return indexes that are set i.e Qs(MS

r , x) = (MS
r (h1(x)) = 1∧MS

r [h2(x)] = 1).
Consider a new element y for which h1(y) = 1 and h2(y) = 2. With MS

r = 1010, Q(MS
r , x)

returns 1 since both indices 1 and 3 are set, however Q(MS
r , y) return 0 as index 2 is not

set.

Definition 5. We define Qu to be a query algorithm similar to Qs differing only in that
Qu may be randomized and it may change the compressed representation of S, MS

r , after
each query.

We now give a precise definition for the Classical Bloom Filter in an adversarial setting.

Definition 6 (Classical Bloom Filter). Let a Classical Bloom Filter be a data structure
B = (Cr, Q) where Cr obeys Definition 3 and Q obeys either Definition 4 or Definition 5.

We define a special class of Classical Bloom Filters which were coined “steady” Classical
Bloom Filters by Naor Yogev [NE19]. Steady Classical Bloom Filters do not change their
internal representation MS

r after the setup algorithm Cr has executed. In other words, only
query algorithms of the type Qs are permitted in the steady setting and query algorithms
of the type Qu are not permitted.

Definition 7 (Steady). Let a steady (n, ϵ)-Classical Bloom Filter be a Classical Bloom
Filter Bs = (Cr, Qs) such that Qs obeys Definition 4 and ∀x ∈ U , it holds that

1. Completeness: ∀x ∈ S : P [Qs(Cr(S), x) = 1] = 1

2. Soundness: ∀x /∈ S : P [Qs(Cr(S), x) = 1] ≤ ϵ

where the probabilities are taken over Cr.

Referring again to our running example, our trivial query algorithm is complete as for
element x which already exists in S, both index 1 (h1(x) = 1) and index 3 (h2(x) = 3) are
set, so our trivial query algorithm returns 1. Our trivial query algorithm is also sound
because for any y ̸= x, P [h1(y) ∈ {1, 3}] is bounded and P [h2(y) ∈ {1, 3}] is bounded,
therefore the probability of our trivial query algorithm returning 1 is bounded.

Now we construct our first adversarial challenge for the Classical Bloom Filter in the
steady setting. A probabilistic polynomial time (PPT) adversary A, as defined at the start
of this section, is given a security parameter 1λ+n log(u) and is allowed to construct a set S.
The set S is then given to construction algorithm Cr along with the security parameter to
yield representation MS

r . The adversary is allowed t queries to the query algorithm Qs

for which it is provided the results. After the t queries, the adversary must output an
element x∗. If x∗ is a false positive, and has not been queried before, the adversary wins
the challenge. Otherwise, the adversary loses the challenge. We define this precisely in
Challenge 1

Challenge 1 (Resilient). We denote this challenge as Λ1
A,t(λ).

1. S ← AC(1λ+n log(u))

2. MS
r ← Cr(1λ+n log(u), S)

3. x∗ ← A
Qs(MS

r ,·)
Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Qs(MS

r , ·).
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4. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(MS
r , x∗) = 1, output 1. Otherwise, output 0.

We now define an adversarial resilient Classical Bloom Filter based on the random
variable Λ1

A,t(λ).

Definition 8 (Resilient). Let an (n, t, ϵ)-adversarial resilient steady Classical Bloom Filter
be any steady Classical Bloom Filter for which it holds that, ∀λ > n ∈ N, P [Λ1

A,t(λ) =
1] ≤ ϵ.

Now, we create an extension to Naor Yogev’s [NE19] model, introducing a stronger
adversary that has access to the internal state of the Classical Bloom Filter. We construct
our second adversarial challenge for the Classical Bloom Filter in the steady setting. This
challenge is almost identical to the first challenge with the only difference being that the
adversary is allowed access to the representation MS

r . We define our second challenge
more precisely in Challenge 2.

Challenge 2 (Reveal Resilient). We denote this challenge as Λ2
A,t(λ).

1. S ← AC(1λ+n log(u))

2. MS
r ← Cr(1λ+n log(u), S)

3. AQ is allowed access to MS
r

4. x∗ ← A
Qs(MS

r ,·)
Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Qs(MS

r , ·).

5. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(MS
r , x∗) = 1, output 1. Otherwise, output 0.

Analogous to Definition 8, we now define an adversarial reveal resilient Classical Bloom
Filter based on the random variable Λ2

A,t(λ) (from Challenge 2).

Definition 9 (Reveal Resilient). Let an (n, t, ϵ)-adversarial reveal resilient steady Classical
Bloom Filter be any steady Classical Bloom Filter for which it holds that, ∀λ > n ∈
N, P [Λ2

A,t(λ) = 1] ≤ ϵ.

2.2 Learned Adversarial Model
In this section, we first discuss a mathematical model for the Learned Bloom Filter. We
then create an adversarial model based on the Learned Bloom Filter. We define challenges
and security definitions for the Learned Bloom Filter that are analogous to the ones we
defined for the Classical Bloom Filter in Section 2.1.

Mitzenmacher [Mit18] was the first to create a mathematical model for the Learned
Bloom Filter, in 2018. Our model is heavily based on Mitzenmacher’s model but with
some additional definitions to suit our adversarial setting. Consider a set of elements
K ⊂ S and a set of elements U such that ∀u ∈ U , u /∈ S. We form a training dataset
D = {(xi, yi = 1)|xi ∈ K} ∪ {(xi, yi = 0)|xi ∈ U}.

Definition 10 (Dataset Construction). Let ∆r be any construction algorithm that takes
a set S, and constructs a training dataset D for S.

Definition 11 (Learning Model). Let a Bloom Filter Learning Model, l : U 7→ [0, 1], be
any function that maps elements in a suitable finite universe to a probability.

We train a Bloom Filter Learning Model, lr, on D. Let lr(x) be the probability estimate
from the learning model that x is an element in S. A value τ may be chosen as a threshold.
When l(x) ≥ τ then the Learned Bloom Filter considers x to be an element of S. Otherwise,
the Learned Bloom Filter passes x on to the Backup Classical Bloom Filter. Figure 2
provides a helpful illustration.
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Definition 12 (Learned Construction). We define C̃r to be a setup algorithm such that
C̃r(1λ, S,D) = M̃S

r , where M̃S
r is a learned compressed representation of S i.e a compressed

representation that includes a Bloom Filter Learning Model.

Returning to our running example, consider the set S = {x, y} and the dataset
D = {(x, 1), (y, 1), (z, 0)} in a Learned Bloom Filter that uses the Bloom Filter Learning
Model lD

r such that lD
r (x) = 0.6 and lD

r (y) = 0.4, and uses the threshold τ = 0.5. Let MS′

r

be the compressed representation of the set S′ = {x : x ∈ S|l(x) < τ} = {y} created by any
setup algorithm for the Classical Bloom Filter. A trivial setup algorithm for the Learned
Bloom Filter will then return the compressed representation M̃S

r = (l(x), τ, MS′

r ).

Definition 13 (Learned Query). We define Q̃s to be a query algorithm similar to Qs

(Definition 4) differing only in that Q̃s only takes a learned compressed representation
M̃S

r of the set S instead of any compressed representation MS
r .

In our running example, a trivial query algorithm, Q̃s(M̃S
r , x) would then be l(x) ≥

0.5 ∨ (MS′

r [h1(x)] = 1 ∧MS′

r [h2(x)] = 1).

Definition 14 (Learned Bloom Filter). Let a Learned Bloom Filter be a data structure
B̃ = (C̃r, Q̃s) where C̃r obeys Definition 12 and Q̃s obeys Definition 13. The query
algorithm Q̃s for the Learned Bloom Filter is

Q̃s = l(x) ≥ τ ∨Qs(MS′

r , x) = 1

where Qs is a query algorithm for the Classical Bloom Filter, and MS′

r is the internal
representation of the Backup Classical Bloom Filter encoding the set S′ = {x ∈ S|lr(x) <
τ}

It is trivial to define a steady Learned Bloom Filter with completeness and soundness
properties analogous to the ones outlined in Definition 7 for a Classical Bloom Filter. We
now construct an adversarial model for the Learned Bloom Filter.

Challenge 3 (Learned Resilient). We denote this challenge as Λ1l
A,t(λ).

1. S ← AC(1λ+n log(u))

2. D ← ∆r(S)

3. M̃S
r ← C̃r(1λ+n log(u), S,D)

4. x∗ ← A
Q̃s(M̃S

r ,·)
Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q̃s(M̃S

r , ·).

5. If x∗ /∈ S ∪ {x1, . . . , xt} and Q̃s(MS
r , x∗) = 1, output 1. Otherwise, output 0.

Note that the adversary may not choose threshold τ . If the adversary is allowed to
choose threshold τ , then Challenge 3 is easily succeeded by choosing τ = 0. We are now
ready to formally define security for the steady Learned Bloom Filter.

Definition 15 (Learned Resilient). Let an (n, t, ϵ)-adversarial resilient steady Learned
Bloom Filter be any steady Learned Bloom Filter for which it holds that, ∀λ > n ∈
N, P [Λ1l

A,t(λ) = 1] ≤ ϵ.

We now propose a stronger adversary that has access to the internal state of the
Learned Bloom Filter.

Challenge 4 (Learned Reveal Resilient). We denote this challenge as Λ2l
A,t(λ).

1. S ← AC(1λ+n log(u))
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2. D ← ∆r(S)

3. M̃S
r ← C̃r(1λ+n log(u), S,D)

4. A is allowed access to M̃S
r

5. x∗ ← A
Q̃s(M̃S

r ,·)
Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q̃s(M̃S

r , ·).

6. If x∗ /∈ S ∪ {x1, . . . , xt} and Q̃s(MS
r , x∗) = 1, output 1. Otherwise, output 0.

Definition 16 (Learned Reveal Resilient). Let an (n, t, ϵ)-adversarial reveal resilient
steady Learned Bloom Filter be any steady Learned Bloom Filter for which it holds that,
∀λ > n ∈ N, P [Λ2l

A,t(λ) = 1] ≤ ϵ.

3 Secure Constructions for the Learned Bloom Filter
In this section, we propose a solution to the problem of securing the Learned Bloom Filter.
We call our construction the Downtown Bodega Filter. Section 3.1 contains the background
necessary to construct the Downtown Bodega Filter. We formally define the Downtown
Bodega Filter in Section 3.2. The interested reader may also refer to Appendix A which
discusses an alternate construction of a secure Learned Bloom Filter called the Uptown
Bodega Filter.

3.1 Preliminaries
Setting Review: Consider a set of elements K ⊂ S and a set of elements U such that
∀u ∈ U , u /∈ S. We form a dataset D = {(xi, yi = 1)|xi ∈ K} ∪ {(xi, yi = 0)|xi ∈ U}. We
train a Bloom Filter Learning Model, lD

r , on the training dataset D. Let lD
r (x) be the

probability estimate from the learning model (Definition 11) that x is an element in S. A
value τ may be chosen as a threshold. When lD

r (x) ≥ τ then the Learned Bloom Filter
considers x to be an element of S. Otherwise, the Learned Bloom Filter passes x on to
the Backup Classical Bloom Filter.

We introduce a Learned Bloom Filter technique called “sandwiching” introduced by
Mitzenmacher [Mit18]. We then discuss the use of a pseudo-random permutation on the
Bloom Filter input set first proposed by Naor Yogev [NE19].
Definition 17 (Sandwiched Learned). Let a Sandwiched Learned Bloom Filter, SBr =
(C̃r, Q̃s) be a data structure where C̃r obeys Definition 12, and Q̃s obeys Definition 13.

The learned compressed representation of any set S and training dataset D under a
Sandwiched Learned Bloom Filter consists of the following:

1. A Bloom Filter Learning Model lD
r trained on D

2. A suitable threshold τ for lD
r

3. MS
r , the compressed representation of the complete set S encoded by a Classical

Bloom Filter. We refer to this Classical Bloom Filter as the Initial Classical Bloom
Filter.

4. MS′

r , the compressed representation of the set S′ = {x : x ∈ S|lD
r (x) < τ} encoded

by a Classical Bloom Filter. We refer to this Classical Bloom Filter as the Backup
Classical Bloom Filter.

The query algorithm Q̃s for the Sandwiched Learned Bloom Filter is

(Qs(MS
r , x) = 1) ∧ (lD

r (x) > τ ∨Qs(MS′

r , x) = 1)
where Qs is a query algorithm for the Classical Bloom Filter.
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Figure 3: A Sandwiched Learned Bloom Filter. The initial filter only allows positives (true
positive and false positive) to reach the Learned Bloom Filter.

Figure 3 shows an example of a Sandwiched Learned Bloom Filter. In our running
example, the setup algorithm for a Sandwiched Learned Bloom Filter creates the same
Bloom Filter Learning Model, lr, as well as the same compressed representation for the
Backup Classical Bloom Filter MS′

r (trained on the set S′ = {y}) that we discussed after
Definition 12. In addition, it also creates a representation MS

r for the Initial Classical
Bloom Filter trained on the complete set S = {x, y}. A trivial query algorithm Q̃s(M̃S

r , x)
for the Sandwiched Learned Bloom Filter would then be (MS

r [h1(x)] = 1 ∧MS
r [h2(x)] =

1) ∧ (lr(x) > τ ∨ (MS′

r [h1(x)] = 1 ∧MS′

r [h2(x)] = 1).

Lemma 1. If x is a false positive in a Sandwiched Learned Bloom Filter, SBr, then x is a
false positive in the Initial Classical Bloom Filter of the Sandwiched Learned Bloom Filter.

Proof. The proof follows from the definition of a Sandwiched Learned Bloom Filter.

We use the standard definitions for pseudo-random permutations in this work. We
provide a brief but self-contained treatment of pseudo-random permutations adapted from
Chapter 3 of Katz Lindell [KL14] in Appendix B. Theorem 4.8 of Naor Yogev [NE19] proves
that for a classical steady (n, ϵ)-Bloom Filter that uses m bits of memory, if pseudo-random
permutations exist, then there exists a negiligible function negl such that for security
parameter λ there exists a (n, ϵ + negl(λ))-adversarial resilient Classical Bloom Filter that
uses m

′ = m + λ bits of memory. This secure Classical Bloom Filter can be constructed
by running the initialization algorithm on S

′ = {Fk(x) : x ∈ S} instead of S [NE19].

3.2 The Downtown Bodega Filter
We introduce a secure construction of the Learned Bloom Filter which we call the Downtown
Bodega Filter.

Definition 18 (Downtown). Let a Downtown Bodega Filter be a data structure
DBr,kA,kB

= (FkA
, FkB

, C̃r, Q̃s) where C̃r obeys Definition 12, Q̃s obeys Definition 13,
and FkA

, FkB
are pseudo-random permutations. In other words, (C̃r, Q̃s) form a Learned

Bloom Filter.
The learned compressed representation of any set S and training dataset D under an

Downtown Bodega Filter consists of the following:

1. A Bloom Filter Learning Model lD
r trained on D

2. A suitable threshold τ for l
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Figure 4: A Downtown Bodega Filter. Both Positives and Negatives results for the Bloom
Filter Learning Model are routed to Backup Bloom Filters secured with Pseudo-random
Permutations

3. MS′′

r , the compressed representation of the set S′′ = {FkA
(x) : x ∈ S|lD

r (x) ≥ τ}
encoded by a Classical Bloom Filter. We refer to this Classical Bloom Filter as
Backup Classical Bloom Filter A.

4. MS′

r , the compressed representation of the set S′ = {FkB
(x) : x ∈ S|lD

r (x) < τ}
encoded by a Classical Bloom Filter. We refer to this Classical Bloom Filter as
Backup Classical Bloom Filter B.

The query algorithm Q̃s for the Downtown Bodega Filter is

(lD
r (x) ≥ τ ∧Qs(MS′′

r , FkA
(x)) = 1) ∨ (lD

r (x) < τ ∧Qs(MS′

r (FkB
(x)) = 1)

Lemma 2. Let Br be an (n, ϵ)-Bloom Filter using m bits of memory. If pseudo-random
permutations exist, then there exists a negligible function negl(·) such that for security
parameter λ, Backup Classical Bloom Filter A and Backup Classical Bloom Filter B are
(n, ϵ + negl(λ))-adversarial reveal resilient Bloom Filters each using m

′ = m + λ bits of
memory.

Lemma 2 is just a rephrasing of Theorem 4.8 of Naor Yogev [NE19] and follows directly
from the theorem. We include a self-contained proof here for completeness. We also make
it more evident that the proof holds not just for adversarial resilient Bloom Filters but
also for adversarial reveal resilient Bloom Filters that provide guarantees under a strictly
stronger adversarial model. It is important to note that, while the adversary has access
to the internal representation of the Downtown Bodega Filter, the adversary does not
have access to the secret keys kA and kB. This is consistent with the formulation of
Naor Yogev [NE19] who state at the end of Section 4 in their paper, with reference to
Theorem 4.8, “Notice that, in all the above constructions only the pseudo-random function
(permutation) key must remain secret. That is, we get the same security even when the
adversary gets the entire memory of the Bloom filter except for the PRF (PRP) key.”

Proof. Let us consider Backup Classical Bloom Filter A (a proof for Backup Bloom Filter
B can be constructed in exactly the same way). Our setup algorithm C̃r merely initializes
Backup Classical Bloom Filter A with S′′. Our query algorithm on input x queries for
x

′ = FkA
(x). The only additional memory required is for storing kA which is λ bits long.
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The completeness follows from the completeness of the Classical Bloom Filter. The
resilience of the construction follows from the following argument: consider an experiment
where FkA

in Backup Classical Bloom Filter A is replaced by a truly random oracle R(·).
Since x has not been queried, we know that R(x) is a truly random element that was
not queried before, and we may think of it as chosen prior to the initialization of Backup
Bloom Filter A. From the soundness of Backup Classical Bloom Filter A, we get that the
probability of x being a false positive is at most ϵ.

Now we show that no probabilistic polynomial time (PPT) adversary A can distinguish
between the Backup Bloom Filter A we constructed using R(·) and the Backup Classical
Bloom Filter A construction that uses the pseudo-random permutation FkA

by more than
a negligible advantage. Suppose that there does exist a non-negligible function δ(λ) such
that adversary A can attack Backup Classical Bloom Filter A and find a false positive with
probability ϵ + δ(λ). We can run adversary A on a Backup Classical Bloom Filter A where
the oracle is replaced by an oracle that is either random or pseudo-random. We return 1 if
A successfully finds a false positive. This implies that we may distinguish between a truly
random permutation and a pseudo-random permutation with probability ≥ δ(λ). This
contradicts the indistinguishability of pseudo-random permutations.

Theorem 3. Let SBr be an (n, ϵ)-Sandwiched Learned Bloom Filter using m bits of
memory. If pseudo-random permutations exist, then there exists a negligible function
negl(·) such that for security parameter λ there exists an (n, ϵ + negl(λ))-adversarial reveal
resilient Downtown Bodega Filter, DBr,kA,kB

, that uses m
′ = m + 2λ bits of memory.

Proof. We construct a Downtown Bodega Filter DBr,kA,kB
from a Sandwiched Learned

Bloom Filter SBr as follows. We use the memory budget of the Initial Classical Bloom
Filter to construct the Backup Classical Bloom Filter A. We use the memory budget of
the Backup Classical Bloom Filter of the Sandwiched Learned Bloom Filter to construct
Backup Classical Bloom Filter B. We do not modify the Bloom Filter Learning Model l
which remains trained on dataset D with threshold τ . We choose keys kA, kB ∈ {0, 1}λ

and use 2λ bits of extra memory to store them.
The completeness of DBr,kA,kB

follows from 1) the completeness of Backup Classical
Bloom Filter B and 2) the fact that any x such that l(x) < τ is declared to be not in S by
Q̃s the query algorithm f the Downtown Bodega Filter if and only if the query algorithm
of the Classical Bloom Filter with Backup Classical Bloom Filter B, Qs(MS′

r , FkB
(x)), is

also 0. This fact follows directly from the query algorithm Q̃s for the Downtown Bodega
Filter stated in Definition 18.

To prove the resilience of the construction, we first show that the security of the
Downtown Bodega Filter construction is reducible to the security of Backup Classical
Bloom Filter A and Backup Classical Bloom Filter B. Consider a false positive i.e an x /∈ S
for which the Downtown Bodega Filter returns 1. From the definition of the Downtown
Bodega Filter, one of the following two cases must be true.

Case 1: The Bloom Filter Learning Model, l, returned a value ≥ τ and Backup
Classical Bloom Filter A returned 1, more precisely, l(x) ≥ τ ∧Qs(MS′′

r , FkA
(x)) = 1

Case 2: The Bloom Filter Learning Model, l, returned a value < τ and Backup Bloom
Classical Filter B returned 1, more precisely, l(x) < τ ∧Qs(MS′

r , FkB
(x)) = 1

Therefore, for any probabilistic polynomial time (PPT) adversary to induce a false
positive in the overall Downtown Bodega Filter construction, they must either induce a
false positive in Backup Classical Bloom Filter A or Backup Classical Bloom Filter B. We
have already proven in Lemma 2 that both Backup Classical Bloom Filter A and Backup
Classical Bloom Filter B are (n, ϵ + negl(λ))-adversarial reveal resilient. It follows that
the entire construction is (n, ϵ + negl(λ))-adversarial reveal resilient. This concludes our
proof.
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4 Discussion
In this section, we discuss the only two known attacks on the Learned Bloom Filter,
introduced by Reviriego et al [RAHDS21]. We refer to Attack 1 from their work as the
Blackbox Mutation Attack, and Attack 2 from their work as the Whitebox Mutation
Attack respectively. We discuss the Blackbox Mutation Attack in Section 4.1, and the
Whitebox Mutation Attack in Section 4.2. Both sections include details on how our Secure
Learned Bloom Filter construction mitigates the attack.

4.1 Black-box Mutation Attack
The black-box adversarial model defined by Reviriego et al [RAHDS21] is slightly weaker
but very similar to the adversarial model we define in Challenge 3 of Section 2.2. Both our
adversarial model and Reviriego et al’s black-box adversary model allows the adversary
access to query the Learned Bloom Filter. One major difference is that our model allows
the adversary to choose the initial set S that is represented by the Learned Bloom Filter,
whereas Reviriego et al’s model does not. In their attack, Reviriego et al first test elements
until a positive (whether a false positive or true positive) is found. They then mutate the
positive by changing a small fraction of the bits in the input in order to generate more
false positives. The attack targets the Bloom Filter Learning Model (recall Figure 2) by
making it generate false positives without the input reaching the Backup Bloom Filter.
This attack is mitigated by the Downtown Bodega Filter because the Downtown Bodega
Filter passes queries through a Secure Classical Backup Bloom Filter even for the case
where the Bloom Filter Learning Model returns true i.e when l(x) > τ .

4.2 White-box Mutation Attack
The white-box adversarial model defined by Reviriego et al [RAHDS21] is similar to the
adversarial model we define in Challenge 4 in Section 2.2. With knowledge of the state
of the Bloom Filter Learning Model, the adversary can generate mutations in a more
sophisticated way. Reviriego et al provide the example of a malicious URL dataset where
an adversary may begin with a non-malicious URL and make changes such as removing the
“s” in “https” or removing the “www” to generate false positives. Since we have shown the
Downtown Bodega Filter to be (n, t, ϵ)-adversarial reveal resilient in the steady setting,
such mutations will not provide the adversary any advantage over the construction.

5 Hybrid Adversarial Model
In this section, we first define a hybrid model, where part of the queries are chosen by
an adversary, while the rest are non-adversarial (“regular”) queries. Next we analyze
the performance of the Downtown Bodega Filter and the Secure Classical Bloom Filter
respectively in our hybrid model. We provide results for the conditions in which the
Downtown Bodega Filter outperforms the Secure Classical Bloom Filter in the hybrid
model. We then discuss the trade-offs of our approach and provide a realistic example
where the Downtown Bodega Filter displays better performance as compared to the Secure
Classical Bloom Filter under many settings.

5.1 Hybrid Model
Let A = (AC , AQ) be a probabilistic polynomial time (PPT) adversary as defined in
Section 2. Consider a set of N queries sent to a (Classical or Learned) Bloom Filter. Our
adversary, A, is allowed to choose exactly αN of those queries, where α ∈ [0, 1]. As an
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Figure 5: To generate a false positive in the Downtown Bodega Filter, the adversary must
either 1) generate a false positive in the Bloom Filter Learning Model and direct their
query through Backup Classical Bloom Filter A or 2) generate a true negative in the Bloom
Filter Learning Model and direct their query through Backup Classical Bloom Filter B

example, the N queries may be part of a streaming workload under any of the streaming
models described by Muthukrishnan [Mut05].

5.2 Downtown Bodega Filter
Let DBr = (C̃r, Q̃s) be a Downtown Bodega Filter. Let lr be the corresponding Bloom
Filter Learning Model and τ its threshold. Let MS′′

r be the internal representation of
Backup Classical Bloom Filter A and MS′

r be the internal representation of Backup
Classical Bloom Filter B. For an adversarial query to generate a false positive in the
Downtown Bodega Filter, one of the following must hold true for a given query (see
Figure 5):

1. The query generates a false positive in the Bloom Filter Learning Model and a false
positive in Backup Bloom Filter A.

2. The query generates a true negative in the Bloom Filter Learning Model and a false
positive in Backup Bloom Filter B

We first model the false positive probability of the Downtown Bodega Filter as a
function of its memory budget, m, the set that the Downtown Bodega Filter is encoding,
S, and the corresponding training dataset D. Without loss of generality, let αP of the
adversarial queries be such that they generate false positives in the Bloom Filter Learning
Model and go through Backup Bloom Filter A. Similarly, let αN of the adversarial queries
be such that they generate true negatives and go through Backup Bloom Filter B. Note
that α = αP + αN .

Let FPR(S, m) be the expected false positive probability of a Classical Bloom Filter
that encodes the set S with memory budget m. Let FPRL(S,D, m) be the expected
false positive probability of a Bloom Filter Learning Model L that encodes the set S
using the training dataset D with memory budget m. Similarly, let TNRL(S,D, m)
be the expected true negative probability of a Bloom Filter Learning Model L that
encodes the set S using the training dataset D with memory budget m. We make
the assumption that the correctness probability of the Bloom Filter Learning Model is
independent of the correctness probability of the Backup Classical Bloom Filters. In
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particular, we assume that for any m, m′, FPRL(m)∩FPR(m′) = FPRL(m)FPR(m′) and
TNRL(m) ∩ FPR(m′) = TNRL(m)FPR(m′).

Consider a system where the total memory budget is M . Let the memory allocation of
a Downtown Bodega Filter from memory budget M be assigned as follows. Let mL be the
number of bits of memory assigned to a Bloom Filter Learning Model L. Let mA be the
number of bits of memory assigned to Backup Bloom Filter A. Let mB be the number of
bits of memory assigned to Backup Bloom Filter B. Let λ be the number of bits assigned
to the key of the pseudo-random permutations used prior to Backup Bloom Filter A and
Backup Bloom Filter B. Note that to stay within the memory budget it must hold that
M ≥ mL + mA + mB + 2λ.

Theorem 4. For any memory budget M , any set S, and corresponding training dataset D,
The Downtown Bodega Filter encoding S provides an expected false positive probability of

FPRDB(S,D, M) = FPRL(S,D, mL)FPR(S′′, mA) + TNRL(S,D, mL)FPR(S′, mB)

where S′ ⊂ S is the set of elements in S for which the Bloom Filter Learning Model L
returns negative, S′′ ⊂ S is the set of elements in S for which the Bloom Filter Learning
Model L returns positive, and where the probability is taken over the random coins of the
pseudo-random permutations, the random coins used in the construction of the Bloom
Filter Learning Model, the random coins used in the construction of Backup Classical
Bloom Filters A and B, and the random coins used in the generation of the non-adversarial
queries.

Proof. From the definition of a Downtown Bodega Filter (Definition 18, in particular look
at the formulation for the query algorithm Q̃s. Figure 5 is also helpful here) it follows
that a false positive in the overall construction must either be a false positive in Backup
Classical Bloom Filter A or a false positive in Backup Classical Bloom Filter B. If the
query is a false positive in Backup Classical Bloom Filter A, it must also be a false positive
in the Bloom Filter Learning Model. Alternatively, if the query is a false positive in Backup
Classical Bloom Filter B, it must be a true negative in the Bloom Filter Learning Model.
The result follows.

We now derive an expression for the false positive probability of the Downtown Bodega
Filter in the hybrid adversarial setting. Recall that we are assuming that out of N queries,
the adversary makes αP queries that generate a false positive in the Bloom Filter Learning
Model and αN queries that generate a true negative in the Bloom Filter Learning Model.

Theorem 5. In the hybrid adversarial setting, the expected false positive probability of the
Downtown Bodega Filter is

αP FPR(S′′, mA) + αN FPR(S′, mB) + (1− αP − αN )FPRDB(S,D, M)

where S′ ⊂ S is the set of elements in S for which the Bloom Filter Learning Model L
returns negative, S′′ ⊂ S is the set of elements in S for which the Bloom Filter Learning
Model L returns positive, and where the probability is taken over the random coins of the
pseudo-random permutations, the random coins used in the construction of the Bloom
Filter Learning Model, the random coins used in the construction of Backup Classical
Bloom Filters A and B, and the random coins used in the generation of the non-adversarial
queries.

Proof. For each query i among N queries, one of the following cases holds.
Case 1: The query is not an adversary generated query. Therefore as established by

Theorem 4, the False Positive Probability for the query is FPRDB(S,D, M). There are
(1− αP − αN )N such queries.
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Case 2: The query is an adversary generated query such that it generates a false
positive in the Bloom Filter Learning Model. Since the Bloom Filter Learning Model
generating a false positive and the Bloom Filter Learning Model generating a true negative
are mutually exclusive events, the False Positive Probability for the query is the False
Positive Probability of Backup Classical Bloom Filter A i.e FPR(S′′, mA). There are αP N
such queries.

Case 3: The query is an adversary generated query such that it generates a true
negative in the Bloom Filter Learning Model. Following logic similar to case 2, we can
derive the False Positive Probability of the query to be FPR(S′, mB). There are αN N
such queries.

The expected false positive probability of N queries is then 1
N (αP N · FPR(S′′, mA) +

αN N · FPR(S′′, mB) + (1− αP − αN )N · FPRDB(S, M)). The statement of the theorem
follows.

5.3 Secure Classical Bloom Filter
An alternative construction is to simply use a well-tuned (n, t, ϵ)-adversarial reveal resilient
Classical Bloom Filter. We will refer to this construction in this section as the Secure
Classical Bloom Filter without causing confusion. The expected false positive probability
of the Secure Classical Bloom Filter encoding a set S is, by definition, FPR(S, mL + mA +
mB + λ). The extra λ is due to the fact that the Secure Classical Bloom Filter requires
one less pseudo-random permutation than the Downtown Bodega Filter.

We now provide an expression that encapsulates all the cases in the hybrid adversarial
setting where a Downtown Bodega Filter construction provides a lower false positive
probability compared to a secure Classical Bloom Filter construction for the same memory
budget.

Theorem 6. For a given memory budget M = mL + mA + mB + 2λ, any set S and
corresponding training dataset D, in the hybrid adversarial setting with given α = αP + αN ,
the expected false positive probability of the Downtown Bodega Filter is lower than the
expected false positive probability of the Secure Classical Bloom Filter if the following holds
true:

αP FPR(S′′, mA) + αN FPR(S′, mB) + (1− αP − αN )FPRDB(S,D, M)
< FPR(S, mL + mA + mB + λ)

(2)

where S′ ⊂ S is the set of elements in S for which the Bloom Filter Learning Model L
returns negative, S′′ ⊂ S is the set of elements in S for which the Bloom Filter Learning
Model L returns positive, and where the probability is taken over the random coins of the
pseudo-random permutations, the random coins used in the construction of the Bloom
Filter Learning Model, the random coins used in the construction of Backup Bloom Filters
A and B, the random coins used in the construction of the Secure Classical Bloom Filter,
and the random coins used in the generation of the non-adversarial queries.

Proof. The proof follows directly from the expression derived for the expected false positive
probability of the Downtown Bodega Filter construction in Theorem 5 and the expression
for the expected false positive probability of the Secure Classical Bloom Filter.

5.4 Realistic Example
Mitzenmacher Broder [MB04] show that the false positive probability for a Classical Bloom
Filter with m bits encoding a set S, using k(S, m) hash functions is

FPR(S, m) = (1− e−k(S,m)·|S|/m)k(S,m)
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Table 1: A summary of the chosen values for our realistic example of the performance
tradeoffs of a Downtown Bodega Filter compared to a Secure Classical Filter in the hybrid
adversarial case

Parameter Explanation Value
M Total memory budget 2 MB

mL Memory budget for Bloom Filter Learning Model 1 MB
mA Memory budget for Backup Classical Bloom Filter A 0.5 MB
mB Memory budget for Backup Classical Bloom Filter B 0.5 MB
n Cardinality of set to encode 1.7 Million
c FPR of Bloom Filter Learning Model)

FPR of Classical Bloom Filter for same memory budget 0.25
λ Number of bits in secret key 128 bits

QN Fraction of true negative non-adversarial queries 0.5

In our analysis, we use the value of the number of hash functions k(S, m) is always
optimally chosen to be k(S, m) = ln 2 · (m/|S|) (this optimal value is also derived by
Mitzenmacher Broder [MB04]). We further model the false positive rate of a Bloom
Filter Learning Model as being the same as the false positive rate of a Classical Bloom
Filter encoding set S but with a better false positive probability for the same memory
budget. This is consistent with the assumptions made by prior work including Kraska et
al [KBC+18] and Mitzenmacher [Mit18].

FPRL(S,D, m) = c(1− e−k(S,m)·|S|/m)k(S,m)

where c ≤ 1.
We note that the true negative probability of a Bloom Filter Learning Model is merely

the probability of a negative entry (which is constant as we are assuming set S is constant)
is not marked as a false positive. Let QN be the fraction of true negative non-adversarial
queries. We have

TNRL(S,D, m) = (1− FPRL(S,D, m))QN = (1− c(1− e−k(S,m)·|S|/m)k(S,m))QN

To evaluate how much lower the false positive probability of a Bloom Filter Learning
Model needs to be for the Downtown Bodega Filter to perform better than the Secure
Classical Bloom Filter, we may then use these derivations in Theorem 6.

We choose realistic values for our example from prior work on evaluating Learned Bloom
Filters [KBC+18] on Google’s transparency report. We pick 2 Megabytes as our memory
budget, m, chosen from the range of values in Figure 10 of Kraska et al [KBC+18]. We
choose the cardinality of the set we want to encode, |S|, as 1.7 million based on the number
of unique URLs in Google’s transparency report evaluated in Kraska et al [KBC+18]. With
a memory budget of 2 Megabytes, Kraska et al [KBC+18] demonstrate that a Learned
Bloom Filter has 0.25 of the False Positive Ratio of a Classical Bloom Filter, hence we use
that as our value for c. We assume QN to be 0.5 for this example (results for the complete
range of values of QN can be found in Appendix C).

We use 128 bits as the size of our security parameter, λ. For the case of the Downtown
Bodega Filter, we let the Bloom Filter Learning Model take 1 Megabytes, while dividing
the remaining 1 Megabytes equally between Backup Classical Bloom Filters A and B.
Backup Classical Bloom Filters A and B encode S′′ and S′ respectively, which are both
subsets of the set S (refer to Definition 18).

We take α to be a variable ranging from 0 to 1 equally divided between αP and αN

(refer to Appendix C for other strategies of partitioning α between αP and αN ). Our
chosen values are summarized in Table 1. Figure 6 shows the results of our calculations.
As can be seen, when the adversary has access to less than a certain cutoff fraction of the



18 Adversary Resilient Learned Bloom Filters

workload, the Downtown Bodega Filter outperforms the Secure Classical Bloom Filter for
the same memory budget. The C source code for our model and analysis can be found in
an anonymously hosted code repository [Bod24]. A thorough experimental evaluation of
the Hybrid Model across multiple datasets and a comprehensive range of model parameters
can be found in Appendix C.
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Figure 6: The FPR of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting as evaluated on the Google transparency
report.

6 Open Problems
This work suggests the following three open problems.

Problem 1: Secure Constructions for the Learned Bloom Filter in the unsteady
setting. While we have provided secure constructions for the Learned Bloom Filter, our
results only hold for the steady setting, where the query algorithm Q̃s may not modify
the internal representation of the Learned Bloom Filter. Naor Yogev [NE19] provide
secure constructions for the Classical Bloom Filter in an unsteady settings. We leave the
formulation of secure constructions for the Learned Bloom Filter in the unsteady setting
as an open problem.

Problem 2: Secure Learned Bloom Filters under a stronger adversarial model.
The adversarial model we consider for the Learned Bloom Filter is stronger than Naor
Yogev [NE19] in that it allows an adversary access to the internal state of the Bloom Filter,
but it is weaker than Clayton et al [CPS19] and Filic et al [FPUV22] as it does not allow
the adversary to insert entries in the Learned Bloom Filter. We leave the formulation
of secure constructions under an adversarial model that allows insertion as an open problem.

Problem 3: Secure Learned Bloom Filters under computationally unbounded
adversaries. In this work, we only consider probabilistic polynomial time (PPT) ad-
versaries. An open problem is to prove or disprove any security guarantees for our
constructions against computationally unbounded adversaries. Alternatively, an open
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problem is to provide secure constructions against computationally unbounded adversaries.
Naor Yogev [NE19] discuss computationally unbounded adversaries in Section 5 of their
work.
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across a wide range of model parameters for the Hybrid Model. Appendix D contains an
overview of our open-source implementation of the Downtown Bodega Filter as well as the
Secure Classical Bloom Filter. The appendix also contains results from experiments to
investigate how the False Positive Rate of the Downtown Bodega Filter varies compared
to the Secure Classical Bloom Filter as we vary the memory budget.

A The Uptown Bodega Filter
In addition to the Downtown Bodega Filter, discussed in the main text, we consider a
second secure construction for the Learned Bloom Filter built on top of the Sandwiched
Learned Bloom Filter and a pseudo-random permutation.

Definition 19 (Uptown). Let a Uptown Bodega Filter be a data structure UBr,k =
(Fk, C̃r, Q̃s) such that Fk is a pseudo-random permutation and (C̃r, Q̃s) is a Sandwiched
Learned Bloom Filter representing the set S

′ = {Fk(x) : x ∈ S} in the steady setting.

Theorem 7. Let SBr be an (n, ϵ)-Sandwiched Learned Bloom Filter using m bits of
memory. If pseudo-random permutations exist, then there exists a negligible function
negl(·) such that for security parameter λ there exists an (n, ϵ + negl(λ))-adversarial
resilient Uptown Bodega Filter that uses m

′ = m + λ bits of memory.

Our proof follows the same line of reasoning as Theorem 4.8 of Naor Yogev [NE19]
which proves that, if pseudo-random permutations exist, any probabilistic polynomial
time adversary cannot distinguish between the Classical Bloom Filter with pseudo-random
permutations and Challenge 1 by more than a negligible advantage. Due to Lemma 1, this
result also holds for the Uptown Bodega Filter. The crux of the proof relies on the fact
that running Fk on an adversary’s queries permits us to consider the queries as random
and not chosen adaptively by an adversary, while having no effect on the correctness of
the Uptown Bodega Filter.

Proof. We construct a Uptown Bodega Filter UBk,r from a Sandwiched Bloom Filter
SBr as follows. Choose the first key k ∈ {0, 1}λ from pseudo-random permutation, Fk,
over {0, 1}log |U |. Let Sk = Fk(S) = {Fk(x) : x ∈ S}. We initialize SBR with Sk. For
each input x, our query algorithm outputs SBk,r(Fk(x)). Just like in the classical Bloom
Filter construction of [NE19], the only additional memory required is to store the key k
for Fk, which is λ bits. Similarly, the running time of the query algorithm of the Uptown
Bodega Filter is one pseudo-random permutation more than the running time of the query
algorithm of the Sandwiched Learned Bloom Filter.

The completeness of UBk,r follows from the completeness of SBk,r. If x ∈ S then
SBk,r was initialized with Fk(x) which will return 1 from the completeness of SBr. The
resilience of the construction follows from the following argument: Consider an experiment
where FK in the Uptown Bodega Filter is replaced by a truly random permutation oracle
R(·). Since x has not been queried, we know that R(x) is a truly random element that was
not queried before, and we may think of it as chosen prior to the initialization of SBk,r.
From the soundness of SBr we get that the probability of x being a false positive is at
most ϵ.

Now we show that no probabilistic polynomial time (PPT) adversary A can distinguish
between the Uptown Bodega Filter we constructed using R(·) and the Uptown Bodega
Filter construction that uses the pseudo-random permutation Fk by more than a negligible
advantage. Suppose that there does exist a non-negligible function δ(λ) such that A can
attack UBk,r and find a false positive with probability ϵ + δ(λ). We can run A on UBk,r

where the oracle is replaced by an oracle that is either random or pseudo-random. We
return 1 if A successfully finds a false positive. This implies that we may distinguish
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between a truly random permutation and a pseudo-random permutation with probability
≥ δ(λ). This contradicts the indistinguishability of pseudo-random permutations.

A.1 Utility of the Uptown Bodega Filter
While we have shown the existence of (n, ϵ)-adversarial resilient Uptown Bodega Filters, it
is unclear whether there is any utility in using an Uptown Bodega Filter over a Downtown
Bodega Filter or a Secure Classical Bloom Filter. This is due to the fact that we train
our learning model on Fk(x) ∈ S, a pseudo-random permutation of the set S, instead of
training it directly on S. Intuitively, any structure in S that can be “learned” by a Bloom
Filter Learning Model is destroyed by taking the pseudo-random permutation of S. In
other words, if pseudo-random permutations exist, then to any Bloom Filter Learning
Model that runs in Probabilistic Polynomial Time (PPT), Fk(x) ∈ S should appear the
same as |S| values sampled from a truly random oracle R(·). A precise proof for this is
beyond the scope of this paper.

B Pseudo-random Permutations
This section provides a brief self-contained treatment of pseudo-random permutations
adapted from Chapter 3 of Katz Lindell [KL14] here.

Let Permn be the set of all permutations on {0, 1}n.

Definition 20. Let an efficient permutation F be any permutation for which there exists
a polynomial time algorithm to compute Fk(x) given k and x, and there also exists a
polynomial time algorithm to compute F −1

k (x) given k and x.

Definition 21. Let F : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗ be an efficient, length-preserving, keyed
function. F is a keyed permutation if ∀k, Fk(·) is one-to-one.

Definition 22. Let F : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ be an efficient keyed permutation. F
is a pseudo-random permutation if for all probabilistic polynomial time distinguishers D,
there exists a negiligible function negl, such that

|Pr[DFk(·)F −1
k

(·)(1n) = 1]− Pr[Dfn(·)f−1
n (·)(1n) = 1]| ≤ negl(n)

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the randomness
of D, and the second probability is taken over uniform choice of f ∈ Permn and the
randomness of D.

C Hybrid Model - Additional Experiments
This section contains additional experiments under the Hybrid Adversarial Model setting
described in Section 5. We analyze the Hybrid Model using 494 lines of C code in the
model/ directory of our open-source implementation [Bod24].

C.1 Varying Non-Adversarial True Negatives (QN)
In the main text, we assumed the fraction of non-adversarial queries that were true
negatives, QN to be 0.5. Here we show the results for the entire range of values of
QN ∈ [0, 1] for α taking 4 values: 0.2, 0.3, 0.5, 1.0, with each value partitioned equally
between αP and αN . The results are in Figure 7.
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(a) α = 0.2
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(b) α = 0.3
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(c) α = 0.5
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(d) α = 1.0

Figure 7: The FPR of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting as evaluated on the Google transparency
report with QN taking a range of values in the interval [0, 1]
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Figure 8: The FPR of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting as evaluated on the Google transparency
report as we vary the fraction of adversarial queries that generate false positives

C.2 Adversary Strategies

In the main text, we explored the case where the adversary divides αN queries equally
between queries that generate False Positives, and queries that generate False Negatives.
We conduct an experiment here for all partitions of α between αP and αN for α = 0.2 to
see how the False Positive Rate of the Downtown Bodega Filter is impacted. We vary the
fraction of α assigned to αP from 0 to 1. Here, 0 means the adversary spends their entire
budget of αN queries on true negatives, and 1 means the adversary spends their entire
budget of αN queries on false positives. Our earlier experiments are setting this fraction
to 0.5, in this framework. The results are in Figure 8

C.3 Additional Datasets

We conduct experiments on two other common evaluation datasets used in prior work on
the Learned Bloom Filter [SM24, VKMK21, DS20]. We include a brief description of these
datasets, adapted from Sato and Matsui’s recent NeurIPS 2023 work on Fast Partitioned
Learned Bloom Filters [SM24].

• Malicious URLs Dataset [mal]: The URLs dataset contains 223, 088 malicious
and 428, 118 benign URLs.

• EMBER Dataset [AR18]: This dataset contains 300, 000 malicious and 400, 000
benign files.

For these datasets, we change the values of the cardinality of the set to encode, n,
in Table 1. For all other model parameters, we use the same ones listed in the table.
Figures 9 and 10 show the results for the Malicious URLs Dataset and the EMBER
dataset respectively.
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Figure 9: The FPR of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting as evaluated on the Malicious URLs dataset.
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Figure 10: The FPR of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting as evaluated on the EMBER dataset.
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D Implementation
We implement both the Downtown Bodega Filter and the Secure Classical Bloom Filter
in 441 lines of Python 3 code, which can be found in the src/ directory of our open-
source implementation [Bod24]. Similar to Naor Yogev [NE19], we implement pseudo-
random permutations using AES with a block size of 128 bits. We use CBC-mode. Our
implementation makes use of the PyCryptoDome [PyC] library for these cryptographic
primitives. Our implementation is modular and allows any classification model to be
easily plugged in. We tested the correctness of our implementation on a broad range of
common classification models including the Random Forest model, Gaussian Naive Bayes,
the Gradient Boosting Classifier, Support Vector Machine based Classifiers, and Adaptive
Boosting. We relied on implementations of these models provided by scikit-learn.

D.1 Experimental Setup
Similar to prior work [SM24, VKMK21], we tested our implementation on the Malicious
URLs dataset [mal], which we describe in Appendix C. We unoformly randomly sample
20% of the dataset to reduce our experimentation time. We use a set of 20 features to
train our Learning Models including: length of the URL, whether the URL contains an IP
address, whether the URL uses a shortening service, whether the URL is “abnormal”, the
digit count and letter count of the URL, and whether the URL contains special symbols
such as @,?, * etc. This set of features for the Malicious URLs Dataset is common in
open-source learning models, and similar features have been used by Vaidiya, Knorr,
Mitzenmacher et al in prior work [VKMK21].

D.2 Methodology
We calculate the False Positive Rate of both the Secure Classical Bloom Filter as well
as the Downtown Bodega Filter by uniformly randomly sampling URLs that are not
malicious from Malicious URLs Dataset and counting how many of them are returned as
false positive by both filters. We calculate the memory used by the learning model by
using joblib to create a persistent version [Sci] of the model, and measuring the size of
the persistent version of the model. After subtracting the memory used by the learning
model from the memory budget, we divide the remaining memory budget equally between
Backup Classical Bloom Filter A and Backup Classical Bloom Filter B.

D.3 Results
Figure 11 shows how how the False Positive Rate varies for both the Secure Classical Bloom
Filter as well as the Downtown Bodega Filter as we modify the memory budget available.
This figure uses the Gaussian Naive-Bayes Classifier as the Bloom Filter Learning Model.
Figure 12 shows the same results using a Linear Support Vector Classifier as the BLoom
Filter Learning Model.1

1All the data used to plot these results can be found in src/results_plot.py in our code repository.
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Figure 11: The FPR of the Downtown Bodega Filter using a Gaussian Naive-Bayes
Classifier as its Bloom Filter Learning Model compared to the Secure Classical Bloom
Filter with varying memory budget as evaluated on the Malicious URLs Dataset
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Figure 12: The FPR of the Downtown Bodega Filter using a Linear Support Vector
Classifier as its Bloom Filter Learning Model compared to the Secure Classical Bloom
Filter with varying memory budget as evaluated on the Malicious URLs Dataset
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