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1. Introduction

Phylogenetic networks are a generalization of evolutionary trees which
are used by biologists to represent the evolution of a collection of species X
with a reticulate evolutionary history. Essentially, a phylogenetic network N
is a rooted, directed acyclic graph (or DAG), with a single root and leaf set
labeled by the species in X (see Figure 1) for an example of such a network
with leaf-set X = {1,2,...,8}). Internal vertices in N represent ancestors
of the species in X, with the root representing the highest common ancestor
of all species in X. Those internal vertices which are the child of a single
vertex represent a speciation event, and those which are the child of more
than one vertex a reticulate event. The latter type of event might, for exam-
ple, be the hybridization of plant species to form a new hybrid species, or
the recombining of viruses to form a new virus.

In recent years, there has been a great deal of work on trying to de-
velop new methods to construct phylogenetic networks from biological data
(e.g. from molecular sequences). Some recent reviews concerning phylo-
genetic networks and approaches to construct them include Gusfield (2014)
and Huson, Rupp, and Scornavacca (2010). One approach that has proven
helpful in practice is to build up phylogenetic networks from smaller trees or
networks. Two specific examples relying on this approach involve building
phylogenetic networks from triplets or from trinets, which are 3-leaved phy-
logenetic trees and networks, respectively (see next section for formal defi-
nitions). They are presented in, for example, Huber et al. (2017), Jansson,
Nguyen and Sung (2006), Jansson and Sung (2006), To and Habib (2009),
van lersel and Kelk (2011), and van Iersel and Moulton (2014), and ex-
amples of their application to biological data may be found in Huber et al.
(2011), Oldman et al. (2016), and van lersel et al. (2009). These approaches
aim to build binary phylogenetic networks from binary triplets or trinets,
that is, networks/triplets/trinets in which the root has two children, the sum
of the in-degree and out-degree for every internal vertex is equal to three
and each leaf has in-degree one. To do this, they exploit an interesting in-
terplay between certain hierarchies on the leaf-set of the network and the
triplets/trinets displayed by a network. However, in practice, the assumption
that the networks are binary can be restrictive since, for example, it does
not allow for representing uncertainty in the order of divergence or reticu-
late events, and it may be necessary to allow for triplets/trinets that are not
binary (Jetten and van lIersel, in press; Nakhleh, 2011).

In this paper, we consider the problem of extending some of the the-
ory underlying phylogenetic network construction from triplets and trinets
to the nonbinary setting. As we shall see, this leads to some new results
concerning phylogenetic networks which provide novel insights into their
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Figure 1. An example of a phylogenetic network N on X = {1,...,8}. The arcs in NV (and
in all subsequent figures) are all directed away from the root p.

structure. We expect that these results should prove useful for developing
new approaches to constructing phylogenetic networks (see the last section
for more details). Note that although nonbinary networks have not been
commonly considered in the literature, some work has appeared on con-
structing (Huber and Moulton, 2012) and comparing (Cardona et al. 2011)
certain nonbinary networks. In addition, some structural results have ap-
peared concerning nonbinary tree-based networks (Jetten and van lersel, in
press).

We now summarize the contents of the rest of the paper. In the next
section, we present some preliminaries concerning digraphs and phyloge-
netic networks, including a brief introduction to triplets and trinets. Follow-
ing on from that section, we then introduce the key new concept of a closed
set. Recall that, given a non-empty subset Y of the leaf-set X, the lowest
stable ancestor of Y, LSA(Y'), in a phylogenetic network NNV is the lowest
vertex in [V that is a common ancestor of every element in Y and that is
contained in every dipath that connects the root of N to some element of Y
(Fischer and Huson, 2010). We say that a subset Y C X is closed (in N)
if |Y] = 1, orif |[Y| > 2 and the set of leaves below LSA(Y) is equal to
Y. For example, {5,6} and {7, 8} are both closed sets for the phylogenetic
network depicted in Figure 1.

After proving some structural results concerning lowest stable ances-
tors in Section 3, we give a characterization of the closed sets in a phyloge-
netic network in terms of certain vertices in the network (Theorem 3.6). Us-
ing this characterization, in Section 4 we prove that the collection of closed
sets in X for a phylogenetic network with leaf-set X is a hierarchy (The-
orem 4.1), i.e. the collection may be represented as some rooted tree with
leaf-set X. We also show that the hierarchy of closed sets is directly re-
lated to two further hierarchies on X that can be naturally associated to a
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network: namely, hierarchies that arise from the cut arcs and cut vertices of
N (vertices and arcs whose removal disconnects /N). As we shall see, the
closed set, cut arc and cut vertex hierarchies associated to a network are not
the same in general, although they are identical for binary networks.

In Section 5, we consider the relationship between the closed sets
of a network and the collections of triplets and trinets that it displays. For a
binary phylogenetic network NN, it is known that the hierarchy corresponding
to the cut arcs of /N may be retrieved from the collection of triplets displayed
by N. One way to show this is to consider so-called SN-sets for arbitrary
collections of triplets. The concept of SN-sets was introduced by Jansson
and Sung (2006) as part of developing an algorithm to infer binary level-1
networks from triplet systems (see Section 2 for the definition of a level-
1 network). Intuitively, each SN-set is a subset which forms the leaf-set
of a subnetwork of the network which is produced by their algorithm, and
hence the name SN-set (“SubNetwork-set”). These sets turned out to be very
useful in elucidating the structure of binary networks in general (see e.g.
To and Habib, 2009). Here, we show that the closed sets in a phylogenetic
network can be obtained by extending the notion of SN-sets to the nonbinary
setting. More specifically, we prove that the collection of closed sets of
a phylogenetic network is precisely the collection of (generalized) SN-sets
(Corollary 5.7). In addition, we show that the cut arc sets of a phylogenetic
network can be obtained from its collection of trinets (Theorem 5.2), which
has been proven to hold in the binary setting (van lersel and Moulton, 2014,
Theorem 1).

In Section 6, we consider a certain digraph that can be associated to
the collection of trinets in a network, which we call the closure digraph. A
simpler version of this digraph was considered in Oldman et al. (2016) for
certain binary networks. The closure digraph is of interest since it can be
used to help identify certain closed sets in a network. More specifically, us-
ing a key result concerning sink sets in the closure digraph (Corollary 6.4),
in Section 7 we show that for a special class of phylogenetic networks (2-
terminal networks) the sink sets in the closure digraph associated to a phy-
logenetic network N are precisely the minimal closed sets of /N (under set
inclusion). We conclude in Section 8, with a discussion of some open prob-
lems and possible future directions.

2. Preliminaries
Throughout this paper, X is a finite set with |X| > 3, unless stated

otherwise. A subset Y C X is called a singleton if |Y| = 1, and non-
singleton if |Y'| > 2.
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Digraphs. A directed graph, or digraph for short, N = (V| E), is an ordered
pair consisting of a set V' = V(NN) of vertices and a set E = E(N) of arcs,
that is, ordered pairs (u,v) of distinct vertices u,v € V (so in particular,
there are no loops in V). Suppose N is a digraph and u,v € V(N). If
(u,v) is an arc of N then we say u is a parent of v and v a child of u. The
in-degree of u is the number of its parents, and the out-degree of u is the
number of its children. A root of N is a vertex with in-degree 0. A leaf of N
is a vertex without any children. The set of leaves of NV is denoted by L(V).
Any vertex in N that is neither a root nor a leaf is referred to as an interior
vertex of N.

Suppose N is a digraph. Then we call a sequence Py, o, : ug, u1,. ..,
ug, k > 1, of pairwise distinct vertices of N such that (u;_1,w;) is an arc in
N, 1 <1 < k,adirected path (or dipath for short) from ug to u;. Moreover,
we refer to the vertices ug and uy, as the ends of P, ,,, and all other vertices
of Py, u, as the interior vertices of P, ,,. A pair of dipaths in N is called
openly disjoint if they do not share a vertex other than possibly their ends.
A directed cycle in N is a dipath P in which the requirement that the ends
of P are distinct is replaced by requiring that they coincide. If N does not
contain a directed cycle then N is called acyclic. Such a graph is sometimes
referred to as a DAG. A DAG N is called rooted if it contains a unique vertex
p(N) that is the root.

Suppose NN is an acyclic digraph and there exists a dipath from u to
v for some u,v € V() distinct. Then we write it as v <y u, and say
that v is below u and u is an ancestor of v. Note that if the digraph N
in question is clear from the context we simply write v < w rather than
v <y u. Furthermore, we write v < v if u = v or v < wu holds. Given
asubset U C V(N), a vertex w € U is called lowest if no vertex in U is
below w. A common ancestor of asubsetY C V(N)isavertexw € V()
that is an ancestor of each vertex in Y. Furthermore, w is called a lowest
common ancestor of Y if it is lowest among all common ancestors of Y. If
u 18 an interior vertex of IV, then we refer to the set of leaves of NV below u
as the cluster C(u) = Cn(u) induced by w. In case w is a leaf of NV, then we
put C(u) = {u}.

Suppose N is a digraph. For v € V(IV) we denote by N — v the di-
graph obtained from N by removing v and all arcs incident with v. We call
N connected if its underlying undirected graph (i.e., the graph obtained from
N by discarding the directions of its arcs) is connected and disconnected
otherwise. Note that a rooted acyclic digraph is necessarily connected. A
vertex v of N is called a cut vertex of N if N — v is disconnected. Similarly,
a cut arc of N is an arc whose removal disconnects N. A directed graph is
called biconnected if it contains no cut vertices. A biconnected component
of N, also known as a block of /V, is a maximal biconnected subgraph. A bi-
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connected component is called trivial if it contains precisely one arc (which
is necessarily a cut arc), and non-trivial otherwise. Finally, we call a vertex
v € V(N) a terminal vertex of N if there exists a biconnected component
H of N such that v is a lowest vertex in V' (H ). Note that v could belong
to several biconnected components, but at most one of them contains v as a
terminal vertex. To illustrate this concept, consider the digraph /N depicted
in Figure 1. Then the parent vertex of 3 and 4 is not a terminal vertex of NV
whereas the parent vertex w of 5 and 6 is. Note that w is also contained in
the biconnected components of N containing 5 and 6, respectively.

Phylogenetic networks. A phylogenetic network N (on X ) is a rooted DAG
with leaf set X and which does not contain any degenerate vertices (i.e., ver-
tices in IV that have in-degree and out-degree one). We also denote the leaf
set of N by L(N). Note that a phylogenetic network N whose underlying
graph is a tree is also called a phylogenetic tree (cf. Semple and Steel (2003)
for more details concerning phylogenetic trees). To simplify our arguments,
we shall assume throughout this paper that all leaves of a phylogenetic net-
work have in-degree one. That is, each leaf v has a unique parent, denoted
by p(v). Suppose N is a phylogenetic network. We refer to a vertex of NV
with in-degree at least two and out-degree one as a reticulation vertex of N.
For & > 0 and integer, we call a binary phylogenetic network NV level-k if
each biconnected component of N contains at most k reticulation vertices.
Note that a binary phylogenetic network N is a phylogenetic tree if and only
if the level of N is zero. Hence, the level of such a phylogenetic network
can be regarded as a measure of its deviation from being a phylogenetic tree.

Suppose that N is a phylogenetic network on X and ) # Y C X.
Extending the notion of a stable ancestor of a subset of X (see Fischer and
Huson, 2010 and the Introduction) to subsets Y C V(N) — {pn}, we say
that a vertex v € V (V) is a stable ancestor of Y (in N) if v is a common
ancestor of Y and is contained in every dipath that connects the root of N
to some vertex w € Y. Note that if v and v are two stable ancestor of ¥
then either v < v or v < w must hold. We refer to the unique stable an-
cestor w € V(IN) that is lowest among all stable ancestors of Y as the low-
est stable ancestor of Y (in N ), denoted by LSAN(Y"), or simply LSA(Y).
Note that if Y = {yi,...,y;} for some ¢ > 1, then we sometimes write
LSAN (Y1, ..., y) rather than LSAn(Y'). The following two easily proven
facts will be useful later on.

Observation 1: Suppose that N is a phylogenetic network on X and () #
Y'CY CV(N)—{pn}. ThenLSAN(Y') <n LSAN(Y).

Observation 2: Suppose that N is a phylogenetic network on X and that
Y C V(N) — {pn} contains at least two elements. Then there exists a pair
of distinct elements y; and yo in Y such that LSAn(y1,y2) = LSAN(Y).
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Figure 2. An example of triplets and trinets. (i) A triplet t1 = 1]2|3; (ii) A triplet to = 12]3;
(iii) A trinet 7" on {1,2,3}. Here t1 are ¢, are two triplets displayed by the network N in
Figure 1, and 7' is a trinet induced by N.

We define the subnet N|y of N on some non-empty Y C X as the
subgraph obtained from N by deleting all vertices that are not on any path
from LSA(Y") to any element in Y and subsequently suppressing all degen-
erate vertices and all parallel arcs. If the latter results in degenerate vertices
then we repeat this whole process until we obtain a digraph containing nei-
ther parallel arcs nor degenerate vertices. Note that N|x = N if and only if
LSA(X) = p(N).

Triplets and Trinets. A phylogenetic tree 7" on a set Y = {a,b,c} of
size 3 is called a triplet. Note that 7' comes in two possible types. Either
(1) T is binary, which implies that 7" contains two leaves a and b such that
LSA(a,b) # p(T'), in which case we also write ab|c for T', or (2) T" is non-
binary in which case LSA(Z) = p(T'), forall Z C Y with |Z| = 2, and we
also write a|b|c for T'. An example of these two types of triplets is depicted
in Figure 2.

Suppose N is a phylogenetic network on X. Then we say that a
triplet a|b|c is displayed by N if there exists an interior vertex r € V(N),
such that there exist three pairwise openly disjoint dipaths P, ,, P, and
P, .. Similarly, the triplet ab|c is displayed by [V if there exist two distinct
interior vertices 7 and 7’ in N, such that there exist four pairwise openly
disjoint paths P, ,+, P,s o, Py, Py . with 7/ not contained in P, .. We denote
the collection of triplets displayed by NV by R(N).

Let R be a triplet system (on X), that is, a non-empty set of triplets
such that X' = J,c L(t). Then, if Y is a subset of X, we denote by R |y
the subsystem of R consisting of all triplets ¢ € R with L(¢) C Y. A triplet
system R on X is called dense if for each 3-subset ¥ C X there exists at
least one triplet ¢ € R for which L(t) =Y.
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A phylogenetic network with three leaves is called a trinet (see Figure
2 for an example). A trinet system T on X is a non-empty set of trinets such
that | J, L(T) = X and there exist no distinct trinets T',7" € T with
L(T) = L(T"). A trinet system 7 on X is called dense (on X) if for each
subset Y C X with |Y| = 3, there exists precisely one trinet T € T such
that L(7T") = Y. Note that the use of the word ‘dense’ for trinets is slightly
different from that for triplets because a phylogenetic network induces pre-
cisely one trinet on a subset Y with three leaves but can display more than
one triplet on Y'; see Figure 2 for an example. For N a phylogenetic network
on X, we denote by

T(N)={NJy : Y C X and |Y|= 3},

the trinet system on X induced by N. Note that for any phylogenetic net-
work N of X the trinet system 7 (/V) induced by NN is always dense on
X.

3. Closed Sets

In this section, we shall give a characterization of the closed sets of
a phylogenetic network N on X in terms of terminal vertices. Recall from
the Introduction that a subset A C X with |A| > 2 is closed (in N) if
C(LsAn(A)) = Aholds. Note that the set X itself is necessarily closed, and
that we use the convention that all singleton subsets of X are also closed.

We begin by proving a useful lemma concerning stable ancestors. To
prove this lemma will use the directed point version of Menger’s Theorem
which we now state for the reader’s convenience (for more details see, e.g.
Lovasz and Plummer, 1986, Theorem 2.4.1).

Theorem 3.1 [Menger’s Theorem] Suppose that D is a digraph with distin-
guished vertices s and t and that (s, t) is not an arc in D. Then the maximum
number of pairwise openly disjoint dipaths from s to t is equal to the mini-
mum size of a vertex set U C V(D) — {s,t} so that each dipath from s to t
contains at least one vertex in U.

Lemma 3.2 Suppose that N is a phylogenetic network on X, that w €
V(N) is an interior vertex of N on X, and that a and b are two distinct
elements in X. Putting r = LSAN(a, b), the following assertions hold.

(1) If there exist dipaths Py, , and P, from w to a and b, respectively, such
that the pair P,, , and P, is openly disjoint then w =< r.

(i1) There exist dipaths P, , and P,.;, from r to a and b, respectively, such
that the pair P, , and P, is openly disjoint.

Proof. (i): Let P, 4 and P, ;, denote dipaths from w to a and b, respectively,
such that the pair P, , and P, is openly disjoint. Let P, ,, denote a dipath
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from p = p(NN) to w. Then the dipath obtained by concatenating P, ,, and
Py .o 1s a dipath from p to a that contains both w and r in its vertex set.
Hence, w < r as otherwise the definition of r implies that r is also a vertex
on the dipath P,; from p to b obtained by concatenating P, ., and P, .
Thus, r € (V(Py,a) N V(Pyp)) — {w}, which is impossible because P, ,
and P, ; are openly disjoint.

(ii): Consider the digraph N’ obtained from N by adding a new vertex
t and two additional arcs (a,t) and (b,t). Then (r,t) is not an arc in N’ and
the minimum number of vertices in V (N’) — {r,t} that need to be deleted
from N’ so that there exists no dipaths from 7 to ¢ is two. By Menger’s The-
orem, there exist two dipaths from 7 to ¢ such that the pair formed by them
is openly disjoint. Since the parents of ¢ in N’ are a and b, the construction
of N’ implies that there exist dipaths P, and P,.p in N from r to a and b,
respectively, such that the pair P, , and P, is openly disjoint.
|

Next, we present a characterization of the terminal vertices of a phy-
logenetic network. For N a phylogenetic network on X and v,w € V(N)
distinct such that v is a cut vertex of N, we denote by Z, (w) the connected
component of N — v that contains w.

Proposition 3.3 Suppose that N is a phylogenetic network on X and that
v € V(N) is an interior vertex of N. Then v is a terminal vertex of N if and
only if v is a cut vertex of N and there exists no connected component C' of
N — v and two vertices uy,us € V(C) such that u1 < v < us.

Proof. Assume first that v is a terminal vertex in /N. Let H denote the bicon-
nected component of N in which v is a lowest vertex and let vy,...,v; €
V(N), t > 1, denote the children of v. We first show that v is a cut vertex
of N. Since v is a lowest vertex in H, it follows that for 1 < ¢ < ¢, we have
v; ¢ V(H) and every path from p = p(N) to v; must contain v. In other
words, there exists no path from p to v; in N — v. Hence v is a cut vertex of
N.

We next show that there exists no connected component C' in N — v
for which there exist two vertices ui,us € V(C) such that u; < v < us.
Let w7 and us be two vertices in N with u; < v < us. It suffices to show
that us is contained in C' = Z,(p) and that u; is not contained in C’. That
ug is contained in C’ is an immediate consequence of the fact that every
parent of v is contained in C”. To see that u; is not contained in C’ note that
since u; < v there must exist some 1 < j < ¢ such that u; = v;. If ug
were contained in C’ then there would exist a path in C’ from a parent of v
to vj. By concatenating this path with the dipath from v; to «; in IV, whose
existence is implied by u1 =< v, it follows that there exist two distinct paths
from v; to v. Hence v; must also be contained in H which is impossible.
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To see the converse, suppose that v is a cut vertex of NV and that there
exists no connected component C' of N — v and vertices uj,us € V(C)
with 41 < v < ug. Assume for contradiction that v is not a terminal vertex
of N. Let uz denote a parent of v in IV and let H denote the biconnected
component of /N that contains the arc (ug,v). Clearly, v < wus. Since,
by assumption, v cannot be a lowest vertex of H, there must exist a child
uy of v that is also contained in H. Since u; < v clearly holds and H is
biconnected it follows that there must also exist a path from wuy to u; that
does not contain v. But then u; € V(Z,(uz2)) — {v} which is impossible.
|

Corollary 3.4 Suppose that N is a phylogenetic network on X and that
v € V(N) is a terminal vertex of N. Then a vertex u in V(N) — {v} is
contained in Z,(p(N)) if and only if u is not below v.

Proof. Put p = p(N). Suppose first that u € V(N) — {v} such that u is a
vertex in Z,(p). Then since v is a terminal vertex in N and so must be an
interior vertex of NV, Proposition 3.3 implies that v cannot be below v.

Conversely, suppose u € V(IN) — {v} is a vertex that is not below v.
Then there must exist a dipath from p to u that does not contain v. Hence,
u € V(Zy(p)).
[ |

Before stating our characterization of closed sets, we state one more
lemma that gives a relationship between a closed set A of a phylogenetic
network N and the lowest stable ancestor of A in N. Note that the lemma is
trivial if in its statement the word “path” is replace by “dipath”. To prove the
lemma, we require some further terminology. Suppose that IV is a phyloge-
netic network and P : vy, ..., v is an (undirected) path in N. Then we call
a vertex v;, 1 < i < k, alternating if either (i) both (v;, v;+1) and (v;, v;—1)
are arcs in N or (ii) both (v;41,v;) and (v;_1,v;) are arcs in N. Clearly, P
is the underlying undirected path of a dipath in NV if and only if P does not
contain any alternating vertex. Moreover, if A a closed subset of N and P
is a path or a dipath in N, then we call P LSA(A)-avoiding if P does not
contain LSA(A) in its vertex set.

Lemma 3.5 Suppose that N is a phylogenetic network on X andthat A C X
is a closed set in N. Then LSA(A) is a vertex in every (undirected) path that
connects p(N) to any element in A.

Proof. Note first that without loss of generality, we may assume that | A| > 2
as otherwise the lemma clearly holds.

Suppose for contradiction that there is some x € A such that there
exists a path from p = p(NV) to = that does not contain w := LSA(A). Let
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P* =P} :vg:=p,...,v :=x, k > 1, denote a w-avoiding path from p to
x such that the number of alternating vertices in P* is minimum over all w-
avoiding paths between p and . Without loss of generality, we may assume
that z is chosen in a way so that the number m of alternating vertices in P*
is minimum over all possible w-avoiding paths between p and any element
in A.

We show first that m > 2. Since P* is w-avoiding and, by the defini-
tion of the lowest stable ancestor of a set, every dipath from p to x contains
w, it follows that P* is not a dipath in N. Hence, P* contains at least one
alternating vertex. Since neither one of the end vertices of P* can be alter-
nating, k£ > 2 must hold. Hence, (vg, v1) and (vg_1, vy ) are two distinct arcs
in N and, so, m must be even. Consequently, m > 2.

We next show that the m-th alternating vertex of P* is below w. Let
0 < a < b < k be such that when starting with vy the vertices v, and v
are the (m — 1)-th and m-th alternating vertices in P*, respectively. Then
v, and vy are alternating and v; is not alternating for alla +1 < ¢ < k
and 7 # b. Since (vk_1,vk) is an arc in N, it follows that vy, vpi1, ..., vk
is a dipath from v, to v, = x. Note that, by the choice of a and b, no
vertex on the path P : vy, vp_1,...,v, from v, to v, can be alternating.
Thus, P is a dipath from v, to v,. Since N is a rooted DAG, there must
exist a dipath P’ : w; := p,...,u; := vy from p to v,. Consequently,
ULy, Ut, Uptl,- - -,V is a dipath from p to z. By the definition of a stable
ancestor it follows that there exists some 1 < ¢ < t such that w = wu;. Thus,
vp < W.

Lety € X denote aleaf of IV below v, and let wy := vg, wo, ..., w; :=
y denote an w-avoiding dipath from v, to y which must exist since y < v, <
w. Hence, y € C(w) = A, as A is closed. Let P” denote the path obtained
from vy, ..., V4, w2,...,w; by first ignoring directions and then removing
all cycles (in case there exist any). Then P” is a w-avoiding path from p
to y that contains at most m — 1 alternating vertices, which contradicts the
choice of P*.
|

We now state our characterization of the closed sets of a phylogenetic
network.

Theorem 3.6 Suppose that N is a phylogenetic network on X and that A C
X is a subset with 2 < |A| < |X|. Then the following statements are
equivalent:

(i) Ais closedin N.

(ii) LSA(A) is a terminal vertex of N and A is closed in N.

(iii) there exists a terminal vertex v in N with A = C(v).
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Proof. (1)=-(ii): Suppose A is closed in V. It clearly suffices to show that
LSA(A) is a terminal vertex of N. In view of Proposition 3.3, we need to
show that (a) LSA(A) is a cut vertex of N, and (b) there exist no connected
component C’ of N — LSA(A) and no two vertices u and v’ in C” such that
u < LSA(A) <.

To see (a), let z € A. Then, by Lemma 3.5, every path between
p := p(N) and z in N contains LSA(A). Note that the assumption on | A|
implies that = # LSA(A) # p. Hence there is no path in N — LSA(A)
joining p and z. Thus, LSA(A) is a cut vertex of N.

To see (b), put N’ := N —LSA(A). Note that each vertex w in N with
LSA(A) < u is contained in C' := Zp g (4)(p) because there exists a dipath
from p to u that does not contain LSA(A). We claim that no vertex v in C
is below LSA(A). Indeed, if v < LSA(A) held for some vertex v € V(C),
then there would exist some element € C(v) C C(LSA(A)) = A which is
contained in C'. Hence, there would exist a path between p and 2 in N’ that
does not contain LSA(A), which is a contradiction to Lemma 3.5 since A is
closed.

(i1)=-(iii): This is trivial.

(iii)=-(1): Assume that v is a terminal vertex of N such that A = C(v).
Then if there exists a dipath from the root p to an element x € A that does
not contain v, then p and = belong to the same connected component in
N — v. But this is impossible in view of Proposition 3.3 and the assumption
on v. Hence, v must be a stable ancestor of A. Thus, LSA(A) < v and, so,
A is closed in view of A C C(LSA(A)) CC(v) = A.

[

4. Hierarchies from Networks

A collection H of subsets of X is called a hierarchy (on X )if ANB €
{0, A, B} holds for all A, B € H, and H contains X and all singletons of
X, but not the empty set. In this section, we shall show that the set H(N)
of all closed sets in a network N forms a hierarchy. We shall also show that
this hierarchy is closely related to some other hierarchies on X that can be
associated to V.

Various ways have been described for associating a hierarchy to a
phylogenetic network N on X, two of which we now recall (see, e.g. Dress,
Moulton, Steel and Wu (2010) for several examples). The first way concerns
the cut arcs of the network. More specifically, define a subset A C X to be
a cut-arc set (in N) if either A = X or there exists a cut arc a = (u,v) in
N with u,v € V(N) such that A = C(v). Clearly, the set Hc (V) of all
cut-arc sets in NN is a hierarchy on X, an observation which also follows the
result we prove below.
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A second way to associate a hierarchy on X to IV is via its cut vertices.
Call a subset A C X a cut-vertex set (of N) if either A = X or there exists
a cut vertex v in NV such that A is the leaf set of a connected component of
N — v distinct from Z,(p(N)). Let Hoy (N) denote the set of cut-vertex
sets of V. It is again straight-forward to check that H¢y (V) is a hierarchy
on X and that Hca(N) € Hev (N).

Interestingly, even though Theorem 3.6 suggests a close relationship
between H¢y(N) and Hoy (IV), this relationship is not in terms of set inclu-
sion since, in general, Hcy (N ) is neither a subset nor a superset of Hoy (V).
However, we now introduce a superset 1., (V') of Hcv (IV) which we shall
show below to be a hierarchy that contains both H¢;(N) and Hoy (N).

More specifically, we define a subset A C X to be contained in
HEy () if either A € Hey (IV), or there exists a cut vertex v of IV such that
A=X-V(Z,(p(N))). Since each cut arc of NV is incident with a cut vertex
of N, it is clear that Hoa(IN) € Hov(N) € Hiy (N) all hold. To illus-
trate these concepts, consider the network N on X = {1,2,...,8} depicted
in Figure 1. Let H be the collection of singletons of X and the set X. Then
Hea(N) = HU{{7,8}}, Hov(N) = Hea(N) U {{1,2}}, Hau(N) =
HU{{5,6},{7,8}} and H} .\, (N) = Hev(N) U {{1,2,3,4},{5,6}}.

Theorem 4.1 Suppose that N is a phylogenetic network on X. Then
Hcoa(N), Hei(N) and H, (N ) are all hierarchies and

Hoa(N) € Ho(N) € Hey (N)
holds. In addition, if N is binary, then Hoa(N) = Heiy(N) = Hiy (N).

Proof. Clearly Hcy(N) is a hierarchy on X and, by the above, Hoy (N)
is also a hierarchy on X. We break the remainder of the proof into a series
of claims. We first claim that H, (V) is a hierarchy. Let A;, 43 C X
denote two distinct elements in H (V). We need to show that A; N
Ay € {0, Ay, As}. Without loss of generality, we may assume that 1 <
|A1],|A2| < |X|. Fori = 1,2, let v; be the cut vertex of N associated to
A; as described in the definition of H,(N) and put Z; = Z,,(p) where
p = p(NN). We consider three cases which reflect the three possible relation-
ships between vy and vs:

Case (1) v1 = v9: Then Z; = Zs. Since A1 # Ay and Hoy (V)
is a hierarchy, it suffices to consider the cases that either there exists some
i € {1,2}, i = 1 say, such that A; € Hoy(N) and Ay € Hey(N) or
A1, Ay & Hey(N). In the first case, we have A = L(C}) for some con-
nected component Cy of N — v; distinct from Z;. Since Ay € Hev(N)
it follows that A; = L(Cy) € X — L(Z;) = Az and, so, A} N Ay = A;.
In the second case, we have A; = X — L(Z;) for all i = 1,2. But then
Ay = As which is impossible.
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Case (2) One of v; and vy is below the other: Assume without loss of
generality that vy is below v1. Then L(Z;) C L(Zs). There are two cases
to consider: namely Ay € Hoy(N) or Ay & Hev(N). Suppose first that
Ay € Hov(N). Then Ay = X — L(Zy). If Ay € Hey(IN) then there
exists some connected component C' of N — vy such that Ay = L(C'). Since
L(Zl) - L(ZQ), we obtain Ay = L(C) - X—L(ZQ) - X—L(Zl) = Aj.
If Ay € Hov(N) then Ay = X — L(Z3). Againsince L(Z1) C L(Z3) it
follows that Ay C Aj. In either case we obtain A; N Ay = As.

Now, assume A; € Hcoy (V). Then swapping the roles of A; and
As in the previous argument implies A1 C Ag in case Ay € Hov(N).
If Ay € Hev(N) then since Hey (N) is a hierarchy on X it follows that
AiNAy € {@, Aq, AQ}

Case (3) Neither v; is below v nor vy is below vy: If Ay € Hoy (V)
then 41 N Ay € {0, A1, Ao} follows in case Ay € Hey(N) because
Hev(N) is a hierarchy. If Ay & Heoy (V) then Ay = X — L(Z2). By
assumption on vy and ve, it follows that A1 C X — L(Z3) = A,. Thus,
A1 N Ay = Ay, So assume Ay € Hey(N). Then swapping the roles
of A; and A, in the previous argument implies A; N Ay = As in case
As € Hoy(N). So assume As € Hey (N). Then Ay = X — L(Z5). Since
the assumption on v and ve implies L(Z1) U L(Z2) = X it follows that
A1NAy = (X —L(Z1))N(X — L(Z3)) = 0. Thus, H, (V) is a hierarchy
on X, as required.

We next show that the two set-inclusions stated in the theorem hold.
We start with establishing that Ho 4 (N) € Hey(N). Suppose A € Hoa(N).
Without loss of generality, we may assume that A is neither a singleton nor
X itself as otherwise the claim clearly follows. Hence, there exist vertices
u,v € V(N) such that (u,v) is a cut-arc and C'(v) = A. But then v is
necessarily a terminal vertex of V. By Theorem 3.6, it follows that A is a
closed set in IV, as claimed.

It remains to show that Hcy (V) € Hy, (V). Suppose A in Hey(N).
Without loss of generality, we may assume that 1 < |A| < |X| as otherwise
the claim clearly follows again. Since A is closed in NV, Theorem 3.6 implies
that there exists a terminal vertex v in N such that A = C(v). Note that, by
Proposition 3.3, v is necessarily a cut vertex of N. Let x € X. Then, by
Corollary 3.4, z is contained in A = C(v) if and only if x & V(Z,(p)).
Thus, A € Hfy (N), as claimed.

We conclude the proof of the theorem by showing that the three set
inclusions relating Hey(N), Hoa(IN) and HEy, (IV) become equalities in
case NN is binary. To see this, it suffices to show that ., (N) C Hca(N).
Suppose N is binary and A € H{.,(IV). We need to show that A is a cut-arc
set. Without loss of generality, we may assume that 1 < |A| < |X|. Let v be
a cut vertex in NV as described in the definition of the elements in 17, (V).
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We consider two possible cases, where we put Z,, := Z,(p).

Case (a) A € Hoy (N): Then there exists some connected component
Cy of N — v distinct from Z,, such that A = L(Cy). Since N is binary, v
has at least one but at most two children. If v has one child then let « denote
that child. Since v is a cut vertex of N, the arc (v, u) is necessarily a cut arc
of N. Since A = C(u) clearly holds, it follows that A is a cut-arc set.

Suppose v has two children denoted w1 and us. Note that v # p if uy
and usy are both contained in C;. Denoting by v’ the unique parent of v in
this case, it follows that (v/,v) is a cut arc of N. Since A = C(v) clearly
holds, A is a cut-arc set. So assume that precisely one of w; and us, say
u1, is contained in C;. Then (v, uy) is a cut arc of N. Since A = C(uq) it
follows that A is a cut-arc set.

Case (b) A € Hov(N): Then A = X — L(Z,). Since N is binary,
N — v either has two or three connected components. If N — v has two
connected components then the same arguments as in Case (a) imply that
A is a cut-arc set. So assume that N — v has three connected components.
Then v has a unique parent v’ and two children, denoted respectively by uy
and us. Note that all of (v/,v), (u,u1) and (u, uy) must be cut arcs of N. It
follows that A = L(Z,(u1))UL(Zy,(uz2)) as A = X —L(Z,). Consequently,
A = C(v) and, thus, A must be a cut-arc set.
|

Before concluding this section, we note that closed sets are related
to another type of hierarchy that can be related to a phylogenetic network.
More specifically, recall that a cluster C' C X is called tight in a phyloge-
netic network IV on X if there exists a subset Vo C V() such that (i) for
all v € Vi, we have C(v) = C, and (ii) V¢ separates C from X — C, that
is, each (undirected) path from C to X — C' contains some vertex in V.
In Dress et al. (2010) it is shown that the tight clusters of a network form a
hierarchy. Note that a cut-vertex set of N is not necessarily a tight cluster of
N. As adirect corollary of Theorem 3.6 we however obtain:

Corollary 4.2 Suppose that N is a phylogenetic network on X and that
A C X isaclosed set of N. Then A is a tight cluster of N.

5. Closed Sets from Triplets and Trinets

In this section, we shall see that the closed sets of a phylogenetic
network N can be inferred from the triplet or trinet systems induced by V.
We start by extending the notion of a closed set to trinet systems on X.
Suppose that 7 is a trinet system on X and A C X is a non-empty subset.
We say that A is a closed in T if for each trinet T € T either AN L(T) = ()
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or AN L(T') is a closed set in 7. We now show that these concepts agree in
case 7 is the trinet system displayed by a phylogenetic network.

Theorem 5.1 Suppose that N is a phylogenetic network on X and that () #
A C X. Then A is a closed set in N if and only if A is closed in T (N).

Proof. Without loss of generality, we may assume that 1 < |A| < |X| as
otherwise the theorem clearly holds.

Assume first that A is closed in N. Suppose T' € T (N) is a trinet
such that A’ := AN L(T) # (. Note that if |A’| = 1, then A’ is closed
in T by definition. Moreover, if |A’| = 3 then A’ = L(T) and so A’ is
closed in T'. So assume |A’| = 2. Letz,y € X and z € L(T) — A" where
A" := {x,y}. Then LSAN(x,y) = LSAN(A) < LSAN(x,vy, z), where the
= part follows from Observation 1 and the < part holds because LSA(A)
and LSAn(x,y, z) are two common stable ancestors of x and y and hence
we have either LSAN(A) < LSAn(x,y,2z) or LSAy(x,y,2) = LSAN(A).
However, the latter case implies that z < LSAx(A), a contradiction to the
fact that A is closed and z ¢ A. Therefore, Cx(LSAN(z,y)) = {z,y} and,
so, A’ is closed in 7.

Conversely, suppose that A is not closed in N. We need to show that
there exists a trinet 7' € 7 (V) such that A N L(7T') is neither empty nor a
closed set in 7. By Observation 2, fix x,y € A such that LSAy(z,y) =
LSAN(A). Since A is not closed in NN, there must exist some z € X — A
suchthat z € Cn(LSAN(A)). LetT € T(N) be such that L(T) = {z,y, z}.
Clearly, ANL(T) = {z,y} # 0. Moreover, Cp(LSA7(z,y)) = {z,y, 2} #
{z,y} = AN L(T'). Thus, AN L(T) is not closed in 7.

[ |

Using this result, we now show that the cut-arc sets of a phylogenetic
network N can be reconstructed from its trinet system 7 (V). This general-
izes van lersel and Moulton (2014, Theorem 1) which considers the binary
case.

Theorem 5.2 Suppose that N is a phylogenetic network on X and that A C
X is a subset such that 2 < |A| < |X|. Then A is a cut-arc set of N if and
only if, forall x,y € Aand z ¢ A, the set {x,y} is a cut-arc set of the trinet
induced by N on {z,y,z}.

Proof. Suppose that A is a cut-arc set of N. Then there exists a cut arc
(u,v) in N with C(v) = A. Letz,y € A and z ¢ A and consider the trinet
T € R(N) on {z,y, z}. Then (u,v) induces a cut arc (u/,v") in T whose
deletion results in two connected components one of which contains {x, y}

in its vertex set and the other z. Thus, {x, y} is a cut-arc set of N|y, , 1.
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Conversely, suppose that, for all z,y € A and z ¢ A, the set {z,y}
is a cut-arc set for the trinet on {z,y, 2z} contained in 7 (). Then, for
all trinets 7' € T (IV), Theorem 4.1 implies that A N L(T") is closed in 7.
By Theorem 5.1 it follows that A is closed in V. Hence, by Theorem 3.6,
w := LSA(A) is a terminal vertex in N and A = C(w). Letv € V(N)
denote the stable ancestor of A such that A C C(v) while no stable ancestor
of A strictly below v has this property. Note that w < v. We claim that
every dipath of NV from v to w contains a cut arc of N.

Assume for contradiction that there exists a dipath in NV from v to w
that contains no cut arc of N. Let u be a vertex in NV so that A C C(u)
holds and that A C C(u') does not hold for all ' € V(N) below u. Then
w < uw = v must hold. Choose some z € C(u) — A, and let z,y € A
such that LSA(z,y) = w. By Lemma 3.2 there exist dipaths from w to z
and y, respectively, such that the pair formed by them is openly disjoint. Let
T € T(N) denote the trinet on {z,y, z}. We now show that {x, y} is not a
cut-arc set in 7', a contradiction which concludes the proof of the claim. To
establish this fact we consider separately the cases u = v and u < v.

Suppose ©v = v and fix a dipath P from v to z. Then by the choice of
u and v if follows that except for v, none of the vertices in P is an ancestor
of x or y. In addition, v = wu implies that all dipaths from v to w in N are
contained in 7', and hence v is also contained in 7". Therefore, since there
exists no cut arc in [NV between v and w, there exists no cut arc in " between
v and w, and so {z, y} is not a cut-arc set in 7.

Now suppose u < v. Fix a dipath P, ,, from v to v and a dipath P, ,,
from u to w. Let w’ be the stable ancestor of A contained in P, ,, closest to
u. Without loss of generality, we may assume that u # w as this case can
be established in a similar manner. Note that, by the definition of v, we have
w’ # w as u is not a stable ancestor of A. Hence, there exists a dipath Py
from v to w’ that does not contain u. Starting at v, let v" € V() be the last
vertex that is simultaneously contained in P, ,,» and P, ,,. Then v, u, w, and
w’ must all be vertices of T" and each of the dipaths Py iy Py oy Py, and
P, « induce four dipaths in 7" so that none of them contains a cut arc of 7'.
By the choice of x and y, it follows that {x, y} is not a cut-arc set in 7". This
concludes the proof of the claim.

To show that A is a cut-arc set of N and thus establish the theorem,
consider a cut arc (uj,u2) in N whose removal disconnects N into two
connected components such that the vertex set of one contains w and the
vertex set of the other v. Note that such a cut arc must exist by the previous
claim. Then uy is necessarily a stable ancestor of A. Since us < v clearly
holds, the choice of v implies that A = C(us2). Hence A is a cut-arc set in
N.
|
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We now turn our attention to triplet systems. We begin by defining the
notion of SN-sets for triplet systems which may contain nonbinary triplets.
A subset A C X is called an SN-set for a triplet system R if for a,b € A
distinct and ¢ € X — A, we have R|(,p 1 C {ablc}, that is, R|(qp.c) is
either {ab|c} or (). Note that, by definition, all singletons of X and X itself
are SN-sets. We will use the convention that the empty set is not an SN-set
for any triplet system. For the triplet system R(/N') displayed by the network
N in Figure 1, the subsets {5,6} and {7, 8} are SN-sets while {5, 6,7, 8} is
not.

The following result is a straightforward generalization of the binary
case stated in Jansson and Sung (2006, Lemma 8). Note that the assumption
that the triplet system is dense (that is, it contains at least one triplet for
each 3-subset) is necessary even for triplet systems that contain only binary
triplets.

Lemma 5.3 Suppose that R is a dense triplet system on X. Then the set of
SN-sets for R is a hierarchy on X.

Proof. Assume for contradiction that A and B are two SN-sets for R such
that AN B ¢ {0, A, B}. Then there existsa € A,b € B,andc € AN B
such that « ¢ B and b ¢ A. Since R is dense on X, there exists some
t € R suchthat L(t) = {a,b,c}. Since A and B are SN-sets it follows that
Rlfaper € {ac|b} N {bcla} = 0 which is impossible as R is dense.

[ |

We next characterize the SN-sets of a triplet system R in terms of
subsets of X that are closed with respect to a certain closure operation Sg
which we now introduce. Suppose that ‘R is a triplet system on X and
A C X. We put Sg(4) = Sr(A U {c}) if there exists a,b € A and
¢ € X — A such that albc € R or alblc € R holds, and Sgr(A) = A
otherwise. Note that, by definition, S ({z}) = {z} and Sr(X) = X.

Lemma 5.4 Suppose that R is a triplet system on X and that ) # A C X.
Then A is an SN-set for R if and only if Sg (A) = A.

Proof. Since the lemma clearly holds for [A] = 1 and A = X, we may
assume for the remainder of the proof that 1 < |A| < |X].

Suppose first that A is an SN-set for R. Then for all c € X — A and
a,b € A, we have Rl,p4 C {ablc}. Thus, the only triplet on {a, b, c}
contained in R is ab|c. Hence, Sg(A) = A.

Conversely, suppose Sg(A) = A and assume for contradiction that
A is not an SN-set for R. Then there must exist some ¢ € X — A such
that R|{q,c1 £ {ab|c}. Swapping the roles of a and b if necessary, we may
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assume that albc € R or alblc € R (or both). In either case, Sr(A) C
Sr(AU{c}) = Sr(A) follows which is impossible.
|

Next we show that the SN-sets associated to a dense triplet system
R can be constructed by applying the Sr closure operations to pairs of
elements of X. This generalizes Jansson and Sung (2006, Lemma 7). Note
that the density assumption on R is necessary for Lemma 5.5 to hold.

Lemma 5.5 Suppose that R is a dense triplet system on X. If A C X is an
SN-set for R, then A = Sr({z,y}) or A = Sr({z}), for some x,y € A.

Proof. Without loss of generality we may assume that |A] > 2. Choose
elements a,b € A such that |Sg({z,y})| < |Sr({a,b})|, forall z,y € A.
We claim that A = S ({a,b}). Note first that S ({a,b}) C Sg(A) = A
clearly holds as A is an SN-set. Assume for contradiction that Sg ({a, b}) #
A. Then there exists some ¢ € A — Sg({a,b}). The definition of the Sx
closure operation combined with the fact that R is dense implies R4} =
{ab|c}. Hence, b € Sg({a,c}). Thus, Sg({a,b}) € Sr({a,b,c}) =
Sr({a,c}), which is impossible.

|

We now relate closed sets for trinet systems with SN-sets for triplet
systems. For 7" a trinet system on X, we put R(7) := Uy R(N).

Theorem 5.6 Suppose that T is a trinet system on X and A C X. Then A
is closed in T if and only if A is an SN-set for R(T).

Proof. Since the theorem holds for |A| = 1 and |A| = | X |, we may assume
for the remainder of the proof that 1 < |A| < |X]|.

Suppose first that A is closed in 7. Assume for contradiction that
A is not an SN-set of R(7). Then there exist elements a,b € A and ¢ €
X — Asuch that Ry, ,¢) € {ab|c}. Therefore, there exists a trinet 7' € T
on {a,b,c} such that R(T") Z {ab|c}. Swapping the roles of a and b if
necessary, we may assume without loss of generality that ac|b € R(T') or
that a|blc € R(T') holds. In either case, there exists a vertex € V(T') such
that ¢ < r and the pair formed by the dipath from r to @ and the dipath from r
to b is openly disjoint. By Lemma 3.2(i), it follows that ¢ < < LSAp(a,b).
Hence, C(LSA7(a, b)) = {a, b, c}, which contradicts the assumption that A
is closed in 7.

Conversely, suppose that A is an SN-set of R(7). Assume for con-
tradiction that A is not closed in 7. Then there exists a,b € A,c € X — A,
and a trinet 7' € T on {a,b,c} such that C(LSA7(a,b)) = {a,b,c}. Let
r = LSAr(a,b). Then there exists a dipath P, . in T" from r to c. In addi-
tion, by Lemma 3.2(ii), there exist dipaths P, , and P.; in T" from r to a
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and b, respectively, such that the pair formed by them is openly disjoint. We
consider two possible cases.

Case (1): P, . shares no interior vertex with P, ., for all z € {a, b}.
Then a|blc € R(T). Hence R(T") Z {ab|c} and so A cannot be an SN-set
for R(T), which is impossible.

Case (2): There exists some z € {a,b} such that P, . shares one or
more interior vertices with P, .. Let w € V(T") denote the lowest vertex in
P, . such that the subpath P, . of P, . from w to ¢ (i.e., the set of vertices
v € V(P,.) with ¢ = v < w) does not share an interior vertex with P, ,
and with P.;. Swapping the roles of a and b if necessarily, we may assume
without loss of generality that w is a vertex on P.,. Let P, denote the
subpath of P, , joining w and r. Considering the vertices r and w and the
dipaths P, ., Py.q, Py, and P, implies aclb € R(T). Hence, R(T) €
{ab|c} which, as observed above, is impossible.
|

Using Theorems 5.1 and 5.6 we immediately obtain:

Corollary 5.7 Suppose that N is a phylogenetic network on X and that
) # A C X. Then A is a closed set in N if and only if A is an SN-set for
R(N).

6. The Closure Digraph

In Oldman et al. (2016) a certain digraph is associated to trinet sys-
tems consisting of level-1 trinets. Using properties of this graph, a method
is developed for constructing binary level-1 networks, an important family
of binary networks in which no two distinct cycles share a common ver-
tex, from biological datasets. In this section, we shall define and study a
generalization of this digraph.

First we introduce some further notation. Suppose 7 is a dense trinet
system on X. For z,y € X distinct, let k,(y) denote the number of ele-
ments z € X — {z,y} for which there exists a trinet " € 7 on {z,y, 2}
such that y < LSA7(x, ). Note that, in general, £, (y) # k() might hold
and that k,(y) < |X| — 2 (see Figure 3 for an example).

Now, the closure digraph of T, denoted by D(T ), is defined as the
digraph whose vertex set is X, and any two elements z,y € X are joined
by an arc (z,y) if k,(y) = |X| — 2. An example of a closure digraph
for the trinet system of a phylogenetic network is presented in Figure 4.
Informally speaking, an arc (x, y) in the closure digraph indicates that every
non-singleton set that is closed in 7 and contains = must also contain y.
More formally:
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1 2 13 14 1 i 1 i 1 i
7 8
5 5 5 5 6 5 5

Figure 3. The six trinets that are displayed by the phylogenetic network on {1,2,--- 8}
depicted in Figure 1 and contain leaves 1 and 5. This implies x1(5) = 6, while x5(1) = 5.

8 5 6

Figure 4. The closure digraph for the trinet system induced by the phylogenetic network
depicted in Figure 1. Undirected edges represent bidirected arcs. Figure 4. The arc (1,5)
follows from the example presented in Figure 3.

Lemma 6.1 Suppose that T is a dense trinet set on X and that x,y € X
distinct. If (z,y) is an arc in D(T), then each non-singleton set that is
closed in T and contains x must also contain y.

Proof. Suppose that (z,y) is an arc in D(7) and that A is closed in 7 with
x € Aand|A| > 2. Choose some element a € A — {z}. Without loss of
generality, we may assume a # y as otherwise the lemma clearly holds.

Let T € T denote the unique trinet on {z,y,a}. Since (x,y) €
D(T), we have k,(y) = |X| — 2 and, so, y < LSA7(x,a). Combined with
the assumption that A is closed in 7', we obtain

{z,y,a} = C(LSAp(z,a)) C C(LSAT(ANL(T))) = ANL(T) C {z,y,a}.

Hence, y € A must hold.
|

Note that even if 7 is induced by a binary level-1 network, the con-
verse of Lemma 6.1 need not always hold. For example, suppose NV is the
network on X = {1,2, 3,4} depicted in Figure 5. Then (2, 1) is not an arc
in the closure digraph D(7 (IN)). However, each non-singleton set A that is
closed in 7 (/N) must contain 1 if 2 € A.

Using Lemma 6.1, we now show that closed sets for dense trinet sys-
tems are so-called sink subsets in the closure digraph. Recall that a non-
empty subset A of the vertex set of a digraph G is called a sink subset in G
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4

Figure 5. An example illustrating that the converse of Lemma 6.1 does not hold in general—
see text for details.

if there exists no arc in G from A to V' — A, that is, for each arc (x,y) in G
with z € A, we have y € A as well.

Proposition 6.2 Suppose that T is a dense trinet set on X and that A C X
is a subset with |A| > 1. If A is closed in T, then A is a sink subset in
D(T).

Proof. Assume for contradiction that there exists some A C X with |A| > 2
such that A is closed in 7 but A is not a sink subset of D(7"). Then there
exists an arc (z,y) in D(7) with z € A andy € X — A. Hence, by
Lemma 6.1, A cannot be closed in 7 ; a contradiction.

[

Note that the converse of Proposition 6.2 is not true in general. For
instance, consider the network NV pictured in Figure 1 and its closure di-
graph D(T (N)) depicted in Figure 4. Then {1,2,3,4,5,6} is a sink set in
D(T(N)), butitis not closed in 7 (V). Even so, in the next section we will
see that for certain class of networks the converse of Proposition 6.2 does in
fact hold.

We now consider properties of the closure digraph of the trinet system
induced by a phylogenetic network.

Theorem 6.3 Suppose that N is a phylogenetic network on X and that
x,y € X distinct. Then (x,y) is an arc of D(T (N)) if either (1) y <n p(x),
or (i) Cy(p(x)) = {z} and y <n LSA(p(z)) hold.

Proof. Put T = T(N). To see that k,(y) = |X| — 2 holds, suppose
z € X — {x,y}. We claim that y <7 LSA(z,z) where T' € T(N) is the
trinet with leaf set Y := {z,y, z}.

Assume first that Property (i) holds. Then we have y <y p(z) <n
LSA(z, z). Hence y <7 p(x) <7 LSA(z, z), from which the claim follows.

Next, assume that Property (ii) holds. Let H denote the digraph ob-
tained from N by removing all vertices that are not on any dipath from
LSA(Y") to some element in Y. Then 7" is obtained from H by recursively
deleting parallel arcs and suppressing degenerate vertices.
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S

Figure 6. An illustration of Case 2-1 in the proof of Theorem 6.3. Dotted and dashed edges
denote dipaths.

Let v := p(z). Together with the assumption that |C(v)| = 1 # | X|,
it follows that v # p := p(IV) and that v must be a reticulation vertex of
N. Let vi,vg,---,v; € V(N) denote the t > 2 parents of v. Also, let
u = LSAn(v). Then, by assumption, y < u. We now consider two possible
cases:

Case (1) u is a parent of v: Without loss of generality, we may assume
u = v1. Let P, be the dipath in NV consisting of u, v and z. Since y < w and
|C(v)| = 1, there exists a dipath P, from u to y in N such that the pair P,
and P, is openly disjoint in N. Since P, and P, also form a pair of openly
disjoint dipaths in H, it follows that u € V/(T'). Let P, and P, be the dipaths
in 7" induced by P, and P,, respectively. Since P, contains either no interior
vertex or has v as its only interior vertex, we have u < LSAp(x, z) because
v is not an ancestor of z. This implies the claim as y < u < LSAp(z, z)
holds in 7'

Case (2) u is not a parent of v: We consider two subcases:

Case (2-1) There exists no common ancestor of & and y below u (see
Figure 6). This implies that there exists a dipath P, in N from u to y in
which the only ancestor of = is u. Now an argument similar to that used
in Case (1) shows that w € V(T'). Note that we may assume that z <y u
holds as otherwise u is not an ancestor of z in 7, and hence y < u =
LSA7(z, z) holds. In addition, we may further assume that there exists a
common ancestor of x and z below u, as otherwise we have u < LSAp(x, 2).

Let w be a lowest common ancestor of x and z such that w is below
u (see Figure 6 for an illustration). Let P; be a dipath from u to v in IV that
contains w, and let P;* denote the subpath of P; from u to w. Since (u,v)
is not an arc in N, Theorem 3.1 combined with © = LSAx (v) implies that
there exists a dipath % in N from u to v such that the pair P and P is
openly disjoint. Let P, be the dipath from u to = obtained by concatenating
P, and the arc (v, x). Since w is a lowest common ancestor of x and z, there
also exists a dipath PP from w to z in which no interior vertex is an ancestor
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of z. Let P, be the dipath from u to z obtained from concatenating P;" and
P. Then the dipath pair P, and P, must be openly disjoint. This implies
that w and v are both contained in 7', and that y < u <7 LSAp(x, z) holds.
Case (2-2): There exists a common ancestor of z and y below u: Let
w be a lowest common ancestor of z and y below u. Then an argument
similar to that in Case (2-1) shows that u, w and v are all vertices in 1. This
implies u <7 LSAp(z, z) and, thus, the claim in this case too.
|

Note that the converse of Theorem 6.3 need not hold in general. For
example, consider the arc (1,5) in the closure digraph depicted in Figure 4.
Then neither one of the two conditions in the theorem holds.

We now prove a useful corollary concerning sink subsets in the clo-
sure digraph associated to the trinet system of a phylogenetic network. We
start with some additional notation. We say that a sink subset A in a digraph
G is minimal if |A| > 1 and every subset A’ C A with |A’| > 1 is not a sink
subset in G. Suppose that N is a phylogenetic network on X and that a, b
are two vertices in IV such that neither one of them is a leaf. We say that
a and b are redundant if b < a and, for each vertex u < a, we either have
u < borb < u. Note that if @ and b are redundant then Cx'(a) = Cn(b).

Corollary 6.4 Suppose that N is a phylogenetic network on X. Then every
sink subset of D(T (N)) has size at least two (or, equivalently, for every x €
X, there exists an element y € X such that (x,y) is an arc in D(T (N))).

Proof. Put T = T(N). Note first that we may assume that N does not
contain a redundant pair of vertices as otherwise we may replace N by the
phylogenetic network N’ obtained from N via the following process. Sup-
pose a,b € V(N) form a redundant pair of vertices of N. First, delete all
vertices u € V() for which v < a and b < u holds (including their inci-
dent arcs). Next, add the arc (a, b) to the resulting graph. Finally, suppress
all degenerate vertices of that graph. Clearly, a set is closed in V if and only
if it is closed in N’. Furthermore, the closure digraphs for 7 and 7 (N’),
respectively, coincide as a pair of elements of X forms an arc in D(7) if
and only if it forms an arc in D(7 (N')).

Suppose z € X. We show that there exists an element y € X such
that (z,y) is an arc in D(7). Clearly, if |C(p(z))| > 2 then, for any y €
C(p(x))—{x}, we have that (z, y) is an arc of D(7") in view of Theorem 6.3.
So assume |C(p(x))| = 1. Note that p(x) is not the root of N as |X| > 3.
Put u = LSA(p(z)). Also note that if |C(u)| = 1 held then u and p(z) would
form a redundant pair which is impossible in view of our assumption on N.
Hence, |C(u)| > 2. Choose some y € C(u) — {z}. Then, by Theorem 6.3,
(x,y) must be an arc in D(T).
|
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7. 2-Terminal Networks

Suppose that V is a phylogenetic network on X (7 a trinet system)
and that A C X is a closed set in IV (in 7)) of size at least two. Then
A is minimal closed in N (in T) if each non-singleton subset A" C A is
not closed in N (in 7). In this section, we shall show that for 2-terminal
networks, that is, networks N for which each biconnected component of
N contains at most 2 terminal vertices, the minimal closed sets in /N are
precisely the minimal sink subsets in the closure digraph D(7 (N)).

We begin with a key structural result concerning 2-terminal networks.
Note that a similar result is proven in van lersel et al. (2017, Theorem 3.1)
for binary networks, but the binary condition plays an essential part in the
proof which necessitates the development of a new approach. Suppose that
N is a phylogenetic network and that H is a biconnected component of V.
We denote by r(H) the highest vertex in H, that is, the necessarily unique
vertex in H such that v < r(H) holds for all vertices v in H distinct from
r(H).

Lemma 7.1 Suppose that H is a biconnected component in a 2-terminal
network N. Then there exists a terminal vertex u (of N) in H such that
LSA(u) = r(H).

Proof. Note that the lemma clearly holds if H contains only one terminal
vertex. Indeed, if w is that vertex then LSA(u) =< r := r(H) holds by
definition of (H ). Hence, if LSA(u) # r, then LSA(u) is a cut vertex of H,
a contradiction.

So, for the remainder of the proof, assume that H contains precisely
two terminal vertices, denoted u; and wus, respectively. For ¢ = 1,2, note
that v} = LSA(u;) is a vertex of H. Swapping the roles of u; and uy if
necessary, we may assume that u] is not below u3, that is, either u] and u3
are not comparable via “<” or uj < uj.

To see that u] = r, assume for contradiction that u] < 7. Then
since H is biconnected and u] # r there must exist some k£ > 3 and a u]-
avoiding path P : vy := r,vg,...,v; := u; in H from 7 to u;. Since uj

is a stable ancestor of u, it follows that P contains at least one alternating
vertex. Moreover, noting that the arcs (v1, v2) and (vk_1, vy ) are distinct as
k > 3, the number m of alternating vertices in P is at least two. Without
loss of generality, we may further assume that P is chosen so that every
uj-avoiding path in H from r to u; contains at least m alternating vertices.
Let 1 < i < j < k be such that v; and v; are the (m — 1)-th and m-th
alternating vertices of P, respectively. Then the dipath Py : vj,vj41,..., 0%
from v; to uy is a subdipath of P, and hence uj-avoiding (see Figure 7 for
an illustration). Since the dipath P : v;,v;_1,...,v; is also a subdipath of
P we have v; < v;.
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Figure 7. An illustration of the various paths considered in the proof of Lemma 7.1. The
concatenation of the dipaths P5 and P4 forms the dipath P’, and the concatenation of the
path P and the dipath P; forms the path Q. Finally, the concatenation of P’, P, and P;
forms the dipath P.

Let P’ denote a dipath from r to v; (which exists by the definition
of 7). Note that the dipath obtained by concatenating P’ and P; is a dipath
in H from r to u;, and hence contains u] because u] is a stable ancestor
of uy. Since Pj is uj-avoiding, it follows that u] is a vertex of P’. Hence
v; < vj < uj. We now prove three claims which will allow us to establish
that uJ is also a stable ancestor of ug. This will complete the proof since if
u] is a stable ancestor of both u; and us, then u] must be a cut vertex of
H, which is impossible since H is a biconnected component of N and uj is
contained in H.

Now, we first claim that u; < v; does not hold. Suppose this is not the
case, i.e., u; = v;. Then there exists a dipath K from v; to u;. Hence, the
path R obtained by concatenating the subpath @ : vy,...,v; of P with K
is a path from r to u;. Note that since P is uj-avoiding, so is (). Hence, R
is also uj-avoiding. Since, by construction, R has fewer alternating vertices
than P this is impossible. Thus, the claim must hold.

Second, we claim that u5 < u]. To see this, note that since «; and us
are the only two terminal vertices in H, and, by the previous claim, u; < v;
does not hold, we have us =< v; as every non-terminal vertex of N must have
a terminal vertex of N below it. Without loss of generality, we may assume
that, in fact, us < v; because the case uo = v; can be established in a similar
manner. Then there exists a dipath P{ from v; to ug. Hence, the dipath P
obtained by concatenating P’, P», and P is a dipath in H from r to uy. By
the definition of a stable ancestor, u5 must be a vertex of P. Since, as was
observed above, uj is a vertex of P’ and, by assumption, u} < uj does not
hold, we obtain u3 < u7, as required for the second claim to hold.

Finally, we claim that u] is also a stable ancestor of uy. To see this,
note first that u; < w3 must hold. Indeed, if u; < u5 did not hold, then u3
must be a cut vertex of H since us is the only other terminal vertex contained
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in H. But this is impossible as H is a biconnected component of N. Now,
assume for contradiction that u] is not a stable ancestor of uy. Then every
uj-avoiding dipath P from r to up (if it exists) must contain u; since w3 is
a stable ancestor of uy. But u; < w3 < u] by the previous claims. Hence,
the subpath of P from r to u5 can be extended to a u}-avoiding dipath from
r to uy. This is impossible as u] is a stable ancestor of .

[ |

We now show that for 2-terminal networks /N, minimal sink subsets
in D(T(N)) are closed sets in V.

Proposition 7.2 Suppose that N is a 2-terminal network on X and that
A C X is a subset with |A| > 2. If A is a minimal sink subset in D(T (N)),
then A is closed in N.

Proof. Put T = T (N) and assume that A C X is a subset with |A| > 2 that
is also a minimal sink subset in D(7"). Using arguments similar to the ones
used at the beginning of the proof of Corollary 6.4, we may assume that N
does not contain a redundant pair of vertices. The remainder of the proof of
the proposition is based on two claims which we establish first. Suppose U
is the set of terminal vertices u in N for which, in addition, C(u) N A # ()
holds. Note that U # () as every element of X is a terminal vertex of V.

Claim 1: For each vertex u € U, either |C(u)] = 1 or A C C(u)
must hold (but not both). To prove the claim, assume that there exists a
vertex u € U with |C(u)| > 1. We need to show that A C C(u). Since
u is a terminal vertex of N, Theorem 3.6 implies that C(u) is closed in N.
By Theorem 5.1 and Proposition 6.2, it follows that C(u) is a sink subset in
D(T). Since A is also a sink subset of D(7T), the intersection B = C(u)NA
is necessarily a sink subset of D(7). By Corollary 6.4, |B| > 2. Since
B C A, the minimality of A implies B = A. Thus, A C C(u), which
completes the proof of Claim 1.

Claim 2: If H is a biconnected component of N that contains a vertex
u € U with |C(u)] = 1, then C(r(H)) C A. To prove this claim, let
ug denote the unique leaf in C(u). Note that since N does not contain a
redundant pair, u must be the parent of u.

Assume first that u is the only terminal vertex of /N contained in H.
Then r(H) = LSA(u). Assume for contradiction that there exists some
y € C(r(H)) — A. Theny < r(H) = LSA(u) = LSA(p(ug)). Hence, by
Theorem 6.3, (u,,y) must be an arc in D(7). Since u, € A as |C(u)| = 1,
and A is a sink subset of D(7), it follows by Lemma 6.1 that y € A, which
is impossible.

Now, suppose that H contains two terminal vertices u; and uy of
N, with u = uy. Put uj = LSA(u;), noting that we may assume that
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uj < r(H) holds since otherwise arguments similar to the ones in the proof
of Claim 1 maybe applied. Moreover, up < uj as otherwise u] is a cut vertex
of H, a contradiction. But then Theorem 6.3 implies for all y € C(u2) that
(ug,y) is an arc in D(T). Since u; € A and A is a sink subset of D(T),
it follows by Lemma 6.1 that C(uz) € A. Since A C C(uz) cannot hold as
ug is a terminal vertex distinct from u, Claim 1 implies that |C(ug)| = 1.
Thus, there exists some y € A such that C(ug) = {y}. Furthermore, since
uj < r(H) and H is a biconnected component of a 2-terminal network we
have u5 = r(H) by Lemma 7.1. Together with us = p(y), Theorem 6.3
implies that (y, z) is an arc in D(7") for all z in C(r(H)) — {y}. Combined
with the assumption that A is a sink subset of D(7) and y € A, it follows
that C(r(H)) C A. This completes the proof of Claim 2.

Using these claims we now prove that A is closed in V. Suppose x €
A. Then, by Theorem 6.3, (z,y) is an arc in D(7), for all y € C(p(x)) —
{z}. Hence C(p(z)) € A. Note that if p(z) is the root p(N) of N then
C(p(z)) = C(p(IN)) = X. Thus, A = X and, so, A is closed in N by
definition. Thus, assume for the remainder of the proof that p(IV) # p(x).

Let p/(x) be a parent of p(x) in N and let C' denote the biconnected
component of NV containing the arc (p'(z), p(z)). We consider two possible
cases:

Case (1) C'is a trivial biconnected component of N: Then (p/(x), p(z))
is the unique arc of C'. Since that arc is clearly a cut arc of IV, it follows that
C(p(z)) is a cut-arc set for V. Hence, by Theorem 4.1, C(p(x)) is closed
in N. Thus, by Theorem 5.1, C(p(x)) is closed in 7. Since (p/(x),p(x))
is a cut arc of C' and N does not contain degenerate vertices, p(x) has at
least two children. Hence, |C(p(x))| > 1. By Proposition 6.2, it follows that
C(p(z)) must be a sink subset in D(7"). Since C(p(z)) C A, the minimality
of A implies A = C(p(x)). Thus, A is closed in N.

Case (2) C is not a trivial biconnected component of N: Let U be
the set of terminal vertices u in C' for which, in addition, C(u) N A # 0
holds. Note that Uc is not empty as it contains either p(x) or a descendant
of p(z). We consider two sub-cases:

Case (2-1) There exists a vertex u € Ug with [C(u)| > 1: Then, by
Claim 1, A C C(u). Hence, z < wu, and, therefore, p(z) =< wu. Since u
is a terminal vertex of N in C and (p/(z),p(x)) is an arc of C, we obtain
p(x) = u. In view of Theorem 6.3, it follows that for all y € C(u), (z,y) is
an arc in D(T ). Hence, by Lemma 6.1 C(u) C A. By the minimality of A,
we obtain A = C(u). Thus A is a closed in N.

Case (2-2) |C(u)| = 1, for all u € Ug: We shall construct a sequence
of vertices 7g,7r1,... of N which will eventually terminate at a vertex 7y,
k > 0, so that C(ry) = A and ry, is either p(IN) or a terminal vertex of
N. Put rg = r(C). Then |[C(ro)| > 1 because C is non-trivial and N
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does not contain any redundant pair of vertices. By Claim 2, C(ry) C A.
Hence, if 19 = p(NV), then X = C(p(N)) = C(ro) € A C X, which
implies C(rg) = X = A. Hence, A is closed in N in this case. So suppose
ro # p(IN). If v is a terminal vertex of N, then Theorem 3.6 implies that
C(rp) is closed in N. By Theorem 5.1 and Proposition 6.2, C(r) is a sink
subsetin D(7), and by minimality of A, C(r¢) = A.

So, assume g # p(IV) and that r( is not a terminal vertex of N. Then
there exists some biconnected component C of N that contains r( so that
ro < r1 := 7(C}) holds. Furthermore, let u! € V(C}) denote a terminal
vertex of N for which u! < rq holds. Then C(u!) C C(rg) € A and so
u! € U. Note that since (p/(x),p(x)) is an arc in C, we have = ¢ C(ul).
Hence, A Z C(u'). By Claim 1, |C(u')| = 1, and so by Claim 2, C(r1) C A.
With r; playing the role of r( in the argument used in the last paragraph, if
r1 = p(IN) or r; is a terminal vertex of N, then C(r;) = A. Therefore, 7
must be contained in a biconnected component Cs of N which contains a
terminal vertex u? € Cy with u? < 71 < 79 := r(Cy) and C(r2) C A.

Since N is finite, this process of constructing vertices 7;, ¢ > 0 must
terminate at some stage & > 0 resulting in a vertex r such that C(ry) = A
and ry, is either p(IV) or a terminal vertex of V.

[

We now characterize sets that are minimal closed in 2-terminal net-
works.

Theorem 7.3 Suppose that N is a 2-terminal network on X and A C X
with |A| > 2. Then the following assertions are equivalent.

(i) A is minimal closed in N.

(i) A is minimal closed in T (N).

(iii) A is a minimal sink subset in the closure digraph D(T (N)).

Proof. (i) <= (i1): This is a direct consequence of Theorem 5.1.

(73) = (iii): Suppose that A is a minimal closed set in 7 := T (N).
Then, by Proposition 6.2, A is a sink subset in D(7). Assume for contra-
diction that A is not a minimal sink subset in D (7). Then there exists a
minimal sink subset B C X in D(7) with B C A. By Proposition 7.2, B
must be closed in V. Hence, by Theorem 5.1, B is also a closed in 7. Thus,
B = A by the minimality of A which is impossible.

(7i1) = (ii): Put T := T(N) and suppose that A is a minimal sink
subset in D(7). Then, by Proposition 7.2, A is closed in N. Assume for
contradiction that A is not minimal closed in N. Then there exists some
B C A that is minimal closed in N. By the equivalence of Assertions
(1) and (ii) in Theorem 7.3, B must be a minimal closed set in 7. Hence,
|B| > 2 by the definition of a minimal closed set of V. By Proposition 6.2,
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B is a sink subset in D(7). Thus, A = B by the minimality of A which is
impossible.
[ |

To illustrate the last theorem, consider the network N on X = {1,2,
..., 8} in Figure 1. Then A := {7, 8} is minimal closed in IV, and A is also
a minimal sink subset in the closure digraph D(7 (IV)) (see Figure 4). On
the other hand, A’ := {1, 2, 3,4, 5,6} is a sink subset in the closure digraph
D(T(N)) but it is not a minimal sink subset because {5, 6} is a sink subset.
Hence Theorem 7.3 implies that A’ is not minimal closed in N. Indeed, A’
is not even a closed set in V.

Since a level-2 (and hence also a level-1) network is necessarily a 2-
terminal network, Theorem 7.3 can be viewed as a significant generalization
of a result presented in Oldman, Wu, van Iersel and Moulton (2016, The-
orem 1 in the Appendix), which characterizes minimal sink subsets in the
closure digraph induced by level-1 networks using minimal cut-arc sets.

8. Conclusions and Future Directions

In this paper we have introduced the concept of a closed set in a phy-
logenetic network. We have seen that these sets provide a natural way to
extend the notion of SN-sets for binary networks to general networks, and
that the closed sets of a network are closely related to the triplets and trinets
that it displays.

In Theorem 7.3, we showed that we can characterize the closed sets of
a 2-terminal network in terms of minimal sink subsets of the closure digraph
associated to the triplets displayed by the network. It would be interesting to
know whether or not this result also holds for networks in general, although
this appears to be quite difficult to decide. In addition, it could also be
of interest to better understand properties of 2-terminal networks (or more
generally, k-terminal networks, k£ > 1, which can be defined in the obvious
way). For example, are 2-terminal networks defined by their trinets? Note
that level-2 networks enjoy this property (van lersel and Moulton 2014).

In general, a phylogenetic network is not determined by its trinets
(even if it is binary) (Huber, van lersel, Moulton and Wu 2015). However,
by Theorem 5.2 it follows that the cut arc hierarchy Hc4(/N) can be con-
structed from the trinets of a phylogenetic network N. It would be interest-
ing to know whether or not the cut vertex hierarchy Hcy (V) or the related
hierarchy #H.,(IN) can also be reconstructed from trinets. More generally,
it could be useful to understand which other features of networks are deter-
mined by their trinets.

In this paper we have concentrated on theoretical properties of closed
sets. However, there are associated algorithmic questions that are also of
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interest. For example, note that combined with an algorithm similar to the
one presented in Jansson and Sung (2004, Figure 4), Lemma 5.5 can be used
to compute, for any dense triplet system R on a set X, the associated family
of SN-sets for R in O(| X |?) time. However, it would be interesting to know
whether there may be a more efficient algorithm for computing closed sets
along the lines of the one presented in Jansson et al. (2006) for computing
SN-sets. This might also use results presented in Fischer and Huson (2010)
for computing lowest stable ancestors.

Solutions to these sorts of problems should eventually lead to new
algorithms for computing phylogenetic networks. One possible approach
to develop such an algorithm could be to use Theorem 7.3 as a basis for
computing level-2 networks (or more generally 2-terminal networks). This
might follow the approach that was used in Oldman et al. (2016) to construct
level-1 networks in a bottom up fashion from level-1 trinets. In particular,
first a dense set of level-2 trinets would be computed from biological data
and then, using the closure digraph of this set, a minimal sink subset would
be found. For this subset a simple level-2 network could then be derived,
and the subset replaced by a single element in such a way that this whole
process could be repeated. However, various problems would need to be
overcome to make this approach work. For example, new methods need to
be developed to associate level-2 trinets to biological data, and robust ways
need to be found for combining level-2 trinets into level-2 networks.
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