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Abstract. This paper studies the effects of non-uniform light intensi-
ties and sensor exposures across observed images in photometric stereo.
While conventional photometric stereo methods typically assume that
light intensities are identical and sensor exposure is constant across
observed images taken under varying lightings, these assumptions easily
break down in practical settings due to individual light bulb’s charac-
teristics and limited control over sensors. Our method explicitly models
these non-uniformities and develops a method for accurately determining
surface normal without affected by these factors. In addition, we show
that our method is advantageous for general photometric stereo settings,
where auto-exposure control is desirable. We compare our method with
conventional least-squares and robust photometric stereo methods, and
the experimental result shows superior accuracy of our method in this
practical circumstance.

Keywords: Photometric stereo · Shape estimation · Unknown light
intensity and exposure · Surface normal

1 Introduction

Non-uniform light intensities and exposures across observed images are a prac-
tical and common circumstance in data acquisition for photometric stereo that
uses multiple images under distinct light directions. For example, different light
bulbs with different intensity characteristics may be used for illuminating a scene.
Even with identical light bulbs, due to that scene radiance is determined by
surface normal and light directions, auto-adjusted sensor exposure is desirable
depending on the light directions to avoid over-/under-exposures, which results
in non-uniform exposures (equivalently, non-uniform light intensities). There-
fore, the capability of properly handling varying and unknown light intensities
and exposures across observed images is an important feature for making pho-
tometric stereo practical.

Part of this work was done while the first author was an intern at Microsoft Research
Asia.
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The setting can be regarded as a “semi-calibrated” photometric stereo, where
the light directions are known but their intensities are unknown. We argue that
accurate light intensity calibration is practically a hard task to perform due to
that the light bulb’s luminous efficiency varies over time and quantization error
in the measurement even with high-dynamic range imaging. This paper provides
a way to bypass the difficult intensity calibration in photometric stereo.

In the Lambertian image formation model, a measured intensity m is
written as

mi,j = Eiρjn�
j li, (1)

where i and j are indices of light direction and pixel location, li,nj ∈ R
3×1 are

unit vectors of light direction and surface normal, ρj ∈ R is a Lambertian diffuse
albedo, and Ei ∈ R is a light source intensity. In a matrix form for representing
all pixels and light directions at a time, it can be written as

M = ELN�P, (2)

where M ∈ R
f×p is an observation matrix, E is an f ×f diagonal light intensity

matrix, L ∈ R
f×3 is a light direction matrix, N ∈ R

p×3 is a surface normal
matrix, P is a p× p diagonal diffuse albedo matrix, and f and p are the number
of images and pixels, respectively. Conventional photometric stereo [1] assumes
that light source intensities are identical across images, where the matrix E
becomes a scaled identity matrix (E = eI), and computes albedo-scaled surface
normal B(= P�N) by

eB∗� = L†M, (3)

up to a scale ambiguity e, where the superscript † indicates a generalized inverse
when f ≥ 3.

Clearly, when the light source intensities are non-uniform or camera expo-
sures vary across images, the assumption E = eI does not hold, but instead its
diagonal elements have individual scales. When this non-uniformity is present,
the surface normal estimates by Eq. (2) naturally becomes biased by greater
scales as illustrated in Fig. 1. While there are recently various robust estimation
techniques used for photometric stereo [2–6], because the effect of non-uniform E
neither increases the rank of the observation matrix nor sparsifies outliers, robust
techniques such as rank minimization or �0-norm minimization techniques can-
not resolve this issue. In the rest of the paper, we collectively call this problem
setting, non-uniform light intensities and exposures across images, a varying
light intensity condition, because they are both considered intensity scaling on
individual images.

This paper considers a method to effectively deal with the non-uniform light
intensities and exposures. The problem that we deal with in this paper is a
bilinear problem written as following.
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Fig. 1. (a) Conventional photometric stereo setting where constant light intensities and
exposures are used, (b)(c): varying lighting intensity/exposure conditions. Estimated
surface normal are biased toward brighter light source or images captured with longer
exposures with a conventional solution method.

Problem (Photometric Stereo Under Varying Light Intensity Condi-
tion). Given observations M and light directions L, estimate a diagonal light
intensity matrix E and an albedo-scaled surface normal matrix B from the fol-
lowing relationship:

M = ELB�. (4)

We first show that there exists a linear closed-form solution method, which
simultaneously estimates scales of light intensities (or exposures) E and albedo-
scaled surface normal B. We call this method a linear joint estimation method.
This method is straightforward to implement; however, inefficient in terms of com-
putation time and memory consumption. We then introduce a factorization based
method for determining only surface normal B in Eq. (4) without being affected
by E. It bypasses the estimation of E using algebraic distance minimization (or,
cross product minimization) by making the problem independent of vector mag-
nitudes. Finally, we show that this bilinear problem can be efficiently solved by
an alternating minimization technique that determines E and B in each step. We
discuss details and characteristics of each method later in this paper.

We further show that our method is advantageous in improving signal-to-
quantization-noise ratio (SQNR) in comparison to a standard photometric stereo
method when an auto-exposure control is used, and as a result more accurate
surface normal estimates can be obtained. Experimental results show the effec-
tiveness of the proposed method in practical settings. In this paper, we assumes a
directional light setting where radiance from a light source to a scene is constant
except for shadowing, i.e., spatially varying incident radiance within a scene is
not assumed.

2 Related Works

Photometric stereo was first introduced by Woodham [1] in 1980’s for determin-
ing surface normal from images taken under known and varying light directions
with a Lambertian reflectance assumption. After Woodham’s work, there have
been various techniques proposed for making photometric stereo more practical.
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Their main focuses are to relax the assumptions of (1) calibrated light sources
and (2) Lambertian image formation model.

The first class of the methods, called uncalibrated photometric stereo, tries
to eliminate the need for calibrating light directions. When the light directions
are unknown, it is understood that the solution can be obtained up to a 3 × 3
linear ambiguity [7]. If the integrability [8] of the surface is assumed, it has
been shown that the linear ambiguity can be reduced to a generalized bas-relief
(GBR) ambiguity [9], which only has three parameters. To fully resolve these
ambiguities, various types of external clues have been used. For example, there
are methods that use the entropy of albedo distributions [10], specular obser-
vations [11], shadows [12], and groups of color and intensity profiles [13]. Our
problem setting has a similarity to the uncalibrated photometric stereo scenario
in that we relax the assumptions of known light intensities and constant light
intensity across varying light directions. And there has not been uncalibrated
PS works that derive disambiguated solution without external assumptions such
as albedo entropy [10] and pixel profiles [13].

The second class of the methods tries to make photometric stereo applica-
ble to non-Lambertian scenes. There are methods that use more sophisticated
reflectance models than Lambertian reflectance model, such as the works that
use Torrance-Sparrow [14,15], Cook-Torrance [16], Phong [17], Blinn-Phong [18].
More recently, Shi et al. [19] propose a bi-polynomial reflectance model that pro-
duces successful results for non-Lambertian diffusive scenes.

There are approaches that use robust estimation techniques by treating non-
Lambertian reflectances and shadows as outliers. In [2], the robustness against
outliers is achieved by capturing hundreds of input images coupled with Markov
Random Field (MRF) to maintain neighborhood smoothness. Verbiest and Van
Gool [3] use a confidence approach to reject outliers in input images of pho-
tometric stereo. Wu et al. [4] proposed a robust method based on low-rank
matrix factorization. Oh et al. [5] introduced a partial sum of singular values for
rank minimization, and showed good performance in photometric stereo. Ikehata
et al. [20] used a sparse Bayesian regression for effectively neglecting sparse out-
liers (specularities and shadows). While these techniques are effective, they are
built upon the assumption of constant light intensity, and cannot directly address
the issue of varying light intensities and exposures.

3 Photometric Stereo Under Varying Light Intensity
Conditions

As discussed in Eq. (4), we are interested in determining albedo-scaled surface
normal B with unknown non-uniform scalings of light intensities or exposures E.
In a least-squares framework, the problem can be written as

{E∗,B∗} = argmin
E,B

‖M − ELB�‖2
F (5)

given the observations M and light directions L.
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We first present a linear estimation method that simultaneously estimates B
and E in Sect. 3.1. We then describe a factorization based method in Sect. 3.2,
which bypasses the estimation of unknown scalings E. Finally, we describe an
efficient alternating minimization method in Sect. 3.3.

3.1 Linear Joint Estimation Method

The original form M = ELB� can be re-written as E−1M = LB�, because E
is always invertible as it is a positive diagonal matrix. Given known M and L,
it can be viewed as a variant of a Sylvester equation [21]:

E−1M − LB� = 0. (6)

By vectorizing unknown variables E−1 and B�, Eq. (6) can be written as

diag(m1)| · · · |diag(mp)�E−11 − (Ip ⊗ L)vec(B�) = 0, (7)

where diag(·), vec(·) and ⊗ are diagonalization, vectorization, and Kronecker
product operators, respectively. Ip is a p × p identity matrix, and 1 indicates a
vector whose elements are all one. By concatenating matrices and vectors in Eq.
(7), a homogeneous equation can be obtained:

[
−Ip ⊗ L| [diag(m1)| · · · |diag(mp)

]�
]

︸ ︷︷ ︸
D

[
vec(B�)
E−11

]

︸ ︷︷ ︸
y

= 0, (8)

where D ∈ R
pf×(3p+f) is a sparse design matrix and y ∈ R

(3p+f)×1 is an
unknown vector. The homogeneous system always has a trivial solution y = 0.
To have a unique (up to scale) non-trivial solution, the matrix D should have a
one dimensional null space, i.e., when rank of D is (3p+f −1), a unique solution
can be obtained via singular value decomposition (SVD). The minimum condi-
tion to have a unique solution up to scale is f ≥ 5 and p ≥ 3, or f = 4 and
p ≥ 2. Unlike conventional photometric stereo, increasing the number of light
directions does not necessarily make the problem easier in this setting, because
it also increases the unknowns about light intensities.

3.2 Factorization Based Method

Although the linear joint estimation method is simple to implement, it has prac-
tical limitations in terms of its computational time and memory requirement
when the sparse matrix D is large; not only constructing D but also computing
SVD of D. This limitation can be relaxed by dividing the observation matrix
into small groups and deriving solutions for each group. However, this grouping
should be performed carefully to avoid the condition numbers of divided sub-
matrices to be high. The condition number increases when observations within
each divided group are similar to each other, and as a result, the numerical error
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becomes greater. To avoid these issues, we develop a factorization based method
described in this section.

Like solution methods of uncalibrated photometric stereo, light directions
and surface normal can be solved directly via matrix factorization:

M = ŜB̂�, (9)

where Ŝ and B̂ are biased intensity-scaled light direction and albedo-scaled sur-
face normal, respectively. With an arbitrary 3 × 3 non-singular matrix H, Eq.
(9) can be re-written as

M = (ŜH)(H−1B̂�). (10)

In our setting, since we know the light directions L, we can find an appropriate
non-singular matrix H for resolving the biases. Regardless of the effect of light
intensities, direction of ŜH should be the same with L. Thus, we can use this con-
straint, (ŜH) × L = 0 where × indicates a cross product, for determining H as

[
0 −li,3ŝi li,2ŝi

li,3ŝi 0 −li,1ŝi

] ⎡
⎣
h1

�

h2
�

h3
�

⎤
⎦ = 0, (11)

where H = [h1|h2|h3], li,∗ and ŝi are the i-th row of L and Ŝ, respectively.
The solution of Eq. (11) is unique up to scale when there are more than 4
distinct light directions. Using estimated Ĥ, we can compute unbiased albedo-
scaled surface normal H−1B̂�. Interestingly, this factorization based method can
naturally bypass the light intensity estimation; thus, it is suitable for our setting.
Compared to the linear joint estimation method, the computational cost of the
factorization based method is lower, even without dividing observations M into
small groups.

3.3 Alternating Minimization Method

While the previous two methods are effective in ideal settings, they are prone
to large errors due to un-modelled observations, such as shadows and pixel sat-
urations. To avoid this problem, we develop a robust method that is based on
alternating minimization for solving Eq. (5).

Our method computes albedo-scaled surface normal B(t) and non-uniform
scalings E(t) in an alternating manner using their intermediate estimates from
the previous iteration. Using E(t) from the previous iteration and by fixing it,
albedo-scaled surface normal B(t+1) is updated by

B(t+1) = argmin
B

∥∥∥M − E(t)LB�
∥∥∥

2

F
. (12)
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The above problem is a linear problem with respect to B and can be solved
efficiently. Once matrix B(t+1) is determined, E(t+1) is then updated by solving

E(t+1) = argmin
E

∥∥∥M − ELB(t+1)�∥∥∥
2

F
. (13)

Since matrix E is diagonal, each element E
(t+1)
i is simply determined by

E
(t+1)
i =

∑
j mi,j(l�i bj

(t+1))�
∑

j(l
�
i bj

(t+1))(l�i bj
(t+1))� . (14)

The initial scaling matrix E(0) is set to an identity matrix, and the con-
vergence criteria is defined by the magnitude of variation of matrix B, i.e.,
‖B(t+1) − B(t)‖F < ε, where ε is set to a small value (in our implementation,
ε = 1.0e-8).

If we consider E as weights, this alternating minimization is similar to iter-
atively re-weighted least squares (IRLS) [22] except that weights are defined
row-wise (each image has same weight). We show how the alternating method
operates in the following. Let us consider updating B(t+1) with fixing E(t), then
Eq. (12) becomes

B(t+1) = argmin
B

∥∥∥M − E(t)LB�
∥∥∥

2

F
(15)

= argmin
B

∥∥∥M − E∗LB� − ErLB�
∥∥∥

2

F
,

where E(t) = E∗ + Er, E∗ is the ground truth (that we do not know), and Er

is the error from t-th iteration. It shows that the smaller the scaling error Er is,
the smaller objective cost becomes. The elements of E(t) can also be written as

E
(t)
i =

∑
j mi,j(l�i bj

(t))�
∑

j(l
�
i bj

(t))(l�i bj
(t))�

=

∑
j mi,jl�i bj

∗� +
∑

j mi,jl�i bj
r�

∑
j(l

�
i (bj

∗ + bj
r)�)(l�i (bj

∗ + bj
r)�)

,

(16)

where b(t+1) = b∗ + br, b∗ is the ground truth, and br is the error from t-th
iteration. Since the denominator is fixed for all images, and the left-hand side
of the numerator is proportional to the ground truth scaling E∗, the smaller
the error br becomes, the better scaling elements E becomes. To summarize,
if the current estimate of albedo-scaled surface normal B(t) is better than the
previous one, E(t) is better updated. In our experiments, above improvements
are always observed since updated E(1) becomes closer to the ground truth than
E(0). Then, B(t) and E(t) are alternately updated. The minimum condition for
obtaining a stable solution is experimentally found to be f ≥ 5 and p ≥ 3.
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4 Signal-to-Quantization-Noise Ratio Analysis

One of the important benefits of our method is its compatibility to the sensor’s
auto-exposure function that makes non-uniform scaling of observations. With
auto-exposure, SQNR of observations is effectively increased by avoiding over-
/under-exposures. As a result, the surface normal estimates are less suffered from
quantization noise, and thus, a greater accuracy can be obtained. Based on the
previous study of quantization noise [23], SQNR is written as

SQNR =
signal
noise

∝ Cμ
CR
Q

=
Qμ

R
=

Qμ

(Vh − Vl)
, (17)

where μ is the expectation of the signal, Q is the number of quantization levels,
and C is a scaling factor representing the amount of exposure. Also, R = Vh−Vl,
where Vl and Vh are the minimum and maximum scene irradiance. Thus, R and
μ are both the functions of exposure time. From Eq. (17), we can observe that
SQNR without saturation is dependent of the number of quantization levels Q;
thus, better exposed signals produce higher SQNR.

When the signals are over-exposed, the SQNR expression becomes more com-
plicated due to saturation, as

SQNR =
signal
noise

∝ Coμ − α
(λ−CoVl)

Q + α
, (18)

where λ, α, and Co are saturation threshold, expectation of error within sat-
uration sub-interval, and scaling factor of the over-exposure case, respectively.
Here, CoVh is replaced by λ due to saturation.

Let us assume that not all signals are saturated. Then, the condition that the
well-exposed case has a greater SQNR than the over-exposed case is following:

Qμ

(Vh − Vl)
≥ Coμ − α

(λ−CoVl)
Q + α

=
CoQμ − Qα

λ − CoVl + Qα
. (19)

Above can be simplified by some algebraic operations into:

Qμ

(Vh − Vl)
≥ Qα

(CoVh − λ) − Qα
. (20)

The condition to satisfy Eq. (19) with respect to Q is

Q ≤ (CoVh − λ)
α

− (Vh − Vl)
μ

,Q >
(CoVh − λ)

α
, (21)

where (CoVh − λ) is the maximum error. Mathematically, over-exposed case
can produce a higher SQNR than the well-exposed case. However, in general
situations, SQNR of well-exposed case is better than over-exposed case because
the number of quantization levels Q is usually larger enough than maximum
error (CoVh − λ) over expectation error α. Therefore, well-exposed signals have
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higher SQNR than over- or under-exposure cases in terms of quantization if the
number of quantization levels is sufficient. Our method is beneficial with auto-
exposure to increase SQNR since it can effectively handle non-uniformity caused
by auto-exposure.

If there are quantization noise in the images, the observation matrix M
becomes

M = M∗ + ζ = ELB� + ζ, (22)

where M∗ and ζ are the ideal observation and quantization noise, respectively.
Using the noisy input in Eq. (22) , the objective function in Eq. (5) becomes

{E∗,B∗} = argmin
E,B

‖ζ‖2
F, s.t. ζ = M − ELB�. (23)

Therefore, in the cases of high SQNR data, we can compute surface normal
and intensities by optimizing Eq. (23) without biases since ζ is close to zero
(M ≈ M∗). However, in low SQNR inputs, minimizing Eq. (23) can produce
biased results because ζ is not small anymore (M 	= M∗). As a result, auto-
exposure can help to estimate surface normal by increasing SQNR of images,
and our method is suitable for dealing with the exposure variations.

5 Light Intensity Calibration Analysis

One may consider that light intensity calibration is an easy task, but it actually
requires both careful control over the environment and explicit knowledge about
the reflectance of a calibration target. To show this, we perform light intensity
calibration using a diffuse sphere1. Assuming a Lambertian reflectance model
and known surface normal N, the scaled light matrix S can be estimated from
a set of measurements M as

S∗ = argmin
S

∥∥πΩc(M) − πΩc(SN�)
∥∥2

F
, (24)

where Ω denotes the locations of shadowed entries in the observation M, and πΩc

represents an operator that extracts entries that are not shadowed (Ωc). Since
S = EL, with known light directions L, we can determine the light intensities by

E = S∗L†. (25)

We recorded images of a diffuse sphere by changing the light directions of
an identical light source with retaining its distance to the target object approxi-
mately the same. The camera response function is linear and uncompressed RAW
images are used. Exposure times are kept constant with making sure that there
is no under- or over-exposures. In addition, to neglect the perspective effect, a

1 Due to the presence of saturations, a chrome sphere with specular highlights is not
a proper calibration object for this task.
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camera is placed far enough from the target object so that we can assume an
orthographic projection model. Figure 2 shows some of the recorded images, and
the light intensity matrix E is obtained by Eqs. (24) and (25).

As summarized in the numbers in Fig. 2, the estimated light intensities have
variations while they are supposed to be uniform under this setting. The vari-
ations may be caused due to that (1) although the sphere is carefully selected,
it still deviates from the Lambertian assumption, and (2) the assumed surface
normal directions may be different from the truth due to errors of circle fitting.
As such, even with a careful procedure, the light source intensity calibration is
not a straightforward task. And in our setting, it had a non-negligible spread
of estimated intensities (maximum 0.052 when the intensities are normalized to
one, corresponding to 5% error). Therefore, it is needed to directly model the
variations of light intensities in the photometric stereo formulation.

Direction-1 Direction-2 Direction-3 Direction-4

(a) 1.0 (b) 0.948 (c) 0.939 (d) 0.988

Fig. 2. Light intensity calibration. A diffuse sphere is illuminated under different light
directions by moving an identical light source. The red point indicates the lighting
direction, and a blue circle is a circle fitting to the image of a sphere. The numbers
under photographs are the estimated light source intensities, that are relative to that
of Direction 1. (Color figure online)

6 Experiments

We evaluate the proposed methods, linear joint estimation, factorization based,
and alternating minimization (AM) methods, using synthetic (Sect. 6.1) and
real-world (Sect. 6.2) scenes in the setting of non-uniform intensities and expo-
sures. Although none of the previous techniques are designed for the non-uniform
intensity setting, as previous methods to compare, we use standard Frobenius-
norm minimization [1], robust L1-norm minimization used as a baseline method
in [24], and the state-of-the-art photometric stereo method based on constrained
bivariate regression (CBR) [24].

6.1 Synthetic Data

We first test our methods using synthetic examples that are textured and ren-
dered with a Lambertian reflectance model with shadows. For qualitative and
quantitative comparisons, we analyze the effects of non-uniform light intensities
and auto-exposure.
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Non-uniform Light Intensities: We first test the setting of non-uniform
light intensities. The scenes are rendered under 20 varying light directions with
their intensity variance 0.05. The qualitative visualization of surface normal
estimates and error maps are summarized in Fig. 3 with comparison to other
previous methods, i.e., Frobenius-norm, L1-norm, CBR. Our methods, namely,
linear joint, Factorization, and AM methods correspond to the ones described
in Sects. 3.1, 3.2 and 3.3, respectively. Our proposed methods produce results
close to the ground truth compared to other techniques that do not explicitly
consider the non-uniform light intensities. The quantitative results are reported
under each error map. The superior performance is consistently observed under
varying numbers of images and light intensity variances as shown in Fig. 4.

Fig. 3. Photometric stereo experiment under non-uniform light intensities. The scenes
are rendered under 20 distinct light directions with their intensity variance 0.05. Our
methods (linear joint, factorization and AM) effectively handle the condition of non-
uniform light intensities. Error maps are scaled by 4. The numbers indicate the mean
angular errors in degree.

Auto-Exposure Case: Auto-exposure allows us to obtain measurements with
a higher Signal-to-Quantization-Noise ratio (SQNR). To assess the benefit of
auto-exposure in photometric stereo and effectiveness of our methods in this
setting, we render two datasets; one with auto-exposure and the other with fixed-
exposure. In the auto-exposure dataset, the sensor irradiances are stretched to
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Fig. 4. Variations of mean angular errors of surface normal estimates over variance
of light intensities (top row) and the number of images (bottom row) for the three
datasets. (a, d) Sphere, (b, e) Textured Sphere, (c, f) Caesar. Our methods consistently
yield favorable results across these variations.

properly include the most of dynamic range before quantization. For the fixed-
exposure dataset, sensor irradiances are quantized without stretching. From the
two types of dataset, we apply the same set of photometric stereo methods
for performance evaluation. The results are summarized in Table 1. While the
fixed-exposure setting suffers from a low SQNR (which leads to lower accuracy
of surface normal estimates), the auto-exposure retains a higher SQNR. And
with our methods, this setting is properly handled and accurate surface normal
estimates are obtained.

Table 1. Comparison under auto-exposure (Auto) and fixed-exposure (Fixed) settings.
SQNR and the mean angular errors of surface normal estimates in degree are shown.

SQNR Sphere Textured Caesar

Fixed Auto Fixed Auto Fixed Auto

42.52 129.8 33.68 135.6 33.56 133.3

Frobenius 2.383 24.35 27.93 23.61 8.415 23.86

L1 2.507 23.85 28.05 23.41 8.320 21.03

CBR [24] 21.47 14.54 47.15 16.53 33.02 21.49

Linear joint 20.49 0.886 59.63 1.561 43.72 1.725

Factorization 6.569 0.715 42.12 1.381 26.16 1.504

AM 3.970 0.256 29.74 0.565 9.684 0.564
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6.2 Real Data

We design three different settings for the real-world experiment; (A) non-uniform
light source intensities across images, (B) with auto-exposures under identical
light intensities (by moving the same light source), and (C) use of an uncontrolled
mobile phone camera for imaging where auto-exposure is turned on under vary-
ing light source intensities. For all real-world examples, we use a shiny sphere to
calibrate the light directions. To suppress other un-modelled factors, our exper-
iments are carried out in a dark room.

Non-uniform Light Source Intensities: To record images under different
light intensities and directions, we use controllable light sources whose bright-
nesses can be manually controlled by the gain of power supply. The camera
setting, such as shutter speed and aperture, are all fixed in this experiment, and
a linear sensor response is used. In this experimental setting, we recorded 20
images for each static scene. The results are summarized in Fig. 5, in which the
estimated surface normal and their 3D reconstruction using [25] are presented.
As shown in the figures, our methods properly handle the varying light source
intensities compared to Frobenius-norm, L1-norm and CBR methods, with which
severe distortions are observed in their reconstructed surfaces.

Fig. 5. Result of varying light source intensities case. From left to right, one of input
images, results from Frobenius-norm, L1-norm, CBR [24], linear joint estimation, fac-
torization and alternating minimization (AM) methods are shown.
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Auto-exposure: When auto-exposure is used, the shutter speed and/or aper-
ture size of a camera is automatically adjusted to record well-exposed images
according to the amount of incoming light. While it increases SQNR, it results
in the non-uniform intensity setting.

For this experiment, we recorded 20 images of each static scene with auto-
exposure. Figure 6 shows the comparative result. As shown in the figure, our
methods consistently yield higher quality outputs than the other methods
because our method explicitly accounts for the non-uniform exposures.

Fig. 6. Result of auto-exposure case. From left to right, one of input images, results
from Frobenius-norm, L1-norm, CBR [24], linear joint estimation, factorization and
alternating minimization (AM) methods are shown.

Mobile Phone Cameras: Our method is suitable for uncontrollable cameras
like many of mobile phone cameras, where we cannot turn off the auto-exposure
setting. With such cameras, recorded images are in the condition of non-uniform
exposures across images. From recorded images from a mobile phone camera,
we linearize the intensity observations using the method of [26] as preprocess-
ing. Figure 7 shows the surface normal estimates and their 3D reconstructions.
While the 3D reconstructions of conventional methods are severely deformed,
our methods show better reconstructions in general. The linear joint estima-
tion method suffered from the outliers in this case, but that is not observed in
factorization based and AM methods.
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Fig. 7. Result using a mobile phone camera. Top: estimated surface normal, bottom:
3D reconstruction. Our methods (linear joint estimation, factorization, and alternat-
ing minimization (AM) methods) produce more faithful results than the conventional
methods.

7 Conclusion

This paper described photometric stereo methods that can handle the non-
uniform light source intensities and exposures across images. We showed the
effect of varying light intensity conditions in photometric stereo that is relevant
in practical settings. We then developed solution methods that explicitly account
for the non-uniform light intensities and exposures; namely, linear joint estima-
tion, factorization based, and alternating minimization methods. The linear joint
estimation and factorization based methods are simple and easy to implement,
they occasionally suffer from numerical instability due to un-modelled observa-
tions. The alternating minimization method showed a greater robustness over
these techniques, while retaining the efficiency in computation. They are all effec-
tive in the non-uniform intensities setting compared to methods that neglect the
effect of the setting. We further illustrate that our proposed methods can ben-
efit from auto-exposure, with which measurements with a greater SQNR can
be obtained. Our experiments on synthetic and real-world examples show the
importance of properly handling varying light intensities and exposures.
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