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Abstract. Most programs are repetitive, meaning that some parts of a
program are executed more than once. As a result, a number of phases
can be extracted in which each phase exhibits similar behavior. These
phases can then be exploited for various purposes such as hardware adap-
tation for energy efficiency. Temporal phase classification schemes divide
the execution of a program into consecutive (fixed-length) intervals. In-
tervals showing similar behavior are grouped into a phase. When a tem-
poral scheme is used in an on-line system, phase predictors are necessary
to predict when the next phase transition will occur and what the next
phase will be. In this paper, we analyze and compare a number of existing
state-of-the-art phase predictors using the SPEC CPU2000 benchmarks.
The design space we explore is huge. We conclude that the 2-level burst
predictor with confidence and conditional update is today’s most accu-
rate phase predictor within reasonable hardware budgets.

1 Introduction

A computer program execution typically consists of several phases of execution
where each phase exhibits its own behavior. Being aware of this large-scale time-
varying behavior is key to understanding the behavior of the program as a whole.
Phase behavior can be exploited for various purposes, ranging from performance
modeling [1], compiler optimizations [2], hardware adaptation [3][4][5][6][7], etc.
For example in phase-based hardware adaptation, if we know that particular
parts of the processor are unused during some program phase, we can turn off
those parts during that phase resulting in a reduced energy consumption without
affecting overall performance.

One way of identifying phases is to divide the complete program execution
into fixed-length instruction intervals and to group instruction intervals based
on the code that is being executed during those intervals—this is often referred
to as the temporal approach [1]. This means that intervals that execute the
same code will be grouped together in what will be called a phase. When this
phase classification scheme is used in a phase-based optimization system, it is
important to be able to predict when the next phase transition will occur and
what the next phase will be. In other words, the phase predictor needs to predict
what the phase ID of the next execution interval will be. This way, the system
can proactively respond to predicted phase changes.
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The first contribution of this paper is to study today’s state-of-the-art phase
predictors in detail. The design space we explore is huge as we explore a large
number of possible design parameters: the phase predictor’s type, its size, its
associativity, its confidence mechanism, its update mechanism, etc. We do this
for two fixed-length intervals lengths, namely 1M and 8M intervals, using the
complete SPEC CPU2000 benchmark suite. Our second contribution is that we
improve the performance of existing phase predictor schemes by up to 14% by
adding conditional update. We conclude that the 2-level burst predictor with
confidence and conditional update is today’s most accurate phase predictor for
reasonable hardware budgets.

2 Previous Work

Duesterwald et al. [8] identify program execution phases based on hardware
metrics such as CPI, miss rates, etc. They also evaluate a collection of (statistical
and table-based) predictors to predict the behavior of the next phase. There is a
subtle but important difference between the predictors studied by Duesterwald
et al. and the phase predictors studied in this paper. Phase predictors predict the
next phase ID; the predictors studied by Duesterwald et al. predict the hardware
characteristics of the next phase.

Sherwood et al. [6] propose a dynamic phase classification method that is
based on the code that is being executed during a fixed-length interval of execu-
tion. Per interval of execution they compute a code signature which is a hashed
bitvector that keeps track of the basic blocks that are being executed. Sherwood
et al. also present and evaluate several phase predictors, namely the last phase
predictor, the RLE predictor and the Markov predictor.

In a follow-on study, Lau et al. [9] added confidence counters to the phase
predictors to improve their accuracy. Confidence counters are n-bit saturating
counters which are incremented or decremented on a correct or wrong prediction,
respectively. When the confidence counter exceeds a given threshold the phase
predictor is followed; if not, the default last phase prediction is taken. In their
study, they also made a distinction between phase change prediction – predicting
the next phase ID – and phase length prediction – predicting the length of the
next phase using run length classes.

In [7], Vandeputte et al. propose an offline phase analysis methode that is
capable of efficiently dealing with multi-configuration hardware where a large
number of hardware units can be configured adaptively. This offline phase anal-
ysis technique determines the phases based on a fused metric that incorporates
both phase predictability and phase homogeneity.

3 Methodology

We performed our analyses using the complete SPEC CPU2000 benchmark
suite. The binaries were taken from the SimpleScalar website. For all our re-
sults, phase classification is done offline by profiling the program using a train
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Table 1. The number of phases extracted for the SPEC2000 benchmark suite using
1M and 8M instruction intervals.

# Phases # Phases # Phases
Benchmark 1M 8M Benchmark 1M 8M Benchmark 1M 8M

bzip2 16 16 twolf 6 4 fma3d 2 2
crafty 2 2 vortex 2 2 galgel 9 11
eon 2 3 vpr 6 6 lucas 2 2
gap 25 10 ammp 12 13 mesa 6 13
gcc 31 27 applu 32 32 mgrid 4 18
gzip 19 13 apsi 7 2 sixtrack 6 4
mcf 10 10 art 6 3 swim 26 11
parser 10 4 equake 11 10 wupwise 9 8
perlbmk 2 2 facerec 28 16

input—we refer to [7] how this is done. All our profiles were collected with
SimpleScalar/Alpha [10]. For the phase classification, 1 million and 8 million
instruction intervals are used1. Once the phases of the program using this train-
ing input are determined, we determine the phase sequence of each benchmark
while executing the reference input; this is done by assigning a phase ID to each
execution interval based on the code that is being executed. The various phase
prediction schemes are then evaluated on these reference phase sequences. Ta-
ble 1 shows the number of phases for the 1M and the 8M instruction intervals for
all the SPEC CPU2000 benchmarks. Note that the number of unique phase IDs
is fairly small here compared to [1][9]. The reason is that our offline phase anal-
ysis approach [7] balances phase predictability and phase homogeneity, whereas
in [1][9], the main objective is phase homogeneity.

4 Phase Prediction

In this section, we will discuss a number of existing phase predictors. As men-
tioned before, the purpose of a phase predictor is to predict when the phase
change will happen and to what phase the program will shift. In fact, a phase
predictor predicts the phase ID of the next execution interval based on the his-
tory of phase IDs seen in recent history. The conception of these phase predictors
is based on the observation that many phases tend to be stable for several con-
secutive execution intervals and that there exist both regular and irregular phase
behavior. The predictors presented here exploit this notion. Before detailing the
various phase predictors that we explore in this paper, we first want to define a
phase burst to be a number of consecutive intervals belonging to the same phase,
i.e. all intervals in a phase burst have the same phase ID.

4.1 Basic Phase Predictors

In this subsection we describe a number of basic phase predictors. In subsec-
tion 4.2, we will add extra features to these predictors to further increase the
prediction accuracy.
1 Actually, each interval consists of 220 and 223 instructions, respectively.
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Last Value Predictor. The simplest predictor is the last value predictor which
predicts that the phase ID of the next interval will be the same as the phase ID
of the current interval. This predictor assumes that a phase burst is infinite; the
predictor thus never predicts a phase change. As a result, if the average burst
length is �, the misprediction rate using the last value predictor is 1/�. For many
benchmarks this predictor performs very well. This is because these benchmarks
have a rather large average burst length. For example, if the average burst length
is 20, the misprediction rate for the last value predictor is only 5%.

N-Level Burst Predictor. The last value predictor gives good results in case
the average burst length is large. However, if there are frequent phase changes,
the misprediction rate will become very high. For example, if the average burst
length is only 2, the misprediction rate of the last value predictor increases to
50%, meaning that there is a misprediction every other interval. For frequently
changing phase behavior, we thus need more advanced phase predictors.

The N-level burst predictor as proposed in [6][9] uses the phase IDs of the
last N phase bursts (including the current phase ID) as the history information
for indexing the prediction table. This history information is hashed and the
table is accessed using the lower order bits of the hash. The higher order bits
are used as tag in the prediction table.

Each entry in the prediction table stores a burst length � and the next phase
burst ID k. This means that the current phase burst will last for � execution
intervals and that the following phase burst will be of phase k. In other words,
the burst predictor will predict a phase change to phase k after being � intervals
in the current phase.

On a phase change, the entry in the prediction table is updated by writing the
effective burst length and the next phase ID after the phase change. Obviously,
the burst history is also updated.

N-Level RLE Predictor. Another predictor, similar to the N-level Burst Pre-
dictor is the N-level RLE Predictor [6]. The N-level RLE predictor uses the N
most recent (Phase ID, burst length) pairs as history information for indexing
the table. Notice the difference with the burst predictor—the N-level burst pre-
dictor only uses the phase IDs of the N most recent phase bursts, not their
corresponding burst lengths. This RLE history information is hashed together
of which the lower order bits are used to index the prediction table. The higher
order bits are used as a tag to determine if there is a tag match. If there is a
match, the phase ID stored in the table is used as phase ID for the next interval,
i.e. we predict a phase change. If there is no match, the current phase ID is used
as a prediction, i.e. we predict no phase change. The predictor table is updated
if the actual next phase ID differs from the next phase ID stored in the phase
table. A new entry is inserted if there was a phase change but no tag match. An
existing entry in the phase table is removed in case it predicted a phase change
when there was none.

A possible disadvantage of this scheme over the N-level burst prediction
scheme might be that there is now too many history information to be hashed
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together for indexing the prediction table. Also, if the pattern of the burst lengths
is not very regular, the learning time of all the different combinations of phase
IDs with different burst lengths might increase drastically. This will be further
discussed when evaluating the different phase predictors.

4.2 Phase Predictor Improvements

The N-level burst and RLE predictor are beneficial in case the phase change
pattern is regular. However, if the pattern is rather irregular, predicting phase
changes might be difficult using the standard burst and RLE phase predictors.
Indeed, in order for a phase change prediction to be correct, both the burst
length as well as the next phase ID must be predicted correctly. Mispredicting
one of these can result in significant performance degradation or missed opti-
mization opportunities. In some cases, the total number of mispredictions for
the burst and RLE predictor might even end up to be larger than the last value
predictor. Therefore, a number of improvements have been proposed to enhance
the accuracy of these phase predictors.

Confidence. One way to reduce this amount of incorrectly predicted phase
changes is to add confidence counters to each entry in the phase table [9], and to
only make a phase change prediction in cases we are confident that the prediction
will be correct. In all other cases, we predict no phase change. The idea is to
verify a number of predictions before accepting them. In other words, only when
the confidence counter exceeds a given threshold, a phase change prediction is
made. When the confidence counter is lower than the given threshold, the last
value prediction is taken. The rationale behind this approach is that it is better
not to predict a phase change than to predict an incorrect phase change, since
an incorrect phase change may initiate an expensive hardware optimization.

Conditional Update. Until now, we described phase predictors in which the
information in the prediction table is updated immediately in case of a phase
change misprediction. However, for phase bursts with a regular pattern, it might
be useful not to change the prediction information immediately, but to wait and
see if the irregularity was not just caused by noise.

This can be accomplished by implementing conditional update. This is done
by adding saturating counters, which are updated in the same way as the con-
fidence counters (i.e. plus one on a correct prediction and minus one on an
incorrect prediction), and only update the phase table information when the
corresponding saturating counter is zero. This way, stable phase information is
not changed until we are sure that the misprediction was not caused by noise.

Confidence Combined with Conditional Update. Of course, confidence
and conditional update can also be used together to take into account both the
irregular patterns as well as the noise within the regular patterns. In this case,
a common saturating counter is used that is incremented and decremented in
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the same manner as described above. With this scheme, a phase change predic-
tion is only accepted if the counter is above some threshold, and the prediction
information is only updated if the saturating counter is zero. As will be shown
in the next section, this scheme gives the best results on average, both for the
N-level burst predictor as well as for the N-level RLE predictor.

5 Evaluation

In the last section, we described the basic design of a number of existing phase
predictors and their improvements. For each of these predictors, there remain
however many parameters that can be varied and optimized. A list of these pa-
rameters and their range is shown in Table 2: the number of levels that can be
used for the history information, the total number of entries in the prediction
table, the associativity of the table, the number of saturating bits in case con-
ditional update and/or confidence is used, the confidence threshold, the number
of tag bits stored in each entry to identify the information that is stored in that
entry, and the number of run-length bits to store the predicted burst length in
case of the burst predictors2. This results in a very large design space that must
be explored to obtain the best phase predictor for a given hardware budget.
For example, in case of the N-level burst predictor, when all the parameters are
varied according to Table 2, about 250,000 different configurations have to be
evaluated on the complete SPEC2000 benchmark suite.

Table 2. The range of each parameter we varied for the different predictors.

Predictor Type Levels Entries Assoc. Sat. Bits Confid. Thresh. Tag Bits Run-length Bits

N-Level Burst 1–4 1–4096 1–8 0–3 0–2 0–10 1–12
N-Level RLE 1–4 1–4096 1–8 0–3 0–2 0–10 0

Fig. 1 shows the average phase misprediction rates as a function of the hard-
ware cost for the N-level burst predictor with conditional update and confidence3

for a varying number of levels of history for 1M and 8M instruction intervals. To
make a fair comparison between the predictors, we calculated the pareto-optimal
predictor configurations by varying the parameters in Table 2. As can be seen
in Fig. 1, adding more levels of history has an influence on the overall predic-
tion accuracy. For small hardware budgets, using too much history information
leads to higher misprediction rates because of increased aliasing as more patterns
must be stored in the table. However, once the table becomes large enough, the
effect of aliasing reduces and using more history becomes beneficial. Of course,
using more history information also increases the learning time of the predictor.
This is why the 4-level predictor does not perform much better than the 3-level
predictor.
2 In case the last burst length appears to be larger than the maximum burst length

that can be stored, zero is used to represent ∞.
3 We used this type of predictor because this turns out to be the best type of predictor.
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Fig. 1. The average phase misprediction rate of the N-Level burst predictor with con-
ditional update and confidence for different values of N for different hardware budgets.
The left graph shows the results for 1M instruction intervals; the right graph for 8M
instruction intervals.

Taking into account the misprediction rates and the total hardware costs, one
can conclude that an interesting range for the phase predictors is 29 . . . 212 bits
(i.e. 64 to 512 bytes); smaller predictors result in reduced accuracy and larger
predictors result in a larger hardware cost without much gain in predictability.
Within this range, the 2-level predictor appears to be the best choice, so we will
continue our evaluation with this type of predictor.

Fig. 2 shows the phase misprediction rates of the last value predictor, the
2-level RLE and the 2-level burst predictor (each with conditional update and
confidence) for each benchmark for a reasonable hardware budget of 256 bytes.
The upper and lower graph show the results for 1M and 8M instruction intervals,
respectively. As can be seen, there is a large difference in misprediction rate
between the benchmarks and between both interval sizes. For some benchmarks,
the misprediction rate is almost zero. This is because these benchmarks have a
large average burst length. Fig. 2 also shows that the burst predictor and the RLE
predictor do not perform much better than the simple last value predictor for
many SPECint benchmarks. For the SPECfp benchmarks however, the reduction
of the misprediction rate is quite substantial. The reason for this is that the phase
behavior of SPECfp programs is more regular. On average, the 2-level burst
predictor and the 2-level RLE predictor can reduce the number of mispredictions
by more than 40%. In other words, instead of having a phase misprediction every
7.5 intervals, we now only have a phase misprediction every 14 intervals.

Fig. 3 evaluates the impact of confidence counters and conditional update
on the average phase prediction accuracy. For reasonable and large hardware
budgets, adding confidence, conditional update or both improves the standard
predictor by about 3%, 9% and 17% in case of the burst predictor and 2%, 7%
and 13% in case of the RLE predictor. Notice that for large hardware budgets
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Fig. 2. The phase misprediction rate of the last value predictor, the 2-level RLE and the
2-level burst predictor (each with conditional update and confidence) for a hardware
budget of 256 bytes. The upper graph shows the results for 1M instruction intervals;
the lower graph for 8M instruction intervals.

Fig. 3. The effect of applying the different versions of the 2-level burst (left graph) and
the 2-level RLE predictor (right graph) on the phase misprediction rate for different
hardware budgets. The results shown are for 8M instruction intervals.

the burst predictor and the RLE predictor perform equally well, whereas for
smaller hardware budgets the burst predictor performs better. This is because
of increased aliasing in case of the RLE predictor, as more history information is
used. From these data, we conclude that adding conditional update outperforms
the previously proposed predictor schemes by up to 14%.

In Fig. 4, the effect of the number of saturation bits used and the confidence
threshold is shown. From this graph, some interesting conclusions can be drawn.
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Fig. 4. The effect of the number of saturation bits (s) and the confidence threshold
level (t) on the phase misprediction rate for different hardware budgets using a 2-level
burst predictor with conditional update and confidence. The results shown are for 8M
instruction intervals.

As can be seen, combining conditional update and confidence is only effective
when using more than one saturation bit. Also, using a confidence threshold of
more than 1 has a negative impact on the prediction accuracy. Using 3 saturation
bits (not shown in this graph for clarity) only gives a minor increase in prediction
accuracy compared to 2 saturation bits.

Another important aspect is the number of bits b used to encode the history
information of the N-level burst and RLE predictor. Using more bits increases
the number of bits needed to store the tag for a given table size and associativity.

In case of the N-level burst predictor, the total amount of history information
is p×N , where p stands for the number of bits needed for storing the phase ID
and N the history depth. These p×N bits must be mapped onto the available b
bits. One way to do this is by using random projection. Another way (which we
used in this paper) is to partially overlap the phase IDs by shifting the i-th most
recent phase ID over �i b−p

N−1� bits (i = 0 . . .N − 1), and xor-ing them together.
In case of the N-level RLE predictor, the total amount of history information

is (p+r)×N , where r stands for the number of bits used to represent the length
of each burst. Mapping this information onto the available b bits is similar to
the burst predictor.

In Fig. 5, the effect of varying the number of hashing bits b is depicted. As
can be seen, the RLE predictor requires much more bits to be effective than the
burst predictor, which is logical, because the former needs to encode much more
information. The results shown are only for 2-level predictors; for higher level
predictors, the difference is even bigger.

6 Conclusions

Most programs consist of a number of phases in which each phase exhibits similar
behavior. These phases can be exploited for various purposes such as performance
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Fig. 5. The effect of the number of bits used to hash the history information used by
the 2-level burst (left) and RLE predictor (right) on the phase misprediction rate for
different hardware budgets. The results shown are for 8M instruction intervals.

modeling, compiler optimizations, hardware adaptation, etc. When phases are
identified by dividing the program execution into fixed-length instruction in-
tervals, and these phases are used in a phase-based optimization system, it is
important to be able to predict when the next phase transition will occur and
what the next phase will be.

In this paper, we studied a number of today’s state-of-the-art phase predic-
tors in detail. The design space we explore is huge as we explored a large number
of possible design parameters: the phase predictor’s type, its size, its associativ-
ity, its confidence mechanism, its update mechanism, etc. We did this for two
fixed-length intervals lengths, namely 1M and 8M intervals, using the complete
SPEC CPU2000 benchmark suite and concluded that on average the phase pre-
dictors show a consistent behavior in terms of phase misprediction reduction.
Besides this, we also improved existing phase predictor schemes by 14% using
conditional update. We conclude that the 2-level burst predictor with confidence
and conditional update is today’s most accurate phase predictor for reasonable
hardware budgets, reducing the misprediction rate over the last value predictor
by more than 40%.
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