
Math.Comput.Sci. (2015) 9:5–22
DOI 10.1007/s11786-014-0182-0 Mathematics in Computer Science

HOL(y)Hammer: Online ATP Service for HOL Light

Cezary Kaliszyk · Josef Urban

Received: 5 September 2013 / Accepted: 28 January 2014 / Published online: 28 June 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics en-
coded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary
formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined
in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with
several premise selection methods trained on all the project proofs. The projects that are readily available on the
server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex
Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP
combinations and 4 decision procedures that contribute to its overall performance. The system is also available for
local installation by interested users, who can customize it for their own proof development. An Emacs interface
allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined,
problems that arise and their solutions are discussed, and an initial account of using the system is given.

Keywords Automated theorem proving · Interactive theorem proving · Machine learning ·
Formal proof assistants · Large-theory automated reasoning · HOL light

Mathematics Subject Classification 68T15 · 68T05 · 68T20 · 68T35

1 Introduction and Motivation

HOL Light [11] is one of the best-known interactive theorem proving (ITP) systems. It has been used to prove a
number of well-known mathematical theorems1 and as a platform for formalizing the proof of the Kepler conjecture
targeted by the Flyspeck project [10]. The whole Flyspeck development, together with the required parts of the HOL

1 http://www.cs.ru.nl/~freek/100/.

C. Kaliszyk
University of Innsbruck, Innsbruck, Austria

J. Urban (B)
Radboud University, Nijmegen, The Netherlands
e-mail: josef.urban@gmail.com

http://www.cs.ru.nl/~freek/100/

6 C. Kaliszyk, J. Urban

Light library consisted of about 14,000 theorems as of June 2012, growing to about 19,000 theorems as of August
2013. Motivated by the development of large-theory automated theorem proving [14,26,33,39] and its growing use
for ITPs like Isabelle [27] and Mizar [37,38], we have recently implemented translations from HOL Light to ATP
(automated theorem proving) formats, developed a number of premise-selection techniques2 for HOL Light, and
experimented with the strongest and most orthogonal combinations of the premise-selection methods and various
ATPs. This initial work, described in [22], has shown that 39 % of the (June 2012) 14,185 Flyspeck theorems
could be proved in a push-button mode (without any high-level advice and user interaction) in 30 s of real time on
a fourteen-CPU workstation. More recent work on the AI/ATP methods have raised this performance to 47 % [21].

The experiments that we did emulated the Flyspeck development (when the user always knows all the previous
proofs3 at a given point, and wants to prove the next theorem), however they were all done in an offline mode
which is suitable for such experimentally-driven research. The ATP problems were created in large batches using
different premise-selection techniques and different ATP encodings (untyped first-order [30], polymorphic typed
first-order [5], and typed higher-order [9]), and then attempted with different ATPs (17 in total) and different numbers
of the most relevant premises. Analysis of the results interleaved with further improvements of the methods and
data have gradually led to the current strongest combination of the AI/ATP methods.

This strongest combination now gives to a HOL Light/Flyspeck user a 47 % chance (when using 14 CPUs, each
for 30 s) that he will not have to search the library for suitable lemmas and figure out the proof of the next toplevel
theorem by himself. For smaller (proof-local) lemmas such likelihood should be correspondingly higher. To really
provide this strong automated advice to the users, the functions that have been implemented for the experiments
need to be combined into a suitable AI/ATP tool. Our eventual goal (from which we are of course still very far)
should be an easy-to-use service, which in its online form offers to formal mathematics (done here in HOL Light,
over the concepts defined formally in the libraries) what services like Wolfram Alpha offer for informal/symbolic
mathematics. Some expectations, linked to the recent success of the IBM Watson system, are today even higher.4 In-
deed, we believe that developing stronger and stronger AI/ATP tools similar to the one presented here is a necessary
prerequisite providing the crucial semantic understanding/reasoning layer for building larger Watson-like systems
for mathematics that will (eventually) understand (nearly-)natural language and (perhaps reasonably semanticized
versions/alternatives of) LATEX. The more user-friendly and smarter such AI/ATP systems become, the higher also
the chance that mathematicians (and exact scientists) will get some nontrivial benefits5 from encoding mathematics
(and exact science) directly in a computer-understandable form.

This paper describes such an AI/ATP service based on the formal mathematical corpora like Flyspeck developed
with HOL Light. The service—HOL(y)Hammer 6 (HH)—is now available as a public online system7 instantiated
for several large HOL Light libraries, running on a 48-CPU server spawning for each query by default 7 different
AI/ATP combinations and four decision procedures. We first describe in Sect. 2 the static (i.e., not user-updatable)
problem solving functions developed in the first simplified version of the service for the most interesting example of
Flyspeck. This initial version of the service allowed the users to experiment with ATP queries over the fixed June
2012 version of Flyspeck for which the AI/ATP components had been gradually developed over several months
in the offline experiments described in [22]. Section 3 then discusses the issues and solutions related to running the
service for multiple libraries and their versions at once, allowing the users also to submit a new library to the server
or to update an existing library and all its AI/ATP components. Section 4 shows examples of interaction with the

2 Premise selection [3,24] is the problem of selecting suitable premises (theorems, definitions, lemmas, etc.) from a large formal library
for proving a new conjecture over such library.
3 The Flyspeck processing order is used to define precisely what “previous” means. See [22] for details.
4 See for example Jonathan Borwein’s article: http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-
maths-genius-1213.
5 Formal verification itself is of course a great benefit, but its cost has been so far too high to attract most mathematicians.
6 See [41] for an example of future where AIs turn into deities.
7 http://colo12-c703.uibk.ac.at/hh/.

http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
http://colo12-c703.uibk.ac.at/hh/

HOL(y)Hammer: Online ATP Service for HOL Light 7

Parse

Type Check

Server Client

Input Line
Request

Progress

Evaluate
Features

Decision
Procedures

Tauto

...

Compute
Advice

Write TPTP
problem

Run ATP
Prover

For all
strategies

Extract
Used Deps Minimize

(repeat)

ATP
advice

Reconstruction Strategies

Rewrite Simplify MESON

....

Tactic

Arith
over

Arith
over

Theorem
Symbols

Theorem
Deps

k-Nearest
Neighbour

Prover
Deps

Epar
Z3

Vampire

TSTP
proof

External
processes and data

Naive
Bayes

Neural
Networks

Tactic

Fig. 1 Overview of the problem solving functions

service, using web, Emacs, and command-line interfaces. The service can be also installed locally, and trained on
user’s private developments. This is described in Sect. 5. Section 6 concludes and discusses future work.8

2 Description of the Problem Solving Functions for Flyspeck

The overall problem solving architecture without the updating functions is shown in Fig. 1. Since Flyspeck is
the largest and most interesting corpus on which this architecture was developed and tested, we use the Flyspeck
service as a running example in this whole section. The service receives a query (a conjecture to prove, possibly with
local assumptions) generated by one of the clients/frontends (Emacs, web interface, HOL session, etc). If the query
produces a parsing (or type-checking) error, an exception is raised, and an error message is sent as a reply. Otherwise
the parsed query is processed in parallel by the (time-limited) AI/ATP combinations and the native HOL Light
decision procedures (each managed by its forked HOL Light process, and terminated/killed by the master process
if not finished within its global time limit). Each of the AI/ATP processes computes a specific feature representation
of the query, and sends such features to a specific instance of a premise advisor trained (using the particular feature
representation) on previous proofs. Each of the advisors replies with a specific number of premises, which are then
translated to a suitable ATP format, and written to a temporary file on which a specific ATP is run. The successful ATP
result is then (pseudo-)minimized, and handed over to the combination of proof-reconstruction procedures. These
procedures again run in parallel, and if any of them is successful, the result is sent as a particular tactic application

8 This paper is an extended version of [17].

8 C. Kaliszyk, J. Urban

to the frontend. In case a native HOL Light decision procedure finds a proof, the result (again a particular tactic
application) can be immediately sent to the frontend. The following subsections explain this process in more detail.

2.1 Feature Extraction and Premise Selection

Given a (formal) mathematical conjecture, the selection of suitable premises from a large formal library is an in-
teresting AI problem, for which a number of methods have been tried recently [21,24,33]. The strongest methods
use machine learning on previous problems, combined in various ways with heuristics like SInE [14]. To use the
machine learning systems, the previous problems have to be described as training examples in a suitable format,
typically as a set of (input) features characterizing a given theorem, and a set of labels (output features) character-
izing the proof of the theorem. Devising good feature/label characterizations for this task is again an interesting AI
problem (see, e.g. [38]), however already the most obvious characterizations like the conjecture symbols and the
names of the theorems used in the conjecture’s proof are useful. This basic scheme can be extended in various ways;
see [22] for the feature-extraction functions (basically adding various subterm and type-based characteristics) and
label-improving methods (e.g., using minimized ATP proofs instead of the original Flyspeck proofs whenever pos-
sible) that we have so far used for HOL Light. For example, the currently most useful version of the characterization
algorithm would describe the HOL theorem DISCRETE_IMP_CLOSED:9

∀s:realˆN→bool e.
&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e �⇒ y = x)

�⇒ closed s

by the following set of strings that encode its symbols and normalized types and terms:

“real”, “num”, “fun”, “cart”, “bool”, “vector_sub”, “vector_norm”,
“real_of_num”, “real_lt”, “closed”, “_0”, “NUMERAL”, “IN”, “=”, “&0”,
“&0 < Areal”, “0”, “Areal”, “ArealˆA”, “ArealˆA - ArealˆA”,
“ArealˆA IN ArealˆA->bool”, “ ArealˆA->bool”, “_0”, “closed ArealˆA->bool”,
“norm (ArealˆA - ArealˆA)”, “norm (ArealˆA - ArealˆA) < Areal”

Here, real is a type constant, IN is a term constructor, Areal^A->bool is a normalized type, Areal^A its
component type, norm (Areal^A - Areal^A) < Areal is a normalized atomic formula, and Areal^A
- Areal^A is its normalized subterm.

On average, for each of our feature-extraction methods there are in total about 30,000 possible conjecture-
characterizing features extracted from the theorems in the Flyspeck development. The output features (labels) are
in the simplest setting just the names of the Flyspeck theorems10 extracted from the proofs with a modified (proof
recording [16]) HOL Light kernel. These features and labels are (for each extraction method) serially numbered in a
stable way (using hashtables), producing from all Flyspeck proofs the training examples on which the premise se-
lectors are trained. The learning-based premise selection methods currently used are those available in the SNoW [6]
sparse learning toolkit (most prominently sparse naive Bayes), together with a custom implementation [21] of the
distance-weighted k-nearest neighbor (k-NN) learner [8]. Training a particular learning method on all (14,185) char-
acterizations extracted from the Flyspeck proofs takes from 1 s for k-NN (a lazy learner that essentially just loads all
the 14,185 proof characterizations) and 6 s for naive Bayes using labels from minimized ATP proofs, to 25 s for naive
Bayes using the labels from the original Flyspeck proofs.11 The trained premise selectors are then run as daemons

9 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED.
10 In practice, the Flyspeck theorems are further preprocessed to provide better learning precision, for example by splitting conjunctions
and detecting which of the conjuncts are relevant in which proof. Again, see [22] for the details. The number of labels used for the June
2012 Flyspeck version with 14,185 theorems is thus 16,082.
11 The original Flyspeck proofs are often using theorems that are in some sense redundant, resulting in longer proof characterizations
(and thus longer learning). This is typically a consequence of using larger building blocks (e.g., decision procedures, drawing in many
dependencies) when constructing the ITP proofs.

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED

HOL(y)Hammer: Online ATP Service for HOL Light 9

(using their server modes) that accept queries in the language of the numerical features over which they have been
trained, producing for each query their ranking of all the labels, corresponding to the available Flyspeck theorems.

Given a new conjecture, the first step of each of the forked HOL Light AI/ATP managing process is thus to
compute the features of the conjecture according to a particular feature extraction method, compute (using the
corresponding hashtable) the numerical representation of the features, and send these numeric features as a query to
the corresponding premise-selection daemon. The daemon replies within a fraction of a second with its ranking, the
exact speed depending on the learning method and the size of the feature/label sets. This ranking is translated back
(using the corresponding table) to the ranking of the HOL Light theorems. Each of the AI/ATP combinations then
uses its particular number (optimized so that the methods in the end complement each other as much as possible)
of the best-ranked theorems, passing them together with the conjecture to the function that translates such set of
HOL Light formulas to a suitable ATP format.

2.2 Translation to ATP Formats and Running ATPs

As mentioned in Sect. 1, several ATP formalisms are used today by ATP and SMT systems. However the (jointly)
most useful proof-producing systems in our experiments turned out to be E [29] version 1.6 (run under the Epar [36]
strategy scheduler), Vampire [23] 2.6, and Z3 [7] 4.0. All these systems accept the TPTP untyped first-order format
(FOF). Even when the input formalism (the HOL logic [28]—polymorphic version of Church’s simple type theory)
and the output formalism (TPTP FOF) are fixed, there are in general many methods [4] to translate from the former
to the latter, each method providing different tradeoffs between soundness, completeness, ATP efficiency, and the
overall (i.e., including HOL proof reconstruction) efficiency. The particular method chosen by us in [22] and used
currently also for the service is the polymorphic tagged encoding [4]. To summarize, the higher-order features (such
as lambda abstraction, application) of the HOL formulas are first encoded (in a potentially incomplete way) in
first-order logic (still using polymorphic types), and then type tags are added in a way that usually guarantees type
safety during the first-order proof search.

This translation method is in general not stable on the level of single formulas, i.e., it is not possible to just
keep in a global hashtable the translated FOF version for each original HOL formula, as done for example for
the MizAR ATP service [19,37]. This is because a particular optimization (by Meng and Paulson [25]) is used
for translating higher-order constants, creating for each such constant c a first-order function that has the min-
imum arity with which c is used in the particular set of HOL formulas that is used to create the ATP (FOF)
problem. So once the particular AI/ATP managing process advises its N most-relevant HOL Light theorems
for the conjecture, this set of theorems and the conjecture are as a whole passed to the translation function,
which for each AI/ATP instance may produce a slightly different FOF encoding on the formula level. The en-
coding function is still reasonably fast, taking fractions of a second when using hundreds of formulas, and still
has the property that both the FOF formula names and the FOF formulas (also those inferred during the ATP
proof search) can typically be decoded back into the original HOL names and formulas, allowing later HOL proof
reconstruction.

Each AI/ATP instance thus produces its specific temporary file (the FOF ATP problem) and runs its specific
ATP system on it with its time limit. The time limit is currently set globally to 30 s for each instance, however
(as usual in strategy scheduling setups) this could be made instance-specific too, based on further analysis of the
time performance of the particular instances. Vampire and Epar already do such scheduling internally: the current
version of Epar runs a fixed schedule of 14 strategies, while Vampire runs a problem-dependent schedule using
for each problem a varied number of strategies. Assuming one strategy for Z3 and on average eight strategies
for Vampire, this now means that using 10-CPU parallelization results in about 100 different proof-data/feature-
extraction/learning/premise-slicing/ATP-strategy instantiations tried by the online service within the 30 s of the
real time allowed for each query. Provided sufficient complementarity of such instantiationsand enough CPUs, this
significantly raises the overall power of the service [21,22].

10 C. Kaliszyk, J. Urban

2.3 The AI/ATP Combinations Used

An example of the 25 initially used combinations of the machine learner, proof data, number of top premises used,
the feature extraction method, and the ATP system is shown in Table 1. The proof data are either just the data from
the ATP proofs, or a combination of the ATP proofs with the original HOL proofs. The ATP proofs (ATP0,…,ATP3)
are created by a particular MaLARea-style [39] (i.e., re-using the proofs found in previous iteration for further
learning) iteration of the experimenting, possibly preferring either the Vampire or Epar proofs (V_pref, E_pref).
The HOL proofs are obtained by slightly different versions of the HOL proof recording. The HOL/ATP combinations
typically use the HOL proof only when the ATP proof is not available, see [22] for details. The standard feature
extraction method combines the formula’s symbols, standard-normalized subterms and normalized types into its
feature vector. The standard normalization here means that each variable name is in each formula replaced by
its normalized HOL type. Types are normalized by renaming their polymorphic variables with de Bruijn indices.
The all-vars-same and all-vars-diff methods respectively just rename all formula variables into one
common variable, or keep them all different. This obviously influences the concept of similarity used by the machine
learners (see [22] for more discussion). The 40-NN and 160-NN learners are k-nearest-neighbors, run with k = 40
and k = 160. The particular combination of the AI/ATP is chosen by computing in a greedy fashion the set of
methods with the greatest coverage of the solvable Flyspeck problems. This changes often, whenever some of the
many components of this AI architecture get improved. For example, after the more recent strengthening of the
premise-selection and ATP components described in [21], and the addition of multiple developments and functions
for their dynamic update described in Sect. 3, the number of AI/ATP combinations run for a single query was
reduced to 7.

2.4 Use of Decision Procedures

Some goals are hard for ATPs, but are easy for the existing decision procedures already implemented in HOL
Light. To make the service more powerful, we also try to directly use some of these HOL Light decision procedures
on the given conjecture. A similar effect could be achieved also by mapping some of the HOL Light symbols
(typically those encoding arithmetics) to the symbols that are reserved and treated specially by SMT solvers and
ATP systems. This is now done for example in Isabelle/Sledgehammer [26], with the additional benefit of the
combined methods employed by SMTs and ATPs over various well-known theories. Our approach is so far much
simpler, which also means that we do not have to ensure that the semantics of such special theories remains the same
(e.g., 1/0 = 0 in HOL Light). The HOL Light decision procedures might often not be powerful enough to prove
whole theorems, however for example the REAL_ARITH12 tactic is called on 2678 unique (sub)goals in Flyspeck,
making such tools a useful addition to the service.

Each decision procedure is spawned in a separate instance of HOL Light using our parallel infrastructure, and
if any returns within the timeout, it is reported to the user. The decision procedures that we found most useful for
solving goals are:13

• TAUT14—Propositional tautologies.
(A ==> B ==> C) ==> (A ==> B) ==> (A ==> C)

• INT_ARITH15—Algebra and linear arithmetic over Z (including R).
&2 * &1 = &2 + &0

12 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html.
13 The reader might wonder why the above mentioned REAL_ARITH is not among the tactics used. The reason is that even though
REAL_ARITH is used a lot in HOL Light formalizations, INT_ARITH is simply more powerful. It solves 60 % more Flyspeck goals
automatically without losing any of those solved by REAL_ARITH. As with the AI/ATP instances, the usage of decision procedures is
optimized to jointly cover as many problems as possible.
14 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html.
15 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html

HOL(y)Hammer: Online ATP Service for HOL Light 11

Table 1 The 25 AI/ATP
combinations used by the
initial Flyspeck service

Learner Proofs Premises Features ATP

Bayes ATP2 0092 Standard Vampire

Bayes ATP2 0128 Standard Epar

Bayes ATP2 0154 Standard Epar

Bayes ATP2 1024 Standard Epar

Bayes HOL0+ATP0 0512 All-vars-same Epar

Bayes HOL0+ATP0 0128 All-vars-diff Vampire

Bayes ATP1 0032 Standard Z3

Bayes ATP1_V_pref 0128 All-vars-diff Epar

Bayes ATP1_V_pref 0128 Standard Z3

Bayes HOL0+ATP0 0032 Standard Z3

Bayes HOL0+ATP0 0154 All-vars-same Epar

Bayes HOL0+ATP0 0128 Standard Epar

Bayes HOL0+ATP0 0128 Standard Vampire

Bayes ATP1_E_pref 0128 Standard Z3

Bayes ATP0_V_pref 0154 Standard Vampire

40-NN ATP1 0032 Standard Epar

160-NN ATP1 0512 Standard Z3

Bayes HOL3+ATP3 0092 Standard Vampire

Bayes HOL3+ATP3 0128 Standard Epar

Bayes HOL3+ATP3 0154 Standard Epar

Bayes HOL3+ATP3 1024 Standard Epar

Bayes ATP3 0092 Standard Vampire

Bayes ATP3 0128 Standard Epar

Bayes ATP3 0154 Standard Epar

Bayes ATP3 1024 Standard Epar

• COMPLEX_FIELD16—Field tactic over C (including multivariate R).
(Cx (&1) + Cx(&1)) = Cx(&2)

Additionally the decision procedure infrastructure can be used to try common tactics that could solve the goal. One
that we found especially useful is simplification with arithmetic (SIMP_TAC[ARITH]), which solves a number
of simple numerical goals that the service users ask the server.

2.5 Proof Minimization and Reconstruction

When an ATP finds (and reports in its proof) a subset of the advised premises that prove the goal, it is often
the case that this set is not minimal. By re-running the prover and other provers with only this set of proof-
relevant premises, it is often possible to obtain a proof that uses fewer premises. A common example are redundant
equalities that may be used by the ATP for early (but unnecessary) rewriting in the presence of many premises, and
avoided when the number of premises is significantly lower (and different ordering is then used, or a completely
different strategy or ATP might find a very different proof). This procedure is run recursively, until the number of
premises needed for the proof no longer decreases. We call this recursive procedure pseudo/cross-minimization,
since it is not exhaustive and uses multiple ATPs. Minimizing the number of premises improves the chances of the

16 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html

12 C. Kaliszyk, J. Urban

HOL proof reconstruction, and the speed of (re-)processing large libraries that contain many such reconstruction
tactics.17

Given the minimized list of advised premises, we try to reconstruct the proof. As mentioned in Sect. 2.1, the
advice system may internally use a number of theorem names (now mostly produced by splitting conjunctions) not
present in standard HOL Light developments. It is possible to call the reconstruction tactics with the names used
internally in the advice system; however this would create proof scripts that are not compatible with the original
developments. We could directly address the theorem sub-conjuncts (using, e.g., “nth (CONJUNCTS thm) n”)
however such proof scripts look quite unnatural (even if they are indeed faster to process by HOL Light). Instead,
we now prefer to use the whole original theorems (including all conjuncts) in the reconstruction.

Three basic strategies are now tried to reconstruct the proof: REWRITE18 (rewriting), SIMP19 (conditional
rewriting) and MESON [12] (internal first-order ATP). These three strategies are started in parallel, each with the list
of HOL theorems that correspond to the minimized list of ATP premises as explained above. The strongest of these
tactics—MESON—can in one second reconstruct 79.3 % of the minimized ATP proofs. While this is certainly useful,
the performance of MESON reconstruction drops below 40 % as soon as the ATP proof uses at least seven premises.
Since the service is getting stronger and stronger, the ratio of MESON-reconstructable proofs is likely to get lower
and lower. That is why we have developed also a fine-grained reconstruction method—HH_RECON [20], which
uses the quite detailed TPTP proofs produced by Vampire and E. This method however still needs an additional
mechanism that maintains the TPTP proof as part of the user development: either dedicated storage, or on-demand
ATP-recreation, or translation to a corresponding fine-grained HOL Light proof script. That is why HH_RECON is
not yet included by default in the service.

2.6 Description of the Parallelization Infrastructure

An important aspect of the online service is its parallelization capability. This is needed to efficiently process multiple
requests coming in from the clients, and to execute the large number of AI/ATP instances in parallel within a short
overall wall-clock time limit. HOL Light uses a number of imperative features of OCaml, such as static lists of
constants and axioms, and a number of references (mutable variables). Also a number of procedures that are needed
use shared references internally. For example the MESON procedure uses list references for variables. This makes
HOL Light not thread safe. Instead of spending lots of time on a thread-safe re-implementation, the service just (in
a pragmatic and simple way, similar to the Mizar parallelization [35]) uses separate processes (Unix fork), which
is sufficient for our purposes. Given a list of HOL Light tasks that should be performed in parallel and a timeout,
the managing process spawns a child process for each of the tasks. It also creates a pipe for communicating with
each child process. Progress, failures or completion information are sent over the pipe using OCaml marshalling.
This means that it is enough to have running just one managing instance of HOL Light loaded with Flyspeck and
with the advising infrastructure. This process forks itself for each client query, and the child then spawns as many
AI/ATP, minimization, reconstruction, and decision procedure instances as needed.

2.7 Use of Caching

Even though the service can asynchronously process a number of parallel requests, it is not immune to overloading
by a large number of requests coming in simultaneously. In such cases, each response gets less CPU time and
the requests are less likely to succeed within the 30 s of wall-clock time. Such overloading is especially common

17 Premise minimization has been for long time used to improve the quality and refactoring speed of the Mizar articles. It is now also
a standard part of Sledgehammer.
18 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html.
19 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html

HOL(y)Hammer: Online ATP Service for HOL Light 13

for requests generated automatically. For example the Wiki service that is being built for Flyspeck [31] may ask
many queries practically simultaneously when an article in the wiki is re-factored, but many of such queries will
in practice overlap with previously asked queries. Caching is therefore employed by the service to efficiently serve
such repeated requests.

Since the parallel architecture uses different processes to serve different requests, a file-system based cache is
used (using file-level locking). For any incoming request the first job done by the forked process handling the request
is to check whether an identical request has already been served, and if so, the process just re-sends the previously
computed answer. If the request is not found in the cache, a new entry (file) for it is created, and any information
sent to the client (apart from the progress information) is also written to the cache entry. This means that all kinds
of answers that have been sent to the client can be cached, including information about terms that failed to parse
or typecheck, terms solved by ATP only, minimization results and replaying results, including decision procedures.
The cache stored in the filesystem has the additional advantage of persistence, and in case of updating the service
the cache can be easily invalidated by simply removing the cache entries.

3 Multiple Projects, Versions, and Their Online Update

The functions described in Sect. 2 allowed the users to experiment with ATP queries over the fixed June 2012
version of Flyspeck. If Flyspeck already contained all of human mathematics in a form that is universally agreed
upon, such setting would be sufficient. However, Flyspeck is not the only library developed with HOL Light,
and Flyspeck itself has been updated considerably since June 2012 with a number of new definitions, theorems
and proofs. In general, there is no final word on how formal mathematics should be done, and even more stable
formalization libraries may be updated, refactored, and forked for new experiments.

To support this, the current version of HOL(y)Hammer also allows online addition of new projects and updating
of existing projects (see Fig. 2). This leads to a number of issues that are discussed in this section. A particularly
interesting and important issue is the transfer and re-use of the expensively obtained problem-solving knowledge
between the different projects and their versions.

Another major issue is the speed of loading large projects. Checkpointing of OCaml instances is used to save the
load time, after HOL Light was bootstrapped. Checkpointing software allows the state of a process to be written to
disk, and restore this state from the stored image later. We use DMTCP 20 as our checkpointing software: it does
not require kernel modifications, and because of that it is one of the few checkpointing solutions that work on recent
Linux versions.

3.1 Basic Server Infrastructure for Multiple Projects

Instead of just one default project, the server allows multiple projects identified by a unique project name such as
“Ramsey”, “Flyspeck” and “Multivariate Analysis”. A new project can be started by an authorized user performing
a password-protected upload of the project files via a HTTP POST request. In the same way, an existing project can
be updated.21 The server data specific for each project are kept in its separate directory, which includes the user files,
checkpointed images, features and proof dependencies used for learning premise selection, and the heuristically
HTML-ized (hyperlinked) version of the user files. An overview of these project-specific data is given in Table 2.

Apart from the project-specific files, the service also keeps a spare checkpointed core HOL Light image and
additional files that typically contain the reusable information from various projects. The core HOL Light image is
used for faster creation of images for new projects. A new project can also be cloned from an existing project. In

20 http://dmtcp.sourceforge.net.
21 Git-based interface to the projects already exists and will probably also be used for updating the projects with the standard git-push
command from users’ computers. This still requires installation of the Gitolite authentication layer on our server and implementing
appropriate Git hooks similar to those developed for the Mizar wiki in [2].

http://dmtcp.sourceforge.net

14 C. Kaliszyk, J. Urban

Fig. 2 The HOL(y)Hammer web with a query over Multivariate Analysis

that case, instead of starting with the core HOL Light image, the new project starts with the cloned project’s image,
and loads the new user files into them. This saves great amount of time when updating large projects like Flyspeck.
The server processing of a new or modified project is triggered by the appropriate HTTP POST request. This starts
the internal project creator which performs on the server the actions described by Algorithm 1.The data sizes and
processing times for seven existing projects are summarized in Tables 3 and 4.

3.2 Safety

Since HOL Light is implemented in the OCaml toplevel, allowing users to upload their own development is
equivalent to letting them run arbitrary programs on our server.22 This is inherently insecure. A brief analysis of the
related security issues and their possible countermeasures has been done in the context of the WorkingWiki [42]

22 And indeed, the basic infrastructure could be also used as a platform for interacting with any OCaml project.

HOL(y)Hammer: Online ATP Service for HOL Light 15

Table 2 The data maintained for each HOL(y)Hammer project

Data Description

User files User-submitted ML files. These data are additionally Git-managed in this directory

Image1 Checkpointed HOL Light image preloaded with the user files and the HH functions

Image2 An analogous image that uses proof recording to extract HOL proof dependencies

Features Several (currently six) feature characterizations (see Sect. 2.1) of the project’s theorems

HOL deps The theorem dependencies from the original HOL proofs obtained by running the modified proof recording
kernel on the user files

ATP deps The theorem dependencies obtained by running ATPs in various ways and minimizing such proofs.
These data may be expensive to obtain, see 3.3 for the current re-use mechanisms

Cache The request cache for the project

Auxiliary Auxiliary files useful for bookkeeping and debugging

HTML Heuristically HTML-ized version of the user files, together with index pages for the files and theorems. These
files are available for browsing and they are also linked to the Gitweb web interface, which presents the project
and file history, allows comparison of different versions, regular expression search over the versions, etc

Algorithm 1 Project creation stages
1: Set up the directory structure for new projects.
2: Open a copy of the checkpointed core HOL Light image (or another project’s cloned image) and load it with the user files and the

HOL(y)Hammer functions.
3: Export the typed and variable-normalized statements of named theorems together with their MD5 hashes.
4: Export the various feature characterizations of the theorems.
5: Checkpoint the new image.
6: Re-process the user files with a proof-recording kernel that saves the (new) HOL proof dependencies.
7: Checkpoint the proof-recording image.
8: Add further compatible proof dependencies from related projects.
9: Run ATPs on the problems corresponding to the HOL dependencies, and minimize such proof data by running the ATPs further.
10: Run the heuristic HTML-izer and indexer, and push the user files to Git.

Table 3 The processing times for seven HOL(y)Hammer projects in seconds

Core Ramsey Model Gödel Complex Multivariate Flyspeck

Proof checking (min) 3 6 193 166 267 2,716 21,735

Proof recording (min) 10 14 225 215 578 3,751 52,002

Writing data 26 27 33 47 53 139 758

Writing ATP problems 38.56 45.35 51.14 73.37 72.12 139.12 650.15

Solving ATP problems 1,582.8 1,622.4 1,882.2 2,173.8 2,284.8 9,286.2 12,034.2

HTML and git 4 2 2 3 2 19 61

Image restart 1.98 2.08 2.37 2.15 3.00 3.66 6.78

collaborative platform.23 The easiest practical solution is to allow uploads only by authorized users, i.e., users who
are sufficiently trusted to be given shell access. Asking queries to existing projects can still be done by anybody;
the query is then just a string processed by a time-limited function that always exits.

We have also briefly considered sandboxing for allowing anonymous user uploads, however it adds a significant
overhead to managing the server (HOL(y)Hammer currently runs in user mode), while offering little protection in
the case of HOL Light. Combination of chroot jail, an iptables firewall, and disallowing users to write files, has been
previously used by us in ProofWeb for multiple proof assistants [15]. This offers a sufficient level of security for a

23 http://lalashan.mcmaster.ca/theobio/projects/index.php/WorkingWiki/Security.

http://lalashan.mcmaster.ca/theobio/projects/index.php/WorkingWiki/Security

16 C. Kaliszyk, J. Urban

Table 4 The data sizes for seven HOL(y)Hammer projects

Core Ramsey Model Gödel Complex Multivariate Flyspeck

Normal image size (kB) 33,892 40,952 37,584 38,244 55,424 77,292 152,460

Recording image size (kB) 50,960 52,692 48,148 46,000 58,368 247,848 365,496

Unique theorems 2,482 2,544 2,951 3,408 3,582 6,798 22,336

Unique constants 234 234 337 367 333 466 1,765

Avrg. HOL proof deps. 12.13 12.27 11.09 14.44 17.96 12.26 21.86

ATP-proved theorems 1,546 1,578 1,714 1,830 2,042 4,126 8,907

Usable ATP proofs 6,094 6,141 6,419 6,644 6,885 1,1408 21,733

Avrg. ATP proof deps. 6.86 6.86 6.77 6.67 6.94 6.36 6.52

Total distinct features 3,735 3,759 4,693 5,755 5,964 1,1599 43,858

Avrg. features/formula 24.81 24.61 26.05 35.61 39.05 38.15 67.61

Usable ATP proofs Vampire, Epar and Z3 are used, and we keep all the different minimal proofs. This means that the total number
of ATP proofs can be higher than the number of theorems

number of proof assistants where the ML access can be disabled, but it is not sufficient for HOL Light. Therefore
also in ProofWeb, running HOL Light was restricted to the users that are allowed to use a shell on the server [13].

3.3 Re-use of Knowledge from Related Projects

It has been shown in [22] that learning premise selection from minimized ATP proofs is better than learning from
the HOL proofs, and also that the two approaches can be productively combined, resulting in further improvement
of the overall ATP performance. However, obtaining the data from ATP runs is expensive. For example, just running
Vampire, Epar and Z3 on all Flyspeck problems for 30 s takes (assuming 70 % unsolved problems for each ATP)
about 500 CPU hours. Even with 50-fold parallelization, this takes 10 h of wall-clock time. And this is just the initial
ATP pass. In [22] we also show that further MaLARea-style learning from such ATP data and re-running of the
ATPs with the premises proposed by the learning grows the set of ATP solutions by about 20 %. Obviously, such
additional passes cost a lot of further CPU time. One option is to sacrifice the ATP data for speed, and only learn
from the HOL data, sacrificing the final ATP performance on the queries. However, there is a relatively efficient
way how to re-use a lot of the expensive data that were already computed.

Suppose that the user only updates an existing large project by adding a new file. Then it is quite sufficient to
(relatively quickly) obtain the minimized ATP proofs of the (ATP-provable) theorems in the file that was added.
Such ATP proofs are then added to the existing training data used for the premise selectors. In general, the project
can however be modified and updated in a more complicated way, for example by adding/changing some files “in
the middle”, modifying symbol definitions, theorems, etc. Or it can be a completely new project, that only shares
some parts with other projects, restructuring some terminology, theorem names, and proofs. The method that we
use to handle such cases efficiently is recursive content-based encoding of the theorem and symbol names [34].
This is the first practical deployment and evaluation of this method, which in HOL(y)Hammer is done as follows:

1. The name of every defined symbol is replaced by the content hash (we use MD5) of its variable-normalized
definition containing the full types of the variables. This definition already uses content hashes instead of the
previously defined symbols. This means that symbol names are no longer relevant in the whole project, neither
white space and variable names.

2. The name of each theorem is also replaced by the content hash of its (analogously normalized) statement.
3. The proof-dependency data extracted in the content encoding from all projects are copied to a special “common”

directory.

HOL(y)Hammer: Online ATP Service for HOL Light 17

Table 5 The re-use of theorems and ATP proofs between four Flyspeck SVN versions

Version Unique thms In previous (%) ATP-proved (%) ATP proofs Reusable proofs (%)

2887 13,647 N/A 7,176 (53 %) 20,028 N/A

3006 13,814 13,480 (98 %) 7,235 (52 %) 20,081 19,977 (99 %)

3400 18,856 12,866 (93 %) 8,914 (47 %) 21,780 21,320 (97 %)

In previous Theorems (conjuncts) that exist already in the previous version, and their percentage.
ATP proof Vampire, Epar and Z3 are used, and we keep all the different minimal proofs. This means that the total number of ATP
proofs can be higher than the number of theorems.
Re-usable ATP proofs The proofs from the previous version that are valid also in the current version

4. Whenever a project P is started or modified, we find the intersection of the content-encoded names of the
project’s theorems with such names that already exist in other projects/versions.

5. For each of such “already known” theorems T in P , we re-use all its “already known” proofs D that are
compatible with P’s proof graph. This means, that the names of the proof dependencies of T in D must
also exist in P (i.e., these theorems have been also proved in P , modulo the content-naming), and that these
theorems precede T in P in its chronological order (otherwise we might get cyclic training data for P).

There are two possible dangers with this approach: collisions in MD5 and dealing with types in the HOL logic. The
first issue is theoretical: the chance of unintended MD5 collisions is very low, and if necessary, we can switch to
stronger hashes such as SHA-256. The second issue is more real: there is a choice of using content-encoding also
for the HOL types, or just using their original names. If original names are used, two differently defined types can get
the same name in two different projects, making the theorems about such types incompatible. If content encoding
is used, all types with the same definition will get the same content name. However, the HOL logic rejects such
semantic equality of the two types already in its parsing layer: two differently named types are always completely
different in the HOL logic.24 We currently use the first method (keeping the original type names), however the
second method might be slightly more correct. In both cases, it probably would not be hard to add guards against
the possible conflicts. In all cases, these issues only influence the performance of the premise-selection algorithms.
The theorem proving (and proof reconstruction) is always done with the original symbols.

3.4 Analysis of the Knowledge Re-use for Flyspeck Versions

It is interesting to know how much knowledge re-use can be obtained with the content-encoding method. We analyze
this in Table 5 on the theorems (or rather unique conjuncts) coming from three different Flyspeck SVN versions:
2887, 3006, and 3400. Note that the last version (3400) has not been subjected to several learning/ATP passes. Such
passes raised the number of ATP-proved theorems in the earlier versions by about 20 %. The table shows that the
number of reusable theorems and proofs from the previous version is typically very high. This also means that more
expensive AI/ATP computations (e.g., use of higher time limits, MaLARea-style looping, and even BliStr-style
strategy evolution [36]) could be in the future added to the tasks done on the server in its idle time, because the
results of such computations will typically improve the success rates of all the future versions of such large projects.

A by-product of the content encoding is also information about symbols that are defined multiple times under
different names. For the latest version of Flyspeck there are 39 of them, shown in Table 6.

4 Modes of Interaction with the Service

The standard web interface (Fig. 2) displays the available projects, links to their documentation, allows queries
to the projects, and provides an HTML form for uploading and modifying projects. Requests are processed using

24 The second author could not resist pointing out that this issue disappears in set theory with soft types.

18 C. Kaliszyk, J. Urban

Table 6 39 symbols with
the same content-based
definition in Flyspeck SVN
3400

face_path / face_contour reflect_along / reflection

zero6 / dummy6 UNIV / predT

CROSS / *_c node3_y / rotate3

EMPTY / pred0 APPEND / cat

func / FUN set_components / set_part_components

ONE_ONE / injective triple_of_real3 / vector_to_pair

supp / SUPP is_no_double_joins / is_no_double_joints

dirac_delta / delta_func unknown / NONLIN

o / compose node2_y / rotate2

I / LET_END / mark_term

Fig. 3 Parallel asynchronous calls of the online advisor from Emacs

asynchronous DOM modification (AJAX): a JavaScript script makes the requests in the background and updates a
part of the page that displays the response. Each request is first sent to the external PHP request processor, which
communicates with the HOL(y)Hammer server. A prototype of a web editor interacting both with HOL Light and
with the online advisor is described in [31].

Figure 3 shows an Emacs session with several HOL Light goals.25 The online advisor has been asynchronously
called on the goals, and just returned the answer for the fifth goal and inserted the corresponding tactic call at an
appropriate place in the buffer. The relevant Emacs code (customized for the HOL Light mode distributed with
Flyspeck) is available online26 and also distributed with the local HOL(y)Hammer install. It is a modification of
the similar code used for communicating with the MizAR service from Emacs.

The simplest option (useful as a basis for more sophisticated interfaces) is to interact with the service in com-
mand line, for example using netcat, as shown for two following two queries. The first query is solved easily by
INT_ARITH, while the other requires nontrivial premise and proof search.

$ echo ’max a b = &1 / &2 * ((a + b) + abs(a - b))’
| nc colo12-c703.uibk.ac.at 8080

25 A longer video of the interaction is at http://mws.cs.ru.nl/~urban/ha1.mp4.
26 https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el.

http://mws.cs.ru.nl/~urban/ha1.mp4
https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el

HOL(y)Hammer: Online ATP Service for HOL Light 19

......
* Replaying: SUCCESS (0.25s): INT_ARITH_TAC
* Loadavg: 48.13 48.76 48.49 52/1151 46604

$ echo ’!A B (C:A->bool).((A DIFF B) INTER C=EMPTY) <=> ((A INTER C) SUBSET B)’
| nc colo12-c703.uibk.ac.at 8080
* Read OK

..............
* Theorem! Time: 14.74s Prover: Z Hints: 32 Str:
allt_notrivsyms_m10u_all_atponly

* Minimizing, current no: 9
.* Minimizing, current no: 6
* Result: EMPTY_SUBSET IN_DIFF IN_INTER MEMBER_NOT_EMPTY SUBSET SUBSET_ANTISYM

5 The Local Service Description

The service can be also downloaded,27 installed and used locally, for example when a user is working on a private
formalization that cannot be included in the public online service.28 Installing the advisor locally proceeds analo-
gously to the steps described in Algorithm 1. Two passes are done through the user’s repository. In the first pass,
the names of all the theorems available in the user’s repository are exported, together with their features (symbols,
terms, types, etc., as explained in Sect. 2.1). In the second pass, the dependencies between the named theorems
are computed, again using the modified proof recording HOL Light kernel that records all the processing steps.
Given the exported features and dependencies, local advice system(s) (premise selectors) are trained outside HOL
Light. Using the fast sparse learning methods described in Sect. 2.1, this again takes seconds, depending on the
user hardware and the size of the development. The advisors are then run locally (as independent servers) to serve
the requests coming from HOL Light. While the first pass is just a fast additional function that can be run by the
user at any time on top of his loaded repository, the second pass now still requires full additional processing of the
repository. This could be improved in the future by checkpointing the proof-recording image, as we do in the online
server.

The user is provided with a tactic (HH_ADVICE_TAC) which runs all the mechanisms described in the Sect. 2
on the current goal locally. This means that the functions relying on external premise selection and ATPs are tried
in parallel, together with a number of decision procedures. The ATPs are expected to be installed on the user’s
machine and (as in the online service) they are run on the goal translated to the TPTP format, together with a limited
number of premises optimized separately for each prover. By default Vampire, Eprover and Z3 are now run, using
three-fold parallelization.

The local installation in its simple configuration is now only trained using the naive Bayes algorithm on the
training data coming from the HOL Light proof dependencies and the features extracted with the standard method.
As shown in [22], the machine learning advice can be strengthened using ATP dependencies, which can be also
optionally plugged into the local mode. Further strengthening can be done with combinations of various methods.
This is easy to adjust; for example a user with a 24-CPU workstation can re-use/optimize the parallel combinations
from Table 1 used by the online service.

5.1 Online Versus Local Systems

The two related existing services are MizAR and Sledgehammer. MizAR has so far been an online service
(accessible via Emacs or web interface), while Sledgehammer has so far required a local install (even though it
already calls some ATPs over a network). HOL(y)Hammer started as an online service, and the local version has

27 http://cl-informatik.uibk.ac.at/users/cek/hh/.
28 The online service can already handle private developments that are not shown to the public.

http://cl-informatik.uibk.ac.at/users/cek/hh/

20 C. Kaliszyk, J. Urban

been added recently to answer the demand by some (power)users. The arguments for installing the service locally
are mainly the option to use the service offline (possibly using one’s own large computing resources), and to keep
the development private. As usual, the local install will also require the tools involved to work on all kinds of
architectures, which is often an issue, particularly with software that is mostly developed in academia.

As described in Sect. 2, the online service now runs 7 different AI/ATP instances and 4 decision procedures for
each query. When counting the individual ATP strategies (which may indeed be very orthogonal in systems like
Vampire and E), this translates to about 70 different AI/ATP attempts for each query. If the demands grows, we can
already now distribute the load from the current 48-CPU server to 112 CPUs by installing the service on another
64-CPU server. The old resolution-ATP wisdom is that systems rarely prove a result in higher time limits, since the
search space grows very fast. A more recent wisdom (most prominently demonstrated by Vampire) however is that
using (sufficiently orthogonal) strategy scheduling makes higher time limits much more useful.29 And even more
recent wisdom is that learning in various ways from related successes and failures further improves the systems’
chances when given more resources. All this makes a good case for developing strong online computing services
that can in short bursts focus a lot of power on the user queries, which are typically related to many previous
problems. Also in some sense, the currently used AI/ATP methods are only scratching the surface. For example,
further predictive power is obtained in MaLARea [39] by computing thousands of interesting finite models, and
using evaluation in them as additional semantic features of the formulas. ATP prototypes like MaLeCoP [40] can
already benefit from accumulated fine-grained learned AI guidance at every inference step that they make. The
service can try to make the best (re-)use of all smaller lemmas that have been proved so far (as in [18,32]). And
as usual in machine learning, the more data are centrally accumulated for such methods, the stronger the methods
become. Finally, it is hard to overlook the recent trend of light-weight devices for which the hard computational
tasks are computed by large server farms (cloud computing).

6 Conclusion and Future Work

We believe that HOL(y)Hammer is one of the strongest AI/ATP services currently available. It uses a toolchain
of evolving large-theory methods that have been continuously improved as more and more AI/ATP experiments
and computations have been recently done, in particular over the Flyspeck corpus. The combinations that jointly
provide the greatest theorem-proving coverage are employed to answer the queries with parallelization of practically
all of the components. The parallelization factor is probably the highest of all existing ATP services, helping to focus
the power of many different AI/ATP methods to answer the queries as quickly as possible. The content-encoding
mechanisms allow to re-use a lot of the expensive theorem-proving knowledge computed over earlier projects and
versions. And the checkpointing allows reasonably fast update of existing projects.

At this moment, there seems to be no end to better premise selection, better translation methods for ATPs
(and SMTs, and more advanced combined systems like MetiTarski [1]), better ATP methods (and their AI-based
guidance), and better reconstruction methods. Future work also includes broader updating mechanisms, for example
using git to not just add, but also delete files from an existing project. A major issue is securing the server for more
open (perhaps eventually anonymous) uploads, and maybe also providing encryption/obfuscation mechanisms
that guarantee privacy of the non-public developments.30 An interesting future direction is the use of the service
with its large knowledge base and growing reasoning power as a semantic understanding (connecting) layer for
experiments with tools that attempt to extract logical meaning from informal mathematical texts. Mathematics,
with its explicit semantics, could in fact pioneer the technology of very deep parsing of scientific natural language
writings, and their utilization in making stronger and stronger automated reasoning tools about all kinds of scientific
domains.

29 In [22], the relative performance of Vampire in 30 and 900 s is very different.
30 The re-use performance obtained through content encoding suggests that just name obfuscation done by the client is not going to
work as a privacy method.

HOL(y)Hammer: Online ATP Service for HOL Light 21

Acknowledgments Cezary Kaliszyk received the support from FWF grant P26201 was funded by NWO grant Knowledge-based
Automated Reasoning.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason.
44(3), 175–205 (2010)

2. Alama, J., Brink, K., Mamane, L., Urban, J. : Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban,
J., Rabe, F. (eds.) Calculemus/MKM, volume 6824 of LNCS, pp. 133–148. Springer, Berlin (2011)

3. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel
methods. J. Autom. Reason. 52(2), 191–213 (2014)

4. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka,
S.A. (eds.) TACAS, volume 7795 of Lecture Notes in Computer Science, pp. 493–507. Springer, Berlin (2013)

5. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.)
Proceedings of Automated Deduction –CADE-24–24th International Conference on Automated Deduction, Lake Placid, NY,
USA, June 9–14. Lecture Notes in Computer Science, vol. 7898, pp. 414–420. Springer (2013)

6. Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Technical Report UIUCDCS-R-99-2101, UIUC
Computer Science Department, 5 (1999)

7. de Moura, L.M., Bjørner, N. : Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, volume 4963 of
LNCS, pp. 337–340. Springer, Berlin (2008)

8. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6(4), 325–327 (1976)
9. Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic with automated parser generation. In: Furbach,

U., Shankar, N. (eds.) Proceedings of Third International Joint Conference on Automated Reasoning, IJCAR 2006, Seattle, WA,
USA, August 17–20. Lecture Notes in Computer Science, vol. 4130, pp. 156–161. Springer (2006)

10. Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms,
Proofs, number 05021 in Dagstuhl Seminar Proceedings, pp. 1–11, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany

11. John, H.: HOL Light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds.) FMCAD, volume 1166 of LNCS, pp. 265–269.
Springer, Berlin (1996)

12. Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M., Slaney, J.K. (eds.): Proceedings of the 13th Inter-
national Conference on Automated Deduction, number 1104 in LNAI, pp. 313–327. Springer (1996)

13. Hendriks, M., Kaliszyk, C., Raamsdonk, F.van , Wiedijk, F.: Teaching logic using a state-of-the-art proof assistant. Acta Didact.
Napoc. 3(2), 35–48 (2010)

14. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE, volume
6803 of LNCS, pp. 299–314. Springer, Berlin (2011)

15. Kaliszyk, C.: Web interfaces for proof assistants. In: Autexier, S., Benzmüller, C. (eds.): Proceedings of the Workshop on User
Interfaces for Theorem Provers (UITP’06), volume 174[2] of ENTCS, pp. 49–61 (2007)

16. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceedings
of the 4th International Conference on Interactive Theorem Proving (ITP’13), volume 7998 of LNCS, pp. 51–66. Springer (2013)

17. Kaliszyk, C., Urban, J.: Automated reasoning service for HOL light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) Proceedings of Intelligent Computer Mathematics–MKM, Calculemus, DML, and Systems and Projects 2013, Held as
Part of CICM 2013, Bath, UK, July 8–12. Lecture Notes in Computer Science, vol. 7961, pp. 120–135. Springer (2013)

18. Kaliszyk, C., Urban, J.: Lemma mining over HOL light. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.), LPAR, volume
8312 of Lecture Notes in Computer Science, pp. 503–517. Springer (2013)

19. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, arXiv:1310.2805 (2013)
20. Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light. In: Bonacina [6], pp. 267–274
21. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban,

J. (eds.) PxTP 2013, volume 14 of EPiC Series, pp. 87–95. EasyChair (2013)
22. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. (2014). doi:10.1007/

s10817-014-9303-3
23. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV, volume 8044 of

Lecture Notes in Computer Science, pp. 1–35. Springer (2013)
24. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T. : Overview and evaluation of premise selection tech-

niques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR, volume 7364 of LNCS, pp. 378–392.
Springer, Berlin (2012)

25. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)

http://arxiv.org/abs/1310.2805
http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3

22 C. Kaliszyk, J. Urban

26. Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link between automated and interactive
theorem provers. In: 8th IWIL, 2010. Invited talk

27. Paulson, L.C., Susanto, K.W. : Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt,
J. (eds.) TPHOLs, volume 4732 of LNCS, pp. 232–245. Springer, Berlin (2007)

28. Pitts, A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic, Cambridge University Press, Cambridge (1993)

29. Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)
30. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In:

Furbach, U., Shankar, N. (eds.) Proceedings of Third International Joint Conference on Automated Reasoning, IJCAR 2006, Seattle,
WA, USA, August 17–20. Lecture Notes in Computer Science, vol. 4130, pp. 67–81. Springer (2006)

31. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display: a wiki for Flyspeck. In: Carette, J., Aspinall,
D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Proceedings of Intelligent Computer Mathematics–MKM, Calculemus, DML, and
Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8–12. Lecture Notes in Computer Science, vol. 7961, pp.
152–167. Springer (2013)

32. Urban, J.: MoMM—fast interreduction and retrieval in large libraries of formalized mathematics. Int. J. Artif. Intell. Tools
15(1), 109–130 (2006)

33. Urban, J.: An overview of methods for large-theory automated theorem proving (Invited Paper). In: Höfner, P., McIver, A., Struth,
G. (eds.) ATE Workshop, volume 760 of CEUR Workshop Proceedings, pp. 3–8. CEUR-WS.org (2011)

34. Urban, J.: Content-based encoding of mathematical and code libraries. In: Lange, C. Urban, J. (eds.) Proceedings of the ITP 2011
Workshop on Mathematical Wikis (MathWikis), number 767 in CEUR Workshop Proceedings, pp. 49–53, Aachen (2011)

35. Urban, J.: Parallelizing Mizar. CoRR, arXiv:1206.0141 (2012)
36. Urban, J.: BliStr: The Blind Strategymaker. CoRR, arXiv:1301.2683 (2013)
37. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50, 229–241 (2013)
38. Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S.,

Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus, volume 6167 of LNCS,
pp. 132–146. Springer (2010)

39. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1—machine learner for automated reasoning with semantic guidance.
In: Armando, A., Baumgartner, P., Dowek, G. (eds) IJCAR, volume 5195 of LNCS, pp. 441–456. Springer (2008)

40. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: machine learning connection prover. In Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX, volume 6793 of LNCS, pp. 263–277. Springer (2011)

41. Vinge, V.: A Fire Upon the Deep. Tor Books, New York City (1992)
42. Worden, L., WorkingWiki: a MediaWiki-based platform for collaborative research. In: Lange, C. Urban, J. (eds.) ITP Workshop

on Mathematical Wikis (MathWikis), number 767 in CEUR Workshop Proceedings, pp. 63–73, Aachen (2011)

http://arxiv.org/abs/1206.0141
http://arxiv.org/abs/1301.2683

	HOL(y)Hammer: Online ATP Service for HOL Light
	Abstract
	1 Introduction and Motivation
	2 Description of the Problem Solving Functions for Flyspeck
	2.1 Feature Extraction and Premise Selection
	2.2 Translation to ATP Formats and Running ATPs
	2.3 The AI/ATP Combinations Used
	2.4 Use of Decision Procedures
	2.5 Proof Minimization and Reconstruction
	2.6 Description of the Parallelization Infrastructure
	2.7 Use of Caching

	3 Multiple Projects, Versions, and Their Online Update
	3.1 Basic Server Infrastructure for Multiple Projects
	3.2 Safety
	3.3 Re-use of Knowledge from Related Projects
	3.4 Analysis of the Knowledge Re-use for Flyspeck Versions

	4 Modes of Interaction with the Service
	5 The Local Service Description
	5.1 Online Versus Local Systems

	6 Conclusion and Future Work
	Acknowledgments
	Acknowledgments
	References

