RELAXATION AND ITS ROLE IN VISION

by

Geoffrey E. Hinton

Ph.D. Thesis,
University of Edinburgh,

1977

The composition of this thesis and the research

reported in it are entirely my own work, except where

 Geagpey Hish

otherwiss stated.

CONTENTS

CONTENTS
ACKNOWLEDGEMENTS
ABSTRACT
OUTLINE

CHAPTER 1 : SEARCHING FOR OPTIMAL VISUAL
INTERPRETATIONS.

Structure and process in visual perception

hy tentative hypotheses are necessary

Two ways of avoiding tentative hypotheses
1.3.12 The principle of least commitment

, 1.3.2: Feature semantics.

1.4 TVavs of finding consistent interpretations

1.4.,1% Huffman/Clowes labelling

1.4.2% Growing alternative consistent

contexts.

wnN) —
w 0 e

1.4.33 Waltz filtering
1.5:2 The need for optimisation.
1.5.1¢ Consistency versus goodness in the

blocks world.

1.6 Ways of finding good interpretations.
l1.6.1¢ Guided depth-first search.
1.6.2: Conniving. _
1.6.3: Assumptions and specialist error

procedures.
1.6.4: Bar-finding in Popeye.
1.6.5: Marr and Poggio (1976).
- 1.6.6t The breakdown of Waltz filtering.
1.7 Explicit numerical scores
l1.7.1: Probabilities and the costs of
hypotheses.
1.7.2: The advantages of a numerical
, definition of the optimum.
~1.3: Pattern Recognition and the Misuse of Numbers
1.8.1: The pattern recognition paradigm.
1.8.2¢ Inadequacies of Pattern Recognition

1.93 Branch-and-Bound search.
1.16: The Relevance of Parallel Herdware.
.11 Simmary of Chapter 1.

00 N W

12

12
14
15

18

24

27

35

39

43

44

47

CHAPTER 2: THE TASK OF SEEING SOME OVERLAPPING 50
RECTANGLES AS A PUPPET. »

2.1: The ease and purpose of the task. 50
2.2: Pictorial input. _ 51
2.2.1: The range of possible pictures.

2.3: Non-pictorial input. 52
2.4: Qutput of the bhest global interpretation. 54
2.5: The puppet model 54

2.5.1% Defining satisfactory joints.
2.6: Definition of the required output. 56
2.6.1t What pictures depict.
2.6.23 Basic definition of the best
puppet.
2.6.3: iodification of the definition of
best.
2.6.43 EquAal rivals.
CHAPTER 3: THE PUPPET FINDING PROGRAM. 60
- 3.0 The two main stages : An overview 60
3.1: The main data-structures and their creation 61
3.1.12 Representing zones and computing :
their overlaps.
3.2: Creating the network of candidate hypotheses 63
3.2.13% Types of nuclei
3.3% Numerical constraints between supposition 67
values.
3.3.1% The function of continuous
supposition values,
3.3.2: States of supposition values
terminology.
3.3.3: Normalised linear combinations:
3.4: Probabilities and supposition values 7C
3.5 The hyperspace model : TG
3.6: Representing arbitrary logical constraints Ti
3.7: Non-integer optima
3.8: The numerical constraints in the puppet task 156
3.9: The simplex algorithm ‘ 72
3.10: Assigning preferences to hypotheses 80
3.11: The abstract optimization problem and the C
type of solution required.
3.12: Two types of relaxation ' 82
3.13: Two components of the relaxation operator g2
3.14: Achieving feasibility 83
3.15: The speed of convergence on a feasible state. g7
3.16: Achieving optimality 89
3.17: A method of increasing the convergence speed 90
3.18: The method of selecting the final set of o1
hypotheses. o
3.19: The final form of the relaxation operator g2

CHAPTER 4: THEORETICAL ANALYSES OF RELAXATION,
‘ AND SOME POSSIBLE EXTENSIONS.

The avoidance of Explicit Enumeration

Decomposition into Interacting Sub-Systems

The Time Taken to Reach Equilibrium

Introducing non-linearity.

-The Need for Intermediate Level Hypotheses.

Weak rules

Using relaxation to guide hypothesis creation
4.7.1: The extended puppet-finding task
4,7.23 Generators

4.8% Optimising real-valued parameters

ABADMDMMNDMNN
LI I S R)
~NoupaLN -
0 00 00 60 e s e

CHAPTER 5=VCOMPARISONS BETWEEN L.P. RELAXATION
AND ALTERNATIVE SYSTEMS.

5.1: Rosenfeld, Hummel and Zucker (1975).
5.1.2¢ The non-linear model.
5.2: Line Labelling using LP relaxation
5.3¢ Yakimovsky and Feldman (1973)
5.3.1¢ A relaxation formulation
5.4: Barrow and Tennenbaum (1976)
5.4.1¢ The task
5.4.2:3 The general strategy
5.4.3: Likelihoods and their
modification. :
5.4.4: An abstract example
5.4.5: Comparison of FSYS with LP
relaxation.
5.5: Growing islands of con51stent hypotheses.
5.6: Matching by Clique finding .
5.7¢ Hierarchical synthesis

CHAPTER 6: PERCEPTUAL SCHEMAS AND THEIR RELATIONSH

To PERCEPTUAL AWARENESS.

6.13 Current awareness and stored knowledge
6.2: Frames
65.2.1¢ An example of a schema
6.2.2¢ Minsky’s theory
6.2.3: Some Difficulties for Frames

94

95
95
o8

104 .

105
107
109

114

119

119
126

14C
144 .

A~

uy B
w0

CHAPTER 7: A SYSTEM WHICH USES RELAXATION | 161
TO COORDINATE NETWORK GROWING RULES.

7.1: Overview of the SETTLE system. 161
7.2: Schemas. 163
7.3: . Slots. ‘ 164
7.4: Bonds . 165
7.5: Specifying Rules. 166
7.6t Rule invocation. 168
7.7: Jobs 171
7.8: An example of the SETTLE system in action. 174

7.8.13 Specifying rules about family

. relationships.
7.8.2: Interpreting claims about specific
people,
7.8.3: The effect of more, 1ncompat1ble
claims. : |

CHAPTER 8: SUMMARY. 179
8.1: Presuppositions of the relaxation approach 179
8.23 The choice of numerical scores 181
8.3¢ Details of the relaxation Operator _ 181
8.4t The SETTLE system 182
8.5 Relaxation and human vision , 182

8.5.1% The temporal structure of vision
8.6: #hat has been shown. 185
APPENDICES
Appendix 1: Computing whether convex polygons : 187
. overlap. . :
Appendix 2: Using penumbras to aid line labelling. 189
Appendix 3: Code for the puppet-finding program 191.
Appendix 4: How the supposition values change in 210

examples of the puppet program.

Appendix 5: Code for the line labelling example. 214
Appendix 6: Code for the SETILE system 215
BIBLIOGRAPHY _ 235

ACKNOWLEDGEMENTS

I would like to thank Christopher Longuet-Higgins,
Frank 0/Gorman, and Aaron Sloman who have proved invalu-
able. Christopher t;;élessly supervised the work and
helped me to clarify my ideas, Frank expléined many dif-
ficult points about vision, and Aaron selflessly provided
support, understanding and many helpful ideas, as well as

reading much of the manuscript.

{

I nave been greatly helped by disﬁussions with many
members of the A.I. comnunities at Edinburgh, Sussex and
Essex. I would especially lfke to thank Harry Barrow,
Richard Bornat, Mike Brady, Max Clowes, Roddy Cowie,
Steve Draper, Richard Gregory, Jim Howe (whp alsc helped
administratively), Steve Isard, Christof von der
Malsburg, Dave Owen, Larry Paul, HRobin Popplestone,
Richard Power, Naomi Roberts, Arnold Smith, Yark Steed-

.man, Sylvia Weir, and David Willshaw.

fendy Taylor kindly did the typing wunder difficult
conditions, ably assisted by Judith Dennison, Jane Black-

ett and Pru Heron.

The work was funded by research studedtships from
the Science Research Council and the Royal Society.
Later extensiohs were made as part of a project on "Com-
putational Flexibility in Visual Perception® (S.R.C.

Grant BRG 8623-7).

ABSTRACT

It is argued that a visual systenm, especially one
which handles imperfect data, needs avway of selécting
the best consistent combination from among the many in-
terrelated, locally plausible hypotheses about how parts
or aspects of the visual input may be - interpreted. - A
method 1is presented in which each hypocthesis is given a
supposition value between O and 1. A parallel reléxation
operator, based on the plausibilities of hypothéses and
ﬁhe logical relations between them, is then used to modi-
fy the sﬁpposition valﬁes, and the process is repeated
until the best consistent set of hypotheses have supposi-
tion values of approximately 1, and the rest have values

of approximately O.

The method is incorporated in a program which can
interpret configurétibns of overlapping rectangles as
puppéts. For this task.it is possible to formulate all
the potentially relevant hypotheses before using relaka—
tion to select the best consistent set. For more complek
tasks, it is necessa}y to use relaxation on the locally
plausible interpretations to guide the search for locally

less obvious ones. Ways of doing this are discussed,

Finally, an implemented system 1is presented which
allows the wuser to specify schemas and inference rules,

and uses relaxation to control the building of a network

el

of instances of the schemas, when presented with data
about some instances and relations between them.

- _g-

OUTLINE

This thesis explores the idea that relaxation may be
a good way of orgéﬁising the interactions between dif-
ferent hypotheses during the process of constructing the

internal representation of a scene.

Chapter 1| argues for some of the presuppositions
behind the use of relaxation:' that a visual system needs
to formulate tentative hypotheses3 that it needs to be

eble to find a good consistent set of these hypothesess

that the best set may be defined in terms of numerical

scores for the individual hypotheses; that the con-
straints between hypotheses need to be explicitly

representeds and that a method which can use constraint
propagation and can take advantage of parallel hardware

is desirable.

Chapter 2 defines a task designed to test and illus-—
trate the wuse of relaxation. The task is to perceive a
collection of overlappihg transparent rectangles as =2
ouppet. #any of the problems that arise in vision‘(e.g.
parts missing due to occlusion) are deliberately avoided

in this task.

Chanter 3 explains the puppet-finding program.
First, it = explains how the program discovers and-

represents the various possible hypotheses about the 1in-

o

térpretation of rectangles as puppet parts, and about the
interpretations of overlaps between rectangles as joints
between puppet parts. Then it shows how logical con-
straints between hjpotheses give rise to numerical con;
straints between their suppoéition values. Finally, it
ihtroduces and analyses a relaxation operator which mani-
pulates the supposition values on the basis of the con-
straints and the preferences for individual hypotheses.

P-4

The operator picks out the best consistent set of hy-
potheses, Various aspects of the relaxation process are

illustrated with examples producéd by the program.

Chapter 4 discusses various theoretical issues about
relaxation that arise from the puppet-finding program.
It atéempts to analyse the relaxation process, particu-
larly the time it requires. It also points out some of
the strengths and weaknesses of relaxation, and discusses

some ways of extending it to cope with specific thecreti-

cal difficulties.

Chanter 5 compares my relaxation system with other
systems which were selected for comment either because
they used a form of relaxation, or because they used ex-
plicit numerical scores in defining the best Interpreta-
tion, or because they dealt with the problem of finding
the best instantiation of a model. To aid comparison
with another system; there is a section on the use of re-
laxation for Huffman/Clowes line labelling, which shows

clearly the similarities and differences between relaxa-

-10~-

tion and Waltz filtering.

Chapter 6 is a theoretical interlude from thé de-
tails of relaxation. It discusses the relationship
between stored knowledge and the representations created
during perception. The function of the chapter is‘to ar-
gue against the idea that perception is merely a process
of matching the data to stored models, and thus to
prepare the ground for the rule-based SETTLE system
presented in Chapter 7. The issues are ektremely complex
and so only a rather superficial treatment 1is possible,
but 1t may be sufficient to explain the approach adopted

in the SETTLE system.

Chapter 7 describes and illustrates an impiemented
system which allows the user to define schemas and infer-
ence rules which can be applied to combinations’ of in-
. stances of the schemas. When given some assertions about
related instanées, the system notices which rules apply,
‘and it ‘uses relaxation to find thes best consistent net-
work of instances, given the 1input assertions. The
brocesses of relaxation and of making inferences are in-
tegrated so as to avoid. forward chaining based on prem-

ises that are rejected by relaxation.

Finally, there is a brief summary.

-11-

CHAPTER 1

SEARCHING FOR OPTIMAL VISUAL INTERPRETATIONS.

.12 Structure and process in visual perception

Consider the pictures in figure l.1. When we look at
them it seems that we form a clear idea of what tney dep-
ict. In understanding how this idea is formed, there . are
two sets of issues:

1. What is the nature of 'the idea once it has been
formed? That ist: What is the form of the representa-

tions produced by the process of perception?

2. i#hat is the nature of the processes that generate

the representations?

Understanding the nature of the representations used
is orobably the major part of understanding perception.
It is hard to say any thing' about perceptual processes
without making some aSsumptions about what the processes
are proddcing. However,vit does not seem to be necessary
to complete the invéstigation of the representaticns be-
fore starting the investigation of the progesses. Indeed,.
any simulated perceptual system needs both representa-'
tiens and ‘processes. Artificial Intelligence research_
(Minsky and Papert 1972, Clowes 1971, Winston 1970) has.
already shown that perception of a picture involvés more
than simply activating a number of feature analysers and

=12

FIGURE 1.1la:

¢ 0 8 0 [

L4 [28 2
v .
. ’e
’ [
. LI
L 4
[
o6 o9
»
.
* ’
. » ’
» L}

FIGURE 1.1b:

[4
.

»]
* L]
® a
. L]

4

(4
’ [4
L4 »
L
* ’
o
» ’

A Popeye

v oo
s o e p sy
e s
» s
[»
[»
’ 14
® o
» »
L 4
[} °*
. e
(4
L
[o P

¢ b9 o »

picture.

s 9 e % e

*

s 0y

«eve

o gSe ¥V 990

o

¢ ane

using them to put the picture into one of a fixed number
of categories. The product of perception is not just a

categorization. It is a complex description which has the

following important properties:

1. A scene is articulated into a hierarchy of objects
and parts of objects so that its description involveé
specifying the relationships between the objects and
ob ject parts. For example, in figure l.{a, the
description that constitutes the interpretatioA 6f the
picture must somehow explicitly represent the fact
that there is‘a cube resting on one end of an ell-

beam.

2. As well as a hiefarchy of objects within a domain
there are also Amany different domains. For example,
the lines in a picture and the edges of objects "which
they depict are quite different entities and need dif-
fefent representations. Similarly, in figure I.Ib'the’
lines of dots, the bars whose edges these lines dep-—
ict, and the letters whosé strokes are depicted by

these bars are all entities in different domains.

L

These considerations show that the representatiohs
produced by looking at a picture must be at least as rich
as a'relational netﬁork containing a great variety of
different types of node, and many diverse relations (e.g.
support, dépiction, connection).'The way 1in which nodes
and relations of various types nay be combined consti-
tutes a kind of grammatical knowledge. It deterﬁines

-13-

which particular networks are possible given the initial
picture structure. If we assume that perception involves
building some kind efmfelational network which satisfies
certain grammatical constraints, then it is possible to
focus on some of the important issues about the way in

which the network is constructed.

.23 why tentative hypotheses are necessary

The hypothesize—-and-test paradigm is often used 1in
Artificial Intelligence programs (Roberts 1965, Grape
1973) as a way of deciding ho@ to interpret part of a
picture. An important assumption of the paradigm 1is thaf
once a specific hypothesis has been formulated on the
basis of cues, it is possible to make a definite decision
about whether the hypothesis fits the data, so that a hy—ﬁ
pothesis can be accepted or rejected immediately after it
has been formulated, and it is nct necessary to manipu- .
late a2 number of tentative, interdependent hypotheses
simultaneously. Unfortunately for the " hypothesize-and-

test method, there are many cases where no definite deci-
sion about a hypothesis can be made oh the basis of the
local data. The context may be necessary for disambigua—'
tiorn (Guzman 1971, Clowes 1971) as the E in Figure I.l1bo
'shows. The confext in which some local data is interoret-
'ed must itself be represented as a set of hypotheses

about the interpretation of other data, so hypotheses

about local interpretations may be mutually dependent,

- 14~

and some kind of search mechanism is needed for selecting

a consistent set of them.

1.33 Two ways of avoiding tentative hypotheses

Before discussing ways of handling interdependent,
tentative hypotheses, two methods of eliminating the need

for tentative hypotheses will be examined and rejected.

1.3.1¢ The'principlé of least commitment

This method, advocated by Marr (1976) and Sloman
(1976) amongst othérs, involves never being more specific
than the locel dafa and the context warrant, so that hy-
potheses do not commit themselves to details that are, as
yet, undecidable. This requires that a rich set of not-
too-specific concepts be available. For example, in the
early stages of perceiving a human form, a visual system
may notice a2 part which is definitely either a‘leg or an
arm, but which needs contextual disambiguation. If the
system has the céncept of a limb available, it can
represent what it can safely conclude, without creating
any tentative hypotheses ébout arms or legs. Then, when
the context becomeé blearer, the limb hypothesis can be
refined appropriately (The <clearer contect may involve

non—commnmi ttal limbs).

In practice, there are several difficulties 1in ap-
plying the principle of least commitment. First, an enor-

-15="

mous number of concepts of varying degrees of specificity
may be needed to ensure that is possible to represent
just what can be definiteiy inferred in a given situation

(]

and no more. Secondly, if hypotheses are to interact and
progressively refine one another until they are all per-
fectly specific, then complex transition tables may be
required to say how one hypothesis should be réfined in
the context of others. Finally, wheh the data is imper-
fect and the aim is not to find just any consisteﬁt gle-
bal interpretation, but to find the best one, (see sec-
tion 1.5) then it may be impossible to arrive at any de-

finite conclusions about optimal interpretations on the

basis of local evidence.

The principle of least commitment.may be useful in
avoiding unnecessarily large numbers of alternative hy-
potheses, but there is no reason to suppose that it can
eliminate the use of alternatives altogether. I know of
no system which does this, when interpreting complex‘ im—

perfect data.

1.3.2: Feature semantics

The problem of choosing between alternative hy-
pothéses arises because nodes in the network representing
a scen2 are taken to imply the existence of entities in
the scene, so0 nodes corresponding to non—existent enti-
ties are incorrect and must be rejected. MNodes can how-

)

ever be given a different semantics in which they only

-16—

imply things about the appearance of the scene. In the
relational net built to represent figure 1.lb, for exam-
ple, there could be two different nodes corresponding to
the first letter. One node could represent the fact that
it is Somewhat E-shaped and the other that it is somewhat
F-shaped. These two nodes are quite compatible, provided
they are not taken to imply anything about which letter
is really there in the optimal interpretation, so there

is no need to reject one of the nodes as incorrect.

The reason for using the term ¥feature semantics® is
that the output of feature analysers in pattern recogni-
tion programs is often given just this semantics. Consid-

i

or "hays% on the

h

er for example, an analyser which looks
right of a figure (as in C and K). If the anslyser
responds positively to a particular figure, then the Fiz-
ure has the feature, since the precise definition of the

feature is simply what the analyser responds to.

Marr*s primal sketch (Marr 1975) also use§ feature
semantics. Symbolic descriptions in the pfimal sketch
represent aspects of the grey-level data, rather than of
the scene -causing that data. These reoresentations a2y
nevertheless be expressed in terms of the scene elenent
which they appear to depict. (Section 1.5.4 discusses
this difficult point in more detail). This is not intend-
ed as a criticism of the primal sketch. It is sensitle to

ibe it iIn 2 more con-

analyse the raw data and redescri

venient form before trying to decide what it depicis.

-17-

However, the primary purpoée of perception is to enable
us to act in the world, and so perception must tell us
what‘s there, not just how it appears. Sooner or later
decisions have to be made between conflicting hypotheses

(except when interpreting very simple data).

1.4: MWays of finding consistent interpretations

Given a number of interrelated tentative hypotheses,
one problem 1is to find a consistent set of them. This
section describes some of the known ways of achieving
consistency, and then sections 1.6 and 1.9 discuss now
these methods can be extended to the more difficult prob-

lem of finding interpretations which are gocd or optimal

®

rather than just consistent. Th Hduffman/Clowes line-

labelling task will be wused t

o
i

illustrate sone of the

methods and so it is defined below.

l.4.1: Huffman/Clowes labelling

Detailed discussions of 1line-

)—u

1i
several blaces (Huffman 1971, Clowes 1971, ¥Waltz 1972

Winston 1977) so only a brief description is given here.

The input consists of perfect line-drawings of
scenes composed of polyhedra. There are never more than
three surfaces at a point in the scene, and the viewpoint

is chosen so that vertices or edges are never on exactly

- 18-

the same line of sight as a nearer vertex. Given these
restrictions, the topology of the junctions in the pic-
ture provides good evidence about what kinds of edge are
depicted by the lines (see figure 1.2). 1In the case of a

tee-junction, the evidence has an unambiguous impl

=

ca-
tion. The crossbar must depict an occluding edge belong-
ing to the surface on the opposite side to the stem.
Other junction types, however, provide ambiguous évidence
about line labels. A globally consistent set of lins la-
bels can only be found by considering how the local evi-
dence interacts. The interactions afe based on the fact

that a line must have the same labels at both ends.

i.4.22 Crowing alternative consistent contexts.

h

'

Techniques such as depth-first and breadth-first
search (see Nilsson 1971, Winston 1977) involve~consicer—‘
ing all the alternative ways in which a context (a con-
sistent partial solution) can be extended. For each such

extension, a new context is spawned, and ways of extend-

W

ing it are considered. All consistent solutions can b
found in this way. For the line-labelling task, the con-
texts could consist of assignments of particular labels
to some of the lines, and contexts could be extended Dy
considering all possible labels.for a previously unla-
belled line, A éontext is consistent if the combination
of line labels at each junction is one of the combina-
tions allowed for a junction with that topoclogy.

-19-

FIGURE 1.2: Showing all the possible junction labels, given

the Huffman/CloWes restrictions, and an ell-beam illustrating.

them. "+' means a convex edge, "-" means a concave one, and

" } " means an occluding edge with the attached vee
lying in the nearer surface.

The contexts form an inverted tree, with complete
labellings at its lowest tips. Depth-first and breadth-
first search differ, as their names suggest, in the order

in which this tree is investigated.

A ma jor criticisﬁ of both these search techniques is
that they perform a'lot of unnecessary work because they
do not make use of the fact that many suppositions are
independent of one another. They do.not keep track of
which of the suppositions 1in a context were used in
deriving a conclusion, and so they cannot use the conclu-
sion in rival contexts in which it is also wvalid. They
have to re-establish it each time. In figure 1.3, for
examnple, the triéngle nas many alternative labellings.
It seems silly to rediscover the possible labellings of
the cube for each labelling of the triangle, but this 1is

what 1s done.

The Conniver programming language (Sussman and
McDermott 1972) embodies, among other things, one partic-
- ular approach to this problem. It inveolves providing a
hierarchy of contexts which are accessible.
A fact asserted in one context is available in all the

descendents of that context. Jhen a new fact is esta-

n
Q.
"
]
6]

blished, the user can ensure that it is asserted
higher context thaen the current one if he is sure it is
also valid there. This makes the fact available in rivel

contexts to the one in which it wes discovered.

An alternative to the Conniver policy of leaving the

-20~-

FIGURE 1.3: The "cube" can have many 4diff erent"labellings
corresponding to different ways of being'stuck to the
background plane. Many of these choices are independent of
the line labels chosen for the triangle .

problem to the user is to systematically record all the
suppositions that are wused in deriving each fact. The
system can then autométically assert‘ a fact in the
highest context containing all the suppositions used to
derive it. Alternatively, the system can set up dzmons
which ensure that wheﬁever a context contains all the

suppositions previously used to derive a particular fact

-

that fact is éutomatically asserted. The latter msthod
has the advantage that it may meke the fact available in
mére contexts. Suppose, for example, that there is zan
ordered set of choice points A, B, C, D.... and that the

choices are Al or A2, Bl or B2, Cl! or C2, Dl or D2...

If it is discovered, whilst exploring the Al ©branch c¢f

!

the search tree, that Bl and Ct imply DI, then the
highest available context in which to assert DI is (A1,

Bt, CI). This does not capture the fact that DI mus

w

also be true in (A2, Bl, Cl). Because A comes above
and C in fhé search tree, there is no single place in the
hierarchy of contexts where the assertion of D! would
make 1t available in just those contexts containing Bl

and Cl.

Stallman and Sussman (1976) describe a system fcr
analysing electrical circuits cohtaining non—-linear com-
ponents (e.g. transistors). Each such component c¢an be
in one of a number of roughly linear operating regions,
and the'system has to search for a consistent combination
of reqidns for the different components., It searches oy
growing a number of contexts and it notices which supso-

21~

sitions about operating regions are used to defive the
operating regions oflother components, It uses these re-
lationships to avoid having to rediscover the conse-
quences of sets of SUppositions. It also notices whicﬁ
suppositions are involQed whene?er a contradiction 1is
derived, so that it can immediately reject any other con-

text containing that combination of suppositions.

Stallman and Sussman’s work has been mentioned be-
cause it impiies that it is worth expiicitly représenting
the logical relations between hypotheses (suppositions),
rather than simply building up consistent sets of them.

This policy is an important aspect of the relaxation

method to be described later.

[.4.3: Waltz filtering

Waltz (1972) showed that Huffman/Clowes labelling.
could be extended to deal with line drawings containing
shadow edges and also certain coinclidences. This ‘gives
“many more legal labellings for each junction type, which
greatly increases the search space. However, Waltz

showed that a filtering process can quickly eliminate

o

most of the junction labels and often leaves .a single
consistent labelling. The process depends on keeping,
for each junction, a list of all the labellings.which are

compatible with its topology. Each junction labelling

must then find a "sponsor! at the other end of each of

— ?2...

the lines forming the junction. A sponsor is a labelling
of the other junction which agrees on the labelling of
the common line. If there is any 1line along which no
sponsor can be found for a particular junction labelling,

that labelling is removed from the list of possible 1

o)}

bellings for that junction. This may well leave some la-—
belling of a neighbouring junction without a sponsor
along their common line, so it toc will be eliminated.

This is how the effects propagate.

A major attraction of filtering is that it is suit-

able for parallel computation. Each junction, or even

[¢V]

each junction label, could be allocated to a separat

9]

processor, which would be given links to the processcr
for neighbouring junctions. All the processors could

then repeatedly check for sponsors in parallel.

A number of workers have attempted (o extend the
filtering- approach. Mackworth (1975) and Freuder {(197%5)
consider ways of checking more than jJjust palrwise ;on—.
sistency, so as to cope with cases where there are mzny

alternative labels each of which has the required spon-

sors, even thouch there is only one globally consisten

i

labelling (Waltz hendled such cases by resorting to

depth—first search). Rosenfeld et al, Barrow and Tennen-

(e
=h

baum, and I, have tried to extend Waltz filterin:

(8]
n
9]
m
n

to find optimal interpretations when there are prefer—
ences for particular labels, or the constrainis are not

‘binding (see Chapter 5).

-23—

1.5 The need for optimisation.

Consider the handwritten letters in figure 1.4.

n h m m

Figure 1.4

The difference between the two m’s is‘ just " like the
difference between the h and the n. So why , on first in-
spection, isn’t the h interpreted as a distorted n just
as one of the characters is interpreted as a distorted ﬁ?
There are two questions here. First, what makes the h
interpretation preferable, since the distorted n in-

terpretation also fits the data perfectly? Second, how .

Mm
i

does the existence of the h Iinterpretation eith
suppress its rival or prevent it ever being explicitly

formulated?

The obvious answer is that the h interpretation is
preferred because it does not involve distortion, and
‘that the distorted n interpretation is not noticed be-
cause such intesrpretations are only scught when attempts
to find better ones have failedr It will 58 shown, how-
ever, that this kind of solution runs into difficulties
if all the possible interpretations contain unattractive

—D4—

features.

1.5.1: Consistency versus goodness in the blocks world.

Consider figures !.5a and 1.5b. These have fairly
obvious ‘interpretations as a hole and as a solid respec-
tively. There is some ambiguity about whether the. solid
is attached to the background along any of i£§<boun—

daries, but apart from this, a program can easily give

(]

the pictures their épprOpriate line labellings. Not

¢4

-

c
however, that the interpretaéions of the two pictures czn
be swapped 1if the bottom central junctions are seen as
the result of a special viewpoint. The tee-junction in
figure 1.5a could depict a trihedral vertex seen froa =
point lying in the same plane as the 1invisible surfacs.

Similarly the lower arrow junction in figure 1.5 could

O

depict the internal concave edge of a hole lying exactliy
behind é corner in the rim of the hole. Both thess in-
terpretations are ruled out by the assumptions of Huffazn
and_Clowes, and so a program can discover the intergrata-
tibns which people find obvious simply by using con—
sistency. People, however, must use more complex éri—
teria than simple consistency, since they also make in-
terpretations based on non-general viewpoint when thers

are nc better ones (See figure 1.5c).

" There seems to be no way of redefining the notion of

consistency so as to allow the obvious interpretaticn fcr

-25-—

FIGURE 1.5a: A hole ’ FIGURE 1.5b: A solid

FIGURE 1.5c: A Y-junction between the two cuboids is interpreted
as an accidental alignment of an edge at one depth with a closer

vertex. (The picture was suggested by Steve Draper).

figure 1,5c whilst ruling out . the unlikely interpreta-
tions of figures 1.5a and 1.5b. An alternative to con-
sistency for characterising the interpretations which
people come up with, 1is to introduce the idea of the
goodness of an interpretation, and to define it in such a
way that people’s interpretations are optimal or nearly
optimal. It is an interesting empirical question whether
such a definition is possible. There is no a priori rea-
son why it must be, though if good is equated with oprob-
able (see Section 1.7.1), then the desire for the best
interpretation may be explained by the obvious vglue of
finding the most probable interpretatioﬁ of the visuel

input when perceiving the real world.

Chapter 2 discusses what makes an interpretation good
P g
in one domain. Another example of the meaning of '"good",

using the blocks-world, is given below, before discussing

how good interpretations may be found.

For blocks—-world pictures, there are many different
aspects of an interpretation which affect how good it is.
Some of these can be explained by the concept of general.
viewpioint (Roddy Cowie, personal comnunication). The
perceiver is unlikely to be in such a position that cer-
tain important properties of the image'would change with
a small change of viewpoint. For example, it is unlikely
Vthat a straight line in the image is the projection of 2

curved edge, or that parallel lines in an orthogrzphic

(¢
3
-
=
Q
3
o3]
n
@]
D

i

image are caused by non-parallel edges se

26—

cial viewpoint. The alternative interpretations of fig-
ures 1.52 and 1.5b provide further examples of non-

general viewpoints.

A different kind of desirable feature in the in-
terpretation of a blocks scene is that there should be
three orthogonal directions with which many edges are
aligned. This helps to explain why a line dréw%ng of a
cube is not seen as a non-rectangular paralleﬁipiped.
Potential symmetries may also determine which interpreta-

tions people perceive (see Perkins 1976).

.63 W%Ways of finding good interpretations.

Th

[N

s section describes a variety of methods for
finding good but not necessarily optimal interpretations.
It is by no means a complete survey, Hhat vthe'imethods
have in common 1is that they lack an adequate mechanism
for identifying trade-offs between the various"ways ‘in
which an interprefation may be imperfect. Since they
cannot identify complex trade-offs, decisions between
rival sets Aof.imperfections are not confronted. Conse-
quently, the methods do not need any systematic way of
evaluating combinations of imperfections of different
kinds. Rather, they tend to make use of domain-specific
heuristics for déciding commonly encountered types of
conflict on a local basis. The term "procedurally embed-

ded optimisation® will be used to refer to these methods,

-27~

because they are macde to find good interpretations by
embedding ideas about goodness in the procedurés for de-
ciding whether to develop é context, or to make an as-
sumption. This contrasts with thé use of explicit scores

for systematic optimisation.

One of the simplest and commonest ways of making a
program prdduce a good interpretation, is_to invgstigaté
promising possibilities first and to accept thé first
solution. Roberts (1965), for example, uses this method
in his program which interprets line drawings in terms of
known three—dimensidnal modeis. Various configurations of
lines and regions in thé picture act as cues for particu-
lar models; The cues are ordered on the basis of how
much of a model they. depict, and then the program at-
tempts to match models to the line drawing in that orc-
er. The first sufficiently good match is accepted. The
problem with this approach is that the best cue mzy not
give the best match. Also, after the first object has
been found, the 1lines which remain may be very nard %o
exblain ih terms of other objects. Roberts ignores this
trade—off between the quality of the first object and
the quality of subsequent ones., This helps to explaid
why he can get led up the garden path when doing compo-
site analysis (Mackworth 1977) . OGrape’s (1973) proéram
is also unable to make subsequent difficulties reverssz a
decision to interpret part of a picture as a particular

view of a particular object.

-28~

l.6.1: Guided depth-first search.

A systematic way of using ordering to achieve good
solutions 1s to combine it with a depth-first search
which terminates as soon as any solution is found. Back-
tracking ensures that early choices are reconsidered if
they lead to inconsistency, and hence guarantees that a
consistent solution will be found if there are any. At
each choice point, the possibilities are ordered on the
basis of how they would contribute to the goodness of
the global interpretation. Planner (Hewitt 1972) allows
the user to specify the ordering so that he can guide the

search towards good solutions.

Unfortunately, the rejection of a locally poor pos-—
sibility may force the.acceptance of mahy poor choices
later, in order to achieve consistency. So the first con-
sistent, complete interpretation to be found may be far
from the best. For a guided depth-first search, the
ordering of choices high in the search tree has far more
effect than the ordering of lower ones ih determining the
order in which consistent solutions are generated. Using
a guided depth ~first search to find good solutions
first, is like using the values of integgrs tc find those

whose digits have a large sum.

—-20~

1.6.2: Conniving.

Conniver embodies a more sophisticated way of combin~
ing the use of contexts with the investigation of promis-
ing possibilities first. The ability to'jump to speci-
fied contexts meaﬁsuthat a line of investigation can bs
abandoned as soon as it looks unpromising, but can be
reopened if there turns dut to be nothing better, or if
evidence turns up suggesting that the abandoned context
vas better than it appeared. Also, the reasons fof aban-
doning a_context may suggest which other.contekt to Jjump
to. Adler (1977) has argued that these control facili-
ties can be helpful in interpreting pictures. A defi-
ciency of Conniver, :as section l.4.l‘explains, is that
the serial ordering of the suppositions which constitute
a context can pre?ent facts discovered in one context
from being made available wherever relevant. Another de-
fect 1is apparent 1in tasks such as line-labelling where
there .are many strongly interrelated choices. It is nct
clear how the <control facilities available to the Con-
niver user could help him to achieve anything 1like ths
efficiency of the Waltz filter. Brady and Wielinga
(1976) mention further difficulties encountered in using

a Conniver-like language for vision.

-30-

1.6.3: Assumptions and specialist error procedures.

In some domains, the.need to store and develop many
separate contexts can be avoided altogether. Instead of
spawning a new context for each possibility at a choice
point, a program céhwéimply choose the possibility which
seems best on the evidence available. If the program has
a lot of domain-specific knowledge to help it choose , it
should be able to make the right choice in most ' situa-
tions. . In cases where there is no obvious right choice,
it may be possible to delay the decision until more
helpful evidence has emerged. Inevitably, such a program
will sometimes make mistakes. Sooner or later it. will
arrive at a contradiction or notice that its combination
of assumptions is too implausible. When this happens, it
cannot jump oOr backtrack to another context, since it
has not képt any. Instead, it must examine the difficul-
ty it has discovered and uses domain~specific knowledge
to decide which assumptions to abandonrand which new ones

to put in their place.

It is hard to see how such a process can be
guaranteed not to oscillate, unless it keeps ‘a record of
previous combinations of assumptions (which begins to
look 1like depth-first search). {jowever, the emphasis
placed on domain-specific knowledge means that the method
cannot bé fairly evaluated in the abstract. It may be
that for the sorts of visual tasks at which psople excel,

there 1is so much available information suggesting the

-31-

correct interpretation, that systematic search is un-
necessary. Several quite competent programs work in

this way and two are described below.

l.6.4: Bar-finding in Popeye.

(ne part of the Popeye program (Sloman et al 1977)
searches for bars in pictures like figure I.lb. The pro?
gram expeéts long lines of cdots to depict bar wallé (the
longer sides), so if it finds two parallel lines ap=
propriately positioned, it . assumes they are opposite
walls of a bar. If it subsequently discovers a good linsz
of dots between the two previous lines, it may jettisbn
the original bar, and replace it by two new ones (cracks
are allowed). So the initial assumption can be undens cn

account of evidence discovered later.

In fact, bars in Popeye have a rather complex se—

mantics which has similarities to the feature semantics

4]

discussed in section 1.3.2. A distinction is drawn
between picture-bars which are correct if the picture
contains good evidence for a scene bar, and scene-bars
which are only correct if they occur in the correct glo-
bal interpretation (i.e. the interpretation people see).
So the only assumption involved in asserting the presence
of a picture—-bar is that the picture evidence 1is gcoc.
It is possible for the program to be mistaken about this,

because it does not perform an exhaustive low-level

-32-

analysiz before looking for high-level structures.

The use of concepts like picture-bar enables deci-
sions about scene—baré to be left until evidence is pro-
vided by higher level éonsiderations, such as how well
picture bars combihémwith others to form letter-shaped
laminae. The use of higher-level structures to make lo-
cal decisions is-an important way of avoiding maging ar-

bitrary assumptions. _ /

1.6.5: Marr and Poggio (1976).

When each eye is presented with one of two random
dot patterns, which are identical except for lateral dis-
placements of some regions in one pattern, people see a
number of surfaces at different depths (Julesz 1971). To
do this we have to decide which dot in one pattern to
pair with which dot in the other. Since all‘dots are the .
same, there are many potential mates for each one. How—
ever, each pairing will give a different angular dispar-
ity, and hence a different perceived depth for the dozt.
Using the assumption that each dot can only be paired
with one other (based on thé opacity of surfaces), and
the assumption that neighbouring dots in the merged image
should be at similar depths (based on the continuity of
surfaces), it 1is possible to make the many potential

pairings disambiguate one another.

Marr and Poggio show that the computation of a gocd

...33_

set of pairings can be done in an interesting way. They
use a binary "neuron" for each potential piece of sur-
face at each depth. Neurons corresponding to pieces of
surface lying alohg a line of sight from an eye tend to
inhibit one another (the opacity assumption), and neurons
corresponding to adjacent pieces of surface tend to ek~
cite one another (the continuity assumption). A dot in a
pattern tends to excite neurons corresponding to?all the
pieces of surface on that line of sight. The coméutation
cqnsists of an itérétive process whereby each neuron is
turned on or off by the combinéd effects of the -other
currently active heurons and the input. iwhen the
strengths and ranges of the effects héve been tuned, the

system works very well and settles down in only a few

iterations.

Marr has expressed doubts (personal communication)
about whether people solve the stereo correspondence
broblem in this way. However, it is a good illustratioh‘
of the method of meking assumptions and revising them if

3

it seems necessary, since an active neuron corresponds to
an assumption about surface depth. Notice how inap-—
.propriate it seems to find a solution by developing many
separate consistent contexts. This 1illustrates that
search methods appropriate in domains such as understand-

ing natural language (e.g. micro-planner) may be inap-

propriate for low-level vision.
The difficulties that can be caused by the way in

-34-

which the consequences of an assumption can ramify do not
seem to be encountered 1in the stereo correspondence
task. This is partly explained by the féct thaﬁ surfaées
do not have to be continuous. Occasional discontinuities
are allowed, and this means that no definite long-range
‘consequencés follow from an assumpfion about surface
depth at one point. This, and the simplicity of the con-
straints, means that the mechanism used by Marr %nd‘Pog—
gio is adequate, even though ft cannotrcapture‘ the kind
of rigid complex logical constraints which the relaxation

method handles (see Chapter 3).

1.6.6: The breakdown of Waltz filtering.

One search method which cannot easily be wused for
finding good interpretations, is the filtering technigue
which works so well for finding consistent Iaoellings in
a restricted domain. (see section 1.4.3). The method
depends on being able to show that labels are ‘impossible
because there are no compatible labels for neighbouring
junctions., If, however, neighbouring junctions may have
very unlikely labellings, based on non-general viewpoint,
then it is hard to eliminate any labels. :It can be
disastrous to renove a label unless it is definitely im-
possible, since if a correct label is accidentaliy 2lim-
inatéd,.this can ca2use the elimination of the correct la-
bels from neighbouring junctions, and the effects can
propagatz until no labels are left anywhere. There is

. =35~

little_hOpe of }noticing when a correét label has been
eliminated and backtracking, since the correct label may
not be the last one to be removed from a junction. Also,
the divergent effects of some removals, which give Waltz
filtering its power, make it very hard to trace and un-
pick the effects of an erroneous removal. This diver-
gence of effects is also a major difficulty for the
method of making assumptions and correcting errors when
they are discovered., There seéms to be no limit to the
potential consequences of an assumption, and hence no
limit to what an error-correcting procedure might nesd to

do to unpick these consequences.

1.7 Explicit numerical scores

One way of determining how to make complex trade-
offs between hypotheses is to give them explicit numeri-
cal‘scores, and to define the global best fit as the one
which maximises the sum of the scores of its constituent
hypotheses. This means that finding the best globai in-

terpretation becomes what 1is known in the operztionzl

research literature as a %Ylinear programming oproblem!
prog SEE

=4

(often ahbreviated to an “L.P. problem"). More specifi-

any solution the hypotheses must have truth valuzs of
zero or ona. The following sections attempt to answer a
number of issues concerning the validity and usefulness

of explicit numerical scores:

1. What is the underlying justification for the indi-
vidual scores wused, and for the method of combining

them?

2. What are the advantages of having a simple numeri-

cal definition of the optimum?

3. Is it sensible to 1introduce real numbers given
that a major feature which differentiates the scens
analysis approach from pattern recognition is its com-

mittment to reasons and symbolic descriptions instead

-

of numerical weights

1.7.1: Probabilities and the costs of hypotheses

In Capital, Marx puts forward the idea that there
must be some common underlying essence shared by all
goods in order to explain how they can be given prices
according to which they are exchanged. The same philo-
sophical point seems to apply to hypotheses. Theré- must
be some property which they share in order to explain how
they can he given scores according to which they are
traded. The obvious candidatelis probability. If the glo-
bal best fit is defined as the least improbable set of
consistent hypotheses, and if hypotheses are given nega-

tive scores (costs) corresponding to the logs of their

7

oprobabilities, then minimizing the sum of the costs of

ot

the hypotheses will indeed produce h globally most

f
4

nrobable interpretation, (assuming that the probabilities

..37_

are independent, so that the most probable interpretaticn
is the one whose constituent hypotheses have the greatest

product of probabilities).

It is not obvious how to apply probability theory to
perception in order to assign costs to hypotheses, and it
is particularly difficult to make the probabilities in-
dependent. However, Woods (1976) successfully employs ex-—
plicit numerical scores based on probabilities in HAIM, a
speech understanding system. The scores are neceséary be-
cause conflicts arise between knowledge sources of guite

different kinds. For example, a poor phonemic interpreta-

tion may be chosen because it allows a much better orag
matic interpretation or vice versa.. The scores. zare
discovered by collecting statistics in cases where the
correct interpretation is known. The method used in HAIN
to find the best global interpretation (see Section 5.3)
is different from the method examined in this thesis, but
. \
it is encouraging that the theoretical arguments present-
ed here 1in favour of explicit numerical scores are suo-—

ported by the practical usefulness of such scores 1in a2

'large program dealing with real data.

h
ct
.y
(4]

1.7.2: The advantages of a numerical definition o

optimunm,

One major advantage of wusing explicit numerical
values 1is that they provide a way of settling unforeseesn
conflicts between hypotheses of quite different types.

—-38-

They alzo make it clear just how diverse, separate con-
siderations can combine to overwhelm an hypothesis, a
process which is hard to implement otherwise and tends to
be avoided or glossed over within the framework of pro-

cedurally embedded optimization.

Another advantage of using explicit.numerical scores
is that they allow the problems of optimization to be
abstracted from the welter of specific visual knbwledge.
There 1is, of course, a danger in attempting to impose a
uniform optimisation system on visual processing. The ap-‘
propriate use of domain—speéific knowledge is often more
helpful in deciding on the best interpretation than a lot
of weighing of evidence based on an inadequate under-
standing. So an optimisation system is disadvantageous if
its wuse of numbers rules out or discourages the use of
any of the great variety of types ¢f inference needed for
scene analysis. This criticism, however, does not seem to
be applicable to a system which can handle arbitrary log-

ical relations between hypotheses.

1.8: Pattern Recognition and the Misuse of Numbers

The systematic use of real numbers and the accom—
panying mathematical arguments are regarded with suspi-
cion by many workers in Artificial Intelligence. One of

the main reasons for this suspicion is the inappropriate

tern Recognition) 'were filled with papers discussing

mathematical methods and theorems which assumed a formal-

3]

isation of the process of perception that was inadequate.
This section analyses the defects of the pattern recogni¥
tion approach in order to show that the ways in whicﬂ
real numbers were 1inappropriately used there, do not
necessarily rule them out for defining the global op-

i

timum.

1.8.15 The pattern recognition paradigm.

Given some fixed set of feature analysers, any spa-
tial pattern can be described in terms of which features
it has and which it lacks. If some standard, named pat;
terns are described in this way then an unknown pattern

can be classified as most similar to a particular stan-

dard pattern by comparing its feature set with the sets

for the standard patterns. Different features may be
p k4
given different real-number weights so that agresment

attern on some features is more Iimpor-

(@]

h

with a standard
tant than on others. Major issues within the paradigm are

how to select the best set of weights, and what features

to use to achieve good separation of the standard pat--

‘terns and to cope with size, position and orientation in-

variance.

— 40—

1.8.2: Inadequacies uf Pattern Recognition

The model outlined above suggests that the aim of
perception is to classify a pattern, that the representa-
tions used are sets of features, and that the process
consists of first extracting a feature set and then com-
paring it with stored sets, By contrast Artificial Intel-
ligence research suggests that perception'consists in
producing a description of a scene using complex articu-
lated representationé (Minsky ahd Papert 1972), and that
the processes involved are far more sophisticated than

simply extracting and comparing sets of features,

The most obvious failing of the pattern recognition
model 1is that it treats the input pattern as a whole,
This presupposes that a sensible figure has already been
segmented out (Hebb 1949, Neisser 1967) and it also pre-
cludes a recursive process in which description of the
whole pattern may involve applying equally powerful
descriptive apparatus to parté of the paftern (Minsky &
Papert 1972). Except in Special cases, such as the rascog-
nition of separate, upright, typewritten letters, the
types of representétion and processes needed for the
presupposed initial segmentation are far more complex
than the feature sets, énd the process of comparing them
which is meant to model recognition. For example, the
programs of Guzman'(1968), Clowes (197}) and Haltz (1972)
use a relational network to describe the picture struc-

ture bhefore starting on segmentation. This data structure

—4]-

itself is much richec than a set of features.

=

Understandably, pattern recognition tends to avoid

h

ot

2-D pictures of 3-D scenes. It has no way of coping wi
the way in which the appearance of a three-dimensional

object is affected by occlusion, lighting and tn

[¢})

[WS

picture~taking process. There is no simple way of in
tially normalizing the figure nor is there an adequate
set of features which are invariant under the transforms-—

tions.,

It is true thét people may have been attracted to
the pattern recognition paradigm because it allowed kncwn
mathematical techniques to be applied to the selection of
feature weights. It is also true that preoccupation with
the weights and with ways of tuning them may have diszs-

tracted people from noticing obvious inadequacies c¢f the

™
-
®
n

model. For example, a pefceptron using local featt
cannot successfully discriminate between the cannscisd
and disconnected patterns in figure 1.6 (Minsky and Pz-
pert 1969). However, neither of these points implies that
a subcessful formalisation of perception should aveid
real numbers or systematic ways of manipﬁlating then

based on mathematical principles. Associating real number

scores with hypotheses doss not commit one to any partic
ular kind of representation in the same way as the use of
feature weights does. It will be shown (section 3.6) tha
any truth-functional logical relation can still be wussg,

so that inferences based on occlusion, lighting, support,

—42—

" FIGURE 1.6: The connected figures (a and c¢) cannot be
classified differently from the disconnected ones (b and d)
by a perceptron with local feature detectors which are too
small to encompass both ends of one of these figures
simultaneously. The relationship between the sets of
local features at the two ends is crueial, and it cannot

be represented by a perceptron.

or the picture-taking process can, in principle, be in-
tegrated with the recognition of particular shapes. Simi-
larly, giving hypotheses numerical values does not commit
one either to a pass-oriented or to a heterarchical ap-

proach (Winston 1977) to the process of perception.

1.9 Branch—and-Bound search.

Explicit numerical scores for global inté}preta—
tions, can be wused to evaluate contexts (partial solu-
tions). This allows many poor contexts to be abandoned
before they have been completed or reached a contradic-
tioh. A systematic way of using evaluations to decide
whicﬁ context to develop is presented by Hart, Nilssén
and Rapheal (1968). The method depends on being able to
set an upper bound on the score which could be achieved
by completing a context. For example, if 'all the local
scores are negative (costs), then the éombined score for
an incomplete context is an upper bound on the score for
any completion of the context. During the search, a list
of alternative contexts is created by branching at choice
points. At each stage, the list is examined to find
the context with the highest upper bound (e.g. the
lowest accumulated cost). This context is then replaced
by several new ones which are made by branching at the
next choice point. The search terminates when there is
a complete.soiution with a score higher than any of the

other upper bounds.

~43-

A branch-and-bound search can be very efficient if
| it can find upper bounds on contexts that are not much
higher than the actually achievable scores, buf this 1is
hard to do in complex domains. flithout tight upper
bounds, many alternative contexts will be examined, and
the same criticism applies as to depth-first search.
There will be a lot of duplication of work as the same
local combinations of possibilities are examined;within
the context of different, but Airrelevant, higher level
choices. A similar duplication occurs in the storage of

the alternative contexts during the search.

1.10¢ The Relevance of Parallel Hardware.

A common criticism of artificial 1intelligence pro-
arams, as contributions to psychology, is that:they are
tailored to serial digital computers, whereas neurophy-
siological evidence shows that in the brain many activi-
ties occur in parallel. It has been claimed for exaaple,
(Dreyfus 1972, Weizenbaum 19765 that human abilities such
as inuitive thought and Gestalt perception depehd on
parallel, holistic processes which are qualitafively dif-
ferent from the sequential steps generated by a normal
computer program. These <criticisms are simply not
relevant to.one of the main functions of artificial in—
telligence programs, which is to investigate the suita-
bility of pafticular kinds of representation for particu-
lar tasks. Also, the difference in hardware cannot be

— A

used to rule out computer models, since any desired

parallel machine can be simulated on a general-purpose

digital computer.

There is, however, a core of truth in the objec-
tions. Within artificial intelligence it is accepted’
that different programming languages encourage different
‘programming Styles by making some operations (thé primi-
tives of the language) particularly easy (qusman &
McDermott 1972). It seems likely that the relative ease

F

of different basic computations will depend on the na-
ture of the hardware. So, unless efficiency and conveni-
ence are disregarded, different hardware, like different

languages, may encourage different programs.

=h

It is sometimes claimed that the higher levels o
organisation of a program are determined more by the na-
ture of the task than by the hardware. The history of
heterarchy however, shows that hardware considerations
can be relevant even to general organisational princi-
ples. It was. found that.it was very difficult to derive
a clean line drawing of some blocks from the mass of
grey—-level data préduced by . a éamera. Shirai (1973)
showed how higher—-level knowledge could be used to guide
line finding and his progfam was used to support the idea
that truly intelligent programs need rich interactions
between experts 1in different domains, rather than a
sequential, pass-oriented organisation. The application

of this 1idea to 1low-level vision was attacked by Marr

45—

(1975) yho argued that the enormously powerfui, parallel
hardware = known to exist in the brain, could produce much
richer symbolic descriptions about edges than convention-
al A.If programs, without invoking knowledge of particu-
lar objects. The dispute has not been fully settled, but
there seems no doubt that claims about the existing

hardware are a major ingredient of Marr’s case.

Ah early candidate for a useful computational‘primi—
tive which might be more efficiently implemented on
parallel hardware was aésociative memory. Willshaw and
Longuet—Higgins (1969) wenf beyond suggestive analogies
with holography and demonstrated an efficient method, the
assocliatiwve net, for associating pairs of bit-patterns so
that one member of a pair could be proddced in response
to the other. This technique has not been used in A.i.
programs, partly because of the heed to translate to and
from bit-patterns, but mainly because, given a serial
. digital computer, it is easier to use techniques such as

hash—-coding than to simulate a parallel machine.

Another candidate for an iImportant computational
process that might be more suited to parallel hardware,
is the problem, of selecting an optimal interpretation
from among a network of conflicting and co-operative hy-
potheses. The desire to show how this process could be"
decomposed 1into parallel interacting sub-processes was a
crucial consideration in the design of the relaxation

method presented in Chapter 3. This is a very different

46—

approach to first writing a slow, serial program and then
appealing to parallel hardware as a way of speeding it
up. Some programs written for a serial computer (e.g. a
breadth-first search) may, perhaps, be easily transfer—
able to parallel hardware, but the serial nature of many
programs makes it hard for them to use parallel hardware

effectively.

1ol Summary of Chapter 1.

The thread of the argument of this chapter may not
have been obvious, so it will be stated here without the

examples, elaborations and diversions:

The main problem in vision is to specify the types
of representations andAthe inferences and heuristics that
are_available to build the representation of a particular
scene, given a picture or image of it.- Disfegard for
these issues can lead to futile efforts like perceptrons.

Also, unnecessarily difficult search problems can be

C

created by wusing poor representations (Amarel 1968).
However, except in toy worlds, it is necessary to formu-
late tentative hypotheses, and important theoretical is-

sues arise about how to manipulate these. Sometimes
these issues can be side-stepped by using more knowledge,
but not always. Any complex visual system, especially
one dealing with messy data, needs systematic and princi-

pled ways of handling tentative hypotheses. So this be-

—47-

comes an issue in its own right.

Searching for consistent sets of hypotheses by
_'developing separate contexts may involvé unnecessary du-
plication in both time.and storage space. " For line la-
belling, a constraint propagation method, like that used

by Waltz (1972) or Fikes (1970) is much more efficient.

In complex worlds it is not possible to sngify a
grammar of allowable interpretations which rules out all
but one or a few global interpretations. The concept of

a good or optimal interpretation is necessary.

There are several ways of finding good global in-
terpretations., However they cannot handle the compiex
and unforeseeable trade-offs that may arise between dif-
ficulties of different kinds (e.g. missing line segments
versus unknown words in the Popeye domain). It would be
useful 1if we could find a principled way of making the
trade—-offs at run-time. Explicit numericai costs based
on probabilities provide ﬁhis. Some of the largest A.I.

sYstems for handling real data work this way.

Given numerical evéluation criteria, a branch-and-
bound search is the obvious candidate. However, the use
of separate coﬁtexts can be inefficient. It would be
better to represent constraints bétween hYpotheses expli-
citly, if this allowed a parallel, constraint—-propagation
method, like Waltz filtering, to be uSed. However, the

selection of hypotheses must be driven by the need for

— 48~

optimality as well as consistency, and it is not obvious

how to do this with Waltz filtering.

— 49—

CHAPTER 2

THE TASK OF SEEING SOME OVERLAPPING RECTANGLES

AS A PUPPET.

Figures 2.1 to 2.10 show, among other things, the

!

input and output of a computer program designed to find

the best puppet in a network of overlapping transparent
rectangles. The puppet may have some parts missing and
there may be some extra rectangles which are not puppet
parts. The best puppet is taken to be the one with the
greatest number of instantiated Jjoints betwesn parts, un-

less additional instructions are given.

2.1: The ease and purpose of the task.

By artificial intelligence standards the task is-

{0

simple one. 'The_dnly difficulty lies in defining how two
parts should be related so as to constitute én acceptabla
joint. Once this has been specified the search for the
best fit can be done fairly simply by standard Eecﬁniques
such as a branch~and—bound search (lillsson 1971) or =z
depth-first searcﬁ. The existing program, however, uses
a relaxation techniqﬁe for selecting the best global com-
bination from a network of rival, candidate part zand

joint hypotheses. This makes it considerably more com—

56

plex and probably slower than a conventional‘ search for
all the examples given. The point of the program is to
Illustrate and analyse the relaxation method in a simple
domain. It is argued in chapter 4 that for more complex
problems, especially with unreliable data and many layers
of interpretation, a suiﬁably modified form of relaxation
is much faster than convéntional search methods, espe-

cially if implemented on parallel processors.

2.2% Pictorial input.

Pictures are input on a graphics display terminal by
drawing some overlapping rectangles with the cursor. Two
sides of a rectangle are drawn and a program then com-
pletes it and gives it a single letter name. The names
and corner coordinates of the rectangles are stored in a

file. This file is the immediate input to the program.

2.2.1: The range of possible pictures.

Although it will happily accept parallelograms, the
program is only intended for, and has only been tried on,
scenes consisting of overlapping rectangles or near rec-

tangles. Any configuration of these may be used. Iso-

lated rectangles are simply ignored.

-51 -

b

FIGURE Z2.la:
The input to the progran.

I.hestsets

A1 TOF HEAD

Bl TOF NECK

C2 TOF TRUNK

03 TOF THIGH

E3 TOF CALF

BOT FOOT

TOF THIGH
TOF CALF

TOF FOOT

TOF URFERARM
TOF LOWERARM
TOF HAMND

TOF URFFERARY
BEOT LOWERARM
EOT HAND

NECK Bl
HEAD Al
NECK Rl
TRUNK €2
THIGH I3
CALF E3
TRUNK €2
THIGH G4
CALF HS
TRUNK - (32
UPFERARM
LOWERAM Ké
TRUNK ©2
UFFERARMN
LOWERARM N4

TR
u

FIGURE 2.lc:

FOOT

AT

FIGURE 2.1b:
A pictorial interpretation
of the program's output.

UM
FRERARM JL M
CaLF E3

c2

3 THIGH D3 G4

ooT Fi

HE
T4

CaLF

LOWERARM Kb

J1 HaMD L7

LOWERARM N2
M3 HAND 02

The actual ocutput of the program.

FIGURE 2.2a: . FPIGURE 2.2b: .

The input : Interpretation of output
bestsets

Al TOF HEAD NECK Bl

Bl TORF NECK HEAD a1l TRUNK 03

C3 TOF TRUMK MECK Bl UFPFER&ARM - THIGH 03
o3 TOF THIGH TRUNK C3 ol -

FIGURE 2.2¢: The actual output of the program.

FIGURE 2.2d: The nodes in the relational network of part and
Jjoint hypotheses which form the best set. The indentations depict

slots. The lines depict two-way links.

Pishownet s

Al TOF HEAD NECK 11

Bl OTOP NECK HEAD AL TRUNK C3

B2 OROT UPPERARM TRUNK C3 LOWERARM -~
ClL TOF LOWERARM UFPERARM — HAND D2
€2 TOF CALF THIGH - FOOT D

C3 TOPF TRUNK NECK Bl UPPERARM R2 THIGH D3
0l TOE - FOoOT Calr op

DE TOR HAND LOWERARNM C1

U3 TOF THIGH TRUNK ©3 CALF -~

FIGURE 2.3a:_'The complete set of candidate hypotheses found

- by the program when given the picture in figure 2.2a.

Yerwtointersret [h &s usrerarm imrortence=2713

D)

<\

o

potenls ‘ .
TOF HEAD MEDK -

BOT O UPFERARM TRUNK 3 LOWERARM -

TOF TRUNEK NECK — UPPERaSRM B2 THIGH 03
CTOF THIGH TRUNK 3 CalF -

3O D

RNy

-y
Cae’ N

FIGURE 2.3b: An instruction given as additional input, with the

resulting output, and its interpretation.

Al
Bl
ci
4
E4
F3
53
H2
13

TOF
EOT
BOT
TOF
EOT
TOF
EOT
BOT
TOF

H
I
b
HEADI ~ NECK Rl
NECK HEAD Al TRUNMK 1
TRUMK MECK =i UFPERARM T4 E4 THIGH F3
UFPERARM CTRUNK C1 LOWERARM ~
UPFERARM TRUNK 1 LOWERARM -
THIGH TRUNK €1 Callk -
FooT CaLF H2
CALF THIGH I3 FOOT G3
THIGH - TRUNK ©1 CalF H2

FIGURE 2.4a: A picture and the program's outpﬁi.

Fi
F2
F3
F4

F3

EOT
TOF
TOF
TOF

TOF

MECK HEAD Gl TRUNK CZ
UFFERARM TRUNK €2 LOWERARM -
THIGH TRUNK C1L CALF - ‘
LOWERARM URFPERARM C5 HAND G2
CaLF THIGH C6& FOOT G3

FIGURE 2.4b: The rival candidate hypotheses for F considered by

the program.

I3

ifotice that the hypothesis selected by the relaxation process

is one of the poorer ones in terms of its number of locally

possible Jjoints.

-
Dipy

T
i

ibestsets : o -
Al BOT TRUNK NECK Rl UFFERARM D2 F2 THIGH I3 K2

Bl BOT NECK HEAD €1 TRUMK Al

C1 BOT HEAD NECK B1

o2 TOF UFPERARD TRUNK Al LOWERARM E4

E4 TOF LOWERARM UFFERARM 02 HAND -

F2 TOF UFPERARM TRUNK Al LOWERARM G2

G2 TOF LOWERARM UFPFERARM F2 HaMND H2

H2 TOF HAND LOWERARM G2

I3 TOF THIGH THUNK Al CALF 44

J4 ROT CALF THIGH I3 Fooyr -

K2 BOT THIGH TRUNK Al caLF L4 l

L4 BOT CALF THIGH K2 Foar - !

FIGURE 2.5: A picture of an upside-dovwn puppét, with the program's
output. Unlike human perceivers, the program has no expectations
about orientation, so it finds this picture no harder than one of

an upright puppet.

Hprubointersret Dtrunk as ueright imrorteance=l11
Hretointereret Dthish as uerisht imrortance=1l

s
kS
A
?

l.bestsets

&2
&

Rl
ci
03
E3
F3
G3
Hi
iz
J3
Ki
1.3

FIGURE 2.6:

TOR
EOT
EOT
TOF
TOF
TOR
TOR
TOR
TOR
BOT
BOT
BOT

TRUNK NECK - UFFERaRM I2 K1 THIGH D3 F3
NECK HEAD Cl TRUNK - '

HE AT NECK Bl :

THIGH TRUNK A2 CALF E3

CalF THIGH 13 Foot -

THIGH TRUMK A2 CaLF E3

CAalF THIGH F3 FOOT H1

FOOT CalF 63

UFFERARM TRUNK AZ LOWERARM 3
LOWERARM UPFERARM 12 HAMO -
UFPERARM TRUNK AZ LOWERARM L3
LOWERARM LFPERARM K1 HANDI —

In addition to the picture, the program has been given

instructions to attempt to find an interpretation in which the trunk

and thighs are upright. It succeeds by finding an interpretation in

which the trunk and neck are not connected.

obhestsets

Al
Bl
c2
n3
E3
F3
3
Hi
i1
Ji
K4
l.&

FIGURE 2.7:

TOR
TOR
TOF
TOR
TOF
TOR
TOF
TOF
TOF
TOR

-BOT

BOT

HEAL NECK Bl

NECK HEADN Al TRUNK €2

TRUNK MECK 11 UFFERARM H1 J1 THIGH B3
THIGH TRUNK 2 eaLF E3

CALF THIGH I3 FooT -

THIGH TRUNK G2 CALF G3

CalF THIGH F3 FOOT -

UFPFERARM TRUNK CZ2 LOWERARM T1
LOWERARM UPFERARM HI HaMDO -
LOWERARM TRUNEK C2 LOWERARM K4
LOWERARHM UFPERARM J1 HAMI L&
HAND LOWERARM K4 A

A picture in which people see two puppets, and the

program's output, corresponding only to the best puppet.

F3

“h

I'switchattention (05);

Pobhestsels

L2
M3
M3
04
1
a1

TOR
TOR
TOR
EOT

TOF
TOR

TRUMK MECK P11 UFPERARM NS 04 THIGH M3
THIGH TRUNK L2 CALF -

UFFERARM TRUNK L2 LOWERARY -

UFPFERARM TRUNK L2 LOWERARM -

NECK HEAT Q1 TRUNK L3

HEAD MECK L

FIGURE 2.8: The output constitutes a "residual" interpretation

consisting mainly of rectangles which were uninterpreted in the

first interpretation (see figure 2.7). The "switch attention”

instruction gives added importance to interpretations of the

Previously omitted rectangles.

>
™~

FIGURE .2.9a: - A nonsense picture which has the same connectivity
graph as a perfect puppet containing no "accidental" overlaps.

The picture shows the importance of metric considerations.,

TAL BOT LOWERARM UFFERARM ~ HAND 7E2

?A2 BOT CALF THIGH ~ FOOT 7E1

FEL TOF FOOQT CALF 7A2

TE2Z TOF HAND LOWERARM ?A1

C1 BOT TRUNK NECK ~ UFFERARM G2 J2 THIGH D3
I3 BOT THIGH TRUNK C1 CALF E2 ~
E2 TOF CALF . THIGH DE FOOT -

G2 TOF UFFERARM TRUNK C1_ LOWERARM -

?HL TOF NECK HEADl ?I1 TRUNK -

?I1 BOT HEAD NECK 7HI

J2 BOT UPFERARM TRUNK C1 LODWERARM -

?K1 TOF NECK HEAD ?L1 TRUNK -

?L1 TOP HEADl NECK 7K1

FIGURE 2.9b: The output of the program when it is given the picture
above and allowed prolonged relaxation. The question marks indicate
indecision. The way the program reacts to nonsense pictures is

informative. It highlights the program's inadequacies as a model of

human perception.

Ld miad o R .
MMrutointereret i 8% hesd imrortasr
Meruetointereret o #s calf

3

ice=0,51;%
imgortance=0,573

é;
FT
&~ (A
—
TK vA
L — sy
j)
TH —
H)
¢

| sbestsels
a2 RBOT CALF THIGH - FOOT Rl
Bi TOFP FOOT CALF A2 .
Ci EOT TRUNK NECK - UPFPERARM G2 J20 THIGH D3
03 EBOT THIGH TRUNK C1 CalF E2
E2 TOF CALF THIGH 03 Foor -
G2 TOF UPFERARM- TRUNK 1L LOWERARM -
Hi TOF NECK HEAD I CTRUNK -
I1 BOT HEAD NECK HI1
J2 BOT UFFERARM TRUNK €1 LOWERARM -

FIGURE 2.10:

given with the picture in figure 2.9a, they break the deadlock

Two additional instructions are shown.

When these are

between equally good, partial interpretations seen in figure 2.9b.

The output of the program and its pictorial interpretation are

shown.,

2.3: Non-pictorial input.

Various kinds of instruction can be given about how
to try to interpret a picture. ‘The instructions always
have an associated number which indicates how important
it is +tc obey theﬁ»(any real number is allowed). The

types of instruction are:

l. Try to interpret a particular rectangle as a par-
ticular puppet part. The instruction may also indi-

cate which way up the part should be, by saying wheth-

er its proximal end (see below) should be at the top
or the bottom of the rectangle depicting it. A part
is ‘"upsidedown® if its proximal end is at the bottom

of the rectangle depicting it.
€.g. TRYTOINTERPRET [A AS HEAD IMPORTANCE = 11;
or TRYTOINTERPRET [A AS UPSIDEDOWN HEAD IMPOR-

TANCE = 0.513

2. Try to interpret a particular rectangle as some
part of the puppet. |

e.g. TRYTOINTERPRET [A AS SOMEPART [IMPORTANCE =113
If the 1importance is negative the instruction means:

Try not to interpret the rectangle as any puppet part.

3. Try to find a global interpretation (i.e. a con-
sistent set of local part and joint interpretations)
in which a particular puppet part is a particular way

up (only two orientations can be specified, thodgh

more could easily be allowed):

~52-

€.g. TRYTOINTERPRET [TRUNK AS UPRRIGHT IMPCRTANCE =
313

4. After the best global interpretation has been found
the program may be instructed to try for a residual

4global interpretétion which tends to <contain those
rectangles not included in the first interpretation
and which also'tends not to contain those rectangles
previously included. The importance of contaiﬂing or
not containing rectangles of the two types is given as
a parameter:

€ege. SWITCHATTENTION (0.3)3

Any combinétion of instructions may be given.’ The
effect is to alter the definition of what constitutes the
best interpretation. The basic default requirement is to
find as many compatible instantiated joints as possible
with an importance of one for each joint. The additional

instructions have fhe effect of assigning importances to
particular interpretations of rectangles of puppet parts.
If several instructions match the interpretation of a
rectangle as a pubpet part, then their importances are
added to get the importance of including that interpreta-
tion. The best puppet instantiation 1is the one whose

nts have the greatest sum of im-

ot

constituent parts and jo

portances.

~53-

2.4: Output of the best global interpretation.

When the relaxation process has finished there will
be a network of part and joint hypotheses which are re-
garded as correct. This network is output by showing its
part hypotheses, éach of which is specified by its nams
followed by its orientation, its type and the joints fil-
ling its slots. Thé names of the part hypotheses are

made by appending successive integers to the names of the

corresponding rectangles. Their orientations are two-

(¢9)

valued and depend on whether the proximal end is at th

top or the bottom of the depicting rectangle. (Ever

<

(V]

puppet part has a proximal end and a distal end. Tn
proximal end 1is the one anatomically closest to the top
of the head. The arrows in figure 2.1b indicate which is
which). The joints in a slot are specified by following
the'sloﬁ'name with the name of the related part hy-

potheses.

2.5: The puppet model

A perfect puppet consists of fifteen rectangular

parts having the following properties and relationships:

1. Fach part has a proximal end and a distal end. Thsz
proximal end 1is the one anatomically nearest to the

top of the head. The length of a part measured. along

the proximal distal axis is greater than its width.

1

2. The trunk is wider than ~any of the wupper limb

-5 4—

parts and each of these, in turn, is wider than its
connected lower limb part. Also the head and trunk are

wider than the neck.

3. The head is greater in area than the neck and the
lower 1limb parts are greater in area than their asso-

ciated hands or feet.

4. Anatomically connected parts overlap in thé right

way (see below) to depict a joint.

~The precise details of the puppet model cannot be
Jjustified in terms of human perception, but something
1

more than simple connectivity must be wused to excluds

cases like figure 2.9a.

2.5.13% Defining satisfactory joints.

Figure 2.12 shows some pairs of overlapping rectan-
gles which have been assigned a distal-proximal direc-

tion. Some pairs can plausibly be interpreted as depict-

I

ing knee-joints and others cannot. One method for def

it
Q

n—

ing these two classes is in terms of the way in which th:

W

sides and ends of the rectangles intersect, The examples
given, however, show that these intersections are rather
varied, and it is difficult to find a natural definition
in terms of them. It seems as If the 1intersections of
the edges are more the result of the way the rectangles
overlap than a defining characteristic of their relation-
ship. A simpler and more intuitively satisfactory way of

-B5—

T

e—</ | %

N |
/

FIGURE 2.12a: Some examples of possible knee —joints. The

arrows indicate the distal-» proximal direction. The thigh

is the wider of the two parts. Notice the variety of ways in

vhich the ends and sides intersect.

T T
TN q
F\A o \ a0

N\

FIGURE 2.12D:

Some unsatisfactory knee —joints.

articulaﬁing spatial relationships between fectangles is
to specify é set of zones in each rectangle, and then to
specify pairs of zones, one in each rectangle, which do
or do not overlap. Using this method, the examples given
in Figure 2.12 can easily be separated into satisfactory
and unsatisfactory knee joints on the basis of the zone
overlaps defined in Figure 2.]3; The use of zones rather
than edges to define spatial reiationships is a simple
example, in two dimensions, of the "space occupancy ides
referred to by Bradyvand Wielinga (1976). Paul (1977)
defines satisfactory relationships between parts of a
puppet in a similar'way. The necessary and sufficient
definitions of all the various joints in the puppet are
shown in Figure 2.13b.' These are not fully adequate be-
cause they are all or none. They do not allow for poor
but not hopeless joints. One way in which people are
more flexible (as perceivers) is that they will allow
some relations or proportions to be stretched provided
the rest are reésonable. The implications of this will

be discussed in Section 4.7.
2.6: Definition of the required output.

2.6.1: What pictures depict.

fihen we perceive the real world there 1s a clear.
distinction between how things are and how they appear to
be. We can make mistakes, and it is quite possible under

56—

PROXImL 5 DISTAL
PoLe |) PoL€
TRoxX AL DISTAL

EnD N
(0UARTER) Enp
PROX INAL DISTAL
/'//4 LF HA L F

FIGURE 2.13a:

assigned a distal —> proximal direction.

Six zones of a puppet part which has been

ciLF T’ﬂ&H OVERLAP?
LowER-ARM |UPPER-ARM
PE D E. hvst
P E. P.H. RysT vot
D. H. D.E. MusT noT
THIGH | TRUNK | pveripr?
PE. DoH | HusT
p.E. P.H st NoT
D.E. D. PolE | FusT Mot
NELK TRyNk |ovERLAP?
DE. PE. nvst
WHOLF D.H. |{HTusT NoT
PL. wWHOLE |MVST NoT
P=Proximal D = Distal

E.=End

Foor CALF |OverLap
or o
HAND |Lower-ARH -
D.E. WHoLE | NusT mver|
WHoLE P.H. 1657 MeT
UpPER-ARA | TRUNK | OVER 22]
PE. P.H. | Must |
P.E. D.H. Myst Vo™
DE. p. POLE |MusT NoT|
NECK HEAD |ovegipp?
DE. PE. PvsT
WHOLE D H. {rysT NOT
P.H. WHOLE |ITUST AOT
H.= Ha[f

FIGURE 2.1:L; Showing the definition of satisfactory joints

used by the program.

overlap.

The two whole rectangles are assumed to

There are also constraints on relative lengths,

widths and areas (see section 2.5). Hotice how the definition

of a knee-joint applies to figure 2.12a.

sultable circumstances for an object to consistently -ap-
pear to be something which it is not. The Ames Room is 2

compelling example. The same distinction holds for pho-

fete
W
|

tographs, but for pictures there is no such simple d

tinction between what they appear to depict and what

ot

-y

o
RS

©
|

actually depict. In some cases it may be possible tc d

t
roye
()]

cide what a picture really depicts by appealihg to

“
o)
U]

intentions of its <creator, the conventions of
picture-making process, or how the picture appears to
normal perceivers. For example, such appeéls may enable
us to decide whether’a given picture is an imperfect dep-
iction of a perfect wire-frame cube or a perfect depic—

tion of an imperfect one. For many puppet pictures tne

difficult decision between incomplete or imperfect despic
tion and depictions of the incomplete or imperfect, could
arise. It will be avoided bybassuming that the dspic-
tions are perfect. So missing rectangles mean that th=

puppet is incomplete, not the picture.

2.6.2: Basic definition of the best puppet

¥ihen there is nothing better in the picture people
happily find incomplete puppets. The program can <o the

f it is given some way of evaluating incomplets

same 1

uppets so that it can avoid poor global interpretations
pupp

when there are better alternatives. Currently, the best

)

puppet is defined as the one containing the gfeates-

number of satisfactory joints whilst satisfying the fol-

-57-

lowing constraintss
1. No rectangle can be seen as more than one part,

2. A part may be involved in several joints but no
part can have more joints than in a perfect puppet. A
trunk, for example, can not have three thighs, nor can

a calf enter into two knee joints. |

[IrN

3. No type of part can be instantiated more times
than 1t occurs in the model: 2.g. thers must not be

more than two thighs.

4. A Jjoint cannot exist unless both parts are instan-

tiated.

This definition produces results similar to the pef—
ceptions of a person who is experiénced in the domain and
knows what the task is. It is hard to assess how weil it
does because people seem to have the ability to learn to
see the picture in the way the program does. The
author”’s considerable perceptual‘ experience of the
domain, for example, may have evolved to fit the progranm
as well as vice- versa. An interesting feature of the
definition is that it allows disconnected instantiations
~as in Figure 2.6 . People can also see disconnzacted in-
stantiations but they notice that they are disconnected

which the program does not. Also if the best interpreta-

N

tion is severely disconnected, as in Figure 2.14, people
often notice just how a rectangle would have to be added
to unify the figure, and they may report what they see in

-58-

FIGURE 2.14: A puppet with a missing trunk. People notice that
the limbs are correctly related despite the absence of the trunk.

This is beyond the current program.

these terms. Such abilities are beyond the current . pro-

gram.

2.6.3: Modification of the definition of best.

The specific instructions which ﬁay be given as in-
put, along with the picture, can alter the definition of
the best puppet by attaching importances to the interpre-
tation of rectangles as pupéet parts, but the instruc-
tions cannot affect the four types of constraint that are
listed above. So, for example, the program cannot be
told to look for a one-legged or a three~legged puppet.
The instructions are alsc unable to affect the relative
proportions and the spatial relations which rectanglss

must have in order to depict a joint.

2.6.4: Equal rivals.

When there are several different optimal interpreta-
tions it is reasonable‘to demand that 'a program give'them
all. Thié could be achieved by addihg control facilities
~to the current program, but that would raise issues
beyond those which the orogram wasvdesigned to investi-
gate. So whén there are eqUal rivals the program is not
Vrequired to give a decisive output until given additionzl
specific 1instructions which favour one rival over/the

others as in Figure 2.10.

~50-

Chapter 3

THE PUPPET FINDING PROGRAM

The aim of this chapter is to describe the program
at a level above that of its iﬁplementation in a particu-
lar language, but in sufficient detail to enable anyone
familiar with the language to follow the code. First
there is a description of how the puppet task is reduced
to the problem of finding the best consistent set among

some logically related hypotheses. Then the principle

93}

behind a relaxation method for solving the problen ar

(84}

Q.

given. Finally, there are detailed examples of the metho

applied to various puppet pictures.

3.0: The two main stages : An overview

- The program works in two stages. First, many locally
feasible part and joint’hypotheses.are created, and the
constraints between them are exonlicitly represented.lﬁach
hypothesis 1is then assigned an arbitrary supposition
value, which can be interpreted as the extent to which
ﬁhe program 1s currently supposing the hypothesis to be

S To

O

correct. The values are iteratively modified so

satisfy numerical constraints, derived from the logic=zl

-50-

relations between hypotheses, whilst maximiziig the sup-
posed number 6f instantiated-joints. fihen this relaxation
process finishes, the hypotheses corresponding te the
best puppet will generally have supposition values of |

and the rest will have values of O.

3.1

The main data-structures and their creation

#“hen given a picture, theAprogrém forms three dif-
ferent but interlinked networks whose nodes represent
rectangles, hypotheses, and SUppositions (see below).
First itrcreates a data-structure for each rectangle and
gives it a list'of the overlapping rectangles and struc-
tures for the zones within the rectangle. Then it creates
part hypotheses, which are interpretations of rectangles
as puppet parts in particular orientations, and joint hy-
potheses, which are interpretations of the spatial rela-
tionships between rectangles as joints between puppet

parts.

The reason for having an explicit structure for a
joint; rather than simply giving each slot in a part hy-
pothesis a pointer to the related part hypothesis, is so
that the program can refer directly to the joint and can

associate other information with it.

When the process of finding candidate local hy-
potheses terminates, there 1is, generally, a surfeit of

hypotheses, and before the best consistent set of thess

~51-

can be selected, it :s necessary to instantiate the con-
straints between them. - To; do this, each hypothesis is
given an associated supposition node which contains its
importance (how important it is to include it in the fi-
nal interpretation), its supposition value (which arbi-
trarily starts at zero), and lists of the. constraints on
its supposition value which are derived from the defini-
tion of the best puppet by the method described in sec-
tion 3.8. | |

Figures 3.1, 3.2, and 3.3. show the three networks
built by the program for a simple picture. Notice that
constraints are not directly linked to hypotheses but
rather to their associated SUpposition nodes. This al-
lows & modular program in which the particular structures
used for hypotheses need not be accessed during the re-
laxation process for finding the best consistent set. So
the code for this process, can be independent of any par-

ticular domain.

3.1.1: Representing zones and computing their overlaps

There are six relevant,vrectangular zones In each
rectangle (see figure 2.13) as well as the whole rectan-
gle itself. The only'computétion in which zones are used
is. for deciding whether or not two of them overlap, and
so their rspresentation is designed to make this judge-
ment eaéy. cach zone is given pointers both to its
corner points and to its four borders or half-spaces.

-62~

FIGURE 3.l1a:

n n

A simple picture.

A Fields For 3ones
/ . |ovErRLaPone| PART
I‘E'l /\ M l
§
 |overamws| PRT
NANE |ReransiEs | HYPOTHESES
|
]] '
3 OVERLAPPING PART
NARE ,mmw'ta HYPOTHESE
"y T j/
. | PART
OVER LAPPING _

FIGURE 3.1b:
rectangles in the picture above.

pointers to all its corresponding'part hypotheses.

The

network of data-structures representing the

Each structure also has

FIGURE 3.2: The network of candidate part and joint hypotheses for
the picture in figure 3.1. (See figure 2.3a for an alternative
representation). The indentations represent slots and the lines
depict two way pointers. Every hypothesis also has a pointer to

its supposition node, and part hypotheses have pointers to the data-
structures for their rectangles.

SNICD]

FIGURE 3.3: The network of supposition nodes associated with the
hypotheses in figure 3.2. The prefix "Si:" is used to distinguish

supposition nodes from hypotheses. Supposition nodes have'pointers
to constraints which, if violated, tend to raise (double arrow)} or

lower (single arrow) their supposition values.

The only constraints in this network are on the sum of the values
for nodes corresponding to one rectangle(S), and on the relative

values for joints and their parts().

Each border has an on-side and an off-side and the zone
is the intersection of the four on-sides. Points actually

on the border are taken to be on its on-side.

A border can always be expressed in the form: a.x +
b.y 2> c where the é%pression is true for points on the
on-side. So if the border is represented by the coeffi-
cients a, b, c; it is easy to cohpute which side of it a
given point lies on. Using this basic test, a procedure
can quickly decide whether or not two zones overlap by
using the fact thét convex polygons are disjoint if and
only 1if one of them has a border which has the other en-
tirely on its off-side.. This fact is not inﬁuitively ob-
vious, so in appendix 1 a construction is given which
shows why there must be such a border if the polygons are

disjoint.

The way in which zones are represented and overlaps
are computed 1is not intended to have any psychological

relevance.

3.2: Creating the network of candidate hypotheses

Creation of a network of conflicting and supporting
hypotheses is the first stage in finding the best puppet.

This section describes in detail how the network is made.

Since the relaxation process does not itself create
new local interpretations, it is essential that all the
correct hypotheses for the best puppet should exist be-

-63~

fore relaxation starts. One way of achieving this is to
give each rectangle all possiblé part hypotheses and then
to find all possible joints. This method is costly even
for the puppet problem and would be worse for more com-
plex cases. It does, however, guarantee that hypotheses
will not be missed just because they are locally implau-
sible, like the hand in figure 2.7. A more economical
method, implemented in the program, is to start by’creat~
ing hypotheses for those recténgles which have locally
obvious interpretations. These initial hypotheses are
called nuclei, because they act as a context which sug-
gests interpretations for neighbouring, overlapping rec-
tangles. (Woods (1976) uses "seeds" in a sihilar way in a
speech understanding system.) These suggested interpreta-
tions can then, in turn, act as a context for interpret-
ing their neighbours, and so on until a‘whole set of re-
lated hypotheses is Tormed around a nucleus. In fact, Iif
the best puppet is connected and if it contains at least
one nucleus then all its hypotheses will be found, howev-
er locally implausible some of them may be. In figure
2.4, for example, rectangle G is given one ihterpretation:
as a hand as a result of C being a trunk nucleus. Even if

the best puppet has no nuclei it will still be found if

o

any of 1ts part hypotheses are created whilst developing

other nuclei,

The program simulates the simultaneous spreading of
interpretation from a number of independently discovered
nuclei by using discrete time steps. On the first step

-4

the nuclear hypothescs are made, and on each subsequent
step ‘attempts are made to fill the slots of the part hy-
pothesis created during the previous step. For each slot,
all overlapping rectangles are examined to find any which
are related in the right way to depict the required pup-
pet joint. Whenever a candidate joint'is found, the pro-
gram creates a joint hypothesis and also makes a new part
hypothesis for the overlapping rectangle, unless one al-
ready exists., New part hypothéses act just like nuclei,
and the process is continued until no new part hypotheses

are created,

In more sophisticated uses of relaxation (see sec-

tion 4.7), the process of growing candidate hypotheses is

(0]

<

integrated with relaxation rather than being a sepa

=
s}

first pass. An integrated approach is needed to avoid

many of the enormous number of hypotheses that would be

generated by a separate first pass in a complex domzin.

3.2.1: Types of nuclei

"~ The decision about what local configurations .should
“constitute nuclei involves a compromise between having so
many typss of nuclei that a great numbér of irrelevant
nypotheses are created and so faw that the best pugpst
doesn*t contzin any. The program uses the following thres
types of nuclei which are normally adequate (but see fig-

ure 3.4).

-655~

%
5

—

FIGURE 3.4: A picture in which there are no nuclei. The

program cammot find the obvious interpration.

I. A rectangle which only overlaps one other and
which 1s wider than it, is interpreted as a head if
the other rectangle is so related that it could be a

connected neck.

2. A rectangle théh only overlaps one other and has
less area than it, is given rival interpretations as a
foot and a hand if the two rectangles satisfy the.
overlap requirements for a lower-arm/hand or a

calf/foot joint.

-

3. A rectangle which overlaps three or more narrower
rectangles is givén an interpretation as a trunk if at
least one of the overlapping. rectangles is suitably
related to depict an upperarm, thigh or neck. Usually,
two rival trunk hypotheses with opposite orientations

will be created.

There should, perhaps, also be a neck nucleué for a
rectangle joining two wider ones. By stipulating that the
central rectangle should have a smaller area than either
of the other two, cénfusion with calves and lower—arms

viould be avoided.

A desirable feature of any set of nuclei, which
helps to give' it a reasonable performance over a wide
range of pittures, is that some nucleli (e.g. | and 2
apove) tend to remain, even when many rectangles are
missing, whereas others (e.¢. 3) are immune to extra ir-

relevant rectangles.

—66—

3.3: Numerical constiraints between supposition values.

Consider the logical constraint Pv4 and the nu-
merical constraint SP + Sibl where $p means the supposi-
tion value of the hypothesis p. The numerical constraint
appears to be a good generalisation of the logical con-
straint because it ruies out the same combination of in-
teger values ‘for p and q, (0,0). The adventages and
weaknesses of this kind of‘generalization are discuésed‘

in the following sections.

3.3.12 The function of continuous supposition values.

The purpose of using continuous supposition values
|
is to avoid explicit enumeration of combinations of the

truth values of hypotheses during the process of search

ing for the best consistent set. The aim in choosing the
numerical constraints between supposition values 1is to
ensure that iterative adjustment on the basis’of the nu-—
merical constraints leads to values of | for hypotheses

in the best set and O for the rest.

3.3.2: States of supposition values: terminology

Sets of supposition values which satisfy all the nu-

erical constraints will be called feasible states.

3

States in which all the values are | or 0 will be <called
integer states, and states in which some values are non-
integer will be called intermediate states.

-6~

3.3.3: Normalised linear combinations

This section is difficult and may be easier to
understand if read in conjunction with section 3.5 which

explains the same ideas using a spatial analogy.

Given some feasible integer states, a new state can
be obta;ned by multiplying each state vector by a weight
and adding Fhe results. The resulting state vector is a
linear combination of the original states. If the sum of
the weights is 1, the result is a normalised linear com-
bination. Figure 3.5 gives some examples. If the numeri-
cal constraints between supposition values are such that
all the feasible stétes are normalised linear combina-
tions of the feasible integer states, then the best in-
teger state can be found by hill-climbing in the space of
feasible states. An informal argument shows why this is
~so: If every feasible state is a normalised linear combi-
nation of feasible integer states, it can be expressed as .
a set of weights on these states. Also, the total prefer-
ence ,7} , of a state, S; can be expressed in. terms of

the total preferenées of the feasible integer states:
Ty = 2 we
t

where W; is the weight on an integer state and (; is 1its
total preferencé. Now, considér what happens to a feasi-
ble state if the weight on the best feasible‘ integer
state, B, is inéreased by 8 and the weight on some other
feasible 1integer state A, is decreased by<5 . Provided

- -68-

<<
{1

FIGURE 3.5a: V1, V2, and V3 are the feasible combinations of

truth values for p and g given the constraint psgq.

Pg r3

05V, = 05 05 -4V,

+ 07V, = 0,07 06V, = 0
+ 0 Vv, = 0,0 00V, = 0
vV, =05, V, = 0

il
<
=

FIGURE 3.5b: V4 is a linear combination of Vi, V2, V3. V5 is
normalised linear combination because the weights on the vectors
Vi, V2, V3 add to 1.

N
’ A«////lll!l!llll[lrl‘g((

e-ah .
4 Feasible A
y region
y J

TSQ/
/]
7
/
A
7
£ T >
0~ SF -

FIGURE 3.5c: The feasible region of supposition values for p and
q given the.constraint Sq 2 Sp which is the numerical equivalent ofl
poag. Triangles denote the feasible integer states, and normalised
linear combinations of these lie within the convex hull of the

triangles.,

no weights_have become more'thén 1 or less than 0, the
new state 1is also a normalized linear combination of
feasible integer states ahd hence it is a feasible state.
Its preference has increased by: |
5 (TB‘TA) |

where Tb, TA are the total preferences of the states B,
A. his is positive since B is better than A. So all
feasible states‘eXCept B can Ee improved by 1increasing
the weight on B and decreasing some other weight. Notice
that local maxima do not occur in this space, so the usu-
al objection to hill-climbing, that it gets stuck at lo-
cal maxima, does not apply., Figure 3.5 shows a simple ex-
ample in which a logical constraint has been used to

derive a numerical constraint on the supposition value

[

.

This constraint ensures that the only feasible states a

i
[¢]

]

M

normalized combinations of feasible integer states. h
guiding principle used in deriving numerical constraints
is to find the strongest inequality which is true of nor-
malised linear combinations (i.e. the inequalitijhich
rules out the most States).. By forcing the feasible
states to satisfy these conditions one can usually force
them to be normalised linear combinations. Cases where

this approach fails, and ways of handling them, are dis-

cussed in Section 3.7.

—59~—

_3.43 Probabilities and supposition values

The constraints on the supposition values of hy-
potheses are like the constraints on the probabilities of
events. The similarity of the ‘calculus of supposition
values to the caiﬁﬁius of probabi%ities suggests that
supposition values may'be interpretable as some kind of
probability. It would be wrong to interpret them as the
probability that thé hypothesis is objectively correct,
since a supposition value of | does not mean that the hy-
pothesis is right, but only that it is part of the best
consistent set. A mbre plausible candidate is, there-
fore, the probability that the hypothesis occurs in fhe
best ' consistent set. This interpretation may be satis-
factory when the values have all settled down to | or O,
but it 1is suspect as an interpretation of the changing
values during the relaxation procegs, pecause they change
without any change in fhe relevant knowledge or evidence.

-Even on the subjective interpretation of probabilities as

[0

degrées of belief, the belief should not change rapidly
on the basis of no new evidence. It seems that sgpposi?
tions and beliefs are different things, and this is con-
firmed by.the fact that strong temporary suppositions

need not imply strong temporary beliefs.

3.5: The hyperspace model.

Supposition values can be represented as distances
along the axes of a multidimensional space. A set of

-70-

values is then a point in the space, and a nurmerical con-
strainf corresponds to a hyberplane. To satisfy an equal-
ity or inequality constraint the point must lie on the
hyperplane or on the appropriate side of it. The points
representing the feasible states form a‘convex polyhedron
because they lie in the intersection Bf some hyperplanes
(equality constraints) and some half-spaces (inequality
constraints). The total cost (or preference) of a state
is defined as the scalar product of the cost vector " with
the supposition value vector. In spatial terms this
means that the relative magnitudes of components of the
cost vector define a difection in the hyperspace, and the
optimal feasible state is the one furthest in that direc—
tion. In géheral, this will be a vertex of the po-
lyhedron, The condition that the feasible states be the
normalised linear combinations of the feasible integer
states, is equiﬁalent to the condition that the po-
lyhedron defined by the constraint planes has only in-
teger points as vertices, so that it is the convex hull

of the feasible integer states.

3.6: Representing arbitrary logical constraints

Tﬂe examples given so far have only shown the numer-
ical constraints corresponding to simple logical expres-
sions. If the method is to be applicable to sets of hy-
potheses related by arbitrary constraints in the proposi-

tional calculus, it is necessary to have -an automatic

~-71-

procedure for "cashing" any propositional form. The fol-

lowing four observations show how this is possible:

\

1. Winen a hypothesis is true its negation 1is false
and vice versa. '~ This suggest that the supposition

values of a hypothesis and its negation should be re-

lated as follows:
where a means the negation of a.

2. Any disjunction corresponds to the constraint
that the sums of the supposition values must be at

least 1!

avbvece ::—>'Sa,+(ldsb)+5c>l

3. A conjunction of disjunctions can be cashed by

simply cashing all the disjunctions separately.

(wvb) A (cvd) = Sa+$ 21 ad 5452

4, Any logical expression can be put into conjunc-
tive normal form in which it becomes a conjunction of

disjunctions:

(og)Z(gvr) = (pvq) A (gvr)

Although this approach allows one to derive a set of
numerical constraints which rule out the same integer
combinations of truth-values as any propositional formnm,

-72-

it may not lead to the strongest set of numerical con-
straints. For example, the constraints may not correspond

to the convex hull of the feasible integer states.

3.7: Non-integer opfi%é

Consider three hypotheses a,b,c which have equal,
positive, unit preferences and are connected by the logi-
cal constraints: a/b, b/c, c/a where "/" means '"not

both'. The corresponding numerical constraints are:

5¢*$5él) Sb+SC\<I , SC*Sagl

The best feasible state, which has a total preference of

)
|3 occurs when:

Clearly, this is a case where the obvious numerical con-
straints yield a larder volyhedron of feasible states
than the convex hull of the feasible integer states. Fig-
ure. 3.6a shows the polyhedron and its non;integer vertex
(1:v-%) . Such “bad" vertices are a serious threat to
- the wuse of continuous supposition values unless some way
can be found to handle them. There are two possible times
‘at which this can be done. Stronger numerical constraints
- than those obviously implied by the logical constraints
can be sought when the constraints are made, and used to
ensure that only the normalised linear combinations are

feasible in the first place. Alternatively, the obvious

~73—

FIGURE 3.6a: The three constraint planes corresponding to a/b,

b/c, c/a and the non-integer vertex wnere they intersect.

FIGURE 3.6b: A cutting plane corresponding to the constraint
"at most one of a,b,c" which removes the non-integer vertex from

the polyhedron of feasible states.

constraints can be used initially, and whenever the best
vertex 1is non-integer, a stronger numerical constraint
(called a cutting plane) can be constructed to eliminate
it. This process of elimination can be continued until an
integer vertex is best. The second me§hod has the advan-
tage that only those stronger constréints needed to rule
out optimal bad vertices need to be found. "All other
discrepancies between the polyhedron of feasible states
and the convex hull of the feasible integer states are

irrelevant.

For the example above, the obvious stronger con-

straint is:

Sa+56+5c £

Notice that this corresponds fo the logical constraint
that at most one of a,b,c be true. This can be derived
logically from the three given logical constraints but it
does not follow from the three corresponding numerical
inequalities, because they lack the requirement that the
values be 1 or 0. However, the integer requirement can be
- used in conjunction with the numerical constraints, to

‘derive the stronger condition:

Sa *+ 5, £ |

Sp +Sc €

S #S8. <

A5, 425 +3 5. € 3
R A A S 1 -0

In any feasible integer state all values on the LHS of

(1) must be integer. Therefore, no otherwise feaéible in-

teger states are ruled out by:

Sq v S, v 5, <

There is a large literature on methods of deriving
cutting plahes to eliminate non-integer optimal vertices
(see Garfinkel & Nemhauser 1972). In particular it was
shown by Gomory (1958) that there are methods of con-
structing cutting planes which are guaranteed to elim-
inate all. non-integer optimal vertices in'a finite number

of cuts.

An alternative to the use of cutfing planes 1is to
brénch into two sub-problems whenever a bad Optimél ver-v
tex is encountered, by fixing one of the intermediate
supposition values at O in one case and at | in the oth-
er. The better of the optimal vertices of the sub-
problems is then considered and if it also is non=
integer, another intermediate supposition value is set at
1 or O to create two more sub—problems. Since the sub-
- problems must have worse optima than their parents, a
branch—and—-bound search is possible. Branching need only
occur on the best of fhe'remaining bad vertices and only
until some integer vertex 1is better. This bound may
prevent branching on many of the bad vertices. The com-
bined use of branching and cutting planes is also possi-

ble (see Garfinkel and Nemhauser p.388).

~75-

The particular‘examples’on which the final version
of the puppet-finding program has been tried have never
given rise to non-integer optima.. This may be due to.the
nature of the constrainté in the puppet domain though
this has not been proved. Since the problem has not ar—
isen, no programs have been written for handling Bad ver-
tices, though it is recognised that such programs may be

r

necessary for extending the use of continuous supposition

values to other domains.

W

‘o
(W)n
se

The numerical constraints in the puppet task

Section 2.6.2 lists four types of logical constraint
that may occur between part and joint hypotheses. The
corresponding numerical constraints between their suppo-

sition values are?

1. For part hypotheses corresponding to one rectan-
gles

Y s, <

P

This prevents a rectangle from having more than one

interpretation as a puppet part.

2 for joint hypotheses of the same kind which com—

pete for the same part p?

except for thigh/trunk or upper-arm/trunk joints which

are competing for a shared trunk, for which:

> 5.<2

j .
since a trunk can have two thighs or upper—arms.‘Thesé
constraints prevent a part (e.g. a calf) from being

used in several different joints of the same kind

(e.g.knees).

3. For hypotheses about a type of part that occurs n

times in a complete puppet:
2.5 &0
P o
This prevents for example, two trunk hypotheses from

~both being accepted.

4, For each joint hypothesisvj, relating part hy-
potheses p and g: '

This prevents joint hypotheses being accepted wunless
both the rélated part hypotheses are accepted.

A stironger type of constraint based on a combina-
{(2) and (4) above is:
5. For Jjoint hypothéses of the same kind compet-

ing for a part'p= EZj . é 5
‘ — P

-7

or JZsjézs/,

for joints competing for thigh or arm slots in a trunk.

The numerical constraints used for the puppet pro-

gram were designed-to be as strong a? possible in an at-

tempt to‘remove non-integer optimal vertices. For all the
examples tried they were successful in doing this. An
earlier version of the program used constraints of types
(2} and (4) separately, without combining them into type
(5) constraints. As a result, the optimal vertices were

occasionally non-integer.

3.9: The simplex algorithm

The use of continuous supposition values allows the
problem of finding the best consistent set of hypotheses
to be reduced to a linear'programming task. ‘There is a
standard technique for solving such problems on a digital
computer, based on the Simplex Algorithm. Pierre (1969)
expounds the basic aigorithm and variations of it which

increase efficiency in particular cases. Only the basic

strategy of the algorithm is explained here.

The problem is tov find the vertex of a convex,
multi—-dimensional polyhedron which is best, i.e. furthest
in the particular direction defined by the cost vector.
The strategy 1is to find any vertex and then to compare

£

its value (distance along the direction of <decreasing

cost) with the values of all the neighbouring vertices.

-78-

If none is better then the vertex is optimal, otherwise a
better neighbour 1is chosen and the process repeated.
Since each vertex is better than its predecessor, cycles
cannot occur and since the number of vertices is finite,
the process must térﬁinate after a finite number of

steps.

Neighbouring vertices are not too difficult to find.
A vertex 1is defined by the intersection of a number of
hyperplanes, corresponding to inequality'constraints. In
general a vertex in an n-dimensional space will be forﬁed
by the intersection of n hyperplanes, though 1in degen-
erate cases more planes may be involved. Neighbouring

"vertices are those which lie on n-=] of the original hy-

7

s

perplanes and on at least one new one. So by considering
possible additions and deletions to the set of ineguality
constraints that are exactly satisfied, all neighbouring

vertices can be generated.

Despite its guaranteed success, the simplex algo-
rithm has serious deficiencies as a model of how the best
consistent set of hypotheses might be found in a paralliel
computef. Although neighbouring vertices could be exam—
ined in narallel, the process of finding successively
better. vertices 1is inherently seriel. For a polyhedron
with many faces, the number of vertices ‘traversed, and
hence the number of serial steps, may be large. In fact,

ned is an

=

for the worst case, the number of vertices exan

exponential function of the dimensionality of the space.

—-79~

There is no polynomial upper bound. A further weakness is

that the storage required may be large.,

3.10: Assigning preferences to hypotheses

|

All part hypotheses have an initial preference of Q,
and all joint hypotheses are gi?en a standard initial
preference of |, in order to implement the basic aia of
finding an interpretation with as many instantiated
Joints as possible. Additional input instructions such‘
as:

TRYTOINTERPRET [B AS CALF IMPORTANCE = 0,513

are implemented in & very simple way. For each such in-
struction, the whole list of part hypotheses is searched
and any that fit the instruction have their preferences

incremented by the specified amount.

3.11: The abstract optimization problem and the type of

solution required.

The puppet-finding task has now been rzaduced to the
following abstract problem: given some hypotheses, and
logical constraints between them, and the importance cf
including each 'hypothesis in the final interprestation,
how can the best consistent set of hypdtheses be select-

ed?

o]
=
Q
o)
[
48]
=
[0}
3
L

.There are many ways of tackling this

80

some of them have already been discussed 1in Chapter 1.
This thesis 1is primarily concerned with examining one
particular method in which each hypothesis is given an
associated .real number, and‘the numbers are iteratively
modified to make the best consistent ;et of hypotheses
stand out. There 1is a danger, Vhen‘trying to develop a
technique of this kind, of evolving a set of unprincipled
number-juggling tricks which can be tuned to work
moderately well in a restrictéd domain, but which are not
clearly wunderstood and can therefore only be extended to
other domains by empiriéal parameter tuning. Furthe

disadvantages of unprincipled tricks are that it is hard
to characterise the set of domains for which the method
works, or to express the nature of the computation being
perforned in any more il;uminating way than by giving the
‘particular implementation details. MNarr & Poggio {1976)
discuss the importance of separating the nature of the
computation . from particular implementations. Although 2n
implementation constitutes an effectivér procédure and
therefore has advantages over a purely verbal theory,

simply describing an implementation may confuse arbitrary

implementation decisions with important principles.

The following sections are intended to provide a4

sound theoretical basis for the way in which supposition

i
2
-

values are adjusted by the relaxation operator, thou
. » ’

the precise details of the operator are not fully dater-

mined by the theory.

3.12: Two types of relaxation

There are various relaxation operatorS' which mnake
iterative adjustments to the supposition values so as to
converge on the best feasible state or on a state close
to 1it. Methods in which the values are modified one at a
time, and the updated state is used in deciding hoﬁ to
modify the next value, will be called serial relaxation.
By contrast, parallel relaxation involves wusing the
current supposition values to compute neﬁ values for all
the hypotheses, and then changing all the values togeth-
er. It is more suitable for a parallel digital computer,
and is closer to the behaviour of an anaiogue systeﬁ.
Both types of operator were tried for the puppet-finding
task. The parailel one Qas easier to analyse and needed
less iterations than a serial one working on a round ro-
bin basis, though clever scheduling might well 1improve
the serial operator significantly. Only the para lel

operator was used for the final version of the pregram,

and it is described below. : : NxN -

3.13: Two components of the relaxation operator

The relaxation operator consists of two componsntis.
One 1is defined to:ensure that the supposition values ar=s
feasible or nearly feasible, and the other adjusts then
to achieve ‘optimality. There 1s a mechanical analogy,

based on the. hyperspace model. One component exerts

!

strong forces on states which are outside the feasibls

~82~—

‘polyhedron‘and moves them towards it, whilst +the other
compoﬁent is equivalent to a constant weak force in the
direction defined by the preference vector. First, the
component for achieving feasibility will be described and
then ways of combining it with the oetimality component

will be discussed.

3.14: Achieving feasibility

The following discussion aSsumes, that all con-
straints are 1in the form of inequalities. Equality con-
straints can always be removed by using them to eliminate
a variable, or by simply representing then as two ine-
quality constraints: |

€.g. Aaih=n => a+b > n and a+b £ n

One measure of how much a state of the supposition
values violates a particular constraint is: the normeal
distance from the corresponding point to the corresponu~j
ing hyperplane if the point is on the infeasible side of
the plane, otherwise O.»Using this measure of violation,

the infeasibility of a state can be defined as:

L
= L
[=2 %V
j .
where Jj ranges over all the constraint planess, and »3 is

the amount by which the state violates the j’th con-

straint.
Clearly, I is zero within the feasible region and

. _83..

positive outside it. More significantly, the rate at
which I changes as the violation of a constraint J

changes, is given by:

wal = V.
V)
I can be thought of as a potential en?rgy function over
the hyperspace, and B%;} is then the force exerted at a
J
point by the j’th constraint plane. The equation above
shows that the force is proportional to the normal dis-—
tance of the point from the plane. This mechanical analo-

gy allows physical intuitions to be brought to bear on

the design of a relaxation operator for minimizing I.

One parallel relaxation operator for recducing the
infeasibility of a state inolves choosing each new suppo-
sition value so as to minimize the infeasibility, assum-
ing the old values for all the other suppositions. In
mechanical terms this amounts to choosing the new suppé—
sition wvalue so that the forces dus to relevant violated
constraints, assuming that the remaining suppositions
have their‘old values,.are in equilibrium. Unfortunate-
ly, this operator does not necessarily reduce the in-
feasibility. For states in which one supposition has the
new value and the rest have old ones, the infeasibility
is the same or less, but for the state Qith all the new
values it may be considerably higher, as Figure 3.7
shows. The reason is that several different supposition
values may be altered so as to reduce the violation of A
particular constraiht, and although . the alterations

—-84—

FIGURE 3.7: Suppose there are two.constraints:

x +y +2z&£1 and ¥ +y + 21 and the initial state is -
(0, 0, 0). Relaxation on any one dimension would
produce one of the feasible states where the plane cuts
an axis. Combining independent relaxation on three
dimensions, however, yields the state (1, 1, 1). By

| symmetry, (% ,-g- ,E’-) is the foot of the perpendicular to
the plane from both (0, 0, 0) and (1, 1, 1), so the final

state has twice the violation of the initial one..

separately reduce infeasibility, together they may
overshoot and cause other violations which outweigh the

reduction in the original one.

An alternative method is to find the direction, at
the current pointm ;n the hyperspac%, in which the in-
feasibility decreases fastest and to move a small dis—
tance in this direction. This is equivalént to changing
the individual supposition values in proportion to their
partial derivatives. In terms of the mechanical analogy,
the Tforces due to the violated constraints can be
resolved into components parallel to the axes.vThe resul-
tant of the force lies in the direction of steepest des-—
cent and so therefore does a vector whose components are
prOportionai to the forces along the axes. The magnitude
in the change of each suppositidn ?alue is determined by

a constant Kf : . | .
o t4] ¢ _ él;

L

syt
. t . ' F I N 4 ~ ‘L i o=
where §; is the value of §, at time t, and [T= [is

the valus of .QL at time t.

J5i

In the simplest possible case, when only one. con-
straint is being violated, and no other violations are
caused by moving diréctly towards the constraint plane,
the obvious value for K} is |. This has the effect of
exactly satisfying the constraint in one 1iteration (see
Figure 3.8). However, if several violated constraints are

involved, or if new violations are caused by the change,

_85...

oinl violalin
Le comstraint

7 v f(osBx /a/;
f’(a)'B:;

FIGURE 3.8: The force due to a single violated constraint
plane, and its components in the x and y directions.
Altering each supposition value by an amount equal to its

component of the force would exactly satisfy the constraint.

'‘a smaller value of Kf may. be needed to minimize the
reduction in the infeasibility. It is hard to computs
the optimal value of Kf ,» partly because of the interac-—
tions between alterations of different supposition
values, and partly because changes may activate previoué—
ly satisfied constraints. However, tﬂe following th=soren
shows that for any particular set of constraints there is
some finite value for Ky which ensures that thz in-
feasibility is always decreasea by a significant propor-

tion.

Theorem

For any finite set of constraints which allows some
feasible states +there 1is a finite value for kj. suzh
that moving a distanceﬁf%%.from any infeasible point 2
in the direction of steepest descent at P, decreases I oy

2 ‘ ‘
at leastﬁkf(%where [, is the distance along a line in the .
¢

direction of steepest ascent at p.

Proof:

The proof depends on showing that there is a limit
to the rate.at which d}éﬂ can decrease, so that & sufii-
ciently small step cannot move the state past the point
at which d%él changes sign and the infeasibility starc<s

! 2
increasing again. By definition: Z = ;;'ETKG

.4l dv)
..Z*Z““%:V)Z"[d }J:ijs@j

1t

-86—

$ line with

jVCLdiEAt =hn !

/

!

FIGURE 3.9: Showing how dl/gL changes with L « The
slope changes by a discrete amount whenever a constraint
plane is crossed, The effect of a move of — %; Cl{ékl
from a state S, is shown. BEven if dl/g[had its maximum
gradient of m (indicated by the dotted line through S,)

the move could not reverse the sign of d;ﬂit . The'
reduction in the infeasibility is the area under the curve
between S; and S,. This is at least the area of the shaded

triangle.

where BJ is the angle between direction of steepest

descent and the normal to the j’th constraint plane.

iy 2
100 Z 05”0
)

. 2 . '
For each constraint plane, cos . is at most one s, SO 1

Hence:

weak upper bound on dn;ézél is therefore m, the number of
constraint planes. This corresponds to the case where the
constraints are all violated and all‘the corresponding
planes are normal to the direction of steepest ascent,
Generally, the maximim value of dﬁ%gtl will be much

smaller than m.

l . .
Now suppose K =1, so that the size of the movs in
t b P . . L dl .
he direction of steepest descent is ;> == Figure 3.9

il dl -

shows that T7 cannot reverse its sign as a resuli of
al .
such a move, Also, the decrease in' I is at least the area
Cen e Ao (T2
of the shaded triangle, which is ;7; .

m

3.15: The speed of convergence on a feasible state.

80
n
[y
62
ot
6]

Figure 3.10 shows that in some cases the fe

IS
..

O

[N

‘»«‘J

[
|

1=ts

region may never be reached. towever, if the infeas
ty is reduced by at least some constant proportion on

n be

joh}

each iteration,' it will decay exponentially and ¢
reduced to any finite level in a finite number of itere-
tions. The theorem above shows that there is a value for
K which ensures that the infeasibility decreases by at
teast L (AL)+ on each iteration. So provided (.‘g)'z) cl

Am dl - 'éf

feasible
fﬁ?LOh‘

FIGURE 3.10: If an infeasible state, S, violates two constraint
planes equally, the resultant force will be towards, V, the
‘intersection of the planes. Unless Kf is large enough to make
the state feasible ih one move, the same situation, but oa a
smaller scale, will occur after each move, and the infeasibility
will never reach zero. The expression for the resultant force
shows that by making 9 » the angle bstween the planeé,v
sufficiently small, the resultant, for any given violation,

can be reduced indefinitely.

where ¢ is some finite constant, the infeasibilty will
decrease by at least 44{W7on each iteration and so there
will be a lower bound on the rate of exponential decay of
the infeasibilty. Figure 3.10 shows that the constant c
may be made indefinitely small by choqsing opposed con-
straint planes which are sufficiently close to parallel.
For any given set of«constraints, however, there will be
a most closely VOppOSed .pair of planes and these will
presumably set a lower bound oﬁ c, though I have been un-—-
able to discover an expression for this bound in terms of
the conétraints. (Parallel opposed planes are ir-
revelevant since 1if there are any feasible states thare
can be no infeasible ones which violate both planes). As-
suming Athere is & .lower bound on ¢ it can be comoined
with the conservative value of Jﬁ; for kjﬁ to give =2
very conservative lower bound to the speed of convergence
for any given set of constraints. I cannot see how to es-
tablish a realistic estimate of the spsed other than by
empirical observation. Similarly, a suitasble wvalue for
Kj. rather.than a conservative lower‘bound,'can be found
by observing the behaviour of the system for any particu-

M 4.

lar problem. Small values cause slow convergence but

1

large ones cause oscillations which nay be d nt. In

(S
®

ver

e}

the puppet program a suitable vélue‘was found empirically
and the same value was used in all the examples, though
it would have been possible to optimize K}: at run tinme
by monitoring the changes in infeasibility and altering

K appropriately.
f pprop

3.16% Achieving optimality .

Using the mechanical analdgy, suppose that in addi-
tion to the forces caused by constra;nt.violations, there
is a constant weak force in the direction of the ‘pfefer—h
ence vector. A simple example of;the behaviour which
results is shown in figure 3.11a. Notice that the systenm
converges on a point which is near the best vertex and
Jjust outside the feasible region. Adding a force 1in the
‘direction of the preference vector is equivalent to. ad-
ding. to each supposition a force proportional to the
preference of the corresponding hypothesis, wheres the

constant of proportionality K, is 1 if 2 unit preference

[sulii =

has the same affect as a unit violation of a constiraint

plane normal to the axis defined by the supposition.

Increasing the value of K}, increases the speed of

3

he equilibrium poin

ct

convergence but it ‘alsq makes t
furthef from the‘best vertex. Figure 3.12 shows the ef-
fect of different values of KP on a particular puppet
problem. A good practical strategy'usedifor the' examples
in. Chapter 2 is to start with a large value for KP

which gives rapid convérgence on roughly the right re-
gion, and then to lower~KP to obtain slower convergence
on a point cioser to the‘best vertex. For the pﬁppet
task, the values to be used for kP vere determinad in
ad&ance (see section 3.19), rather than 5eing dynamically

controlled at run time.

-89~

bésf verlex

easible
ffjioh

[

frgferehze
V{cfor

FIGURE 3.11a: Showing how the state moves from S to the

equilitrium state.T,under the combined influence of the

preferences and the violated constraints.

best verfex

an;iﬁle
ffjioh
50 ?r{ferehce

V@ctar

FIGURE 3.11%b: VShowing how the speed of convergence is

increased by magnifying the forces due to the preference
vector. Notice that the equilibrium state is further from

the best vertex.

Pshowconversernce (0, 4)8 |

C3 U3 BL D 02 at
AL BL B2 C1 C2 C3 0 N2 03 03 B2 03 02 Ci Ei
S0 0 0 0 0 0 0 0 0
4% 52 47 34 34 1 389 35 486 40 40 H1 4S5 46 Fé
87 79 64 33 33 77 IH 35 46 BH 84 90 4% 49 94
PP B7 44 26 286 BY 27 27 82 99 91 99 41 a1 99
99 B4 &6 23 23 90 24 24 BE 99 93 99 38 33 99
PF B6 &6 22 22 91 23 23 84 99 93 99 37 37 99
P9 B& 67 22 22 9L 23 23 BS99 93 99 37 I7 99
929 B &7 22 22 91 23 23 846 99 93 99 I 37 99
P¢ 8BbH HF 22 22 9L 23 23 8SH 99 94 99 IF 37 99
PP Bb& 47 22 22 91 23 23 84 9P 94 99 37 37 99

22
P9 B6 467 22 22 91 23 23 86 99 94 99 37 37 99
99 8& 67 22 22 V1 2T 23 85 99 94 99 37 37 99

FIGURE 3.12a: Each row of numbers shows the supposition

values (X 100) for the part and joint hypotheses for the

picture in figure 3.la. The values are printed on every
tenth iteration, except for the final row which is the.
equilitrium state found by continuing for 250 iterations.
The headings indicate the identity of the hypotheses.
Joints have a double heading giving the names of the two
related parts. For formatiing reasons, only the integer

parts of the numbers are shown and 100 is printed as 99.

The values of the coefficients were: K? = O
Kf =0-3 . The remaining coefficients (see below) were

both zero.

showeconvergenca Q.2
C3 03 BL i w2 al
Al BL B2 CL C2 C3 D1 02 03 03 B2 C3 €2 Ci
¢ o0 O 0 O 0 0 0 0 0 0 ¢ 0 0
21 26 23 18 18 27 18 18 23 30 30 30 23 23
48 32 50 33 Z3 50 34 34 446 H4 54 56 40 40
68 64 56 30 30 42 31 3L 86 66 67 LY 38 38
80 72 86 26 26 A9 27 27 &4 T4 89 77 34 34
87 77 53 22 22 7W 22 23 72 81 6883 30 30
3 82 49 19 19 B2 20 20 79 88 44 8 27 27
8 BR 44 146 16 88 16 16 85 ¢4 60 94 24 24
29 91 40 13 13 93 13 13 91 99 55 99 21 21 99
99 92 37 11 11 94 12 12 92 99 852 ¢9 19 19 99
e @2 A6 11 11 95 11 11 93 @9 50 99 18 18 99

DN
P3PS B D

=
o0

N
2 &

P9

3
3
4
U

5 11 11 935 11 11 93 99 49 99 18 18 99

FIGURE 3.12b: As in figure 3.12a, but with the value of Kp

halved. Notice that the number of iterations required to-

approximately reach the final state is doubled, but that
the equilitrium state is half as far from the optimal

‘integer vertex.

Lshoweconversenoe (0. 139
: ' CECE Bl ool D2 Al
Al BL OR2 CL C2 C3x 01 02 03 03 B2 03 G2 LB
¢ 0 0 0 0 O 0 0 O ¢ 0 0 0 0 0

10 13 11 9 & 13 ¢ 9 11 1% 1% 1% 11 1
24 26 25 19 1 26 19 19 25 .28 28 28 21 21
37 F9 OAG 2¢ 2R 40 29 29 38 A1 41 41 31 31
3

3

50 51 90 31 3L 49 31 31 4% 50 53 92 35

ooEney

3 P I PO

59 57 B3 28 28 5% 29 29 951 b6 98 59 32 32 61
b !

65 60 B2 26 26 5% 26 26 5H 61 5P 63 30 3G

&8 63 H1 24 24 462 24 24 460 4G U9 66 28 28 49
71 o646 B0 22 22 6% 22 22 63 &8 57 68 26 26 71
73068 47 20 20 48 21 21 &7 T OGS 7L 24 24 74
76 71 45 19 19 71 19 19 0 74 0GR 74 23 23 77

99 94 17 9 597 6 94 99 24 99 ¢ 9 99

FIGURE 3.12c: Halving Kp to 0.1 again halves the distance of

the equilibrium state from the optimal vertex, but doubles the

time to reach equilibrium,

3.17: A method of increasing the convergence sp eed

When kF is small and the best vertex is only -
slightly better than some other one, the supposition
values tend to change very slowly.vFigure 3.11la shows an
abstract example in two dimensions and Figure 3.12c shows
a real puppet example. The reason for the slowness 1is
that the preference vector is almost normal to the direc-
tion in which the state needs to move if its to improve
without increasing its infeasibility. Under such cir-
cumstances the state moves in small steps in a roughly
constant direction. If the steps are made to depend not
only on the currently active forces, but also on the pre-
vious step, it is possible to make them increase steadily
in size when the supposition values are moving in a con—
stant direétion. So the formula used to determine the

next move, [Mts is:
My = Kj'(kf~ﬁ- ¥ lﬁ) t oKy My

where il is the preference vector, V¥ is the resultant of

all the violations, and Cit is the previous move.,

The effect of the term containing Zii is to give the
system a simple kind of memory so that each move denends
on the historyvof previous moves. The forces exerted on
the state at time t contribute to each subsequent move at
time t+n , but by an exponentially decaying factor of

n
kfd (assuming kd <t). When kf' is small and kg:[the

system behaves as if the state has inertia, so that once

-90~

it has been made to move it can only be stopped by oppo-
site forces. This 1leads to oscillations which may be
divergent for K; > | but which are damped for Ke<l.o A
value of 0.8 was found to significantly reduce the number
of iterations required in examples of{the puppet problem
without causing other problems. Indeéd, the introduction-
of }<d, may actually reduce oscillations caused by a high

value of Kf: as figure 3.13 shows.

3.18: The method of selecting the final set of hypotheses

hen the system is nearing its equilibrium point,
the supposition values will generally be near | or O if
the optimal vertex is integer and KP is small 'eﬁough
Tfor the equilibrium point to be near it. One ni

simple threshold of 0.8, say, and chocse the h

3
O
oF
—
o
0
o]
0

with a higher supposition value as the best set. However,
therevis no guarantee that the set will 'be consistent,
since one of the high values may only be allowed if
several of the‘low values are not zero. For example the
constraint A £ B#CH+D+E is satisfied by A=0.8 and

B=C=D=E=0.2. An alternati?e to thresholding is to intro-

duce small extra forces which pull high values towards |

[

and low values towards O. If the eguilibrium point]
near an integer vertex, then small extra forces will
cause relaxation to actually achieve an integer state

and, provided the extra forces are too weak (0 cause a

significant constraint violation, the final state will be

-0~

CX C3 B1 D1 02 al
AL BL B2 C1 C2 C2 Dl 02 03 03 B2 C3 C2 €1 Rl
P9 96 1T & b6 VTP 6 L 9H 99 24 99 8 P
29 96 17 G5 97 5 8 95 99 24 99 29
Qe Q6 17 997 6 & 6 99 24 99 29
FA I R a7 G 5 9s 99 24 99 P9
PP 96 17 o P75 5 86 99 24 99 ?9
P9 96 17 G997 & 6 R 9P 24 99 99
P9 96 17 997058 96 99 24 99 99
e 98 17 997 6 6 REH 99 24 99 EAS
P9 96 17 5 85 97 5 9 95 99 24 99 29
99 946 17 5 G5 97 5 85 946 99 24 99 99
e 96 17 O 5 97 585 96 99 24 99 9

LECRUNERL R
o000

o8 o0 o o

NG00 N0

FIGURE 3.13a: A stable state in which the large value of

0.7 for 5f does not cause problems because K also is large
(0.8) and therefore smoothes out rapid oscillations.

KP = 0.1 as in figure 3.13c.

L3 C3 Bl 0L D2 al
AL BL B2 C1 C2 CF DL N2 03 03 Rp2 C3 C2 C1 mi
9P Qs 17 5 5 97 5 5 946 99 24 99 & 9 Q0
e R L7 F G 97 O H 98 ve 24 99 P9

5097 0505 B6 99 24 99
& 97 b6 6H PH 99 24 99
4 97 4 4 96 99 24 99
798 8 g ¢y 9w 24 99
294 2002 94 99 25 99
12 99 12 12 99 28 24 97
289 2 289 99 25 99
& 99 6 6 PP 9L 22 88
P9 88 11 L 24 1 1 %4 98 29 95 1
2o 99 28 11 927 11 11 928 99 18 95
9 85 14 3 3 BY 2 2 90 ¢ 20 99
e 99 2 4H &6 PP 4 6 ve 82 21 82
9 @7 12 1 1 %4 1 1 w4 99 28 89
e 99 28 13 13 946 13 13 89 928 20 94

99 Q5 17
9% 95 17 .
9 95 17
9 @7 18
QY 95 17
9% 98 g
9% 91 15
PP 99 22

99
99
99
99
99
0%
99
98
99
96
99
92

?9

g4

-t

s
SNSRI A O W OG0

[s
Bk NP RS RIN D O LR

P s
o O LI O 00 0 -

band
sy

RS

-
SR RN
—
Tl O

FIGURE 3.13b: When Kd is reduced to 0 oscillations start
because of the large Kf’

consistent. The last minute flips from low to high (or
vice versa) which cause problems for thresholding are
preciéitated by forcing the other values to f or 0. The
magnitude of the extra force on a supposition value, S;

is determined by the coefficient le in the expfession:

Extra for'ce‘“:]k,\ ($; - 05)/

3.19: The final form of the relaxation operator

When all the above modifications are incorporated,

the expression wused to compute a new supposition value
Shl '

3

is:
SiM:,Szt PRy (KP'PL'+ Z‘ﬁ‘“@f + K, (57-0)
: |

+ Kc((S‘-t _ Sjt«l)

{_
where §; is the i’th supposition value at time t, Pp;

{
is the preference for the i’th hypothesis, V3 is the
violation of the j’th constraint, and coséjz is the angle
betweén the normal to the j’th constraint plane and the
axis defined by the i/th supposition value (the angle is

90 degrees for the constraints not involving the supposi-

tion value).

If the new value for §; is outside the range 0 to |

it is rounded up or down accordingly.

For the examples in Chapter2, 50 iterations were
used with the values of the coefficients set as shownst

- D

KP Kd Kf KA Iterations
0.4]0.5]0.3| o 10
0.2(0.5/0.3] o 10
0.110.8/0.3| o | 10 ,
0.1(0.8]0.3 0.1 20 |

Appendix 4 shows, for the examples in Chapter 2 how the

supposition values of the hypotheses changed during re-

‘laxation.

._.93..

Chapter 4

THEORETICAL ANALYSES OF RELAXATION, AND SOME
POSSIBLE EXTENSIONS.

This chapter starts by analysing what 1s happening
during relaxation. Comparisdns are made with search
methods in which partial solutions are formulated expli-
citly, and there is a discussion of how the time taken by
relaxation depends on the number of hypotheses. However,
the "technicalt problemé of achieving rapid convergence
on a state sufficiently close to the optimum, and of re-
moving non—-integer optima have not been fully investigat-
ed. Tﬁe fact that the puppet procram works 1s a start,
but more theoretical analysis is required. This may prove
fruitful because the linear programmning formulation not
only makes the relaxétioh.operator easy to understand but
also facilitates analysis of the effects of'modifying the

basic operator.

Later sections discuss. ways 1in which relaxation
need§ "to be extended to be applicable to more complex
nroblens. A recurring theme is the need to integrate the
pfocess of creating hypotheses with the process Qf
selecting betwWween them. A major weakness of simple L.P.

relaxation 1is its separation of these two processes into

distinct phases so that the selection performed by relax-—

-0d4-

ation 1is wunable to guide hypothesis creation. The
development of an integrated system for an extended ver-—
sion of the puppet task is discussed towards the end of

the chapter.

4.1: The avolidance of Explicit Enumeration

The number of feasible combinations of hypotheses
is, generally, an exponential function of the number of
hypotheses, so that, for large problems, exhaustive ek—
plicit enumeration 1is out of the question. The use of
continuots supposition values allows infermediate states,
which can be thought of as normalised linear combinations

of many different integer states, and whan an intermedi-

ate state is modified the system is typically moving to-

)

ct

wards a very large number of integer states and away froa

wn

many others. Thus, particular combinations of hypotheses
are dealt with implicitly, which gives a potentially ex-

nonential saving in space or time.

4.2: Decomnposition into Interacting Sub-Systems

[3)]

Perhaps the most attractive feature of L.P. relax
tion is the way in which it is naturally suited to
parallel hardware. FEach supposition value and each con-
straint c¢an be given its own processor thus achieving 2
linear but large saving in speed over a serial system. Of
course, there are still problems about how to set up tnhe
configuration of processors and the interconnections

-0h5—

-

needed for a specific task, but the way in which the
processes should interact once they have been sef up is
clearly specified by L.P. relaxation. The space required
is only a linear function of the number of hypotheses and
constraints because explicit enumeration of combinatioﬁs
of hypotheses is avoided. By contrast implementing a
breadth~first search on parallel hardwgre,‘ is simply =

way of trading a combinatorial explosion in time for one

in space.

It is interesting to try to analyse the whole system
in terms of sets of hypotheses which have dense internal
connections but which are relatively sparsely connscted
with one another. In an extreme case, for example, theré
might be two' independent sets, and given parallel
hardware, the time to reach equilibrium would then bs ths
longer of the times for each set separately. Notice thet
for a serial depth-first or breadth-first search the com-—
bined time is the product of the separate times. Of
course a serial search could be modified so that it First
checked whether there were two.independent sets, and it
so performed two separate seérches. IT, however, the ssts
are largesly but not completely independent, there ’is no
‘simple way of using the near—indepehdence in a conven-—
tional search. An interesting simple case 1s when twd
subsystems are linked by constraints that allow a com-
bined optimum which is simply the combination of the op~

tima for the separate subsystems. If the linking con-

straints rule out combinations of independently feasible,

—~QK—

near-optimal states of the subsystems, then the whole
system may converge faster then either subsystem alone..

Figure 4.1 shows an example of this effect.

There is a way of viewing the interactions between
subsystems which helps to clarifyi the relationship
between L.P. relaxation and a technique known as dynamic
programming (see Pierre 1969 for an exposition). In L.P.
relaxation, each subsystem can be seen as optimising 1its
own internal state, subject to the boundary conditions
imposed by those other supposition values which are
linked to the subsystem by constraints. A subsystem ex-—
erts pressure on its current boundary conditions tending
to change them so as to allow a higher optimum for the
subsystem. In dynamic programming, & table or function is
created for,é subsytem, which gives its optimum internal
state for each possible combination of boundary condi-
tions., This 1s the only information about the subsystem
which is of relevance to the determination of the global
Optimum. Dynamic programming works by expanding the sub-
system (incorporating new hypotheses), and simultaneously
modifying the associated -table or function. When the
Asubsystem has engulfed all the hypotheses, there will
only bhe the null boundary condition, and its associated
optimal state will be the solution. Dynamic programaing
is particularly effective if subsystems have simple Soun—
dary conditions, for then the tables or functions are
simple. In a puppet task, a subsystem containing about

half the hypotheses will, typically, be linked by con-

07~

Prealax{(50,%5) 5 Irelav(50:5) 3

A B C nE F

0 0 0 0 0 0
50 22 0 24 22 0
89 34 1 49, 45 0
99 25 7 61 54 0
99 23 & 63 53 0
99 22 5 64 510
99 20 4 65 50 0
9% 19 3 b6 4% 0
99 18 1 48 48 0
99 17 0 69 46 0
§9 15 0 70 45 0

FIGURE 4.la: Showing the speed of convergence for two
independent sets of hypotheses {A,B,C} and {p,2,7} .

Fifty iterations are shown with printing every fifth iteration.
The constraints are AABAC and DAEAF. In numerical form
these are S5, + S -1£S¢ and Sp + S -1{S¢ . The
preferences for the set {A,B,G} are (2, 0.9, -1) so the best
feasivble state is (1, 0, 0) with (1, 1, 1) a close second. For
{D,E,F} the preferences are (1, 0.9, -2) giving an optimum. of
(1, 0, 0) with (0, 1, 0) a close second. ‘

) .y
Pralaw(G0eh)s

v E F

A R -

0 O 0 0 0
41 22 33 22 0
75 41 70 A3 0
86 37 a0 38 0

{

0

0

0

2

24 30 3 88 31 0

99 22X F 95 24 0

99 19 1 98 19 O

99 146 0 99 16 0

99 1% 0 99 15 0O

99 15 0 99 15 O
O

7
g 15 QO s O

FIGURE 4.1b: Showing the faster convergence when there are
linking constraints: Sp=5p , $5=S; , S.=Sg .
The best feasible state is then much better than its nearest

rival.

straints to many others. The boundary conditions ére»éil
the feasible combinations of truth values of these other
hypotheses, which may be a large number. Relaxation
avoids this explosion by avoiding explicit enumeration of

the possible boundary conditions of a subsystem.
|

4.3: The Time Taken to Reach Equilibrium

An important factor in defermining whether L.P. re-
laxation 1s a good search method is thevnumber of itera-
tions reaquired to reach the equilibrium state. The puppet
examples have few enough hypotheses for serial s=2arch
techniques to be relatively quick, but as the. number of
hypotheses increases, the time required for these methods
increases exponentially. By contrast, it will be shown
that the time required for relaxation, using par=zllel
hardware, is indepeﬁdent of the number of hypotheases,

given certain reasonables assumptions.

The puppet examples (appendix 4) show that much of

the time required to reach equilibrium is spent in cresec-

}

ing towards the optimum state and away from a very dif

ferent integer state with a slightly lower score. The

)

reason progress is so slow is that the state 1s movin

W

“parallel to an edge which is almost normal to the prefer—
ence vector, so that the componenent of the preference
vector in the direction of motion is very small (see fig-—

ure 3.11&).

As a first step to analysing how the time depends on

—-08—

éhe number of hypothcses, it will be shown that the time
i1s related to the rate of travel along the ridge which is
most nearly normal to the preference vector. Let us call
the direction of the preference vector "vertical". The
optimal feasible state then corresponds to the highesﬁ
vertex (the peak)., The relaxation process can be divided
into two stages. First, the state is made roughly feasi-
ble, and then it moves to a point near the peak, either
by going through the interior of the polyhedron or by
staying Jjust outside it and moving roughly parallel to
its surface. The first stage, achieving near-feasibility,
may not be necessary, and even if it is, it is generally
relatively‘qﬁick.compared with.the second stage. So only
the time for the second stage will be considered. The
problem, therefore, is to find the time taken to travel
in the local direction of steepest ascent from an arbi-
trary point within or nearly within the polyhedron, to a
pofnt near the peak, given that tﬁe rate of travel
depends on the cosine of the angle with the vertical. The
problem 1is made more tractable if the starting point is
approkimated by the nearest point, S, whichv is actually
—on or within the polyhedfon, and the equilibrium poiﬁt is
approximated by B, the peak. If there are n hypotheses,
the distance between S and B cannot exceed ﬁ:ﬂsince the

easible polyhedron lies within a wunit hypercube whose

=h

-

longest diagenal has length JA . So, if the shallowest
ridge (the most nearly horizontal one) connects SA to B
the time taken 1is at most JE%; , where r is the rate of
“travel along the shallowest ridge. If S and B are‘ not

—~00—

connected by this ridge, then the point representing the

current state will travel at an angle closer to the vert-
ical and will therefore travel faster, but it may also
have to travel much further, since it may follow a zig-

zag path. It can be shown, however, tbat the time taken

cannot exceed %--%? .

Theorem

Let a particular direction in an n-dimensional space
be called m"vertical®. Let B be the "highest" point on a
convex polyhedron enclosed within a unit hypercube, and
let S be any point on or within the polyhedron. Follow-
ing the path of locally steepest ascent, the time taken
to travel from S to B is not more then3 _YA__ where @

2 Kcosp

is the =angle between the shallowest ridge of

lyhedron and the vertical, and the rate of travel in a
direction which makes an angle of 8 with the vertical is

Kcos D.

Proof

Rather than considering the distance travelled and
the rate of travel, it is easier to consider the differ-—
ence in the heights, Asv %P’ of S and B and the rate at
which this difference is reduced. For a direction msking

an angle 0 with the vertical, the rate of travel is.

o
<

n
(=)
9]

V4]

Kc¢os B , so the rate at which the height increa

given hy: ib_ = K 505’29 .
di ~100-

The difference in height between S and B can be divided

into two parts by dsing a height h, such that:

I"B—hc IJECOS;é

The total time,fSB,_to,rise from hS to Af is the time fg[

taken to rise to hc plus the time fcg to rise from there

to AB'

The reason for using hc to divide up the height in-
terval is to enable different types of argument to be
used about the maximum values of the component times tg.
and t.p. A maximum time for t,p,, the last part of the
Jjourney, can be determined from the slope of the shai-
lowest ridge | in fhe polyhedron of feasible states (see
below). By contrast, a stronger upper limit can be set
on t!c’ the first part of the journey, by’relating the
minimum rate of gain of height to the distance below the
peak. This 1limit is only stronger if the height differ-

ence is at least /ﬁ-cos;b,vhence the definition of h, .

The minimum value for dﬁﬁ} occurs when travelling

along the shallowest ridge, and is given by:
: dh 2
min (=) = K cos
(dt 7

Hence: tCB £ hy —h,
” /<c05‘l5z5

‘ < Yncogp
o L8 K cos%ﬁ

R FTRN K\Zz—g}zﬁ

-101=-

‘An upper bound on the f:ime taken to rige from 1'15 to ch
can be found by?® using the fact that, for a convex po-—
lyhedron the direction of steepest ascent at a point must
always be at least as steep as the direct line from the
point to the peak. Since the point caqnot be further than
/n from the peak the direct line has a cosine with the

vertical of at least (Lig-lﬂ)/\/;‘- . So:

i[—-t-’— = Kcog? b and cos B > (L)p‘“lw)/\/;‘—
t _
| 2
nodh oy Kk (hp-h
odr 7 (ﬁ;‘)
it &
dIh K(}"g"k)'l
ho .
a) -
ILSC< _K—(hg h) - dh
hs
h, R
te € h[lK(A3~A)J
5 : .

. o - [a} o
Ut Yk (hy R 2K (hy — hy)

Since the term h/,zk(l,,g..[,;) "is positive, it can be -

_omitted, and by definition:
ng - I/‘C = \/—VT CDS¢ .

\/'P—)— "
.ZK'congﬁ

e

So combining f;c and t[B' the total time lLSB is bounded

by: R
’ tgg él K(oS/cZS'

~-102-

A simple example will now be used to illustrate the ap-
plication of the ‘above ekpression, and then the expres-
sion will be used to illuminate more complex cases, Sup-— .
pose there are two identical sets of hypotheses with no
inteconnecting constraints. Given parallel hardware, the
time taken to reach equilibrium is the same for the two
sets as for either set alone. Cdmparing the expression
for the two sets with that for a single set, éosv¢ stays

4.

the same because the gains in height and the distances
tfavelled both increase by a factor of fz . The term /i
increases by a factor /2, but this is offset by a similer
increasé in K due to the greater magnitude of the com—
bined preference,vectbr. The larger preference vector
doeé not drag the equilibrium suppbsition values further
from the values at fhe best vertex, because it is oppossd
by twiée as many constraints, each of which is less ef-

fective by a factor of /I because the corresponding olane

makes a smaller angle with the preference vector.

Now, consider what happens to the time taken
‘feach equilibrium when the number of hypotheses is in-
_creased by a factor of f, but the magnitudes of the inéi—
vidual preferences and the number of constraints per hy-
pothésis remain the same. Even if fhe, hypotheses cannoct
be split into disconnected'sets; the same reasoning =s
above can be applied, so cos ¢>will remain roughly ths

same, whereas /h and K will both increaese by a factor of

/;: The time therefore, will be unaffected.

-103-

4.4: Introducing non-linearity.
3

If there are‘two equally good interpretations, the
ridge joining.the corresponding points in hyperspace will
be horizontal (assuming the direction of the preference
vector 1is taken as vertical). So %he system wiii not
reach either vertex. This 1is clearly unsatisfactory.
Human perception of pictures like the Necker cube sug-
gests that it would be better to SOméhow select "one in-
- terpretation arbitrarily. This can be done using the

coefficient K (section 3.18).

The effect of a non-zero value for KA is to change
the forces acting at each point in the hypérspace. As
well as the forces due to the preference vector and any
violated constraint planes, an extra force is added,
whose magnitude ‘and direction differs at different
places. Near a corner of the unit hypercube (i.e. an in-
teger vertex), the extra force is at 1its greatest and
points towards the corner. At the centre of the unit hy-
percube the force is zero. In fact, the force 1is radi-
cally symmetrical, and its magnitude at a point is pro-
‘portional to the distance of the point from the centre of

the unit hypercube.

One way of thinking.about the effect of K, is in
terms bf a non- uniform force field like that shown in
figure 4.2b. Alternatively, provided ;<A is small,.a to-
pological transformation can be applied which makes the

(]

force field uniform at the expense of bending and non-

~104-

freference
jVecfar

e

-

Liw

" FIGURE 4.2a: Showing two equal

rivals, and the additional forces

' caused by Kh-'

thiforA:. orc-g
peic

FIGURE 4.2c: Showing the

effect of a2 topological
transformation designed to

make the force field uniform.

FIGURE 4.2b: Showing
the force field obtained
by combinirg the
preference vector and the

extra forces.

FIGURE 4.2d: Showing a
non-integer optimum -
vertex and the effect

of K;‘o

uniformly compressing the constraint planes and axes, as

[

in figure 4.2c¢c. This representation has the disadvantag

v
ot

that the forces due to violated constraints need not C

.

normally to the constraint planes. This means that in-
tuitions about the speed at which the %tate moves can Dbe
misleading, though it can never make the state move

downhill along a constraint plane (taking the force vec-—

tor to be vertical).

3

Using the representation in which K, distorts the

=N
ot

constraint planes, but leaves a uniform force field,
is clear that the two equal rivals have become.local op-
tima. It 1is also clear that a sufficiently high valus
for kL can turn a globally optimal non-integer vertex
<
i

into a very local optimum, as in Tigure 4.2d.

A

Although kk has been used to speed up the pug

yo]
(®]
0
1]

program, 1its effects have not been rigorously analysecz.
This needs doing because of its aepparent helpfulness with
~the important problems. of equél rivals, speed, and non-
integer optima. The represéntatiOn in which kk causes
non-linear, curved constraint nlanes may be

7further analysis, though its wvalus has not vyet Dbessan

demonstrated.

1

4.5: The Need for Intermediate Level Hypotheses.

An important and valid criticism of the puppet pro-

gram 1is that it lacks explicit representations of signi-

-105~

ficant groups of parts such as complete arms or legs, or
even whole puppets. This lack is a characteristic feature
of "holistic" systems (e.g. cellular automata) in which
global. patterns emerge on the basis of local interac-
tions. Its advantage is that it avoids the potentially
explosive number of combinations of loLal hypotheses. Its
disadvantage is that it is generally impossible to ex-
press all the required characteristics of the global op-~
timum in terms of preferences and constraints on low lev-
el constituents. The puppet task was chosen precisely be-
cause much of er knowledge of the human form is reduci-
ble to knowledge of the relationships between its rigid
‘parts, but even here, there may be irreducible aspects.
Suppose, for example, that good puppet instantiations
should have both arms the same length, but that the com—-
parative sizes of the corresponding parts of the two arms
‘are immaterial. A preference for equal arm lengths can
be incorporated 1into the puppet pr0gfam by creating ex-—
plicit hypotheses for pairs of arms. Alternatively,
pairs of hypotheses for single arms bf different lengths
could have their suppositions linked by weak incompata-
- bility constraints (see section 4.6). Either way, an ex-

.

plicit hypothesis of at least the complexity of an arm is

-4

required for the expression of knowlege about arn

'lengths.

The kind of relaxation used in the purpet program,
is quite capable of handling hierarchially structured hy-
potheses, provided the logical constraints are specified.

-106-

In this respect it differs from the intrinsically "flat®
relaxation techniques deséribed in sections 5.1 and 5.4.
These methods are restricted to tasks in which the prob-
lem is to decide which labels (intefpretations) to assign
to various entities . (picture structures). However,
although L.P. relaxation can handlé many levels of hy-
potheses simultaneously, it could prove extremely expen-
sive to create all hypotheses at all levels before doing
any selection, and it would contradict a major aim df re—
laxation, which is to'évoid explicit enumeration. What is
needed is a way of using the initial results of relaxa-
tion tb guide the creation of plausible higher level hy-
potheses, so that explicit nodes are not created for com-
binations of local hypotheses unless they fit in well

4+

globally. As mentioned above, the use of relaxation to
guide hypothesis creation is discussed later, though not

in the éontext of hierarchically structured hypotheses.

4,6t Weak rules

So far, the only constraints used have been ones

~which must be satisfied in any allowable global interpre-
[] .

tation. This requirement seems too strict to capture ths

F

flexibility of human perception. People are capable of
violating normal constraints if by doing so they can
achieve a much better global interpretation. If a puppet
has three well-connected, perfect legs for example,

that's how people will see it. Similarly, in interpreting

~107-

some lines as capital letters, people will drop the usuzal
perceptual assumption that one line can depict only one
letter stroke, if they can thereby arrive at a more sen-

sible interpretation. Ideally, an optimization s

<
in
cr
[
3

should allow a trade-off between preferences for h
. : » :
potheses and violations of weak rules in arriving at th

optimum interpretation,

One way of attempting to implement such a trade-orff
is to make the constraints corresponding to breakabls
rules have a much weaker effect on the relaxation opera-

tor. If the forces due to violated weak constraints ara

¢}

of roughly the same magnitude as the forces due to the
preferenﬁes, then the equilibrium nosition may well in-
volve some weak constraints being significantly violated
as a result of the pull in the direction of the prefer-
ence vector, The disadvantage of this approach is that
the foreces due to a constraint violation are proportionzi
to the magnitude of the‘violation, whereas the preferencs
forces are constant. As a result, the system will tend to
settle down at an intermediate state where some weak con-
straints are being violated a bit, but not
a state is senseless if the.weak rules are of the 1iyps
that either hold or are broken. Suppose, for gxample,

there is a weak rule that a puppet has only two legs.

oy
"
[OK

~Given a picture in which there is a candidate for a thi

leg, the best interpretation should either included it cor

ct

leave it out. It should not contain the third leg to =
certain extent, at the cost of violating the weak. con-

-108-

straint a little.

There is a simple way of incorporating breakable
rules which does not run into the above difficulties.
Whenever a weak rule gives rise to a ﬁonstraint, an exira
hypothesis 1is created to represent the possibility that
the rule is broken. The hypothesis is given an associated
cost depending on the strength of the rule, and instesad
of the obvious constraint, a more complex .one invelving
the extra hypothesis 1is created. Supposes, for exanple,.
that a weak rule implies the constraintIJVi . An . extra
hypothesis e (equivalent to PAg) is made together with
the strong constraint pvgve . So it 1s possible to
'break the rule and have neither p nor g, but only by pay-
ing the cost associated with e. An implemented exznola

in which weak inference rules are handled in this way is

described in chapter 7.

4,72 Using relaxation to guide hypothesis creaticn

The puppet-finding program described in chapter 3 is
unrealistically simple as & model of how people percizve
the puppet pictures. One deficiency of the task 1is th=
the number of potential part and jbint hypothesas is
small enough to allow all the hypotheses to be created
before relaxation commences. If the definition of = s=2-
tisfactory bart or joint is extended to =allow pcor in-
sfances (see figure 4.3), then the number df potential

+ 3

hypotheses becomes much larger, sc it becones

[
2
(g

>

ot
W)
3

Hije X!

{

- 109~

— I

Dr

FIGURE 4.3: People see this as a puppet even though the knee
and shoulder joints are poor, and the head and trunk have the
wrong proportions. The program needs extending to handle such

locally poor joints and parts.

to avoid ever formulatind many of the possible hy-

%

potheses.

This section describes how relaxation and hy-
potheses creation can be integrated ?o that the globally
.best interpretation is achieved without formulating many
of the possible hypotheses. No program has been written
for this extended version of the pﬁppet' task, so there

may be unforeseen snags in the method proposed.

4.7.1: The extended puppet-finding task

For human perception, there seem to be many dif-

ferent degrees of acceptability of parts and joints, but

pte
—
f=

()
O
O
>
n
bete
Q.
m
i
(]
o
”

for simplicity only three categories w D

perfectly acceptable, poor, and unacceptable., Precisz2 de-

finitions of what constitutes a poor part or joint have
P !

not been formulated. They should, however, pressnt no

problem as they can be of the same form as the definition

of good parts and joints, but with less restrictive re-

quirements on the proportions and overlaps.

x

Fér reasons which will become appafent later, it 1is
desirable to use only negative scores for hypothases.
Clearly, an interpretation is worse ff it has poor parts
or joints rather than good ones, but worse still if some
parts or joints are missing altogether. A simple, though
somewhat ad hoc, method of scoring global interpretations

is as follows:

~110-

. For each poor joint or poor part score -1,

2. For each missing slot filler in a part hypothesis

score -1.

J +

ve, 1t is necessary

Rl

+

3. Since all the scores.are negat
to prevent a global interpretation in which there are
no hypotheses at all. This can be done by forcing the
program to have a single, obligatory puppet-instance
with slots for each part, and imposing penalties on
unfilled slots. These penalties need to be large
enough to force the slots in the puppst-instance to be
filled by rather poor, largely disconnected, parts
where necessary, but not so large as to encourags fil-

ling by entirely unsupported part hypotheses.

4,7.22 Generators

‘There is a simple trick which allows relaxation to
be started before all possible joints and oérts have been
found. As well as the normal part and joint hypotheses,
slot fillers of a new type called gensrators are intro-
duced. These have the property that if relaxation nakes

I

their . supposition values high, they are "run" and re-
placed by the part or joint hypotheses which are
discovered., OGenerators can be thought ¢

sets of potential hypotheses which have not yet been 2x-—

nlicitly created.

s

If 2]li the good joints and parts are found before
doing any relaxation, then all of the hypotheses in the
set represented by a generator will be poor ones and will
have an associated cost. So‘the generator can itself be
given a cost equal toc that of the best hypotheées that
might be in its set. If the relaxaéion process gives a
high supposition value to a generator, this means that it
is worth searching for the hypotheses which it implicitly
represents. If, however, relaxation fejects the genera-

tor, then there is no point in running it since any hy-

potheses so produced would also be rejected.

Figure 4.4 shows a simple case in which relaxation
applied to the initial set of good hypotheses could guide
the search for poorly connected parts without jeopardis-

it

the guarantee of finding the best purpet instantia-

=t

n

Q

tior. Those poor Jjoints which were never explicitly for-
nulated could not be relevant; since they could not be
better than their generator which was rejected by relaxa-
tion. The guarantee of optimality stems from the fact
that expanding a generator can never improve the state
reached by relaxation. It may, of course, make the state-
worse, since runmning the generator may produce no hy-

notheses at all, so that some other, more costly, slot

filler would have to bhe used instead of the generator.

The simple type of generatcr described ahove could
be elaborated to cope with many different degrees of ac-

ceptability of slot fillers. Initially, a generator with

-112-

RN

FIGURE 4.4: A puppet with some poor joints. If generators

G
o

<\

&7

are used to control the search for poor parts, no search will
be made for A because the generator will be suppressed by the
interpretation of B. There would, however, be a search for C.
Similarly, the initial candidate interpretation of E as foot
and D as calf would be suppressed by competition, and so the

generator for a related tnigh would not be run.

a low cost equal to the best of t+he potential hypotheses
- would be used. If relaxafion gave this generator z high
supposition value, a search would be performed for the
fairly good - hypotheses and the original generator would
be replaced by these hypothesess plus a new generator with
a higher associated cost equal to Lhat of the best hy-

b3

potheses which might still be found by further search.
Provided the search can be organised fo find the hy-
potheses in order of increasing cost, it should alwzys be
possible to avoid searching for hypotheses which are so

peor that relaxation would reject them anyway.

The decision about wﬁat cost to associate with a
generator may be complicated by the fact that a hy-
pbthesis produced when the generator is run can fill
several slots. For example, a joint hypothesis producsd

(]

by a joint generator will fill slots in two differ

4]
3
ct

part hypotheses. Although each part hypothesis sepzarate-
ly may be too weakly supported to bear the cost of & poor
joint, together they may be able to bear it. Now, if
slots in both parts are filled with separate joint-
generators and these generators have the cost of poor
Jjoint, relaxa?ion may reject the generators even thoug:
it would accept a shared, poor jeint. One soiution is to
associate with a generator the cost of the best potentizl
hypothesis divided by the number of slots the hypothesis
would fill. If each slot contains a generator with this
cost, then the search for the potential poor slot-fillers
will only be avoided if none of the generators are well

-113-

enough supported to bear their share of the <cost. This’
guarantees that hypotheses which might form part of the
optimal solution will not be missed, but also means that
generators may be run even when relaxation will reject

the best hypothesis they might produce.

4.83 Optimising real-valued parameters

So far, relaxation has only been used to find the

-<“

optimal combination of truth values for sets of inter-
related hypotheses. Many problems also involve determin-
ing the optimal combination of values for sets of real-

valued variables. For example, in finding edges in grey-

-

evel data, parameters such as orientation of each piece
of edge nesd to be optimised (Zucker 1976), This section

will show how L.P. relaxation can be used for determinin

$2

[=~]
ct
e
1}

real values, though no program has been written.
important not to confuse supposition values with values
of parameters such as orientation. It would be absurd to
apply L.P. relaxation directly to the the later. Quanti-

tive decisions need to be reduced to qualitative ones be-

[aadd

fore applying relaxation.

First, an abstract version of the problem will be

defin

D

d. Suppose there is a finite set of variables, and

ite set of functions each of which takes as input 2

set of values for a subset of the variables and returns a
cost. The task is to find the set of values which minim- -

izes the sum of the costs returned by all the functions.

Provided the costs do not vary too rapidly as the
values of +the wvariables change, a simple but expensive
way of using relaxation to find an approximate optimum is
to consider a number of evenly-spaced values for each
variable. A veriable-value hypothesiﬂ must be created for
each possible assignment of a value to variable. Also, a
cost-hypothesis must be created for each possible combi-
nation of argument values 'of each cost function. The
cost-hypotheses should have associated costs equal to the
results of their cost functions and should be bound by
constraints which demand that a cost~hypothesis be ac-

3 =

all its relevant variable-value hypotheses are

[y
h

cepted
accepted. There must also be cohstraints which require
that each variable has exactly one value. For example,
if among the variables there are two, A, B, for which
values of 1, 2 are considered, then there will be
variable-value hypotheses corresponding to A=1!, A=2, B=1l,
B=2, If there is a cost function which accepts values for
A and B and returns the difference as the cost, then
there would have to be two cost hybbtheSes with a cost of

0 and two with a cost of 1. The conjunction of the

variable-value hypotheses A=l and B=1 would imply one of

the cost-hypotheses which had a cost of O, and there
would be a constraint representing this implication.
Clearly, if the cost functions have many arguments

or if maeny values are considered for esach veriable, an

[92]
3
W
<
o)
[¢V]

enormons number of hypotheses and constraints

needed, so the simple method of forrulating all ths2

-115=-

variable-value hypotheses before relaxation, is in

ble. However, by using a technique similar to the genera—

L

=

eas

[

tors described above, relaxation can be integrated with
the formulation of variable-value hypotheses and a great

hy

many irrelevant hypotheses can be avoided. The basic
idea 1is to consider intervals in &hich the value of a
variable may lie. Initially the range of possible values
for each variable can be covered by a few large inter-

vals, so that instead of many 'variable—valde hypothéses

there are a few variable-interval hypotheses.

In order to use relaxation to establish the most
promising set of Vvariable—interval hypotheses, it is
necessary to modify the cost functions so that instead of
taking specific values and returning a cost, they take
intervals for the values and return a lower bound on the
cost that could be achieved using values within the in-
tervals. For example, if a particular cost function tock
two numerical arguments and returned their difference as
the cost, then its modified version would take two intar-
vals and return either zero (if the intervals overlapped)
or the difference between the top of the lower interval

and the bottom of the higher one.

Using the modified cost functions to create cosi-
hypothsses, a promising set of variable-interval hy-
pothesss can be selected by relaxation, and the intervals
involved can then be further sub-divided, so that the

selected variable-interval hypotheses are replaced by

-116-

finer ones. Repetition of this process of selection and
- sub~-division 'allogs -the optimal values to be determined
accurately without requiring detailed consideration of
values within unpromising intervals. If n is the ratio of
the range of possible values divided gy the accuracy to
which the 'Optimal values are required, then, provided
there is no back-tracking (see below), the number of
interval-hypotheses needed is proportional to log n in-—

stead of n for the simpler method described earlier.

. Interval-hypotheses which are initially rejected by
relaxation must, nevertheless, be retained in the network
of possible hypotheses, since when the initially promis-—
ing intervals are sub-divided it may be impossible to
find a combination of the smaller intervals whiéh gives
as low a cost as the lower bound estimated for the larger .
intervals. A simple example shows how this can happen.
Suppose there are three. variables, A, B, C with real-
values in the range O to 9, and suppose that there are

six cost functions which return costs of:

p-ol, -, f-sl, Ja-8], Boe], koA

3

These functions "try" to make A=0, B=4.5, and C=9, but
also try to make A=B=C. The best solution is A=B=C=4.5
which has'a cost'of 9. Suppose the initial intervals used
are 0 to 3, 3 to 6, and 6 to 9. Relaxation wbuld_select
the combination of hypotheses A0_3) Bg_é ’ Cé§q where
A 0-3 Mmeans that the value of A 1s in the interval O to

3. This combination has zero cost, since for each cost

-117-

function there are values yielding a cost of zéro within
the chosen inter?als. However, different values within
the intervals are required to satisfy different cost
functions. So when fhe selected interval hypotheses are
replaced by more specific ones involving smaller intervals,
relaxation may select one of the previously rejected,
cbarser intervals. If, for example, the selected intef~
vals are sub-divided into intervals of size 1, then re—
laxation would reject'all the more specific ‘hypotheses
for A and C and backtrack to the hypotheses A;,é and

¢ which together with 84—5 give a total cost of 6.

3=4

-118-

CHAPTER 5

COMPARISONS BETWEEN L.P. RELAXATION
AND ALTERNATIVE SYSTEMS.

In this chapter a number of alterhafives to L.P. re-
laxation are described and criticized. A section is also
included on the use of L.P. relaxation for
Huffman/Clowes 1line labelling, since this is the domain

chosen by one rival system.

5.1: Rosenfeld, Hummel and Zucker (1975).

In their paper "“Scene labelling by relaxation opera-—
tions", Rosenfeld et al discuss ways of extending Waltz
filtering so as to incorporate degrees of cbmpatibility
between labels, rather than the simple all or none compa-
tibilities used by Waltz. They describe three models.
first ‘and least interesting is based on fuzzy set‘
- theory and associates fuzzy weights with labels. It 1is
like one of the methods used by Barrow and Tennenbaum
"(see secfibn 5.4.3) and will not Dbe discussed further.
"The remaining two models use probabilistic weights for
labels. These weights are similar in many respects to
supposition values, but it will be arguéd that there are

crucial differences which make these methods less satis—

factory than L.P. relaxation.

-119-

5.1.1. The linear probabilistic model.

A weight between 0 and | 1is associated with each
possible label (e.g. +, -, F or 4) for each object
(e.g. a line). The weights on the labels for an object
sum to 1, so they céﬁnbe interpreted gs the probabilities
that the labels are correct (if the distinctions dis-
cussed in section 3.4 are ignored). The weights are said
to be consistent when each one has a required value which .
can be calculated (see below) from the weights and compa-
tibilities of the labels on neighboufing objects. If the’
weights are 1Inconsistent, each is replaced by the value
determined by the label weights on neighbouring objecté.
It can be shown that if this rela ation operator is re-—
peatedly applied in parallel to all the weights. a con-
sistent state will eventually be reached. The expression
used té determine the required weight P;(&)on the label

A for the i’th object is:

0= a3 o) o4

| J
Where the CLJ are coefficients such that 2: CJ | for
all 1. The inner sum in the expression 15 the expected
probabi lity of A, EJCX) , given the weights and condi-
tional probabilities of the labels ét j. The outer sum
is alweiqhted average of the E-(A) over all i’s neigh—
bours. The magnitudé of the constants‘Qj y Cig indicates

the relative importances of the estimates Ej (X) R

. —-120-

JEK (>\) ... provided by the neighbouring objects in
determining the weilghts of the labels at i.

Rosenfeld et al give no justification for their de-
finition of a consistent set of weights. It isAhard to
see how it can be reconciled with progability theory be-
cause of the following example: suppose that for an ob-
ject, j, the label A -has a weight of | and all the
other labels have a weight of 0. Suppose, also, that
/Dij ()\ | /\’):O i.e. given that j has label)\I/ i cannot
have label A . The inner sum of expression l‘(above)
correctly yields Ej(&):(?, but because of the weighted
averaging of the E'C” this does not force the outer
sum to be zero. ‘So a non~zéro value for P; (AB may be
allowed by the expression even though it is.inconsistent

with the conditional probabilities.

V‘The linear model has the_interesting property that
it converges on a set of weights which is entirely deter—
mined by the values of the Qj and the cdnditional proba-
bilities, and is independent of the initial set of.label
weights, Rosenfeld et al assume, as do Barrow and Ten-
nenbaum, that - the initial weights for particular labels
should be used to implement the preferences, which may
- arise from their a priori probabilities or their goodness
of fit to the local data. This assumption leads them to
rejeét the linear model in favouf of a non-linear one in
which the final state depends on the initial one. They

do not discuss the alternative, used by L.P. relaxation

-121-

‘and by Marr and Poggio (1976) of implementing preferences

by an extra term in’ the relaxation operator.

5.1.2: The non-linear model.

The example with p,; (A//\’):o which was used to
criticise the expression (1) above, is actually an ex-
treme case of an undesirable property which Rosenfeld et
al discuss. If a label A at j has a high weight then it
should have a strong tendency to reduce the weights of
labels on neighbouring objects with which it has a low
compatibility. Expression 1 does not work like this, so
Rosenfeld et al suggest replacing the conditional proba-
bilities by correlations, which can have a negative value
and can therefore cause the maximum reduction in P(<A)
when the weights on the incompatible labels for j are
high. The new expression gives the required change in
P;(A) rathér than its required value, and there is no
guarantee that the weights will stay positive or that the
new weights for labels of a single object will add to 1.
" These two desirable properties can be restored by modify-
ing the relaxation operator so that it effectively renor-

malises the new label weights.

The same criticism applies as in the linear model.

The way in which the E(A) are averaged in the relaxation
: /

operator means that a weight of 1| for a label A on j

can coexist with a non-zero weight for a label A on i

even though their correlation is -1.

The convergence properties of the nonQIinear opera-—
tor have not been established, It has been tried on the
simple problem of choosing the best Huffman/Clowes label-
ling for a triangle, whére a good labeiling is defined as
one which assigns highly correlated labels to the two
lines at an ell junction. The lines were the objects,
and the correlations between line-labels at a Jjunction
the compatibility functions. The weights converged fair-

1y rapidly, often on integer values, and the initial
weights were capable of determining which of the poésible

unambiguous labellings was chosen. : .

The main weakness of this model is that it 1is not
clear what computetion is being performed. The underly-
ing idea is to enhance label weights by local interac-
tions, but there 1is no definition of what counts as a
good enhancement. A consequence of this lack of a pre-
cise problem 1is that the relaxation operator cannot be
derived so as to satisy well specified criteria. In-
stead,k an operator 1is chosen which has qualitative
-characteristics which are thought to be desirable. - By
'contrast, L.P. relaxaticn is designed to perform a well
specified task which provides clear-cut criteria 'fqr

evaluating the relaxation operator.

Zucker (1976) reviews the applications of the non-
linear model to ‘"image enhancement"™ in a number of
domains. It is hard to assess the usefulness of some of

~123-

the’applicafions since tﬁey are intended as a pre-
pro;essing'stage. In the absence of any clear definition
of what this stage is intended to achieve, it can only be
evaluated by seeing how much it‘helps later stages and

these are genefally non-existent.

One application which is similar in some respects to
fhe puppet task 1is the enhancement of combinations of
parts which match a model (Davis and Rosenfeld 1976).
The model wused is an upright square of fixed size whose
parts are simply -its four corners. Nodes are created for
candidate corners which are found in a noisy grey-scale
picture. Dummy nodes are also created to ‘fepresent
corners which were not found in the grey-level data, but
which can be predicted from the corners which were found.
Each node has five possible labels corresponding to the
four corner types and ‘#no match". The initial label
weights at a ‘node reflect the goodness of fit of the
corresponding corner types to the local grey level data.
The compatibilities Dbetween label weights depend on the
relative positions of the nodeﬁ. For two nodes which are
horizontally or vertically separated by exactly the
side-length of the square, there will be some pairs of
labels, one on each node, vwhich agree and some which
disagree. These have compatibilities of +1 and -1
respectively. For pairs of nodes whose relative posi-
tions are approximately but not precisely correct, the
label compatibilities have correspondingly smaller magni-
tudes, and for all other pairs of nodes the label weights

~124~

do not affect each other. This approach to model match-.
ing suffers from all the criticisms already made of the
non-linear relaxation method. There is no clear specifi-
cation of the task, so it is hard to justify the initial
label weights or the compatibility functions, or the re-
laxation operator, or to say precisely what the relaxa-

tion process achieves,

One of the aims of the non—-linear model is to make
use of probabilistic constraints between labellings as
well as local biases for particular labellings. It 1is
instructive to see how these types of knowledge can be
captured by L;P. relaxation in the example used by Rosen—‘
feld et al. The local biases can obviously be implement-
ed as preferences, but the probabilistic constraints are
obviously different from the logical constraints used in
L.P. relaxation. Nevertheless,vL.P. relaxation can han-
dle probabiliétic constraints if they are'reduced té log-
ical ones by introducing extra hypotheses with associated

costs or preferences (see section 4.6). For the line la-

o

elling example used by Rosenfeld et al the extra hy-
sotheses take the form of junction labels. A formulation
of the task suitable for L.P. relaxation is given in
section 5.2. Compared with the non-linear model, the
time taken to reach equilibrium is longer and the number
of nodes required is larger. However, it is clear what
thé‘computation achieves, and the relaxation process can

be analysed.

-125-

5.2: Line Labelling using LP relaxation

Huffman/Clowes labelling is explained in section
T.4.1 . There are two reasons for wanting to get the

best labelling rather than just a list of all the feasi-

ble ones: ' |

1. The‘number of feasible labellings can become
encrmous if the seﬁ of junction labels is extended to
allow for accidental alignment of edges with vertices
of different depths, or to accommodate laminae as well

as solid objects (Draper - personal communication).

2. People are quite capable of interpreting junc-
tions as accidental alignments, vyet they never see
more than a few of the interpretations which are pos-

sible if such accidentals are allowed.

There are several quite different reasons for assc-

ng costs or preferences with particular labellings:

bt

ciat

l; If an expanded set of labels is used, costs can
be attached to labelé which require either accidental
alignment or non-solid objects. This can be viewed as
a way of providing a set of unusual labels which are
to be used sparingly, and only when the usuéi set is

inadequate.

2. If the input is a nolisy grey-scale image, rather
than a line drawing, there may be weak evidence which

suggests particular labels. For example, under some

conditions of illumination, convex edges have slight
highlights along them, and concave 6nes have siighf
shadows (Rosenfeld et al 1975)., Also, shadow edges
have distinctive grey level characterisfics (see ap-
pendix 2). To incorporate this éxﬁra information, the

l
extracting a line drawing from the grey-level

£

idea of
data needs to be extended to iinclude - extracting
preferences for particular line labels. - The process
of finding a consistent labelling for the picture can
then operate on richer data than the line drawing

alone.

3. When people view a scene they do not perform a
detailed analysis -of all parts of it simultaneously.
It appears that they perceive it in a sequence of
glances whose results are synthesised into a represen-
tation of the whole scene (Hochberg 1968), Each
glanée will ~be accompanied by expectations based on
the representation of the scene derived from previous
glances. So when a person attends to one part of a
scene and attempts to discern its 3-D structure he may

already expect it to contain certain types of edge or
vertex. It would be possible to mobilise expectations
of this kind to aid the interpretation of lines as:
particular kinds of edges. If a hole is expected, for
example, there could be a higher preference for the
‘labelling of those ell junctions which correspond to
an interpretation in which the reflex angle lies in
the 6earer occluding sufface.

~127-

So it is interesting to see how a program might dis-
cover the optimal donsistent labelling of a line drawing,
where the optimum is defined in terms of preferences or

costs for particular line and junction labels.

In a consistent interpretation each 1line and each
junction have exactly one 1label, so the supposition
values in all normalised 1linear combinations of con-

sistent interpretations satisfy the following con-

straints:

For each line, 1, and for each junction, j
] * 1

5, :/ ‘am{ Zsli :‘[
JiA A A
where ~ A ranges over the possible labels for a line

or Jjunction and LI A means that the line 1 has label

A

Also, in'é consistent interpretation, if a line, 1,
has label A then a.junction at the end of it, j, must
have a label, A , which is compatible with A . Hence

for line labels:
5 = 5 /
L: Z JA
A P

where A ranges over the labels of j which give the la-

bel X to line 1.

Using these constraints, a network of line label and
junction label hypotheses was created for a line drawing

of a triangle. Figure 5.1 shows the possible line and

-128-

Ao fo Al Rl

A Vv
o L
F[roatih; above hola
backgrouhd

//\35 /A v
N\ \ ,\
3 |

Trial«jmlar' /[a/w /alﬁ(ei M/wtlrds

ANVANVAS

Fla/ /foldezl cfown ahi $€eh fl.raujl, /4 [6

FIGURE 5.1: The possible labellings of a triangle, given the
- Huffman/Clowes labels for an ell-junction (see figure 1.2).
The names Al, A2 etc., are used to refer to particular line

labels in figure 5.2 .

frelawS00y;

AD AL A2 A3 Bo Bl RZ2 B3 CO C1 C2 3
1(2 O 0 0 0D 0 0 o o 0 o 0
GO 22 14 1 65 pp o141 &5 22 14 1
YO7 4 Q090 7 4 0 90 7 4 0
Y20 0 Q099 0 0 0 99 o 0 0
Y0 0 0D 99 0 0 0 99 0 O 0
P9 0 0 099 0 0 099 0 0 0

FIGURE 5.2a: Showing how the supposition values change during
relaxation for the line labels on the three sides of a triznzgle.
The lines are A, B, C and the suffixes 0, 1, 2, 3 indicate the

labels. The meanings of Al, A2 etc., are shown in figure 5.1.

Junction label hypotheses were also involved but are not
shown. The preferences were 0.5 for each of the three junctiocn
labels corresponding to occluding convex corners, and 0 for all

other hypotheses.

IThS 1 4% 1 kY 1l.setrrefsd
I
FrelaxS00):

A0 Al AR AZ RO BL B2 BI CO CL G2 G3
o 0 0 0 0 0o 0 o 0 0 0
X9 89 0 0 F9 8 0 0 3P 8% 0 0
14 95 0 0 14 9% 0 0 14 95 00
T 99 0 0 3 SY O 0 F Y 0 O
099 0 0 09 0 O 0%% 0 0
099 0 0 09 0 0 0% 0 O

FIGURE 5.2b:' If the junction labels corresponding to concave -

occluding corners are given preferences of ‘1, the triangular

hole interpretation becomes the best,

IpolaxBQrs

AG AL AR A3 BO B1L BE BX OO0 C1 C2 C3
O 0 0 0 O 0 0 O 0O 0 0 0
48 54 05 0 34 0 9% 0 48 B4 5 O
41 0865 0 0 26 0 99 0 41 45 O O
2381 0 0 1% 0 9% 0 23 8L 0O O
O 92 0 0 0 0 %R 0O 09 O O
09 0 0 0 0%y 0 0P 0 O

FIGURE 5.2c: A preference of 3 for the "convex. edge" label,
B2, overrides preferences of 0.5 for the "acutle occluding
corner" junction-labels (since 3>0.5 x 3), causing the

equilibrium state to be the best containing B2.

junction labels and figure 5.2 gives examples of relaxa-

tion with various label preferences.

5.3: Yakimovsky and Feldman (1973)

One way of segmenting an image of a natural scene is
to start with a large number of small, roughly homogenous
regions and to merge them into larger regions which
correspond to meaningful parts of the scene. Yakimovsky
and Feldman describe a way of arriving at good partitions
of 1images 1into regions and good interpretations of the
regions, which:utilizes knowledge about the scenes. The
two kinds of knowledge employed are the probabilities of
the regions of differeht kinds depicting particular scene
constituents and the probabilifies of boundaries of dif-
ferent kinds existing between regions with particular in-
terpretations. For example, blue regions are unlikely to
be trees and régions interpreted as road-and sky are un-—.
likely to share a vertical boundary. If the probabili-
ties are assumed to be independent and there are no ofher
a priéri probabilities, then a global interpretation G,

is optimal if it maximizes the product:

, ‘ region i has , | region i has the
. f interpretation int(i,G) { measured values
L
boundary B(i,j) is between]| B(i,]j) has the
X } { P int(i,G) and int(j,G) ~ measured values
for neighbouring
regions i,]

where int(i,G) is the interpretation given to region i in

-129-

the global interpretation G, and B(i,j) is the boundary

between region i and region j.

Using con&entional techniques it would_be extremely
expensive to evaluate the product for all the combina-—
tions of region iﬁterprétatiOns Tor all partitions of the
image into regions. To avoid this, the part of the pro-
gram discussed by Yakimovsky and Feldman only considsrs a
sequence .of partitions generated by removing possible
boundaries one at a time in a particular order, and for
~each partition it bnly computes upper and lower bounds on
the product. Given these bounds, graph searching tech-
niqués can be used to find good interpretationsrof par-—
ticular partitions. The upper bounds are found by relax-
ing the consistency constraints, so thaﬁ the individual
terms in the product are simply the probabilities of the
locally best interpretation for each region . The lower
bounds are found by choosing interpretations for‘the re-
gions one at a time, the extent by which the most prob-
able interpretation of a region outstrips the others be-
ing " used to decide which region to interpret next. This
is an example of a method discussed in Section I-4.] for

finding good but not necessarily optimal interpretations.

There are serious objections to the way in which
Yakimovsky and Feldman have formulated the segmentation
problem. They have omnitted general knowledge about 3-D
structure whilst including specific knowledge about the

probabilities of particular scene constituents being dep-

-130~

icted by neighbouring regiops. At a iow enough level
bdth tyoes of knowledge may be absent, and at a high
enough one both may be present; buﬁ it seems unlikely
that really good segmenters (people) invoke knowledge of

particular objects before invoking qeqeral 3-D knowledge

1
|

(Marr 1975). The most impressive ségmentation programs
use inferences based oh 3-D structure and not on specific
types of object (Guzman 1968, Clowes 1971, Haltz 1972).
(CGuzman”/s program dbes not appeaf to use 3-D knowledge.
rfowever, the reason his program works so well is that it
uses 2-D cues which allow powerful inferences because of

the 3-D structures they imply).

The abstract problem presented by Yakimovsky and
Feldman suggests a relaxation approach, and it is infor-
mative to see how relaxation can be applied, what diffi-

culties it runs into, and how they may be overcome.

5.3.1: A relaxation formulation

The task of maximising the product given above is
equivalent to minimizing the total cost of a set of hy-—
7potheses about region and boundary interpretations, vhere
the individual costs are the logs of the probabilities.
It seems to be necessary to have hypétheses about re-—
gions, boundaries, region‘ interpretétions and boundary

interpretations. The constraints are:
1. Larger regions are produced by merging small ini-

-131-

tial regions. In any global interpretation, an ini-
tial region must be either unmerged or part of exactly
one larger region. So for all regions which share an

initial region:
A

2. Every region should be g¢given exactly one in-—

- terpretation:

]

Z Spi
L

where . 1s the supposition value of the hypothesis

that region r has interpretation i.

3. If two neighbourihg regions q, r exist in the
best interpretation then so does the boundary between

fhem. So for all neighbouring pairs g, r:
g ArD B(c;,r) o
ilv;r v Ein,F)
-5)+ (1-5,) 4 I
(1-5)+ (1-%) 5/?(710 >
5 > +§ -
E(¢/r)/51 ¥ l
4. Similarly, if two neighbouring‘regions a, r have
interpretations i, j then the boundary between them
has interpretation B(@[,fﬂ :

S S, 46, -

53(‘}/[,!’;) ¥)

where 5. is the supposition value of the hy-
3(9:.%)
-132~

pothesis l;(folv)and S?i is the supposition value of

the hypothesis that region g has interpretation i.

There are three main objections to straightforwardly
creating‘ all the relevant hypotheses and constraints and
then finding the best state. | |

I. It is not clear in advance how many region hy- '
potheses to make. Yakimovsky and Feldman continued re-
moving boundaries uhtil the upper and lower bounds on
the best possible interpretation of the current parti-
tion fell sharply. This relies on the assumption that
once the product falls significantly, furthér-merging
will not raise it again. If the assumption is valid,
relaxation could be used on some initial partitions,
and further merging to produce new partitions. might
only be necessary if the best solution found by relax-—

“ation involved one of the later partitions, that 1is,

one with many merges.

2. If there are i interpretations‘fér each region,
and r vregions, the number of region-interpretation
hypotheses is i.r, which may be of the order of a
thousand for the data given. For boundary interpreta-
tions, however, the number is about ﬁfb.ia.r where b
is the boundaries per region. This is a formidable
number if 1 is large. Fértunately, it is possible to
avoid ever formulating many of the boundary interpre-
tation hypotheses. Hypotheses about the interpreta-

tion of a boundary need only be added when the relaxa-

-133-

tion process raises to a significant level the suppo-
sition values of particuiér interpfetations of the re-
gions on either side of the boundary. This is because
boundary interpretations have associated costs and so
will not be included in the best global 1intenretation
unless they have to be.b The only éhing that can force
the inclusion of‘a boundary interpretation is a con-
straint of type (4) above which does not become opera-
tive until the sum of the SUppositioh values for the
alternative interbretations ofv’a region exceeds 1.
This is another exémple of the important technique of

avoiding 1irrelevant hypotheses by integrating' hy-

pothesis creation with relaxation.

3. Since all the preferences are negative, there 1

0

a tendency for constraints like (4) above to lead to
non—-integer optima, so that relaxation does not oro-—
duce a clear—cﬁt answer and it is necessary to use
cutting planes or branching (see Section 3.7). The
reason for expecting non—-integer optima is that if
many region interpfetations are given supposition
values of a half or less, constraints of type (4) do
not constrain the supposition values of the boundary

£

interpretations, and so the associated costs are not

D)

incurred. Constraints of type (2) above can still be
satisfied by several different interpretations of a

region, each of which has a small supposition value.

If a relaxation program of the kind described could

- 134~

be made to work then apart from the advantage that it
could use parallel hardware, it would be capable of find-

ing a solution in which there were late merges in one

e

: ar

part of the image without being too cdmmitted to ezarl
merges in another part.- Yakimovsky aqd Feldman have a
strict ordering for boundary removal;and this sequential
strateqgy prevents them from ever considering most of the
complete partitions involving subsets of the candidate
regions they generate. This point may be clarified by a
simple example. Suppose there are four initial regions
Rl1, R2, R3, R4. If merges are considered in the order RI
+ R2 —2>RI12, H3+R4—9R34,'912 + k34 —> R1234 then the par-
tition R, R2, R34 will never be considered, even though‘

it only involves existing regions.

5.4: Barrow and Tennenbaum (1976)

5.4.1: The task

Barrow and Tennenbaum describe a‘system, MSYS, which
is designed to find the optimal consistent set of in-
terpretations for regions in a hand- partitioned image of
a room scene. Regions correspond to éntities like the
back of a chair, a picture, a door or a patch of floor.
Region interpretations are given a priori likelihoods on
the basis of their height in thes scene and their' surface
orientations, which are discovered using a laser range

finder. There are various constraints between the in-

-135-

terpretations of different regions. A picture, for exam-—

h

ple, cannot be adjacent to a door, and two patchss o

flecor must be of similar brightness,

5.4,2: The general strategy 1

=

Barrow and Tennenbaum describes several versions of
their system. Only the version for which there is a
guarantee of finding the best solution 1is described

below.

The optimal set of region ‘interpretationsb can be
found by using a branch- and-bound search (Duda 1970).
Branches are created by opting for or against a particu-
lar r=zgion interpretation, and an upper bound is set on
the best terminal state reachable along a given branch by
combining the 1likelihoods of the locally best surviving
interpretations for each region._ “SYS uses a Dbranch-
and-bound search, but for each intermediate staté it at—
tempts to get a much tighter upper bound. Instead of
simply combining the best surviving a priori likelihoods,
it enters a relaxation phase in which the constraints are

‘used to lower the likelihoods. It then uses the best
lowered a posteriori likelihood for each region, the lo—-
cal optimum, to compute the global upper bound. The hope
is that given.suffiéiently ‘rich constraints the upper

bound will be so tight that hardly any branching is re-

quired.

-136~

'5,.4,3: Likelihoods and their modification

The actual method MSYS uses for modifying the likel-
ihoods during the relaxation phase is hard to gfasp be-
cause 1t is not clear what the likelinoods are, and so it
is not clear how they should be maAipulated. The real
logic behind the way the likelihoods change seems to be
the requirement that they always fall so that the highest
value in intermediate states can be used to set an upper
bound on the values obtainable in terminal states. Given
this requirement on how the numbers should behave it 1is
not clear that any sensible interpretation of them ex-—
ists. The a priori 1likelihoods of the different in-
terpretations of a ‘region sum to | which suggests that
they are probabilities. However, after a phase of relax-
ation the sum is no longer 1. The numbers cannot bs re—
normalised, because this might raise scme of them. Aléo,
although the numbers start off looking like probabili-

lo-

W

ties, the way the local optima are combined to get a
bal upper bound ié by addition, not multiplipation. This
may suggest that likelihoods are logs of probabilities,
but the way they interact via constraints argues against
it. The basic form of a constraint is that an interp;é¥
tation R; of one region, R, must be supported by pariic—

ular interpretations SJ’PK ...0f other regions S,T....
If these interpretations have low or zero likelihoods
then so nmust R . The actual numerical constraints may be

based either on set theory or on fuzzy set theory(see’ fl.j 5,3).

~137-

R; D 5, = 1@®;) £1(s;)

R; D 5 A T, =>1(R;) £ 1(sj) X 1(T,) {

R, D sj v Tkél(Ri) & 1-(1_‘1(sj))X(1-1(Tk))

Figure 5.3 Showing how logical constraints give rise to
numerical ones using set theory. "D means "must be supported
by" and l(Ri) is the likelihood of R; .

Rl:.sj-:;%l(Ri)él(Sj)
R-‘DSJ-ATK;\l(RI.)ginf(1(8/-), 1(TK))

RiDSjvaK:‘@ l(Ri) <sup(1(sj), l(TK))

Figure 5.3b Showing the numerical constraints derived using

fuzzy set theory.

5.4.4: An abstraét example - {

Suppose there are two regions, R,S, each with three
interpretations. Figure 5.4b.shows somé a priori likeli-
hoods, and the a posteriori likelihoods reached after re-
laxation wusing the constraints shown in figure 5.3a.
When equilibrium is reached a branch 1is made on the
likelihood of R3 , say, by setting it or all its rivals
to zero. This gives the states shown in figure 5.3c.
After relaxation, a terminal state is reached which has
value 0.24 + 0.2. Since this is better than the combined
local optima in the other, intermediate state, it is the
best solution according to the criterion used by MSYS.
Notice, however that the solution R S 1is consistent and

.

that both sum and the product of its a priori likelihoods

te

are better than for MSYS’s choice. The reason why MSYS
does not find the solution R S 1iIs that it only uses the
constraint R, 2 5,v§>v53 to lower the likelihood of R,

whereas if likelihoods are anything like probabilities,
the constraint should also have the effect of raising
s, ,S, or S, when R, 1is high and they are all low, as

it does in L.P. relaxation.

-138-

Rl O St v s2 v S3 , SI D Rt , S3 D R3

1(R1) < sup(1¢S1), 1(S2), 1(s3)) |

1(S1) < l(Rl), 1(82) < 1(R2), 1(83) < 1(R3)

FIGURE 5.4a : Some constraints between interpretations of

R and S (first line) and the corresponding numerical
constraints between likelihoods (second and third lines).

1(R1) = 0.76 => 0.7 => 0.2 1(S1) = 0.1
1(R2) = 0.0l | 1(S2) = 0.7 => 0.01
1(R3) = 0.24 1(S3) = 0.2

Figure 5.4b : Some a priori likelihoods, and the results
of a relaxation phase (indicated by arrows) using the
constraints above, ,

Choose R3 Reje;t R3
i(RI)=O 1(S1)=0.1->0 1(R1)=0.2->0.1 1(S1)=0.1
1(R2)=0 1(52)=0.01->0 1(R2)=0.01 1(S2)=0.01
1(R3)=0.24 1(S3)=0.2 1(R3)=0 1(83)=0.2->0

FIGURE S5.%c : Two states obtained by branching on R3
from the state obtained after the relaxation phase
in figure. 5.%b above.

5.4.5: Comparison of MSYS with LP relaxation

The main criticism of MSYS is the lack of a precise
interpretation for likelihoods. From the point of view
of LP relaxation, the reason for the confusion is the
lack of a distinctidh-between preferences ahd supposition
values. Likelihoods seem to be an attempt toc combine
these two different types of number into one. A priori
propabilities (preferences) are represented as initizl
values for likelihoods, so when the likelihoods change,

=

the a priori probabilities are lost and the criterion of

cr

h

[¢¥]
[

the coptimal consistent state cannot be in terms of r

product. The criterion of maximizing the sum of the

likelihoods seems like an unprincipled choice for facili-

ck

ating the pranch-and-bound search. By contrast, when L?

i

on 1is combined with a branch-and-bound search

[

elaxat

)]

S

98}
.
-J

a way of handling non-integer vertices (see Section

ot
Q.
o))
n
)

the measure which 1is being optimized, and is use
h b}

bound, is a principled one.

Despite these criticisms of detail, the general view
of the way computations may be performed in vision is
_shared by the authors of MSYS and LP relaxation. In par-
ticular, the ‘importance of constraint propogation
avoiding search,'as illustrated by Waltz’/s program and

REF-ARF (Fikes 1970), was first explained to me by Bar-

-139-

5.5 Growing islands of consistent hypotheses.

~In the revised puppet task (Section 4.7), distorted
parts and poor relations are allowed but have an assoéi—
ated cost. The problem is to find the consistent set of
interpretations of thé rectangles anﬁ overlaps with the
minimal total cost. One alternztive to relaxation is a
branch¥and—bound search (see Section 1.9) in which the
cost of a partial solution is the sum of the costs of its
constituent hypotheses. The first complete solution
whose cost is lower than any of the uncompleted partial
solutions is the optimum. Unfortunately, a partial solu-
tion which is nearly complete will tend to have a much
higher cost than one which contains only a few hy-
potheses, especially for a puppet picture in Which the
best interpretation contains many poor joints or parts.
Consequently, the optimal solution will not be reaéhed‘
until all the other partiél‘solutions have been de#eloped
to contain a considerable number of costly hypotheses.

This means that the bound will not prune the search tree

very effectively.

The reéson for the ineffectiveness of the branch-
and-bound search is that large partial solutions are un—
fairly penalised compared with small ones. A Dbetter
measure of the promise of a partial solution can be ob-
tained by comparing the total cost it has incurred with
its size. More precisely, the '"shortfall density” of a

partial solution can be defined as the mean value, over

~ 140~

all its hypotheses, of the difference between the cost of
the hypothesis chosen and the cost of the locally best
hypothesis for explaining the same data (i.e. the rectan-—
gle or overlép). The smaller the shortfall density the
better the partial solution. This meafure cannot be used
in a branch-and-bound search because the best overall
solution might start life as a very unpromising partial
solution, and so there is no guarantee thét a complete
solution which has a lower shortfall density than any
currently existing partial solution is the optimum. How-
ever, an island growing technique used in the HiHIM speech
understanding system and described by Woods (1977) can
" make effective use of shortfall density to prune the
search space. The way in which a modified version of the
technigue would be applied to.the revised puppet task Iis
described below. At present this application is entirely

hypothetical.

The first stage is to create a number of seed hy-
potheses which will act as the initial islands. These
are like the nuclei used in the puppet program (See sec—
tion 3.2), though they differ in that it is not always
sufficient simply to find just one seed in the best in-
terpretation. To be sure of finding the optimum it is
neéessary that all its good constituent hypotheses be
seeds (see below).‘ One way of ensuring this is to make

all the good local hypotheses act as initial islands.
The second stage consists in growing islands edither

—141~-

by merging two islands, or by creating and adding new in;
tgrpretations of the rectangles or overlaps neighbouring
an island. The island with the lowest shortfall density
is always selected aé the next one to be grown until

4.

Whe rectangles and

overlaps and still has a lower shortfall density than any

there is an island which covers all

other. This is taken to be the best global interpreta-
tion., The reason that it can be accepted is the best in
this case though it would be unacceptable in a branch-
and-bound search, is that if there were a better complete
solution, it would have to contain & partial solution
with a lower shortfall density and if there were such a
good partial solution‘it would already have been grown:
from one of the seeds. To put it another way, a tree

search imposes an ordering on the rectangles and ovelaps

ation to grow

cr

which may force the bast global interpre
from a partial solution with a high shortfall density,

whereas 1island growing from a sufficient number of seeds

0

allows the best parts of a global interpretation to be

grown first.

Compared with LP relaxation, island growing has botﬁv
strengths and weaknesses. It avoids all the messy prob-
lems associated with the uée of continuous supbosition
values. Alsc, Dby combining the constraints imposed by

e

the hypotheses in an island, it should be possible to
restrict the search for the new hypotheses which may act
as extensions to the island. A potential weakness of 1is-

land growing is that whenever a new island is created, a

—142-

check must be made to ensure that it is not a copy of an
island which already exists. Given a large gquantity of
data and hence many islands, the checking process can be
very time consuming. A further difficdlty is that there

is no simple, economical way of handl%ng minor variations

|

of an 1island. The obvious strategy‘is to allow islands
to contain MOR" nodes, but there may be interactions
between the choices at different "OR" nodes. SUppOSG,
for example, that at one place in an island there 1is a
choice of A or B, and at another place there is a choice
of C or D. It may be that A is incompatible with D, and
B with C. If "OR" ﬁodes are tc be used, these dependen-
cies need to be explicitly represented, perhaps by some-—
thing like the connectivity matrices»of Hearsay II (Zrman
and Lesser 1976). Also, "OR" nodes greatly 'complicate
the process of using the content of an island to restrict
the search for possible extensions. 5o perhaps the ©bes

strategy 1is the simple but expensive one of creating two

completely separate islands for each minor variation.

In the absence of a detailed example of the wuse of
island growing and shortfall density for picture in-
Aterpretation, it is hard to assess the importance of the.
above «criticisms or to discover the effectiveness of
shortfall density in limiting the number of islands. The

fairly successful use of island growing in HWIM (iWoods

1976) seems to be the best available guide to its value.

~143~

5.6: Matching by Clique finding

Ambler et al (1975) describe an efficient matching
technique which is well-suited to the puppet task. In
their example, the problemsmof finding the best match
between a data-graph ‘and.a model-g%aph, is transformed
into the problem of finding maximal completeiy connected
subgraphs (cliques) of a third graph, in which each node
correspondé to an interpretation of a data-node as a
model-node. Two interpretation nodes are linked by an
undirected arc if and only 1f the iInterpretations are
compatible. In the puppet example, there is no explicit
model-graph, butvvthe part and joint hypotheses are
equivalent to interpretation nodes and the clique-finding

technique can be applied if all compatible pairs of hy-

potheses are linked by arcs.

An efficient clique finding algorithm is described:
by’ Bron and Kerbosch (1973). It works by extending to-
tally connectedlsubgraphs, but unlike island growing, it
manages to avoid ever creating the same clique twice, and

hence avoids checking for duplicates,

Although it may be the best solution to the simple
puppet task described in Chapter 2, it is not clear how
clique finding can incorporate additional input instruc-
tions favouring certain solutions over others, or how it
can be extended to the revised puppet task (see Section
4,7) in which the hypotheses do not all have preferences
of oﬁe or_zero; Ambler et al suggest using thresholds to

~144~-

eliminate poor hypotheses and also poor arcs between
palrs of hypotheses which are only poorly compatible.
All “remaining hypotheses and the compatibility arcs

between them are then +treated as equally good, thus

reducing the problem to the previous form. Howsver,
f v
. - - . ! s . . -
something is lost in the reduction. Maximising the

number of consistent‘good hypotheses 1s not the sane
oroblem as finding the best consistent set of hypotheses.
So although clique-finding is efficient for some matching
problems, there is no obvious way of extending it to the
more general problems to which LP relaxation can be ap-

plied.

5.7% Hierarcnical synthesis

Barrow et al (1972) describe a very efficient grapgh
matching technique 'stemming from work by Seliridge and
Neisser (1960). Rather than having a single model—graph,
there is a hierarchy of theh corresponding to ths hierar-
chy of parts in the model. Each part has a corresponding
graph or relational net whose nodes correspond to smaller
parts. In the program which implements hierarchical syn-
theéis, each part of a model has a corresponding program

<

module which contains the relational network of smaller
parts, pointers to the modules for smaller parts, and
back-pointers to all the modules whose relational net-

works contain the part. During matching, activeted

modules search for all reasonable instantiations of their

~145-

relational nets. To do this they need instantiations of
their lower level modules éo they activate them. When a
module finds anvaUCCGSSfUl instantiation it returns 1t
to its higher level modules which are in turn, activated.
Top-down matching is caused by initially activating the
|
top-level module, and bottom-up matéhing by activating
all the lowest level modules. The reason that hierarchi-
cal synthesis is efficient is that modules remember their
instantiations; so that time is not wasted in repeated
efforts to match the same subgraph. As this suggests,
the method is particularly effective if many different

higher level modules share a lower level one,.

Some kind of hierarchical structuring seems inevit-—
able in visual perception, but there are a number of ways
‘in which the simple version of hierarchical synthesis

described above is not an entirely adequate model:

1. When a module is actlvated by a lower level one,
it requests it, in efrfect, to search for all reason—
able instantiations. This is not a rich enough in-
teraction between modules, since under many cir-
cumstances the search could be restricted by mobilis—
ing constraints imposed by the instantiations of si-
BIing modules. For example, suppose a leg module has
pointers to lower level foot, calf and thigh modules.
If a thigh and foot have already been found, then when
the leg module activates the calf module, it should

give additional information about the expected size,

~146~

position and orientation of the calf.

2. There is evidence (Navon 1977) that in human per-—
ception, an awareness of coarse, global structure pre-
cedes the analysis of details. In hierarchical syn-
- thesis this 1is impossible since tme only way of dis-
covering that a high level module is instantiated 1is
via its lower level modules. What is needed is a more
direct link between higher modules and the grey-level

data.

3. For many objects, there is no natural unambiguous
hierarchical decomposition into parts, so each module
may need to have alternative relational networks using
di fferent decompositions (see Turner 1974). Another
reason for wanting modules corresponding to many dif-
ferent, overlapping fragments of an object is that
when an object is partially occluded, the remaining
fragmeht is probably easier to recognise if it can b=
seeﬁ as one of a few known fragments than if it can

only be analysed as fragments of fragments.

&
|

4. In general, modules will not find perfect inst
tiations, so some mechanism is needed for making ths
best of imperfect ones. Turner (1974)‘ uses linezr
threshold functions to decide whether an imperfect in-
stantiation is acceptable. However, this means that a
high level module may accept an instantiation consist-
ing of many barely acceptable parts, but reject one
with several perfect parts and one just unabcepteble

-147~

one. As in clique-finding, local thresholding cannot

guarantee the global optimum.

5. Perhaps the greatest potential advantage of LP
relaxation over gréph—matching techniques like
hierarchical synthééis or clique—finding, lies in the
way that occlusion, lighting, and support might bs
handled. It is hard to see how knowledge of thess ef-
fects can be mobilised in graph-matching. In fact,
occlusion is typically treated as if it were inexpli-
-cable noise (Turner 1974). By contrast, LP relaxation
provides a mechanism which should be able to incor-
porate specific inferences based on explicit VY-
potheses about occlusion, 1lighting, or support, so
that relaxation could integrate decisions apout these
effects with decisions about three-dimensional shape.
Naturally, a 'great deal of work would be required to
write a2 program which demonstrated that this promise

could actually be fulfilled.

~148-

CHAPTER 6

PERCEPTUAL SCHEMAS AND THEIR RELATIONSHIP -

TO PERCEPTUAL AWARENESS.

The main aim of this thesis is to investigate relax-
ation as a method of finding optimal interpretations of
scenes, and so many important perceptual issues have been
deliberatelyv avoided in discussing the relatively simple
applications of relaxation which have been described so
far. However, the next application to be descibed is a
system which allows relaxation to be used in' the con-
struction of more complex perceptual representations, and
in order fo implement the systenm, .it was necessary. fo
face up to some difficult general issues. Decisions had
to be taken about the types of representation used in
perception, and about the felationship between stored
knowledge and the current awareness of a particular
scene. So this chapter discusses these issues, and then

4

Chapter 7 shows, in detail, how a particular approach to

them can be incorporated in a working systenm.

6.1: Current awareness and stored knowledge

It will be assumed that the representation of a par-—

ticular scene 1is some kind of relational nework, (see

~149-

Guzman 1968, Winston 1970){ An important 1issue ié how
these representations are related to those of stored gen-
eral knowledge about the forms of objects. In psycholog~,
ical terms this amounts to the relationship between the
contents of current awareness and the contents of long
term memory. There is a view, commdn in Psychology and
Artificial Intelligence, that the two types of represen-
tation are similar in form, so that the contehts of long
term memory are like copies of the contents of current
awareness. This view will be criticised and contrasted
with an alternative model, a simple version of which has

been implemented.

The following two assumptions constitute a medel of
how objects are remembered and recognised which seems to

be used implicitly by many psychologists.

1. Long term memory consists of a store of something
like copies of percepts, and recalling consists in re-
trieving things from this store, or in activating

them.

2. Recognition involves comparing percepts with

stored memory images.

Some of the plausibility of this model of recogni-
‘tion and memory may come from its similarity to well.
known systems which work in just this way. Fror ‘example,
finger-prints are recorded by taking copies of them and

suspect prints are recognised by comparing them with the

-150-

stored copies. Also, the contents of current awareness
seem, Iintrospectively, to be similar when we perceive an

object and when we recall it.

A quite different model of memory, which was sup-
ported by Bartlett’s (1932)'experi$ents, is that recal-
ling is a constructive brocess of c¢reating a coherent,
articulated representation rather than simply re-
activating or retrieving a copy. A good analogy is
Mremembering® a sweater by keeping the knitting instruc-
tions so that the sweater can be recreated, as opposed to
remembering it by keeping another similar sweater. On
this model, the contents of cufrent awareness resulting
from recall may be different from the contents of long-
term memory, so that the expression "memory image" nmnust
vbe reserved for one or‘the other. If we use "memory im-
ége“ to mean a repyesentation in current awareness creat-
é& in the absence of the reievant perceptual input, then
the contents of long-term memory may be nothing like a

memory image.

Perceiving is also a constructive process which uses

=

sbme of the same long— term memory information eas
remembering, but this does not mean that any remembering
goes on when we perceive. We may deliberately choose to
bompare a perceived object with a memory imags, but this

is introspectively quite different from the percention

and recognition of a familiar object.

The evidence against the stored copies model comes

-151-

mainly from the generative nature of perception and
memory. Bartlett, for example, showed that if‘peoéple
are asked to recall a story after progressively longer
intervals, they produce stories which contain less and
less of the detail of the original and are more and more
!
in accordance with general expectatfons. This seems to
fit the idea that what are stored are rules for con-
structing the story and that if any of the rules are
lost, general principles are used in their place. The
idea of stored rules also seems to be necessary to ex-—
plain how we can perceive objects which have never before
been encountered, such as a flight of stairs with nine-
teen steps. Stored copies of previously perceived
flights of stairs would presumably contain a particular
number of steps, but what we need is an awareness of the
grammar of stairs, the way in which risers and treads al-
ternate. The similarity between structures built during
perception and the structures which Linguists assign to
‘sentences, has been expounded by Narasiman (1966) énd
Clowes (1969) among others. The linguistic analogy is
particularly helpful here, for supposing that. our
knowledge of spatial structures resides in stored copies
of percepts, is like supposing that our knowledge of
grammatical structure resides in a set of stored sen-

tences.

-152-~

6.2 Frames

In a widely read paper, Minsky (1975) expounded a
theory of the way in which knowledge is structured and

used in perception and understanding. His theory will be

[
wn

discussed at some length, mainly in|order to attack hi

view that current awareness and long term memory have

ct
@

cr
7.
®

same form, but also because many of his ideas about
structuring of knowledge into frames are incorporated in

the system to be described.

6.2.1¢ An example of a schema

The idea that we understand the world by assimilat-
ing it to our own schemas (or frames) is far from new,
having been expounded by Kant (1781)., Piaget (1954) and
Bartlett (1932) among others. The difficulty of the fol-

lowing task is a striking illustration of the existence

of schemas and their powerful influence on our awareness

Q.

of reality. Imagine a solid, regular tetrahsdron, an
then try to imagine a plane which cuts it so as to give a

square cross—section. Most people cannot imagine such "a

e

plane. Their schema for a tetrahedron gives it a tri-
angular base and three sloping triangular faces. There
are three horizontal base—-edges and s tripod of other

edges. Not only are there no right angles, but edges and

faces naturally fall into groups of three.
There is, however, a quite different schema for a

-153-

tetrahedron, which Iis more appropriate when the
tetrahedron is in a different orientation, ‘since then the
edges and faces which are grouped togethef have similar
inclinations to the.vgftical. Imagine a horizontal edgé
resting on the support plane, with another horizontal
!‘
edge at right angies to it and some distance above it, so
that the centres of the edges are Qertically aligned.
Now Jjoin each end of one edge to each end of the other aé
in figure 6.1. This is a quite different way of thinkiﬁg
of a tetrahedron. The faces naturally form two pairs
each of which is hinged across a horizontal edge. The
edgés fall into a group of two horizontal ones and four
sloping ones. In volumetric terms, the tetréhedron can
be seen as a stack of rectangular laminae which are very

elongated at the bottom, become progressively squatter

ct

ne

it
"y

er

he middle, and are elongated the other way at the

top. Half way up is a square.

6.2.23 Minsky’s theory

Minsky puts forward a theory of how frames are used

_and inter-related:

tHere is the essence of the theory: When one
encounters a new situation (or mekes a substantial
éhange in one’s view of the present problem) one
selects from memory a substantial structure called a
frame. This is a remembered framework to be adapted
to fit reality by changing details as neéessary;

-154-

FIGURE 6.1: A tetrahedron inscribed in a cube (after Hilbert
and Cohn-Vossen 1952). The top/bottom direction suggested by
the cube can be used for understanding the tetrahedron, but it
gives rise to a different schema from the normal one (see
section 6.2.1)., Conversely, the normal schema for a tetrahedron
involves an intrinsic top/bottom direction which can be imposed -
on the cube.to reveal a different schema in wnich the hexagonal

cross-section is apparent. (This takes practice).

"A frame is a daﬁa-structure for representing a
sterotypéd situation, 'like being in a certain kind
of living room, or going to a child’s birthday par—-’
ty. Attached to each frame are several kinds of in-
formation. Some of this information is about how to
use the frame. Some is about wh;t one can expect to
happen next. Some is about what to do if these ex-

pectations are not confirmed.

"We can think of a frame as a network of nodes
and relations. The “*'top levels” of a frame are

4

fixed, and represent things that are always true

about the supposed situation. The lower levels have

many terminals - "slots"™ that must be filled by
specific 1instances or data. Each terminal can
specify conditions its assignments must meet. (The

assignments themselves are wusually smaller "sub-
frames".) Simple conditions are specified by mark-
ers that might require a terminal assignment to a
person, an object of sufficient value, or a pointer
to a sub-frame of a certain type. More complex con-—
ditions can specify relations among the things as-

signed to several terminals.

Mifuch of the phenomenological power of the
theory hinges on the inclusion of expectations and
other kinds of presumptions. A frame’s terminals

are normally already filled with "default" assign-

‘ments. Thus, a frame may contain a great many de-

- 155-

tails whose suppositidn is not specifically warrant-
ed by the situation. These have many wuses in
representing general information, most-likely cases,
techniques for bypassing "logic", and ways to make

useful generalizations.®

One of the main aims of the theory is to show how our ap-
parently rich and complex immediate. awareness of the
scene can be compatible with serial processing. Minsky
believes that, although parallelism may be useful at
lower levels, it offers little help to hypothesis forma-
tion and confirmation methods that seem necessary at
higher levels. Instead of the parallel formatioﬁ and
parallel interaction of many hypotheses, expounded in
this thesis, he proposes the serial manipulation 6f com—
plex pre—existing structures so that the richness of
awareness comes from selecting 'the correct existing

structure rather than from constructing one.

6.2.3: Some Difficulties for Frames

Minsky implies that frames are data-structures which
get joined together by making terminal assignments during
perception. This creates a problem for lrooms with two
windows. Presumably there is only one window frame, so
what happens when both windowA slots 1in the foom are
filled?. If the details of the windows differ, there will

be rival fillers for the slots in the window frame. It

-156-

seems that we must be able to copy the window frame and
use separate coples for the two slots in the room frame.
So the economical idea that all the nmain high~level

date-structures wused in perception are ones that already

exist has to be abandoned.

A more serious difficulty is that some frames, such
as those for'é polygon or a zebra crossing; héed to have
a variable number of slots., This suggests that frames
contain generators for instances rather than simply being
copied to produce instances, Jjust as in computing
languages structures like arrays are not made by copying
a standard array but by a procedure whicn can take param-
eters. Even when the number of slots is fixed, as in a
POFP-2 record, there is no need to generate instances by
copying a standard example. There is an important issue
here about the value of a particular example of the
structure - a structural template - as a model of‘struc—
tures of that kind. At first sight such a direct
representation seems to have many advantages (see Sloman
1971)., However, it also has many disadvantag?s. For ex—
ample, our knowledge that a square has square corners is
—more economically represented as a single rule that can
oe applied to any corner of the square rather than as
four separate pieces of knowledge attached to the four
corner slots, and the same goes for our knowledge that
each whife,stripe in a zebra crossing is bounded by two

black ones.

~157-

Another difficulty for structural témplates, stems
from the hierarchy of types of object. For example, an

ostrich is a type of b

i~

rd, so it seems to be redundant to
have a frame for an ostrich which contains two slots for
wings, since this structgral information is already con-
tained 1in the frame for a bird. Although it may be con;
venient, as an implementation detail, to store knowledge
about ostriches within a bird-frame, this structure need
neither be used nor copied to create the bird instances
used for representing a particular ostrich, since we may
create a representation of & bird before deciding whether
it is an emu or ostrich.and nence before the ostrich
frame has been selected at all. The view that instances
are created by copying frames leads to awkward questions
avout whether to copy the bird frame or the ostrich frame
or both in order to‘represent a particular ostrich. Such
questions do not arise if stored knowledge consists of
schemas which define roles and rules (see below) since
then the instance representing an ostrich 1in current
awareness can derive roles and rules from both schemas

simultansously.

A further unsatisfactory feature of frames is their
use of default fillers. One reason for having defaults
seems to be that since frames are structural templates
the slots are available, so they might as well be filled
with something. A default is a simple direct way of
representing a particular ekpectation, but it is - clearly
inadequate for representing a range of possible frame-—

-158-

types, or restrictions which any particular instance of a
frame must satisfy in order to fill the slot. Given that
some more sophisticated kind of representation is needed
for this more complex information, it is questionable how
much is added by using specific defaults. Minsky“’s
claims that defaults ére useful for bJ—passing logic and
making generalisations have vyet to be substantiated.
Reasoning with defaults is a tricky business because of
their peculiar status. They may be suggestive but in
particular cases no firm conclusions can be drawn because

the defaults may be wrong.

The main motivation for defaults is to explain the
apparent richness of immediate awareness without appeal-
ing to parallel processing at high levels. There isr no
need, however, to suppose that decisions have already
been taken about specific details when we first perceive
a scene. Much of the detail 'may only be apparently
present, owing to the peculiér properties of 1introspec-—
tion. When we examine real objécts such as a television
picture we can assume the picture does not change simul-
taneously with our attention, so if we examine one part
-of it in detail we can assume that all those details were
then even when we were not looking at that part. We have
no such guarantee for introspection, so it may well be
that people wuse a kind of "demand processing" whereby
slots are filled only when their values are needed. Ir
this procéss is smooth, rapid and unconscious it might
well‘appear to naive introspection that the fillers were

-159-

Y

there all the time. This ;ine of argument has 1its own
problems because decisions about how to fill one slot
normally involve decisions about filling other slots, so
that slots cannot bhe filled one at a time when needed.
However, demand processing seems 1ike;a good alternative
to defaults, 1if one wants to expléin how the apparent

richness of awareness could be compatible with relatively

slow serial processing.

-160-

CHAPTER 7

A SYSTEM WHICH USES RELAXATION T@ COORDINATE
NETWORK GROWING RULES.

If one accepts the view that perception consists in
using stored rules to grow a network of instances from
the low-level data, then two of the major 1issues which

arise are:

1. How is it possible to notice the occurrence of
subsets of instances which satisfy the left hand sides

of rules, without extensive searching?

2. tlhen the low-level data or the rules are dubious,

how can relaxation be used to find the best consistent

interpretation?

A system called SETTLE has been implemented which
incorporates answers to both these questions. SETTLE is
described in detail in the rest of this chapter, and is

illustrated using the domain of family relationships.

7.1t Overview of the SETILE system.

SETTLE orovides a set of facilities which are

designed to make it easy to write programs of a particu-

=161~

lar kind. The aim of the sYstem is ﬁo allow the user to
concentrate on defining the schemas needed for a particu-
lar domein, and the inference rules which apply to combi-
nations of 1instances of the schemas. The business o7
noticing when rules apply, setting up the relevant con-
straints between hypotheses, and achieving a consistent

network of instances is handled by the'system.

The term Scheha will be reserved for stored
knowledge about a particular type of entity and the term
Instance will be used to refer to a representation in
current awareness of an entity of that type. Schemas are
thought of as far more iike grammars than like instances.
A Schema specifies a number of roles or slots which have

ES

~associated restrictions on individual fillers, or on the

relationships which should hold between the fillers of
different slots. Schemas do not, at present, contain
procedural information about how to search for fillers of
slots. It is hard to use knowledge gained at run-time
about properties of the thing that should be in e slot,
to constrain the search for candidate fillers. This

problem has been temporarily ignored.

Instances and the connections betwee them are
created by the action parts of rules. An action is per-
formed when the pattern specified on the left hand side
of a rule matches a subset of the existing instance-
network. ©For example, a rule might say that Iif a erson

A has a spouse B, and A also has a child C, then th

-162-

"'child" slot of B should be filled by C (only convention-
‘al families are allowed!). Once this rule has been en-
tered in the person schema, the system ensures that it is
invoked whenever it 1is appropriate. In this respect

rules resemble Planner antecedent theorems (Hewitt 1972).

'
1

Each instancé and each filling of‘a slot 1is a hy—-
pothesis. It has an associated supposition value and is
bound by constraints. For example, when the rule
described above 1is invoked, the action part not only
creates the hypotheses that B has C as a child, but =zalso
sets up a constraint so that relaxation will ensure that

£

this hypothesis 1is accepted 1if the hypotheses ﬁhich'
matched the leff nand side of the rule (called its key)
are accepted. The use of relaxation means that instances
and connections can be added to the network even though
they are not definitely correct. If costs dependent on
the probabilities of tentative hypotheses are associated

with their rejection, then relaxation will find the most

probable combination of instances and connections.

7.2: Schemas.

The person—schema which will be used to 1illustrate

the SETTLE system is created by the command:

w
A
>4

MAKESCHEMA (PPERSON", [SPOUSE PARENT 2 CHILD O

SURNAME D) 3

-163-

The words following "Person' are fhe namés of the slots.
Slots are assumed to be limited to one filler unless they
are followed by a number indicating a highef'iimit (0 is
used to mean no limit); iWhen an instance of the schema
is required, a one-dimensional array (a strip) is creat-
ed. The function "makeschema" assigns strip—accessing

functions to the slot names so that they can be wused to

access the slots of instances.

7.3t Slots.

-

A slot is not simply a location for holding a
pointer to some other instance. It is a complex data-

structure with the following components:

l. A pointer back to the part of the schema which
contains information about the slot, such as the rules

involving its fillers.

2. A list of demons which are waiting for new slot
fillers (see below),

3. A list of hypotheses about potential slot fill-
ers.

-164-

7.43 Bonds

Connections between instances involve each instance
filling a slot in the other. Slot fillings are hy-
potheses which are bound by constraints and have their
supposition values manipulated . by ﬁelaxation, so they
need to be represented by data-structures rather - than
simply being pointers. The system uses structures called
"bonds" to implement slot fillers. As figure 7.1 shows,
a bond has pointers to the two instances which it joins,
and also an associated record, called a SUppositioh—node,
which contains the supposition value of the bond and the
constraints involving it. The relevant slots in the two
connected - instances have pointers to the bond in thelr

lists of candidate fillers.

EOR)

In the domain for which the systen was designed,
when A fills a particular slot in B, it genérally follows
that B must fill a known slot in A, and so it is unneces-
sary to have separate hypotheses about the two reciprocal
fillings. This is the reason for using a single two-way
bond rather than two one-way ones. When a slot is filled
“with something other than an ihstance, or when the in-
verse slot is unknown, a single slot filling can be

represented by simply omitting one of the pointérs to the

bond.

The way in which slot fillings are implenented 1s
expensive and cumbersome, but the complexity seems to be
a necessary consequence of the need to refer to fillings

-165-

Sthema | .55}46,,,6(’

\
Instance Ingtance
\ V4
; \ , |
\ |
I \ gufposiﬁon » ,/ I
node
st ')
ll).asd ?/1 List of ,
Lift Qf' ??o% th 9 60;14g (h List qf
demons (S ond slol d erions
7] -+
on slot ,’ \‘ ‘ Y : oh slot
! ; !
v v L v

FIGURE 7.1: Showing some of the data-structures used in the
SETTLE system. The use of demons, and explicii constraints
means that the connections between instances are considerably

more complex than simple pointers from a field in one instance

to the other instance.

as hypotheses.

7.5 Specifying Rules.

Once a schema has been created, rQles can be added
to it. These determine how instances of the schema can
combine with other instances. Rules typically specify
that a particular subset of instances is illegal, or that
it implies some other instance or bond between instances.
Rules are entered in a list format that is convenient for
typing, but they are compiled into records containing a

key and an action, before they are stored in schemas.

'The left hand side of a rule contains a list of bond
specifications and a list of other conditions which nmust
pe satisfied by the matching instances. For example, the
rule that a person’s child is also their spouse’s has the

i

following forms:

[3 PERSON [A CHILD Cl [A SPOUSE Bl 1 ==> [inferbonﬁ

([B CHILD C1)1;

The square brackets are list Dbrackets. The first <two
items of the LHS are the number of the rule and the sche-
ma to which it should be added. The remaining items are
bond specifications. These declare variables which are
bound to instances during a match. There are conventions
that if a variable is repeated it must be matched to the

- 166-

same instances, and that different variables must be
matched to different instances. The specification [A

CHILD C1 should be read "A has child C¢

There are several elaborations to the basic way of
specifying a bond. »[A-BROTIER B SISTE%] is equivalent to
the two specifications [A BROTHER BI, fB SISTER Al. Such
a specification may be useful when slots do not have
unique inverses. [A SEX = MALE] is used tc indicate that
the filler of A’s sex-slot should bz the word Uamale®
‘rather than an instance. [A SEX /= MALE] neans that an
instance will only match A if It does not have male in
the sex-slot. Any part of a specification car be preced-
ed by the "&" sign which causes the value of the follow-
ing word to be used. For examble, if the vaiue of the
variable SLOTNAME 1is "CHILD" and the value of the vari-

able X is C, then [A & SLOTNAME & X] is eguivalent to [A

2

CHILD 'Cl. This facility is useful when rules ares bein
generated by a function rather than bzing typed 1in

directly.

Finally, items starting with 2 "." on the LHS of a
“rule specification are conditions which must be satis-
fied. For example, to ensure that children zare younger

N s . ; / s .
than their parents, the following rule could be addeds

[4 PERSON [A CHILD C} [A AGE X1 [C LGS Y1 [.LESS X

Y]] ==»> [CONTRADICTION ()13

-167-

Condition specifications consist-of a dot followed by a
function or function name followed by arguments (as in
lisp). The>match fails unless the function returns true.
Variations in the way in which conditions can be speci-

fied are explained in comments in the code in Appendix 6.

{

7.6t Rule invocation.

£

This section starts by describing a method of rule
inveocation which assumes that all the instances and bénds
are présent before'any matching starts, and then shows
how the method can be extended to the harder problem of

noticing when a rule becomes applicable'through the addi-

tion of a new instance or bond.

The LHS of a rule is compiled into a key, which is =2
data structure that 1is designed to facilitate rapid
matching. A key is a rooted, directed graph of keynodes}
each of which gets bound'to a different instance during
matching. The basic strategy is to bind the keynodes one
at 2 time and to generéte candidate bindings for new key-—
~nodes by looking in the slots of instances which are al-

ready bound. For example, if the bonds specified are:

(A CHILD C1 and (A SPOUSE Bl

then once A has been bound, the fillers of its child and

spouse slots are the candidates for C and B respectively.

Only perfect matches to the key are required, which
means that the keynodes can be bound in a predetermined
order, and a match can fail as soon as it reaches a key-
node for which there are no suitable instances. The sup-
position values of instances and bonds are ignored during
matching, so several alterﬁative bindings may be possible
for a keynode and a depth-first search is wused to find
all the ways in which a key is instantiated in the in-

stance network.
i
|
The candidate bindings for the first keynode are all
the instances of the schema with which the rule is asso-
ciated. Pond specifications are used to give each key-
node, except the first, a pointer to an earlier keynode
and an assocliated slot name. It uses these to gensrate

candidate instances from the instance becund to the ear-—

lier keynode. The candidates are not always feasible,

ok
[\

because' they may already have been bound to an earlier
keynode, or they méy violate one of the conditions speci-
fied_later in the LHS. Each such condition is associated
with a particular keynode and, in order <to prune the
search, it 1is tested as soon as that keynode is hound.
Conditions which take as arguments the instances bound o
several different keynodes are associzted with the last

.one to bhe bound.

1

If more bonds are specified than there are non-root

keynodes, then the key will be a lattice or graph rather
than a tree. In this case the system selescts a subset oOF

~-169-

the boncd specifications which form a rooted tree, add
uses these for generating‘candidate bindings, as above.
The remaining, extra bond specifications are handled liks
the conditions. They are associated with the last of
their keynodes to be bound and are tested before fufther

[
bindings. |

If the bond specifications do not contain a rooted,
directed tree, then there may be no economical way of
generating candidate bindings for some keynodes, so keys

of this form are not allowed and any such rule specifica-

tion is réjected by the system.

So far the description of rule invocation has ig-
nored the fact that the instance network grows, so that =

match which initially fails may later succeed. When =2

[oX

new bond is added to the network the systemn needs to hzve
some way of deciding which keys may now match., It would
be possiblé to index each key under all the types of bon:
involved. However, if a potentially rzlevant key Wwas
found in this way, then a fresh match would have to start
at the new bond and so the simplicity and sgpeed gained oy
Abeing able to match the keynodes in a predetermined order
would have to be sacrificed. Also, 1f matching started

afresh with each new bond, there would te 2 great deal of

\Q
[45)
0]
3
s
e
o]
b“

~
hy
4]
[
[
(0]
(i

duplication of the work done durin

matches.

An alternative strateqgy, which again depends on <the

, 1Is to st uso

»

fact that only perfect matches are requirec

~170-

a demoﬁ whenever a match fails on account of a missing
bond. The demon "sits" on the slot in which the bond
will go, and so no searching is required to activate 1it.
The demon keeps a list of the instances to which keynodes.
were bound in the earlier match .before it failed. So
| .
when a new bond is put in the slot, the keynodes can be
rebound and the match continued using the new bond,
without .any duplication of previous work. The demon is,

in effect, a suspended partial match.

Since any slot may gain another fillér after the
first attempt at ﬁatching a key, it is not sufficient
only to leave demons on slots containing no suitable
filler. Every slot which is used to generate candidate
instances for a keynode needs to be given a demon. This
leads to a lot of demons and so implementation tricks
(explained in comments in the code), are wused both to

keep down the number of demons and to make them compact.

7.7: Jobs

It would be possible, when a key matched, to perform
the corresponding action immediately. FHowever, actions
often create new bonds which cause other keys to match or
the same key to match in a different way, so actions
would be called within other actions. If this embedding

occurrzd in any depth, it would cause inconveniently desep

[

calling sequences. Like several other prograns (Sloman

~171-

1977, Paul 1977) the system avoids this problem by using
a job queue. Whenever é new bond is added to the in-
stance network, all the resulting matches are found. For
each match, a Jjob-record is created which contains the
bindings of the variables in the key, ghe bonds matched
by the key, and the action part of thé rule. The job is
added to the queue. Wﬁen the job is run it restores the
bindings of the wvariables used in the key, so that the
code for the action can use tﬁe variables to refer to the
same instances. The matching bonds are stored becaussz
‘actions typically infer some other bond froﬁ them and so,
for the >purpo§es of relaxation, they need to set up =
- constraint between the matching bonds and the inferred

one.

There is another and more important reason 1or using
jobs. Any system which is based on forward chaining (an-
tecedent theorems) and also keeps alternative possibili-
ties, 1is liable to explode. Some method of limiting the
forﬁard chaining is needed, and the SETILE system uses
relaxation coupled with the assumption that an action is .
only relevant if all the bonds which matched the key have
7high supposition values. For example, 1f a rule involves
inferring a new bond from the old ones matching the key,
then the action will set up a constraint which requires
the new bond to be true if all the old ones are. This
constraint, has no effect if any of the old bonds are re-
jected, so there is no point even making the constraint
unless all the old bonds have high supposition values.

~172-

It would be possible, but not easy, to take supposi-—
tion values into account during matching. ¥When a match
failed because there was no suitable bond with a high

enough supposition value, a demon would be set up wait

f=te

ng
for such a bond. Unfortunately, by the time a suitable
bond arrived,v the supposition valu; of some bond used
earlier in the suspended partial match might have fellen.
So whenever high supposition values fell, it would be
hecessary to garbage-collect éll the demons which were
waiting to complete the partial matches which were no
longer valid. A further difficulty would be that oscilla-
tions 1in the SUpposifion value of a bond would céuse the

same match to be rediscovered several times.

b
L]
o}
Q.
[
J
W

The system ignores supposition valuss when

o
o
ct
o
D
"

matches but takes them into account in deciding
or not to.run a job. It examines the first job on the
queue to ensure that all the bonds which matched its key
have high supposition values. If they do, the job 1is
run, ‘but if any are low, the job is removed from ths
queue and hung on the bond responsible. Nhenever the
supposition value of a bond rises to a high enough valus,

‘a check is made for hanging jobs, which are then put back

v
cr

on the Job queue. The effect of this procedure is the
jobs are only actually run when all the bonds maéching
their key have high supposition values, so that many
ineffective constraints and unsupported bonds and -in—‘
stances are never added to the instance network. Provided
all the scores are negative, hanging jobs cannot ;ead To

-173-

the best global interpretation being overlooked. Running

a job can only make matters worse for the set of bonds

cf

and instances currently favoured by relaxation. Any se
of hypotheses which is rejected by relaxation would still
be rejected after running hanging jobs which added furth-

f
er constraints or costs to that set. |

7.8: An example of the SETTLE system in action.

Although SETTLE is intended as a way of appl?ing re-
lakation to vision tasks, the domain of family relation-
ships has been chosen to illustrate, in detail, how the
system works. The reason for the choice is that psople
are very familiar with family relationshics, so thers

should be no. confusions about the domain to add to the

y

v

difficulties of understanding the system. Ths example is
not intended as a model of how people handle information

about family‘relationships.

7.8.1: Specifying rules about family relationships.

[

Only one schema is used in this exampls. Figure 7.2
shows how it is defined, and how the system is told about
rules to be applied to instances of the schena. Finen

he

ct

this code is compiled, the structures made fron
the rule specifications are associated with the relevant

parts of the person schema. For example, rule | is kept

174~

MQKESCHEHQ(“PERSGN"yESPDUQE FARENT 2 CHILD O SEX SURNAMEIY S

COMMENT SOME $1.0T8 HﬁUF KNDUN INVERSESS
SPOUSE < ~=8F []l!"\{ SFPARENTC-=CHILD

COMMENT & PERSONS FARENTS ARE MARR LED S
L1 PERSOMN X PARENT FLIEX PARENT F21 2
=z [INFERCOPL SFOUSE F21003%

COMMENT A FERSONS CHILIREN ARE ALS0O HIS SPOUSES CHILDRENGS
L2 FERSON P CHILD CICP SPOUSE Q1
m=l DINFERCEQ CHILD CIX1%

COMMENT A FERSOMNS SFOUSE I8 QF THE OFPFOSITE SEXS

I"3 FERSON [P SPOUSE QICF S'S""’ 511 -

mapDIF S="MALE" THENM INFER(IQ SEX =FEMALED)
ELSETF S="FEMALE®" THEN INFERCLQ SEX =MALED
ELSE INSTRFROPISPFROS HAS FUNNY SEX PYSPR(OSYS
CLOSEDS

COHMENT SPOUSES HAVE THE SAME MNaME:
L4 PERSOM IF SPFOUSE QILP SURNAME NI]
== [INFERCDQ SURNAME NI

COMMEMNT MALE CHILDREM HaVE THETIR FPARENTS NAME$:

LS LFOCHILD CI00 SEX =MALED]
=i AMEF LLLER P » SURNAME « Cy SURNANMEY 3

COMMEMT UNMARRTED FEMALE © H TLOREN HaVE THEIR FARENTS NAMES
L& PERSOM DO SEX =FEMALEILC SPOUSE =NONEILC PARENT F3I 3
=l DHEAMEFTLLER (Ce SURNAME y Py SURNAME) 13 '

COMMENT FEMALE CHILODREMN WITH THEIR PAREMNTS MAME ARE .
PROBABRLY UNMARRIEDS :
L7 PERSON CC SEX =FEMALEILC FARENT PILC SURNAME NI
P SURNAME NI
== [SOFTINFERLID SPOUSE =NONET=0.7)13

COMMENT MARRIED CHILDREM WHO HAUVE THEIR

FARENTS NAME ARE FROBABLY MALES

£8 FERSON LC SPOUSE /=NONEILC FARENT PILC SURNAME NI
CF SURMAME NI 1

mai [HOFTINFER(DD SEX =MaALET 0,731y

FIGURE 7.2: The person schema and some rules about family

relationships

in the part of the schema which stores informaticon
relevant to the PARENT sldts of the instances. ihen an
instance has. its parent slot filled, thé key of rule i
will start matching by binding the keynode for X to the

instance and the keynode for P to the filler.
~ |

There are several features of figure 7;2 which have
not, so far, been explained. Rule 3 demnonstrates ths
convenience of being able to use arbitrary POP-2 code to
specify the action part of the rule. It allows 2rror
messages and tracing to be included, as well as allowing

arbitrarily complex actions.

Rules 5 and & show the use of the SAMEFILLER func-

tion. It is often possible to infer that two slots must
have the same filler, without knowing what it 1is. Tnis

knowledge could be captured in two rules each of which
required a filler for one of the siots as part of its.
condition,» and then inferred that the filler also fil!
the other slot - as 1its = action. However, 1t 1s mors=s
eéqnomical to have-a single rule with a éimplér congditizcn
which sets up special demons on both slots, so that =zny
fillers of one are inferred to fill the other, subject o
the continued truth of the conditions which ceaused ths

demons to be set up.

Rules 6, 7, and 8 show how the filler H“NONE" can bs

At

used to represent the fact that there is no filler for

slot of a type which can have at most one filler. For

-175-

such a slot, the system automatically keeps' a con-
straint, which it modifies Qhen new candidate fillers are
found, to prevent more than one filler 5eing accepted as
true. So by supporting the filler "NONE", real fillers
can be kept out. Some kind of mechan%sm like this 1is
needed, since the known absence of aAy filler cannot be
represented simply by the absence of fillers from the
slot. However, it may be that using "NONEY fillers is
Jjust an unprincipléd hack. The method cannot be used
vhen slots which can potentially have any number of fill-
ers, are discovered to have none (as opposed to not be-
ing discovered to have any). I suspect that this ap-
parently minor difficulty 1is the tip of an iceberg.
Sometimes, the implication of a rule involves quantifiers
rather than being about particular filleré. Tﬁesa are .
hard to handle in the CUrrent>SETTLE system, “SAMEFILL-
ER" demons and "NONE" fillers cope with the Atwo cases

that have arisen so far, but a more general mech2nism for

handling quantifiers would be bhetter.

Rules 7 and 8 show how non—-binding inferences can
be handled. The function SOFTINFER causes a constraint
to be set up; so that if the conditions of the rule are
accepted, but the implication is rejected, then a penalty
of 0.7 is paid. (See section 4.6). This particular
number 1is given meaning by its magnitude relative to
other costs which determine the trade-offs made in de-

ciding which hypotheses to accept and which to reject.

-176-

7.8.2: Interpreting claims about specific people.

Figure 7.3a shows one way of inputtind data about a
particular - set of people and their relationships. The
claims give preferences .to particular bonds. Their
strength, 1, means that a claim can override one soft
inference, but not two, since 0.7 + 0.7 > 1. The in-
stances and candidate bonds are shown in figure 7.3bt.
This also indicates the way in which bonds generatéd by
inference rules depend on other bonds. The result of 29
rounds of relaxation is shown in figure 7.4b. It is the
best consistent set of beliefs given the claims.and
inference rules. Figure 7.4a shows the .job statistics
as relaxation proceeds. In this case relaxation is au-
tomatically terminated after 15 clear rounds in whichl no

jobs are made or roused. HNotice how three jobs made on

ct

FER)

the second round of relaxation do not get run until the

0]

eighth round, when the bonds matching the rule keys have
all attained high supposition values. The way the siippo-
sition values change during relaxation is shown in figur=2

4‘7.5.

7.8.3: The effect of more, incompatible claims.

Figure 7.6 shows some more claims and the network of
candidate bonds and instances which is caused by these
extra claims and by the 1inference rules which they

-177-

trigger off. .Some previously accepted bonds now have to
pe rejected in order to reach the best consistent szt of
beliefs ih the light of the new data. rigure 7.7b shows
this optimal set, which 1is discovered by the program.
Notice that one of the original claims (about the sex of
person2) has been rejected. Figure 7.7a again shows the
Job statistics as relaxation proceeds until there are 15
clearv rounds. The way the values change‘during this

phase of relaxation is shown in figure 7.8.

-178~

COMMENT THIS IS HOW FEDPLE ARE MADE:
& MARETINST OPFERSONY N

CLAIM{LFERSONL CHILD PERSON2T1)3
CLATM(CPFERSONL SURNAME =HINEST w108
CLATHMILPERBOND SURNAME =JONESI»1)3

CLATH(LPFERSOND SEX =FEMALET» L) 3

FIGURE 7.3a: Some claims about people.

SURNAME

CHILD

"FEmaLe”

" TonES"

FIGURE 7:3b: The candidate bonds created by the claims and the
inferences they trigger off. Bonds are given numbers, and
implications between bonds are indicated by following a bond

number with the numbers of a conjunction of bonds that imply it.

H1S.aettled

ROUSED RUN STORED MADE

0

1
0
O
0
3
QO
0
O
O
0

0
0
0
0
0
0
0
0
0
0
0
!

O

-0

0
1
0
0
0

3
2
0
0
Q
0
Q

0
0

0

0
0
0
0
0
0
O

1
0

0

3
0
0
0
Q
0
0
0
Q0
0
0

0

0

0

0

QO

0
0
0
0

FIGURE 7.4a: Job statistics.

round of relaxation.

0
0
3
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0

Bach row corresponds to a

Jobs are roused when a bond which

they depend on reaches a high'enough supposition value

(0.7 in this case). Jobs are stored if any bond they

depend on has a lower value than this.

Poashowhrued
FERSONZ

SURMAME DIONES T

FERSOME
SFOUSE L1 PARENT
SURNAME LJONES

CHILD

PERSONL 3 CHILD £ SEX [FEHALE

FERSONZ 1 SEX £

FIGURE 7.4b: The optimal interpretation of the claims,

reached by relaxation (see figure 7.5).

3

P20 runmores

30 850 460 40 60.60

597 60 &8 71 71 71

69 76 76 82 B4 84 B0 0
83 90 88 94 98 98 50 0
26 99 97 99 99 9O 5L 0
9T P9 99 Q0 90 QO $7 0
P9 9% 9@ 99 99 Q0 g0 O
PP 9P 28 99 99 9 91 0
P2 99 99 90 99 QY 99 ()
QF Q0 99 99 90 99 9 O
G PP 09 Q9 99 Q0 9 0
Y 9% Q9 99 9@ @Y 90
Q¢ Q9 Q0 Q9 QO L L (O
99 P9 99 Q0 QR QY He 0
99 9 @9 -9 9 @R 99
Q9 G 99 9 00 LY QY (.
RY RO 9 QP QP QY 9 O
9P 90 99 9O L QY QY
9 99 99 9 @ @ e
99 99 Q9 9 R PR 99)

S T S M e S S

F1 P2 P2 J0 0 FE NO OGN

FIGURE 7.5: Showing how the supposition values change duxring
relaxation after the claims. The/"headings" are at the bottom

because not all the hypotheses are known in advance.

The column headings in this figure are rather cryptic.

- Headings with just one row refer to a person instance (e.g. P1),
of to the extra hypothesis set up by a soft infereiice rule
(rule 7 or 8 in figure 7.2). Constraints force such au extra
hypothesis to be accepted if the rule is broken, and a cost is
then paid. Unfortunately, the relevant inference,cannot be -
identified from the heading. Headings on two rows refer to
bonds, either between two instances, or between an instance and

a word which is abbreviated to its first two letters.

2 0k MAREINST (PERSQNY X3

CLATMOCRFERSONZ SFOUSE PERSONID»1) 3
CLATM(CPERSONZ CHILD PERSONAT 1)
.CLAIM(EPERSONﬁrﬂHILD FERSOMAD 1) 3

CLAIH(EPERSONK GEX =FEMALET» L33

FIGURE 7.6: Some more claims, and the resulting network of

candidate bonds. The slot names have been ommitted, but should

be obvious from the fillers. The bonds are numbered in order

of creation. The numbers in brackets after each bond number

are the sets of oﬁher bonds which imply it. Some of these

implications may only be weak ones, derived from rules 7 and 8.
Bouds which Were entered as claims are underlined. The

claims may be rejected (e.g. boad 4). Competition between bonds

for slots is not shown.

S, settles

ROUSETT RUN STORED MADE
0) 9 0
1 1 0 0
2 2 o 0
0 0 0
6 05
0 5 0
0 0
0 0
0 0
1 0
0 0
0)

b} e

. .

0 0
0 0
0 0
0 0
0 0

O 0)
FIGURE 7.7a: Job statistics for the relaxation following

T OOCO ONNOOR OO RO
TCODOCCO SO

(e e R R

the claims in figure 7.5+ The last ten rows of zeros are

not shown,

Peoghowbrues
PERSOMS 3 '
SFOUSE L1 PARENT L PERSOMYT PERSOMN2 T CHILD £33 SEX I
SURNaME L1

FERSONZ :
SFOUSE L PERSONZ 1 PARENT I CHILD I FERSOMS D

.....

ARE
GEX CFEMALE -1 SURNAME LJONES

FERSON2 : ,
SPOUSE [PERSONZ 1 PARENT I PERSONL 1 CHILD L FERSONZ]
SEX DMALE 1 SURMAME LCJONES

FERSONL ‘
SFOUSE 11 PARENT L1 CHILD [PERSONZ 1 SEX L[
SURNAME [JONES)
FIGURE 7.7b: The best interpretation of all the clainms,
found after the 29 rounds of relaxation shown above. Some

beliefs in figure 7.4b have been rejected.

20 . runmores

P 9P 9 929 92 90 B3 0 HO S0 42 40 &0 60
PP PP 9P Q9 90 99 FO O 57 H7 39 FiI &8 71
PP P9 99 9% 29 99 4& O H? H9 4F B2 74 g2
RY 99 99 99 29 9O 43 O 83 83 &0 8BS 77 94

PP P9 29 99 29 99 S5 0 Y4 9L FO 96 B7 9@ S0 50 50 0
P9 99 9% 992 24 £0 ¢ 0 9% 98 58 99 95 88 42 38 55 ¢
PP 9P 9P 92 97 Fo B2 0 9% 99 74 91 89 82 33 22 59 (
P9 29 99 29 25 H4 4% 0 99 9% 42 94 93 82 41 18 &4 €
99 99 99 929 99 &4 FY 0 99 99 P2 92 92 91 47 18 47 0O
P9 99 99 992 99 5G9 F7 0 99 9 4 95 96 98 545 192 70 O
PP 99 99 29 29 55X F& 0 99 Y9 P79 99 99 463 146 73 O
P9 99 99 9 29 445 34 0 99 9F 84 99 99 99 48 12 77 ¢
P9 99 99 29 99 40 2B 0O 99 9% QI ¢ 99 99 73 10 81 ¢

99 99 99 99 99 FH 22 0 99 99 89 99 99 £9 77 9 85 0
99 G 99 99 99 IO 17 O 99 99 93 99 99 99 81 8
99 99 99 99 99 24 12 0 99 9 95 99 99 99 85 8
99 99 99 99 99 2B 9 0 99 9Y 9B 99 99 99 89 @
99 99 99 99 99 19 & 0 99 99 99 B9 99 99 9L T 99
9P GO 99 99 9P 1F 4 O 99 99 99 99 9P 99 94 7 99 0
PR G999 99 99 1 T 0 PV 99 99 99 99 99 95 & 99 0
Pl OFLF2 P2 P2 P2 FR OP3 F3 P2 P3PS
Pl P2 P2 J0 J0 FE NO ON P3 P4 B3 F4 P4 FE MA MA JO ON

N taptt]
~N G NG

FICURE 7.8: Showing how the supposition values change

during the first 20 rounds of relaxation after the extra

claims in figure 7.6.

CHAPTER 8

SUMMARY

This chapter summarises the presuppositions behind
the relaxation approach. It then [mentions the main
inadequacies in the treatment given to relaxation, in-
cluding the failure to relate it to human vision. Final-

~ly there is a brief summary of what has actually been

achieved,

8.13 Presuppositions of the relaxation approach

L.P. relaxation is only relevant to vision if the

following claims are correct:

1. During the process of building the internal
representation of a scene, tentative hypotheses must
be formulated and selections must be made from among

rival hypotheses.

2. A visual system cannot arrive at the same kinds
of interpretation as people do, if inconsistenéy is
its only way of ruling out interpretations. It must
havé a way of arriving at good interpretations and

avoiding poor ones.

~179-

3. A sensible way of resolving complex and unfore-
seeable conflicts between sets of hypotheses of dif-
ferent kinds, is to use numerical scores for the con-
stituent hypotheses of a global interpretation and to

maximize the sum of these scores. |

The first two claims are defended in Chapter 1, and
though they may be false, they are not unduly specula-
tive. The third claim is the one which many artificial
intelligence researchers regard with suspicion. Some
workers (e.g. Paul 1977) regard the avoidance 4of real-
numbers for evaluating hypotheses as a positive virtue,
and have demonstrated that, for some vision problems, ex-
plicit numerical scores are unnecessary. If it is ac-
cepted that numerical scores are an undesirable last
resort, then their wuse can only be defended by showing
that no other method will work. This would be very dif-
ficult, and has not been attempted. Instead, the @reju-
dice against numerical scores has been attacked. It hes
been argued that the properties of real numbers are par-

" ticularly appropriate for resolving conflicts (section
1.7.2)3 that the past misuse of numbers is irrelevant
(section 1.8)3 and that the choice of numerical values

need not be arbitrary (section 1.7.1).

However, it has not been established that the reso-
lution of complex conflicts between hypctheses of dif-
ferent kinds is a necessary part of normal vision, or

that the interpretations people notice can be definesd in

-180-

terms of the probabilities of their constituent hy-
potheses. So numerical scores, and hence relaxation, may

be simply irrelevant to vision.

8.2: The choice of numerical scores

In section 1.7.1 it was argued that probabiliies
could provide a systematic basis for the chbice of numer-—
ical scores. Woods (1976), has shown that this idea can
be applied in speech perception, but the programs in this
thesis usé scorés which were chosen so as to give sensi-
ble interpretations, rather than being based on probabil-
ities. More work is required to show how scores can be
based on probabilities without running into problems

caused by combining non-independent probabilities.

8.3 Details of the relaxation operator

A lot of effort has gone into analysing and improv-
ing the basic relaxation operator, but many problems

remain unsolved:

~

1. How can relaxation be made to select one of a

pair of equally good, rival global interpretations?

2. ihat should be done about non-integer -optima 1if
they cannot be removed by a better numerical formula-

tion of the logical constraints?

-181i-

3. How can the time to reach the equilibrium state

be decreased?

4, How can the system.decide when it is sufficiently

close to the equilibrium state?

i
|

The coefficient K whose qualitative effects are
discussed in section 4.4 can help with all these prob-
lems. 1Its quantitative effects need to be investigated

both empiritally and analytically.

8.4: The SETTLE system

The most advanced and promising use of relaxation is
in the SETTLE system described in Chapter 7, but this
system still needs a lot of development., An attempt has

i)

been - made to wuse it for interpreting Popeye pictures
(like figure l.1b). This application is not described
here since several méjor problems have been encountered
and have not yet beesn resolved., Until the SETILE systen
has been successfully applied to a vision task which re-

~quires its skill at . handling messy date and dubious

inferences, it will be hard to asses its value.

8.5: Relaxation and human vision

There are two rather different sets of considera-

tions which are relevant when developing a theory about

-182-

the mechanism of human vision. On the one hand, a
mechanism must be <clearly defined and shown to be ade-
quate for its postulated role. This is the main purpose
of most Artificial Intelligence programs and the only ain
of this thesis. On thé other hand, ievidence must be
found to show that people use the mechanism. No attempt
has been made to find evidence for 'relaxation in human
vision. An obvious first step would be to show that for
a task'sucﬁ'as the interpretation of line drawings of po-
lyhedra, the interpretations which people perceive can be
distinguished from other consistent interpretations by
giving them scores on the basis of their constituent hy =
Apotheses. It would also be interesting to try to analyse
in detail our perception of pictures like the MNecker cube
or the Penrose triangle. However, these projscts would
inevitably involve many other difficult issues, somes of

which are outlined below.

8.5.13 The temporal structure of vision

- People move their eyes, so their visual input con-

£

sists of a sequence of retinal images. For each new fix-

3
I

ation, low-level representations of what the retinal is

age contains have to be re-computed. (These low-level

ch, by af-

ct
O

representations will be called the primal ske

finity with Marr’s primal sketch). towever, the worlZ

appears stable as we move our eyes or move arcunid, so wWe
4.

presumably have some representations which do not change

-183-

with our retinal images (Hochberg 1968). These will be
called the cognitive map. Given this distinction between
types of representation, there are a rumber of possiblz

roles for relaxation which have not been distinguished in

.

the simple tasks to which it has been acp

fu—
1=+
4]

d

. The creation of the primal sketch. This needs to
be: fast and there may not be tims for L.P. relaxation

unless it can be speeded up. Also, it may not be

(see section 1.3.2).

2. The discovery in the primal sketch of objects o
be represented 1in the cognitive nzp. This staje of

perception is the one which the purpet-finding progran

is intendsd to model.

3. The construction of a consistent cognitive mag.
The evidence provided by one retina
tradict representations based on an earlier inage.

Relaxation could be used to resolve such conzlicts.

3

A great deal of work needs to he done Lo clarify the

various ways in which relaxation might ©e used in a visu-

al system as complex at the human onsz.

-184-

'8.6: What has been shown.

A relaxation method for selecting the best con-
sistent set of hypotheses has been clearly defined. Thsa
method does not appear to suffer from ? combinatorial ex-
plosion in time or space as the numbef of hypotheses in-
creases. It can make effective use of parallel hardware,
and 1is one of the first cleally defined ways of organis-—
ing parallel interactions between conflicting and

cooperating hypotheses so as to make a gnod "Gestalt" em-

erge.

It has been shown how to handle ény logical con-
straint that can bebexpressed in the propositional cal-
‘culus. The successful application of the method to the

+

two simple tasks of puppet-finding and line-labelling has

been demonstrated.

Several ways of <changing the relaxation "operator

ct
bete
i

5t

=

nv

[¢)]

have been discussed and their effects have been

-y
(]
Q
=
4]
ct
I

gated empirically. They have also been analysed t

f—.
ot

difficul

[OR

. Th

3

"ically wusing a hyperspace representatior

]

ties caused by non-integer vertices and equal rivals have

. been revealed.

v

It hes been shown, using an extanded version of the
puppet task, that és well as selecting from among exist-
ing hypotheses, relaxation can be usad to control which
hypotheses are created. The»application of the techniguse

to the choice of numerical values for parameters has als

been discussed.

Finally, the SETTLE system has shown how relaxation

can be used to control a data-driven system which grows a

relationzl network by noticing when complex conditions
e

become true and Usingmforward chaining. This is a novel

way of crganising a search within a kind of production

systen.

- 186~

APPENDIX 1
COMPUTING WHETHER CONVEX POLYGONS OVERLAP

i

r
This is not a formal proof. It is a construction to

show how an unobvious fact follows from obvious ones.

[V

Corresponding to each infinite straight 1line ther
are two borders. A border haé an on-side (including the
points in the line) and an off-side. The sides of z con-
vex polygon are segments of infinife lines which czn be

"assigned corresponding borders in such a way that the po-

<

{2,
hy

2 O

[N

lygon contains all and only the points on the on-s

all the borders.

e want to show that if two convex polygons ars dis-
joint (have no common points), then at least one oorder
of one of them has the .other polygon entirely on 1its

off-side.

Let us say that a . line separates two pélygons if
"their interior points lie on opposite sides of it. For
any.pair of’disjoint, convex polygons there are sonoe
separating lines (unproved but obvious). In particular,
there is one separating line which cannot
clobkwise‘ about any of its points without interssciing
the interior of one polygon (see figure APP!). Similarly
there is a most—anti-clockwise separating line. <Cz11

these two lines b and c, and their Point of interssctiion

-187-

FIGURE Appl: Showing the construction involving the

most-clockwise separating line, b, and the most-~

anticlockwise, C.,

P. Since b and c¢ are_separéting lines, P cannot 1lie in
the interior of either polygon and since the polygons are
disjoint they cannot both have vertices. at P. So at
least one of them, call it C, must have P outsids it.
For P to‘be outside G it must be on thg off-side of at
least one of G’s borders, call it d. Since d is a border
of G, all the vertices of G are on its on-side. In par-
tiéular, the vertices of G which lie on b and ¢ must be
on the on-side So, considering figure APPI, d must have P
on its off-side and V and W on its on-side. Hence d must
intersect b between P and V (or at V) and it must inter-
sect ¢ between P and W (or at W). Because d can only in-
tersect the lines b and ¢ once, it 1is obvious (though
unproved) that' the quadrant Q must lie entirely on the

off-side of d, and hence so must the polygon within Q.

Note: The idea that one polygon must contain a separat-

ing border was suggested to me by Frank 0/Gormzn.

-188-

APPENDIX 2
USING PENUMBRAS TO AID LINE LABELLING

Waltz (1972) shows how it is possible to extend
Huffman/Clowes labelling to line drawiﬁgs in which some
lines depict shadow edges. Waltz uses perfect line draw-
ings and so he'ignores‘the qﬁestion of whether the grey-
level data can provide information about the type of an
edge as well as about it existence. Evidence which sug-
gests the type of an edge, but which is not conclusive,
is interesting because it is easily incorporated into =

relaxation approach as a preference for 2 particular lz-

belling.

Under some conditions of illumination there should
be direct grey—level evidence suggesting that some edjes
are shadow edges. Figure APP2 shows the shadow cast by
an object when there is a single.source of illumination
which is not infinitely small. The shadow edges have pa-
nunbras which diverge as the distance from the castinc
edge increases. For small sources this should be detect-
able as a fuzziness which increases linearly in the

¢

direction away from the casting edge, provided this edg

[}

J

is straight and the shadow lies on a flati surface.
example of the usefulness of such information 1s seen et
junctions J and K in Figure APP2. The degree of fuzzi-
ness caused by the penumbra supports the interpretation

-189-

-Shadow

FIGURE App2s A cuboid casting a shadow. The width of
the lines depicting shadow edges indicates the width
of the penumbras caused by a light source of finite
magnitude. Notice that the fuzziness of the shadow

edge at K suggests an accidental élignment of vertex

and shadow edge.

of junction J as involving an attached shadow, but sug-

gests an accidental alignment of vertex =2nd shadow at X.

It is not clear whether human percention makes use
of the way in which the penumbras diverge along shadow

edges.

-190~

APPENDIX 3

CODE FOR THE PUPPET—FINDING:PROGRAH

A number of basic functions and macros are used but
are not listed below. The meanings of most of them are
evident from their their names and the context, but the
following need some explanation:

FILTLIST: This filters a list through a predicate, re-
turning a list of all the elements satisfying the predi-
cate. '

RIG: This takes a list constant and returns a 1list in
which all elements preceded by "&" have been evaluated.

RECORD: This is a macro for declaring records. The de-
fault field size is COMPND, but full-word fields can be
selected by using a O after the field name declaration.
Constructor and destructor functions are made by conca-
tenating the class name with *"cons" or f'dest™.

RHLOOP: . This is a looping macro. On each iteration, an
item in the list preceding RHLOOP is assigned to the
variable RH. The macro ENDRH terminates the loop.

The printing functions are not listed.

~-191-

%%k SOME RECORD CLASSES AND GLOBAL VARIABLES ##%

VARS RECTS PERCEPTS RELATIONS 3
NIL->P=RCEPTSsNIL->PERCEPTSsNIL->RELATIONSsNIL->RECTS;
COMMENT7triples and quadruples already exist.

‘this allows their components to be given

more meaningful names!;

0->POPCOMMENT 3 |
TRIPI1=->RELSLOTI $TRIP2~>RELSLOT23;TRIP3->RELCRED;
QUADI->SLOTPERSQUAD2~>SLOTFUN3; QUAD3->SLOTTYPE 3
QUAD4->SLOTRELS;

h

11 0.8 O)—>DEFTOPEND![O.2 10 O]—>DEFBOTEND3

11 6.5 01->DEFTOPHALF3[0.5 | O Ol->DEFBOTHALF;

0.9 0.8 0.7 0.21->DEFTOPPOLE3;[0.3 0.8 0.1 0.21->DEFBOTPOLE3

1=>POPCOMMENT 3

COMIMENT 7interpretations of rectangles as puppet
parts used to be called "percepts?. interpretations
of overlaps as Jjoints were called "relations".

the norpheﬂes "per” and "rel" are used with

this sense.

RECORD PERCEPT PERNAME PERRECT PERPROX PERTYPE PERSLOTS

_ PERCRED
RECORD RECT RECTNAME RECTCON RECTPERS WHOLE TOPEND BOTEND
TOPHALF BOTHALF TOPPOLE BOTPOLE3

%% CODE FOR MAKING CONSTRAINTS w#x#
ENSURELIST CONSTRAINTS3 ‘
RECORD CONSTR CONVIOL O HYPLENGTH O OLDCONVIOL O3

COMMENT “conviol stores the amount by which
the constraint is violated. whenever a supposition
value changes, the violations of all constraints
involving it are changed appropriately. each
supposition node will cause some of its constraints
to be more violated when its value goes up, and
wwll also cause others to be less violated. it
keeps these two sets of constraints in sooarate
llSLa called ceilings and floors!;

COMMENT“the number stored in conviol is the)
difference between the two sides of the I
algebraic inequality.(positive numbers mean ' i
violation).this number is not the same as the |
distance in hyperspace of the point from the
plane. however, for any given plane the
violation and the distance have a fixed ratio.
this is kept in hyplength. ‘

U

COMMENTconsider ,for example, the constraint
x=2y > 0 . when this has a violation of 1,
then the force in the x direction should be
1/sqrt(5) and in the y direction it should
be =2/sgrt(5). the hyplength is sqrt(5),
which the root of the sum of the squares

of the coefficients in the inequality.

Y

FUNCTION CREDSUM L=>SUMj3

0->SUMs

L RALOOP$RH.CREDVAL+SUM=>SUM3sENDRH3

N
oND §

FUNCTION REMOVEALL X L=>N REM;

COMMENT “removes all occurences of x from 1 and returns
their number and the remaining list!;

NIL->REM3:1->N3

I. RHLOOP; '

IF RH=X THEN N+1->N ELSE RH::REM->REM CLOSE;

ENDRH3

ZxDs

FUNCTION SUMSQUARES L3 ‘

COUMMENT #returns the sum of the squares of the occurence
numbers!;

VARS N3 IF L.NULL THEN O EXIT;

QZWOV”ALL\L HD,L.TL)=>L->N3

N*N+L.SUMSQUARES;

ENDS

FUNCTION RETURNCONSTR FLIST CLIST N=>Cj3s
COMMENT ”n+the credvals in clist musnt exceed the credvals
in flist i.e. the sum of the credvals in flist-the sum in
clist must be at least n.!s
CONSCONSTR(CLIST.CREDSUM~FLIST.CREDSUM+N,
SQRT(FLIST.SUMSQUARES+CLIST. SUMSQUARES) UNDEF ,FLIST, CLIST)
->Cs3s
Ce::CONSTRAINTSS ‘ : |
FLIST RHLOOP3;C::RH.FLOORS->RH. FLOO?S ENDRH;3 *]
CLIST RHLOOP3C::RH.CEILINGS->RH.CEILINGS;ENDRHs: - -
END

FUNCYAR MAKECONSTR RETURNCONSTR FNCOMP ERASE;
‘ -193 - |

FUNCTTION MAKECRED OBJ P=>C;
CONSCREDNODE(OBJ,NIL,NIL,NIL,0,0,P)->C;
=ND3 .

FUNCTION ATMOSTONE L3
HAKECONSTR(NIL,L,-1)3
END 3

FUNCTION ATMOSTTWO Lj
MACECONSTR(NIL,L,-2);
END s

FUNCTION MORECRED A Bj;
MAKECONSTR(A,B,0) 3
END3

FUNCTION ATLEASTONE L3
MAKECONSTR(L,NIL, 1)
END;

FUNCTION INFERFROM L Bj
HMAKECONSTR(B::NIL,L, 1-L.LENGTH);
END 3 '

#% CODE FOR CHANGING SUPPOSITION VALUES s

COMMENT /supposition nodes used to be called
crednodes. the morpheme Ycred® is used like
.1 3

this!s :

ENSURELIST CREDNODESS

RECORD CREDNODE CREDOBJ FLOORS CEILINGS CREDVAL O CREDINC O
CREDPREF O3

COMMENT credobj is the hypothesis, credpref
is its preference, and credval is its
‘supposition value. credinc is the next
increment in credval, which is computed
and then stored until the other

credincs have also been computed using
the current set of supposition values.
this is necessary for parallel
relaxation. floors

and 'celilings are lists of the constraints
which, when violated, tend to hold the
supposition value up(floors) or down
(ceilings).!s

FUNCTTION CHANGEVALS CREDNODE INC3

CREDNODE.CEILINGS RHLOOP;
RH.CONVIOL+INC->RH.CONVIOL;

ENDRH3

CREDNODE.FLOORS RHLOOP;
RH.CONVIOL-INC=>RH.CONVIOL3;

ENDRH

CREDNODE.CREDVAL+INC~>CREDNODE.CREDVAL;

END;

FUNCTION ENDFIXINC INC X3
VARS N3§INC+X->N3

IF N>I THEN INC+1-N
ELSEIF N<O THEN INC-N
ELSE INC

CLOSE;

END 3

FUNCTION CHANGETO C VAL;
CHANGEVALS(C,VAL-C.CREDVAL) 3.
ENDs -

FUNCTION RESETVALS3
APPLIST (CREDNODES,CHANGETO(%0%)) 3
END

s%%% SET INITINCS v
! .PRSTRING;

VARS COEFFLIST DCOEFF PCOEFF FCOEFF HCOEFF3
[PCOEFF DCOEFF FCOEFF HCOEFF1->COEFFLISTs

VARS COARSE MEDIUM FINE TERMINAL;
(0.4 0.5 0.3 0]->COARGSES

{0.2 0.5 0.3 0 1->MEDIUM;

[O.1 0.8 0.3 O1->FINEs

(0.1 0.8 0.3 O0.11—>TERMINALS3

FUNCTION SETCOEFFS L3
POP L->PCOEFF;

POP L->DCOEFF3;

POP L->FCOEFF3;

POP L->HCOEFF;

END3 ‘

COARSE.SETCOEFFS;

FUNCTION INITINCS;
APPLIST (CREDNODES,

LAMBDA C30->C.CREDINCSEND);
END3

FUNCTION CEILFORCE CON;

VARS V3CON.CONVIOL=->V3 "

IF V>0 THEN (-V)/CON.HYPLENGTH ELSE 0 CLOSE;
END3s

FUNCTION FLOORFORCE CONs

"VARS V3CON.CONVIOL->V3 :

IF V>0 THEN V/COMN.HYPLENGTH ELSE O CLOSE;
ENDs '

FUNCTION UPFORCE C3
APPSUM(C.CEILINGS,CEILFORCE)+APPSUM(C.FLOORS,FLOORFORCE)3
ENDj3

FUNCTION STORESTEP Cs

COMMENT #this stores the size of the next step in credinc!s
VARS INCs

C.CREDINC*DCOEFF
+(C.UPFORCE+C.CREDPREF*PCOEFF+(C,CREDVAL=-1/2)*HCOEFF)*FCOEFF
->INC3 : ,

ENDFI XINC(INC,C.CREDVAL)->C.CREDINC}

END;

FUNCTION TAKESTEP C3
CHANGEVALS(C,ENDFIXINC(C.CREDINC,C.CREDVAL));
END3

FUNCTION MOVE3s

APPLIST (CREDNODES,STORESTEP)
APPLIST (CREDNODES,TAKESTEP) 3
END3s

FUNCTION GETSHOWLIST;3

IF CREDNODES.LENGTH>20 THEN FIRST(20,CREDNODES)
ELSE CREDNODES CLOSE3

END3

FUNCTION. RELA XANDSHOW STEPS PRFREQ PRINTLIST;
:VARS Nj3;PRFREQ->N3
PRINTLIST.SHOWNAMES
PRINTLIST.SHOWCREDSS
STEPS<* .MOVE3;
IF N>1 THEN N-1->N ELSE PRINTLIST.SHOWCREDS;
PRFREQ->N3sCLOSE3%>3
END 3

-196—

FUNCTION RELAX;s
«GETSHOWLIST. rELAXANDSHOr
ENDj3 :

FUNCTION RELAXINSTAGES STAGES; .
' VARS L3 .GETSHOWLIST—->Lj; -
L.SHOWNAMES L .SHOWCREDS 3 S
APPLIST (STAGES,
LAMBDA X3 !
IF X.ISWORD THEN X.VALOF.SETCOEFES
ELSE X<* ,MOVE #>3;L.SHOWCREDS CLOSE;
, . END)3 o 3
1.NL3
CEND3

FUNCTION RELAX50; |

.RESETVALS; . INITINCS; | |
- [COARSE 10 MEDIUM 10 FINE 10 TEPMIVAL 10 101 RELAXINSTAGES,
. END3 . |

*%% ZONE GEOiETRY g

FUVCTION GETBORD P Q,
" VARS A B C D3

. P.DESTPAIR->B->A3Q. DESTPAIP-)D“>Ca

~ CONSTRIPLE(D-B, A c, A?D B*C) s
- ENDs

FUNCTION ONSIDE P By o
‘B.TRIPI*P. FRONT+B TRIPZ*P BACK> B.TRIP3s5
END- '

FUNCTION OFFSIDE P Bs : -
ONSIDE(P,B). NoT, , : o
END3 ‘

~ FUNCTION NOTSEP X, o S

COMMENT #tests whether all p01nts in one .

- rectangle are on the off-side of the o
" boundary x!; -

- ONSIDE(A, X) OR ONSIDE(B X) OR ONSIDE(C X) OR ONSIDE(D X

. END ’

'FUVCTIOV NOSEPARATOR PTS BDS, : '

~ VARS A B C D3PTS.DESTQUAD->D->C- >B->A3%

- BDS.QUAD!.NOTSEP AND BDS.QUAD2.NOTSEP AND .
. BDS. OUAD3 NOTSEP AND BDS OUAD4 NOTJEP

-197-

FUNCTION OVERLAP Z1 Z23

COMMENT#1if two convex DOLY@OW% dont ovorlap there nust be

a line which separatess them, and one of their borders must

be such a linels

NOSEPARATOR(Z1.FRONT,Z2.8

AMD NOSEPARATOR(Z2.FRONT
ENDs

FUNCTION BORDSECT BI B2s

COMMENT7finds the point of intersection of two borders!;
VARS ABCDE F DIVs
'81.DESTTRIPLE~>C->B—>A;B?.JuST”DTDL»—>~~>F~>?e
B*D=A*E->DIV3

IF DIV=0 THEN "PARALLEL"SEXIT;

CONSPAIR((BxF-C*E)/DIV, (C*D-A*F)/DIV);s -

END3 :

FUNCTION AVBORD E F P3

COMMENT 2checks that borders e and T are parallel and makes
a new one which is a wewohte average using p of e
and q of f!s ' '
OPERATION 7 === X Y3
APPHOAEO(A,Y,I),
END3

VARS Q Rj I—-P->{
IF E. RIP2““"“ﬂ OR FLTRIP2===
THEN IF E.TRIP2===F.TRIP2
THEN CONSTRIPLE(P*E.TRIPI+Q%F.
P+E.TH IH3+““F R
ELSE "AVBORDY.POPERRS
CLOSEs
ELSEIF E.TRIPI/E.TRIP2===F.TRIPI1/F.TRIP2
THEN E.TRIP2/F.TRIP2->R;3
CONSTRIPLE(E.TRIPI,E.TRIP2,P*E TRIP3+Q%R*-.TRIP3)
ELSE "AVBORD".POPERR3
CLOSE s
.END3

FUNCTION REVBORD Bs; ‘ ‘
CONSTRIPLE(~(B.TRIP1),-(B.,TRIP2),~(B.TRIP3))3
END;3 -

“FUNCTION ZONEPTS Z3 _

COMMENT #gets the corners of a zone from the borders!:

. VARS A B C D3Z.DESTQUAD->D->C->B->A3

CONSQUAD(BORDSECT(D,A), BORDSECT (A, B),BORDSECT(B,C),
BOQOSLCT(C D)),

‘..‘I\ID v

FUNCTION MKZONEEDS P Lj;

COMMENT “makes zone borders from rectangle borders and a

list of relative positions of ymax ,xmax, ymin, xmin!js

VARS A B C D F3sP.BACK.DESTQUAD->D=->C->B->A3; REVBORD->F;

CONSQUADCAVBORD(A,C.F,POP L),AVBORD(B,D.F,POP L),
AVBORD(A.F,C,POP L),AVBORD(B.F,D,POP L))3

EMD3s : :

FUNCTION GETZONE DEFZONE Pj3

COMMENT returns a pair consisting of the corners and borders
for a specified zone relative uo pls

VARS B3

MKZONEBDS(P ,DEFZONE)—->B3

CONSPAIR(B.ZONEPTS, B) 3

END 3 '

FUNCTION LASTCORN Ls

VARS A B C3;POP L->A3P0OP L->BsPOP L->C3
CONSPAIR(A.FRONT+C.FRONT~B, FRONT, A. BACK+C.BACK-B.BACK) 3
END3

FUNCTION CONVPAIR L3
CONSPAIR(L.HD,L.TL.HD)3
11:)1

FUNCTION MAKEWHOLE L3

COMMENT #makes the points and borders of the whols from a
list of its corner points!;

VARS BORDS CORNS3 7

APPLIST(L,IDENTFN).CONSQUAD->CORNSS

CONSQUAD(GETBORD(CORNS.QUADI,CODNS QuAD2),
GETBORD(CORNS.QUAD2,CORNS.QUAD3),
CETBORD(CORNS.QUAD3,CORNS.QUAD4) ,
GETBORD(CORNS.QUAD4,CORNS.QUADIT))->BORDS;:

CONSPAIR(CORNS,BORDS) 3

END3

FUNCTION CONWHSUB R 53 ,

IF OVERLAP(R.WHOLE,S.WHOLE)

THEN R:=S.RECTCON—>S.RECTCON;S::Q.RECTCON—>R.RECTCON3
CLOSE;

END 3

FUNCTION CONWHOLE Ls

LOOPIF L.ISLINK

THEN APPLIST(L TL, COVWHSUB(L.HD%));L,TL—>L3
CLOSE :

=ND s

~199-

FUNCTION MAKERECT L =>RECT;

VARS POINTS NAME P F3L.HD->NAME;3

MAPLIST(L.TL,CONVPAIR)Y->POINTS;

POINTS.MAKEWHOLE=->P;

GETZONE (%P%)=>F3 -

CONSRECT (NAME,NIL,NIL,P,DEFTOPEND.F, D FBOTEND.F,
DEFLOPHALF.,,ULFBOTiALr DErTOPPOLE.F,
DFFBorPoLh. S)=>RECT

RECT—>NA%E VALOF

END s

FUNCTION MYDIST P Q3 4
SQRT((P.FRONT-Q.FRONT)"2 + (P.BACK-Q.BACK)"2);
END 3

FUNCTION WIDTH Rj3

VARS PTS;R.WHOLE.FRONT->PTS3
MYDIST(PTS.QUAD!,PTS.QUAD2) 3
END3

FUNCTION HEIGHT Rt

VARS PTSsR.WHOLE.FRONT- >PTSq
MYDIST(PTS.QUAD2,PTS.QUAD3) 3
END 3

FUNCTION AREA R
R.HETIGHT*R.HWIDTH3

EMD3

FUNCTION PUPIN FILENAME;S

COMMENT“the data files give lists of lists
of coordinates when compiled!;
MAPLIST(FILENAME.COMPILE,MAKERECT)=>RECTS3
RECTS.CONWHOLES;

END3 ‘

-200-

*%%& CODE FOR DECIDING WHETHER AN st
k% OVERLAP COULD DEPICT A JOINT ek

MACRO MACP;3

VARS Z1 Z25; .ITEMREAD->Z13.ITEMREAD->Z23

MACRESULTS([LAMBDA P3;IF P.PERPROX="TOP" THEN P.PERRECT.&ZI
y ' ELSE P.PERRECT.&Z2 CLOSE;END;J.RIG);

£ND s ' ' ‘

FUNCTION WIDER P 03 |
P.PERRECT.WIDTH>Q. PEPRECT WIDTH3
ENDs

FUNCTION ALL Pj;
P.PERRECT.WHOLES
END 3

VARS PROXEND DISTEND PROXPOLE DISTPOLE PROXHALF DISTHALF;
HMACP TOPEND BOTEND->PROXEND3

HACP BOTEND TOPEND->DISTEND;

MACP TOPPOLE BOTPOLE->PROXPOLES

MACP BOTPOLE TOPPOLE->DISTPCLES:

MACP TOPHALF BOTHALF—->PROXHALF;

MACP BOTHALF TOPHALF->DISTHALF;

FUNCTION KNEEJOIN P Q3

P.PERRECT .WIDTH=<Q.PERRECT.WIDTH

AND OVERLAP(P.PROXEND,Q.DISTEND)

AND OVERLAP(P.PROXEND,Q.PROXHALF).NOT
AND OVERLAP(P. DISTHALF Q.DISTEND) .NOT
END

FUNCTION TERMJOIN P Q3

COMMENT7for hands or feet (terminal parts)!;
P.PERRECT .HEIGHT<Q.PFERRECT.HEIGHT

AND P.PERRECT.AREA<Q.PFERRECT.AREA

- AND OVERLAP(P.DISTEND,Q.ALL).NOT

AND OVERLAP(P.ALL,Q.PROXHALF).NOT

END3

-FUNCTION ARMJOQIN P O3

AIDER(Q,P)

AND OVtRLAP(P PROXEND,Q.PROXHALF)

AND OVERLAP(P.PROXEND,Q.DISTHALF).NOT
AND OVERLAP(P.DISTEND,Q.PROXPOLE).NOT
END3

FUNCTION LEGJOIN P Q3
WIDER(Q,P)
AND OVERLAP(P.PROXEND,Q.DISTHALF)
AND OVERLAP(P.PROXEND,Q.PROXHALF) .NOT
AND OVERLAP(P.DISTEND,Q. DISTPOL). NOT
ENDs

-201-

FUNCTION HEADJOIN P Q3

WIDER(P,Q) AND P.PERRECT.HEIGHT<2*P.PERRECT.WIDTH
AND OVERLAP(P.DISTEND,Q.PROXEND)

AND OVERLAP(P.ALL,Q.DISTHALF).NOT

AND OVERLAP(P.PROXHALF,Q.ALL).NOT

END3 -

FUNCTION NECKJOIN P Q5

COMMENT“for joint between neck and Lrunk"
P.PERRECT.WIDTH<Q.PERRECT.WIDTH

ABD OVERLAP(P.DISTEND,Q.PROXEND)

AND OVERLAP(P.ALL,Q. DISTHALF) NOT

AND OVERLAP(P.PROXHALF,Q.ALL).NOT

ENDs

FUNCTION JOINHEAD P QsHEADJOIN(Q,P)3END;
FUNCTION JOINNECK P Q3sNECKJOIN(Q,P)3sEND;
FUNCTION JOINKNEE P QsKNEEJOIN(Q,P)3END;
FUNCTION JOINTERM P Q3TERMJOIN(Q,P)3SEND;3

FUNCTION JOINARM P Q3 ARMJOIN(Q,P)3END3
FUNCTION JOINLEG P QsLEGJOIN(Q,P)sEND;

VARS HEAD HECK HAND LOWERARM UPPERARM TRUNK CALF THIGH FOOT3

[(HEADJOIN NECK 11=>HEAD3

[{JOINHEAD HEADIJINECKJOIN TRUNKJJ1->NECK3

CITERMJOIN LOWERARMITI->HANDS

[[KNEEJOIN UPPERARMIIJOINTERM HANDII]->LOWERARI3
[[ARMJOIN TRUNKILJOINKNEE LOWERARMJ]->UPPERARM;3
([TERMJOIN CALF 11->F0O0T3

[[KNEEJOIN THIGHI[JOINTERM FOOT J1->CALF3

[ILEGJOIMN TRUNKI[JOINKNEE CALFJ]1->THIGH;

[[JOINNECK NECK]1 [(JOINARM UPPERARMILJOINLEG THIGHII
~>TRUNK 3 :

-202-

*** CODE FOR GROWING THE \mTvJ()?\ WA

***% OF PART AND JOINT HYPOTHESES

FUNCTION GIVERECT P;

P::P.PERRECT.RECTPERS->P., PERRECT. RECTPE!

l

‘:.Yr)v

FUNCTION MAKESLOT L P35
COMNSQUAD(P,L.HD,L.TL.HD,NIL) 3
END 3

FUNCTION MAKEPER RECT PROX TYPE=>PER;

e

CONSPERCEPT (UNDEF ,RECT,PROX,TYPE,UNDEF,UNDEF)->PER3}

HAKECRED(PER, PERPREF) - >PEP PERCRED3

mAPLIST(TYPZ.VALOF MAKESLOT(%PER% Y)->PER. PERSLOTS;

PER::PERCEPTS- >P77CF’TS
PER::RECT.RECTPERS->RECT.RZCTPERS;

END s

FUNCTION OTHERPER R P3
VARS X3 R.RELSLOTI.SLOTPER->X3

Ix X=P THEN R.RELSLOT2.SLOTPER ELSE X CLOS

“UNCTION ALREADY RELS Q35
> ECRELS,LAMBDA R3

FUNCTION FINDSLOT P Q3
VARS T FUNsQ.PERTYPE->Ts
P.PERSLOTS RHLOOP3 ‘
%.SL TTYPE=T .
RH sEXITs:

W
fa

7 O
(11 4, 73T
o e ff;
] P
<0

Ly
J o
m’U:\j.—]Hrl

me
b’ d

FUMCTION ADDREL P O PSLOT:
YARS QSLOT REL3

7

i .)r)
2. ELSTﬂll.SLOTP P=Q OR R. RELSLOT2.SLOTPER=Q

9

END)s

P.PERRECT.RECTNAME.PR31.5P3Q.PERRECT.RECTNAME.PR33.5P5

- FINDSLOT(Q,P)->QSLOT;
CONSTRIPLE(PSLOT,QSLOT,UNDEF)—->REL3S
-MAKECRED(REL, RE LD”F:) >RbL RELCREDs3
REL: Q“LATTONS—>PELATTODSq
QEL"PSLOT SLOTRELS->PSLOT.SLOTRELSS
REL::QSLOT.SLOTRELS—->QSLOT.SLOTRELSS
END3

~203-

FUNCTION GETEXISTINGPER RECT TYPE ORIENT;
RECT.RECTPERS RHLOOP;
IF RH.PERTYPE=TYPE AND RH.PERPROX=ORIENT THEN RH;EXIT;
ENDRH;
FALSE;
END3

FUNCTION TRYTHEPER P JLOT RECT ORIENT3:
VARS DONE Q REQTYPE FUN; = .
SLOT. SLOTTYPE->REQTYPE; SLOT.SLOTFUN,VALOF->FUN3
CETEXISTINGPER(RECT,REQTYPE,ORIENT)->Q3
IF 0
THEN IF Q=P THEN EXITs
IF ALPFADY(SLOT.SLOTRELS,Q).NOT AND FUN(P,Q)
THEN Q.ANYREL->DONE3; ADDREL(P,Q,SLOT)3
UNLESS DONE THEN Q CLOSE;
CLOSE:
ELSE MAKEPER(RECT,ORIENT,REQTYPE)->Q3
IF FUNCP,Q) THEN ADDREL(P,Q,SLOT)3;Q3CLOSE;
COMMENT”this is where future members of livelist are
dumped!s
- CLOSE;:
END3

FUNCTION TRYFILLSLOT SLOT PERCEPT;
PERCEPT .PERRECT .RECTCON RHLOOP3
TRYTHEPER(PERCEPT,SLOT ,RH,"TOPY) 3
TRYTHEPER(PERCEPT,SLOT,RH,"BOT")3
ENDRiH 3
LM"\
HCTION TRYGROW Pjs
ADDLIST P.PERSLOTS,LAMBDA SsTRYFILLSLOT(S,P)SsEND);s
ENDs

FUNCTION GROWPERS LIVELIST; _
COMMENTZthis takes the most recently created percepts and

‘tries to fill their slots,possibly making more percepts!;s

IF LIVELIST.NULL THEN EXIT:
[XAPPLIST(LIVELIST, TRYGROW)?%1.GROAPERSS
riJDv

FUNCTTON MAKEBOTH R T3

MAXEPER(R,"TOP",T) s MAKEPER(R, "BOT",T)
END3

~204-

FUNCTION GETPOSSNUCLETI;
COMMENT“there are three types of nucleus:
a trunk requires 3 feasible connected rectangles.
a head requires the right proportions and exactly
one other connected rectangle ,whlch must
be narrower. a hand or foot requires
exactly one connected rectangle ,with greater area.!;
MAPLIST(RECTS, : '
LAMBDA Rj
VARS L3R. RECTCUJ—>L,
IF L.LENGTH=1 '
THEN IF L.HD.WIDTH<R.WIDTH
THEN MAKEBOTH(R, "HEAD")
CLOSE3s
IF L.HD.AREA>R.AREA
THEN MAKEBOTH(R,®"HAND") s MAKEBOTH(R,"FOoOT#)
CLOSE;

ELSEIF L.LENGTH>2

AND FILTLIST(L,LAMBDA X3iX.WIDTH<R.WIDTH;END).LENGTH>2
THEN MAKEBOTH(R,"TRUNK™)

CLOSE;

END)3

END3

FUNCTION ANYREL P3
SOMETRUE(P.PERSLOTS,SLOTRELS. FNCOMP ISLINK)
END 3

FUNCTION GIVEPERNAME P Lj
CO*C&TWORD(P.PEPRECT.RECTNAM:,PUHWORD(ITFINJH(D,h)))
~>P ,PERNAME;P->P.PERNAME. VALOF

=MD s

FUNCTION NEATPERS:

VARS L3

NIL->PERCEPTS:

RECTS.REV RHLOOP3
RH.RECTPERS->L3
APPLIST(L, GIVEPEPJA%E(/L/))a
L<>P RC:P15‘>PERCEPTbv

EMNDRH3

ENDs

“U““TION MAKEPERNET 3
ARS LIVELIST;;NIL->PERCEPTS; NIL—>RCLATIOV51

.GETPOSSNUCLEI->LIVELIST;
LIVELIST—>PhRCLPLS NIL->RELATIONS;:
_GROWPERS(PERCEPTS) 3
FILTLIST(PERCEPTS,ANYREL)->PERCEPTS}
APPLIST(RECTS,LAMBDA XsNIL->X. RCCTPERS;END);
APDLIST(PERCEPTS,GIVERECT);

HEATPERSS

Y‘l!D -

. ~205~

*k% CODE FOR HANDLING EXTRA INPUT %%
%% INSTRUCTIONS LIKE "TRYTOQINTERPRETHN ##*

FUNCTION CLEARPERPREFS; -
APPLIST(PERCEPTS,LAM3DA P30-~>P.PERCRED.CREDPREF3END);

END s

|

FUNCTION CLEARRELPREFS;
- APPLIST(RELATIONS,LAMBDA R;0->R.RELCRED.CREDPREF;END);

END s

FUNCTION ISOFTYPE
X.PERTYPE=T}

END3

FUNCTION ISOFRECT

X Ts

X NAME;

X.PERRECT .RECTNAME=NAME ;

END 3

FUNCTION HASPROXAT

X.PERPROX=V3
END3s

FUNCVAR ISUPRIGHT

FUNCTION HELPPERS
APPLIST (PERCEPTS,

LAm BDA P ?
IF P.PRED
CLOSE 3
END) 3

END3

FUNCTION HELPRELS

APPLIST (RELATIONS,

LAMBDA Rj3

X W3

HASPROXAT (%"TOPU3%) 5
N PRED;

THEN N+P.PERCRED.CREDPREF—SP.PEHCRED.CREOPREF

N PREDs3

IF R.PRED THEN N+R.RELCRED.CREDPREF->R.RELCRED.CREDPREF

CLOSE s
END)3
END3

FUNCTION HELPPER P N3
N+P .PERCRED.CREDPREF->P. PERCRED CREDPREF;

:ND,

FUNCTION THERELBETWEEN P Q3

VARS X Y3
RELATIONS RHLOOP3

RH.RELSLOT1.SLOTPER->X3RH. RFLSLOT2 SLOTPER->Y3
IF (X=P AND Y=Q) OR (X=Q AND Y=P) THEN RH3EXITs

ENDRH3
FALSES
ENDs

~206—

FUNCTION HELPREL R N3 '
,ggg.RELCRED.CREDPREF~>R.RELCRED.CREDPREF'

FUNCTION SETORIENTPREF PART ORIENT Nj

nELPP:RS(T » LAMBDA P3sISOFTYPE(P,PART) AND HASPROXAT(P,0ORIENT)
$END) 3

END s

FUNCTION SETPARTPREF RECT L N3
VARS W PARTsL.HD->W3
IF W=wTOP" OR W="BOT"
THEN L.TL.HD->PART;
HELPPERS(N,LAMBDA Pj;
ISOFRECT(P,RECT) AND HASPROXAT(P,H#)
AND ISOFTYPE(P,PART);
END)3s
ELSEIF W="SOMEPART"
THEN HELPPERS(N,LAMBDA P3ISOFRECT(P,RECT)3END)
ELSE HELPPERS(N,LAMBDA PsISOFRECT(P,RECT) AND ISOFTYPE(P,W)s
END)
“L)SE;

OPEZRATION 3 TRYTOINTERPRET Ls

VARS W N3

MAPLIST(L,LAYMBDA W;

”PRIGhT“ THEN nTOP"

IF W=n
ELSETF W="UPSIDEDOWN" THEN "BOT"
ELSE W CLOSE;

END)Y=->L3

COMMENT/the program likes "top" and "bot" but people dont

understand them!s l.rev.hd->nil.hd->w;

IF MEMBERGW,[HEAD NECK TRUNK UPPZRARM LOWERARM HAND THIGH
CALF FOOTDH :

THEN SETORIENTPREF(W,L.TL.TL.HD,N)3

ELSE SETPARTPREF(W,L.TL.TL,N)

CLOSE 3

END 3

_ FUNCTION INHIBIT Nj
APPLIST (CREDNODES,
LAMBDA C'!F cC. CRrDVAL>O 5 THEN C.CREDPREF-N->C.CREDPREF
"CLOSE
END)s
2

FUMCTION SWITCHATTENTION N3
VARS L CHANGE3
SECTS RELOOP
fAPLISf(PH RECTPERS,PERCRED)->L3
IF SOMETRUE(L, LAMDﬂA C3C.CREDVAL>0.53END)
THEN -N->CHANGE ELSE N->CHANGE CLOSE;:
APPLIST(L,LA/EDA C3C.CREDPREF+CHANGE->C.CREDPREFSEND) ;S

—~207-

*k CODE FOR CREATING THE COMSTRAINTS

FUNCTION SLOTSIZE S

IF S.SLOTPER.PERTYPE="TRUNK"
AND S/=S5.SLOTPER.PERSLOTS.HD
THEN 2 ELSE 1 CLOSE;

END3

VARS RELPREF PERPREF3 I->RELPREF ; 0~>PERPREF3

FUNCTION THREECOLPR X EXTRALINE:

VARS F3;PERNAME FNCOMP PR->F;

IF X.DATANORD="PERCEPT®" THEN IF EXTPALIN: THEN 3.SP
ELSE 1.SPsX.F CLOSE3s

ELSE IF EXTRALINE THEN 1.SP3sX.RELSLOT!.SLOTPER.F
ELSE 1.S5PsX.RELSLOT2,.SLOTPER
CLOSEs

CLOSEs

END3

FUNCTION SETRECTCONSTR RECT:
MAPLIST(RECT.RECTPERS ,PERCRED). AFWOSTOVE7
L‘NDq

FUNCTION SETTYPECONSTR TYPE PERLIST FUN3

VARS LsFILTLIST(PERLIST,LAMBDA PsP.PERTYPE=TYPE3sEND)->L3
MAPLIST(L,PERCRED) JFUN3

END 3

FUNCTION SETSLOTCONSTR S;
VARS FLIST P;
S.SLOTPER.PERCRED->P3 "
IF S.SLOTSIZE=2 THEN ([(%P,P%1 ELSE [%P%] CLOSE->FLIST;
MORECRED(FLIST,MAPLIST(S.SLOTRELS,RELCRED)) 3
END;

FUNCTION SETCONSTRAINTS;S

-APPLIST(RELATIONS,
LAMBDA R3VARS L3R.RELCRED.2:NIL->L3
MORECRED(R.RELSLOT!.SLOTPER.PERCRED: ¢ NIL,L) 3
MORECRED(R.RELSLOT2.SLOTPER.PERCRED*:NIL,L)
END) 3

APPLIST(RrCTS SETRECTCONSTR) 3

"APPLIST([HEAD NECK TRUNKI],SETTYPECONSTR(%PERCEPTS,ATMOSTONE%));

APPLIST ([HAND FOOT LOWERARi UPPERARM CALF THIGHI],
SETTYPECONSTR(%ZPERCEPTS,ATMOSTIWO%))3

APPLIST(PERCEPTS,
LAMBDA P;APPLIST(P.PERSLOTS,SETSLOTCONSTR);END);

1
.
1

"ENDs

~208-

s%% THE TOP LEVEL FUNCTION FOR CREATING %%
k%% THE NETWORK OF CANDIDATE HYPOTHESES #w%%

'FUNCTION FIRST N L3

IF L.NULL OR N=0 THEN NIL

ELSE L.HD::FIRST(N-1,L.TL) CLOSE;
END 3 '

FUVCTIOJ GETPUPNET FNAME;S
NIL->PERCEPTSSNIL->RECTS;NIL->CONSTRAINTS$NIL~>CREDNODE
FNAME PUPINjs.MAKEPERNET $1.NL3 |
.SETCONSTRAINTS

MAPLIST(PERCEPTS,PERCRED)->PLIST3
PLIST<>MAPLIST(RCLATIONS,RtLCRtD) >CREDNODESs
FIRST(20,PLIST)->PLIST;

7PLIST CREATED.

! . PRSTRINGS
END$

209~

APPENDIX 4

This shows the way thé supposition values change
during relaxation for the examples in chapter 2. Only
the first nineteen part-hypotheses are shown in many
cases. The function RELAX5O causes fifty founds of re-
laxation with printing initially and1 after every ten
rounds. Supposition valueé X 100 are shown, and for for¥
matting reasons, 100 is printed as 99. The coefficients

in the relaxation operator are set at:

Kp Kd Kf KL Iferatwns
o-4(0.510-3] 0 |- 1p
02105103 0 10
0O-1f0-g|03] 0 10
0-1{0-83{0-3 (0] 20

The hypotheses which get selected can be identified

by referring to the figures in chapter 2.

-210-

trelanB0() s

Al BL B2 R
o 0 0
59 65 25 2
83 83 12 1
?8 924 &4
29 292 0
99 29 0

3

0

&

0
2

0
0

e
S0
44
17

ni

23
14

n2

0
53
53
49
42
16

For the example in figure

]
FerelaxS0s

Al B1 B2 C1L C2
o 0 0
73 65 99 36 34

0 0

B6 60 98 17 17
86 39 93 9 9 93

99 19 99
29 12 99

0 0 99

0

0

C3

0
78
87

9P

L.
o

38
i8
8
0
0

n2
0
38
18
8
O
0

I3 D4

0
54
55
57
69
96

OO oo

2.1,

C3
n3 n3
o 0
468 20
83 93
?5 99
P9 99
99 99

'For the example in figure 2.2,

naE

1

OO NOC OO

c3
B2

29
?9
@7
9
P

rJ

OO b O

Ri
c3

84
75
47
24
16

E2

60

=

49
42

15

g Rl

[l]
= U GO R e

column headings indicate joint hypotheses.

Larelax30y

Al

0
60
74
84
92
29

Bl
-0
47
70
7%
28
?9?

B2 R3 R4 RS
0O 0 0 0
32 34 10 10
28 22 O O
i 6 2 2
o 0 0 0O
o 0 O O

For the example in

ClL C2 C3 C4
O 0 O 0
41 61 19 18
68 55 10 10
68 46 4 4
87 31 0 O
¢ 0 0 O
figure 2.4.

-211-

c

SOC O HOU

]

OO0 OO

ni

17
i0

3
0

0

E3 E4 ES
¢ O 0
61 O 0O
56 00
36 0 0O
85 0 0
2 0 0
n2 Al
C1 Ri
o 0
53 80
25 75
12 47
1 24
1 14
The double
o2 n3 n4
0O 0 0
17 7 39
10 O 48
I 0 57
0o 0 80
0O 0 99

F1

57
54
54
62
89

ns

41
42

42
28

Ei
0
17

10

O Oul

E2

¢
i7
10

O Ol

lerelaw

Al
0
72
70
71
.86
29

03

i

A2 A3 A4 AS Ab
0O 0 0 0 0
60 12 0 14 0
91 6 O 6 O
47 0 0 0 ©
34 0 0 0 0
O 0 0 0 ¢

For the example in

LirelaxB0s

Al

O
&0
50
40

=
25

2

o

A2 AT A4 AS A6

0 0 0 0 0
94 2 021 0
88 0 0 8 O
86 0 0 3 0
99 0 0 0 O
$9 0 0 0 ©

Bl ER2
o 0
49 36
61 32
746 24
¢ 0
®® 0
figure
Bl R2
0 0
43 24
52 8
69 0
92 0
9 0

For the example in figure

Pairelasx30s

Al

49
60
b6
92

99

g

CCONBOR

R1

0
49
39
&5
95
99

jral

o RN S e 28 8

1

e
= 1)

SO O LT

SO O WO

B3 R4 RS

3
0
7
0
1
0
0

Ci
0

ol

4%
40
39

3

B3 B4 RS
0 0 0
37 01 1
200 0
& 0 0
0o 0 0
0 0 0
2.5,
E3 R4 RS
0O 0 0
70 0 0
b0 0 0
4% 0 0
8 0 0
5 0 0
2.6.
C2 C3 ¢4
00 0
62 19 13
59 9 7
61 1 4
84 0 0
99 0 0

For the example in figure 2.7.

-212-

c1l

32
Pé
?9
@9
59

Cl

81
24
26
P9
?9

ni

DO O OO

nt

SO OO

Cs5 Nl

13

0

SO OO0

n2

43
44
48
76
99

n2

39
36
364
18

nz2

38
34

34

39

03
41

e

3w

e

9D
31

03

&2
59
&3
6
&S

03

40
40
46
75

99

o4

27
19
14

I3

CSCOWOCO

04

29
21
14

ns

28

i8
10

i

s Y
O OMNONO U

L)

29
21

14

E1l

35
ele)

“~al.

15

El

33

~

J
g

R S
2O n

El

38.
27
19

E2

33
23
17

m

=

COWWNNO R

E2

38
27
18

o 0 0
0 0 0 ¢

lerelaxdos

Al

0
63
56
o4
53

54

Irelaxinstages(

A2

0
63
96
94
93
54

Al A2
394 54
54 54
94 5S4
w4 54

El

0
63
96
54
93
54

Bl
54
94
54
54

33

63
ab
o
«J

a3
a4

R2
54
G4
54

54

C1

75
@9
99
99

c2

63
a6
a2
48
36

OO Lo RO

n2

71
&1
a3
Gl

40

Cterminasl

C2 n1 n2
36 0 40
3 0 4
1 0 1
1 0 1

D3

74
67
99
&5
78

10

n3
78
99
79
Py

El

67
Sé
31
48
36

10

For the example in figure 2.9.

Gl G2

E2

0 0 0
88 15 67
62 3 40
57 2 57
62 0 62
75 0 74
10193

ER G1 62
75 0 74
99 0 99
99 0 99
99 0 99

G3

60
ud
51
48
36

G3
34

H1

42
a7
53
36
a5

H1

95

g
L d R

11 J1 J2
0 0 0
55 15 67
57 3 60
54 2 57
54 0 62
54 0 74
I1 J1 J2
54 0 74
54 0 99
54 0 99
54 0 99

Thirty extra rounds of relaxation are shown, with the

coefficients at their terminal settings

Irelavinstages(Cterminal

Al
a4
44
11

a2
54
66
99

El
o4
654
®7

B2
94
44

12

Ci
PP
99
92

10

I3
P9
99

9.

107335

E1l ER
0 99
0 99
0 99

For the example in figure 2.10.

The deadlock is broken by additional

—~213—

Gl G2
0 99
0 %9
0 99

S ool

H1
599

&6
g9

I1 J1 J2
34 0 99
67 0 99
9 0 99

input instructions.

J3 -

&0
54

51

48

36

J3 .

36 .

3

O OC G

APPENDIX 5
CODE FOR THE EXAMPLE IN SECTION 5.2

FUNCTION SAMESUM Ls i
CﬁMMFNT’Pwkeq constraints which forcs the head of the
to have the same sum as the rest!; '
VARS X I‘WAPLIST(L VALOF)=>L3s

LorAD2sNIL~->X2L.TL->L3

MORECRE p(X,L);HOHECRED(L,Y)

END 3

FUNCTTON UNITSUM Ls

COMMENT ?sets up two constraints to ens
sunposition values of the nodes in 1 a;
MAPLIST(L ,VALOF)—->L3s

ATaOJlOﬂE(L)%AT EASTONE(L) 3

END 2

FUNCTION SETPREFS L

COMMENTZ]) is a list of nodenames and numbars!;

VARS X N3

UNTIL L. NULL

D0 POP L->Y:POP L->M3
N=>¥,VALOF.CRED

PREF3 _
FNDRO 3
EMDg
FUICTION MAXEMNODE #s
VARS Cs
CONMSCREMIODE(N,NIL ,MIL,0,0,0)->C3
C=>W.VALOF:C: :CREDNODES— >C?“D”“T§S:
ENDs :
APPLIST(L[AO A1 A2 A2 RO Bl B2 E3 CO Ct C2 C 5 HE
H8 H9 J4 Js Jé J7 J3 J9 K4 X5 K5 K7 KB X9 NODED

APPLIST([[AD Al A2 A3] [BO BI B2 B3] [C2 C

[H4 15 H6 M7 H3 W9l [J4 J5 Js J7 J= J¥1
[Ka4 KB K6 K7 K8 . Ke1 1,UNITSUM)s
APPLIST(L [AD H4 HAILAL HS HOI[AZ HEJ[A3 ni/l
[0 K4 K710A1 K5 K=1[0A2 X91[A3 5]
(B0 J4 Ja1l81 J5 Joll22 J8ILR2Z J71
[RO H4 HT7ILB1 HS HRILE2 HOI(23 =21
[CO K4 ¥allCl K5 K9l(e2 X81{22 X7 '
[coH J4 J710C¢t Js Jali{cz J2iics Jsi 1,
CGAMESUND 3 '
VARS PLIST: : ‘
MALDLTSTCLAD AL A2 AZC 70 R1 R2 23 CO C1 C2 C31,VALOR)
->PLIST:

=

9]

ct

- APPENDIX 6

CODE FEOR THE “SETTLEW SYSTEH.

~215-

© %% CODE FOR MAKING SCHEMAS AND INSTANCES *#x

COMMENT“this file is for making schemas and instances for

a settle system. rules have to be added after the schema
1s made.!;

ENSURELIST SCHEMAS;

COMAENT’some slots have known inverses. knowing these
facilitates bond specifications!s

OPERATION 4 <-> X Y3
CONSPAIR(X,Y) :2 INVERSES~->INVERSES
END3

ENSURELIST INVERSES;

FUNCTION INVERSE F3

INVERSES RHLOOP ;3
IF RH.FRONT=F THEN RH.BACK,RETURN
ELSEIF RH.BACK=F THEN RH.FRONT,RETURN
CLOSE 3 ‘ ‘

ENDRH3

UNDEF3§ .

END3

COMMENT’instances are strips,butslot names are used to
access components of them, so accessing functions are

assigned to slot names. to avoid creating unnecessary

functions, or creating copies of them, there is a ‘

dynamic list of them!s

FUNCTION NEXTFUN N SELF3

COMMENT” a closure of this produces a selector function
for the n th component of a strip!;s
VARS FUN;
POPVAL(CILAMBDA S3SUBSCR(&N,S)SEND3;1.RIG)->FUN3
CONCATWORD(BSUBY ,N.NUMWORD).: ¢ FUN, FNPROPS->FUN .FNPROPS;
POPVAL([LAMBDA C S3C->SUBSCR(&N,S)$ENDI.RIG)->FUN.UPDATERs
FUN 3
N+1->FROZVAL(1,SELF) 3
END3

~VARS GENERATOR SUBSCRFUN3

NEXTFUN (%1 ,UNDEF%)~>GENERATOR}
GENERATOR->FROZVAL(2,GENERATOR) 3
ITEM(%GENERATOR.FNTOLIST%)->SUBSCRF3
COMMENT’subscrfun takes an integer n and returns a
selector for the n’th component of a strip.!s

~216—

FUNCTION NAMESLOT N W3 ‘
"A%% W IS MADE THE NAME OF THE N/TH COMPONENT OF AN INSTANCE
POPVALC[%"VARS! ,W ,"31%])s
N.SUBSCRFUN—>W.VALOF:
END3

TA%% ALL INSTANCES START WITH THREE SPECIAL COMPONENTS
“A%% CALLED INSTNAME, INSTOF AND INSTCRED.

TA%% INSTNAME CONTAINS THE NAME OF THE INSTANCE.

~A%% INSTOF CONTAINS THE SCHEMA.

“A%% INSTCRED CONTAINS THE ASSOCIATED "CREDNODEY.

NAMESLOT(l,"INSTNAME");NAMESLOT(2,"INSTOF")3
NAMESLOT(3,"INSTCRED");

| ‘ |
RECORD SCHEMA SCHNAME SCHKNOWLEDGE SCHINSTS SCHNUMOE 03

COMMENT” the schknowledge of each schema is a strip whose
components are slotknowledge records. these contain
knowledge about the sizes of the slots, the types of
fillers allowed and the constraints.!:

RECORD SLOTKNOWLEDGE SKNAME SKSIZE O SKTYPECHECKS SKRULES;:

COMMENTZan instance of a schema is a strio whose
components (apart from the first three defined above)

re records of type slot. '

each slot has a list of demons, a list of bonds, and a
pointer to the part of the schema which contains rules
whose keys may start matching when the slot is filled.!;

RECORD SLOT SLOTKNOWLEDGE SLOTIRIGS SLOTBONDS3
RECORD BOND BONDINST! BONDINST2 BONDCREDS3:

VARS SLOTNAME s SLOTKNOWLEDGE FNCOHP SKNAME->SLOTNAME §

FUNCTION SCHSLOTNAMES .SCHEMA3

COMMENT/produces the names of slots from a schemalj;
MAPLIST(SCHEMA SCHKNOWLEDGE .DATALIST.BACK.BACK.BACK,SKMNAME)D
ENDs

FUNCTION MAKENEXTNAME SCHEMA=>W3

. COMMENTZall instances of a schema have names consisting
of the schema name followed by an integer!s

VARS N3 SCHEMA.SCHNUMOF+1->N3$N->SCHEMA . SCHNUMOF 3

CONCATWORD(SCHEMA . SCHNAME yN . NUMWORD)—>¥3
[ZMWVARS N, #3121, POPVALS

END 3

~217- -

FUWCTION GETNEWINST SCHEMA=>NEW;
“A%% THIS MAKES A NEW INSTANCE OF A SCHEMA.
VARS C3
</ SCHEMA.MAKENEXTNAME, SCHEMA, UNDEF,

APPLI ST(SCHEMA. SCHKUOHLEDGE DALALIDT TL.TL.TL,

CONSSLOT(ZNIL,NIL%)) /> ~> NEW;

CONSCRCDNODE(VE4 NIL,NIL,NIL, O 5,0,0)->C;3

- C~>NEW, INSTCRFD “CRPDNOD =S5->CREDNODES s
NEW->NEW.INSTNAME.VALOF;

Ngg 22 SCHEMA .SCHINSTS->SCHEMA. SCHINSTSo
END S

VARS MAKEINST3sGETNEWINST FNCOMP ERASE->MAKEINSTS

FUNCTION MAKESCHEMA SCHNAME L3 {
VARS SCHEMA SLOTSIZE NAME N KSTRIP;
4->N3
</ UNDEF, UNDEF, UNDEF,
CLOOPIF L.ISLINK
THEN POP L->MAMEsNAMESLOT(N,NAME);
IF L.ISLINK AND L. HD ISINTEGER
THEN POP L~->SLOTSIZE:
ELSE 1->SLOTSIZE
CLOSE s
CONSSLOTKNOWLEDGE(NAME, STOISIZ: GJNILGNIL) s
N+1->N3
CLOSE /> ->KSTRIP;
CONSSCHEMA(SCHNAME ,KSTRIP,NIL,0)~>SCHEYA;
SCHEMA 2 : SCHEMAS—>SCHEMAS;
SCHEMA~>SCHNAME .VALOF 3
ENDs '

*%% CODE FOR CREATING KEYS FROM THE Fokok
%% BOND AND CONDITION SPECIFICATIONS #%*x

RECORD EXTRABOND EBSOURCE EBFUN EBGOAL3
RECORD KEYNODE KNBINDING KNCONDS KNGEN KNEXTRAS3
RECORD RULE RULENUM O RULEXEY RULEACTION:

FUNCTION UNPACKBONDS L3

COMMENTZthis destructively alters 1 substltutlng two one

way specifications for one two way one!js
VARS R B3

UNTIL L.NULL

DO L.HD->B3
IF B.LENGTH=4 .
THEN ITEM(4,B)->RsNIL->B.TL.TL.TL3

: [%B.TL.TL,HD,R,B.HD%) =L, TL->L.TL3
L. TL.TL->Ls .

ELSE L.TL->L3s
: CLOSE
ENDDO 3

END3 18

FUNCTION COMESFIRST A B L;
L RHLOOP;
IF RH=B THEN FALSE;RETURN ELQEIF RH=A THEN THUEyFXIT,
ENDRH3
.POPERR 3
‘END 3

FUNCTION GETORDEREDNODES BONDSPECS—>REACHABLE SPECS;s
"COMMENT’this takes a list of bond specifications and
ensures that the firstnode in each bond can be reached
from a previously mentioned node. i. e, it
will reorder [[a fun bl [c¢ fun d]l [b fun cl 1.
it also returns a list of node names!;

VARS SUSPECT B: |

FUNCTION TRYADD Bjs *

VARS XsB.TL.TL.HD->X3

UNLESS MEMBER(X,REACHABLE)

THEN NCJOIN(REACHABLE,X::sNIL)->REACHABLE CLOSE;
ENDs

POP BONDSPECS->B; [%B.HD,B.TL.TL.HD%1~- >REACHABLE,

NIL->SUSPECT3;

[%B,

LOOPIF BONDSPECS. ISLINK
THEN POP BONDSPECS—->Bjs
IF MEMBER(B.HD, REACHABLE)
THEN BsB.TRYADD3 _
SUSPECT RHLOOP3
IF MEMBER(RH.HD, REACHABLE)
THEN RHj;RH. TRYADD,
REMOVE(RH, SUSPECT)=->SUSPECT
CLOSE;s
ENDRH 5
ELSE B::SUSPECT->SUSPECT
"CLOSE; '
CLOSE#%1->SPECSs
UNLESS SUSPECT.NULL
THEN Z2INVALID XEY SPECIFICATION. CULPRITS: !.PRSTRING;
SUSPECT.PR3
.POPREADY s
CLOSE s
END3

FUNCTION GETNAMEDNODE W3 :
COMMENT”’assumes global keylist!s
KEYLIST RHLOOPj3

IF RH.KNBINDING=W THEN RHSEXIT3
ENDRH3

FALSE;

END3

~219-

COMMENT/some complex. bond specifications are split into
'bonds and tests for conditions.i.e. (a spouse =nonel is
handled by translating it into something like:

[a spouse bl and [.equal b nonel)
‘so dummy names (like "b") are needed.!;s.

VARS DIFFERENT NEXTDUMMYNAMES
EQUAL FNCOMP NOT->DIFFERENT3
GENSYM("DUMMYNODE") —>NE XTDUMMYN AME 5

FUNCTION EXTRACTCOND BONDSPECs

COMMENTZthis looks for a special symbol(= or /=) before
the second node and destructively changes the bondspec and
" stacks the required condition!s
VARS W LASTBIT FUN;s
BONDSPEC.TL.TL=>LASTBITsLASTBIT.HD~>#3

IF W="=v THEN EQUAL->FUN

ELSEIF W=#/=% THEN DIFFERENT->FUN

ELSE RETURN ‘
CLOSE; |

+NEXTDU MMYNAME->W s [%¥W%1->BONDSPEC.TL.TL}
[%FUN,W,LASTBIT. TL HD% 1]

END

°
b

FUNCTION GETCONDARG W3
COMMENT”the arguements specified in a cond may or may
not be keynodes!

VARS Xs;W.GETNAMEDNODE->X3
IF X THEN X ELSE W CLOSE:
END3

FUNCTION LASTNODE L M3
COMMENT’returns the member of 1 which occurs last in atlj
COMMENTZif no member of 1 occurs in m then this
returns m.hd!;
M.REV->M3
UNTIL M.TL.NULL OR MEMBER(M.HD,L) DO M.TL->M4 ENDDO3
M.HD3
END3

FUNCTION ADDKEYCOND CONDj3
COMMENTZcond is turned into a list of keynodes.or other
arjuments preceded by a function and stored under the last
named node. keylist is assumed to be global.
VARS F L K3
COND.RIG->COND3
IF COND.HD.ISWORD THEN COND.HD. VALOF—>F ELSE COND.HD->F
CLOSE:
MAPLIST(COND.TL ,GETCONDARG)->L3
LASTNODE(L,KEYLIST)->K3
(F::L)::K.KNCONDS—>K.KNCONDS3
END3

~220-~

FUNCTION ADDKEYBOND BOND NODENAMES; .
COMMENT/this takes a bond specification, and uses it to
modify the key appropriately.

a bond specification may contain either a function
or a word for the slotfun!;

VARS KNA KNB A F B3BOND.DL->B->F->A3

UNLESS F.ISFUNC THEN F.VALOF->F CLOSE;

A.GETNAMEDNODE->KNA 3 B.GETNAMEDNODE->KNB3

IF COMESFIRST(A,B,NODENAMES)

THEN IF KNB.KNGEN=UNDEF

THEN CONSPAIR(F,KNA)->KXNB.KNGEN

ELSE CONSEXTRABOND(KNA,F,KNB) £ :KNB.KNEXTRAS
=>KNB.KNEXTRAS

CLOSE;

ELSE CONSEXTRABOND(KNA,F,KNB) ::KNA.KNEXTRAS—>KNA.KNEXTRAS

CLOSE;

END3

FUNCTION MAKEKEY NODENAMES CONDS BONDS=>KEYLIST;
COMMENT/during the creation of the keynodes we keep their
names in knbinding!s;

MAPLIST (NODENAMES ,,CONSKEYNODE(#%NIL,UNDEF,NIL%))->KEYLIST;

APPLIST (CONDS ,ADDKEYCOND) 3 .

APPLIST(BONDS,ADDKEYBOND(ZNODENAMES?%.)) 3

END;

. FUNCTION MAKERULE N BONDS CONDS ACTION;
VARS KEYLIST NODENAMES; '

MAPLIST (BONDS,RIG)->BONDS3

MAPLIST (BONDS ,EXTRACTCOND)<>CONDS->CONDS3

BONDS.UNPACKBONDS3s BONDS.GETORDEREDNODES->BONDS->NODENAMESs -

MAKEKEY (NODENAMES ,CONDS ,BONDS)—->KEYLIST 3

CONSRULE(N,KEYLIST,

POPVALCI%"LAMBDAY ,"FROZRULE", "FROZBONDS",

NODENAMES.DL,"s% ,ACTION.DL,"END","3"%1))3
END3 '

FUNCTION TRYFRESHRULE INST F L3
COMMENT”when a new rule is added to a schema, this tries
to match its key to all the existing instances in the
appropriate slot
of all instances of the schema!ls
APPLIST (INST,F.SLOTBONDS,
LAMBDA Bs
STARTKEY(L, INST,0THERINST(B,INST)) 3
END) 3
END3

~221-

FUNCTION ADDRULE SCHEMA RULE ;3 :

QOMMENT’for adding rules to schemas so that when an
1n§tance of one of the schemas is created, each slot in it
will be able to look at the corresponding component of
schknowledge to find its initial rules!s

VARS SK L F3SRULE.RULEXEY.TL.HD.KNGEN.FRONT->F3

SCHEMA . SCHKNOWLEDGE .F~>SK 5

[%ZRULE%1->L3

L:3SK.SKRULES~>SK.SKRULES;

EESLIST(SCHEMA.SCHINSTS,TRYFRESHRULE(%F,L%));

ND 3

OPERATION 4 ==> LHS RHS;
VARS SCHEMA RULE N BONDS CONDS;
NIL->BONDS3NIL->CONDS;POP LHS->N3
POP LHS->SCHEMA3
APPLIST(LHS,LAMBDA L3
IF L.HD="." THEN L.TL::CONDS->CONDS
ELSE L3::BONDS->BONDS;
CLOSESEND); |
MAKERULE(N, BONDS, CONDS, RHS)~>RULE 3 }
IF SCHEMA.ISWORD THEN ADDRULE(SCHEMA.VALOF,RULE)
ELSE APPLIST(SCHEMA,VALOF FNCOMP ADDRULE(%RULE%.)
CLOSE3 :
END3

*%% SOME MISCELLANEOQUS FUNCTIONS s

FUNCTION OTHERINST BOND .INST3
COMMENT”halfbonds have bondinst2=undef!;
VARS X3 BOND.BONDINSTI->X;3

IF X=INST THEN BOND.BONDINST2 ELSE X CLOSE;
END3 ' ‘

VARS WHERESLOTSSTART; 4->WHERESLOTSSTART ;

FUNCTION ISINSTANCE X3
X.ISSTRIP AND X.INSTOF.DATAWORD="SCHEMA"Y
END3 :

FUNCTION BEFORE A B3 :
COMMENT’checks whether a was made before b.
the instances in a schema are in reverse orderlis

AJINSTOF.SCHINSTS RHLOOP3:

IF RH=B AND RH/=A THEN TRUE3sRETURN

ELSEIF RH=A THEN FALSEEXITs
ENDRH3
. +POPERR;s
END;s

-222~

*%% CODE FOR CREATING AND *#x
*%%x MANIPULATING BONDS * Xk

FUNCTION FILLERS INST SLOTORFUN;
IF SLOTORFUN.ISFUNC THEN INST.SLOTORFUN->SLOTORFUN CLOSE;
MAPLIST (SLOTORFUN.SLOTBONDS,
Ex LAMBDA B3OTHERINST(B,INST)3END);
Ds ’

FUNCTION GETBOND SOURCE FUN GOAL3
SOURCE.FUN.SLOTBONDS RHLOOP3

IF OTHERINST(RH,SOURCE)=GOAL THEN RH;EXIT;
ENDRH3 '
FALSE
END3

FUNCTION GETTHEBOND SOURCE FUN GOALj
GETBOND(SOURCE.KNBINDING,FUN,GOAL.KNBINDING?;
F:ND 9

FUNCTION GETEXTRABONDS K3
APPLIST(K.KNEXTRAS,DESTEXTRABOND FNCOMP GETTHEBOMND) 3
END 3

FUNCTION GETGENBOND K3

VARS B3jK.KNGEN->B3
GETTHEBOND(B. BACK,,B.FRONT,K) 3
END3 :

FUNCTION GETBONDSUSED KEYLIST:
COMMENT’this assumes that the nodes in keyllst are
correctly bound and returns all the bonds used in matching
the key!s
[#APPLIST(KEYLIST.TL,GETGENBOND),
APPLIQT(KEYLIST GETEXTRABONDS)% 13

FUNCTION COMMONMEM LL3

VARS CONMONS

FILTLIST(LL.HD,LAMBDA X3
ALLTRUE(LL.TL,LAMBDA LiMEMBER(X,L)$END);
END)=>COMMON3

IF COMMON.LENGTH/=1 THEN .POPERR CLOSE;

COMMON.HD3

END s

—22%m

FUNCTION COMMONCEIL BONDS;

gﬁgLIST(BOBDS y BONDCRED FNCOMP CEILINGS).COMMONMEM;

FUNCTION ONEFILLERCONSTR BOND OLDBONDS;
COMMENT/this type of constraint is only added if there
is more than one filler. if a constraint already exists
it is modified to include the new bond!j;
VARS COM C3BOND.BONDCRED->C3
IF OLDBONDS.NULL THEN
ELSEIF OLDBONDS.TL.NULL
THEN ATMOSTONE([%C,OLDBONDS.HD. BONDCRED%1)
ELSE OLDBOHDS.COMJONCEIL~>COM C:2COM.CONCEILINGS
->COM.CONCEILINGSs
COMs:C.CEILINGS->C.CEILINGS
CLOSEs -
END3

FUNCTION ADDBOND INST FUN BOND3

COMMENT”puts the bond in the slot and adds the constraint

that the instance must be at least as true
as the bond. it also adds the
constraint between the fillers of the slot,where
applicable!ls
VARS SLOT SLOTSIZE ()LDB()\IDDsI\'ST.rU\' >SLOTs
SLOT.SLOTBONDS->0OLDBONDSS
BOMND s sOLDBONDS~>SLOT.SLOTBONDSs
YO?:CRED(INST.INSTCREDJ:NIL,BOND.BONDCRED::NIL);
INST. INSTOF .SCHKNOWLEDGE.FUN.SKSIZE~->SLOTSIZE
IF SLOTSIZE=1 THEN ONEFILLERCONSTR(BOND, OL”BONDS) CLOSE;s
COMMENT”assumes new credval=0!;
ENDs :

FUNCTION RETURNBOND INST! FUN! INST2 FUN2=>Bj
COMMENT”this either returns an existing bond, or if
there is none,it makes a new one.
if inst2 isnt an instance fun2 must be undef!j;

VARS CREDNODE 3

GETBOND(INSTI! ,FUN1,INST2)->Bs

IF B AND (FUN2=UNDEF OR MEMBER(B,INST2.FUN2.SLOTBONDS))
THEN EXITs: ,

CONSBOND(INST1,INST2,UNDEF)->B3

CONSCREDNODE(B,NIL,NIL,NIL,0.5,0,0)->CREDNGDE

' CREDNODE:: °CRLDNODFS—>CR?DQODES CRF“MODE—>B. ONDC
DBOND(IMST! FUNT,B) s
FUN2/= UVDcF

HEN ADDBOND(INST2,FUN2,B)s

()OET

’JTRIG SCINST1,FUNT,INST2) 3

FUN2/=UNDEF '

N RUNTRIGS(INSTZ2, FUNZ INST1) CLOSE;

'Tl [_J

L P e e e
‘:"“"‘H. T
om

-224~

REDS

FUNCTION MAKEBOND;3
. RETURNBOND.ERASE 3
END;s

- VARS LINK3sMAKEBOND(%UNDEF%)->LINK3;

**% CODE FOR MAKING AND RUNNING JOBS %%

VARS JOBSRUN TRIGTHRESH3$0->JOBSRUN30.7->TRIGTHRESH;

FUNCTION JOBRULE J;
FROZVAL(1,J)s
END3

FUNCTION JOBBONDS J3
FROZVAL(2,J)3
END;

VARS JOBLIST;NIL~->JOBLIST;

FUNCTION CHECKBONDVALS JOB3 :
COMMENTZthis either returns true or puts the job in 2 list
on the crednode of an implausible bond!;

VARS CRED;

JOB.JOBBONDS RHLOOP3%

RH. BONDCRED->CRED3

IF CRED.CREDVAL=<TRIGTHRESH _
THEN JOB::CRED.CREDJOBS->CRED.CREDJOBSs FALSE;
EXITs ’

ENDRH3

TRUE;s

END3

FUNCTION ADDJOB Js
NCJOIN(JOBLIST,J=sNIL)->JOBLIST;

=t

END$

FUNCTION RUNJOB Js
J.APPLY;1+JOBSRUN—>JOBSRUN$
EMND

NCTION TRYDORMANTJOB JOBj; :
IF JOB.CHECKBONDVALS THEN JOB.ATDJOB CLOSE

- ENDs

FUNCTION TRYACTIVEJOB JOBs

COMMENT?assumes that the job has been removed from jecolist!ls
IF JOB.CHECKBONDVALS THEN JOB.APPLY: 1+JOBSRUN->JOBSRUNS
CLOSE;

END3

FUNCTION TRYJOB Js
J. TPYACTIVFJOB REMOVE(J ,JOBLIST)- >JOBLIST.
END3

FUNCTION TRYALLJOBS:

VARS LsJOBLIST->L3sNIL->JOBLISTs
APPLIST(L,TRYACTIVEJOB);

END

FUNCTION TRYJOBN N3 -
ITEM(N,JOBLIST).TRYJOB;
END3s

FUNCTION ADDSAMEFILLERJOB T INST FUN FfLLER:
COMMENT”this adds the job to infer the appropriate bond
when a samefiller demon is activated. jobs are assumed to
be closures of functions with frozrule and frozbonds as
their first two formal parameters,so the function
sfenviron 1s provided!;

FUNCTION SFENVIRON FROZRULE FROZBONDS BONDSPECS
INFER(BONDSPEC) 3
. END 3
SFENVIRON(%T.SFRULE,GETBOND(INST,FUN,FILLER) 2 :T.SFBONDS,
[%T.SFOTHERINST.CONSREF,
T.SFOTHERFUN.,CONSREF,FILLER.CONSREF%1 %).ADDJOR
COMMENT” the function that 1nterpr°u= bondspecs expects
words or references!s
ENDs

FUNCTION ADDRULEJOB RULE;S

COMMENT”assumes that the key will be bound! 3

VARS KEY3;RULE.RULEKEY->KEY;

RULE.RULEACTION (%¥RULE,KEY.GETBONDSUSED,
APPLIST(KEY, KNBINDLNG) 5) «ADDJOBS

ENDs

~226—

% CODE FOR MAKING AND TRIGGERING DEMONS #%xk .

RECORD EBTRIG EBTGOAL EBTREM EBTBINDINGS:

COMMENT’ebtrig records are used as demons which
wait for extra bonds, i.e. ones not used to
generate candidate bindings for the next keynode!
’these records sit on a slot in one instance and
wait for a bond to another particular 'instance
(ebtgoal). the remaining extra bond needed from the
instance are held in ebtrem, and the blndlngs of
previous keynodes in ebtbindings.!s

VARS ISKEYNODE3
SAMEDATA(ZCONSKEYNODE(NIL,NIL,NIL,NIL)%)->ISKEYNODE3;

- FUNCTION CHECKCOND COND3%

COMMENTZassumes cond is a list of keynodes

words or integers preceded by a function!
VARS FUN3;COND HD=->FUN3
COND.TL RHLOOP3:

IF RH.ISKEYNODE THEN RH.KNBINDING ELSE RH CLOSE3

ENDRHs . FUN3
END 3

FUNCTION CHECKCONDS KEYNODE3
ALLTRUE(KEYNODE .KNCONDS ,CHECKCOND) 3
END3

FUNCTION EBPRESENT EBj

COMMENT’checks that an extra bond is present assun’ng that
the keynodes have the right bindings!s

COMMENTZinformation about the required extra bonds

is kept in a keynode-in an extrabond record. the

keynode is in ebsource, and ebqgeoal contains another
keynode. the extra bond must be between the instances
bound to these two key nodes, and should be in the
~ ebfun slot of the ebsource instance!lj
GETBOND (EB.EBSOURCE .KNBINDING,EB. EBFUN, ZB.1
END3

-4
)

-
5

(:!7

BGOAL.KNEB

['Ai

~227-

e

FUNCTION CHECKEXTRABONDS EXTRAS BINDINGS
COMMENT” tests whether all the extras are present.if not it
leaves a demon on the appropriate slot!s
VARS EB SLOT3
IF EXTRAS.NULL THEN TRUE
ELSEIF EXTRAS.HD.EBPRESENT
THEN CHECKEXTRABONDS(EXTRAS.TL,BINDINGS)
ELSE EXTRAS.HD->EB3
(EB.EBFUN) (EB.EBSOURCE.KNBINDING)->SLOT
CONSEBTRIG(EB.EBGOAL.KNBINDING, EXTRAS.TL,BINDINGS)
2:SLOT.SLOTTRIGS->SLOT. SLOTTRIGS,
FALSE;

FUNCTION CANBIND INST KEYNODE BINDINva
MEMBERCINST ,BINDINGS) .NOT AND

(INST—>KFYQODE KNBINDINGsKEYNODE. CHEC/COVDb) AND
CHECKEXTRABONDS (KEYNODE. KNEXT?AS,BINDIWGS)

END3

FUNCTION TRYTOBIND REMKEY RULE BINDINGS:: '
COMMENT/this attempts to bind the remaining keynodes.
it generates candidate instances for 2 keynode by looking
at the instances filling the slot specified by the knbond
in kngen. it also leaves a demon on this slot in case mors
fillers turn up later!;
VARS INST KEYNODE GENBOND SOURCEINST GENSLOT;
IF REMKEY.NULL THEN RULE.ADDRULEJOBSEXIT3
COMMENT’when a match succeeds a job is made!s
REMKEY. HD->KEYNODE \E{NODz.KﬂGFN—>GrMBﬂth
GENBOND .BACK.KNBINDING->SOURCEINST s
(GENBOND.FRONT) (SOURCEINST)->GENSLOT3
BINDINGS::GENSLOT .SLOTITRIGS->GENSLOT.SLOTTRIGS
COMMENT’bindings is a list whose last element is a2
rule.implementing demons this way is econonical
because descendants of a demon can be have on2 new
binding and a pointer back to the smaller demon
i.e. the tail of a demon is its parent!;
GENSLOT .SLOTBONDS RHLOOP3 A
OTHERINST(RH,SOURCEINST)—->INST 3
IF CANBIND(INST,KEYNODE,BINDINGS)
THEN TRYTOBIND(REMKEY.TL,RULE,INST ::3INDINGS)
CLOSEs
ENDRH3
END 3

-228~

FUNCTION REBIND BINDINGS=>RULE REMKEY; - -
COMMENT”used for rebinding keynodes when a demon fires.
remkey will be the nodes not yet bound!s

VARS X3

"ENDOFBINDINGS" BINDINGS.DL->RULE;

RULE.RULEKEY—>REMKEY:

UNTIL (=>X3; X="ENDOFBINDINGS#)

DO X—>PEMREY HD.KNBINDING3REMKEY.TL->REMKEY 3

ENDDO 3

END

FUNCTION STARTKEY RULELIST STARTINST NEWINST;
COMMENT’rulelist is a list of the rules whose keys
can start matching when a filler (newinst) is put

. in the appropriate slot of an instance (startinst).
if binding the instances to the keynodes violates
a condition in the key, the match fa1ls before
calling trytobind. so no demons are set up unless
at least two instances and a bond between them
fits the key. this avoids many demons.!;s

VARS RULE KEYLIST;

RULELIST,HD->RULE;RULE. RULEKEY->KEYLIST;

IF CANBIND(STARTINST,KEYLIST.HD,RULELIST)

AND CANBIND(NEWINST, mEYLIST TL. hD STARTINST::RULELIST)

THEN TQYTORIND(FEYLIJT TL.TL,RULE,

NE WIVST -(STARTINST::RULELIST))

CLOSE; ‘

END3

FUNCTION GBCONTINUE NEWINST BINDINGSs
COMMENT’called when a new instance fills a slot
which has a demon on 1itis
VARS NEWBINDINGS REMKEY RULEsBINDINGS.REBIND->REMKZY->RULES
NEWINST s e BINDINGS~>NEWBINDINGS3
IF CANBIND(NEWINST,REMKEY.HD,BINDINGS)
THEN THYTOBIND(RFMK"Y.TL,RULE,NEWBINDINGS)
CLOSEs :
ENDs

FUNCTION EBCONTINUE REMEB BINDINGS3

COMMENT”called when the required instance fills a
slot which has a demon waiting for an extra bond.

VARS REMKEY RULE;BINDINGS.REBIND->REMKEY->RULES

IF CHECKEXTRABONDS(REMEB, BINDINGS)

THEN TRYTOBIND(REMKEY ,RULE, BINDINGS)

CLOSES

ENDs

FUNCTION RUNTRIGS STARTINST FUN NEWINST;.
COMMENT’demons are of two kinds. one is lcoking for a
candidate for the next keynode and is represented by a
list of the bindings so far sitting on the slot from which
the next knbinding will have to be generated! “the other
is looking for an extra bond involving the last bound
keynode and is represented by an ebtrig record containing
the goal instance, the remaining extrabonds in the last
bound keynode, and the bindings. the record sits on the
~appropriate slot of the bonds source instance.! “in both
cases the bindings list has the rule as last item! '
7finally, the rules in the schema need to be examined in
' case any key matches start with the new bond!j
VARS SLOTsSTARTINST.FUN->SLOTs
APPLIST(SLOT.SLOTKNOWLEDGE. SKRULES,
STARTKEY (%#STARTINST (NEWINST%)) 3
APPLIST(SLOT.SLOTTRIGS,
: LAKMBDA T3 ‘
IF T.ISLIST THEN GBCONTINUE(NEWINST,T)
ELSEIF T.DATAWORD="SAMEFILLER¥
THEMN ADDSAMEFILLERJOB(T,STARTINST,FUN,NEWINST)
ELSEIF T.EBTGOAL=NEWINST '
THEN REMOVE(T,SLOT.SLOTTRIGS)->SLOT.SLOTIRIGS;
EBCONTINUE(T.EBTREM,T.EBTBINDINGS)
CLOSE3
END)3
END3

~-2%0~

*%% CODE FOR MAKING CONSTRAINTS * X
*¥%%x (MOSTLY LISTED IN PUPPET PROGRAM) *#*%

RECORD COMSTR CONVIOL O HYPLENGTH O OLDCONVIOL O
CONFLOORS CONCEILINGSs
COMMENT” constraints have been given extra fields
compared with the puppet program. the fields
conceilings and confloors are used to hold lists
of the nodes whoss supposition values may be
‘held down or held up by the constraint!;s

FUNCTION INFERCONSTR L Bs
RETURNCONSTR(B-:sNIL,L,1-L.LENGTH)

END3

- FUNCTION DENYCONSTR L Bj
vRETURNCONSTR(NIL,B:=L,(~L.LENGTH));
ENDs '

FUNCTION NOTALLCONSTR Lj

RETURNCONSTR(NIL,L, 1-=L.LENGTH)3
END3

-231-

% CODE ‘FOR THE FUNCTIONS USED IN %%
*%% THE ACTION PARTS OF RULES Jok K

RECORD SAMEFILLER SFRULE SFBONDS SFOTHERINST SFOTHERFUN;

FUNCTION ADDANDTRYSFDEMON INST FUN TOTHERINST OTHERFUN;
-COMMENT”this adds a samefiller demon to a slot and also
runs the demon on all existing fillers!s;

VARS T S3INST.FUN=->S3
CONSSAMEFILLER(FRDZRULE,FROZBONDS,TUTHERINST,UTHERFUN)—>T;
T:2S.SLOTTRIGS->S.SLOTTRIGS
APPFILLERS(INST,S, :
LAMBDA FILL’R ADDSAMEFTI LLERJOB(T, INST,FUN,FILLER) s
END) 3)
END3
FUNCTION SAMEFILLER INSTA SFA INSTB SFBs
COMMENTZthis assumes it is called in the action part
of a rule!s
UNLESS INSTA.ISINSTANCE AND INSTB. ISIPSLA £ THiEM EXITs
ADDAVDTRYSEDEwON(INSTA SFA,INSTB,SFB) 3
ADDANDTRYSFDEMON(INSTR,SFB, INSTA,SFA);
END3s

FUNCTION EVALSPEC X3

IF X.ISWORD THEN X.VALOF

"ELSEIF X.DATAWORD= ”75"” THEN X.CONT
ELSE .POPERR CLOSES

END3

FUNCTION CASHSPEC L3
COMMENT’takes a bond specification and returns ralse, -
or true and the bond!;

VARS X INST! INST2 SF1 SF23

EVALSPEC(POP L)=>INSTIj3

UNLESS INST1.ISINSTANCE THEN OsEXIT3

EVALSPEC(POP L)=->SF15POP L ->X%3

IF X=w=0 THEN POP L->INST2 ELSE X.EVALSPEC->INST2 CLOSE;
IF INST2.ISINSTANCE
THEN IF L.ISLINK THEI L.HD.EVALSPEC->SF23

ELSE Sf].LHVﬂRSE‘>Sr2 CLOSE

ELSE UNDEF->SF2

CLOSEs

RETURNBOND(INST I,SF1,1}HS5T2,SF2) 3 TRUE

END3s-

FUNCTION CLAIM LIST PREF3

VARS CRED3;LIST.CASHSPEC.ERASE.BONDCRED->CEECS
PREF+CRED.CREDPREF->CRED.CREDPREF 3

END3

~232-

FUNCTION MAKESOFTCONSTR FLIST CLIST N PENALTY:

VARS PEZENNODE Cj

IF PENALTY

THEN CONoC?EDNODE(dWDEF NIL,NIL,NIL,C,0,-PENALTY)
—>PENNODE
PENNODE===CQEDNODES3PENNODE¢$FLIST—>FLIST;

CLOSE s

RETURNCONSTR(FLIST,CLIST,N)->C3

Ig PENALTY THEN C->PENNODE.CREDOBJ CLOSE;

ENDs

FUNCTION SOFTINFERBOND B PENALTY;

VARS CLIST C;

MAPLIST (FROZBONDS, BONDCRED)=->CLIST3

MAKESOFTCONSTR(B. BONDCRED#:NIL,CLIST, 1-CLIST.LENGTH,
PENALTY) 3 :

END3

FUNCTION SOFTDENYBOND B PENALTY:

VARS CLIST Cj 1
B.BONDCRED: sMAPLI ST (FROZBONDS , BONDCRED) ~>CLIST;

MAKESOFTCONSTR(NIL,CLIST,0-CLIST. LENGTH,PENALTY)3
END3

FUNCTION SOFTCONTRADICTION PENALTY:

VARS CLIST Cs

MAPLIST (FROZBONDS , BONDCRED)—->CLIST;
MAKESOFTCONSTR(NIL,CLIST, |-CLIST,LENGTH,P=NALTY)3
END 3 '

" FUNCVAR CONTRADICTION SOFTCONTRADICTION (%0%);

COMMENT” there are several formats for inferring or dany
a bond.the bond,or its instences and functions, or z 1ii
of them, can all be used!}i

FUNCTION SOFTINFER4 Pj;
SOFTINFERBOND (. RETURNBOND,P) 3
END 3

FUNCTION SOFTDENY4 P3
SOFTDENYBOND(. RETURNBOND,P) 3
END3s :

FUNCTION SOFTINFER L PENj3
IF L.CASHSPEC THEN PEN.SOFTINFERBOND CLOSZ: -
ENDs

FUNCTION SOFTDENY L PEN3 '
IF L.CASHSPEC THEN PEN.SOFTDENYBOND CLOSZ;
END3s

VARS INFER DENY INFERBOND DENYROND INFZR4 DENY4s
SOFTINFER(%0%)->INFERsSOFTDENY (%0%)->DziY 5
SOFTINFEQ4(%O%)—>TWF”R4 SOFTDENY4(%0%)->D=0Y43 -
SOFTINFERSBOND (%)—>;WFFQBOND.qOrTW:“{70'J(ZD% =>DENYE0NT

Lo
-y

**%% CODE FOR RUNNING RELAXATION *Fx
#4k (MOSTLY LISTED IN PUPPET PROGRAM) -*x%

FUNCTION UPFORCE C=>SUM3
COMMENT’ this computes the total force on ¢ due to
constraints!s
COMMENT’more efficient than the separate functions
used in the puppet program! j
VARS V3;0->SUM; _
C.CEILINGS RHLOOP:
RH.CONVIOL->V 3
IF V>0 THEN SUM~-V/RH.HYPLENGTH->SUM CLOSEj
ENDRH3 :
C.FLOORS RHLOOP3:
RH.CONVIOL=->V;
_ IF V>0 THEN SUM+V/RH.HYPLENGTH->SUM CLOSE;
ENDRH3 !
END

-FUNCTION RUNMORE STEPS3

STEPS<*.MOVEs .TRYALLJOBS3CREDNODES.REV, SHOWCREDS: %> 3
CREDNODES.REV .SHOWNAMES

"ENDs

0.2->PCOEFF;
0.5->DCOEFF3
0.5~>FCOEFF3;
0.05->HCOEFF;

[FUNCTION SETTLE CLEARROUNDS3:

COMMENT”after each round of relaxation this shows the
number of dormant Jobs ‘
aroused,and the number of Jjobs run and stored

by a tryall jobs,and the number
of new jobhs created by those run"

VARS N TOTAL ROUSED MADE3;O->N3;JOBLIST.LENGTH->MADES

V4

ROUSED RUN STORED MADE
! .PRSTRINGs
URKTIL N=CLEARROUNDS
DO JMOVEs =
IF JOBLIST.ISLINK THEN O->N ELSE N+1->N CLOSE;
JOBLIST . LENGTH->TOTAL: TOTAL-MADE->ROUSED;
O- >J0R53ng
RYALLJOBS:
JOJLIST.LENGTP~ MADEs
IIlPD(QOJS”D,B) INTPR(JOBS”UN 43
INTPR(TOTAL-JOBSRUN,4) 3
INTPP(HADL,’),
1.MLs
ENDDO 3

03 ~234-

BIBLIOGRAPHY

Adler M.R. (1976)
Recognition of peanuts cartoons.
In Proc. A.I.S.B. Summer Conf. July 1970. pp 1-13.

Amarel S. (1968)

. On representations of problems of reasoning about
actions,.
In ¥Machine Intelligence 3.

. Ed. Michie, pp 131-172.
Edinburgh University Press, Edinburgh.

Ambler A.P., Barrow H.G., Brown C.M., Burstall R.M. &
Popplestone R.J. (1975)
A versatile system for computer controlled assembly.
Artificial Intelligence 6, pp 129-154.

Barrow 1.G., Ambler A.P. & Burstall R.M. (1972)

- Some techniques for recognising structures in pictures.
In Frontiers of Pattern Recognition. '
Ed Watanabe pp 1-29,.

Academic Press, New York.

Barrow H.G & Tenenbaum J.M. (1976)
HSYS: A system for reasoning about scenes.
A.I. Center. Stanford Research Institute.

artlett F.C. (1932)

nemerﬁar1no. A study in experimental and social
psychology

Cambridge University Press, Cambridge.

Brady J.M. & Weilinga B.J. (1976)
Seeina & oattern as a character.
In Proc. A.I.S.R. Summer Conference.
University of cdlnburgh, Edinburgh.

Bron C. & Kerbosch J. (1973) ,
Algorithm 457. Finding all cliques of an undirected
grapn (H).
Comm. Assoc.Comp.Mach. 16, No 9.

Burstall R.M., Collins J.S. & Popplestone R.J. (i971)
Programming in POP-2.
Edinburgh University Press, Edinburgh.

Clowes “.B. (1969)
Pictorial relationships - a syntactic approach.
In #Machine Intelligence 4. :
Ed. Yeltzer and Michie, pp 361-383.
Edinburgh University Press, Edinburgh.

=235-

Clowes M.B. (1971)
On seeing things.
Artificial Intelligence, 2, pp 79-112.

Davis L.S. & Rosenfeld A. (1976)
Applications of relaxation labelling,
2: Spring-loaded template matching.
Technical Report 440.
Computer Science Center, University of Maryland.

Dreyfus H.L. (1972)
What computers can’t do.
Harper & Row, New York.

Duda (1970)
Some current techniques for scene analysis.
Technical Note 46 ‘ :
A.I. Center, Stanford Research Institute.

- Erman L.D. & Lesser, V.R. (1975)

A multi-level organisation for problem solving using

many diverse cooperating sources of knowledge.

In Proc. 4th Inter.Joint.Conf. on Artificial Intelligence.
pp 433-490.

Fikes R.E. (1970)
REF-ARF: A system for solving problems stated
as procedures.
Artificial Intelligence | pp 27-120

Freuder E. (1976)
Synthesizing constraint expressions.
M.I.T. A.I. Memo 378

Garfinkel R.S. & Nemhauser G.L. (1972)
Integer Programming
Hiley: New York

Gomory R.E. (1958)
An algorithm for integer solutions to linear prograns.
Bull.Amer.Math.Soc. 64, pp 275-278.

Grame G.R. (1973)
Model=based (intermediate level) computer vision.
Stanford A.I.Memo AIN-20I
Computer Science Dept. Stanford University.

Guzman A. (1968)

Cecomposition of a visual scene into three-dimension2l bodies.
A.F.I.P.S. Proc. Fall Joint Comp.Conf. 23, pp 29i-30%4.

-236-

Guzman A. (1971) :
Analysis of curved line drawings us1ng context and
qlobal information.
In Machine Intelligence 6.
Ed. Meltzer & Michie, pp 325-376.
Edinburgh University Press, Edinburgh.

Hart D., Nilsson N. & Raphael B. (1968)
A formal basis for the heuristic determination of
minimum cost paths.
IEEE Transactions. Sys.Sci. and Cybernetics.
Vol SSC~4 No 2 pp 100-107.

Hebb D.0. (1949)
The Oroanlsatlon of Behav1our.
Wiley, ew York.

“Hewitt C. (1972)

‘ Description and theoretical anoly51s (using schemata)
of PLANNER.

Ph D thesis, M.I.T. AI Lab. AI-TR-258,

Hilbert D. & Cohn-Vossen S. (1952)
Geometry and the imagination.
Chelsea, New York.

Hochberg J. (1968)
In the mind’s eye.
In Contemporary theory and research in visual
nerception. Ed. Haber

Huffman D.A. (1971)
Impossible objects as nonsense sentences.
In Machine Intelligence 6.
Ed. Meltzer and Michie, pp 295-323.
Edinburgh University Press, Edinburgh.

Julesz B, (1971)
Foundations of cyclopean perception.
University of Chicago Press, Chicago.

Kant I. (1731)
Critique of pure reason. .
(Mlany editions).

Yackworth A.K., (1975)
Consistency in networks of relations.
Technical report 75-3.
Department of Computer Science, University of
Columbia, Vancouver.

o
a
[N
ct
}
n
b}

-237-

Mackworth A.K. (1977)
How to see a simple world.
In Machine Intelligence 8.
Ed Elcock & Michie,.
Ellis Horwood Ltd., Chichester.

Marr D. (1975)
Analysing Natural Images.
MeT.T. A.I. Memo =~ 334

Harr D. (1976)
Early processing of visual information.
Phil.Trans.Roy.Soc. B. 275 pp 483-524

Marr D, (1977)
Representing Visual Information.
;‘,{'I‘T‘ AoIoT‘{emo 4]5 . i

|
darr D. 3 Poggio T. (1976) ,
Cooperative computation of stereo disparity.
MeI.T. A.I. Memo 364.

Harx K. (1883)
Cepital. Vol I.
Translated from the 1883 edition, Ed. Engels.
Lawrence & Wishart, London 1970.

Minsky M.L. (1975)
A framework for representing knowledge.
In The psychology of computer vision.
Ed. Winston P.H. pp 211-277.
McGraw—-Hill, New York.

Minsky M.L. & Papert S. (1969)

Perceptrons: An introduction to computational
- geometry. »

MelwT. Press, Cambridge, Mass.

insky M.L. & Papert S. (1972)
Progress Report.
M.I.T. A.I. Hemo 252,
Cambridge, Mass.

Narasimhan R. (19¢6) N
Syntax—directed interpretation of classes of pictures.
In Comm. Assoc. Comp. Mach. 9.

Mevon D, (1977)
Forest before trees: The precedence of global
features in visual perception.
Cognitive Psychology 9, pp 403-411.

~-238-

feisser U. (1967)
Cognitive Psychology.
Appleton Century Crofts, New York.

Nilsson N.J. (1971)

Problem-solving in artificial intelligence.
McGraw-Hill, New York.

Paul J.L. (1977)
An image interpretation system.
D.Phil. thesis. Sussex University.

|

~Perkins D.N. (1976)
How good a bet is

. good form?
Perception 5,

po 393-406.
Piaget J. (1954)

The construction of reality in the child.
Basic Books, New York.

Pierre D.A. (1969)

Optimisation theory with applications.
John Wiley & Sons Inc, New York.
Roberts L.G.

e

(1965)

liachine perception of 3-D sclids.

In Cptical and electro-optical information oprocessing.
Ed. Tippett et al pp 159-197.

Rosenfeld A., llummel R.A. & Zucker S.W. (1975)
Scene labelling by relaxation operations.
Technical Report TR-379.

Convuber Science Center, University of Maryland.

Fosenfeld A.,, Hummel R.A. & Zucker S.W. (1976)
Scene labelling by relaxation operations.
I.E.E.E. Trans. SMC-6 420.

Selfridge 0.G. & HNeisser U. (1950)
' Pattern recognition by machine. ‘
Scientific American 203 (Aug) pp 60-68.
Shirai Y. (1973)

A

COHLQYL sensitive line finder for recognitiocon orf
nolyhezra.
Artificial Intelligence

%l

4 DD 95—'20.

Sloman A. (1971)
Interactions between philosophy and artificial
intelligence: The role of intuition and non-logiczal
reasoning in intelligence.
Artificial Intelligence 2, pp 209-225.

-239-

Sloman A., Owen D., Hinton G. & 0’Gorman F. (1977)
Popeye’s progress through a picture. '
Unpublished manuscript.

Cognitive Studies Programme, Sussex University.

Sloman A. & Hardy S. (1976)
Giving a computer Gestalt experlences.
In Proc A.I1.S.Bj. Summer Conference, pp 242-255,

Stallman R.M. & Sussman G.J. (1976)
Forward reasoning and dependency - directed
backtracking in a system for computer—-aided circuit
analysis. ,
M.IWT. A.I. Memo 380.

Sussman G.J. & McDermott D. (1972)
Nhy conniving is better than Dlannlng.
MeI.T. A.I. Memo 235 A.

Turner K.J. (1974)
Computer perception of curved objects using a telev1510n
camera.
Ph D Thesis, University of Edinburgh.

Waltz D.L. (1972)
Generating semantic descriptions from drawings of
scenes with shadows.
MAC AI-TR-271.
M.I.T. Cambridge Mass.

Helsenbaum J. (1976)
"Computer thought and human reason'.
We.H. Freeman, San Francisco.

Willshaw D.J. & Longuet-Higgins H.C. (1969)
Associative memory models. :
In Machine Intelligence 5.
Ed Meltzer & iichie, pp 351-359,
Edinburgh University Press Edinburgh.

Winston P.H. (1970)
Learning structural descriptions from examples.
MAC AI-TR-76, M.1.T. Cambridge, HMass.

Winston P.H. (1972)
The M.I1.T. Robot.
In Machine Intelligence 7.
Ed Meltzer & Michie, pp 431-462.
Edinburgh University Press, Edinburgh.

. Winston P.H. (1977)

Artificial Intelligence. -
Addison Wesley: New York -

~240-

Woods W.A. et al (1976)
Speech understanding systems — final technlcal
progress report. EBN Report No 3438 Vols 1-5
Bolt Beranek & Newman Inc. : Cambridge, Mass.
Noods W.A. (1977)

Shortfall and density scoring strategies for speech
understanding control

In .rqc 5th Inter.001nt Conf. on Artificial Intelligence.

Available from Carnegie Mellon Uhiversity.

Yakimovsky Y. & Feldman J. "(1973)

A semantics—based decision theory region analyser.
Proc. 3rd IJCATI pp580-588.

Zucker S.W,. (1976)

Relaxation labelling and the reduction of local
ambiguities.

Technical report 451.
Computer Science Dept. University of Maryland

-241-

