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Abstract

Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The
majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-
processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end
system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without
relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with
the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators
focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution
of each component in our model using an ablation study and we provide insights into the latent representation of the model.
The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well

as their ability to generate natural blinks.

Keywords Generative modelling - Face generation - Speech-driven animation

1 Introduction

Computer Generated Imagery (CGI) has become an inextri-
cable part of the entertainment industry due to its ability to
produce high quality results in a controllable manner. One
very important element of CGI is facial animation because
the face is capable of conveying a plethora of information not
only about the character but also about the scene in general
(e.g. tension, danger). The problem of generating realistic
talking heads is multifaceted, requiring high-quality faces, lip
movements synchronized with the audio, and plausible facial
expressions. This is especially challenging because humans
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are adept at picking up subtle abnormalities in facial motion
and audio-visual synchronization.

Facial synthesis in CGI is traditionally performed using
face capture methods, which have seen drastic improvement
over the past years and can produce faces that exhibit a high
level of realism. However, these approaches require expen-
sive equipment and significant amounts of labour, which is
why CGI projects are still mostly undertaken by large studios.
In order to drive down the cost and time required to produce
high quality CGI researchers are looking into automatic face
synthesis using machine learning techniques. Of particular
interest is speech-driven facial animation since speech acous-
tics are highly correlated with facial movements (Yehia et al.
1998).

These systems could simplify the film animation process
through automatic generation from the voice acting. They
can also be applied in post-production to achieve better lip-
synchronization in movie dubbing. Moreover, they can be
used to generate parts of the face that are occluded or missing
in a scene. Finally, this technology can improve band-limited
visual telecommunications by either generating the entire
visual content based on the audio or filling in dropped frames.

The majority of research in this domain has focused on
mapping audio features (e.g. MFCCs) to visual features
(e.g. landmarks, visemes) and using computer graphics (CG)
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methods to generate realistic faces (Karras et al. 2017). Some
methods avoid the use of CG by selecting frames from a
person-specific database and combining them to form a video
(Bregleretal. 1997; Suwajanakorn et al. 2017). Regardless of
which approach is adopted these methods are subject depen-
dent and are often associated with a considerable overhead
when transferring to new speakers.

Subject independent approaches have been proposed that
transform audio features to video frames (Chung et al. 2017;
Chenetal. 2018). However, most of these methods restrict the
problem to generating only the mouth. Even techniques that
generate the entire face are primarily focused on obtaining
realistic lip movements, and typically neglect the importance
of generating facial expressions. Natural facial expressions
play a crucial role in producing truly realistic characters and
their absence creates an unsettling feeling for many viewers.
This lack of expressions is a clear tell-tale sign of generated
videos which is often exploited by systems such as the one
proposed in Li et al. (2018), which exposes synthetic faces
based on the existence and frequency of blinks.

Some methods generate frames based solely on present
information (Chung et al. 2017; Chen et al. 2018), without
taking into account the dynamics of facial motion. How-
ever, generating natural sequences, which are characterized
by a seamless transition between frames, can be challeng-
ing when using this static approach. Some video generation
methods have dealt with this problem by generating the entire
sequence at once (Vondrick et al. 2016) or in small batches
(Saito et al. 2017). However, this introduces a lag in the gen-
eration process, prohibiting their use in real-time applications
and requiring fixed length sequences for training.

In this work we propose a temporal generative adversarial
network (GAN),! capable of generating a video of a talking
head from an audio signal and a single still image (see Fig. 1).
Our model builds on the system proposed in Vougioukas
et al. (2018) which uses separate discriminators at the frame
and sequence levels to generate realistic videos. The frame-
level discriminator ensures that generated frames are sharp
and detailed, whereas the temporal discriminator is responsi-
ble for audio visual correspondence and generating realistic
facial movements. During training the discriminator learns
to differentiate real and fake videos based on synchrony or
the presence of natural facial expressions. Although the tem-
poral discriminator helps with the generation of expressions
and provides a small improvement in audio-visual correspon-
dence, there is no way of ensuring that both these aspects are
captured in the video.

To solve this problem we propose using 2 temporal
discriminators to enforce audio-visual correspondence and
realistic facial movements on the generated videos. By

! Videos are available on the following website: https://sites.google.
com/view/facial-animation.

Fig.1 The proposed end-to-end face synthesis model, capable of pro-
ducing realistic sequences of faces using one still image and an audio
track containing speech. The generated sequences exhibit smoothness
and natural expressions such as blinks and frowns

separating these two tasks, which were undertaken by a
single discriminator in Vougioukas et al. (2018), we are
able to explicitly focus on audio-visual synchronization
through a synchronisation discriminator trained to detect
audio-visual misalignment. Furthermore, isolating expres-
sions from synchronisation further encourages the generation
of spontaneous facial expressions, such as blinks.

We also present a comprehensive assessment of the per-
formance of our method. This is done using a plethora of
quantitative measures and an in depth analysis that is miss-
ing from previous studies. Our model is trained and evaluated
on the GRID (Cooke et al. 2006), TCD TIMIT (Harte and
Gillen 2015), CREMA-D (Cao et al. 2014) and LRW (Chung
and Zisserman 2016a) datasets.

The frame quality is measured using well-established
reconstruction and sharpness metrics. Additionally, we use
lip reading systems to verify the accuracy of the spoken
words and face verification to ensure that the identity is
correctly captured and maintained throughout the sequence.
Furthermore, we examine the audio-visual correspondence
in produced videos by using a recent speech synchronization
detection method. Finally, using a blink detector we measure
the number of blinks on the generated videos as well as the
blink duration.

This work provides an in-depth look at our method, exam-
ining how each element affects the quality of the video. The
contribution of each discriminator in our GAN is quantified
using the aforementioned metrics through an ablation study
performed on the GRID (Cooke et al. 2006) dataset. Further-
more, we examine the latent space in order to determine how
well our system encodes the speaker identity. Moreover, we
analyze the characteristics of the spontaneous expressions on
videos generated using our method and compare with those
of real videos. Finally, we present the results of an online
Turing test, where users are shown a series of generated and
real videos and are asked to identify the real ones.

2 Related Work

The problem of speech-driven video synthesis is not new in
computer vision and in fact, has been a subject of interest for
decades. Yehia et al. (1998) were first to investigate the rela-
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tionship between acoustics, vocal-tract and facial motion,
discovering a strong correlation between visual and audio
features and a weak coupling between head motion and the
fundamental frequency of the speech signal (Yehia et al.
2002). These findings have encouraged researchers to find
new ways to model the audio-visual relationship. The fol-
lowing sections present the most common methods used in
each modelling approach.

2.1 Visual Feature Selection and Blending

The relationship between speech and facial motion has been
exploited by some CG methods, which assume a direct cor-
respondence between basic speech and video units. Cao et al.
(2005) build a graph of visual representations called animes
which correspond to audio features. The graph is searched
in order to find a sequence that best represents a given
utterance under certain co-articulation and smoothness con-
straints. Additionally, this system learns to detect the emotion
of the speech and adjust the animes accordingly to produce
movements on the entire face. The final result is obtained by
time-warping the anime sequence to match the timing of the
spoken utterance and blending for smoothness. Such meth-
ods use a small set of visual features and interpolate between
key frames to achieve smooth movement. This simplification
of the facial dynamics usually results in unnatural lip move-
ments, which is why methods that attempt to model the facial
dynamics are preferred over these approaches.

2.2 Synthesis Based on Hidden Markov Models

Some of the earliest methods for facial animation relied on
Hidden Markov Models (HMMs) to capture the dynamics
of the video and speech sequences. Simons and Cox (1990)
used vector quantization to achieve a compact representa-
tion of video and audio features, which were used as the
states for their fully connected Markov model. The Viterbi
algorithm was used to recover the most likely sequence of
mouth shapes for a speech signal. A similar approach is used
in Yamamoto et al. (1998) to estimate the sequence of lip
parameters. Finally, the Video Rewrite method (Bregler et al.
1997) relies on the same principles to obtain a sequence of
triphones, which are used to look up mouth images from
a database. The final result is obtained by time-aligning the
images to the speech and then spatially aligning and stitching
the jaw sections to the background face.

Since phonemes and visemes do not have a one-to-one
correspondence some HMM-based approaches replace the
single Markov chain approach with a multi-stream approach.
Xie and Liu (2007) propose a coupled HMM to model the
audio-visual dependencies and compare the performance of
this model to other single and multi-stream HMM architec-
tures.

@ Springer

2.3 Synthesis Based on Deep Neural Networks

Although HMMs were initially preferred to neural networks
due to their explicit breakdown of speech into intuitive states,
recent advances in deep learning have resulted in neural net-
works being used in most modern approaches. Like past
attempts, most of these methods aim at performing a feature-
to-feature translation. A typical example of this, proposed in
Taylor et al. (2017), uses a deep neural network (DNN) to
transform a phoneme sequence into a sequence of shapes for
the lower half of the face. Using phonemes instead of raw
audio ensures that the method is subject independent.

Most deep learning approaches use convolutional neural
networks (CNN) due to their ability to efficiently capture
useful features in images. Karras et al. (2017) use CNNs
to transform audio features to 3D meshes of a specific per-
son. This system is conceptually broken into sub-networks
responsible for capturing articulation dynamics and estimat-
ing the 3D points of the mesh.

Analogous approaches,which are capable of generating
facial descriptors from speech using recurrent neural net-
works (RNNs) have been proposed in Fan et al. (2015),
Suwajanakorn et al. (2017), Pham et al. (2017). In partic-
ular, the system proposed in Suwajanakorn et al. (2017) uses
Long Short Term Memory (LSTM) cells to produce mouth
shapes from Mel-Frequency Cepstral Coefficients (MFCCs).
For each generated mouth shape a set of best matching frames
is found from a database and used to produce mouth images.
These mouth shapes are blended with the frames of a real
target video to produce very realistic results.

Although visual features such as mouth shapes and 3D
meshes are very useful for producing high quality videos they
are speaker specific. Therefore, methods that rely on them
are subject dependent and require additional retraining or re-
targeting steps to adapt to new faces. For this reason methods
like the one proposed in Zhou et al. (2018) use speaker inde-
pendent features such as visemes and Jaw and Lip (JALI)
parameters.

Finally, Chung et al. (2017) proposed a CNN applied on
MEFCCs that generates subject independent videos from an
audio clip and a still frame. The method uses an L loss at the
pixel level resulting in blurry frames, which is why a deblur-
ring step is also required. Secondly, this loss at the pixel level
penalizes any deviation from the target video during training,
providing no incentive for the model to produce spontaneous
expressions and resulting in faces that are mostly static except
for the mouth.

2.4 GAN-Based Video Synthesis

The recent introduction of GANSs in Goodfellow et al. (2014)
has shifted the focus of the machine learning community to
generative modelling. GANs consist of two competing net-
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works: a generative network and a discriminative network.
The generator’s goal is to produce realistic samples and the
discriminator’s goal is to distinguish between the real and
generated samples. This competition eventually drives the
generator to produce highly realistic samples. GANSs are typ-
ically associated with image generation since the adversarial
loss produces sharper, more detailed images compared to L
and L; losses. However, GANSs are not limited to these appli-
cations and can be extended to handle videos (Mathieu et al.
2015; Li et al. 2017; Vondrick et al. 2016; Tulyakov et al.
2018).

Straight-forward adaptations of GANSs for videos are pro-
posed in Vondrick et al. (2016) and Saito et al. (2017),
replacing the 2D convolutional layers with 3D convolu-
tional layers. Using 3D convolutions in the generator and
discriminator networks is able to capture temporal depen-
dencies but requires fixed length videos. This limitation was
overcome in Saito et al. (2017) but constraints need to be
imposed in the latent space to generate consistent videos.
CNN based GAN approaches have been used for speech to
video approaches such as the one proposed in Zhou et al.
(2019).

The MoCoGAN system proposed in Tulyakov et al. (2018)
uses an RNN-based generator, with separate latent spaces
for motion and content. This relies on the empirical evi-
dence shown in Radford et al. (2015) that GANs perform
better when the latent space is disentangled. MoCoGAN
uses a 2D and 3D CNN discriminator to judge frames
and sequences respectively. A sliding window approach
is used so that the 3D CNN discriminator can handle
variable length sequences. Furthermore, the GAN-based
system proposed in Pham et al. (2018) uses Action Unit
(AU) coefficients to animate a head. A similar approach
is used in the GANimation model proposed in Pumarola
et al. (2018). These approaches can be combined with
speech-driven animation methods (Pham et al. 2017) that
produce AU coefficients which drive facial expressions from
speech.

GANSs have also been used in a variety of cross-modal
applications, including text-to-video and audio-to-video. The
text-to-video model proposed in Li et al. (2017) uses a com-
bination of variational auto encoders (VAE) and GANs in
its generating network and a 3D CNN as a sequence dis-
criminator. Finally, Chen et al. (2017) propose a GAN-based
encoder-decoder architecture that uses CNNs in order to
convert audio spectrograms to frames and vice versa. This
work is extended in Chen et al. (2019), using an atten-
tion mechanism which helps the network focus on frame
regions that correlate highly with the audio. However as a
result this method neglects other areas such as the brow and
eyes.

Still Image
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Fig. 2 The deep model for speech-driven facial synthesis. It uses 3
discriminators to incorporate different aspects of a realistic video

3 Speech-Driven Facial Synthesis

The proposed architecture for speech-driven facial synthesis
is shown in Fig. 2. The system consists of a temporal genera-
tor and multiple discriminators, each of which evaluates the
generated sequence from a different perspective. The capa-
bility of the generator to capture various aspects of natural
sequences is proportional to the ability of each discriminator
to discern videos based on them.

3.1 Generator

The generator accepts as input a single image and an audio
signal, which is divided into overlapping frames correspond-
ing to 0.2s. Each audio frame must be centered around a
video frame. In order to achieve this one-to-one correspon-
dence we zero pad the audio signal on both sides and use the
following formula for the stride:

audio sampling rate
stride = - prns (D
video fps

The generator network has an encoder-decoder structure
and can be conceptually divided into sub-networks as shown
in Fig. 3. We assume a latent representation that is made up of
3 components which account for the speaker identity, audio
content and spontaneous facial expressions. These compo-
nents are generated by different modules and combined to
form an embedding which can be transformed into a frame
by the decoding network.

3.1.1 Identity Encoder

The speaker’s identity is encoded using a 6-layer CNN.
Each layer uses strided 2D convolutions, followed by batch

@ Springer
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Fig. 3 The architecture of the generator network which consists of
a Content Encoder (audio encoder and RNN), an Identity Encoder, a
Frame Decoder and Noise Generator

normalization and ReLU activation functions. The Identity
Encoder network reduces a 96 x 128 input image to a 128
dimensional encoding z;4.

3.1.2 Content Encoder

Audio frames are encoded using a network comprising of
1D convolutions followed by batch normalization and ReLU
activation functions. The initial convolutional layer starts
with a large kernel, as recommended in Dai et al. (2017),
which helps limit the depth of the network while ensuring
that the low-level features are meaningful. Subsequent lay-
ers use smaller kernels until an embedding of the desired
size is achieved. The audio frame encoding is input into a 1-
layer GRU, which produces a content encoding z. with 256
elements.

3.1.3 Noise Generator

Although speech contains the necessary information for lip
movements it can not be used to produce spontaneous facial
expressions. To account for such expressions we propose
appending a noise component to our latent representation.
Spontaneous expressions such as blinks are coherent facial
motions and therefore we expect the latent space that models
them to exhibit the same temporal dependency. We there-
fore, avoid using white noise to model these expressions
since it is by definition temporally independent. Instead we
use a Noise Generator capable of producing noise that is
temporally coherent. A 10 dimensional vector is sampled
from a Gaussian distribution with mean 0 and variance of 0.6
and passed through a single-layer GRU to produce the noise
sequence. This latent representation introduces randomness
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Fig.4 The effect of adding skip connections to the generator network.
The frames obtained without skip connections shown in (a) do not
resemble the person in the ground truth video (b). Adding skip connec-
tions ensures that the identity is preserved in frames (c¢)

in the face synthesis process and helps with the generation
of blinks and brow movements.

3.1.4 Frame Decoder

The latent representation for each frame is constructed by
concatenating the identity, content and noise components.
The Frame Decoder is a CNN that uses strided transposed
convolutions to produce the video frames from the latent rep-
resentation. A U-Net (Ronneberger et al. 2015) architecture
is used with skip connections between the Identity Encoder
and the Frame Decoder to preserve the identity of the subject
as shown in Fig. 4.

3.2 Discriminators

Our system uses multiple discriminators in order to capture
different aspects of natural videos. The Frame Discriminator
achieves a high-quality reconstruction of the speakers’ face
throughout the video. The Sequence Discriminator ensures
that the frames form a cohesive video which exhibits natu-
ral movements. Finally, the Synchronization Discriminator
reinforces the requirement for audio-visual synchronization.

3.2.1 Frame Discriminator

The Frame Discriminator is a 6-layer CNN that determines
whether a frame is real or not. Adversarial training with
this discriminator ensures that the generated frames are real-
istic. Furthermore, the original still frame is concatenated
channel-wise to the target frame and used as a condition,
which enforces the identity onto the video frames.

3.2.2 Sequence Discriminator

The Sequence Discriminator distinguishes between real and
synthetic videos. Atevery time step the discriminator will use
a CNN with spatio-temporal convolutions to extract transient
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Fig. 5 The synchronization discriminator decides if an audio-visual
pair is in or out of sync. It uses 2 encoders to obtain embeddings for
audio and video and decides if they are in or out of sync based on their
Euclidean distance

features, which are then fed into a 1-layer GRU. A single
layer classifier used at the end of the sequence determines if
a sequence is real or not.

3.2.3 Synchronization Discriminator

The Synchronization Discriminator is given fixed-length
snippets (corresponding to 0.2s) of the original video and
audio and determines whether they are in or out of sync.
This discriminator uses a two stream architecture to compute
an embedding for audio and video. The Euclidean distance
between the 2 embeddings is calculated and fed into a single
layer perceptron for classification. The architecture of this
discriminator is shown in Fig. 5.

Showing the discriminator only real or fake audio-video
pairs will not necessarily result in samples being classified
based on their audio visual correspondence. In order to force
the discriminator to judge the sequences based on synchro-
nization we also train it to detect misaligned audio-visual
pairs taken from real videos. During training the discrimi-
nator learns to reduce the distance between the encodings
of synchronized audio-video pairs and increase the distance
between misaligned pairs. The distance for the fake pair (gen-
erated video with real audio) lies between these two distances
and its location is determined by how dominant the discrim-
inator is over the generator. Finally, since movements on the
upper half of the face do not affect audio-visual synchrony
we have chosen to use only the lower half of the face to train
the Synchronization Discriminator.

3.3 Training

The Frame discriminator (D;y,) is trained on frames that are
sampled uniformly from a video x using a sampling function
S(x). Using the process shown in Fig. 6 we obtain in and
out of sync pairs p;,, poy: from the real video x and audio a
and a fake pair p y. We use these pairs as training data for the
Synchronization discriminator (Dyyy). Finally the Sequence
Discriminator (Ds, ), classifies based on the entire sequence
x. The total adversarial loss L4, is made up of the adversarial
losses associated with the Frame (L.)%), Synchronization

In-sync pair /\E

I
fakeW/

(s (§ (s (! (! { 8 { ( ( {8

Fig. 6 All possible pairs that are used to train the synchronization
discriminator. Pairs belong to in one of the following categories {real
video, in-sync audio}, {real video, shifted audio}, {fake video, match-
ing audio}

(E;{;LC) and Sequence (522’2) discriminators. These losses

are described by Eqs. 2—4. The total adversarial loss is an
aggregate of the losses associated with each discriminator as
shown in Eq. 5, where each loss is assigned a corresponding
weight (Aimg» Asyncs Aseq)-

L8 = By p, [10g Dimg (S(x), x1)]
+E < p,[log(1 — Dy (S(G(2)), x1))] (2)
‘CZ);:)C = IE)C“‘Pa' [IOg DSync(pin)]

1
+§ ]:ExNPd [IOg 1-— Dsync(pou[)]

1
+5 IEZ'\'PZ [log(1 — Dsync(Ssnip (Pf))] 3
‘CZZ/ = Ex“’Pd [log Dseq (x,a)]
+Ez~p.[log(1 — Dseq(G(2), a))] )
Ladv = kimgLogy + AsyncLagy + *seaLady )

An L reconstruction loss is also used to help capture
the correct mouth movements. However we only apply the
reconstruction loss to the lower half of the image since it
discourages the generation of facial expressions. For a ground
truth frame F and a generated frame G with dimensions
W x H the reconstruction loss at the pixel level is Eq. 6.

L,= Y.

pel0.WIx[ 4 . H]

|Fp_Gp| (6)

The loss of our model, shown in Eq. 7, is made up of
the adversarial loss and the reconstruction loss. The A, ..
hyperparameter controls the contribution of of the recon-
struction loss compared to the adversarial loss and is chosen
so that, after weighting, this loss is roughly triple the adver-
sarial loss. Through fine tuning on the validation set we find
that the optimal values of the loss weights are A,.. = 600,
Aimg = 1, Agyne = 0.8 and Ay = 0.2. The model is trained
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until no improvement is observed in terms of the audio-visual
synchronization on the validation set for 5 epochs. We use
pre-trained lipreading models where available or other audio-
visual synchronization models to evaluate the audio-visual
synchrony of a video.

arg mgn mgx Eadv + )‘«recﬁLl (7)

We used Adam (Kingma and Ba 2014) for all the networks
with a learning rate of 0.0001 for the Generator and Frame
Discriminator. The Sequence Discriminator and Synchro-
nization Discriminator use a smaller learning rate of 1072,
Smaller learning rates for the sequence and synchronization
discriminators are required in order to avoid over-training the
discriminators, which can lead to instability (Arjovsky and
Bottou 2017). The learning rate of the generator and discrim-
inator decays with rates of 2% and 10%, respectively, every
10 epochs.

4 Datasets

Experiments are run on the GRID, TCD TIMIT, CREMA-D
and LRW datasets. The GRID dataset has 33 speakers each
uttering 1000 short phrases, containing 6 words randomly
chosen from a limited dictionary. The TCD TIMIT dataset
has 59 speakers uttering approximately 100 phonetically rich
sentences each. Finally, in the CREMA-D dataset 91 actors
coming from a variety of different age groups and races utter
12 sentences. Each sentence is acted out by the actors multi-
ple times for different emotions and intensities.

We use the recommended data split for the TCD TIMIT
dataset but exclude some of the test speakers and use them as
a validation set. For the GRID dataset speakers are divided
into training, validation and test sets with a 50-20-30% split
respectively. The CREMA-D dataset is also split with ratios
70—-15-15% for training, validation and test sets. Finally, for
the LRW dataset we use the recommended training, valida-
tion and test sets. However we limit our training to faces that
are nearly frontal. To do this we use pose estimation software
(Jianzhu Guo and Lei 2018) based on the model proposed in
Zhu et al. (2017) to select faces whose roll, pitch and yaw
angles are smaller than 10° (Table 1).

Table 1 The subject IDs that our model is tested on for each dataset

Dataset Test subjects

GRID 2,4,11, 13,15, 18,19, 25,31, 33
TCD TIMIT 8,9, 15, 18, 25, 28, 33, 41, 55, 56
CREMA-D 15, 20, 21, 30, 33, 52, 62, 81, 82, 89

@ Springer

Table2 The samples and hours of video in the training (Tr), validation
(V) and test (T) sets

Dataset  Samples/hours (Tr) Samples/hours (V) Samples/hours (T)
GRID 31639/26.4 6999/5.8 9976/8.31

TCD 8218/9.1 686/0.8 977/1.2

CREMA 11594/9.7 819/0.7 820/0.68

LRW 112658/36.3 5870/1.9 5980/1.9

As part of our pre-processing all faces are aligned to the
canonical face and images are normalized. We perform data
augmentation on the training set by mirroring the videos. The
amount of data used for training and testing is presented in
Table 2.

5 Metrics

This section describes the metrics that are used to assess
the quality of generated videos. The videos are evaluated
using traditional image reconstruction and sharpness metrics.
Although these metrics can be used to determine frame qual-
ity they fail to reflect other important aspects of the video such
as audio-visual synchrony and the realism of facial expres-
sions. We therefore propose using alternative methods that
are capable of capturing these aspects of the generated videos.

Reconstruction Metrics We use common reconstruction
metrics such as the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) index to evaluate the
generated videos. During our assessment it is important
to take into account the fact that reconstruction metrics
will penalize videos for any facial expression that does
not match those in the ground truth videos.

Sharpness Metrics The frame sharpness is evaluated
using the cumulative probability blur detection (CPBD)
measure (Narvekar and Karam 2009), which determines
blur based on the presence of edges in the image. For this
metric as well as for the reconstruction metrics larger
values imply better quality.

Content Metrics The content of the videos is evaluated
based on how well the video captures identity of the tar-
get and on the accuracy of the spoken words. We verify
the identity of the speaker using the average content dis-
tance (ACD) (Tulyakov et al. 2018), which measures the
average Euclidean distance of the still image representa-
tion, obtained using OpenFace (Amos et al. 2016), from
the representation of the generated frames. The accuracy
of the spoken message is measured using the word error
rate (WER) achieved by a pre-trained lip-reading model.
We use the LipNet model (Assael et al. 2016), which
surpasses the performance of human lip-readers on the
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Fig.7 Landmarks used for EAR calcula tion. An open eye (a) will have
a larger EAR compared to a closed eye (b)

GRID dataset. For both content metrics lower values indi-
cate better accuracy.

Audio-Visual Synchrony Metrics Synchrony is quanti-
fied using the methods proposed in Chung and Zisserman
(2016Db). In this work Chung et al. propose the SyncNet
network which calculates the euclidean distance between
the audio and video encodings on small (0.2s) sections
of the video. The audio-visual offset is obtained by using
a sliding window approach to find where the distance is
minimized. The offset is measured in frames and is posi-
tive when the audio leads the video. For audio and video
pairs that correspond to the same content the distance
will increase on either side of point where the mini-
mum distance occurs. However, for uncorrelated audio
and video the distance is expected to be stable. Based
on this fluctuation Chung and Zisserman (2016b) further
propose using the difference between the minimum and
the median of the Euclidean distances as an audio-visual
(AV) confidence score which determines the audio-visual
correlation. Higher scores indicate a stronger correlation,
whereas confidence scores smaller than 0.5 indicate that
audio and video are uncorrelated.

Expression Evaluation We investigate the generation of
spontaneous expressions since it is one of the main factors
that affect our perception of how natural a video looks.
According to the study presented in Bentivoglio et al.
(1997) the average person blinks 17 times per minute
(0.28blinks/s), although this rate increases during con-
versation and decreases when reading. We use a blink
detector based on the one proposed in Soukupova and
Cech (2016), which relies on the eye aspect ratio (EAR)
to detect the occurrence of blinks in videos. The EAR is
calculated per frame according to the formula shown in
Eq. (8) using facial landmarks p; to pe shown in Fig. 7.
The blink detector algorithm first calculates the EAR sig-
nal for the entire video and then identifies blink locations
by detecting a sharp drop in the EAR signal.

lp2 — pell + IIp3 — psll
(8
lp1 — pall

EAR =

0 10 20 30 4 50 6 70
Frame No

Fig.8 A blink is detected at the location where a sharp drop occurs in

the EAR signal (blue dot). We consider the start (green dot) and end

(red dot) of the blink to correspond to the peaks on either side of the
blink location (Color figure online)

Table3 Performance of the blink detector on a small selection of videos
from the GRID database that was manually annotated

Accuracy Precision Recall MAE (Start) MAE (End)

80% 100% 80% 14 2.1

Once the blink is detected we can identify the start and
end of the blink by searching for the peaks on either side of
that location as shown in Fig. 8. Using this information we
can calculate the duration of blinks and visualize the blink
distribution.

To gauge the performance of the blink detector we mea-
sure its accuracy on 50 randomly selected videos from the
GRID validation set that we have manually annotated. The
performance metrics for the blink detection as well as the
mean absolute error (MAE) for detecting the start and end
points of the blinks are shown in Table 3. The MAE is mea-
sured in frames and the video frame rate is 25 fps.

This method detects blinks with a high accuracy of 80%,
which means that we can rely on it to give us accurate statis-
tics for the generated videos. We have chosen a very strict
threshold for the drop in EAR in order to ensure that there are
minimal if any false alarms. This is evident by the very high
precision of the method. Finally, we note that the detector
detects the start and end of a blink with an average error of
1.75 frames.

We can use the blink detector to obtain the distribution for
the number of blinks per video (GRID videos are 3s long)
as well as the distribution for blink duration for the GRID
test set. These results are shown in Fig. 9. The mean blink
rate is 1.18 blinks/video or 0.39 blinks/s which is similar
to the average human blink rate of 0.28 blinks/s, especially
when considering that the blink rate increases to 0.4 blinks/s
during conversation. The average duration of a blink was
found to be 10 frames (0.41s). However, we find that using
the median is more accurate since this is less sensitive to
outliers caused by the detector missing the end of the blink.
Finally, it is important to note that the short length of the
videos will affect our estimate of the blink rate. The blinks
for all the datasets are shown in Table 4.
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Fig. 9 The distributions for a amount of blinks per video and b the
average blink duration per video from the GRID dataset

Table 4 The average blink rate and median blink duration for real
videos in each dataset

GRID TIMIT CREMA LRW
Blinks/s 0.39 0.28 0.26 0.53
Median duration (s) 0.4 0.2 0.36 0.32

6 Experiments

Our model is implemented in PyTorch and takes approxi-
mately a week to train using a single Nvidia GeForce GTX
1080 Ti GPU. During inference the average generation time
per frame is 7ms on the GPU, permitting the use of our
method in real time applications. A sequence of 75 frames can
be synthesized in 0.5s. The frame and sequence generation
times increase to 1s and 15s respectively when processing is
done on the CPU.

6.1 Ablation Study

In order to quantify the effect of each component of our
system we perform an ablation study on the GRID dataset
(see Table 5). We use the metrics from Sect. 5 and a pre-
trained LipNet model which achieves a WER of 21.76% on
the ground truth videos. The average value of the ACD for
ground truth videos of the same person is 0.98-10~* whereas
for different speakers it is 1.4 - 1073,

W Ny N e e

(a) L; loss on entire frame

(b) Proposed loss on frames

Fig. 10 Frames using a only an L loss on the entire face compared to
b frames produced using the proposed method. Frames are taken from
videos generated on the CREMA-D test set

The model that uses only an L1 loss achieves better PSNR
and SSIM results, which is expected as it does not gener-
ate spontaneous expressions, which are penalized by these
metrics unless they happen to coincide with those in ground
truth videos. We also notice that it results in the most blurry
images. The blurriness is minimized when using the frame
adversarial loss as indicated by the higher CPBD scores. This
is also evident when comparing video frames generated with
and without adversarial training as shown in Fig. 10.

The Average Content Distance is close to that of the real
videos, showing that our model captures and maintains the
subject identity throughout the video. Based on the results
of the ablation study this is in large part due to the Frame
Discriminator. Furthermore, this indicates that the identity
encoder has managed to capture the speaker identity. Indeed,
when plotting the identity encoding (Fig. 11) of 1250 random
images taken from the GRID test set using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm Van Der
Maaten and Hinton (2008) we notice that images of the
same subject have neighbouring encodings. Additionally, we
notice that the data points can be separated according to gen-
der.

The Sequence Discriminator is responsible for the genera-
tion of natural expressions. To quantify its effect we compare

Table 5 Ablation study performed on the GRID dataset. In every experiment we train the model by removing a single term from Eq. (7)

Method PSNR SSIM CPBD ACD WER (%) AV Offset AV Confidence Blinks/s Blink dur. (s)
GT 00 1.00 0.276 0.98 1074 21.76 1 7.0 0.39 0.41
w/o Lady 28.467 0.855 0.210 1.92- 107 26.6 1 7.1 0.02 0.16
wlo Ly, 26.516 0.805 0.270 1.03.107* 56.4 1 6.3 0.41 0.32
w/o £2’Z§ 26.474 0.804 0.252 1.96- 1074 232 1 7.3 0.16 0.28
wlo L 27548  0.829  0.263 1.19-107% 278 1 7.2 0.21 0.32
wlo L) 27.590 0.829 0.259 1.13. 1074 27.0 1 74 0.03 0.16
Full Model 27.100 0.818 0.268 1471074 23.1 1 74 0.45 0.36

Values in bold signify the best performance

@ Springer



International Journal of Computer Vision (2020) 128:1398-1413

1407

© Subject4
@ Subject 11
© Subject 15
® Subject 33
@ Subject 18
* Subject2
© Subject 31
© Subject 25
# Subject 13
# Subject 19

AP

Fig. 11 t-SNE plot of the identity encoding of random frames from the
GRID test set. Frames corresponding to the same subject have the same
colour. Male subjects are indicated by a cross whereas female subjects
are indicated by a circle
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Fig. 12 The distribution of blinks for videos generated by a our pro-
posed model and b a model without the Sequence Discriminator. When
the Sequence Discriminator is used c the distribution of blink duration
closely resembles that of the real videos. The same does not hold when
d the Sequence Discriminator is omitted
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(a) Movement direction map

(b) Generated blink using audio from LRW
and image from CelebA
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(d) Angry expression from shouting audio on
CREMA-D dataset

Fig. 14 Facial expressions generated using our framework include b
blinks, ¢ frowns and d shouting expressions. The corresponding optical
flow motion map is shown above each sequence. A reference diagram
for the direction of the movement is shown in (a). Figure best viewed
in color. Color version available online

the distribution of blinks for videos generated by the full
model to those generated without the Sequence Discrimina-
tor. This is shown in Fig. 12, where it is evident that removing
the sequence discriminator drastically reduces blink gener-
ation. Furthermore, we note the similarity of the generated
and real distribution of blinks and blink duration. The aver-
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Fig. 13 Animation of different faces using the same audio. The movement of the mouth is similar for both faces as well as for the ground truth
sequence. Both audio and still image are taken from the TIMIT dataset and are unseen during training
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Fig.15 Videos produced by the proposed method using the same image
taken from the CREMA-D test set and driven by the sentence “its eleven
o’clock” spoken with a female voice with multiple emotions

age blink rate in videos generated by our model is 0.4 blinks/s
with the median blink lasting 9 frames (0.36s). Both the aver-
age blink rate and median duration are very close to those
found in the ground truth videos in Table 4.

We also notice that the removal of the sequence discrimi-
nator coincides with a an increase in PSNR and SSIM, which
is likely due to the generation of blinks and head movements.
We test this hypothesis by calculating the PSNR only on the
lower half of the image and find that gap between the non-
adversarial model and our proposed model reduces by 0.3
dB.

The effect of the synchronization discriminator is reflected
in the low WER and high AV confidence values. Our ablation
study shows that the temporal discriminators have a positive
contribution to both the audio-visual synchronization and the
WER.

6.2 Qualitative Results

Our method is capable of producing realistic videos of previ-
ously unseen faces and audio clips taken from the test set. The
same audio used on different identities is shown in Fig. 13.
From visual inspection it is evident that the lips are consis-
tently moving similarly to the ground truth video.

Our method not only produces accurate lip movements but
also natural videos that display characteristic human expres-
sions such as frowns, blinks and angry expressions, examples
of which are shown in Fig. 14. In these examples we high-
light the regions of the frames that exhibit the most movement
using motion maps. These maps are obtained by calculating
the optical flow between consecutive frames, reflecting the
angle of movement in the hue and assigning the magnitude

@ Springer

of the motion to the value component in the Hue Saturation
Value (HSV) color-space.

The amount and variety of expressions generated is depen-
dent on the amount of expressions present in the dataset used
for training and hence faces generated by models trained on
expressive datasets such as CREMA-D will exhibit a wider
range of expressions. This is illustrated in Fig. 15, where the
facial expressions reflect the emotion of the speaker.

The works that are closest to ours are those proposed in
Suwajanakorn et al. (2017) and Chung et al. (2017). The
former method is subject dependent and requires a large
amount of data for a specific person to generate videos. There
is no publicly available implementation for the Speech2Vid
method proposed in Chung et al. (2017) but a pre-trained
model is provided, which we can use for comparison. For
completeness we also compare against a GAN-based method
that uses a combination of an L loss and an adversarial loss
on individual frames. We consider this approach as the base-
line GAN-based approach. Finally, we also compare with
the ATVGNet model proposed in Chen et al. (2019), which
is pretrained on the LRW dataset (Fig. 16).

When silent audio is provided as input to our model the
lips do not form words. However, in the case where the initial
frame exhibits a facial expression (i.e. smile) it is suppressed
gradually over a sequence of frames. We verify this by using
silent audio with a small additive pink noise to drive the
generation process. The results in Fig. 17 show how smiles
naturally transform to more neutral expressions. If the initial
expression is neutral it is unaltered. It is important to note that
videos will continue to exhibit spontaneous facial movements
such as blinks even when the audio is completely silent.

Since the baseline and the Speech2Vid model are static
methods they produce less coherent sequences, characterized
by jitter, which becomes worse in cases where the audio is
silent (e.g. pauses between words). This is likely due to the
fact that there are multiple mouth shapes that correspond to
silence and since the model has no knowledge of its past
state it generates them at random. Figure 18 highlights such
failures of static models and compares it to our method.

The Speech2Vid model only uses an L reconstruction loss
during training. This loss penalizes spontaneous expressions
which mostly occur on the upper part of the face and is there-
fore likely to discourage their generation. In order to examine
the movement we use optical flow and create a heatmap for
the average magnitude of movement over a set of 20 videos
of the same subject from the LRW test set. The heatmaps
shown in Fig. 19 reveal the areas of the face that are most
often animated. Videos generated using our approach have
heatmaps that more closely resemble those of real videos.
The static baseline is characterized by considerably more
motion on the face which likely corresponds to jitter. The
Speech2Vid and ATVGNet models do not animate the upper
part of the face. This means that that these methods do not
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Fig. 16 Videos produced using model trained on LRW for unseen faces taken from the CelebA dataset. The speech clip is taken from the test set
of the LRW dataset and corresponds to the word “stand”. Frames which contain blinking eyes are highlighted

capture speaker’s tone and cannot therefore generate match-
ing facial expressions. An example of this shortcoming is
shown in Fig. 20 where we compare a video generated from
the CREMA-D dataset using the Speech2Vid model and our
proposed method.

6.3 Quantitative Results

We measure the performance of our model on the GRID,
TCD TIMIT, CREMA-D and LRW datasets using the metrics
proposed in Sect. 5 and compare it to the baseline and the
Speech2Vid model. For the LRW dataset we also compare
with the ATVGNet GAN-based method proposed in Chen
etal. (2019), for which we use the provided pretrained model.
The preprocessing procedure for ATVGNet is only provided
for the LRW dataset hence we do not compare with this model
on other datasets.

The results in Table 6 show that our method outperforms
other approaches in both frame quality and content accu-
racy. For the LRW dataset our model is better not only from

the static approaches but also from ATVGNet. Our model per-
forms similarly or better than static methods when in terms of
frame-based measures (PSNR, SSIM, CBPD, ACD). How-
ever, the difference is substantial in terms of metrics that
measure content such as lipreading WER. Also our method
achieves a higher AV confidence, although it must be noted
that based on the offset estimated using the SyncNet model
our videos generated for the CREMA-D dataset exhibit a
slight lag of 1 frame compared to the Speech2Vid method.
Finally, we emphasize that our model is capable of generat-
ing natural expressions, which is reflected in the amount and
duration of blinks (Table 6), closely matching those of the
real videos, shown in Table 4.

We note that the Speech2Vid and ATVGNet methods are
not capable of generating any blinks. For the Speech2Vid
model this due to using only an L1 loss and for the ATVGNet
this is likely due to the attention mechanism which focuses
only on the mouth since it is the region that correlates with
speech. The static baseline is capable of producing frames
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Fig. 17 Example of frames generated when silent audio, with additive pink noise, is used to drive the generation. Images are taken from the CelebA
dataset. The model is capable of suppressing any expression present in the initial frame through a smooth frame transition

with closed eyes but these exhibit no continuity and are char-
acterised by very short duration as shown in Table 6.

We further note the differences in the performance of our
method for different datasets. In particular we note that the
reconstruction metrics are better for the GRID dataset. In
this dataset subjects are recorded under controlled condi-
tions and faces are not characterised by much movement.
Synthesized faces will mimic the motion that is present in the
training videos, generating emotions and head movements.
However since these movements cause deviation from the
ground truth videos and therefore will be penalized by ref-
erence metrics such as PSNR and SSIM. Performance based
on reconstuction metrics becomes worse as datasets become
less controlled and exhibit more expressions. Another note-
worthy phenomenon is the drop in audio-visual correlation,
indicated by the lower AV confidence for the TCD TIMIT
and CREMA-D datasets compared to GRID and LRW. We
attribute to this drop in performance to the fact that the TCD
TIMIT and CREMA-D are smaller datasets. It is therefore
likely that the datasets do not have the sufficient data for
the models to capture the articulation as well as for larger
datasets.

6.4 User Study
Human perception of synthesized videos is hard to quantify

using objective measures (Figs. 17, 18, 19, 20, 21). There-
fore, we further evaluate the realism of generated videos
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Fig. 18 Example of consecutive frames showcasing the failure of static
methods to produce a coherent motion. During silent periods static
approaches exhibit jittery motion in the mouth

through an online Turing test.” In this test users are shown
24 videos (12 real-12 synthesized), which were chosen at
random from the GRID, TIMIT and CREMA datasets. We
have notincluded videos from the LRW since uploading them
publicly is not permitted. Users are asked to label each video
as real or fake. Responses from 750 users were collected with
the average user labeling correctly 52% of the videos. The
distribution of user scores is shown in Fig. 21.

2 Test available https://forms.gle/XDcZm8q5zbWmH7bD9.
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Fig. 19 Average motion heatmaps showing which areas of the face
exhibit the most movement. The heatmaps are an average of the mag-
nitude of the optical flow taken for 20 videos of the same subject of the
LRW dataset. An example sequence is shown next to the heatmap of
each model

(b) Proposed Model

Fig.20 Comparison of the proposed model with Speech2Vid. It is obvi-
ous that Speech2Vid can only generate mouth movements and cannot
generate any facial expression

125

100

# of Users
wu ~
o (%]

25

0
O NMIETWOWLONDOO-N®MITWONDO

1
1
1
1
1
1
1
1
1
1
20
21
22
23
24

# of Correct Resposes

Fig. 21 Distribution of correct responses of users in the online Turing
test. The red line symbolizes the a Gaussian distribution with the same
mean and std. dev. as the data

7 Conclusion and Future Work

In this work we have presented an end-to-end model using
temporal GANs for speech-driven facial animation. Our
model produces highly detailed frames scoring high in terms
of PSNR, SSIM and in terms of the sharpness on multiple
datasets. According to our ablation study this can be mainly
attributed to the use of a Frame Discriminator.

Furthermore, our method produces more coherent
sequences and more accurate mouth movements compared to
the GAN-based static baseline and the Speech2Vid method.
This is demonstrated by a resounding difference in the WER.
We believe that these improvements are not only a result of
using a temporal generator but also due to the use of the
Synchronization Discriminator.

Table 6 Performance comparison of the proposed method against the static baseline and Speech2Vid (Chung et al. 2017)

Method PSNR SSIM  CPBD ACD WER AV Offset AV Confidence  Blinks/s  Blink dur. (s)
GRID Proposed model ~ 27.100  0.818  0.268 1471074 231% 1 7.4 0.45 0.36
Baseline 27.023 0.811 0.249 1.42.107%  36.4% 2 6.5 0.04 0.29
Speech2Vid 22,662  0.720  0.255 148-107%  582% 1 5.3 0.00 0.00
TCD Proposed model ~ 24.243  0.730  0.308 1.76-107* N/A 1 55 0.19 0.33
Baseline 24187 0.711  0.231 1.77-107%  N/A 8 1.4 0.08 0.13
Speech2Vid 20.305 0.658 0.211 1.81-107* N/A 1 4.6 0.00 0.00
CREMA  Proposed model 23.565 0.700 0216  1.40-107* N/A 2 5.5 0.25 0.26
Baseline 22933 0.685 0.212 1.65-107%  N/A 2 52 0.11 0.13
Speech2Vid 22.190 0.700  0.217 173107 N/A 1 4.7 0.00 0.00
LRW Proposed model ~ 23.077  0.757  0.260 1.53-107%  N/A 1 74 0.52 0.28
Baseline 22884 0.746  0.218 102107  N/A 2 6.0 0.42 0.13
Speech2Vid 22302  0.709 0.199  2.61-107* N/A 2 6.2 0.00 0.00
ATVGNet 20.107 0.743 0.189  2.14-107* N/A 2 7.0 0.00 0.00

A pretrained LipNet model is only available for the GRID dataset so the WER metric is omitted on other datasets. The LRW datasets contains only

one word so calculating WER is not possible
Values in bold signify the best performance
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Unlike the Speech2Vid and ATVGNet that prohibit the gen-
eration of facial expressions, the adversarial loss on the entire
sequence encourages spontaneous facial gestures. This has
been demonstrated with examples of blinks, head and brow
movements. Furthermore, our model is capable of capturing
the emotion of the speaker and reflecting it in the generated
face.

This model has shown promising results in generating life-
like videos, which produce facial expressions that reflect the
speakers tone. The inability of users to distinguish the syn-
thesized videos from the real ones in the Turing test verifies
that the videos produced look natural. The current limitation
of our method is that it only works for well-aligned frontal
faces. Therefore, the natural progression of this work will
be to produce videos that simulate in the wild conditions.
Finally, future work should also focus on extending the net-
work architecture to produce high definition video.

Acknowledgements We would like to thank Berk Tinaz for his help
with the detection of blinks and the estimation blink duration. We also
gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan V GPU used for this research and Amazon Web
Services for providing the computational resources for our experiments.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A
general-purpose face recognition library with mobile applications.
Technical Report, 118.

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for
training generative adversarial networks. In /CLR.

Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016).
LipNet: End-to-end sentence-level Lipreading. arXiv preprint
arXiv:1611.01599.

Bentivoglio, A. R., Bressman, S. B., Cassetta, E., Carretta, D., Tonali,
P., & Albanese, A. (1997). Analysis of blink rate patterns in normal
subjects. Movement Disorders, 12(6), 1028—1034.

Bregler, C., Covell, M., & Slaney, M. (1997). Video rewrite. In Pro-
ceedings of the 24th annual conference on computer graphics and
interactive techniques (pp. 353-360).

Cao, H., Cooper, D. G., Keutmann, M. K., Gur, R. C., Nenkova, A., &
Verma, R. (2014). CREMA-D: Crowd-sourced emotional multi-
modal actors dataset. [EEE Transactions on Affective Computing,
5(4), 377-390.

@ Springer

Cao, Y., Tien, W. C., Faloutsos, P., & Pighin, F. (2005). Expressive
speech-driven facial animation. ACM TOG, 24(4), 1283-1302.

Chen, L., Li, Z., Maddox, R. K., Duan, Z., & Xu, C. (2018). Lip move-
ments generation at a glance. In ECCV (pp. 1-15).

Chen, L., Maddox, R. K., Duan, Z., & Xu, C. (2019). Hierarchical
cross-modal talking face generation with dynamic pixel-wise loss.
In CVPR.

Chen, L., Srivastava, S., Duan, Z., & Xu, C. (2017). Deep cross-modal
audio-visual generation. In Thematic workshops of ACM multime-
dia (pp. 349-357).

Chung, J. S., Jamaludin, A., & Zisserman, A. (2017) You said that? In
BMVC.

Chung, J. S., & Zisserman, A. (2016a). Lip reading in the wild. In
ACCV.

Chung, J. S., & Zisserman, A. (2016b). Out of time: Automated lip sync
in the wild. In Workshop on Multi-view Lip-reading, ACCV.
Cooke, M., Barker, J., Cunningham, S., & Shao, X. (2006). An
audio-visual corpus for speech perception and automatic speech
recognition. The Journal of the Acoustical Society of America,

120(5), 2421-2424.

Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017) Very deep convolutional
neural networks for raw waveforms. In JCASSP (pp. 421-425).

Fan, B., Wang, L., Soong, F., & Xie, L. (2015). Photo-real talking head
with deep bidirectional LSTM. In ICASSP (pp. 4884-4888).

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., et al. (2014). Generative adversarial networks. In
NIPS (pp. 2672-2680).

Harte, N., & Gillen, E. (2015). TCD-TIMIT: An audio-visual corpus
of continuous speech. IEEE Transactions on Multimedia, 17(5),
603-615.

Jianzhu Guo, X. Z., & Lei, Z. (2018). 3DDFA. https://github.com/
cleardusk/3DDFA. Accessed 17 Feb 2019.

Karras, T., Aila, T., Laine, S., Herva, A., & Lehtinen, J. (2017). Audio-
driven facial animation by joint end-to-end learning of pose and
emotion. ACM TOG, 36(4), 1-12.

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing Al created
fake videos by detecting eye blinking. In WIFS.

Li, Y., Min, M. R., Shen, D., Carlson, D., & Carin, L. (2017). Video
generation from text. arXiv preprint arXiv:1710.00421

Mathieu, M., Couprie, C., & LeCun, Y. (2015). Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440.

Narvekar, N. D., & Karam, L. J. (2009). A no-reference perceptual
image sharpness metric based on a cumulative probability of blur
detection. International Workshop on Quality of Multimedia Expe-
rience (QoMEXx), 20(9), 87-91.

Pham, H. X., Cheung, S., & Pavlovic, V. (2017). Speech-driven 3D
facial animation with implicit emotional awareness: a deep learn-
ing approach. In CVPR-Workshop (pp. 2328-2336).

Pham, H. X., Wang, Y., & Pavlovic, V. (2018). Generative adversarial
talking head: Bringing portraits to life with a weakly supervised
neural network (pp. 1-18).

Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., & Moreno-
Noguer, F. (2018). GANimation: Anatomically-aware facial ani-
mation from a single image. In ECCV.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In International
conference on medical image computing and computer-assisted
intervention (pp. 234-241).


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1611.01599
https://github.com/cleardusk/3DDFA
https://github.com/cleardusk/3DDFA
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1710.00421
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.06434

International Journal of Computer Vision (2020) 128:1398-1413

1413

Saito, M., Matsumoto, E., & Saito, S. (2017). Temporal generative
adversarial nets with singular value clipping. In /CCV (pp. 2830—
2839).

Simons, A. D., & Cox, S. J. (1990). Generation of mouthshapes for a
synthetic talking head. Proceedings of the Institute of Acoustics,
Autumn Meeting, 12(January), 475-482.

Soukupova, T., & Cech, J. (2016). Real-time eye blink detection using
facial landmarks. In Computer vision winter workshop.

Suwajanakorn, S., Seitz, S., & Kemelmacher-Shlizerman, 1. (2017).
Synthesizing Obama: Learning lip sync from audio output Obama
video. ACM TOG, 36(4), 1-13.

Taylor, S., Kim, T., Yue, Y., Mahler, M., Krahe, J., Rodriguez, A. G.,
et al. (2017). A deep learning approach for generalized speech
animation. ACM TOG, 36(4), 1-13.

Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). MoCoGAN:
Decomposing motion and content for video generation. In CVPR
(pp- 1526-1535).

Van Der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-
dimensional data using t-SNE. JMLR, 9, 2579-2605.

Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos
with scene dynamics. In NIPS (pp. 613-621).

Vougioukas, K., Petridis, S., & Pantic, M. (2018). End-to-end speech-
driven facial animation with temporal GANs. In BMVC.

Xie, L., & Liu, Z. Q. (2007). A coupled HMM approach to video-
realistic speech animation. Pattern Recognition, 40(8), 2325-
2340.

Yamamoto, E., Nakamura, S., & Shikano, K. (1998). Lip movement
synthesis from speech based on hidden Markov Models. Speech
Communication, 26(1-2), 105-115.

Yehia, H., Rubin, P., & Vatikiotis-Bateson, E. (1998). Quantitative asso-
ciation of vocal-tract and facial behavior. Speech Communication,
26(1-2), 23-43.

Yehia, H. C., Kuratate, T., & Vatikiotis-Bateson, E. (2002). Linking
facial animation, head motion and speech acoustics. Journal of
Phonetics, 30(3), 555-568.

Zhou, H., Liu, Y., Liu, Z., Luo, P., & Wang, X. (2019). Talking face gen-
eration by adversarially disentangled audio-visual representation.
In AAAL

Zhou, Y., Xu, Z., Landreth, C., Kalogerakis, E., Maji, S., & Singh, K.
(2018). VisemeNet: Audio-driven animator-centric speech anima-
tion. ACM TOG, 37(4), 161:1-161:10.

Zhu, X., Lei, Z., Li, S. Z., et al. (2017). Face alignment in full pose
range: A 3D total solution. In /[EEE TPAMI.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	Realistic Speech-Driven Facial Animation with GANs
	Abstract
	1 Introduction
	2 Related Work
	2.1 Visual Feature Selection and Blending
	2.2 Synthesis Based on Hidden Markov Models
	2.3 Synthesis Based on Deep Neural Networks
	2.4 GAN-Based Video Synthesis

	3 Speech-Driven Facial Synthesis
	3.1 Generator
	3.1.1 Identity Encoder
	3.1.2 Content Encoder
	3.1.3 Noise Generator
	3.1.4 Frame Decoder

	3.2 Discriminators
	3.2.1 Frame Discriminator
	3.2.2 Sequence Discriminator
	3.2.3 Synchronization Discriminator

	3.3 Training

	4 Datasets
	5 Metrics
	6 Experiments
	6.1 Ablation Study
	6.2 Qualitative Results
	6.3 Quantitative Results
	6.4 User Study

	7 Conclusion and Future Work
	Acknowledgements
	References




