
Multi-Hop Multi-Key Homomorphic Signatures with Context

Hiding from Standard Assumptions

Abtin Afshar
UW-Madison∗

Jiaqi Cheng
UW-Madison†

Rishab Goyal
UW-Madison‡

Abstract

Homomorphic signatures are advanced systems that enable computations on authenticated data.
They let us compute over a signature σ and corresponding data M to obtain an evaluated signature σC

for any circuit C. Generally, any sequence of evaluated/non-evaluated signatures σC1 , σC2 . . . , σCℓ can
be homomorphically evaluated to generate a signature σC∗◦ C1|···|Cℓ

.
Despite significant progress over the last decade, there is only a singular approach by Gorbunov-

Vaikuntanathan-Wichs [STOC’15] for designing homomorphic signatures supporting arbitrary homomor-
phic computations from standard falsifiable assumptions. And, if we require the homomorphic signatures
to satisfy context hiding, then the homomorphism property is broken! The current state of homomor-
phic signatures is even more dissatisfying in the multi-key setting, where we do not even have a single
approach that achieves true compactness. A major open problem is to design homomorphic signatures
supporting arbitrary homomorphic computations from standard falsifiable assumptions. Furthermore,
achieving context hiding without sacrificing homomorphism will be a great plus.

We design the first homomorphic signature system that supports arbitrary homomorphic computa-
tions from a wide variety of standard falsifiable assumptions (such as decision-linear, or DDH, or learning
with errors). We do not put any artificial restrictions on an evaluator. Any combination of evaluated
signatures can be arbitrarily computed upon. The size of evaluated signatures and verification key grows
polynomially in the circuit depth, but is otherwise independent of the circuit/data size. Our designs
naturally generalize to multi-key homomorphism. This gives the first multi-key homomorphic signature
system with full succinctness under the same set of assumptions. We also achieve full context hiding
without sacrificing homomorphism, under the hardness of learning with errors. All our constructions
satisfy full (adaptive) security.

∗Email: abtin@cs.wisc.edu.
†Email: jiaqicheng@cs.wisc.edu.
‡Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding from the
Wisconsin Alumni Research Foundation.

Contents

1 Introduction 1

2 Technical Overview 3

3 Preliminaries 9
3.1 Digital Signatures . 9
3.2 Public-Key Encryption . 10
3.3 Non-Interactive Zero-Knowledge (NIZK) Arguments . 10
3.4 Hash Tree . 11
3.5 Flexible RAM SNARGs with Partial Input Soundness . 12
3.6 Somewhere Extractable Batch Arguments . 13
3.7 General to Monotone Circuit Transformation . 14

4 Multi-Hop Homomorphic Signature 15
4.1 Definition . 15
4.2 Construction . 16
4.3 Unforgeability . 19
4.4 Further Optimization . 26

5 Towards Context Hiding Homomorphic Signatures 27

6 Extending to Multi-Key Homomorphism 35

A Single-Hop Homomorphic Signatures For General Circuits 42
A.1 Overview . 43
A.2 SNARGs for Monotone-Policy BatchNP . 44
A.3 All-But-One Signatures for Single-Bit Messages . 45

A.3.1 Definition . 45
A.3.2 Construction . 46

A.4 Definition . 47
A.5 Construction . 48
A.6 Context-Hiding . 51

B Single-Hop Homomorphic Signature from Monotone-Policy Aggregate Signatures 54
B.1 Aggregate Signatures . 54
B.2 Construction . 55

i

1 Introduction

Fully homomorphic signatures [JMSW02, AB09, BFKW09, BF11a, GVW15] enable computations on se-
cretly signed data. They represent a significant advancement in cryptography, akin to fully homomorphic
encryption [RAD+78, Gen09, BV14, BGV14, GSW13], and have proven to be quite useful for numerous
applications. E.g., computing statistics on signed data [BF11a], network coding [AB09, ABBF10], proofs of
retrievability [SW13], trustworthy delegation of computation [GGP10, PHGR16, GVW15], attribute-based
signatures [MPR11, Tsa17], and verifying image transformations [DCB24]. Using homomorphic signatures,
for any computable circuit C, we can derive a new signature σC,y from a signature σM for data M . In words,
σC,y is an unforgeable token validating possession of a signature σM on some data M such that C(M) = y.

How to homomorphically evaluate over signed data? In most applications, we want the ability to
homomorphically evaluate signatures in a continuous fashion. This means that we should also be able to eval-
uate any sequence of evaluated signatures {σCi,yi

}i≤ℓ to generate a new evaluated signature σC∗◦ C1|···|Cℓ
for

any circuit C∗. E.g., in one of the original motivating scenarios of network coding [AB09, BFKW09, BF11a],
each router: (i) receives a sequence of signed messages from its preceding routers, (ii) homomorphically
creates a random linear combination of incoming signatures, and (iii) sends the homomorphically evaluated
signature to the next router. Such an operation is carried out iteratively by every router in the network. Thus,
this needs continuous homomorphism over groups of evaluated signatures, each independently computed by
a different router. Similar requirements are enforced by many classic applications such as certified data anal-
ysis, computation on outsourced data, certified redaction, etc [JMSW02, AB09, BFKW09, BF11a, GVW15].

On a more general note, it might be that a user cannot access the entire dataset, or its signature, or the
full circuit description, at the time evaluation starts. This could be due to resource unavailability, or lack
of authorization, or scalability/performance issues, etc. For example, consider a cloud provider (say Apple)
storing petabytes of user data (e.g., images, documents) across a large group of independent servers. To
counter storage of illicit material (e.g., copyrighted data, deepfake images), each server could store digital
signatures proving user data provenance [DCB24]. Suppose an auditor (say FBI) wants the cloud provider
to prove that none of its servers are storing any illicit material. Homomorphic signatures can be a powerful
tool to assist such secure audits very efficiently. However, this is only possible as long as they support
(distributed) evaluation where the entire signed data is not available at one place. Moreover, due to the
sheer volume of data stored by even a single server, it could be impractical to run homomorphic evaluation,
in one-shot, on the dataset stored even at a single server.

Capturing general homomorphism. To ensure maximum applicability and flexibility, a general approach
for formalizing homomorphic signatures is to define every cryptographic operation atomically. Thus, consider
that each bit of dataset M = (m1, . . .) can be signed independently and asynchronously, i.e. Sign(sk, i,mi)→
σi. And, an evaluator can run homomorphic computation on any subset S of the signed dataset {σi}i∈S ,
or any sequence of evaluated signatures {σCi,yi}i where yi = Ci(M). This gives a very general abstraction
for homomorphic signatures, and is sometimes referred to as multi-hop evaluation. It enables all known
applications, including those that we discussed above. It provides fully parallelizable data signing and
signature evaluation, thereby resolving the challenges due to scalability, availability, and authorization.

The two core desirable properties for homomorphic signatures are succinctness and unforgeability. Suc-
cinctness states that the size of a derived signature σC,y does not grow with the original data size, or the
size of the computation. Unforgeability states that an attacker cannot create an accepting signature σ∗ for
any circuit C∗ and output y∗, such that y∗ ̸= C∗(M) where M is the data that was signed.

Beyond succinctness and unforgeability, a variety of additional desirable features have been studied in the
literature such as context hiding, fast verification, and multi-key evaluation (refer to [GVW15, FMNP16] for
a detailed discussion.) Context hiding states that a malicious user should not learn anything about dataset
M from σC,y, beyond what is revealed by C and y. The fast verification property states that a verifier can
pre-process the circuit C to compute a short digest hC , where an online verifier can verify signature σC,y,
given y and hC , in time independent of |C|. Finally, multi-key homomorphic signatures generalize regular
homomorphic signatures to the multi-signer setting, where homomorphic evaluation can be performed on
data signed by many different signers.

1

Our results. We design homomorphic signatures for arbitrary polynomial-sized circuits satisfying all
aforementioned properties from a variety of standard assumptions such as DDH [DH76b, DH76a], decision-
linear (DLIN) [BBS04], and learning with errors (LWE) [Reg05]. Formally, we prove:

Theorem (informal). Assuming sub-exponential hardness of DLIN, or DDH, or LWE, there exists a
homomorphic signature scheme for all polynomial-sized circuits.

Our signatures are (a) fully-succinct, support (b) general multi-hop and (c) multi-key evaluation, and satisfy
(d) fast verification, and (e) full (adaptive) unforgeability. The sizes of signatures as well as the verification
keys grow as poly(λ, d), where d is the maximum depth of the circuits that can be evaluated. Thus, the
efficiency does not scale with the dataset size |M |, circuit size |C|, or the total number of signers n (in case
of multi-key evaluation). Moreover, our LWE-based homomorphic signatures satisfy (f) full context hiding.
While under DLIN, or DDH, we can make evaluated signatures (g) context hiding at the cost of sacrificing
homomorphism (similar to [GVW15]).

Additionally, we show an interesting trade-off, where we can further reduce our signature size to not grow
polynomially with the circuit depth/width as long as we restrict to a single evaluation over signed data.
That is, for single-hop homomorphic signatures, we can obtain signature size of poly(λ, log |C|), with only
polynomial security loss. The central toolkit that we rely on is the recent exciting work on non-interactive
batch arguments (BARGs) and its extensions [RRR16, BHK17, KPY19, CJJ21a, CJJ21b, DGKV22, PP22,
BBK+23, KLVW23]. In the main body, we state our main theorems more generally.

Placing our results. We provide the first homomorphic signature system that supports general homomor-
phic computations from (falsifiable) non-lattice assumptions such as DLIN and DDH. All other homomorphic
signatures, from standard falsifiable assumptions [Nao03], either rely on lattices [GVW15, BFS14, FMNP16],
support ‘chained’ homomorphic evaluation [CFT22, BCFL23, KLVW23, WW24], or constant number of eval-
uations [Tsa17, EKK18, Goy24].

Chained homomorphic evaluation corresponds to sequential (straight-line) evaluation, where two or more
evaluated signatures cannot be homomorphically evaluated. And, by constant number of hops, we mean
that the total number of evaluations that can be performed on signed data is at most O(1). Such restrictions
prohibit using homomorphic signatures in many applications, including network coding and secure data
auditing that we discussed earlier.

Moreover, our LWE-based construction is the first homomorphic signature system with context hiding. In
the original construction by Gorbunov et al. [GVW15], one had to turn off homomorphism to make evaluated
signatures context hiding. In our construction, we do not have such restrictions, and even our intermediate
evaluated signatures are context hiding.

Finally, we give the first homomorphic signature system that satisfies full-succinctness in the multi-key
model from standard falsifiable assumptions [FMNP16]. In prior works [FMNP16, FP18, SFVA21], the
signature size grew polynomially with the number of signers, n. Whereas the size of our signatures does
not grow with n, thereby achieving fully-succinctness from standard falsifiable assumptions. Moreover, our
LWE-based multi-key homomorphic signature scheme also achieves context hiding.

Related work. Since early 2000s, homomorphic signatures with varying functionalities have been de-
signed [JMSW02, ABC+07, SW13, DVW09, AKK09, AB09, BFKW09, GKKR10, BF11a, AL11, BF11b,
CFW12, ABC+12, Fre12, GW13, CF13]. All of these had one or more restrictions (private verifiability,
limited homomorphism). The only exception was the folklore approach based on succinct non-interactive
arguments of knowledge (SNARKs) [Kil92, Mic94]. Basically, each homomorphic evaluation can be proved
succinctly by a SNARK, and unforgeability follows from knowledge soundness of SNARKs. SNARKs are
known to have strong implausibility results from falsifiable assumptions [GW11a, CGKS23]. In 2015, Gor-
bunov et al. [GVW15] designed the first fully-homomorphic signature scheme under standard lattice assump-
tions [Ajt96]. This was a major achievement in the study of homomorphic signatures. Since then, there has
been a large body of exciting work [BFS14, LTWC18, FMNP16, Tsa17, EKK18, CFT22, BCFL23, KLVW23,
GU24, WW24, Goy24] leading to many new designs and extensions.

2

State-of-the-art. Currently, there are four major approaches to design fully homomorphic signatures – al-
gebraic constructions from lattices [GVW15, BFS14, FMNP16, Tsa17, EKK18], generic constructions from
functional commitments and mutable batch arguments [CFT22, BCFL23, KLVW23, Goy24, WW24], from
indistinguishability obfuscation [GU24], and from SNARKs [Kil92, Mic94, GW13, GVW15, LTWC18]. The
first approach behind lattice-based schemes does not generalize to other cryptographic assumptions. And,
as discussed earlier, they also do not satisfy context hiding or full succinctness in the multi-key model.
The second approach from functional commitments and mutable batch arguments only support ‘chained’
or constant-hop homomorphism, thus do not achieve full homomorphism. The other two approaches, from
obfuscation and SNARKs, rely on non-falsifiable assumptions [GW11a, CGKS23, GK16]. Although indis-
tinguishability obfuscation can be constructed from a careful combination of sub-exponential-hardness of
well-founded assumptions [JLS21, JLS22], our goal is to come up with direct constructions and not rely on
combinations of multiple cryptographic assumptions1.

Batch arguments. BARGs are powerful proof systems that provide succinct proofs for a batch of NP state-
ments, where succinctness states that the proof size does not grow with the batch size. Over the last few
years, BARGs have emerged as a powerful cryptographic tool, and we have numerous constructions from
a variety of standard assumptions [CJJ21a, CJJ21b, KVZ21, WW22, HJKS22, DGKV22, PP22, CGJ+23,
KLV23, KLVW23]. In this work, we rely on BARGs to design general-purpose homomorphic signatures.

Concurrent work. In a concurrent work, Anthoine, Balbás, and Fiore [ABF24] designed fully-succinct
multi-key homomorphic signatures [FMNP16] by combining batch arguments and functional commitments [LRY16].
Their scheme only supports ‘chained’ (multi-hop) homomorphic evaluation, whereas the focus of our work
is on general (multi-hop) homomorphic evaluation.

2 Technical Overview

Our starting point is the recent template for designing homomorphic signatures by Goyal [Goy24]. Their idea
was to combine monotone-policy SNARGs for batchNP (henceforth monotone SNARGs) [BBK+23, NWW23]
with vanilla signatures2. Below we briefly review BARGs and monotone SNARGs, as they will be essential
tools throughout the sequel. Any reader familiar with these concepts can skip the next two paragraphs, and
move to the simplified template for designing homomorphic signatures from monotone SNARGs.

Reviewing BARGs and monotone SNARGs. BARGs allow a prover to generate a succinct proof
π for a batch of statements that {xi ∈ L}i≤k for some NP language L, where k denotes the batch size.
Succinctness is defined as the size of proof π being independent of batch size k. Soundness states that an
attacker cannot create an accepting proof for a batch of instances containing at least one invalid instance
xi /∈ L. Somewhere extractable BARGs (seBARGs) [CJJ21b, CJJ21a] are a mild strengthening of BARGs,
which enable extraction of a witness for a single statement at some trapdoor index i∗ ∈ [k] (secretly embedded
in the crs). This extraction is enabled by a trapdoor key, associated with crs.

In a recent beautiful work, Brakerski et al. [BBK+23] introduced the concept of monotone SNARGs.
These SNARGs enable computation of general monotone circuits over the validity of a batch of statements.
That is, for any monotone circuit C, and any batch of statements (x1, . . . , xk), a prover can create a succinct
proof to prove there exist witnesses (ω1, . . . , ωk) such that C(b1, . . . , bk) = 1, where bi = R(xi, wi) (i.e.,
bi denotes satisfiability of instance-witness pair as per L). Succinctness is defined as the proof size being
independent of k as well as circuit size, |C|. Soundness states that an attacker cannot create an accepting
proof, for a batch of instances {xi}i and monotone circuit C, for which there does not exist a sequence of
witnesses {ωi}i that satisfies the monotone circuit.

1While combining cryptographic assumptions is a very successful research strategy [GQWW19, AY20, AWY20, JLS21, JLS22]
to break new ground in cryptography, it is always desirable to reduce the strength of computational assumptions needed for
a particular cryptographic task. We study the problem of homomorphic signatures with the same motivation.

2Although [Goy24] uses a more general template, described via a new primitive called mutable batch arguments [Goy24], it is
possible to summarize the ideas using only monotone SNARGs.

3

Monotone SNARGs to homomorphic signatures. To sign the i-th bit of the dataset M = (m1, . . .),
the signer uses any vanilla signature scheme. That is, it signs the message (i,mi) to compute σi. In order
to compute a circuit C on the signed dataset M , the plan is for the evaluator to compute a monotone
SNARG proof for C using {σi}i as witnesses. However, C could be non-monotonic, thus their [Goy24] idea
was to deterministically encode C into a monotone circuit C̃ of similar size. At a high level, this works by
encoding the input x to circuit C into a string x̃ = (x, x ⊕ 1|x|), and ensuring that C(x) = C̃(x̃) for every
x. Such translations are well known in the literature [Vad06, GPSW06], and for completeness, we provide it
in Section 3.7.

Once we can encode C into a monotone circuit C̃, then homomorphic evaluation is relatively straight-
forward. The evaluator computes a monotone SNARG for C̃, where it uses σi as a witness for the i-th
statement if mi = 1, otherwise it uses it for the (|m|+ i)-th statement. (The underlying NP relation R for
the batch language portion corresponds to the signature verification circuit.) The resulting proof is viewed
as an evaluated signature. To argue unforgeability, Goyal relied on the full extraction property of monotone
SNARGs [BBK+23]. The intuition was to extract a sequence of satisfying witnesses for the monotone cir-
cuit C̃ from an evaluated signature/proof, and one of those witnesses will serve as a forgery on the vanilla
signature scheme.

Does this handle general homomorphic evaluation? Recall that an evaluator could want to evaluate
any sequence of evaluated signatures {σCi,yi

}i as well, and not just plain (non-evaluated) signatures. A
natural approach would be to use a monotone SNARG proof as a witness during future homomorphic
evaluations. Namely, given a set of circuit-output values and evaluated signatures, generate a fresh monotone
SNARG proof for the next hop of homomorphic evaluation, while using the evaluated signatures as the
witnesses. At first glance, it might appear that this approach will be sufficient for handling all homomorphic
computations. Unfortunately, this is not the case!

Why is composing monotone SNARGs insufficient? The naive approach of composing monotone
SNARGs is quite limiting. In a few words, the issue is the large blow-up in the signature size due to compo-
sition of monotone SNARGs. This was noted in [Goy24], and this is why their construction only supports
O(1) evaluation hops. Simply put, the issue is that the size of a monotone SNARG proof polynomially
grows with the size of a single witness, and thus a recursive composition of such SNARG proofs will lead
to cascading polynomials (i.e., poly(poly(. . . poly(·)))). Therefore, monotone SNARGs can only be composed
constant number of times, which is not ideal.

Similar issues were recently faced [DGKV22] in the context of composing BARGs to design (unbounded)
aggregate signatures [BGLS03] and incrementally verifiable computation protocols [Val08]. Their main
insight was to design optimal-rate BARG proofs [DGKV22, PP22]. An optimal-rate BARG proof, also
commonly referred to as rate-1 BARGs, have a special succinctness property which states |π| = |ω| +
poly(λ, log k). That is, the size of the proof is equal to the size of a single witness, plus fixed additive
polynomial terms.

First idea and why it fails! Our intuition is that using rate-1 BARGs should be enough to improve
the efficiency of existing monotone SNARGs [BBK+23, NWW23], and this will help us get around the
above recursive composition issue. Unfortunately, even if we are able to design such composable monotone
SNARGs, this will not be enough! The issue is that for our homomorphic signature scheme to be unforgeable,
we really need our monotone SNARGs to be composable as well as fully extractable. Moroever, to prove full
(adaptive) unforgeability, we need the underlying monotone SNARGs to be adaptively-knowledge-sound. It
is well-known that adaptively-knowledge-sound BARGs are as challenging to design as SNARKs [BHK17,
Section 6.1]. Since monotone SNARGs with knowledge soundness are clearly more powerful than BARGs,
thus this suggests that we will face well-known black-box barriers [GW11b] in designing fully extractable
monotone SNARGs. We did not face this issue in single/constant-hop, since composability was not an issue.

Opening up monotone SNARGs: using somewhere extractable BARGs. As we explained above,
using monotone SNARGs as a black box is not good enough. To get around the barrier of inability to
prove security while just relying on non-extractable monotone SNARGs, our approach is to open up the
existing designs for monotone SNARGs [BBK+23, NWW23]. It turns out all existing constructions for
monotone SNARGs follow a similar template, which is to use seBARGs as a core primitive and create the

4

SNARG proof as a batch proof. Therefore, intrinsically, a monotone SNARG construction does enjoy a
‘somewhere-extraction-style’ feature that we plan to exploit to get around the full extraction barrier.

In more detail, let us recall the canonical template for designing monotone SNARGs [BBK+23]. Consider
a batch of instances (x1, . . . , xk), witnesses (w1, . . . , wk), an NP relation R, and a monotone circuit C̃. The
canonical template to create a monotone SNARG for these elements is the following two-step method:

1. Create a short (digested) commitment dig of all wire values, as computed during the evaluation of
C̃(R(x1, w1), . . . ,R(xk, wk)).

2. Create a BARG to prove a batch of two types of statements:

(a) Each input wire is correctly computed and committed. That is, the input wire i is set to be
R(xi, wi), and R(xi, wi) is correctly committed inside dig w.r.t. input wire i.

(b) Each internal wire is correctly computed and committed. That is, if an internal wire j is the
output wire of some gate g, where wires j0, j1 are its input wires, then the wire values committed
inside dig are consistent w.r.t. gate g.

The monotone SNARG simply contains the digest dig and a batch proof π, proving validity of all aforemen-
tioned statements. Since the size of the batch proof does not scale with the batch size (which is almost the
number of wires in circuit C̃), thus the resulting monotone SNARG proof is succinct.

Brakerski et al. [BBK+23] instantiated the above template with a hash function with short local openings
to create the wire commitments (e.g., Merkle tree) and a somewhere extractable BARG. They proved the
above monotone SNARG proof system to be computationally sound. At a very high level, the soundness
proof follows the folklore global-to-local style of reduction [GKR15]. By this we mean, that suppose a
cheating prover creates an accepting proof for an invalid statement, then one could identify at least one
gate/wire in the claimed evaluation dig of the monotone circuit C̃ such that it proves an incorrect statement.

A bit more concretely, we can visualize this as a guessing-based ‘top-down reduction’. Here the reduction
starts from the top (i.e., the output wire) and traces a path down the monotone circuit. Its goal is to find
either a gate, such that the internal wire was not correctly evaluated and/or committed, or an input wire
was not correctly set and/or committed. Since the circuit under consideration is a monotone circuit, thus
starting from the output layer one can argue that if, for any layer, there is an internal wire j whose value
claimed in the proof is greater than its actual value in the correct computation, then the invariant of wire’s
actual value being greater than the claimed value will also hold for at least one of the input wires of the
corresponding gate with output wire j. This way a reduction can guess a path from the output wire to the
input wire catching the adversary at at least one layer along this path.

Building multi-hop directly from seBARGs. Our strategy for designing multi-hop homomorphic
signatures, without using full extractability of monotone SNARGs, is to carefully instantiate the above
template for multi-hop evaluations. Basically, our plan is to use seBARGs as the underlying technical tool
instead, and execute a similar top-down reduction where we will view a multi-hop signature as an seBARG
proof along with a (short) digest of all internal wires of all evaluated circuits. Thus, we do not need to
worry about full extractability, and just by exploiting somewhere extractability of seBARGs, we plan to
reduce unforgeability to soundness of seBARGs, collision resistance of hash functions, and unforgeability of
underlying signatures.

While the above strategy carries the right ideas, there are still two important caveats that we would like
to point out. First, in such a top-down reduction approach, one cannot deterministically figure out which
wire at any layer in the proof is greater than its actual value, thus the reduction must guess this at each layer.
This implies that there is a factor-of-two security loss per layer in the reduction as we go down the monotone
circuit. Therefore, if the circuit has depth d, then we have to rely on 2d hardness of the underlying seBARG.
By using standard complexity leveraging techniques, we can execute the proof strategy while reducing to
sub-exponential security of the underlying assumptions3.

3Brakerski et al. [BBK+23] and Nasser et al. [NWW23] also considered alternate proof strategies to prove soundness without
incurring this sub-exponential loss, but those do not seem to be compatible with our multi-hop homomorphic signature

5

The second (and bigger) caveat with this strategy is that we need the seBARG to be ‘extractable for two
instances’. That is, we need witness extractability for two instances from the batch of, say k, instances. This
is essential because, to argue the soundness, we need to extract two seBARG witnesses (i.e., wire values and
their openings) from two consecutive layers of the monotone circuit. If we do not extract at two locations,
then the iterative top-down proof strategy does not work.

Why is extracting at two places an issue for multi-hop? Recall that to get around the large blow-up
issue in the signature size due to proof composition, we are considering relying on composable/rate-1 BARGs
to ensure the blow-up is controlled. This is because by using rate-1 seBARGs we might just have to pay an
additive polynomial cost each time we homomorphically evaluate a set of evaluated signatures.

Unfortunately, the current security proof strategy heavily relies on the layer-by-layer argument and,
hence requires at least one extraction on each layer. This suggests that the seBARGs must be extractable
on two indices. Note that any seBARGs that is extractable on N witnesses can be generically built using N
seBARGs that are extractable on a single witness. However, this brings down the proof-rate from 1 to 1/N .
Because, for each (single-witness-extractable) seBARG, the proof size grows as |ω| + poly(λ). This means
that even if we start with rate-1 seBARGs (which is the optimal rate possible for straightline-extraction4),
for the above construction we will have to use two rate-1 seBARGs (or one rate- 12 seBARG extractable on
two indices). Thus, π = 2|ωi| + poly which would mean that by recursively composing such proofs, the
resulting seBARG proofs (in turn, the multi-hop signatures) will grow as 2t, where t is the number of hops.

While this is already interesting as it enables logarithmic number of evaluation hops, our end goal is
to enable general multi-hop homomorphic evaluation. Thus, plugging in a rate-1 seBARG directly into the
above construction is not sufficient for handling an arbitrary polynomial number of hops.

Our core technique: Width-2 chained composition of rate-1 and poor-rate seBARGs. One of our
main insights is the fact that there is an implicit structure in the language used for seBARGs while designing
homomorphic signatures. Recall that the BARG proof, in the multi-hop signature candidate construction,
checks the consistency of the internal gates in addition to the correctness of the input wires. While the
witnesses proving validity of the ‘input wires’ could potentially be large (since the witness could be an
already evaluated signature), the witnesses for the ‘internal wires’ (i.e., for checking gate consistency) are
always a fixed short polynomial regardless of the number of evaluation hops performed.

This core observation drives our main modification to the current multi-hop construction. Our idea is
that an evaluator now will generate two separate seBARG proofs. Instead of generating a single seBARG
proof that is extractable on two indices (i.e., say a rate- 12 proof) for the “composed” language (i.e., validity
of input wires and gate consistency), we generate two seBARG proofs — (1) for proving validity of the input
wires, we use an seBARG proof system that is extractable on just a single index (i.e., a rate-1 proof), while
(2) for proving gate consistency, for the entire evaluated circuit, we use an seBARG proof system that is
extractable on two indices (i.e., say a rate- 12 proof).

Now one might wonder that this actually is increasing the size of an evaluated signature! Quite clearly,
now the evaluated signature contains two seBARG proofs instead of one. Moreover, one seBARG is ex-
tractable on two indices, while the other on just one. Thus, in summation, one can potentially extract
three witnesses from the proofs jointly. This is unlike the original design, where there is just one seBARG
extractable on two indices. While at first, this seems counter-productive, we have made great progress and
this proof splitting operation enables arbitrary polynomial composition of evaluated signatures.

To understand further, let us look more carefully at our modified multi-hop signature design. By splitting
the seBARG proofs into two separate proofs, we are really composing the underlying seBARG proofs in an
“atypical” fashion. Note that the invariant is that there are two seBARG proofs that are part of any evaluated
signature. Now whenever an evaluated signature is used as a witness for the next level of homomorphic
evaluation, then the evaluated signature is never used as a witness by an seBARG prover whose the rate is
lower than 1. In words, the invariant that we maintain is that output of a poor-rate seBARG proof (which

construction. We leave proving unforgeability of our multi-hop homomorphic signatures from polynomial hardness as an
interesting open problem.

4A recent work by Cheng and Goyal [CG24] proves a stronger result about optimality of rate-1 BARGs, wherein they show any
improvement would lead to a fully-succinct SNARK thereby facing Gentry-Wichs black-box barriers [GW11b].

6

is extractable at two indices) is never used as a witness in another poor-rate seBARG proof computation,
but only in some rate-1 seBARG proof computation. Thus, the blow-up due to seBARG proof composition
is still capped at an additive growth each time, where the factor-of-2 (due to poor-rate) never gets cascaded.

It is crucial to note that the above guarantees that the recursive composition of seBARG proofs only

happens on the first seBARG, which is rate-1. Note that any evaluated signature size is simply |π(1)
BARG| +

|π(2)
BARG|+ |com|. Here the commitment com is just a Merkle tree hash, hence its size is poly(λ). Suppose that

the signatures that we get as inputs for homomorphic evaluation are of size ≤ ℓσ. The first BARG proof,

π
(1)
BARG, is a rate-1 seBARG on the input signatures, thus its size is |ℓσ|+ poly(λ). While the second seBARG

(extractable at two places) only checks for the gate consistency w.r.t. the commitment openings, thus its
size is poly(λ). Therefore the output signature/proof size will be ℓσ′ = |ℓσ|+ poly(λ), as desired.

Despite this modification, we observe that a similar guessing-based top-down reduction strategy is suffi-
cient. Except, at some points in the security reduction, we will extract from the rate-1 seBARG, while at
other points we extract from the poor-rate seBARG. Namely, we perform a layer-by-layer analysis using the
second seBARG to extract two witnesses, while at the input layer, we will use the first seBARG to extract
a single witness. Here the single witness at the input layer could itself be an evaluated signature, thus it
is recursively extracted by following the same strategy. Below we provide a more detailed sketch of our
multi-hop signature construction.

Our multi-hop homomorphic signatures. We use vanilla signatures, hash functions with local openings,
and seBARGs as follows:

• The signing algorithm is a regular signature Sig that sign (i,mi) using sig.sk to get σi. We let yt be
the evaluated message at the t-th hop and y0 is simply the messages (m1, . . . ,mℓ) signed by regular
digital signature.

• At the t-th hop, the evaluation algorithm does the following:

1. Given C and yt−1, compute y = C(yt−1) and construct the corresponding monotone circuit C̃y

(similarly to single-hop setting), and compute all the wire values (b1, . . . , bN) in the evaluation of
C̃y(y

t−1, yt−1 ⊕ 1ℓ).

2. Compute digest h of (b1, . . . , bN) and opening ρi using a Merkle tree hash.

3. Compute a rate-1 seBARG proof on the statements (1, . . . , 2ℓ) and the witnesses ((b1, ρ1, σ
t−1
1), . . . ,

(bℓ, ρℓ, σ
t−1
ℓ), (bℓ+1, ρℓ+1, σ

t−1
1), . . . , (b2ℓ, ρ2ℓ, σ

t−1
ℓ)) for the NP relation:

R(1) := 1

 ρi is a valid opening for bi w.r.t. dig ∧

bi = 1

(
(i ≤ ℓ ∧ σt−1

i is a valid signature for 1) ∨
(i > ℓ ∧ σt−1

i−ℓ is a valid signature for 0)

) .

4. Compute a poor-rate (extractable on two indices) seBARG proof on the statements (2ℓ+1, . . . , N)
and the witnesses ωi = (bi, bi0 , bi1 , ρi, ρi0 , ρi1) (where i is the output and i0, i1 are the inputs of
gate i) for the NP relation:

R(2) := 1

 ρi, ρi0 , ρi1 are valid openings for bi, bi0 , bi1 w.r.t. h ∧
bi, bi0 , bi1 are consistent with gate i ∧
if i = N then bi = 1

 .

To argue the soundness, we will proceed with a layer-by-layer analysis, similar to [BBK+23]. Let the
correct evaluation of the circuit C̃ where bi = R(xi, wi) for i ∈ [2k] be (b∗1, . . . , b

∗
N). Define the hybrid for

wire i at layer L to be the following:

When crs
(2)
BARG is extractable on the statement corresponding to some gate g in layer L, then for the

committed value bi in the digest dig, where wire i is the output of gate g, it holds that bi > b∗i .

7

Now the claim is that if an efficient adversary can forge a signature, that is to generate an accepting
proof for a message y∗ such that y∗ ̸= C(yt−1), then in every layer L, there is a gate g for which the hybrid
invariant holds. We will prove our claim inductively starting from the last (output) layer. Note that if
y∗ ̸= C(yt−1) then C̃y(y

t−1, yt−1 ⊕ 1ℓ) = 0. Therefore if the proof is accepted, the invariant holds for the
output layer and value bN (Note that at the beginning we let the seBARG be extractable on the output
gate). Now suppose the invariant holds for some gate g in layer L, our goal is to show that it also holds for
layer L− 1.

First, using seBARG extraction, we extract a witness for the corresponding statement to gate g in π
(2)
BARG.

Let i0 and i1 be the input wires to gate g and bi0 and bi1 be the committed values in the digest dig. Since
bi > b∗i and gate g is monotone, by the gate consistency it holds that for some bit e, bie > b∗ie . Now using

the CRS indistinguishability of seBARGs, we let crs
(2)
BARG to be extractable on gate g′ whose output is wire ie

(while keeping crs
(2)
BARG extractable on gate g). By the collision resistance property of the Merkle tree hash,

overlapping parts (the openings of wire ie) of the extracted witnesses on gate g and g′ should be consistent.
Thus for the extracted witness of gate g′ it holds that bie > b∗ie , which means that the invariant holds for
level L − 1. Therefore by the induction, the invariant should hold for some wire value in the inputs. Now

we let crs
(1)
BARG be extractable on that wire, and then extract a witness for the input layer which by the

construction implies a forgery σt−1
i for a message yt−1

i .
Hence, by following the same argument hop-by-hop, we can extract a forgery σi at the input layer on

a message mi. Finally, we will use the unforgeability of the regular signature to conclude the soundness
argument. We prove the following, and provide more details later in Section 4.

Context-hiding and fast verification. Next, we show that the above template can be easily extended to
enable context-hiding, and fast verification.

Context hiding for homomorphic signatures states that an evaluated signature does not reveal anything
about the dataset m, beyond what can be learnt given circuit C and output y. Gorbunov et al. [GVW15]
proposed a simple generic template to obtain context-hiding property by applying NIZKAoKs as long as the
homomorphic signatures were ‘pre-processable’. Their core idea was that if one could preprocess the circuit
C to a short digest, such that a verification algorithm only needs the short digest and not the circuit C, then
one could generate a NIZK proof using the actual (non-context-hiding) evaluated signature as a witness.
In words, the verification first pre-processes the circuit C to compute the digest, and then runs the NIZK
verification. Now the security (unforgeability) of the system can be argued by combining NIZK extraction
with the unforgeability of underlying homomorphic signatures, while context-hiding can be reduced to the
zero-knowledge property of the NIZK scheme.

We follow a similar strategy for context hiding. Our approach is to rely on the fairly standardized
online/offline verification features of BARGs [CJJ21a], that is the verification algorithm of a BARG scheme
can be split into a (slow) pre-verification and a (fast) online verification, and then use NIZKs to make
our signatures context-hiding. We point out that rate-1 seBARGs [DGKV22, PP22] also satisfy such a
online/offline verification property. Thus, our starting observation is that since our template also uses
seBARGs, thus it satisfies a desired online/offline verification property.

Next, to make it context-hiding, we again employ a similar strategy. Namely, we use NIZKs to hide any
non-trivial information about the input dataset as well as the intermediate values during the homomorphic
evaluation. However, since we want to achieve context-hiding for any evaluated signature after any number
of hops, thus must use a NIZK during every homomorphic evaluation. A straightforward application of
NIZKs will not work since the NIZKs are not succinct. A NIZK proof can be as large as the underlying NP
verification circuit, thus we cannot compose NIZKs as we were able to compose seBARGs.

To get around this issue, we additionally rely on rate-1 NIZKs. Gentry et al. [GGI+15] provided a generic
template to build such composable (rate-1) NIZKAoK by combining fully homomorphic encryption and
regular NIZKs. By using their compiler and plugging it in our multi-hop signature scheme, the composition
issue is almost fixed. However, there is one last issue: the CRS size and verification time still grows in
this recursive NIZK composition. Even for rate-1 NIZKs, the CRS size could grow with the statement and
witness size, thus recursive composition leads to a blow-up in the verification circuit size. To handle this,

8

we use another layer of RAM delegation to make composition of NIZK verification efficient. As in prior
works [CJJ21a], the RAM delegation verifier computes the digest of the input, and assesses whether the
transformation from the input hash is valid. To optimize the verifier’s efficiency, we split the hash digest,
and generate a short digest of the NIZK CRS in the setup stage. Thus, the verifier is no longer required
generate the hash digest of the NIZK CRS during verification. Instead, the verifier only generates the digest
of variable inputs, thereby ensuring verifier succinctness. For more details, we refer the reader to Section 5.

Multi-key homomorphism. Finally, we show that the above construction template can be easily extended
to support multi-key homomorphism. Recall that in multi-key model, the dataset can be signed using
multiple different authorities. Namely, the setup algorithm now generates a set of public parameter pp, and
a tuple of (sk, vk) for ℓ different users in the system. The signing algorithm uses ski to sign mi, namely
Sign(ski, (i,mi))→ σi. For simplicity, we are assuming that authority i signs message i. The construction is
nearly identical to our current construction, except we need to define homomorphic evaluation w.r.t. multiple
signers. This can be easily handled by switching the NP statements at every input wire. While evaluating
the signature for the first time, we will use vki corresponding to the appropriate user to check the validity
of the associated signature. Now for evaluating an evaluated signature, we will use {vki}i corresponding to
the appropriate user(s) to check the validity of the associated evaluated signature. The security proof would
stay the same, as by a hop-by-hop extraction we will extract a forgery on some mi w.r.t. vki of some honest
signer. For more details, we refer the reader to Section 6.

Additional results. The above concludes a high level overview of our main results. Additionally, we also
provide another homomorphic signature scheme where the signature size is even shorter (i.e., it grows only
logarithmically with circuit size, instead of polynomially with circuit depth). However, we can only enable
such an optimization at the cost of giving up multi-hop evaluation. That is, our homomorphic signature with
shorter signatures can only support one single homomorphic evaluation, but cannot be further composed.
We provide an in-depth technical overview of our single-hop homomorphic signature scheme with shorter
signatures later in Appendix A.1, and provide the full construction and proof in Appendix A. Lastly, we
also show an interesting connection between a recently introduced generalization of aggregate signatures,
called monotone-policy aggregate signatures [NWW23, BCJP24], and single-hop homomorphic signatures.
We show that single-hop homomorphic signatures can also be designed from monotone-policy aggregate sig-
natures in Appendix B.

3 Preliminaries

Notation. We will let PPT denote probabilistic polynomial-time. We denote the set of all positive integers
up to n as [n] := {1, · · · , n}. Also, we use [m,n] where n ≥ m to denote the set of all integers from m to n,
i.e. [m,n] := {m, · · · , n}.

Throughout this paper, unless specified, all polynomials we consider are positive polynomials. For any
finite set S, x← S denotes a uniformly random element x from the set S. Similarly, for any distribution D,
x← D denotes an element x drawn from distribution D.

3.1 Digital Signatures

Syntax. A signature (Sig) scheme consists of the following polynomial time algorithms:

Setup(1λ)→ (sk, vk). The probabilistic setup algorithm takes as input a security parameter λ and outputs
a tuple of signing and verification keys (sk, vk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk, an a message m, and outputs a
signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, a message m, and a
signature σ. It outputs a bit to signal whether the signature is valid or not.

9

Definition 3.1 (Digital Signature). A digital signature Sig = (Setup,Sign,Verify) is required to satisfy the
following properties:

Completeness. For all λ ∈ N and m ∈ {0, 1}λ it holds that:

Pr[Verify(vk,m, σ) = 1 : (sk, vk)← Setup(1λ), σ ← Sign(sk,m)] = 1.

EUF-CMA Security. For any admissible adversary A, there exists a negligible function negl(·) s.t. for
all λ ∈ N,

Pr[Verify(vk,m, σ) = 1 : (sk, vk)← Setup(1λ), (m,σ)← ASign(sk,·)(vk)] ≤ negl(λ),

where A is an admissible adversary if it never queries m to the signing oracle.

Theorem 3.2 ([NY89, Rom90]). Assuming one-way functions there exists digital signatures.

3.2 Public-Key Encryption

Syntax. A public key encryption (PKE) scheme for the message space M = {Mλ}λ∈N consists of the
following polynomial time algorithms.

Setup(λ)→ (pk, sk). The probabilistic setup algorithm takes as input a security parameter λ and outputs
the public and secret key pair (pk, sk).

Enc(pk,m)→ ct. The probabilistic encryption algorithm takes as input the public key pk, a message m ∈
Mλ, and outputs the ciphertext ct.

Dec(sk, ct)→ m′. The decryption algorithm takes as input secret key sk, ciphertext ct, and outputs m′.

Definition 3.3 (PKE). A public-key encryption system (Setup,Enc,Dec) for m ∈Mλ is required to satisfy
the following properties:

Correctness. For any λ ∈ N, m ∈Mλ, we have that Dec(sk, ct) = m where ct← Enc(pk,m) and (pk, sk)←
Setup(λ).

Security. For any stateful PPT adversary A, there is a negligible function negl(·) such that for all λ ∈ N:∣∣∣Pr [1← AEnc(pk,·)(1λ, pk)
]
− Pr

[
1← AEnc(pk,0|m|)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where (pk, sk)← Setup(λ).

3.3 Non-Interactive Zero-Knowledge (NIZK) Arguments

Consider an NP language L = {x | ∃w : R(x,w) = 1} defined w.r.t. a relation R.

Syntax. A non-interactive zero-knowledge (NIZK) argument consists of the following polynomial time
algorithms:

Setup(1λ, 1nx)→ crs. The probabilistic setup algorithm takes as input a security parameter λ, max instance
length nx, and outputs a common reference string crs.

Prove(crs, x, w)→ π. The prover algorithm takes as input a common reference string crs, an instance x, and
a witness w and outputs a proof π.

Verify(crs, x, π)→ 0/1. The verifier algorithm takes as input a CRS crs, an instance x, and a proof π. It
outputs a bit to signal whether the proof is valid or not.

10

Definition 3.4 (NIZK). A non-interactive zero-knowledge proof (Setup,Prove,Verify) for L is required to
satisfy the following properties:

Completeness. For all λ, nx ∈ N and (x,w) ∈ R where |x| ≤ nx we have:

Pr[Verify(crs, x, π) = 1 : crs← Setup(1λ, 1nx), π ← Prove(crs, x, w)] = 1.

Adaptive Soundness. For any PPT adversary A, there is a negligible function negl(·) such that for all
λ, nx ∈ N:

Pr[Verify(crs, x, π) = 1 ∧ x /∈ L : crs← Setup(1λ, 1nx), (x, π)← A(crs), |x| ≤ nx] ≤ negl(λ)

Zero-Knowledge. There exists a stateful PPT simulator S such that for any PPT adversary A, there is
a negligible function negl(·) such that for all λ, nx ∈ N:

|Pr[AProve(crs,·,·)(crs) = 1 : crs← Setup(1λ, 1nx)]−

|Pr[AOS(·,·)(crs) = 1 : crs← S(1λ, 1nx)]| ≤ negl(λ)

where OS(x,w) outputs S(x) if x ∈ L and ⊥ otherwise.

Knowledge Extractor. There exists a stateful PPT extractor E such that for any non-uniform PPT
adversary A, there is a negligible function negl(·) such that for all λ, nx ∈ N:

Pr

 Verify(crs, x, π) = 1
∧ R(x,w) = 0

:

(crs, td)← E(1λ, 1nx),
(x, π)← A(crs),
|x| ≤ nx,
w ← E(td, x, π)

 ≤ negl(λ).

and crs and crs← Setup(1λ, 1nx) are computationally indistinguishable.

Remark 3.5 ([CW23, BWW23, BKP+23]). Assuming seBARGs there exists NIZKs.

Definition 3.6 (Rate-1 NIZK). A non-interactive zero-knowledge proof (Setup,Prove,Verify) for L is said
to be a Rate-1 NIZKif it satisfies Definition 3.4 and the size of the proof π is |w|+ poly(λ, log |x|).

Theorem 3.7 ([GGI+15]). Assuming LWE there exists Rate-1 NIZKs for NP.

3.4 Hash Tree

Syntax. Syntax of hash tree is as follows:

Setup(1λ)→ hk. The setup algorithm takes as input a security parameters λ, and outputs a hash key hk.

Hash(hk, x)→ h. The hash function takes as input a hash key hk, a input string x ∈ {0, 1}N , and outputs a
hash value h, where |h| = poly(λ) for some universal polynomial poly(·).

Open(hk, x, i)→ ρ. The opening algorithm takes as input a hash key hk, a input x ∈ {0, 1}N , an index
i ∈ [N], and outputs an opening ρ, where |ρ| = poly(λ, logN) for some universal polynomial poly(·, ·).

Verify(hk, h, i, b, ρ)→ {0, 1}. The verifer algorithm takes as input a hash key hk, a hash value h, an index i,
bit b, opening u, and outputs 0 or 1.

Definition 3.8. (Completeness). For every λ,N ∈ N, x ∈ {0, 1}N , i ∈ [N], the following holds:

Pr

 Verify(hk, h, i, xi, ρ) = 1 :
hk← Setup(1λ)
h← Hash(hk, x)
ρ← Open(hk, x, i)

 = 1.

11

Definition 3.9. (Collision resistance). A Merkle Tree Hash scheme satisfies collision resistance if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds:

Pr

 Verify(hk, h, i, b, ρ) = 1
∧ Verify(hk, h, i, b′, ρ′) = 1
∧ b ̸= b′

:
hk← Setup(1λ)
(h, i, b, b′, ρ, ρ′)← A(hk)

 ≤ negl(λ).

Remark 3.10. ([Mer88]) Assuming existence of collision resistant hash family, there exists a hash tree as
above.

3.5 Flexible RAM SNARGs with Partial Input Soundness

Syntax. A RAM delegation scheme Del for RAM machine R consists of the following algorithms.

Setup(1λ, T)→ crs : The setup algorithm takes as input security parameter λ and running time bound T .
It outputs CRS crs.

Prove(crs, hk, xexp, ximp)→ π : The prover algorithm takes as input CRS crs, a hash key hk, an input x =
(xexp, ximp), and outputs proof π.

Digest(hk, x)→ h : This is a deterministic polynomial time algorithm that takes as input a Hash Tree H key
hk generated by H.Setup(1λ), and outputs h = H.Hash(hk, x).

Verify(crs, h, xexp, π)→ {0, 1} : The verifier algorithm takes as input crs, a digest h, explicit input xexp, and
a proof π, and outputs either 0 or 1.

Completeness For every polynomial N = N(λ), T = T (λ), RAM machine R, and input x = (xexp, ximp)
such that R(x) accepts in T steps, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds:

Pr

 Verify(crs, h, xexp, π) = 1 :

crs← Setup(1λ, T)
hk← H.Setup(1λ)
(b, π)← Prove(crs, x = (xexp, ximp))
h = Digest(hk, ximp)

 ≥ 1− negl(λ).

Compactness In the above completeness experiment, |crs| ≤ poly(λ, log T). Prover algorithm runs in time
poly(λ, T) and outputs a proof of length |π| ≤ poly(λ, log T). Let n be the input size, verifier runs in time
poly(λ, log T, n).

Definition 3.11 (Partial Input Soundness). For every polynomial N = N(λ), T = T (λ), RAM machine R
that runs in time T , and every PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds:

Pr

 Verify(crs, h, xexp, π) = 1
∧ h = H.Hash(hk, ximp)
∧ R(xexp, ximp) does not accept in T steps

:
crs← Setup(1λ, T)
hk← H.Setup(1λ)
(xexp, ximp, π)← A(crs)

 ≤ negl(λ).

We apply the above flexible RAM SNARG used in [KLVW23], [DGKV22]. The design is flexible with
respect to the hash tree used to digest the memory. In particular, the RAM Machine takes two types of input:
an explicit input xexp and an implicit input ximp. The fixed input is considered as a constant string embedded
in machine R. Then, we have the hash key of the above design hk to be partitioned into hk = (hkexp, hkimp)
and the hash value to be partitioned into h = (hexp, himp). By pre-processing himp, the running time of the
verifier is poly(λ, log T, |xexp|). The proof size is poly(λ, log T). We also note that the RAM SNARG achieves
a soundness notion of partial input soundness, which is stronger than the soundness results achieved by
[CJJ21b].

12

Theorem 3.12 ([KLVW23]). Assuming seBARG and somewhere extractable hash family with local opening,
there exists a flexible RAM SNARG.

3.6 Somewhere Extractable Batch Arguments

Syntax. A non-interactive batch argument (BARG) scheme BARG with respect to language L consists of
the following polynomial time algorithms:

Setup(1λ, 1n, k)→ crs. The setup algorithm takes as input the security parameter λ, instance size n, number
of instances k, and outputs a crs crs.

Prove(crs, {(xi, ωi)}i∈[k])→ π. The prover algorithm takes as input a crs and a sequence of k instance-witness
pairs (xi, ωi) for i ∈ [k]. It outputs a proof π.

Verify(crs, {xi}i∈[k], π)→ 0/1. The verification algorithm takes as input a crs, a sequence of k instances xi

for i ∈ [k], and a proof π. It outputs a bit to signal whether the proof is valid or not.

In this work, we rely on rate-1 somewhere extractable BARGs (rate-1 seBARGs) for language L which
are defined as above, except the setup algorithm also takes a special index as an input. And, there exists
an additional algorithm called Extract that extracts an accepting witness for the special index from any
accepting batched proof. Below we provide the updated setup algorithm syntax along with the extraction
algorithm.

Setup(1λ, 1n, k, i∗)→ (crs, td). The setup takes an index i∗ ∈ [k] as an additional input, and outputs a
trapdoor td as well.

Extract(td, {xi}i, π)→ ω. The extraction algorithm takes as input the trapdoor td, k instances {xi}i, proof
π, and outputs an extracted witness ω.

Correctness and succinctness. An rate-1 seBARG is said to be correct and succinct if for every λ, k ∈ N,
index i∗ ∈ [k], setup parameters (crs, td)← Setup(1λ, 1n, k, i∗), any k instances x1, . . . , xk ∈ L ∩ {0, 1}n and
their corresponding witnesses ωi for i ∈ [k], and every proof π ← Prove(crs, {(xi, ωi)}i), the following holds:

Completeness. Verify(crs, {xi}i, π) = 1.

Extraction correctness. Extract(td, {xi}i, π) = ωi∗ .

Succinctness. A BARG scheme is said to be almost rate-1 if |π| ≤ (1+c/λ)m+poly(λ) for some constant
c. Throughout the paper by rate-1 we refer to the almost rate-1 property of BARGs.

Soundness. A BARG scheme is said to be sound if an attacker can not create a valid proof where one of
the k instances being batch-proved do not belong to the language L. For seBARGs, this can be indirectly
captured by the following two properties.

Definition 3.13 (index hiding). A somewhere extractable batch argument scheme seBARG satisfies index
hiding if for every stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds

Pr

[
A(crs) = b
∧ i∗0, i

∗
1 ∈ [k]

:
(k, n, i∗0, i

∗
1)← A(1λ), b← {0, 1}

(crs, td)← Setup(1λ, 1n, k, i∗b)

]
≤ 1

2
+ negl(λ).

Definition 3.14 (somewhere argument of knowledge). A somewhere extractable batch argument scheme
seBARG is a somewhere argument of knowledge if for every stateful PPT attacker A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

 Verify(crs, {xi}i, π) = 1 ∧ i∗ ∈ [k]
∧ ω∗ is not a valid witness for xi∗ ∈ L

:

(k, n, i∗)← A(1λ)
(crs, td)← Setup(1λ, 1n, k, i∗)
({xi}i∈[k], π)← A(crs)
ω∗ ← Extract(td, {xi}i, π)

 ≤ negl(λ).

13

Remark 3.15. In our approach, the batch argument seBARG can be extracted across multiple indices, where
we override the original Setup Algorithm as Setup(1λ,L, k, (i0, . . . , iα)). The Setup algorithm generates α
batch argument common reference strings, each corresponding to an individual index.

3.7 General to Monotone Circuit Transformation

Here, we will recall how to transform a general circuit into a monotone circuit [Vad06, GPSW06]. Let C(m)
be a general circuit. We will construct a monotone circuit C̃ s.t. C̃(m,m⊕ 1|m|) = C(m) and |C̃| ≤ 2|C|.

Construction 3.16 (General Circuit C to Monotone Circuit C̃ transformation). For any circuit C∗ let ℓjC∗

be the number of wires in the jth layer of C∗ and let the input layer be layer 1, and the output layer be
layer nC∗ .

Now consider any general circuit C with wires (αj
i)j∈[nC∗],i∈[ℓj

C∗]
(where αj

i is the ith wire in the jth

layer of the circuit). We will construct a circuit C̃ with wires βj
i where ℓj

C̃
= 2ℓjC . More specifically we will

construct C̃ s.t. βj
2i−1 = αj

i , and βj
2i = αj

i ⊕ 1. We will construct this inductively (on the layer j).

Induction Base. For the input layer j = 1, since in addition to mi we get mi ⊕ 1, we just need to do the
following:

β1
2i−1 = mi ∧ β1

2i = mi ⊕ 1

Induction Step. Suppose the assumption holds for every layer j1, j2 ∈ [j−1], we will show how to construct
βj
2i−1 and βj

2i for any αj
i .

• Let αj
i be the output of AND(αj1

i1
, αj2

i2
). Then construct βj

2i−1 = AND(βj1
2i1−1, β

j2
2i2−1) and βj

2i =

OR(βj1
2i1

, βj2
2i2

).

• Let αj
i be the output of OR(αj1

i1
, αj2

i2
). Then construct βj

2i−1 = OR(βj1
2i1−1, β

j2
2i2−1) and βj

2i =

AND(βj1
2i1

, βj2
2i2

).

• Let αj
i be the output of NOT(αj1

i1
). Then construct βj

2i−1 = βj1
2i1

and βj
2i = βj1

2i1−1.

Transformation T . Below we describe transformation T (C, y)→ C̃y that constructs a monotone circuit

C̃y from a general circuit C and an output y s.t. C̃y(m,m⊕ 1|m|) = 1 iff C(m) = y.

T (C, y)→ C̃y

1. Let C be a circuit that takes as input a message m of size k. Define Cy to be a single-bit output
circuit that takes k bits of input and has y hard-wired in it, and check whether the computation
of C on its input matches the hard-wired value y. Namely: Cy(m) := 1[C(m) = y].

2. Define circuit C̃y to be the monotone circuit that computes Cy(m) given (m,m ⊕ 1k) as input.

Namely: C̃y(m,m⊕ 1k) := Cy(m).

Remark 3.17. Let sC be the size of the circuit C. Then sCy = sC + poly(y) and sC̃y
= 2sCy .

Figure 1: Description of transformation T (C, y)→ C̃y.

14

4 Multi-Hop Homomorphic Signature

Before we proceed with the definition of multi-hop homomorphic signatures we need to define structured
circuits5 that is our way of denoting evaluation of different circuits in different hops over different inputs.

Structured circuit C. Let Cℓ,d,sC be a class of single-bit output circuits where ℓ is the maximum input
size, d is the maximum depth, and sC is the maximum size of any circuit C ∈ Cℓ,d,sC . We define structured
circuit C = (G, (Cv)v∈V) where G = (V,E) is a tree6 and a circuit Cv ∈ Cℓ,d,sC is associated to each node
v ∈ V . Moreover the inputs to any circuit Cv are the outputs of circuits associated to v’s child nodes.
Furthermore, any input wire i to any circuit Cv such that v is a leaf in graph G, is labelled with idi. Hence
any circuit Cv with nin inputs such that v is a leaf in graph G is associated with (idi)i∈[nin].

By composing (Ci)i∈[ℓ] and some C ∈ Cℓ,d,sC we mean the following operation – if Ci is empty then let C
be a graph G with a single node v∗ where C is associated to v∗, (i.e. let Cv∗ = C) and output C. Otherwise,
do the following:

1. Let Ci = ((Gi = (Vi, Ei), (Cv)v∈Vi
)) and vi be the root of Gi.

2. Construct G = (V,E) where V =
ℓ⋃

i=1

Vi ∪ {v∗} and E =
ℓ⋃

i=1

Ei ∪ {(v1, v∗), . . . , (vℓ, v∗)}.

3. Associate C to v∗, i.e. let Cv∗ = C. Output C = (G, (Cv)v∈V).

By decomposing C to its children and a circuit C we mean finding all (Ci)i∈[ℓ] and a circuit C s.t.
(vi, v) ∈ E where vi is the root of Gi and v is the root of G and C is associated to v.

4.1 Definition

Syntax. A homomorphic signature scheme consists of the following polynomial time algorithms:

Setup(1λ, 1K , ℓ, d, sC)→ (pk, sk). The setup algorithm takes as input security a parameter λ, number of
maximum hops K, a max number of circuit inputs ℓ, a max circuit depth d, and a max circuit size sC ,
and outputs verification/secret key (pk, sk).

Sign(sk, id, b)→ σ. This is a probabilistic signing algorithm that takes as input signing key sk, index id, and
a single bit message b. It outputs signature σ.

Eval(pk, t, (bi, σi,Ci)i∈[ℓ′], C)→ σ. The evaluator algorithm takes as input a public verification key pk, a
number of hops t, and a set of ℓ bits bi with their corresponding signatures σi, and structured evaluation
circuits Ci where ℓ′ ≤ ℓ. Additionally, it takes a circuit C ∈ Cℓ,d,sC s.t. C takes ℓ-bits inputs. The
algorithm outputs a newly generated signature σ.

Verify(pk, y, σ,C)→ 0/1. The verification algorithm takes as input a verification key pk, a message y, a
signature σ, and a structured circuit C. It outputs a bit 0/1 to signal whether σ is a valid signature.

Definition 4.1 (Multi-Hop Homomorphic Signature). A multi-hop homomorphic signature scheme HSig =
(Setup,Sign,Eval,Verify) is required to satisfy the following properties:

Completeness. For any λ,K, ℓ, d, sC ∈ N, and (bi, σi,Ci)i∈[ℓ′] and circuit C ∈ Cℓ,d,sC there exists a
negligible function negl(·) such that:

Pr

 Verify(pk, y, σ,C) = 1 :

(pk, sk)← Setup(1λ, 1K , ℓ, d, sC),
∀i ∈ [ℓ′],Verify(pk, bi, σi,Ci) = 1,
σ = Eval(pk, t, (bi, σi,Ci)i∈[ℓ′], C),
y = C(b1, . . . , bℓ)

 ≥ 1− negl(λ),

5A similar concept is often called labelled circuits in the homomorphic evaluation literature.
6More on this on the structure of G in Section 4.4.

15

where C is the output of composing (Ci)i∈[ℓ′] with C.

Efficiency. For the completeness experiment above the following hold:

– |pk|, |σ| ≤ poly(λ, d,K).

– Setup runs in time poly(λ, d,K), and evaluation and verification run in time poly(λ, |V |, sC) where
|V | denote the number of nodes in G where G ∈ C.

Adaptive Unforgeability. A multi-hop homomorphic signature scheme satisfies unforgeability if for ev-
ery stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ, ℓ, d, sC ∈ N,
the following holds:

Pr

 y∗ ̸= y
∧ Verify(pk, y∗, σ∗,C∗) = 1

:

(pk, sk)← Setup(1λ, 1K , ℓ, d, sC)
(I, (bid)id∈I)← A(pk)
∀id ∈ I, σid ← Sign(sk, id, bi)
(C∗, y∗, σ∗)← A((σid)id∈I)

 ≤ negl(λ),

where y is the actual output of the structured circuit C given (bid)id∈I .

4.2 Construction

Notation and parameters. For ease of exposition (and w.l.o.g.) we assume that any Cv ∈ Cℓ,d,sC
has exactly ℓ inputs, namely, ℓ′ = ℓ. Throughout our construction, we set the security parameter for all
underlying primitives to be λ′ = (λ+4dK)O(1). This ensures that we rely on their sub-exponential security:
We define a “strong” negligible function negl′(·), such that negl′(λ) ≤ 2−λc

for some 0 < c < 1. We assume
that subexponentially-secure cryptographic primitives under security parameter λ′ in our work to be secure
against PPT adversaries, and every PPT adversary has at most negl′(λ′) ≤ 1

2λ+4dK advantage.
Let N denote the maximum number of wires and 2ℓ denote the number of input wires in any monotone

circuit C̃y where C̃y = T (C, y), C ∈ Cℓ,d,sC , and y is C’s output. Thus, the circuit C̃y has N − 2ℓ internal
wires and N − 2ℓ gates.

Throughout this paper we will not explicitly give out the length for setup of BAGRs (and in the following
sections for set up of NIZKs) as they’re clear from the context. We emphasize that for simplicity of pre-
sentation we are assuming that all circuits have exactly ℓ inputs, thus an arbitrary tree G of such structure
could be of large (exponential in depth) size. Hence the exact input size would depend up on the structure
of G ∈ C which directly depends upon the actual value of ℓ′ for every node in G.

Let BARG = (BARG.Setup,BARG.Prove,BARG.Verify,BARG.Extract) be a rate-1 somewhere extractable
batch argument , H = (H.Setup,H.Hash,H.Open,H.Verify) be a hash Tree, Sig = (Sig.Setup,Sig.Verify) be
a digital signature scheme, and Del = (Del.Setup,Del.Prove,Del.Digest,Del.Verify) be a RAM delegation
scheme. We present our multi-hop homomomorphic signature as follows:

Setup(1λ, 1K , ℓ, d, sC)→ (pk, sk). The setup algorithm first samples a hash key hk ← H.Setup(1λ
′
), and

generates signature secret key and verification key (sk0, vk0) ← Sig.Setup(1λ
′
), and let pk0 = vk0 and

for all i ∈ [K], it does the following

1. Generates seBARG parameters as follows for languages L0
i ,L1

i :

(barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N − 2ℓ, (N − 2ℓ,N − 2ℓ)) for language L0

i (Fig. 2),

(barg.crs1i , barg.td
1
i)← BARG.Setup(1λ

′
, 2ℓ, 1) for language L1

i (Fig. 3).

2. Samples RAM delegation CRS with respect to machineRi (Fig. 4) as del.crsi ← Del.Setup(1λ
′
, 2λ).

3. Computes hash of implicit input of Ri as h
imp
i = Del.Digest(hk, (barg.crs0i , barg.crs

1
i , (pkj)j∈[i−1])).

4. Sets pki = (barg.crs0i , barg.crs
1
i , del.crsi, h

imp
i , hk).

16

Finally it outputs pk = (pk0, . . . , pkK), sk = sk0.

Sign(sk, id, b)→ σ. It outputs the signature for message bit b at index id as σ ← Sig.Sign(sk, (id, b)).

Language L0
i

Hardwired: hk.

Instance: x = (j, h, C̃y).

Witness: ω = (bj , bj0 , bj1 , ρj , ρj0 , ρj1).

Membership: Let gate c in monotone circuit C̃y be the gate that takes as input the j0-th and
the j1-th wire, and outputs the j-th wire (where 2ℓ+ 1 ≤ j ≤ N). ω is a valid witness for x ∈ L0

i

if all of the followings are satisfied:

– For all α ∈ {j, j0, j1}, H.Verify(hk, h, α, bα, ρα) = 1.

– c(bj0 , bj1) = bj .

– If j = N , then bj = 1.

Figure 2: Description of language L0
i .

Language L1
i

Hardwired: pki−1.

Instance: x.

Witness: ω.

Membership: ω is a valid witness for x ∈ L1
i if all of the following are satisfied:

If i = 1 let x = (j, id, h), ω = (σ, b, ρ), and check:

– H.Verify(hk, h, j, b, ρ) = 1,

– Sig.Verify(pki−1, (id, b), σ) = 1 for 1 ≤ j ≤ ℓ,

– Sig.Verify(pki−1, (id, 1− b), σ) = 1 for ℓ+ 1 ≤ j ≤ 2ℓ.

If i ≥ 2, let x = (j, h,C), ω = (σ, b, ρ), and σ = (h, del.π, barg.π0, barg.π1). Additionally parse

pki−1 to find (del.crsi−1, h
imp
i−1). Then check:

– H.Verify(hk, h, j, b, ρ) = 1,

– Del.Verify(del.crsi−1, h
imp
i−1, (barg.π

0, barg.π1, b, h,C), del.π) = 1, for 1 ≤ j ≤ ℓ.

– Del.Verify(del.crsi−1, h
imp
i−1, (barg.π

0, barg.π1, 1− b, h,C), del.π) = 1 for ℓ+ 1 ≤ j ≤ 2ℓ.

Figure 3: Description of the language L1
i .

17

RAM Machine Ri

Explicit Input: barg.π0, barg.π1, y, h,C.

Implicit Input: barg.crs0i , barg.crs
1
i , (pkj)j∈[i−1].

Output: Ri follows these steps:

1. Decomposes C to its children (Cj)j∈[ℓ] and a circuit C.

2. Sets monotone circuit C̃y = T (C, y) following from Fig. 1.

3. For j ∈ [ℓ], sets xj = (j, h,Cj), and xj+ℓ = (j + ℓ, h,Cj).

4. For j ∈ {2ℓ+ 1, . . . , N}, sets xj as (j, h, C̃y).

5. Accepts if and only if

• BARG.Verify(barg.crs0i , (xj)j∈{2ℓ+1,...,N}, barg.π
0) = 1,

• BARG.Verify(barg.crs1i , (xj)j∈[2ℓ], barg.π
1) = 1.

Figure 4: Description of RAM Machine Ri.

Eval(pk, t, (bi, σi,Ci)i∈[ℓ], C)→ σ. The evaluation algorithm for the t-th hop follows these steps:

1. If Ci is empty for all i, then we assume that the circuit C is a labelled circuit where C ′ is the
circuit and (idi)i∈[ℓ] are labels for the input wires. It computes y = C ′(b1, . . . , bℓ) and generates

the monotone circuit C̃y = T (C ′, y) using Fig. 1, where C̃y has a total number of N wires.

It sets bi = 1 − bi−ℓ for all i ∈ {ℓ + 1, . . . , 2ℓ}. It then computes C̃y gate by gate, to find

bi (for all i ∈ {2ℓ + 1, . . . , N}) as the value of the i-th wire of circuit C̃y, and computes h =
H.Hash(hk, (b1, . . . , bN)).

2. For all i ∈ [N], it computes the hash openings as ρi = H.Open(hk, (b1, . . . , bN), i).

3. It assigns an instance and a witness to each input wire. For all i ∈ [ℓ], if Ci is empty, then

• xi = (i, idi, h), ωi = (σi, bi, ρi), and xi+ℓ = (i+ ℓ, idi, h), ωi+ℓ = (σi, 1− bi, ρi+ℓ).

Otherwise,

• xi = (i, h,Ci), ωi = (σi, bi, ρi), and xi+ℓ = (i+ ℓ, h,Ci), ωi+ℓ = (σi, 1− bi, ρi+ℓ).

4. It assigns an instance and a witness for each internal wire. For every i ∈ {2ℓ+ 1, . . . , N}, find a
gate s.t. its output is wire i and let wires i0 and i1 be the inputs to such a gate. Then let

• xi = (i, h, C̃y), and ωi = (bi, bi0 , bi1 , ρj , ρi0 , ρi1).

5. It computes BARG proofs for L1
i and L2

i as follows:

• barg.π0 ← BARG.Prove(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, (ωi)i∈{2ℓ+1,...,N}).

• barg.π1 ← BARG.Prove(barg.crs1t , (xi)i∈[2ℓ], (ωi)i∈[2ℓ]).

6. Compute C by composing (Ci)i∈[ℓ] and C.

7. It generates a RAM delegation proof:

• del.π ← Del.Prove(del.crst, (barg.π
0, barg.π1, y, h,C), (barg.crs0t , barg.crs

1
t , (pkj)j∈[t−1])).

8. It outputs signature σ as (h, del.π, barg.π0, barg.π1).

18

Verify(pk, y, σ,C)→ {0, 1}. If C is empty then it outputs whatever Sig.Verify(pk0, (id, y), σ) outputs. Oth-

erwise it parses σ = (h, del.π, barg.π0, barg.π1) and pkt = (barg.crs0t , barg.crs
1
t , del.crst, h

imp
t , hk) and

outputs Del.Verify(del.crst, h
imp
t , (barg.π0, barg.π1, y, h,C), del.π).

Remark 4.2. We apply a universal security parameter λ′ = (λ + 4dK)O(1) for the design of the setup
algorithm above. In fact for the above design where pk = (pk0, . . . , pkK) and one may apply a tighter
security parameter as λ′ = (λ+ 4d · (K − i))O(1) when generating pki for i ∈ [K].

Completeness. The completeness of our scheme directly follows from the completeness of public key
signature scheme sig, somewhere extractable batch argument barg, RAM delegation del, and the monotone
circuit transformation.

Efficiency. Next, we analyze the efficiency of the above design.

Lemma 4.3. Assume that BARG = (BARG.Setup,BARG.Prove,BARG.Verify,BARG.Extract) is a rate-1 some-
where extractable batch argument. Then our design satisfies the efficiency definition.

Proof. We analyze the signature size using a inductive proof. Let σt be the signature at the t-th hop, such
that σt ← Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C).

Claim 4.4. For all t ∈ [K], there exists a universal polynomial poly(·) such that |σt| ≤ t · poly(λ′).

Proof. We prove the claim through induction.

Base Case (t = 1). By our design, σt = (h, del.π, barg.π0, barg.π1). Hash value h and delegated proof del.π
are local parameters such that |h|+ |del.π| ≤ poly(λ′). Next we analyze the size of barg.π0, since the witness
of language L0

i only contains local hash parameters for all i ∈ [K] and barg is rate-1, |barg.π0| ≤ poly(λ′).
For the first hop evaluation where t = 1, witness of language L1

1 consists of local hash parameters and basic
public key signatures. Due to rate-1 seBARG, |barg.π1| ≤ poly(λ′) for some universal polynomial poly(·).
Thus the claim holds for t = 1.

Inductive Step (2 ≤ t ≤ K). For σt = (h, del.π, barg.π0, barg.π1), given the locality properties of Hash
Tree and rate-1 seBARG, the overall size |h| + |del.π| + |barg.π0| ≤ poly(λ′). Additionally, it follows that
|barg.π1| ≤ |σt−1| + poly(λ′). Thus, |σt| ≤ |σt−1| + poly(λ′) for some universal polynomial poly(·). By our
inductive hypothesis, |σt−1| ≤ (t − 1) · poly(λ′). Putting the above together completes the proof for the
claim.

Claim 4.4 implies that |σ| ≤ poly(λ′,K) ≤ poly(λ, d,K). Next, we analyze the verification key size and

verifier running time. For t ∈ [K], pkt = (barg.crs0t , barg.crs
1
t , del.crsi, h

imp
i , hk). By succinctness of rate-1

BARG barg, RAM delegation del, |pkt| and setup running time for the t-th hop is bounded by poly(λ′).
Overall verification key size and setup running time is at most poly(λ′,K) = poly(λ, d,K).

For all t ∈ [K], the verifier for the t-th hop runs a RAM delegation verifier for the RAM machine Rt. Rt

takes (barg.π0, barg.π1, y, h,C) as its variable input. By the succinctness of RAM delegation, verifier’s running
time depends polynomially on the size of the variable input and the security parameter λ′. By Claim 4.4, we
have |σ| ≤ poly(λ′,K), which implies |barg.π0|+ |barg.π1|+ |h| ≤ poly(λ′,K). Size of the graph G = (V,E)
at circuits {Cv}v∈V is at most poly(n, |Cℓ,d,sC |). Thus, verifier’s running time is poly(λ′,K, |V |, |Cℓ,d,sC |).

4.3 Unforgeability

Theorem 4.5. Assume that BARG satisfies sub-exponential index hiding and somewhere argument of knowl-
edge, Del satisfies sub-exponential soundness, digital signature Sig satisfies sub-exponential unforgeability,
and H satisfies sub-exponentially secure collision-resistance property, then our construction satisfies adaptive
unforgeability.

19

Proof. We first define Hybrid (j0, j1), over which we will later present an inductive proof. Note that the
hybrids are defined with respect to 2ℓ+ 1 ≤ j0, j1 ≤ N .

Hybrid (j0, j1)

1. Challenger first sets hash key hk← H.Setup(1λ
′
) and generates single-hop homomorphic signature key

(vk0, sk0)← Sig.Setup(1λ
′
).

2. For all i ∈ {1, . . . ,K}\{t}, it generates (barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N−2ℓ, (N−2ℓ,N−2ℓ))

for language L0
i . It generates (barg.crs0t , barg.td

0
t) ← BARG.Setup(1λ

′
, N − 2ℓ, (j0 − 2ℓ, j1 − 2ℓ)) for

language L0
t . Next for all i ∈ {1, . . . ,K}, it sets (barg.crs1i , barg.td

1
i) ← BARG.Setup(1λ

′
, 2ℓ, 1) for

language L1
i , del.crsi ← Del.Setup(1λ

′
, T), and himp

i = Del.Digest(hk, (barg.crs0i , barg.crs
1
i)).

3. For all i ∈ [K], challenger sets pki = (barg.crs0i , barg.crs
1
i , del.crsi, h

imp
i , hk). Challenger outputs pk =

(pk0, . . . , pkK), sk = sk0.

4. The attacker A outputs a sequence of messages (βid)id∈I , and the challenger computes and outputs
σid ← Sig.Sign(sk, (id, βid)) for all id ∈ I.

5. The attacker A outputs a structured circuit C taking indexes (idi)i∈[M] as input. Let y∗ be the output
of C on input (βidi)idi∈[M]. A wins if and only if Verify(vk, y∗, σ∗,C) = 1 and y∗ ̸= y.

Let root denote the root node of G (G is the structure of C). Let (Cj)j∈[ℓ] be the decomposed circuit

C. Set circuit C̃y∗ as the monotone circuit of circuit Croot (C̃y∗ follows Fig. 1). Let b∗j be the output of

Cj , and let b∗j+ℓ be 1 − b∗j . Let (b∗2ℓ+1, . . . , b
∗
N) be the value of the internal wires of circuit C̃y∗ taking

(b∗1, . . . , b
∗
2ℓ) as input. Parse the signature by A as σ∗ = (h, del.π, barg.π0, barg.π1). For j ∈ [ℓ], set xj =

(j, h,Cj), and xj+ℓ = (j + ℓ, h,Cj+ℓ). For j ∈ {2ℓ + 1, . . . , N}, set xj as (j, h, C̃y∗). Let (ωj0 , ωj1) be
BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0). For b ∈ {0, 1}, parse ωjb as (bjb , . . .). For adversary A in

Hybrid (j0, j1), let Adv
j0,j1,b
A denote the following:

Advj0,j1,bA = Pr
hybj0,j1

[Verify(vk, y∗, σ∗,C) = 1 ∧ bjb > b∗jb].

We note that Hybrid (N,N) corresponds to the original unforgeability game for multi-hop homomorphic
signature scheme. We denote A’s winning advantage in such hybrid as AdvA:

AdvA = Pr
hybN,N

[Verify(vk, y∗, σ∗,C) = 1 ∧ y∗ ̸= y].

We also note that t is set as the current hop that A is attacking.

Lemma 4.6. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, Del satisfies sub-exponential soundness, and H satisfies sub-exponentially secure collision-
resistance property. Assume that there exists a PPT adversary A, a non-negligible function ϵ(·) such that

AdvN,N,0
A ≥ ϵ(λ). Then within the second level of circuit C̃y∗ (the first level are input wires), there exists

some internal wire indexed at j∗ such that 3d−2 · Advj
∗,j∗,0

A ≥ AdvN,N,0
A for every λ ∈ N.

Proof. We show the following: For any node indexed at j on level i (i > 1), if there exists a non-negligible
function ϵ(·) such that Advj,j,0A ≥ ϵ(λ), then there exists at least one node jα on level i − 1, such that

3 · Advjα,jα,0
A ≥ Advj,j,0A . The above implies our lemma by a simple induction. To prove it, consider these

claims:

Claim 4.7. Assume that the BARG satisfies sub-exponentially secure index hiding, then for any PPT

adversary A, there exists a strongly-negligible function negl′(·) such that Advj,j
′,0

A ≥ Advj,j,0A − negl′(λ′) for
every λ′ ∈ N.

20

Proof. We prove the claim with a reduction towards the index-hiding of BARG. Define reduction algorithm
B as the following:
B sets hk ← H.Setup(1λ

′
) and (sk0, vk0) ← Sig.Setup(1λ

′
). For all i ∈ {1, . . . ,K} \ {t}, B generates

(barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N−2ℓ, (N−2ℓ,N−2ℓ)) for language L0

i . B sets up (barg.crs0t0 , barg.td
0
t0)←

BARG.Setup(1λ
′
, N − 2ℓ, j− 2ℓ) for L0

t . B then queries the BARG index-hiding challenger using j and j′ and
the challenger returns with barg.crs0t1 . B sets the barg.crs0t as (barg.crs0t0 , barg.crs

0
t1). For all i ∈ {1, . . . ,K},

B sets (barg.crs1i , barg.td
1
i) ← BARG.Setup(1λ

′
, 2ℓ, 1), del.crsi ← Del.Setup(1λ

′
, T), himp

i = Del.Digest(hk,

(barg.crs0i , barg.crs
1
i)), and pki = (barg.crs0i , barg.crs

1
i , del.crsi, h

imp
i , hk). It outputs pk as (pk0, . . . , pkK) and

sets sk as sk0. A then outputs (βid)id∈I and B returns Sig.Sign(sk0, id, βid) for id ∈ I. A outputs C and
σ∗ = (h, del.π, barg.π0, barg.π1). Upon the output by A, B extracts the bit bj using BARG.Extract(barg.td0t0 ,
{xi}i∈{2ℓ+1,...,N}, barg.π

0). If Verify(vk, y∗, σ∗,C) = 1 and bj > b∗j , B outputs 0. Otherwise, B outputs 1.

We note that the index-hiding challenger tosses a random coin β ← {0, 1}. If β = 0, it returns barg.crs0t1 ←
BARG.Setup(1λ

′
, N−2ℓ, j−2ℓ) and otherwise for β = 1, challenger returns barg.crs0t1 ← BARG.Setup(1λ

′
, N−

2ℓ, j′− 2ℓ). Thus for β = 0, the above experiment corresponds to Hybrid (j, j) and otherwise it corresponds

to Hybrid (j, j′). Assume towards contradiction that |Advj,j
′,0

A − Advj,j,0A | is not strongly negligible. Then,
the above reduction algorithm B breaks the sub-exponentially secure index-hiding property of BARG.

Claim 4.8. Assume that the RAM delegation scheme Del satisfies sub-exponential soundness, then for any
polynomial time adversary A in Hybrid (j, j′), there exists a strongly negligible function negl′(·) such that
for every λ′ ∈ N:

Pr
hybj,j′

 Verify(vk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1

 ≥ Advj,j,0A − negl′(λ′).

Proof. Consider for Hybrid (j, j′), adversary A outputs C and (h, barg.π, del.π) in step 5. Let t denote the
number of levels of tree G. According to the output of A, for all i ∈ {2ℓ+ 1, . . . , N}, let xi be the instance
with respect to language L0

t . Assume towards contradiction that with non strongly negligible probability, it
satisfies that Verify(vk, y∗, σ∗,C) = 1 and BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) ̸= 1.
We design a simple reduction algorithm B that breaks the soundness property of RAM delegation scheme

Del. B sets hk ← H.Setup(1λ
′
) and (sk0, vk0) ← Sig.Setup(1λ

′
). For all i ∈ {1, . . . ,K} \ {t}, B gener-

ates (barg.crs0i , barg.td
0
i) ← BARG.Setup(1λ

′
, N − 2ℓ, {N − 2ℓ,N − 2ℓ}) and del.crsi ← Del.Setup(1λ

′
, T). B

sets (barg.crs0t , barg.td
0
t) ← BARG.Setup(1λ

′
, N − 2ℓ, (j − 2ℓ, j′ − 2ℓ)). B queries the RAM delegation chal-

lenger with (1λ
′
, T) and the challenger outputs del.crst. For all i ∈ {1, . . . ,K}, B sets (barg.crs1i , barg.td

1
i)←

BARG.Setup(1λ
′
, 2ℓ, 1), himp

i ← Del.Digest(hk, (barg.crs0i , barg.crs
1
i)), pki = (barg.crs0i , barg.crs

1
i , del.crsi, h

imp
i , hk).

B outputs pk as (pk0, . . . , pkK). A then outputs (βid)id∈I and B returns Sig.Sign(sk0, id, βid) for id ∈ I. A out-
puts C, y∗, and σ∗ = (h, del.π, barg.π0, barg.π1). Upon the output by A, B outputs (barg.π0, barg.π1, y, h,C),
(barg.crs0t , barg.crs

1
t), and del.π.

By the above assumption where it holds that Verify(vk, y∗, σ∗,C) = 1, we have Del.Verify(del.crst, h
imp
t ,

(barg.π0, barg.π1, y, h,C), del.π) = 1. By the assumption BARG.Verify(barg.crs0t , (x
0
i)i∈{2ℓ+1,...,N}, barg.π

0) ̸=
1, hence B breaks the RAM delegation soundness with an advantage of ϵ(λ′). Our claim holds by the
reduction and by Claim 4.7.

Claim 4.9. Assume that the seBARG BARG is a sub-exponentially secure somewhere argument of knowl-
edge, then for any PPT adversaryA in Hybrid (j, j′) and (ωj , ωj′) = BARG.Extract(barg.td0t , (x

0
i)i∈{2ℓ+1,...,N}, barg.π

0),
there exists a strongly negligible function negl′(·) such for every λ′ ∈ N:

Pr
hybj,j′

Verify(vk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1
∧ ωj , ωj′ are valid witnesses for L0

t

 ≥ Advj,j,0A − negl′(λ′).

21

Proof. Assume towards contradiction that with some non strongly negligible probability, it holds that
BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1 and at least one of ωj , ωj′ is not a valid witness for
L0
t .
There exists a reduction algorithm B that breaks the somewhere argument of knowledge property of

seBARG scheme BARG. B sets hk← H.Setup(1λ
′
) and (sk0, vk0)← Sig.Setup(1λ

′
). For all i ∈ {1, . . . ,K}\{t},

B generates (barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N−2ℓ, (N−2ℓ,N−2ℓ)). B queries the BARG challenger

with (1λ
′
, N − 2ℓ, (j − 2ℓ, j′ − 2ℓ)) and the challenger outputs barg.crs0t . For all i ∈ {1, . . . ,K}, B generates

barg.crs1i ← BARG.Setup(1λ
′
, 2ℓ, 1), del.crsi ← Del.Setup(1λ

′
, T), himp

i = H.Hash(hk, (barg.crs0i , barg.crs
1
i)),

and sets pki as (barg.crs
0
i , barg.crs

1
i , del.crsi, h

imp
i , hk). B outputs pk as (pk0, . . . , pkK). A then outputs (βid)id∈I

and B returns Sig.Sign(sk0, id, (βid)) for id ∈ I. A outputs C with (h, del.π, barg.π0, barg.π1). B outputs
(xi)i∈{2ℓ+1,...,N} and barg.π0.

By the contradictory assumption, BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 1 and either ωj or

ωj′ is not a valid witness for L0
t , where (ωj , ωj′) = BARG.Extract(barg.td0, (xi)i∈{2ℓ+1,...,N}, barg.π

0). Thus,
B breaks the sub-exponentially secure somewhere argument of knowledge property of BARG. Our claim
holds by the above reduction and Claim 4.8.

Let c be the gate in circuit C̃y∗ such that the j0-th and j1-th wires are the input wires to gate c and the

j-th wire is the output wire. We require the j-th wire to be placed at level i of C̃y∗ where 3 ≤ i ≤ d, so that
j0-th and j1-th wires are internal. For α ∈ {0, 1}, in Hybrid (j, jα), parse adversary A’s output signature σ∗

as (h, del.π, barg.π0, barg.π1, del.π). Set (ωj , ωjα) = BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0). Parse

ωj as (bj , b0, b1, ρj , ρ0, ρ1), and ωjα as (bjα , b
′
0, b

′
1, ρjα , ρ

′
0, ρ

′
1).

Claim 4.10. Assume that the Hash Tree H satisfies sub-exponential collision-resistance, then for α ∈ {0, 1}
and PPT adversary A in Hybrid (j, jα), there exists a strongly negligible function negl′(·) such that for every
λ′ ∈ N:

Pr
hybj,jα

Verify(vk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1
∧ ωj , ωjα are valid witnesses for L0

t

∧ bjα = bα

 ≥ Advj,j,0A − negl′(λ′).

Proof. Assume towards contradiction that with non strongly negligible probability, both ωj and ωj′ are valid
witnesses for Lt and bjα ̸= bα.

There exists a reduction algorithm B that breaks the collision-resistance of H. B queries the hash
challenger with H.Setup(1λ

′
) and the challenger returns with hash key hk. Next, B sets (sk0, vk0) ←

Sig.Setup(1λ
′
). For all i ∈ {1, . . . ,K}\{t}, B generates (barg.crs0i , barg.td

0
i)← BARG.Setup(1λ

′
, N −2ℓ, (N −

2ℓ,N−2ℓ)). B additionally sets barg.crs0t as BARG.Setup(1
λ′
, N−2ℓ, (j−2ℓ, j′−2ℓ)). For all i ∈ {1, . . . ,K}, B

generates barg.crs1 ← BARG.Setup(1λ
′
, 2ℓ, 1), del.crsi ← Del.Setup(1λ

′
, T), himp

i = H.Hash(hk, (barg.crs0i , barg.crs
1
i)),

and sets pki = (barg.crs0i , barg.crs
1
i , del.crsi, h

imp
i , hk). B outputs pk as (pk0, . . . , pkK). A then outputs (βid)id∈I

and B returns Sig.Sign(sk0, id, βid) for id ∈ I. A outputs C, y∗, and σ∗ = (h, del.π, barg.π0, barg.π1). B ex-
tracts (ωj , ωjα) using BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) and outputs h, jα, bα, ρα, bjα , ρjα .
According to the contradictory assumption, ωj , ωjα are valid witnesses for Lt, hence it holds that

H.Verify(hk, h, jα, bα, ρα) = H.Verify(hk, h, jα, bjα , ρjα) = 1. Then by the assumption that bjα ̸= bα, B breaks
collision-resistance property of H with an advantage of ϵ(λ, 2d·K). By the above reduction with Claim 4.9,
our claim holds.

Claim 4.11. For any PPT adversary A, there exists some α ∈ {0, 1}, a strongly negligible function negl′(·)

22

such that for every λ′ ∈ N

Pr
hybj,jα

Verify(vk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1
∧ ωj , ωjα are valid witnesses for L0

t

∧ bjα = bα
∧ bjα > b∗jα

 ≥
Advj,j,0A − negl′(λ′)

2
.

Proof. By property of monotone circuit, bj > b∗j implies that bjα > b∗jα for some α ∈ {0, 1}. Since Advj,j,0A ≥
ϵ(λ) where ϵ(·) is non-negligible, the claim follows immediately from Claim 4.10.

Claim 4.12. For any PPT adversary A, if there exists a non-negligible function ϵ(·) such that Advj,j,0A ≥ ϵ(λ)
for any λ ∈ N, then there exists some α ∈ {0, 1}, such that

Advjα,jα,0
A ≥

Advj,j,0A
3

.

Proof. Reducing to the index-hiding property of BARG and using Claim 4.11, we obtain:

Pr
hybjα,jα

[
Verify(vk, y∗, σ∗,C) = 1
∧ bjα > b∗jα

]
≥

Advj,j,0A
2

− negl′(λ′).

We omit the proof for the above as it is almost the same as the proof of Claim 4.7. Next, Advj,j,0A ≥ ϵ(λ)

implies that
Advj,j,0A

2 − negl′(λ′) ≥ Advj,j,0A
3 .

By a simple inductive proof using Claim 4.12, our lemma immediately follows.

Next, we switch to Hybrid (j∗, j∗α) for 2ℓ+1 ≤ j∗ ≤ N and 1 ≤ j∗α ≤ 2ℓ. In Hybrid (j∗, j∗α), j
∗ represents

an internal wire at the second level of C̃y∗ , while j∗α denotes the index of an input wire at the bottom level.
This input wire is one of the two that connect to the gate producing the j∗-th wire.

Hybrid (j∗, j∗α)

1. Challenger first sets hash key hk ← H.Setup(1λ
′
) and generates single-hop homomorphic signature key

(vk0, sk0)← Sig.Setup(1λ
′
).

2. For all i ∈ {1, . . . ,K} \ {t}, the challenger first generates BARG parameters (barg.crs0i , barg.td
0
i) ←

BARG.Setup(1λ
′
, N − 2ℓ, (N − 2ℓ,N − 2ℓ)) and (barg.crs1i , barg.td

1
i)← BARG.Setup(1λ

′
, 2ℓ, 1). Then it

sets (barg.crs0t , barg.td
0
t)← BARG.Setup(1λ

′
, N−2ℓ, (j∗, j∗)) and (barg.crs1t , barg.td

1
t)← BARG.Setup(1λ

′
, 2ℓ, j∗α).

For all i ∈ [K], challenger sets del.crsi ← Del.Setup(1λ
′
, T) and himp

i = H.Hash(hk, (barg.crs0i , barg.crs
1
i , (pkj)j∈[i−1]))).

3. For all i ∈ [K], challenger sets pki = (barg.crs0i , barg.crs
1
i , del.crsi, h

imp
i , hk). Challenger outputs pk =

(pk0, . . . , pkK), sk = sk′. For all i ∈ [ℓ], the challenger computes and outputs σi ← Sig.Sign(sk, (i, βi)).

4. The attacker A outputs a sequence of messages (βid)id∈I , and the challenger computes and outputs
σid ← Sig.Sign(sk, (id, βid)) for all id ∈ I.

5. The attacker A outputs a structured circuit C, a message y∗, and σ∗. Let y be the actual output of the
structured circuits C taking (βidi)i∈[M] as input. A wins if and only if Verify(vk, y∗, σ∗,C∗) = 1 and
y∗ ̸= y.

Let (ω∗
j , ·) ← BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) and parse ω∗
j = (bj∗ , . . .). Additionally let

ωj∗α
= BARG.Extract(barg.td1t , (xi)i∈{1,...,2ℓ}, barg.π

1) where ωj∗α
= (σ, bj∗α , ρj∗α).

23

Lemma 4.13. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, Del satisfies sub-exponential soundness, and H satisfies sub-exponentially secure collision-

resistance property. Assume that there exists a PPT adversary A such that Advj
∗,j∗,0

A ≥ ϵ(λ)/3d−2 for any

λ ∈ N where ϵ(·) is some non-negligible function, and for wire j∗ at the second level of circuit C̃y∗ (the
bottom internal wires excluding input wires), then there exists some input wire at j∗α such that

Pr
hybj∗,j∗α

 Verify(vk, y∗,C) = 1
∧ ωj∗α is a valid witness for L1

t

∧ bj∗α > b∗j∗α

 ≥ Advj
∗,j∗,0

A
3

.

Proof. We prove the lemma using the following hybrid claims:

Claim 4.14. Assume that the BARG satisfies sub-exponentially secure index hiding, then for any PPT
adversary A, there exists a strongly negligible function negl′(·) such that for all λ′ ∈ N,

Pr
hybj∗,j∗α

[
Verify(vk, y∗, σ∗,C) = 1
∧ bj∗ > b∗j∗

]
≥ Advj

∗,j∗,0
A − negl′(λ′).

Proof. We omit the proof as it is nearly identical to the proof of Claim 4.7.

Claim 4.15. Assume that RAM delegation scheme Del satisfies sub-exponential soundness, then for any
PPT adversary A, there exists a strongly negligible function negl′(·) such that for all λ′ ∈ N,

Pr
hybj∗,j∗α

Verify(vk, y∗, σ∗,C) = 1
∧ bj∗ > b∗j∗
∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 1
∧ BARG.Verify(barg.crs1t , (xi)i∈[2ℓ], barg.π

1) = 1

 ≥ Advj
∗,j∗,0

A − negl′(λ′).

Proof. The proof is nearly identical to the proof of Claim 4.8.

Claim 4.16. Assume that seBARG scheme BARG satisfies sub-exponentially secure somewhere argument
of knowledge property, then for any PPT adverary A, there exists a strongly negligible function negl′(·) such
that for all λ′ ∈ N,

Pr
hybj∗,j∗α

Verify(vk, y∗, σ∗,C) = 1
∧ bj∗ > b∗j∗
∧ ωj∗ is a valid witness for L0

t

∧ ωj∗α
is a valid witness for L1

t

 ≥ Advj
∗,j∗,0

A − negl′(λ′).

Proof. The proof is nearly identical to the proof of Claim 4.9.

Claim 4.17. Assume that Hash Tree H satisfies sub-exponentially secure collision-resistance property, then
for any PPT adversary A, for α ∈ {0, 1}, there exists a strongly negligible function negl′(·) such that for all
λ′ ∈ N,

Pr
hybj∗,j∗α

Verify(vk, y∗, σ∗,C) = 1
∧ bj∗ > b∗j∗
∧ ωj∗ is a valid witness for L0

t

∧ ωj∗α
is a valid witness for L1

t

∧ bj∗α = bα

 ≥ Advj
∗,j∗,0

A − negl′(λ′).

Proof. (Omitted) Follows by the proof of Claim 4.10.

24

Now, since we are assuming that there exists a PPT adversary A such that Advj
∗,j∗,0

A ≥ ϵ(λ)/3d−2 where
ϵ(·) is non-negligible. By the above claim, we conclude that our lemma holds. There exists some α ∈ {0, 1},
such that

Pr
hybj∗,j∗α

 Verify(vk, y∗, σ∗,C) = 1
∧ ωj∗α

is a valid witness for L1
t

∧ bj∗α > b∗j∗α

 ≥ Advj
∗,j∗,0

A − negl′(λ′)

2
≥

Advj
∗,j∗,0

A
3

.

Recall that we define AdvA as the overall winning probability of attacker A, where

AdvA = Pr
hybN,N

[Verify(vk, y∗, σ∗,C) = 1 ∧ y∗ ̸= y].

Lemma 4.18. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, Del satisfies sub-exponential soundness, and H satisfies sub-exponentially secure collision-
resistance property. Assume that there exists an PPT adversary A and a non-negligible function ϵ(·) such
that AdvA ≥ ϵ(λ) for any λ ∈ N. Then there exists some internal wire indexed at j∗ at the second level of
circuit C̃y∗ , such that the following holds:

Advj
∗,j∗,0

A ≥ AdvA
3d−1

.

Proof. Using a reduction to the soundness of Del and somewhere argument of knowledge property of BARG,
the following holds (similar to the proofs of Claim 4.8 and 4.9):

AdvN,N,0
A ≥ AdvA − negl′(λ′).

Thus by Lemma 4.6,

Advj
∗,j∗,0

A ≥ AdvA − negl′(λ′)

3d−2
.

Recall that we assume AdvA ≥ ϵ(λ). Our lemma immediately follows.

Recall that ωj∗α
= (σ, bj∗α , ρj∗α). Note that in Lemma 4.13, ωj∗α

as a valid witness for L1
t and bj∗α > b∗j∗α

indicates that σ is an adversarial signature for message 1 − bj∗ corresponding to sub-tree Gj∗ (1 ≤ j∗ ≤ ℓ)
or Gj∗−ℓ (ℓ ≤ j∗ ≤ 2ℓ). Combining Lemma 4.13 and Lemma 4.18, we conclude the following: for any
PPT adversary A that breaks the unforgeability of our scheme with advantage AdvA ≥ ϵ(λ, 2d·K) at the
t-th hop, there exists a reduction algorithm that breaks the unforgeability of the signature scheme at the
(t − 1)-th hop with advantage greater than or equal to AdvA

3d
if BARG trapdoors are set at proper indexes.

Furthermore, AdvA ≥ ϵ(λ) implies a polynomial time reduction algorithm which breaks the unforgeability
of sig with advantage that is not strongly-negligible in λ′. We give a formal reduction as follows:

Lemma 4.19. Assume that public key signature scheme Sig satisfies sub-exponentially secure unforgeability,
then there exists a negligible function negl(·) such that for all λ ∈ N, it holds that AdvA ≤ negl(λ).

Proof. Reduction algorithm B sets hk ← H.Setup(1λ
′
) and queries the digital signature challenger and the

challenger returns vk0. For all i ∈ [K], B randomly samples ri ∈ [2ℓ], B then generates (barg.crs0i , barg.td
0
i)←

BARG.Setup(1λ
′
, N−2ℓ, (N−2ℓ,N−2ℓ)), (barg.crs1i , barg.td

1
i)← BARG.Setup(1λ

′
, 2ℓ, ri), del.crsi ← Del.Setup(1λ

′
, T),

himp
i = Del.Digest(hk, (barg.crs0i , barg.crs

1
i , (pkj)j∈[i−1])), and then lets pki = (barg.crs0i , barg.crs

1
i , del.crsi, h

imp
i , hk).

It outputs pk as (pk0, . . . , pkK). A then outputs (βid)id∈I and B sends it to the digital signature chal-
lenger and the challenger returns signatures of messages (id, βid) for id ∈ I. A outputs C∗, y∗, and
σ∗ = (h, del.π, barg.π0, barg.π1). Upon the output by A, B computes instances (xi

j)j∈[2ℓ] and extracts the

proof at level i− 1 as barg.π1
i−1 = BARG.Extract(barg.td1i , (x

i
j)j∈[2ℓ], barg.π

1
i) for all i ∈ {2, . . . , ℓ}. B extracts

witness (b′, σ′, ρ′) using BARG.Extract(barg.td11, (x
1
j)j∈[2ℓ], barg.π

1
1). B then outputs the extracted signature

25

σ′, the message which includes the corresponding index id and the bit b for 1 ≤ ri ≤ ℓ and (1 − b) for
ℓ+ 1 ≤ ri ≤ 2ℓ.
B’s advantage of outputting a forgery and attacking the digital signature challenger is at least AdvA

3d·K ·(2ℓ)K .

Since ℓ represents the maximum number of input bits of circuit class C and d represents the maximum depth
of C, we assume without loss of generality that ℓ ≤ 2d. Since B has at most negl′(λ′) advantage against the
digital signature challenger, AdvA

3d·K ·(2ℓ)K ≤ negl′(λ′), which implies that AdvA ≤ negl(λ).

Combining the above lemmas, we conclude that our design satisfies adaptive unforgeability.

Theorem 4.20 (Theorem 3.1 of [PP22]). Assume the existence of a T (·)-secure non-interactive batch
argument for the index language, a T (·)-secure somewhere extractable hash with additive overhead α(λ, ℓ) =
ℓ
λ + poly(λ), a T (·)-secure non-interactive delegation scheme for RAM, then there exists a T (·)-secure non-
interactive batch argument for the index language with unbounded witness length and with additive overhead
σ(λ,m) = 3m

λ + poly(λ).

Corollary 4.21. Assuming either sub-exponential LWE, k-LIN over pairing groups, or DDH, there exists a
multi-hop homomorphic signature scheme.

Proof. By Theorem 4.20 and the previous designs of RAM Delegation and Batch Arguments, there exists
a rate-1 somewhere extractable batch argument from the above assumptions. Thus by Lemma 4.3 and
Theorem 4.5, our corollary follows.

4.4 Further Optimization

Fast verification. As mentioned in the technical overview on can consider the verification with pre-
processing where the verifier algorithm is split to a PreVerify and an OnlineVerify such that the pre-verification
computes a short digest of the large input C and the fast online verification algorithm only takes the short
digest as input and verifies the signature. This implies an online verification algorithm that only grow with
the depth of the computation instead of the entire size of the computation, namely online verifier grow with
poly(λ, d,K). More on how offline and online verification works can be found in Appendix A.6 where we
show how to make our construction of single-hop homomorphic signature to be context hiding by taking
advantage of the fast verification.

Remark 4.22. The verification first transforms C that is the circuit associated with the root of G ∈ C to
a monotone circuit C̃y and then verifies the statement. Thus the online verification would require a digest
of the statements where the circuit C is transformed to a monotone one. However, our monotone circuit
transformation C̃y = T (C, y) takes the output C(m) = y as input. Hence this seems to cause an issue because
the input m (and hence the output y) is not available when one is digesting C in the offline/pre-verification.

We observe that one can get around this issue by taking advantage of the structure of transformation T .
Namely, the transformation from C to Cy using output y, only affects the last layer of Cy. Moreover, the

transformation from Cy to a monotone circuit C̃y works layer by layer (transforms each layer independently).

Therefore, the offline verification can compute a partial digest of C̃y and let the online verification compute
the complementary digest given a short partial circuit (i.e. the last layer of Cy) which would be a fast
operation.

More general computation. In our construction we assume the graph G is a tree, which already covers
a large class of computation especially because circuit Cv can be any general circuit, namely it can copy
its inputs. However, one might wonder about a more general case in which G is a DAG. More specifically,
consider a real world scenario that a user homomorphically evaluates a signature σ for some b and several
other users later on want to compute signatures σi for bi using b as their input. Moreover, another user
wants to compute a signature σ∗ on some b∗ that is computed over bi values as input. In this case the tree
representation on G leads to large (even exponential if it happen in several hops) on the size of C. Hence,
by considering G to be a DAG one can capture more real world application.

26

While at a first glance this seems to be a more convoluted task as one have to prove the consistency
of the reused wires across different users, we observe out that our construction indeed captures this more
general problem if we consider that every intermediate circuit is also a labelled circuit. This is due to the
fact that our proof is based on a guessing strategy and an induction over the layers (depth/hops), hence one
does not need to explicitly enforce the consistency of such values across the structured circuit. For ease of
exposition, we provide our construction where the computation graph is viewed as a tree.

5 Towards Context Hiding Homomorphic Signatures

The efficiency, completeness, and unforgeability definition of multi-hop homomorphic signature with context
hiding is exactly the same as the general multi-hop homomorphic signature scheme. Hence below we only
definethe context hiding property.

Definition 5.1 (Context Hiding). A multi-hop homomorphic signature scheme satisfies context-hiding if
there exist a stateful PPT simulator S such that for every stateful PPT attacker A, there exists a negligible
function negl(·) such that for all λ, ℓ, d, sC ∈ N, the following holds:

Pr

A(σb) = b ∧
C ∈ Cℓ,d,sC ∧
∀ v ∈ Vi : Cv ∈ Cℓ,d,sC ∧
Verify(pk0, y, σ0,C) = 1 ∧
Verify(pk1, y, σ1,C) = 1

:

(pk0, sk0)← Setup(1λ, 1K , ℓ, d, sC)
(pk1, sk1)← S(1λ, 1K , ℓ, d, sC), b← {0, 1}
((bi, σi,Ci)i∈[ℓ], C)← ASign(skb,·,·)(pkb)
σ0 ← Eval(pkb, t, (bi, σi,Ci)i∈[ℓ], C)
σ1 ← S(t, (Ci)i∈[ℓ], C)
y = C((bi)i∈[ℓ])

 ≤
1

2
+ negl(λ).

where C is the composition of (Ci)i∈[ℓ] and C.

Construction. In addition to the notations and parameters described in Construction 4.2, we let NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) be a rate-1 NIZK and PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a PKE
system. We present our construction of multi-hop homomorphic signature with context hiding as follows:

Setup(1λ, 1K , ℓ, d, sC)→ (pk, sk). The setup algorithm is identical to the setup algorithm of the design with-
out context hiding in Construction 4.2, except that it samples pke.pk ← PKE.Gen(1λ

′
) and include

pke.pk in every pki, and for every i ∈ [K]:

1. samples a NIZK CRS as (nizk.crsi, nizk.tdi)← NIZK.Setup(1λ
′
) for language L2

i (Fig. 5),

2. includes each nizk.crsi as part of verification key pki,

3. sets hash value as himp
i = del.Digest(hk, (barg.crs0i , barg.crs

1
i , (pkj)j∈[t−1], pke.pk, nizk.crsi)), and

4. slightly modifies the description of RAM machine Ri.

Sign(sk, id, b)→ σ. Same in Construction 4.2.

Eval(pk, t, (bi, σi,Ci)i∈[ℓ], C)→ σ. The evaluation algorithm is the same as Eval in Section 4, except for
Items 7 and 8 where the evaluator additionally generates and compute the RAM proof for the NIZK
verification as follows:

7. It samples randomness r, encrypts h as cth = PKE.Enc(pke.pk, h; r), and computes a NIZK proof

• nizk.π ← NIZK.Prove(nizk.crst, (barg.crs
0
t , barg.crs

1
t , pke.pk, y, cth,C), (barg.π

0, barg.π1, r, h)).

Then, it generates a RAM delegation proof

• del.π ← Del.Prove(del.crst, (nizk.π, y, cth,C), (barg.crs
0
t , barg.crs

1
t , (pkj)j∈[t−1], pke.pk, nizk.crst)).

8. It outputs signature σ as (cth, del.π, nizk.π).

27

Verify(pk, y, σ,C)→ {0, 1}. The verification algorithm is similar to Construction 4.2, except that the RAM
delegation verifier takes as input nizk.π, cth instead of barg.π0, barg.π1, h. It outputs

del.Verify(del.crst, h
imp
t , (nizk.π, y, cth,C), del.π).

Language L2
i

Hardwired: barg.crs0i , barg.crs
1
i , (pkj)j∈[i−1], pke.pk

Instance: x = (y, cth,C).

Witness: ω = (barg.π0, barg.π1, r, h).

Membership: ω is a valid witness for x ∈ L2
i if all of the following are satisfied:

1. PKE.Enc(pke.pk, r, h) = cth.

2. BARG.Verify(barg.crs0i , (xj)j∈{2ℓ+1,...,N}, barg.π
0) = 1,

3. BARG.Verify(barg.crs1i , (xj)j∈[2ℓ], barg.π
1) = 1.

where (xj)j∈[N] is defined as follows — Decompose C to its children (Cj)j∈[ℓ] and a circuit C, and Set

C̃y as C̃y = T (C, y) following from Fig. 1. Then,

• For j ∈ [ℓ], let xj = (j, h,Cj), and xj+ℓ = (j + ℓ, h,Cj).

• For j ∈ {2ℓ+ 1, . . . , N}, let xj = (j, h, C̃y).

Figure 5: Description of language L2
i .

RAM Machine Ri

Explicit Input: nizk.π, y, cth,C.

Implicit Input: barg.crs0i , barg.crs
1
i , (pkj)j∈[i−1], pke.pk, nizk.crsi.

Output: If NIZK.Verify(nizk.crsi, (y, cth,C), nizk.π) = 1, then Ri accepts. Otherwise, it rejects.

Figure 6: Description of RAM Machine Ri.

Completeness. The completeness of our scheme directly follows from the completeness of public key
encryption scheme PKE, NIZK scheme NIZK, public key signature scheme Sig, somewhere extractable batch
argument BARG, RAM delegation Del, and the monotone circuit transformation.

Efficiency. The only difference between this design and the design of Section 4 is that we replace some
inputs of RAM Machine Ri with a NIZK proof nizk.π. Since the NIZK we applied is of rate-1, we conclude
that the efficiency of the above design satisfies the requirement as it directly follows from the proof of
Lemma 4.3.

Unforgeability. The proof of unforgeability is a direct extension of the one described in Section 4, except
we need additional hybrids to rely on NIZK extractability. We provide it formally below.

28

Theorem 5.2. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, NIZK satisfies sub-exponential argument of knowledge, Del satisfies sub-exponential soundness,
digital signature Sig satisfies sub-exponential unforgeability, and H satisfies sub-exponentially secure collision-
resistance property, then our construction satisfies adaptive unforgeability.

Proof. We first define Hybrid (j0, j1), over which we will later present an inductive proof. Note that the
following is defined 2ℓ+ 1 ≤ j0, j1 ≤ N .

Hybrid (j0, j1)

1. Challenger first sets hash key hk ← H.Setup(1λ
′
) and generates single-hop homomorphic signature key

(vk0, sk0)← Sig.Setup(1λ
′
).

2. For all i ∈ {1, . . . ,K}\{t}, it generates (barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N−2ℓ, (N−2ℓ,N−2ℓ)).

It generates (barg.crs0t , barg.td
0
t) ← BARG.Setup(1λ

′
, N − 2ℓ, (j0 − 2ℓ, j1 − 2ℓ)). Next for all i ∈

{1, . . . ,K}, it sets (barg.crs1i , barg.td
1
i)← BARG.Setup(1λ

′
, 2ℓ, 1), (nizk.crsi, nizk.tdi)← NIZK.Setup(1λ

′
),

del.crsi ← Del.Setup(1λ
′
, T), and himp

i = Del.Digest(hk, (barg.crs0i , barg.crs
1
i)).

3. For all i ∈ [K], challenger sets pki = (barg.crs0i , barg.crs
1
i , nizk.crsi, pke.pk, del.crsi, h

imp
i , hk). Challenger

outputs pk = (pk0, . . . , pkK), sk = sk0.

4. The attacker A outputs a sequence of messages (βid)id∈I . For all id ∈ I, the challenger computes and
outputs σid ← Sig.Sign(sk, (id, βid)).

5. The attacker A outputs C with indexes (idi)i∈[M], and σ∗. Let y be the actual output of the structured
circuits C taking (βidi)i∈[M] as input. Then A wins if and only if it holds that Verify(vk, y∗, σ∗,C) = 1
and y∗ ̸= y.

Let root denote the root node of G (G is the structure of C). Let (Cj)j∈[ℓ] be the decomposed circuit

C. Set circuit C̃y∗ as the monotone circuit of circuit Croot (C̃y∗ follows Fig. 1). Let b∗j be the output of

Cj , and let b∗j+ℓ be 1 − b∗j . Let (b∗2ℓ+1, . . . , b
∗
N) be the value of the internal wires of circuit C̃y∗ taking

(b∗1, . . . , b
∗
2ℓ) as input. Parse the signature by A as σ∗ = (h, del.π, barg.π0, barg.π1). Set circuit C̃y∗ as the

monotone circuit of circuit Croot (using Fig. 1). Let (b∗2ℓ+1, . . . , b
∗
N) be the value of the internal wires of

circuit C̃y∗ taking (b∗1, . . . , b
∗
2ℓ) as input. Parse the signature by A as σ∗ = (cth, del.π, nizk.π). Next for

j ∈ [ℓ], set xj = (j, h,C) and xj+ℓ = (j + ℓ, h,C). For j ∈ {2ℓ + 1, . . . , N}, set xj as (j, h, C̃y∗). Let
the output of NIZK.E(nizk.tdt, (barg.crs0i , barg.crs1i , pke.pk, y∗, cth,C), nizk.π) be (barg.π0, barg.π1, r, h). Let
(ωj0 , ωj1) be BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0). Parse ωjb as (b, b0, b1, ρ, ρ0, ρ1) and set bjb as

b. For adversary A in Hybrid (j0, j1), let Adv
j0,j1,b
A denote the following:

Advj0,j1,bA = Pr
hybj0,j1

[Verify(vk, y∗, σ∗,C) = 1 ∧ bjb > b∗jb].

We note that Hybrid (N,N) corresponds to the original unforgeability game for multi-hop homomorphic
signature scheme. We denote A’s winning advantage such hybrid as AdvA:

AdvA = Pr
hybN,N

[Verify(vk, y∗, σ∗,C) = 1 ∧ y∗ ̸= y].

We also note that t is set as the current hop that A is attacking.

Lemma 5.3. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, NIZK satisfies sub-exponentially secure argument of knowledge, Del satisfies sub-exponential
soundness, and H satisfies sub-exponentially secure collision-resistance property. Assume that there exists a
PPT adversary A, a non-negligible function ϵ(·) such that AdvN,N,0

A ≥ ϵ(λ) for some λ ∈ N. Then within

the second level of circuit C̃y∗ (the first level are input wires), there exists some internal wire indexed at j∗

such that 3d−2 · Advj
∗,j∗,0

A ≥ AdvN,N,0
A .

29

Proof. We show the following: For any node indexed at j on level i (i > 1), if there exists a non-negligible
function ϵ(·) such that Advj,j,0A ≥ ϵ(λ), then there exists at least one node jα on level i − 1, such that

3 · Advjα,jα,0
A ≥ Advj,j,0A . The above implies our lemma by a simple induction. To prove it, consider these

claims:

Claim 5.4. Assume that the somewhere extractable BARG BARG satisfies sub-exponentially secure index

hiding, then for any PPT adversary A, there exists a strongly negligible function negl′(·) such that Advj,j
′,0

A ≥
Advj,j,0A − negl′(λ′) for all λ′ ∈ N.

Proof. Omitted as it is nearly identical to the proof of Claim 4.7.

Claim 5.5. Assume that the RAM delegation scheme Del satisfies sub-exponential soundness, then for any
polynomial time adversary A in Hybrid (j, j′), there exists a strongly negligible function negl′(·) such that
for all λ′ ∈ N,

Pr
hybj,j′

 Verify(pk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ NIZK.Verify(nizk.crst, (barg.crs

0
t , barg.crs

1
t , pke.pk, y, cth,C), nizk.π) = 1

 ≥ Advj,j,0A − negl′(λ′).

Proof. Omitted by proof of Claim 4.8.

Claim 5.6. Assume that the NIZK scheme NIZK satisfies sub-exponential secure argument of knowledge,
then for any polynomial time adversary A in Hybrid (j, j′), there exists a strongly negligible function negl′(·′)
such that for all λ′ ∈ N,

Pr
hybj,j′

Verify(pk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ NIZK.Verify(nizk.crst, (barg.crs

0
t , barg.crs

1
t , pke.pk, y, cth,C), nizk.π) = 1

∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 1

 ≥ Advj,j,0A − negl′(λ′).

Proof. Assume towards contradiction that with probability larger than ϵ(λ, 2d·K) where ϵ(·, ·) is non-negligible,
BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) = 0 and NIZK.Verify(nizk.crst, (barg.crs
0
t , barg.crs

1
t , pke.pk, y, cth,C),

nizk.π) = 1.
There exists a reduction algorithm B that breaks the argument of knowledge property of NIZK scheme

NIZK. B sets hk ← H.Setup(1λ
′
) and (sk0, vk0) ← Sig.Setup(1λ

′
). For all i ∈ {1, . . . ,K} \ {t}, B generates

(barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N −2ℓ, (N −2ℓ,N −2ℓ)) and (nizk.crsi, nizk.tdi)← NIZK.Setup(1λ

′
).

B generates (barg.crs0t , barg.td
0
t)← BARG.Setup(1λ

′
, N − 2ℓ, (j− 2ℓ, j′− 2ℓ)). B queries the NIZK challenger

with language L2
t and the challenger replies with nizk.crst. For all i ∈ {1, . . . ,K}, B generates barg.crs1i ←

BARG.Setup(1λ
′
, 2ℓ, 1), del.crsi ← Del.Setup(1λ

′
, T), himp

i = Del.Digest(hk, (nizk.crsi, pke.pk, barg.crs
0
i , barg.crs

1
i)),

and sets pki as (barg.crs
0
i , barg.crs

1
i , nizk.crsi, del.crsi, h

imp
i , hk). B outputs pk as (pk0, . . . , pkK) and sk as sk0.

Attacker A outputs (βid)id∈I and receives the signatures (σid)id∈I from the signature. A then outputs C, y∗.
Next, A outputs σ∗ as (cth, del.π, nizk.π). B outputs nizk.π.

By the contradictory assumption, BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 0 and thus the ex-

tracted witness is not a valid witness for L2
t . Then B breaks the sub-exponentially secure argument of

knowledge property of NIZK. Our claim holds by the above reduction with Claim 5.5.

Claim 5.7. Assume that the seBARG BARG is sub-exponentially secure somewhere argument of knowledge,
then for any PPT adversary A in Hybrid (j, j′) where (ωj , ωj′) = BARG.Extract(barg.td0t , (x

0
i)i∈{2ℓ+1,...,N},

barg.π0), there exists a strongly negligible function negl′(·) such that for all λ′ ∈ N,

Pr
hybj,j′

Verify(pk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ NIZK.Verify(nizk.crst, (barg.crs

0
t , barg.crs

1
t , pke.pk, y, cth,C), nizk.π) = 1

∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 1

∧ ωj , ωj′ are valid witnesses for L0
t

 ≥ Advj,j,0A − negl′(λ′).

30

Proof. Omitted by proof of Claim 4.9.

Claim 5.8. Assume that the Hash Tree H satisfies sub-exponentially secure collision-resistance property,
then for α ∈ {0, 1} and PPT adversary A in Hybrid (j, jα), there exists a strongly negligible function negl′(·)
such that for all λ′ ∈ N,

Pr
hybj,jα

Verify(pk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ NIZK.Verify(nizk.crst, (barg.crs

0
t , barg.crs

1
t , pke.pk, y, cth,C), nizk.π) = 1

∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 1

∧ ωj , ωjα are valid witnesses for L0
t

∧ bjα = bα

 ≥ Advj,j,0A − negl′(λ′).

Proof. Omitted by proof of Claim 4.10.

Claim 5.9. For any PPT adversary A, there exists a strongly-negligible function negl′(·) and some α ∈ {0, 1}
such that for all λ′ ∈ N,

Pr
hybj,jα

Verify(pk, y∗, σ∗,C) = 1
∧ bj > b∗j
∧ NIZK.Verify(nizk.crst, (barg.crs

0
t , barg.crs

1
t , pke.pk, y, cth,C), nizk.π) = 1

∧ BARG.Verify(barg.crs0t , (xi)i∈{2ℓ+1,...,N}, barg.π
0) = 1

∧ ωj , ωjα are valid witnesses for L0
t

∧ bjα = bα
∧ bjα > b∗jα

≥

Advj,j,0A − negl′(λ′)

2
.

Proof. Omitted by proof of Claim 4.11.

Claim 5.10. For any PPT adversaryA, if there exists a non-negligible function ϵ(·) such that Advj,j,0A ≥ ϵ(λ),
then there exists some α ∈ {0, 1}, such that

Advjα,jα,0
A ≥

Advj,j,0A
3

.

Proof. Omitted by proof of Claim 4.12.

Our lemma follows from a induction using Claim 5.10.

Next, we switch to Hybrid (j∗, j∗α) for 2ℓ+1 ≤ j∗ ≤ N and 1 ≤ j∗α ≤ 2ℓ. In Hybrid (j∗, j∗α), j
∗ represents

an internal wire at the second level of C̃y∗ , while j∗α denotes the index of an input wire at the bottom level.
This input wire is one of the two that connect to the gate producing the j∗-th wire. The hybrid is exactly
the same as Hybrid (j∗, j∗), except for the third item:

Hybrid (j∗, j∗α)

3. For all i ∈ {1, . . . ,K}\{t}, it generates (barg.crs0i , barg.td
0
i)← BARG.Setup(1λ

′
, N−2ℓ, (N−2ℓ,N−2ℓ))

and (barg.crs1i , barg.td
1
i)← BARG.Setup(1λ

′
, 2ℓ, 1). It sets (barg.crs0t , barg.td

0
t)← BARG.Setup(1λ

′
, N −

2ℓ, (j∗, j∗)) and (barg.crs1t , barg.td
1
t) ← BARG.Setup(1λ

′
, 2ℓ, j∗α). Then for all i ∈ [K], challenger sets

(nizk.crsi, nizk.tdi)← NIZK.Setup(1λ
′
), del.crsi ← Del.Setup(1λ

′
, T), himp

i = H.Hash(hk, (nizk.crsi, pke.pk,
barg.crs0i , barg.crs

1
i)).

Let (ω∗
j , ·) be BARG.Extract(barg.td0t , (xi)i∈{2ℓ+1,...,N}, barg.π

0) and parse ω∗
j as (bj∗ , . . .). Also, let ωj∗α

be

BARG.Extract(barg.td1t , (xi)i∈{1,...,2ℓ}, barg.π
1) where ωj∗α

= (σ, bj∗α , ρj∗α).

31

Lemma 5.11. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, NIZK satisfies sub-exponentially secure argument of knowledge, Del satisfies sub-exponential
soundness, and H satisfies sub-exponentially secure collision-resistance property. Assume that there exists a

PPT adversary A such that Advj
∗,j∗,0

A ≥ ϵ(λ) for any λ ∈ N where ϵ(·) is some non-negligible function, and

for wire j∗ at the second level of circuit C̃y∗ (the bottom internal wires excluding input wires), then there
exists some input wire at j∗α such that

Pr
hybj∗,j∗α

 Verify(vk, y∗, σ∗,C) = 1
∧ ωj∗α

is a valid witness for L1
t

∧ bj∗α > b∗j∗α

 ≥ Advj
∗,j∗,0

A
3

.

Proof. We omit the proof here as the proof proceeds identically to the proof of Lemma 4.13, except that we
rely on the argument of knowledge property of NIZK, as what we did in Claim 5.6.

Lemma 5.12. Assume that BARG satisfies sub-exponentially secure index hiding and somewhere argument
of knowledge, NIZK satisfies sub-exponentially secure argument of knowledge, Del satisfies sub-exponential
soundness, and H satisfies sub-exponentially secure collision-resistance property. Assume that there exists
an PPT adversary A and a non-negligible function ϵ(·) such that AdvA ≥ ϵ(λ). There exists some internal
wire indexed at j∗ at the second level of circuit C̃y∗ , such that the following holds:

Advj
∗,j∗,0

A ≥ AdvA
3d−1

.

Proof. Omitted by proof of Lemma 4.18.

Combining Lemma 5.11 and Lemma 5.12, we conclude: for any PPT adversary A that breaks the
unforgeability of our scheme with advantage AdvA ≥ ϵ(λ) at the t-th hop, there exists a reduction algorithm
that breaks the unforgeability of the signature scheme at the (t− 1)-th hop with advantage greater than or
equal to AdvA

3d
(the proof is omitted here by proof of Lemma 4.19). With a simple induction, AdvA ≥ ϵ(λ)

implies a polynomial time reduction algorithm which breaks the unforgeability of sig with advantage at least
AdvA
3d·K

, which is not “strongly negligible” in λ′. We conclude that our theorem follows.

Context Hiding. Finally, we prove context hiding of our construction. Formally, we show the following.

Theorem 5.13. Assume that NIZK satisfies zero knowledge property and PKE satisfies semantic security
then our construction satisfies context hiding.

Proof. We first define our simulated evaluator S as the following: S first sets up (pk, sk) following the
algorithm Setup(1λ

′
, 1K , Cℓ), except that nizk.crsi is set using NIZK.S(1λ

′
) for all i ∈ [K]. To generate

simulated signatures, S takes as input (t, (bi, σi)i∈[ℓ],C). It computes σ following from evaluator Eval step
by step except for the following: At step 1, it sets hash value as all-zeros string 0. It skips step 2. For step 3
and 4, it only generates instance xi for i ∈ [N]. Next, it skips step 5. Then, at step 7, the simulator instead
sets

cth = PKE.Enc(pke.pk, 0, r)

and generates
nizk.π ← NIZK.S(barg.crs0i , barg.crs1i , pke.pk, y, cth,C).

To prove that the simulator satisfies context-hiding, we consider the following hybrids experiments:

Hybrid 0 It is the actual context-hiding experiment by definition.

1. The challenger tosses a coin b ∈ {0, 1}. For b = 0, the challenger sets up (pk, sk)← Setup(1λ
′
, 1K , Cℓ).

2. For b = 1, the challenger sets up (pk, sk) following the algorithm Setup(1λ
′
, 1K , Cℓ), except that it sets

nizk.crsi using NIZK.S(1λ
′
) for all i ∈ [K].

32

3. The attacker A outputs (t, (bi, σi,Ci)i∈[ℓ], C).

4. For b = 0, the challenger computes

σ ← Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C).

5. For b = 1, the challenger computes σ following from Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C) step by step, except for
step 7. At step 7, the challenger instead sets

cth = PKE.Enc(pke.pk, 0, r)

and generates
nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

It sets σ accordingly.

6. Challenger outputs σ. A outputs b′ and wins if and only if b′ = b.

Hybrid 1 Instead of setting NIZK CRS using the actual setup algorithm, challenger sets NIZK CRS using
simulator in hybrid 1.

1. The challenger tosses a coin b ∈ {0, 1}. For b = 0, the challenger sets up (pk, sk) following the algorithm
Setup(1λ

′
, 1K , Cℓ), except that it sets nizk.crsi using NIZK.S(1λ

′
) for all i ∈ [K].

4. For b = 0, the challenger computes σ following from Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C) step by step, except for
step 7. At step 7, the challenger instead generates

nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

The challenger sets σ accordingly.

Hybrid 2 Instead of encrypting hash value h, the challenger encrypts an all-zero string.

4. For b = 0, the challenger computes σ following from Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C) step by step, except for
step 7. At step 7, the challenger instead sets

cth = PKE.Enc(pke.pk, 0, r)

and generates
nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

It sets σ accordingly.

Denote A’s advantage in hybrid j as AdvjA.

Lemma 5.14. Assume that NIZK satisfies zero-knowledge, then for any PPT adversary A, there exists a
negligible function negl(·) such that |Adv0A − Adv1A| ≤ negl(λ′) for all λ′ ∈ N.

Proof. We set internal hybrid (0, i∗) for 0 ≤ i∗ ≤ K, the hybrid is exactly the same as hybrid 0 and hybrid
1, except for step 1, 4:

33

Hybrid (0, i∗)

1. The challenger tosses a coin b ∈ {0, 1}. For b = 0, the challenger sets up (pk, sk) following the algorithm
Setup(1λ

′
, 1K , Cℓ), except that it sets nizk.crsi using NIZK.S(1λ

′
) for all i ∈ [i∗].

4. For b = 0 and t > i∗, the challenger computes σ ← Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C). For b = 0 and t ≤ i∗,
the challenger sets σ using Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C) step by step, except for step 7. At step 7, the
challenger instead generates

nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

The challenger sets σ accordingly.

We note that hybrid (0, 0) is exactly the same as hybrid 0 and hybrid (0,K) is equivalent to hybrid 1. To

prove the lemma, we simply prove that |Adv0,i
∗

A − Adv0,i
∗+1

A | ≤ negl(λ′) using a reduction algorithm B that
breaks the zero-knowledge property of NIZK.
B samples b ∈ {0, 1}. If b = 0, B sets up (pk, sk) following the algorithm Setup(1λ

′
, 1K , Cℓ), except that

it sets nizk.crsi using NIZK.S(1λ
′
) for all i ∈ [i∗]. B sends L2

i∗+1 to the zero-knowledge challenger, and B
sets the challenger’s output as nizk.crsi∗+1. If b = 1, B also sets (pk, sk) using algorithm Setup(1λ

′
, 1K , Cℓ),

except nizk.crsi ← NIZK.S(1λ
′
) for all i ∈ [K]. A outputs t, (bi, σi,Ci)i∈[ℓ], C.

Next if b = 0, B proceeds as the challenger of hybrid (1, i∗) and (1, i∗ + 1) in step 4: For t > i∗ + 1, B
computes σ ← Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C). For t < i∗ +1, B computes σ using Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C),
except for step 7, where B instead generates

nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

Otherwise for t = i∗ + 1, B queries the NIZK challenger using barg.crs0t , barg.crs
1
t , pke.pk, y, cth,C and the

challenger outputs nizk.π. B then sets σ accordingly.
Otherwise if b = 1, B simply proceeds as the challenger of step 5. B sends the signature σ to A and A

responses with b′. B outputs 1 if b = b′ and 0 otherwise.

Assume towards contradiction that |Adv0,i
∗

A − Adv0,i
∗+1

A | ≥ ϵ(λ′) for some non-negligible function ϵ(·).
B then breaks the zero-knowledge property of the underlying NIZK with non-negligible advantage. Thus

|Adv0,i
∗

A − Adv0,i
∗+1

A | ≤ negl(λ′), which implies that |Adv0A − Adv1A| ≤ negl(λ′).

Lemma 5.15. Assume that PKE satisfies semantic-security, then for any PPT adversary A, there exists a
negligible function negl(·) such that |Adv1A − Adv2A| ≤ negl(λ′) for all λ′ ∈ N.

Proof. We prove the lemma using a reduction algorithm B that breaks the semantic security of PKE.
B samples b ∈ {0, 1}. For either b = 0 or b = 1, B sets up (pk, sk) following thee algorithm Setup(1λ

′
, 1K , Cℓ),

except that it sets nizk.crsi using NIZK.S(1λ
′
,L2

i) for all i ∈ [K]. A outputs t, (bi, σi,Ci)i∈[ℓ], C.
Next if b = 0, B computes σ using Eval(vk, t, (bi, σi,Ci)i∈[ℓ], C), except for step 7. At step 7, B queries

PKE challenger using hash value h and all zero string 0, and the challenger responses with cth. B then
generates

nizk.π ← NIZK.S(barg.crs0t , barg.crs1t , pke.pk, y, cth,C).

Otherwise if b = 1, B simply proceeds as the challenger of step 5.
We note that if the challenger outputs encryption of h, the above experiment corresponds to hybrid 1, and

if challenger encrypts 0, it corresponds to hybrid 2. Assuming towards contradiction that |Adv1A − Adv2A| ≥
ϵ(λ′) for some non-negligible function ϵ(·), B breaks the semantic security PKE.

In Hybrid 2, any adversary A has at most 1/2 winning advantage, which implies |Adv0A−1/2| ≤ negl(λ′).
We conclude that our simulator satisfies context hiding.

34

Corollary 5.16. Assuming sub-exponential LWE, there exists a multi-hop homomorphic signature scheme
satisfying context hiding.

Proof. [GGI+15] proposed a design of rate-1 NIZK of argument of knowledge using homomoprhic encryption
scheme which is only known to be built from the learning with error assumption. [DGKV22] proposed a design
of rate-1 somewhere extractable BARGs from learning with error. Thus by Theorem 5.2 and Theorem 5.13,
our corollary follows.

6 Extending to Multi-Key Homomorphism

Structured circuit C. We use similar structured circuits as in Section 4 except that we additionally
require any circuit Cv with nin inputs such that v is a leaf in graph G is associated with (vki)i∈[nin].

Definition. Here we define multi-hop multi-key homomorphic signature scheme by describing what changes
compared to the single-key setting.

Syntax. The syntax is similar to that of Section 4.1 except that there is an additional KeyGen algorithm
as follows:

KeyGen(1λ)→ (vk, sk). The key generation algorithm takes as input security parameter λ, and outputs
verification/secret key (vk, sk).

Definition 6.1 (Multi-Hop Multi-Key Homomorphic Signature). A multi-hop multi-key homomorphic sig-
nature scheme MKHSig = (Setup,KeyGen,Sign,Eval,Verify) is required to satisfy the following properties:

Completeness. The completeness is defined similar to Definition 4.1 except that we require every verifi-
cation key vk in any structured circuit Ci for i ∈ [ℓ′] is honestly generated.

Efficiency. The efficiency is defined similar to Definition 4.1.

Adaptive Unforgeability. A multi-hop homomorphic signature scheme satisfies unforgeability if for ev-
ery admissible stateful PPT attacker A, there exists a negligible function negl(·) such that for all
λ, ℓ, d, sC ∈ N, the following holds:

Pr

y∗ ̸= y
∧ Verify(vk, y∗, σ∗,C∗) = 1

:

pk← Setup(1λ, 1K , ℓ, d, sC)
J ← A(pk)
∀îd ∈ J , (skîd, vkîd)← KeyGen(1λ)
(I, (bid∗)id∗∈I)← A((vkîd)îd∈J)

∀id∗ = (îd, id) ∈ I, σid∗ ← Sign(skîd, id, bi)
(J ′)← A((σid∗)id∗∈I),J ′ ⊆ J ,
(C∗, y∗, σ∗)← A((skîd)îd∈J ′)

≤ negl(λ),

where y is the actual output of the structured circuit C∗ given (bid∗)id∗∈I and A is admissible if for

every label vkîd in the structured circuit C∗ it holds that îd /∈ J ′.

Note. We remark that in the above security experiment, we consider a slightly simplified experiment
where the attacker indicates all keys it wants to corrupt at once. However, one could consider more
general attackers which make signature queries as well as signing key corruption queries adaptively
in an arbitrarily interleaved order. Our construction is secure under such a more general security
experiment as well, but for simplicity, we consider all corruptions happen at once.

35

Construction. We slightly modify L1
i as follows — If i = 1 then it parses x = (j, vk, id, h) and to run

the signature verification it uses vk instead of pk0. Now since L1
i is slightly modified, we let nbp,1,1 =

log 2ℓ+ 2λ+ |vk|.

Setup(1λ, 1K , ℓ, d, sC)→ pk. Similar to that of Construction 4.2, except that it doesn’t sample the (sk′, vk′).

KeyGen(1λ)→ (vk, sk). It simply samples a signing-verification key pair as (sk, vk)← Sig.Setup(1λ
′
).

Sign(sk, id, b)→ σ. Similar to that of Construction 4.2.

Eval(pk, t, (bi, σi,Ci)i∈[ℓ], C)→ σ. Similar to that of Construction 4.2, except that in Item 1 if Ci is empty
then in addition to (idi)i∈[ℓ] it finds (vki)i∈[ℓ] in the labelled circuit C, and in Item 3 if Ci is empty for
i ∈ [ℓ] it lets xi = (i, vki, idi, h) and xi+ℓ = (i+ ℓ, vki, idi, h)

Verify(pk, y, σ,C)→ {0, 1}. If C is empty then the verification outputs whatever Sig.Verify(pk, (id, y), σ) out-
puts, otherwise it is similar to the verifier in Construction 4.2.

Remark 6.2 (Multi-hop multi-key homomorphic signature with context hiding). Similarly our construction
of multi-hop homomorphic signature with context hiding (see Section 5) extends to the multi-key setting
with a few minor modifications.

Theorem 6.3. If BARG is a sub-exponentially secure seBARG, Del is a sub-exponentially secure delegation
scheme, Sig is a sub-exponentially secure digital signature scheme, and H is a sub-exponentially secure hash
tree, then the above construction is a multi-hop multi-key-homomorphic signature scheme.

Corollary 6.4. Assuming sub-exponential security of either LWE, k-LIN over pairing groups, or DDH, there
exists a multi-hop multi-key homomorphic signature scheme.

Proof of Theorem 6.3. The completeness and efficiency proof are similar to that of Construction 4.2. For
Adaptive unforgeability, recall that the proof of Construction 4.2 follows an inductive approach by propa-
gating A’s advantage in forging a homomorphically evaluated signature to a forgery on a digital signature
at the bottom level. The proof of the multi-key setting is very similar except that the reduction algorithm
has to additionally simulate the corruption queries for A. Hence we let the reduction algorithm guess a îd
and then simulate the experiment for the adversary as follows — for the guesses îd the reduction algorithm
queries the digital signature scheme for the verification key, and it generates the rest of the verification keys
itself. Our reduction algorithm succeeds only if the guessing from root to leaf leads to a forgery on vkîd hence
there is a 1/|J | loss in the security of the scheme. The rest of the proof is similar to that of Construction
4.2.

Acknowledgements. We thank Gaspard Anthoine, David Balbás, and Dario Fiore for helpful discussions
regarding [ABF24], and helping us understand the current state of art in multi-key homomorphic signatures.

References

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-based integrity for network coding.
In Applied Cryptography and Network Security: 7th International Conference, ACNS 2009,
Paris-Rocquencourt, France, June 2-5, 2009. Proceedings 7, pages 292–305. Springer, 2009.

[ABBF10] Shweta Agrawal, Dan Boneh, Xavier Boyen, and David Mandell Freeman. Preventing pollution
attacks in multi-source network coding. In Public Key Cryptography–PKC 2010: 13th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Paris, France, May
26-28, 2010. Proceedings 13, pages 161–176. Springer, 2010.

36

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Pe-
terson, and Dawn Song. Provable data possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and communications security, pages 598–609, 2007.

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent Wa-
ters. Computing on authenticated data. In Theory of Cryptography: 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings 9, pages 1–20.
Springer, 2012.

[ABF24] Gaspard Anthoine, David Balbás, and Dario Fiore. Fully-succinct multi-key homomorphic
signatures from standard assumptions. In Annual International Cryptology Conference, pages
317–351. Springer, 2024.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 99–108, 1996.

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomorphic
identification protocols. In Advances in Cryptology–ASIACRYPT 2009: 15th International
Conference on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings 15, pages 319–333. Springer, 2009.

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures in the
standard model. In Public Key Cryptography–PKC 2011: 14th International Conference on
Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceed-
ings 14, pages 17–34. Springer, 2011.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption from lwe
and pairings in the standard model. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part I 18, pages 149–178.
Springer, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and lwe.
In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Pro-
ceedings, Part I 39, pages 13–43. Springer, 2020.

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth.
Snargs for monotone policy batch np. In Annual International Cryptology Conference, pages
252–283. Springer, 2023.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Annual international
cryptology conference, pages 41–55. Springer, 2004.

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell WF Lai. Chainable functional com-
mitments for unbounded-depth circuits. In Theory of Cryptography Conference, pages 363–393.
Springer, 2023.

[BCJP24] Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth. Monotone-policy
aggregate signatures. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 168–195. Springer, 2024.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In Advances in Cryptology–EUROCRYPT 2011: 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings 30, pages 149–168. Springer, 2011.

37

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In International Workshop on Public Key Cryptog-
raphy, pages 1–16. Springer, 2011.

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace:
Signature schemes for network coding. In Public Key Cryptography–PKC 2009: 12th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA,
March 18-20, 2009. Proceedings 12, pages 68–87. Springer, 2009.

[BFS14] Xavier Boyen, Xiong Fan, and Elaine Shi. Adaptively secure fully homomorphic signatures
based on lattices. Cryptology ePrint Archive, 2014.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Advances in Cryptology—EUROCRYPT 2003: International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May
4–8, 2003 Proceedings 22, pages 416–432. Springer, 2003.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36,
2014.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Kalai. Non-interactive delegation and batch np
verification from standard computational assumptions. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 474–482, 2017.

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan.
Batch proofs are statistically hiding. Cryptology ePrint Archive, 2023.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. SIAM Journal on computing, 43(2):831–871, 2014.

[BWW23] Eli Bradley, Brent Waters, and David J Wu. Batch arguments to nizks from one-way functions.
Cryptology ePrint Archive, 2023.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
336–352. Springer, 2013.

[CFT22] Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments
and applications to homomorphic signatures. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 159–188. Springer, 2022.

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in
the standard model. In Public Key Cryptography–PKC 2012: 15th International Conference
on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012.
Proceedings 15, pages 680–696. Springer, 2012.

[CG24] Jiaqi Cheng and Rishab Goyal. Boosting snarks and rate-1 barrier in arguments of knowledge.
Unpublished manuscript (personal communication), 2024.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Corre-
lation intractability and snargs from sub-exponential ddh. In Annual International Cryptology
Conference, pages 635–668. Springer, 2023.

[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities
in succinct arguments: Black-box extraction and more. In Nadia El Mrabet, Luca De Feo, and
Sylvain Duquesne, editors, AFRICACRYPT 23: 14th International Conference on Cryptology
in Africa, volume 14064 of Lecture Notes in Computer Science, pages 465–489, July 2023.

38

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
np from standard assumptions. In Annual International Cryptology Conference, pages 394–423.
Springer, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for P from lwe. Cryptology
ePrint Archive, Paper 2021/808, 2021. https://eprint.iacr.org/2021/808.

[CW23] Jeffrey Champion and David J Wu. Non-interactive zero-knowledge from non-interactive batch
arguments. In Annual International Cryptology Conference, pages 38–71. Springer, 2023.

[DCB24] Trisha Datta, Binyi Chen, and Dan Boneh. Veritas: Verifying image transformations at scale.
Cryptology ePrint Archive, 2024.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive
arguments for batch-NP and applications. In 63rd Annual Symposium on Foundations of Com-
puter Science, pages 1057–1068. IEEE Computer Society Press, October / November 2022.

[DH76a] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In AFIPS National
Computer Conference, pages 109–112, 1976.

[DH76b] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.

[DVW09] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness ampli-
fication. In Theory of Cryptography: 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings 6, pages 109–127. Springer, 2009.

[EKK18] Ali El Kaafarani and Shuichi Katsumata. Attribute-based signatures for unbounded circuits
in the rom and efficient instantiations from lattices. In Public-Key Cryptography–PKC 2018:
21st IACR International Conference on Practice and Theory of Public-Key Cryptography, Rio
de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II 21, pages 89–119. Springer, 2018.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic
authenticators. In International conference on the theory and application of cryptology and
information security, pages 499–530. Springer, 2016.

[FP18] Dario Fiore and Elena Pagnin. Matrioska: a compiler for multi-key homomorphic signatures.
In International Conference on Security and Cryptography for Networks, pages 43–62. Springer,
2018.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In Public Key Cryptography–PKC 2012: 15th International Conference on Practice
and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings
15, pages 697–714. Springer, 2012.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam Smith. Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. Journal of
Cryptology, 28(4):820–843, 2015.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010: 30th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30,
pages 465–482. Springer, 2010.

39

https://eprint.iacr.org/2021/808

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A position paper. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Con-
ference, Part I, volume 9562 of Lecture Notes in Computer Science, pages 505–522, January
2016.

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding
over the integers. In Public Key Cryptography–PKC 2010: 13th International Conference on
Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings
13, pages 142–160. Springer, 2010.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: inter-
active proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

[Goy24] Rishab Goyal. Mutable batch arguments and applications. Cryptology ePrint Archive, Paper
2024/737, 2024. https://eprint.iacr.org/2024/737.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In CCS ’06, 2006.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and trace with ci-
phertext size from standard assumptions. In Annual International Cryptology Conference, pages
826–855. Springer, 2019.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, pages 75–92. Springer, 2013.

[GU24] Romain Gay and Bogdan Ursu. On instantiating unleveled fully-homomorphic signatures from
falsifiable assumptions. In IACR International Conference on Public-Key Cryptography, pages
74–104. Springer, 2024.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 469–477, 2015.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broadcast and
trace from positional witness encryption. In IACR International Workshop on Public Key
Cryptography, pages 3–33. Springer, 2019.

[GW11a] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 99–108, 2011.

[GW11b] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium
on Theory of Computing, pages 99–108. ACM Press, June 2011.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, pages
301–320. Springer, 2013.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. Snargs for p from
sub-exponential ddh and qr. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 520–549. Springer, 2022.

40

https://eprint.iacr.org/2024/737

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over f p,
dlin, and prgs in nc 0. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 670–699. Springer, 2022.

[JMSW02] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic signature
schemes. In Cryptographers’ track at the RSA conference, pages 244–262. Springer, 2002.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing, pages 723–732, 1992.

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs and ppad hardness
from the decisional diffie-hellman assumption. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 470–498. Springer, 2023.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch argu-
ments and ram delegation. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pages 1545–1552, 2023.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
1115–1124, 2019.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical
soundness, post-quantum security, and snargs. In Theory of Cryptography Conference, pages
330–368. Springer, 2021.

[LRY16] Benôıt Libert, Somindu C Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In 43rd
International Colloquium on Automata, Languages and Programming (ICALP 2016), 2016.

[LTWC18] Russell WF Lai, Raymond KH Tai, Harry WH Wong, and Sherman SM Chow. Multi-key
homomorphic signatures unforgeable under insider corruption. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 465–492. Springer,
2018.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in
Computer Science, pages 369–378. Springer, Heidelberg, August 1988.

[Mic94] S. Micali. Cs proofs. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 436–453, 1994.

[MPR11] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In
Cryptographers’ track at the RSA conference, pages 376–392. Springer, 2011.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Annual International Cryptology
Conference, pages 96–109. Springer, 2003.

[NWW23] Shafik Nassar, Brent Waters, and David J Wu. Monotone policy bargs from bargs and additively
homomorphic encryption. Cryptology ePrint Archive, 2023.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 33–43, 1989.

41

[PHGR16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. Communications of the ACM, 59(2):103–112, 2016.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch argu-
ments. In 63rd Annual Symposium on Foundations of Computer Science, pages 1045–1056.
IEEE Computer Society Press, October / November 2022.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th
annual ACM symposium on Theory of computing, 2005.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Pro-
ceedings of the twenty-second annual ACM symposium on Theory of computing, pages 387–394,
1990.

[RRR16] Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive proofs for
delegating computation. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 49–62, 2016.

[SFVA21] Somayeh Dolatnezhad Samarin, Dario Fiore, Daniele Venturi, and Morteza Amini. A compiler
for multi-key homomorphic signatures for turing machines. Theoretical Computer Science,
889:145–170, 2021.

[SW13] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of cryptology,
26(3):442–483, 2013.

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and homomorphic signa-
tures, and new constructions for both. In Theory of Cryptography Conference, pages 489–518.
Springer, 2017.

[Vad06] Salil P Vadhan. An unconditional study of computational zero knowledge. SIAM Journal on
Computing, 36(4):1160–1214, 2006.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Theory of Cryptography: Fifth Theory of Cryptography Conference, TCC 2008,
New York, USA, March 19-21, 2008. Proceedings 5, pages 1–18. Springer, 2008.

[WW22] Brent Waters and David J Wu. Batch arguments for np and more from standard bilinear group
assumptions. In Annual International Cryptology Conference, pages 433–463. Springer, 2022.

[WW24] Hoeteck Wee and David J Wu. Succinct functional commitments for circuits from k-lin. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 280–310. Springer, 2024.

A Single-Hop Homomorphic Signatures For General Circuits

In this section, we construct single-hop homomorphic signatures from standard assumptions, i.e., LWE, k-LIN
over pairing groups for any constant k ∈ N, and sub-exponential DDH over pairing-free groups.

42

A.1 Overview

At a high level, our idea is to rely on the template provided by Goyal [Goy24], and find an alternate
proof strategy. By alternate, we mean that we no longer need to rely on even somewhere extractability,
leave aside full extractability. At first, it might appear that the need for full extractability could be a
fundamental bottleneck. However, Nasser et al. [NWW23] recently came across a similar issue, which is
how to use monotone SNARGs to prove security of an advanced signature scheme without relying on full
extraction. They observed that by employing all-but-one (ABO) signatures [GVW19], the extraction issue
can be bypassed.

All-but-one signatures, and why they aren’t enough? Let us briefly summarize the notion of ABO
signatures. These allow sampling the verification key in a “punctured” mode, where for any particular
message m∗, the punctured setup generates a punctured key vk{m∗} such that there does not exist any
signature for m∗ that gets validated, as well as vk{m∗} just looks like a regular non-punctured key vk.
Now by plugging in ABO signatures at the input layer of monotone SNARGs, we can rely on the non-
adaptive soundness of monotone SNARGs to argue unforgeability as now we can puncture every message
bit complementary to the data m. That is, we would like to puncture (1,m1 ⊕ 1), . . . , (k,mk ⊕ 1). If we
could puncture all these k messages, then there cannot exist a valid witness for the forgery circuit-output
pair (C∗, y∗).

A straightforward adaptation of the above idea requires all-but-k (ABk) puncturable signatures, since
for any message bit mi, we need to puncture (i,mi ⊕ 1). Unfortunately, this primitive is not so easy to
design. A common trick to generically build ABk from ABO signatures will be to sample k different ABO
keys, and to sign a message, we sign it under all k keys. To puncture all k messages, we can puncture
each message from just one key. While this seems like an easy fix, it is not good enough. The issue is
that the signature size grows with k, and this breaks the succinctness of the evaluated signature. With
such an ABk signature, each original signature is of size k and this will be used as a single witness in the
monotone SNARGs. We could consider using BARGs to aggregate all the signatures to make them shorter,
but note that we need a statistical guarantee and any standard compression technique would turn this into a
computational guarantee which will not be enough. Namely, the verification should reject all signatures for
those k messages. Therefore, a cryptographic way of aggregation that only provides computational security
is not enough.

One-time ABO signatures are enough! While we fail to generically build this object with short sig-
natures, we make a rather interesting observation about our homomorphic signatures. In our homomorphic
signatures, for any index i, there are just two possible messages that could be signed – either (i, 0) or (i, 1).
Basically, a signature for a dataset m only contains k signatures out of 2k signatures corresponding to mes-
sages (1, 0), (1, 1), (2, 0), . . . and so on. Thus, we do not need a general ABk signature, and really just need
a much weaker signature scheme.

Basically, our observation is that an ABO signature for single-bit messages is enough! And, for this special
case, ABO signatures are far more easier than general ABO signatures for multi-bit messages. Consider a
simple construction based on Lamport’s one-time signature. Let G be a length-doubling PRG. We can design
an ABO signature for single-bit messages using just the PRG G. Consider the secret key to be two random
strings, i.e. sk = (x0, x1), and verification key to be its PRG evaluations, i.e. vk = (G(x0), G(x1)). Here xb

serves as a signature for bit b, and to create a verification key punctured for bit b∗, we replace G(xb∗) with
a random value. Technically, this approach introduces a statistical puncturing error, but it can be avoided
by using a perfectly binding commitment instead of a PRG. An added advantage of our approach is that
we can instantiate this from any injective PRG; unlike ABO signatures [GVW19], which were known from
assumptions such as LWE and k-LIN over pairings, but not yet from DDH. For completeness, we sketch this
ABO signature in Appendix A.3.

Getting back to our design, our plan is to use a separate single-bit ABO signature for each index of the
dataset. Unfortunately, this way the joint verification key of the signature scheme would be large as it would
contain k different verification keys for single-bit ABO signature scheme. However, this is not an issue because

43

the verification algorithm at each input wire of the monotone circuit only runs verification for a single ABO
signature scheme. Technically, the evaluated signature verification, which is a monotone SNARG verifier
still requires reading all the verification keys which might not be efficient, but using simple online/offline-
verification techniques [CJJ21b], we can avoid this cost. That is, by hashing the verification keys and
generating proofs w.r.t. the hashed values, we can use the online/offline-verification techniques [CJJ21b]
from seBARGs to build a verification process that run in poly(log k, |vki|). Basically, we can create a short
digest of all k verification keys during setup, and include the digest of verification keys as part of the new
verification key. This way, only the evaluators needs to read the entire verification key which contains k
ABO verification keys, but the verifier only needs the digest of the verification keys.

Our single-hop homomorphic signature scheme. By combining all the above ideas we construct
single-hop homomorphic signatures as follows: (1) the signing algorithm is a single-bit ABO signature that
signs mi using ski to get σi, and (2) the evaluation algorithm computes a monotone SNARG proof for
the statements (1, . . . , 2k), the witnesses (σ1, . . . , σk, σ1, . . . , σk), a monotone circuit C̃y(m

′,m′ ⊕ 1k) :=

1(C(m′) = y), where C̃y has y = C(m) hard-coded, and the NP relation:

R := 1((i ≤ k ∧ σi is a valid signature for 1) ∨ (i > k ∧ σi is a valid signature for 0)).

For completeness note that if C(m) = y then C̃y(m,m ⊕ 1k) = 1, mi = R(xi, wi) for i ≤ k and mi ⊕ 1 =
R(xi, wi) for i > k. For soundness, we first puncture the i-th ABO verification key at mi ⊕ 1. Now if
C̃y(b1, . . . , b2k) = 0 (where bi = R(xi, wi)) and the evaluated signature verifies, then there is some index i
s.t. either R(xi, wi) > mi and i ≤ k, or R(xi, wi) > mi−k ⊕ 1 and i > k. This only happens if i ≤ k (resp.
i > k) and wi is a valid signature for 1 (resp.0) while mi = 0 (resp. mi−k = 1), which contradicts with the
puncturing property. Note that the monotonization process from general to monotone circuits leads to same
depth and only a factor of two overhead on the circuit size. Thus, for succinctness, the evaluated signature
size is just a monotone SNARG proof, thus it is poly(λ, log |C|). We provide the full construction and proof
in Appendix A.

A.2 SNARGs for Monotone-Policy BatchNP

We will first define the monotone-policy batchNP language LMP-CSAT and then define SNARGs for this
language (monotone-policy BARGs).

Definition A.1 (Monotone Policy BatchNP). A Boolean circuit C̃ : {0, 1}k → {0, 1} is a monotone Boolean
policy if C̃ is a Boolean circuit comprised entirely of AND and OR gates. Let R : {0, 1}n × {0, 1}h → {0, 1}
be a Boolean relation and C̃ : {0, 1}k → {0, 1} be a monotone Boolean policy. Define the monotone policy
BatchNP language LMP-CSAT to be:

LMP-CSAT =

{
(R, C̃, x1, · · · , xk) :

x1, · · · , xk ∈ {0, 1}n,∃w1, · · · , wk ∈ {0, 1}h :

C̃(R(x1, w1), · · · ,R(xk, wk)) = 1

}
.

Syntax. A SNARG for monotone-policy batchNP (monotone-policy BARG) scheme BARG for language
LMP-CSAT consists of the following polynomial time algorithms:

Gen(1λ, 1n, 1sR , 1sC̃)→ crs. The setup algorithm takes as input the security parameter λ, the instance size
n, the bound on the relation (circuit) size 1sR , and a bound on the monotone circuit 1sC̃ , and outputs
a crs crs.

Prove(crs,R, C̃, (x1, · · · , xk), (w1, · · · , wk))→ π. The prover algorithm takes as input a crs, an NP rela-
tion R, a monotone circuit C̃, a sequence of statements (x1, · · · , xk), and a sequence of witnesses
(w1, · · · , wk), and it outputs a proof π.

44

Verify(crs,R, C̃, (x1, · · · , xk), π)→ 0/1. The verification algorithm takes as input a crs, an NP relation R, a
monotone circuit C̃, a sequence of statements (x1, · · · , xk), and a proof π. It outputs a bit to signal
whether the proof is valid or not.

Definition A.2 (SNARGs for Monotone-Policy BatchNP). A monotone-policy batch argument BARG =
(BARG.Gen,BARG.Prove,BARG.Verify) for LMP-CSAT is required to satisfy the following properties:

Completeness. For all λ, n, sR, sC̃ ∈ N, all Boolean relations R : {0, 1}n × {0, 1}h → {0, 1} of size

at most sR, all monotone Boolean circuits C̃ : {0, 1}k → {0, 1} of size at most sC̃ , all statements

x1, · · · , xk ∈ {0, 1}n and witnesses w1, · · · , wk ∈ {0, 1}h where C̃(R(x1, w1), · · · , (xk, wk)) = 1, it
holds that

Pr

[
Verify(crs,R, C̃, (x1, · · · , xk), π) = 1 :

crs← Gen(1λ, 1n, 1sR , 1sC̃) :

π ← Prove(crs,R, C̃, (x1, · · · , xk), (w1, · · · , wk))

]
= 1.

Succinctness. There exists a fixed polynomial poly(·) s.t. for all λ, n, sR, sC̃ ∈ N, all crs in the support of
Gen(1λ, 1n, 1sR , 1sC̃), all Boolean relations R{0, 1}n×{0, 1}h → {0, 1} of size at most sR, all monotone
Boolean circuits C̃ : {0, 1}k → {0, 1} of size at most sC̃ , the proof π output by Prove(crs,R, C̃, ·, ·)
satisfies π ≤ poly(λ, sR, log |C̃|).

Non-adaptive soundness. For any adversary A, define the non-adaptive soundness game as follows:

1. Given the security parameter 1λ,A outputs 1n, 1sR , 1sC̃ , R of size at most sR, C̃ of size at most
sC̃ , and statements x1, · · · , xk ∈ {0, 1}n.

2. The challenger sends A a sampled crs← Gen(1λ, 1n, 1sR , 1sC̃).

3. A outputs a proof π.

4. The output of the game is b = 1 if Verify(crs,R, C̃, (x1, · · · , xk), π) = 1 and (R, C̃, x1, · · · , xk) /∈
LMP-CSAT.

We say that a monotone-policy BARG is non-adaptively sound if for every efficient adversary A, there
exists a negligible function negl(·) s.t. Pr[b = 1] ≤ negl(λ) in the non-adaptive soundness game above.

Theorem A.3 ([NWW23]). Assuming either LWE, k-LIN over pairing groups for any constant k ∈ N,
or sub-exponential DDH over pairing-free groups, there exists monotone-policy BARGs for any polynomial
depth monotone circuit C̃, where |crs| = poly(λ), and |π| = poly(λ, sR, log sC̃).

A.3 All-But-One Signatures for Single-Bit Messages

A.3.1 Definition

Syntax. A puncturable (or all-but-one) signature (PSig) consists of the following polynomial time algo-
rithms:

Setup(1λ)→ (sk, vk). The probabilistic setup algorithm takes as input a security parameter λ and outputs
a tuple of signing and verification keys (sk, vk).

Setup-Punc(1λ,m∗)→ (sk, vk). The probabilistic punctured setup algorithm takes as input a security pa-
rameter λ and a punctured message m∗, and outputs a tuple of signing and punctured verification keys
(sk, vk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk, an a message m, and outputs a
signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, a message m, and a
signature σ. It outputs a bit to signal whether the signature is valid or not.

45

Definition A.4 (Puncturable (or All-but-one) Signature). A puncturable (or All-but-one) signature PSig =
(Setup,Setup-Punc,Sign,Verify) is required to satisfy the following properties:

Completeness. For all λ ∈ N and m ∈ {0, 1}λ it holds that:

Pr[Verify(vk,m, σ) = 1 : (sk, vk)← Setup(1λ), σ ← Sign(sk,m)] = 1.

Punctured correctness. For all λ ∈ N and m∗ ∈ {0, 1}λ and σ∗ ∈ {0, 1}∗ it holds that:

Pr[Verify(vk,m∗, σ∗) = 1 : (sk, vk)← Setup-Punc(1λ,m∗)] = 0.

Verification Key Indistinguishability. For any adversary A, any bit b ∈ {0, 1}, define the verification
key indistinguishability experiment Expvk-ind,A(λ, b) as follows:

1. Given the security parameter λ, A sends m∗ ∈ {0, 1}λ to the challenger.

2. The Challenger samples (sk0, vk0) ← Setup(1λ) and (sk1, vk1) ← (1λ,m∗) and sends vkb to the
adversary.

3. The adversary can make signing queries m ∈ {0, 1}λ/{m∗} and receive σ ← Sign(skb,m).

4. The adversary outputs a bit b′ ∈ {0, 1} which is the output of the experiment.

A puncturable signature construction satisfies verification key indistinguishability if for every λ ∈ N,
and any efficient adversary A, there exists a negligible function negl(·) s.t.

|Pr[Expvk-ind,A(λ, 0) = 1]− Pr[Expvk-ind,A(λ, 1) = 1]| ≤ negl(λ).

Theorem A.5 ([GVW19]). Assuming LWE or k-LIN over pairing groups for any constant k ∈ N, there exists
all-but-one signatures.

Theorem A.6 (Theorem A.9). Assuming injective PRGs there exists all-but-one signatures for single-bit
messages.

Definition A.7 (ABO signature for single-bit messages). An all-but-one (ABO) signature for single-bit
messages is defined the same as Definition A.4 except that the message space is a single-bit. Note that the
the signing algorithm is deterministic, thus w.l.o.g. we can consider that in the security game the adversary
is allowed to make a single signing query before generating a forgery.

A.3.2 Construction

Construction A.8 (Single-Bit Puncturable Signatures). Let G : {0, 1}λ → {0, 1}2λ be an injective PRG.
We construct a single-bit puncturable signature PSig = (Setup,Setup-Punc,Sign,Verify) as follows:

Setup(1λ)→ (vk, sk). It samples x1, x2 ← {0, 1}λ, computes vk0 = G(x0) and vk1 = G(x1), and lets sk =
(x0, x1) and vk = (vk0, vk1).

Setup-Punc(1λ, b∗)→ (vk, sk). It samples x1, x2 ← {0, 1}λ, computes G(x0) and G(x1), and lets sk = (x0, x1)
and vk = (vk0, vk1) where vkb = G(xb) if b = 1− b∗ and vkb ← {0, 1}2λ otherwise.

Sign(sk, b)→ σ. It parses sk = (sk0, sk1) and outputs skb.

Verify(vk, b, σ)→ 0/1. It parses vk = (vk0, vk1) and outputs 1 if G(σ) = vkb and 0 otherwise.

Theorem A.9. Assuming injective PRGs, the Construction A.8 is a puncturable signatures for single-bit
messages.

Proof. Correctness of Setup. Follows directly from the construction correctness of the PRG.

46

Correctness of Punctured Setup. For a punctured message b∗, G(σ) = vkb∗ for any σ can only happen
if the randomly sampled vkb∗ is in the span on G(x) which happens with probability 2λ/22λ = 2−λ.

Verification Keys indistinguishability. The verification keys indistinguishability follows directly from
the indistinguishability of the optput of the PRG from a random value.

Remark A.10. In the above approach if we replace the injective PRG with a perfectly binding commitment,
the statisitical error of the 2−λ goes away and we get perfect correctness of punctured setup.

Corollary A.11. Assuming either LWE, DLIN, or DDH, single-bit puncturable signatures exist.

A.4 Definition

In what follows we recall the definition of a single-hop homomorphic signature.

Syntax. A single-hop homomorphic signature Sig consists of the following polynomial time algorithms:

Setup(1λ, 1k, 1sC)→ (pk, sk). This is a probabilistic setup algorithm that takes as input a security parameter
1λ in unary, a dataset size 1k, and a max circuit size sC . It outputs a public (verification and evaluation)
key pk along with a signing key sk.

Sign(sk, i,mi)→ σi. This is a probabilistic signing algorithm that takes as input a signing key sk, a dataset
index i, and a single-bit message mi. It outputs a signature σi.

Eval(pk, (mi, σi)i∈[k], C)→ σ. This is an evaluation algorithm that takes as input a public key pk, a dataset-
signatures tuple (mi, σi)i∈[k], and an evaluation circuit C. It outputs a signature σ of the evaluated
message.

Verify(pk, y, σ, C)→ 0/1. This is a verification algorithm that takes as input a public key pk, a message
y (either an original message y = (i,mi) or an evaluated message y), and an evaluation circuit C
(potentially C = ∅ in case y = (i,mi)). It outputs a single bit 1 (accept) or 0 (reject).

Definition A.12 (Single-Hop Homomorphic Signature). A single-hop homomorphic signature scheme HSig =
(Setup,Sign,Eval,Verify) is required to satisfy the following properties:

Correctness. For all λ, k, sC ∈ N, all dataset m ∈ {0, 1}k, it holds that

Pr

[
Verify(pk, (i,mi), σ, ∅) = 1 :

(pk, sk)← Setup(1λ, 1k, 1sC)
σ ← Sign(sk, i,mi)

]
= 1

and for all polynomial size circuits C : {0, 1}k → {0, 1}, it holds that:

Pr

Verify(pk, C(m), σ, C) = 1 :
(pk, sk)← Setup(1λ, 1k, 1sC)
∀i ∈ [k], σi ← Sign(sk, i,mi)
σ ← Eval(pk, (mi, σi)i∈[k], C)

 = 1

Succinctness. There exists a fixed polynomial poly(·) s.t. for all λ, k, sC ∈ N, all dataset m ∈ {0, 1}k,
and all polynomial size circuits C : {0, 1}k → {0, 1}p(λ) (for some polynomial p(·)) of size at most sC
and depth dC , any (pk, sk)← Setup(1λ, 1k, 1sC) and signatures σi ← Sign(sk, i,mi) for i ∈ [k], it holds
that the evaluated signature σ ← Eval(pk, (mi, σi)i∈[k], C) has size at most poly(λ, log k, log sC , dC).

Selective Unforgeability. For any adversary A define the selective unforgeability experiment ExpSU,A(λ)
as follows:

47

• Given the security parameter λ, A outputs the size of dataset 1k, the circuit bound sC , the dataset
m ∈ {0, 1}k, and a forgery target (C∗, y∗).

• The challenger samples (pk, sk)← Setup(1λ, 1k, 1sC).

• The challenger outputs pk and signatures (σ1, . . . , σk) where σi = Sign(sk, i,mi).

• A outputs a forgery σ∗.

• The output of the experiment is 1 if Verify(pk, y∗, σ∗, C∗) = 1 and either (1) C∗(m) ̸= y∗, or (2)
C∗ = ∅ and y∗ = (i,mi ⊕ 1), otherwise the output is 0.

A construction satisfies selective security if for any efficient adversary A, there exists a negligible
function negl(·) s.t. for any λ ∈ N it holds that Pr[ExpSU,A(λ) = 1] ≤ negl(λ).

The below context hiding property additionally requires a simulator S.

Definition A.13 (Context Hiding). A single-hop homomorphic signature scheme satisfies context-hiding if
there exist a stateful PPT simulator S such that for every stateful PPT attacker A, there exists a negligible
function negl(·) such that for all λ, k, sC ∈ N, the following holds:

Pr

 A(σb) = b ∧ |C| = sC ∧
Verify(pkb, C(m), σ0, C) = 1

:

b← {0, 1}, (pk0, sk0)← Setup(1λ, 1k, 1sC)
(pk1, sk1)← S(1λ, 1k, 1sC)
((mi, σi)i∈[k], C)← ASign(skb,·,·)(pkb)
σ0 ← Eval(pkb, (mi, σi)i∈[k], C)
σ1 ← S(C(m), C)

 ≤ 1

2
+ negl(λ).

A.5 Construction

Below we describe our construction of Single-Hop Homomorphic Signatures.

Construction A.14. [Single-Hop Homomorphic Signatures for General Computation Circuits] Let PSig =
(PSig.Setup,PSig.Setup-Punc,PSig.Sign,PSig.Verify) be an all-but-one signature scheme for single-bit mes-
sages and BARG = (BARG.Gen,BARG.Prove,BARG.Verify) be a monotone-policy BARG scheme. We con-
struct a single-hop homomorphic signature for general computation circuits HSig = (Setup,Sign,Eval,Verify)
as follows:

Setup(1λ, 1k, 1sC)→ (pk, sk). It samples (skPSig,i, vkPSig,i) ← PSig.Setup(1λ) for i ∈ [k], and crsBARG ←
BARG.Gen(1λ, 1log 2k, 1sR , 1

sC̃y) (where sC̃y
is from Remark 3.17, and sR is the size of the circuit for

the relation in Item 3.) and lets sk = (skPSig,i)i∈[k], pk = ((vkPSig,i)i∈[k], crsBARG).

Sign(sk, i,mi)→ σi. It parses sk = (skPSig,j)j∈[k] and then it computes the signature σi ← PSig.Sign(skPSig,i,mi).

Eval(pk, (mi, σi)i∈[k], C)→ σ. This poly-time algorithm does the following:

1. Parse pk = ((vkPSig,i)i∈[k], crsBARG).

2. Let y = C(m) and construct monotone circuit C̃y = T (C, y) using Fig. 1.

3. Compute πBARG ← BARG.Prove(crsBARG,R, C̃y, (xi)i∈[2k], (wi)i∈[2k]) where

• For i ∈ [k], xi = (i, vkPSig,i) and wi = σi.

• For i ∈ [k + 1, 2k], xi = (i, vkPSig,i−k) and wi = σi−k.

for the NP relation R, where (x,w) ∈ R and x = (i, x′) if one of the following holds:

• i ∈ [k], and PSig.Verify(x′, 1, w) = 1, or

• i ∈ [k + 1, 2k], and PSig.Verify(x′, 0, w) = 1.

4. Output σ = πBARG.

48

Verify(pk, y, σ, C)→ 0/1. Parse pk = ((vkPSig,i)i∈[k], crsBARG), if C = ∅, parse y = (i,mi) and run 0/1 ←
PSig.Verify(vkPSig,i,mi, σ), otherwise construct C̃y = T (C, y) (using Fig. 1), and then run the BARG

verification 0/1← BARG.Verify(crsBARG,R, C̃y, (xi)i∈[2k], σ) (where xi and R are defined in Item 3).

Theorem A.15 (Correctness.). If BARG is complete PSig is correct, then the homomorphic signature from
construction A.14 is complete.

Proof. Let σi ← PSig(skPSig,i,mi) for i ∈ [k]. For any message y, signature σ, and circuit C, if C = ∅,
then the correctness follows directly from the correctness of PSig. Otherwise, if y = C(m) then by the
construction in Fig. 1 it holds that C̃y(m,m ⊕ 1k) = 1. Note that for any i ∈ [k] such that mi = 1
it holds that PSig.Verify(vkPSig,i, 1, σi) = 1 and for any i ∈ [k + 1, 2k] such that mi ⊕ 1 = 1 it holds that

PSig.Verify(vkPSig,i−k, 0, σi−k) = 1 both by the correctness of PSig. Hence it holds that C̃y((R(xi, wi))i∈[2k]) =

1. Therefore, by the completeness of BARG it holds that BARG.Verify(crsBARG,R, C̃y, (xi)i∈[2k], σ) = 1.

Theorem A.16 (Succinctness.). If BARG is succinct, then the homomorphic signature from construction
A.14 satisfies |σ| ≤ poly(λ, log |C|).

Proof. The evaluated signature is just a BARG proof and since the relation R is just a regular signature
verification, hence sR = poly(λ), therefore |σ| = |πBARG| = poly(λ, log |C̃|)

Theorem A.17 (Selective Unforgeability.). If BARG is non-adaptively sound and PSig satisfied punctured
correctness, then the homomorphic signature from construction A.14 is selectively unforgeable.

Proof. Consider adversary A that breaks the unforgeability of the construction A.14. First, we construct
the following hybrids:

• hybi. For i ∈ {0, . . . , k} we define hybi as follows:

– Given the security parameter λ, A outputs the size of dataset 1k, the circuit bound sC , the dataset
of messages (m1, . . . ,mk), and a forgery target (C∗, y∗).

– The challenger runs the setup as described in the construction except that it uses (skPSig,j , vkPSig,j)←
PSig.Setup-Punc(1λ, (mj ⊕ 1)) to generate (skPSig,j , vkPSig,j) for j ∈ [i].

– The challenger outputs pk and signatures (σ1, . . . , σk) where σi = PSig.Sign(skPSig,i,mi).

– A outputs a forgery σ∗.

– The output of the experiment is 1 if Verify(pk, y∗, σ∗, C∗) = 1 and either (1) C∗(m) ̸= y∗, or (2)
C∗ = ∅ and y∗ = (i,mi ⊕ 1), otherwise the output is 0.

Note that hyb0 is the original experiment and in hybk it holds that (skPSig,j , vkPSig,j)j∈[k] is generated using

PSig.Setup-Punc(1λ,mj). Let hybi(A) denote the output of the experiment in hybrid hybi when run on
adversary A. We want to prove that for any computationally bounded adversary A, (1) the outputs of any
two hybrids hybi−1 and hybi for i ∈ [k] are indistinguishable, and (2) the output of hybrid hybk is 0 with all
but negligible probability.

Lemma A.18. If PSig satisfies key-indistinguishability, then there exists a negligible function negl(·) such
that:

|Pr[hybi−1(A) = 1]− Pr[hybi(A) = 1]| ≤ negl(λ).

Proof. Suppose towards the contradiction that |Pr[hybi−1(A) = 1]− Pr[hybi(A) = 1]| ≥ ϵ(λ) for some non-
negligible function ϵ(·). We construct adversary Bvk-ind against the key indistinguishability of the puncturable
signature as follows:

1. Run adversary A and receive (sC , 1
k,m1, . . . ,mk, C

∗, y∗).

2. Send (mi ⊕ 1) to the challenger and receive vkPSig,i.

49

3. Send the signing query mi to the challenger and receive σi.

4. Sample (skPSig,j , vkPSig,j) ← PSig.Setup-Punc(1λ,mj ⊕ 1) for j ∈ [i − 1] and (skPSig,j , vkPSig,j) ←
PSig.Setup(1λ) for j ∈ [i+ 1, k].

5. Compute σj ← PSig.Sign(skPSig,j ,mj) for j ∈ [k]/i.

6. Sample crsBARG according to the setup algorithm.

7. Send pk = ((vkPSig,i)i∈[k], crsBARG) and the set of signatures (σ1, . . . , σk) to A.

8. Receive forgery σ∗ from A.

9. Output 1 if Verify(pk, y∗, σ∗, C∗) = 1 and either (1) C∗(m1, . . . ,mk) ̸= y∗, or (2) C∗ = ∅ and y∗ =
(i,mi ⊕ 1), otherwise output 0.

Note that Bvk-ind perfectly simulates

• hybrid hybi−1 if the challenger uses (skPSig,i, vkPSig,i)← PSig.Setup(1λ), or

• hybrid hybi if the challenger uses (skPSig,i, vkPSig,i)← PSig.Setup-Punc(1λ,mi ⊕ 1),

for adversary A. Thus the advantage of Bvk-ind is also ϵ(λ) which breaks the key-indistinguishability of
puncturable signature.

Lemma A.19. If BARG is non-adaptively sound and PSig is correct w.r.t. punctured keys, then there exists
a negligible function negl(·) such that:

Pr[hybk(A) = 1] ≤ negl(λ)

Proof. Suppose the forgery is of the second type, namely Verify(pk, y∗, σ∗, C∗) = 1 and C∗ = ∅ and y∗ =
(i,mi ⊕ 1). The signature verification in this case implies that PSig.Verify(vkPSig,i,mi ⊕ 1, σ∗) = 1, but
this contradicts the punctured correctness as vkPSig,i is punctured at mi ⊕ 1, and hence we should have
PSig.Verify(vkPSig,i,mi ⊕ 1, σ′) = 0 for any σ′, i.e., Pr[hybk(A) = 1] = 0.

Now suppose the forgery is of the first type, namely Verify(pk, y∗, σ∗, C∗) = 1 and C∗(m) ̸= y∗. Addi-
tionally, towards the contradiction suppose that Pr[hybk(A) = 1] ≥ ϵ(λ) for some non-negligible function
ϵ(·). We construct adversary BBARG against the non-adaptive soundness of BARG as follows:

1. Run adversary A and receive (sC , 1
k,m1, . . . ,mk, C

∗, y∗).

2. Sample (skPSig,i, vkPSig,i)← PSig.Setup-Punc(1λ,mi ⊕ 1) for i ∈ [k].

3. Construct C̃y = T (C∗, y∗) using Fig. 1.

4. Consider the NP relation R defined in Item 3 of the evaluation’s algorithm.

5. Send (1log 2k, 1sR , 1
sC̃y ,R, C̃y) to the challenger and receive crsBARG.

6. Compute the set of signatures (σ1, . . . , σk) where σi = PSig.Sign(skPSig,i,mi)

7. Let pk = ((vkPSig,i)i∈[k], crsBARG) and send it to A together with (σ1, . . . , σk).

8. Receive forgery σ∗ from A and forward it to the challenger.

50

First note that the algorithm BBARG perfectly simulates the challenger of hybk for A. Now by the assumption
A wins with probability at least ϵ which means:

Verify(pk, y∗, σ∗, C∗) = 1 ∧ C∗(m1, . . . ,mk) ̸= y∗.

Now the above statement implies that:

BARG.Verify(crsBARG,R, C̃y, (xi)i∈[2k], σ
∗) = 1

(where xi is defined in Item 3 of the evaluation’s algorithm) and

C̃y(m1, . . . ,mk,m1 ⊕ 1, . . . ,mk ⊕ 1) = 0.

Now if it holds that C̃y((R(xi, wi))i∈[2k]) = 0 then BARG.Verify(·) = 1 implies that BBARG breaks the non-

adaptive soundness of BARG. Thus since C̃y is monotone, we only need to prove that R(xi, wi) ≤ mi for
i ∈ [k] and R(xi, wi) ≤ mi ⊕ 1 for i ∈ [k + 1, 2k]. This is implied by punctured correctness of PSig since for
any σ′ it holds that PSig.Verify(vkPSig,i, 1, σ

′) = 0 if mi = 0 and PSig.Verify(vkPSig,i, 0, σ
′) = 0 if mi ⊕ 1 = 0.

Therefore BBARG has the same advantage ϵ(λ) as A in breaking the non-adaptive soundness of the BARG
scheme.

We conclude the proof by lemmas A.18 and A.19 and the hybrid argument.

Theorem A.20. The Construction A.14 is an unforgeable single-hop homomorphic signature with evaluated
signature size poly(λ, log |C|), assuming monotone-policy BARGs and all-but-one signatures for single-bit
messages.

Proof. We conclude the proof by combining Theorems A.15 to A.17.

Corollary A.21. The Construction A.14 is an unforgeable single-hop homomorphic signature with evaluated
signature size poly(λ, log |C|), assuming either LWE, k-LIN over pairing groups for any constant k ∈ N, or
sub-exponential DDH over pairing-free groups.

Proof. We conclude the proof by combining Theorems A.3, A.5 and A.20 and Corollary A.11.

A.6 Context-Hiding

Here we describe how to achieve context-hiding homomorphic signatures using NIZK and common split-
verification tricks [CJJ21b, WW22, CGJ+23, CW23]. We first describe split-verification for BARGs and
discuss the existence of seBARGs with split-verification. Then we will take the monotone-policy BARGs
construction from [NWW23] and show if the underlying seBARGs satisfies split-verification, then their
monotone-policy BARGs construction also satisfies split-verification. Finally, we show how to combine
NIZKs and monotone-policy BARGs with split-verification to get context-hiding homomorphic signatures.

Definition A.22 (Split-Verification for BARGs). We say that a BARG scheme for (x̂1, . . . , x̂k) where
x̂i = (xi, xc)

7 for i ∈ [k] satisfies split-verification if the Verify algorithm can be split into the following:

PreVerify(crs,x = (x1, . . . , xk))→ digx. A pre-verification algorithm that takes as input the crs and state-
ments x = (x1, . . . , xk), runs in poly(λ, |x|), and outputs a short digest of the statements digx of size
poly(λ, log k, |x1|).

OnlineVerify(crs,R, (digx, xc), π)→ 0/1. An online verification algorithm which takes as input the crs, the
digest of inputs digx, the common input xc, the NP relation R (as a circuit), and the proof π, runs in
poly(λ, log k, |R|), and outputs 1 (accepts) or 0 (rejects).

7We can see xc (resp. xi) as the common (resp. variable) part of statement among k instances.

51

Theorem A.23 ([CJJ21b]). Somewhere-extractable BARGs with split verification can be generically con-
structed from any somewhere-extractable BARG.

Proof Sketch. Consider statements (x̂1, . . . , x̂k) where x̂i = (xi, xc) and witnesses (w1, . . . , wk) and let BARG
be a bath argument. We construct BARG′ with split virification using BARG and a hash tree with local
openings HT. The prover first computes a hash digx of (x1, . . . , xk) and their corresponding local openings
(op1, . . . , opk). Then it computes a BARG proof π for statements (x′

i = digx, xc, i)i∈[k] and witnesses (w′ =
wi, opi, xi)i∈[k] such that w′

i is a valid witness for x′
i if opi is a valid opening of digx to xi, and wi is a valid

witness for (xi, xc). Now the pre-verification algorithm first computes digx given (x1, . . . , xk) and the online
verification given (digx, xc) and π runs the BARG verification on (x′

i)i∈[k] and π. The proof follows from the
security of HT and BARG.

Remark A.24 (Monotone-Policy BARGs with Split-Verification). Note that the prover in [NWW23] first
computes two digest values dig0 and dig1, then w.r.t. the digest values it computes a seBARG proof πBARG ←
BARG.Prove(crsBARG,Rdig0,dig1 , (x1, . . . , xk), (w1, . . . , wk)) (where Rdig0,dig1 has dig0 and dig1 hard-coded),
and lets the final proof be π = (dig0, dig1, πBARG). The verification algorithm first validates the digests dig0
and dig1, then constructs the statements xi for i ∈ [k] w.r.t. the monotone predicate, and then runs the
seBARG verification.

We can modify the construction so that after computing dig0 and dig1, the prover computes a proof
using modified statements as π′

BARG ← BARG.Prove(crsBARG,R′, (x̂1, . . . , x̂k), (w1, . . . , wk)) (where the mod-
ified statements are x̂i = (xi, dig0, dig1) and R′(dig0, dig1, ·) := Rdig0,dig1(·)) and lets the final proof to be
π = (dig0, dig1, π

′
BARG). Now if the underlying seBARG scheme has split-verification, then the monotone-

Policy BARG scheme also has split-verification. Namely, the pre-verification algorithm just constructs the
statements xi for i ∈ [k] w.r.t. the monotone predicate, and then runs the seBARG pre-verification to output
digx. The online verification algorithm first validates the digests dig0 and dig1, then it runs the seBARG on-
line verification using (digx, xc = (dig0, dig1)). The efficiency of both pre-verification and online verification
follows directly from the efficiency of the corresponding algorithm of the underlying seBARG.

Construction A.25. [Single-Hop Homomorphic Signatures for General Circuits] We will show how to up-
date the Construction A.14 to achieve context-hiding. Here we will only mention the updated parts and
avoid repeating the rest. Let BARG = (BARG.Gen,BARG.Prove,BARG.Verify) be a monotone-policy BARG
with additional (BARG.PreVerify,BARG.OnlineVerify) algorithms, PSig = (Setup,Setup-Punc,Sign,Verify) be
an all-but-one signature scheme for single-bit messages, and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
be a non-interactive zero-knowledge argument of knowledge proof system. We construct a single-hop homo-
morphic signature for general circuits HSig = (Setup,Sign,Eval,Verify) as follows:

Setup(1λ, 1k, 1sC .)→ (pk, sk). Same as in Construction A.14 except that it additionally samples a crsNIZK ←
NIZK.Setup(1λ, nNIZK)

8 and appends it to pk.

Sign(sk, i,mi)→ σi. Same as in Construction A.14.

Eval(pk, (mi, σi)i∈[k], C)→ σ. Same as in Construction A.14 except that after computing πBARG it does the
following:

1. Recompute the public info as digx ← BARG.PreVerify(crsBARG, C̃y,x = (x1, . . . , x2k)), where xi =
(i, vkPSig,i) for i ∈ [k], xi = (i, vkPSig,i−k) for i ∈ [k + 1, 2k].

2. Compute πNIZK ← NIZK.Prove(crsNIZK, (crsBARG,R, digx), πBARG) for the following relation:

• OnlineVerify(crsBARG,R, digx, πBARG) = 1.

3. Output σ = πNIZK.

8where nNIZK = |crsBARG|+ sR + |digx|

52

Verify(pk, y, σ, C)→ 0/1. It is the same as in Construction A.14 except that instead of running the BARG
verification 0/1 ← BARG.Verify(crsBARG,R, C̃y, (xi)i∈[2k], σ), it first computes the digest as follows

digx ← BARG.PreVerify(crsBARG, C̃y,x = (x1, . . . , x2k)), and then it runs the NIZK verification 0/1 ←
NIZK.Verify(crsNIZK, (crsBARG,R, digx), σ).

Theorem A.26. The Construction A.25 is a context-hiding unforgeable single-hop homomorphic signature
with evaluated signature size poly(λ, log |C|), assuming monotone-policy BARGs, all-but-one signatures for
single-bit messages, and NIZKs.

Proof. The proof is mostly similar to the proof of Theorem A.20. Namely:

Correctness. Follows directly from the construction (by combining BARG and NIZK completeness and PSig
correctness).

Succinctness. Follows from the BARG split-verification succinctness.

Selective Unforgeability. Unforgeability follows from NIZK AoK, BARG non-adaptive soundness, and
PSig punctured correctness. More specifically we first apply the following lemma and then the rest of
the proof is similar to the construction without context-hiding. Let hyb0 be the original experiment
and hybrid hyb1 be similat to hyb0 except that the crsNIZK is generated using the knowledge extractor
E , and hyb2 be similar to hyb1 except that that given an evaulated signature and the tdNIZK, and it
extracts a witness w∗ from the signature (that is a NIZK proof) and checks whether it is a valid witness
for the corresponding statement.

Lemma A.27. If NIZK satisfies argument of knowledge, then there exists a negligible function negl(·)
such that:

|Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]| ≤ negl(λ).

Proof. Follows directly from the crs indistinguishability of the knowledge extractor.

Lemma A.28. If NIZK satisfies argument of knowledge, then there exists a negligible function negl(·)
such that:

|Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]| ≤ negl(λ).

Proof. Follows directly from the knowledge extractor security.

Context-Hiding. We will construct the simulator S as follows. To generate (pk, sk), S samples the PSig
signing and verification keys analogously to the setup and uses and NIZK simulator to sample crsNIZK.
To generated a simulated evaluated signature, S just runs the NIZK simulator. Note that the statement
for NIZK proof is (crsBARG,R, digx) where crsBARG is included in the pk, R is the NP relation for the
input wires which only depends on PSig verification keys that are included in the pk, and digx only
depends on PSig verification keys and C̃y where C̃y can be constructed using C and y. Also note that
NIZK is applied on the outermost proof and we are using adaptively zero-knowledge NIZK, thus we get
an adaptively context-hiding signature. The proof is a straightforward reduction to the zero-knowledge
property of the underlying NIZK. Note that the condition that the evaluated signature is verified in
the context-hiding definition guarantees that σi is a valid signature for mi for i ∈ [k], which in return
guarantees that the NIZK statement in the reduction is indeed in the language, satisfying the required
condition for the NIZK simulator oracle.

Corollary A.29. The Construction A.25 is a context-hiding unforgeable single-hop homomorphic signature
with evaluated signature size poly(λ, log |C|), assuming either LWE, k-LIN over pairing groups for any constant
k ∈ N, or sub-exponential DDH over pairing-free groups.

Proof. We conclude the proof by combining Theorems A.3, A.5 and A.26, Corollary A.11, and Remark 3.5.

53

B Single-Hop Homomorphic Signature fromMonotone-Policy Ag-
gregate Signatures

In this section we show how to construct single-hop homomorphic signatures generically from aggregate
signatures. Let us first define aggregate signatures.

B.1 Aggregate Signatures

Syntax. Let Sig = (Gen,Sign,Verify) be a digital signature scheme with message space {0, 1}λ. A monotone-
policy aggregate signature AggSig consists of the following polynomial time algorithms:

Setup(1λ, 1k, 1sC̃)→ crs. On input a security parameter λ, the number of signers k, and a bound sC̃ on the
policy size, the setup algorithm outputs a common reference string crs.

Aggregate(crs,m, C̃, (vki, σi)i∈[k])→ σ. The Aggregate algorithm takes as input common reference string crs,

a message m{0, 1}λ, a policy circuit C̃ : {0, 1}k → {0, 1}, verifcation key/signature pairs (vki, σi), the
aggregation algorithm produces an aggregate signature σ.

AggVerify(crs,m, C̃, (vk1, . . . , vkk), σ)→ 0/1. The Verify algorithm takes as input common reference string
crs, a message m, a policy circuit C̃ : {0, 1}k → {0, 1}, a tuple of k verification keys and an aggregate
signature σ. The aggregate verification algorithm outputs a bit b ∈ {0, 1}.

Definition B.1 (Aggregate Signatures). An aggregate signature (Setup,Prove,Verify) is required to satisfy
the following properties:

Correctness. For all λ ∈ N and all m ∈ {0, 1}λ, all monotone circuits C̃ : {0, 1}k → {0, 1} and all key and
signature tuples {(i, vki, σi)}i∈[k] where C̃(Verify(vk1,m, σ1), . . . ,Verify(vkk,m, σl)) = 1 it holds that

Pr

[
AggVerify(crs,m, C̃, (vk1, . . . , vkk), σ) = 1 :

crs← Setup(1λ, 1k, 1sC̃)

σ ← Aggregate(crs,m, C̃, ((vk1, σ1), . . . , (vkk, σk))

]
= 1.

Succinctness. There exists a universal polynomial poly(·) such that for all λ, k, sC̃ ∈ N, all messages

m ∈ {0, 1}λ, all monotone circuits C̃ : {0, 1}k → {0, 1} and all pairs {(vki, σi)} where i ∈ [k], the size
of the aggregate signature σ in the correctness experiment satisfies that |σ| = poly(λ+ log |C̃|).

Static Security. For any adversary A, define the static unforgeability experiment expA(λ) as follows:

1. On input the security parameter λ, the adversary A outputs the number of parties 1k, and a
monotone policy C̃ : {0, 1}k → {0, 1}.

2. The challenger samples key paris (vki, ski) ← Gen(1λ) for all i ∈ [n] and sends vk1, . . . , vkk to the
adversary.

3. The adversary A can now issue signing queries. Each signing query consists of an index i ∈ [n]
and a message m ∈ {0, 1}λ \ {m∗}. The challenger responds with σ ← Sign(ski,m).

4. After the adversary is finished making signing queries, it outputs a tuple of verification keys
(vk∗1 , . . . , vk

∗
k).

5. The challenger replies with common reference string crs← Setup(1λ, 1k, 1sC̃).

6. The adversary A can continue to make signing queries. The challenger responds to these exactly
as before.

7. The adversary outputs the aggregate signature σ∗.

8. The output of the experiment is 1 if all of the following holds:

54

- For all i ∈ [k], let bi = 0 if vk∗i = vkj for some j ∈ [n]. Otherwise, let bi = 1. Then, it holds

that C̃(b1, . . . , bk) = 0.

- AggVerify(crs,m∗, C̃, (vk∗1, . . . , vk
∗
k), σ

∗) = 1.

Otherwise, it outputs 0.

We say that the aggregate signature scheme satisfies static security if for every efficient adversary A,
there exists a negligible function negl(·) such that Pr[expA(λ) = 1] = negl(λ).

Theorem B.2 ([NWW23]). Assuming monotone-policy BARGs there exists monotone-policy aggregate
signatures when the underlying digital signatures is instantiated using puncturable signatures.

B.2 Construction

Construction B.3 (Single-Hop Homomorphic Signatures for General Circuits). Here we let AggSig =
(AggSig.Setup,AggSig.Sign,AggSig.Verify,AggSig.Aggregate,AggSig.AggVerify) be a monotone-policy aggre-
gate signature w.r.t. a puncturable signature PSig = (PSig.Setup,PSig.Setup-Punc,PSig.Sign,PSig.Verify).
We construct a single-hop homomorphic signature HSig = (Setup,Sign,Eval,Verify) as follows:

Setup(1λ, 1k, 1sC)→ (pk, sk). It runs (ski,b, vki,b) ← PSig.Setup(1λ) for i ∈ [k] and b ∈ {0, 1}, and crs ←
AggSig.Setup(1λ, 12k, 1

sC̃y) (where sC̃y
is from Remark 3.17) and lets sk = (ski,b)i∈[k],b∈{0,1}, pk =

((vki,b)i∈[k],b∈{0,1}, crs).

Sign(sk, i,mi)→ σi. It parses sk = (ski,b)i∈[k],b∈{0,1} and then it computes the signature σi = PSig.Sign(ski,mi , 1).

Eval(pk, (mi, σi)i∈[k], C)→ σ. It parses pk = ((vki,b)i∈[k],b∈{0,1}, crs), then construct C̃y = T (C, y) using

Fig. 1 where y = C(m), and outputs σ = AggSig.Aggregate(crs, 1, C̃y, (vki,b, σi)i∈[k],b∈{0,1}).

Verify(pk, y, σ, C)→ 0/1. It parses pk = ((vki,b)i∈[k],b∈{0,1}, crs), if C = ∅, parse y = (i,mi) and output

whatever PSig.Verify(vki,mi , 1, σ) outputs, otherwise construct C̃y = T (C, y) using Fig. 1, and outputs

whatever AggVerify(crs, 1, C̃y, (vki,b)i∈[k],b∈{0,1}, σ) outputs.

Theorem B.4. The Construction B.3 is an unforgeable single-hop homomorphic signature with evaluated
signature size poly(λ, log |C|), assuming aggregate signatures, and puncturable signatures.

Proof. Correctness. If C(m) = 1, then C̃y(m,m ⊕ 1k) = 1. Thus it is sufficient to show that for
i ∈ [k] if mi = 1, then PSig.Verify(vki,1, 1, σi) = 1 and for i ∈ [k + 1, 2k] if mi−k = 0, then
PSig.Verify(vki−k,0, 1, σi) = 1. Both of the above follow from the fact that σi = PSig.Sign(ski,mi

, 1).

Succinctness. follows directly from the succinctness of AggSig.

Selective Unforgeability. Follows directly from the unforgeability of AggSig w.r.t. PSig.

Corollary B.5. The Construction B.3 is an unforgeable single-hop homomorphic signature with evaluated
signature size poly(λ, log |C|), assuming either LWE, or k-LIN over pairing groups for any constant k ∈ N.

Proof. We conclude the proof by combining Theorems A.3, A.5, B.2 and B.4.

55

	Introduction
	Technical Overview
	Preliminaries
	Digital Signatures
	Public-Key Encryption
	Non-Interactive Zero-Knowledge (NIZK) Arguments
	Hash Tree
	Flexible RAM SNARGs with Partial Input Soundness
	Somewhere Extractable Batch Arguments
	General to Monotone Circuit Transformation

	Multi-Hop Homomorphic Signature
	Definition
	Construction
	Unforgeability
	Further Optimization

	Towards Context Hiding Homomorphic Signatures
	Extending to Multi-Key Homomorphism
	Single-Hop Homomorphic Signatures For General Circuits
	Overview
	SNARGs for Monotone-Policy BatchNP
	All-But-One Signatures for Single-Bit Messages
	Definition
	Construction

	Definition
	Construction
	Context-Hiding

	Single-Hop Homomorphic Signature from Monotone-Policy Aggregate Signatures
	Aggregate Signatures
	Construction

