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Abstract. We show the following two results on a set of n points in the plane, thus
answering questions posed by Erdős and Purdy [11]:

1. The maximum number of triangles of maximum area (or of maximum perimeter) in
a set of n points in the plane is exactly n.

2. The maximum possible number of triangles of minimum positive area in a set of n
points in the plane is �(n2).

1. Introduction

A classical problem of combinatorial geometry, first raised by Erdős in 1946, and still
far from solution, is to bound the maximum number of occurrences of the same distance
among n points in the plane. Numerous variants of this problem were considered, such as
special distances (largest, smallest, . . . ), special sets of points (convex position, general
position, . . . ), other metrics and higher dimensions.

Erdős and Purdy studied the related problem of the maximum number of occurrences
of the same area among the triangles determined by n points in the plane, and as a
common generalization the number of occurrences of the same k-dimensional measure
among the k-dimensional simplices determined by n points in d-dimensional space [11],
[21], [12]–[14].
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the Minerva foundation.
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Here the low-dimensional problems are especially interesting, since in dimensions of
at least 4, Lenz-type constructions (points on orthogonal concentric circles) give lower
bounds large enough that relatively weak combinatorial structures are sufficient to obtain
good upper bounds. In the plane (and three-dimensional space) such constructions are
not possible. For the unit distance as well as the unit area problem in the plane, sections
of a square or triangular lattice are the asymptotically best known constructions, giving
�(neclog n/log log n) unit distances and �(n2 log log n) unit area triangles among n points.
The corresponding best known upper bounds are O(n4/3) and O(n7/3), respectively.
Erdős and Purdy also asked for the maximum number of maximum area and minimum
area triangles [11]. Here the corresponding distance problems are much simpler; there are
at most n maximum [16], [22] and �3n − √

12n − 3� minimum [15] distances among
n points in the plane. Erdős and Purdy remark: “Unfortunately we have only trivial
results”: O(n2) and �(n) for the maximum number of maximum area triangles.

We show that the number of maximum area (or maximum perimeter) triangles is
indeed similar to the number of maximum distances, and can be determined exactly.

Theorem 1. A set of n points in the plane, not all collinear, determines at most n
triangles of maximum area. This bound is sharp.

Theorem 2. A set of n points in the plane determines at most n triangles of maximum
perimeter. This bound is sharp.

The proofs of both theorems are almost the same, and are given in Section 2. They use
an alternation property that was already discovered in algorithmic studies of the same
question: to determine the maximum area (or maximum perimeter) k-gon inscribed in
a convex n-gon. This can be done in O(n) time [3], [6], [7]. This algorithmic question
was also studied without the convexity assumption (finding the maximum area triangle
contained in a simple n-gon), where it becomes much harder [17]. The perimeter result
also holds for any strictly convex norm, since we use only the triangle inequality.

The maximum number of (non-collinear) minimum area triangles is quite unlike its
distance counterpart, as can be seen by an �(n2) lower bound. Two examples that both
give this quadratic number of minimum area triangles among n points are

• a
√

n × √
n square lattice section, and

• two groups of n/2 equidistant points on two parallel lines.

It should be noted that we here ask for triangles of minimum positive area, otherwise
(n

3

)
triangles of zero area are obviously possible.

These two constructions give, up to a constant factor, the maximum number of mini-
mum area triangles:

Theorem 3. A set of n points in the plane determines at most O(n2) (noncollinear)
triangles of minimum area. This bound is sharp.

The proof is in Section 3. Note again that we are only counting triangles of positive area.
Thus the algorithm of Edelsbrunner [8, Chapter 12.4] for determining the minimum
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Fig. 1. Constructing a set of n points with n maximum area triangles.

area triangles treats an essentially different problem, since he assumes there are no three
points on a line, reporting otherwise 0 as the minimum triangle area. However, if no
three points are on a line, the O(n2) bound becomes trivial, since any two points can be
extended only in at most four ways to a triangle of given area.

Triangles of minimum perimeter behave again like smallest distances, their maximum
number is O(n), but unfortunately we are unable to find the right multiplicative constant.
A section of the square lattice gives a construction with 4n− O(

√
n) minimum perimeter

triangles, and we conjecture this construction to be extremal. A linear upper bound can
be proved by the following argument: If δ is the minimum perimeter, then for each
point p of the set, the disk of radius 1

2δ around p contains all triangles of minimum
perimeter having p as vertex. Since any sufficiently small disk (radius < (1/3

√
3)δ)

contains at most two points of the set, the 1
2δ-disk around p contains only a bounded

number of points, so p belongs to at most a bounded number of minimum perimeter
triangles.

2. Triangles of Maximum Area and Perimeter

Consider the vertices v1, . . . , vn of a regular n-gon (n not divisible by 3). Then the
n triangles viv�n/3�+iv�2n/3�+i are of maximum area and maximum perimeter. To this
basic construction we may add new points, creating new maximal triangles as follows.
For the case of maximum area, we may add any point p on the segment vivi−1, and
then pv�n/3�+iv�2n/3�+i is a new triangle of maximum area. For the case of maximum
perimeter, we add p to the arc from vi to vi−1 of the ellipse with foci v�n/3�+i and v�2n/3�+i .
See Figs. 1 and 2 for maximum area and perimeter examples, respectively. There are,
however, also some quite different extremal sets; the question for all other extremal sets
seems to be difficult (see Fig. 3).

Fig. 2. Constructing a set of n points with n maximum perimeter triangles.
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Fig. 3. A nontrivial example with many maximum area triangles.

The proof of Theorems 1 and 2 uses a special case of Lemma 2.2 from [3], which
captures the geometric content of the problem. For the sake of completeness, we prove
this lemma at the end of the section.

Lemma 1. If �, �∗ are two maximum area (or maximum perimeter) triangles deter-
mined by a set of points in convex position, then each edge of �∗ has a point in common
with some edge of �.

Proof of Theorems 1 and 2. In the case of maximum perimeter the set of n points must
be the vertex set of a convex n-gon. In the case of maximum area, the set must be in
convex position. However, it is then still possible for a point to be between two vertices
of the convex hull. Such a point can belong to at most one triangle of maximum area, so
we may remove this point and use induction.

We may therefore assume without loss of generality that the n points are the vertices of
a convex n-gon. We label these vertices in their natural order . . . , v−2, v−1, v0, v1, v2, . . . ,

using all integers as subscripts (thus vi = vi+n for all i ∈ Z). From now on we consider
both cases of maximum area and perimeter together, speaking only of maximal triangles.
We say that (i, j, k) is a proper triple if i < j < k < i + n and vivjvk is a maximal
triangle. We partially order Z

3 by

(i, j, k) ≤ (i ′, j ′, k ′) ⇐⇒ i ≤ i ′, j ≤ j ′, k ≤ k ′.

It follows from Lemma 1 that any two proper triples are comparable in this order. Thus
the set of all proper triples forms a chain C. Fix a proper triple (a, b, c). Note that for
any maximal triangle, the subchain

C ′ = {(i, j, k) ∈ C : (a, b, c) ≤ (i, j, k) < (a + n, b + n, c + n)}
contains three proper triples corresponding to this maximal triangle. Finally, any chain
in Z

3 with minimum element (a, b, c) and maximum element (a + n, b + n, c + n)
contains at most 3n + 1 triples. It follows that there are at most n maximal triangles.

This proof was inspired by a similar circular numbering scheme used in [19] and [20].

Proof of Lemma 1. Let � = a1a2a3 and �∗ = pqr . We first consider the case of
maximum area. Each point of a set in which � is a maximum area triangle must be in
the triangle bounded by the three lines through ai parallel to ai+1ai+2, i = 1, 2, 3: any
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Fig. 4. Two maximum area triangles must have alternating vertices.

point outside this region will generate together with two vertices of � a triangle with
area larger than that of �. This large triangle is cut by � into three translates of −�; we
denote them by ∇1, ∇2, ∇3. The vertices of �∗ are contained in ∇1∪∇2∪∇3. If all vertices
of �∗ are in the same ∇i , then �∗ coincides with ∇i , since they have the same area, and
the claim of the lemma is satisfied. If each ∇i contains one vertex of �∗, then the edges
of �∗ intersect �, and again our claim is satisfied. In the remaining case two vertices are
in one ∇i , and the third in another; we can assume �∗ = pqr with p, q ∈ ∇1, p, q �∈ �,
and r ∈ ∇2 (Fig. 4). Then the line through p parallel to qr separates a2 from qr , so the
triangle a2qr has an area larger than that of �∗, violating the assumption of the lemma.

We now consider the case of maximum perimeter. If the conclusion of Lemma
1 is false, then some two vertices of �∗ are strictly between two vertices of � in
the natural ordering of {a1, a2, a3, p, q, r}. We may assume without loss of general-
ity that p and q are strictly between a2 and a3, and by symmetry that r is not in the
part between a1 and p (r �= a2, and not between a1 and a2 or between a2 and p).
Thus the possible vertex orderings are “a1a2 pqra3”, “a1a2 pq(r = a3)”, “a1a2 pqa3r”,
and “(a1 = r)a2 pqa3”. In each of these cases the segments a2r and a1 p intersect in
some point x , and the segments a2q and a3 p intersect in some point y, and we have

perimeter(a1 pa3) + perimeter(a2qr)

= (|a1x | + |xp| + |py| + |ya3| + |a3a1|) + (|a2 y| + |yq| + |qr | + |r x | + |xa2|)
= (|a1x | + |xa2| + |a2 y| + |ya3| + |a3a1|) + (|py| + |yq| + |qr | + |r x | + |xp|)
> perimeter(a1a2a3) + perimeter(pqr),

where the last inequality is strict unless a1xa2 are collinear and pyq are collinear. Since,
by assumption, {p, q} are distinct from {a1, a2, a3}, and sides of maximum perimeter
triangles cannot partially overlap, these collinearities cannot occur. However, the strict
inequality contradicts our assumption of maximum perimeter of a1a2a3 and pqr .

3. Triangles of Minimum Area

The following proof of O(n2) in Theorem 3 is similar to the Pach–Sharir proof [18] of
the sharp upper bound for the number of congruent angles in a set of n points in the plane.

Proof of Theorem 3. The lower bound �(n2) follows from the above-mentioned con-
structions. To prove O(n2), let S be the set of n points in the plane and let L be the set of
lines passing through at least two points of S. Also let T be the set of all minimum area
triangles in S, let T1 be the subset of all abc ∈ T for which there is a point d ∈ S such that
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ab and cd are parallel (ab, cd ∈ L), and let T2 = T \T1. Then T2 contains O(n2) trian-
gles, since each pair of points a, b can form a triangle in T2 with at most one vertex in each
halfplane of ab. To count the T1-triangles, we classify them according to the directions of
their sides. Let Lθ = {�θ

1, . . . , �
θ
k } be the lines in L with direction θ , in consecutive order.

By the minimum area property, a T1-triangle with one side of direction θ has two points
on one line �θ

i , and the remaining point either on �θ
i−1 or on �θ

i+1. Moreover, the two points
on �θ

i are consecutive points on that line. Thus if there are aθ
i points of S on �θ

i (with
aθ

0 = aθ
k+1 = 0), then the number of triangles in T1 with one side of direction θ is at most

k∑
i=1

(aθ
i − 1)(aθ

i−1 + aθ
i+1) < 2

k−1∑
i=1

aθ
i aθ

i+1 ≤ 2
k∑

i=1

(aθ
i )2 = 2

∑
�∈Lθ

|� ∩ S|2.

Taking now the sum over all directions θ , we find

|T1| ≤ 2
∑
�∈L

|� ∩ S|2.

Let now br be the number of lines in L containing at least r points (bn+1 = 0). Since
there are at most O(m2/3n2/3 + m + n) incidences between n points and m lines [23]
we have

br ≤ c max

{
n2

r3
,

n

r

}
.

This gives the claimed bound since |T | = |T1| + |T2| ≤ |T1| + O(n2) and

|T1| ≤ 2
∑
�∈L

|� ∩ S|2

= 2
n∑

r=2

r2(br − br+1) = 2b2 + 2
n∑

r=2

(
r2 − (r − 1)2

)
br

≤ 2

(
n

2

)
+ 2

n∑
r=2

(2r − 1)br ≤ n2 + 4

√
n∑

r=2

rbr + 4
n∑

r=√
n

rbr

≤ n2 + 4

√
n∑

r=2

r
cn2

r3
+ 4

n∑
r=√

n

r
cn

r
< n2 + 4cn2

∞∑
r=2

1

r2
+ 4cn

n∑
r=1

1

≤
(

1 + c
2π2

3

)
n2.

4. Related Problems

Let ad(n) denote the maximum number of unit area triangles among n points in R
d . The

best currently known bounds are

d = 2: a2(n) = �(n2 log log n) [11] and a2(n) = O(n
7
3 ) [18], the lower bound by

lattice sections;
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d = 3: a3(n) = O(n8/3) [11] and a3(n) ≥ a2(n) = �(n2 log log n) (no better
construction known);

d = 4: a4(n) ≤ a5(n) and a4(n) ≥ a2(n) (no better bounds known);
d = 5: a5(n) = O(n3−ε) for some ε > 0 [21] and a5 = �(n7/3) as can be seen by

taking n/2 points with �(n4/3) unit distances on a sphere in a three-dimensional
subspace [10], and n/2 points on a circle in an orthogonal plane;

d ≥ 6: ad(n) = �(n3) by a Lenz-type construction: n/3 points on three concentric
circles in pairwise orthogonal planes [21].

Analogous to the distance problems one can also ask for the minimum number of
distinct areas or k-volumes of k-simplices determined by n points in R

d [13]; here the
conjectured value is �(n − 1)/d�, which is reached by n points distributed as the carte-
sian product of a regular (d −1)-simplex and an arithmetic progression in the orthogonal
one-dimensional subspace. In the plane this gives an upper bound of �(n − 1)/2� for the
minimum number of distinct areas determined by n points not all on a line; the best lower
bound is 1

2 (1 − 1/(3 + 2
√

2))n − O(1) ≈ 0.4142n − O(1) which can be obtained by
combining the method of [5] and the result of [24], improving previous bounds in [5]
and [13].

Another generalization of the unit distances problem is the question for the maximum
number of congruent triangles determined by n points in R

d [11]. In the plane this is the
same as the unit distances problem, since each unit distance can belong to at most four
triangles; the upper bounds are O(n7/4β(n)) in three-dimensional space [4] (previously
O(n19/9) [12] and O(n9/5) [2]), O(n65/23) in dimension 4 [2], and �(n3) for dimension
d ≥ 6. A further related problem is the question for the maximum number of similar
triangles, treated in [9] for arbitrary triangles and in [1] for equilateral triangles.
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