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Abstract The naïve Bayes approach is a simple but often
satisfactory method for supervised classification. In this
paper, we focus on the naïve Bayes model and propose the
application of regularization techniques to learn a naïve
Bayes classifier. The main contribution of the paper is a
stagewise version of the selective naïve Bayes, which can be
considered a regularized version of the naïve Bayes model.
We call it forward stagewise naïve Bayes. For comparison’s
sake, we also introduce an explicitly regularized formulation
of the naïve Bayes model, where conditional independence
(absence of arcs) is promoted via an L1/L2-group penalty on
the parameters that define the conditional probability distri-
butions. Although already published in the literature, this idea
has only been applied for continuous predictors. We extend
this formulation to discrete predictors and propose a modi-
fication that yields an adaptive penalization. We show that,
whereas the L1/L2 group penalty formulation only discards
irrelevant predictors, the forward stagewise naïve Bayes can
discard both irrelevant and redundant predictors, which are
known to be harmful for the naïve Bayes classifier. Both
approaches, however, usually improve the classical naïve
Bayes model’s accuracy.
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1 Introduction

Bayesian network classifiers [7] are a popular supervised
classification paradigm. A well-known Bayesian network
classifier is the naïve Bayes [14], a simple Bayesian net-
work classifier that assumes that the predictors or variables
are independent given each class value. Despite its simplicity
and strong assumptions, the naïve Bayes classifier has been
proven to work satisfactorily in many domains [4,11]. Typi-
cally, the parameters of the naïve Bayes model are found by
maximizing the joint likelihood of the model.

The naïve Bayes model’s accuracy, however, declines in
the presence of noisy predictors. A noisy predictor can be
a predictor that either carries no useful information for the
classification (irrelevant) or is strongly dependent on another
predictor (redundant). Redundancy is particularly harmful,
because the predictor information has double the influence
than it should.

For variable selection purposes, it is common to use fil-
tering approaches, which perform variable selection disre-
garding the classifier, or (greedy) wrapper algorithms, which
simultaneously introduce variables into the model and itera-
tively estimate the parameters. We focus on the wrapper par-
adigm. The (stepwise) selective naïve Bayes [13] is a popular
example of greedy wrapper algorithm.

Regularization techniques introduce additional informa-
tion, usually to solve an ill-posed problem or to avoid over-
fitting. Also, by imposing certain restrictions, regularization
trades off a little bias against a larger reduction in variance.
L1-regularization [15], which imposes an L1-penalty on the
parameters, is also useful for variable selection, because it
drives some parameters to exactly zero.

An example of regularization within the naïve Bayes
model is the L1/L2-regularized naïve Bayes, taken by
van Gerven and Heskes [9], which applies optimization
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techniques to minimize the negative log-likelihood function
of the data given the model plus an L1/L2-group penalty on
the model complexity. This penalty encourages some predic-
tors to be discarded. While they apply this idea only to the
continuous predictor case, we extend it to deal with discrete
predictors. Also, we introduce an adaptive penalty [19] that
further improves the method’s performance.

The main contribution of this paper, however, is a stage-
wise version of the selective naïve Bayes that is particularly
useful when there are predictors that are relevant but, to some
extent, redundant. At each iteration, instead of adding an
“entire” predictor to the model, the parameters of the selected
predictor are updated just a little. This method is inspired by
the forward stagewise selection method for linear regression
[17], which is also related to boosting and can be consid-
ered a form of regularization. We call this method forward
stagewise naïve Bayes.

The remainder of the paper is organized as follows.
Section 2 defines the notation and presents the basic naïve
Bayes approach. Section 3 introduces some methods related
to naïve Bayes, including selective naïve Bayes and the
L1/L2-regularized naïve Bayes. Section 4 describes the
effect of noisy (irrelevant or redundant) predictors. Section 5
introduces the forward stagewise naïve Bayes method.
Section 6 discusses model selection. Section 7 outlines the
set of experiments used to test the algorithms. Finally, Sect. 8
presents the conclusions and future work.

2 Notation and classical naïve Bayes

Let {X1, . . . , X p} be the set of p predictors and Y the class
variable. Let D = {(xr1, . . . , xr p, yr ), r = 1, . . . , N } be the
labeled data set containing N instances. X denotes the N × p
predictor data matrix, with elements xri , r ∈ {1, . . . , N }, i ∈
{1, . . . , p}, and y = (y1, . . . , yN )

T denotes the vector of
responses. We assume that the class variable, Y , may take
values j ∈ {1, . . . , J}. The objective is to learn a classifier
from D so as to predict the class value for incoming data
points just given by predictor values.

We assume that predictors are either discrete or contin-
uous, although generalizations for combining the two are
extremely straightforward.

When the inputs are discrete, we assume that each
predictor Xi has Mi possible states. Assuming that the pre-
dictors are conditionally independent given the class var-
iable, we denote their conditional probability table (CPT)
as an Mi × J matrix �i . Each element θik j of �i , j ∈
{1, . . . , J }, k ∈ {1, . . . ,Mi }, is the probability of the predic-
tor Xi taking its kth state given the j th class variable state,
i.e., θik j = P(Xi = k|Y = j;�i ).

We assume that, when the inputs are continuous, predic-
tors follow a Gaussian distribution within each class value.

We denote as μi and σ i the vectors whose elements are, for
each state of Y , the expectation and standard deviation of Xi ,
respectively, i.e., Xi |Y = j ∼ N (μi j , σi j ), j ∈ {1, . . . , J }.
We denote the conditional density function for predictor Xi ,
given that Y = j , as f (xi | j;μi j , σi j ).

Let � = {�1, . . . ,�p},μ = {μ1, . . . ,μp} and σ =
{σ 1, . . . , σ p}. Likewise, we denote the whole set of predic-
tor parameters as � = {�1, . . . ,�p}, where �i generically
denotes either �i or {μi , σ i }. Also, we denote class prior
probabilities as π = (π1, . . . , πJ ). Considering the predic-
tors to be conditionally independent given the class, the full
likelihood function for the naïve Bayes (NB) [14] model is
defined as

L(D;�) =
N∏

r=1

[
πyr

p∏

i=1

ψ(Xi = xri |Y = yr ,�i )

]
, (1)

where function ψ(·) computes the contribution of each pre-
dictor to the full likelihood. The likelihood is thus decom-
posable and can be computed separately for each predictor.
We now define the contribution of each predictor to the full
likelihood.

Let W(i) be an N × Mi indicator matrix for discrete pre-
dictor Xi . For the r th instance, the elements of the indicator
matrix are defined as w(i)rk = 1 if xri = k and w(i)rk = 0
if xri �= k. Similarly, S is defined as the N × J indicator
matrix for class variable Y . Hence, the contribution of a dis-
crete predictor Xi and instance r to the full likelihood is

ψ(Xi = xri |Y = yr ,�i ) = P(Xi = xri |Y = yr ,�i )

= w(i)r ·�i sT
r ·, (2)

where w(i)r· is the r th row vector of W(i) and sr · is the
r th row vector of S. Hence, w(i)r · and sr · are selecting
the appropriate conditional probability for the r th instance
from �i .

On the other hand, the contribution of a continuous pre-
dictor Xi and instance r to the full likelihood is defined as

ψ(Xi = xri |Y = yr ,�i ) = f (xri |yr ;μiyr , σiyr )

= 1√
2πσiyr

exp − (xri − μiyr )
2

2σ 2
iyr

. (3)

Let �
(0)
i be the parameters of predictor Xi such that they

are exactly equal for all class values, that is, either θ(0)ik j in

the discrete case or {μ(0)i j , σ
(0)
i j } in the continuous case are

equal for all j ∈ {1, . . . , J }. This is equivalent to removing
predictor Xi from the model.

To estimate a NB model, we compute the maximum
likelihood estimation (MLE) of the parameters, denoted as

�̂
(1)
i , μ̂

(1)
i , σ̂

(1)
i and π̂ , as

123



Prog Artif Intell (2012) 1:57–69 59

θ̂
(1)
ik j = Ni jk

N j
,

μ̂
(1)
i j =

∑
r;yr = j xri

N j
,

σ̂
(1)
i j =

√∑
r;yr = j (xri − μ̂i j )2

N j
,

π̂ j = N j

N
,

where Ni jk is the number of instances in the training data set,
where predictor Xi takes the value k and Y takes the value j ,
and N j is the number of instances where Y takes the value j .

The NB formulation for the probability of the class given
the (continuous or discrete) predictors is

P(Y = j |X1 = k1, . . . , X p = kp, �̂
(1)
, π̂)

∝ π̂ j

p∏

i=1

ψ(Xi = ki |Y = j, �̂
(1)
i ) = φ j . (4)

Thus, given vector φ = (φ1, . . . , φJ ), whose components
are computed with Eq. (4), the actual classification is per-
formed by

ĵ = maxpos(φ), (5)

where, maxpos(·) returns the position of the maximum ele-
ment of the vector argument. Ties can be broken at random.
Note that, although φ depends on the input data configura-
tion, it is omitted from the notation for simplicity sake.

3 Methods related to naïve Bayes

In this section, we introduce some existing methods related
to NB: the selective naïve Bayes [13], the weighted naïve
Bayes [6] and the L1/L2-regularized naïve Bayes [9]. Also,
we generalize the L1/L2-regularized naïve Bayes to handle
both discrete and continuous predictors and propose a simple
improvement on this method.

3.1 Existing methods

The selective naïve Bayes (SNB) model [13] is a popular
greedy, wrapper, stepwise algorithm for obtaining a NB
model and performing variable selection. The SNB approach
obeys Eq. (4) and, hence, makes use of the MLE. However, it
is applied over only a subset of predictors. A forward greedy
search finds this subset of predictors, where predictors are
included in the model as long as the prediction accuracy (over
training data) keeps increasing. Langley and Sage [13] also
introduce a backwards search strategy, but they conclude that
forward search is often more advantageous. On this ground,
we use forward search in this paper.

The weighted naïve Bayes (WNB) model [6] includes all
the predictors, which it weights according to their relevance
for the classification. It is conceived only for discrete predic-
tors. Weights are computed as

wi =

√√√√√
J∑

j=1

Mi∑

k=1

[
P(Y = j |Xi = k)− P(Y = j)

]2
, (6)

so that the resulting model is

P(Y = j |X1 = k1, . . . , X p = kp,�) ∝ π̂ j

p∏

i=1

×ψ(Xi = ki |Y = j,�i )
wi = φ j . (7)

The classification rule is the same as for NB (Eq. (5)).
Using regularization techniques, the L1/L2-regularized

naïve Bayes approach (L1/L2-NB) [9], designed for contin-
uous predictors, is formulated as the optimization problem

argminμ,σ − log L(D;μ, σ )

+λ
p∑

i=1

√√√√
J∑

j=1

(μi j − μ̂
(0)
i j )

2 +
J∑

j=1

(σi j − σ̂
(0)
i j )

2,

s.t.− σi j < 0 ∀i, j, (8)

where L(D;μ, σ ) is defined in Eqs. (1) and (3) and λ is some
regularization parameter. This optimization problem has J p
inequality constraints.

This way, the set of parameters of each single predictor
(inside the square root) forms a group. This penalty is hence
a group lasso-type penalty or L1/L2-penalty [18], which is
able to discard entire groups. Therefore, all the parameters
{μi j , σi j } of some predictors will be prompted to be equal

to {μ̂(0)i j , σ̂
(0)
i j }, so that such predictors will be effectively

excluded.
Note that this optimization problem is convex. First, it is

well known that the Gaussian likelihood defined in Eq. (3) is
log-concave and hence the negative log-likelihood is convex
[3]. This can be easily proved by taking the Hessian, which
is positive semidefinite and thus proves convexity. Second,
the L1/L2-penalty defined in (8) is just a sum of L2-penal-
ties. Since the L2-norm function is convex, it is the sum of
L2-norms. The sum of two convex functions is convex.
Finally, the inequality constraint functions are just nonneg-
ativity constraints. Therefore, problem (8) is convex and is, in
fact, denoted in the standard form. Although the entire objec-
tive function is non-smooth (non-differentiable), it is com-
posed of a smooth loss function and a block-separable penalty
and, hence, the problem can be solved by unconstrained
(block) coordinate gradient descent optimization [16]. The
constraint can be subsumed into the penalty term by setting
it to ∞ when σi j < 0 for any pair (i, j).
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3.2 Generalized L1/L2-regularized naïve Bayes

Now, we extend the L1/L2-NB formulation to deal with the
discrete predictor case and propose an adaptive formulation
of the problem for achieving better predictions.

We formulate the optimization problem for discrete pre-
dictors as

argmin� − log L(D;�)+ λ

p∑

i=1

√√√√√
J∑

j=1

Mi∑

k=1

(θik j − θ̂
(0)
i jk )

2,

s.t. 1t
iθ i j − 1 = 0 ∀i, j,

−θik j < 0 ∀i, j, k,

θik j − 1 < 0 ∀i, j, k, (9)

where, the loss function L(D;�) is defined in Eqs. (1) and
(2), θ i j is the j th column of �i and 1i is a column vector
with Mi ones. Therefore, there are Jp equality and

∑p
i=1 J Mi

inequality constraints (each pair of inequality constraints can
be subsumed in one open box constraint θik j ∈ (0, 1)).

This problem is also convex and is denoted in the standard
form. Since the expression in Eq. (2) is linear on �, it is clear
that the negative log-likelihood is convex and differentiable.
The penalty in the loss function is also convex (but non-
differentiable), and thus the entire loss function is convex.
Both the equality and inequality constraint functions are
affine. Even if we mixed both continuous and discrete predic-
tors, the problem would still be convex. However, with the
equality constraints, we cannot follow the gradient descent
direction, so that (block) coordinate gradient descent opti-
mization is not directly applicable. Instead, we take a simple
approximation: starting with initial values�(0)i , i =1, . . . , p,

we update �i toward�(1)i at each iteration, while the others
predictors are held fixed, until the objective function in Eq. 9
reaches a minimum. This is a just a line-search.

A possible improvement on this approach is to use an adap-
tive penalty, which will hopefully improve the accuracy of the
estimator. In L1-penalized linear regression [15], for exam-
ple, such penalties reduce the bias and lead to a consistent
estimation [19]. The innovation is to penalize each predictor
variable according to its importance. Each variable penalty is
thus scaled by 1/|β(1)i |, where β(1)i is (in the N > p case) the
ordinary least squares regression coefficient or MLE. Note
that |β(1)i | is just the absolute upper bound of this coeffi-
cient in the regularized problem, i.e., the upper bound of the
penalty for this variable.

We can apply an analogous idea to the L1/L2-NB for-
mulation by computing weights w = (w1, . . . , wp), for the
discrete and continuous predictor cases, respectively, as

wi =

√√√√√
J∑

j=1

Mi∑

k=1

(θ̂
(1)
i jk − θ̂

(0)
i jk )

2,

wi =
√√√√

J∑

j=1

(μ̂i j
(1) − μ̂i j

(0)
)2 +

J∑

j=1

(σ̂i j
(1) − σ̂i j

(0)
)2,

so that loss functions in (9) and (8) become, respectively,

− log L(D;μ, σ )+ λ

p∑

i=1

wi ×

√√√√√
J∑

j=1

Mi∑

k=1

(θik j − θ̂
(0)
i jk )

2,

− log L(D;�)

+λ
p∑

i=1

wi

√√√√
J∑

j=1

(μi j − μ̂
(0)
i j )

2 +
J∑

j=1

(σi j − σ̂
(0)
i j )

2.

Note that each wi is a tight upper bound of the penalty
for predictor Xi , and here we have the parallelism with the
adaptive penalty for linear regression. We call this approach
adaptive L1-regularized naïve Bayes (aL1/L2-NB).

4 Noisy predictors

In this section, we define irrelevance and redundancy and
remark on some ideas that motivate the approach introduced
in Sect. 5.

We show that it is sometimes beneficial to use a point of

compromise between �̂
(0)

and �̂
(1)

instead of the MLE like
SNB does. Also, we discuss why the L1/L2-NB approach
(including the adaptive version) can discard only irrelevant
predictors and not redundant predictors.

First, we define the redundancy and irrelevance concepts
and briefly discuss their effect on the NB model. We define a
predictor as noisy if it is irrelevant for the class variable or is
redundant to another predictor. Similar definitions of irrele-
vance and redundancy can be found, for example, in Kohavi
and John [12] and Langley and Sage [13].

A discrete predictor Xi is irrelevant for Y if

P(Y = j |Xi = k) = P(Y = j), ∀k ∈ {1, . . . ,Mi },
∀ j ∈ {1, . . . , J },

so that the value of Xi does not give any information about
the value of Y . Equivalently, we can say that the within-class
parameters of predictor Xi are equal for all class values. The
definition for a continuous predictor is analogous.

On the other hand, two predictors Xi1 and Xi2 are redun-
dant when there is a dependency between them.

Let H(·) represent the entropy function. Two predictors
Xi1 and Xi2 are fully redundant when

H(Xi1 |Xi2) = H(Xi2 |Xi1) = 0. (10)

On the other hand, they are completely independent when

H(Xi1 |Xi2) = H(Xi1), H(Xi2 |Xi1) = H(Xi2). (11)
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Fig. 1 Boxplots for the testing errors of NB without noisy variables
(left), NB with 50 irrelevant predictors and NB with 50 redundant
predictors

Note that these conditions are just extremes of a contin-
uum. In real-world data, predictors are rarely fully redundant
or completely independent. Instead, they typically are some-
where between these two extreme conditions.

When N → ∞ and p is finite (i.e., the complete informa-
tion case), irrelevant variables do not increment the expected

error of a NB classifier because �̂
(1) = �̂

(0)
holds exactly. In

the realistic case, when N is finite, we only have �̂
(1) 
 �̂

(0)
.

In the presence of many irrelevant predictors, these small dif-
ferences accumulate and can finally bias the actual decision
and degrade the classification accuracy.

It is well known, however, that, for NB, redundant predic-
tors have a more harmful effect than irrelevant predictors [5].
Figure 1 shows testing errors of NB models obtained from
three different types of discrete synthetic data sets. The first
type has three non-noisy predictors, {X1, X2, X3}, that are
generated from the following probabilities

�1 =
⎛

⎝
0.80 0.33 0.33
0.10 0.33 0.33
0.10 0.33 0.33

⎞

⎠ ,

�2 = �3 =
⎛

⎝
0.33 0.30 0.30
0.33 0.10 0.60
0.33 0.60 0.10

⎞

⎠ , (12)

so that predictor X1 discriminates between the first and the
other two class values, and predictors X2 and X3 mainly dis-
criminate between the second and third class values; π is
defined as being equal for all three class values. The other
two types have, in addition, 50 irrelevant discrete predic-
tors and 50 (fully) redundant discrete predictors, respectively.
The class can take three values, each with the same frequency.
We have conducted 100 experiments, generating training data
sets with N = 1,000 instances and test data sets with Nte =
3,000 instances. Notice that both kinds of noisy predictors,
but especially the redundant ones, decrease accuracy.

Using the same data, Fig. 2 illustrates, for one experiment,
the evolution of the testing error for an increasing number
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Fig. 2 Evolution of the testing error for an increasing number of irrel-
evant (left) and redundant (right) predictors. The first three predictors
are non-noisy

predictors. The X-axis represents the number of predictors in
the model. The first three added predictors (leftmost part of
the graphs) are relevant, and the others, up to 50, are irrelevant
(left hand graph) or redundant (right hand graph). Predictors
are redundant with regard to the first non-noisy predictor.
The solid line represents the error computed on the complete
testing data set, whereas the other lines represent the error for
each of the three class values. The black line represents the
mean of the other three lines. We find that the class value that
is best discriminated by the first predictor (short-dashed line)
decreases the error in the presence of redundant predictors,
but the other class values are no longer distinguishable. Irrel-
evant predictors, on the other hand, produce a more uniform
and moderate increment of the error.

Ideally, SNB only adds predictors that reduce the classifi-
cation error to the model. Hence, it will discard both redun-
dant and irrelevant predictors, and retain those variables that
are relevant but not redundant. However, as mentioned above,
relevance and redundancy are not absolute concepts. What
will SNB do with a set of relevant but non-fully redundant
predictors? Let us suppose that there are two predictors, Xi1

and Xi2 , that are (non-fully) redundant, and each carries valu-
able information. In this paper, we claim that a NB model that
balances the contribution of these predictors may be better
than a classic NB model that either excludes or fully includes
them, like SNB does.

We use an example to illustrate this point. Let us first
define

�
(αi )
i = αi�

(1)
i + (1 − αi )�

(0)
i ,

μ
(αi )
i = αiμ

(1)
i + (1 − αi )μ

(0)
i , (13)

σ
(αi )
i = αiσ

(1)
i + (1 − αi )σ

(0)
i ,

where, αi ∈ [0, 1]. Hence, �̂
(αi )

i is a linear combination

of �̂
(0)
i and �̂

(1)
i , where αi refers to predictor Xi . Within

this notation, we can say that SNB only considers values
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Fig. 3 a Testing error when discrete predictors X2 and X3 are not made redundant, b testing error when predictors are somewhat redundant

αi ∈ {0, 1} (exclusion or inclusion, respectively, of predic-
tor Xi ).

Now, we consider a training data set with N = 1,000
instances and a testing data set with Nte = 3,000 instances,
with three predictors whose CPTs are given in (12). Now, we
consider making X2 and X3 redundant by setting xr2 = xr3

for some proportion of the data instances.

Let us consider NB models with parameters �̂
(1)
1 , �̂

(α2)

2

and �̂
(α3)

3 . For a grid of values α2, α3 ∈ [0, 1], Fig. 3a shows
testing errors when X2 and X3 are not made redundant, that
is, if we have not set xr2 = xr3 at any time.

Figure 3b shows testing errors when X2 and X3 are some-
what redundant, that is, after setting xr2 = xr3 for some
proportion of the data instances.

We find that, when X2 and X3 are independent, the mini-
mum error is achieved when α2, α3 are equal to 1, i.e., when

�̂2 = �̂
(1)
2 and �̂3 = �̂

(1)
3 . On the other hand, when there is

some dependence between X2 and X3, and X1 is already part
of the model, the best model is somewhere in 0 < α2, α3 < 1.

Figure 4 illustrates the same scenario for continuous pre-
dictors. Figure 4a shows testing errors when X2 and X3 are
independent, and Fig. 4b shows testing errors when X2 and
X3 are somewhat redundant.

Although the effect is less obvious than in the discrete
case, the conclusion is analogous.

These examples illustrate that it may be worthwhile find-

ing a tradeoff between the MLE (�̂
(1)
i ) and the parameters

that remove the predictor from the model (�̂
(0)
i ). This is the

main motivation for proposing the forward stagewise naïve
Bayes approach.

Finally, we note that, although L1/L2-NB is a natural
choice for applying regularization to the NB model, it
discards only irrelevant and not redundant predictors. It dis-

cards irrelevant predictors because, since �̂
(0)
i is not very

different from �̂
(1)
i in this case, they make only a small con-

tribution to the loss function in optimization problems (8)

and (9). Note, however, that setting �̂i = �̂
(0)
i amounts to

removing this predictor from the NB model, but it does not
lead to the exclusion of the predictor from the loss func-
tion calculation in the optimization problem. In other words,
according to this formulation, all predictors participate in
the loss function (Eq. (1)), even when they can be simpli-
fied from the classification rule (Eqs. (4) and (5)). Therefore,
if, for example, two predictors are fully redundant but sep-
arately relevant, the L1/L2-NB (or aL1/L2-NB) approach
will add them both to the model, because, according to the
log-likelihood formulation, both have a relevant impact on
the loss function, no matter what the state of the other is. In
other words, the inclusion of one predictor does not change
the effect of the other on the loss function. In general terms,
any algorithm that solves optimization problems (8) or (9)
will select either both predictors or neither.

5 Forward stagewise naïve Bayes

We now introduce a more cautious version of the SNB
approach, the forward stagewise naïve Bayes (fsNB). Like
SNB, fsNB is a greedy algorithm but, instead of moving a

set of parameters from �̂
(0)
i to �̂

(1)
i at each iteration, it takes

small steps from �̂
(αi )

i to �̂
(αi +ε)
i , where ε > 0 is some small
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Fig. 4 a Testing error when continuous predictors X2 and X3 are not made redundant, b testing error when predictors are somewhat redundant

constant and αi determines the current parameters of predic-
tor Xi (see Eq. (13)). We can informally say that fsNB is to
SNB what stagewise regression is to stepwise regression [17].

The rationale of this approach is to deal with the situation
discussed in Sect. 4, i.e., when there are partially redundant
variables that each carry separate information. By giving a
balanced estimation of their parameters, we expect to retain
the valuable information while minimizing the harmful effect
of redundancy.

Concerning the greedy strategy, there is one important
matter to address. At each iteration, we need to evaluate each
predictor so as to decide which is going to be adjusted. There
are two simple strategies for finding which predictor is most
worth updating. Let us suppose that the parameters of pre-

dictor Xi are �̂
(αi )

i . The first strategy is to evaluate predictor

Xi by checking �̂
(αi +ε)
i . The second strategy is to check

�̂
(1)
i . Whatever we do, the predictor that leads to the great-

est error decrement will be updated by ε (and the others are
unchanged). Neither approach is problem-free. In the first
case, it is often not possible to decide how important a pre-
dictor is by just looking at some small increment ε.

In the second case, if we look at the complete update of
the parameters of the predictor, the contribution of other pre-
dictors with low αi ′ (i ′ �= i) could become negligible. Even
when predictor Xi is important, the model accuracy may
decrease considerably if the contribution of other important
variables (almost) disappears.

Figure 5 illustrates this situation for two predictors, one
relevant (left) and one irrelevant (right). It shows, at some
early step of the algorithm, the evolution of the training and
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Fig. 5 Training error (dashed line) and testing error (solid line) across
the evolution of two variables, one relevant (left) and one irrelevant
(right)

testing errors when we increase αi for each predictor. Note
that, in order to select the relevant rather than the irrelevant

predictor, we have to look at a point between �̂
(αi +ε)

and

�̂
(1)

, where the training (and testing error) is most decreased.
To do this, we consider some further steps ν at each itera-

tion, i.e., for each predictor, we check the error for

�̂
αi +ε
i , �̂

αi +2ε
i , . . . , �̂

αi +tε
i , . . . , �̂

αi +νε
i . This way, at each

iteration, we select the optimal values {i, t}, and update the
parameters accordingly. Parameters ε and ν define how
detailed is the search at each step and may have an impact
in the computational efficiency of the algorithm. Reason-
able variations of them, however, does not greatly change
the algorithm accuracy.
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Algorithm 1 Forward stagewise naïve Bayes (fsNB)

Initialize αi = 0, ∀i ∈ {1, . . . , p}, so that �̂
(αi )

i = �̂
(0)
i

while αi �= 1,∀i ∈ {1, . . . , p}, do
error∗ = ∞
for i ∈ {1, . . . , p} such that αi �= 1 do

for t ∈ {1, . . . ν} do

Compute �̂
+
i = �̂

(αi +tε)
i

φ
(r)
j = π j

∏p
i ′=1 ψ(Xi ′ = xri ′ |Y = j, �̂

+
i ′ ), for r ∈

{1, . . . , N }, j ∈ {1, . . . , J }
error = 1/N

∑N
r=1 I

(
maxpos(φ(r)), yr

)

if error ≤ error∗ then
error∗ = error
i∗ = i
t∗ = t

end if
end for

end for
αi∗ = αi∗ + t∗ε

end while

Algorithm 1 details the fsNB method in pseudocode for-
mat. The main part consists of two nested loops that look
for the best pair {i, t} at each iteration. Like SNB, the fitting
criterion is the training error. The function I (·, ·) is an indi-
cator function that outputs 1 if its arguments are equal and 0
if otherwise.

To minimize the computational cost, we can stop the pro-
cedure early if the training error has not improved during a
certain number of iterations. We have observed that the mini-
mum testing error is very rarely found after the training error
comes to a standstill, which makes this strategy promising.

6 Model selection

Both the L1/L2-NB (using a grid of λ values) and the fsNB
approaches generate a potentially large set of models, from
which a final model needs to be selected. We can use a valida-
tion subset of the data set (if data are abundant), K-fold cross-
validation, or some penalized criterion, which is typically
the training loss plus some estimation of the optimism of the
training loss rate. In this paper, we use the AIC statistic [1]:

AIC = Q (D, �̂)+ 2

N
d,

where the loss function is the mean cross-entropy or deviance

Q (D, �̂) = 1

N

N∑

r=1

−2 log(Y = yr |X1 = xr1, . . . , X p = xr p, �̂, π̂),

and d represents the degrees of freedom of the model, which
we compute as

d =
p∑

i=1

I (αi > 0), (14)
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Fig. 6 Left Training error (dashed line) and testing error (solid line).
Minimum testing error step is highlighted with a vertical line. Right
AIC statistic (solid line), loss function (dashed line) and AIC penalty
term (dashed-dotted line). The step with the lowest AIC statistic value
is highlighted with a vertical line.

where I (·) outputs 1 if the argument is true and 0 if otherwise.
Since a NB model is linear and 0 < d ≤ p, this is a reason-
able estimation.

For L1/L2-NB, a possible natural choice, instead of
Eq. (14), for computing d, in the discrete and continuous
case, respectively, would be

d =
p∑

i=1

1

J Mi

J∑

j=1

Mi∑

k=1

θik j − θ̂
(0)
i jk

θ̂
(1)
i jk − θ̂

(0)
i jk

,

d =
p∑

i=1

1

J

J∑

j=1

(
μi j − μ̂

(0)
i j

μ̂
(1)
i j − μ̂

(0)
i j

+ σi j − σ̂
(0)
i j

σ̂
(1)
i j − σ̂

(0)
i j

)
.

For fsNB, this would simplify to

d =
p∑

i=1

αi .

We have found, however, that the results are better using
Eq. (14). Therefore, in this paper, we compute d using
Eq. (14).

Figure 6 shows, for some generated data set with three rel-
evant variables and twelve irrelevant variables, training and
testing errors (left) and the AIC statistic, loss function and
AIC penalty term (right) for a sequence of NB models gen-
erated by fsNB. Note that, in this example, the best model is
nearly the same for the test data as for AIC.

7 Experiments

So far, we have presented some examples to illustrate
the claims. In this section, we perform a more systematic
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evaluation of the methods. We test the methods first on some
synthetic data sets and then on some data sets derived from
the Diabetes data set, taken from the UCI repository1.

7.1 Synthetic data sets

We now run the algorithms on a number of synthetic train-
ing/test data sets, generated from several scenarios. Each data
set has p = 20 predictors, which can be discrete (Mi = 3) or
continuous. Training data sets have N = 300 instances and
test data sets have Nte = 3,000 instances. There are J = 3
class values.

Within each data set, there are p1 = 3 non-noisy predic-
tors, p2 = 7 non-fully redundant predictors, which never-
theless carry some information, and p3 = 10 totally noisy
predictors, which may be irrelevant or redundant to any of the
p1 non-noisy predictors. We call these three groups, respec-
tively, V1, V2 and V3. Hence, p = p1 + p2 + p3.

For each experiment, we randomly generate the “true”
parameters that produce the data as follows. In the discrete
case, for each predictor in V1, we sample

θ i j ∼ Dir(c),

where θ i j is the j th column of �i and Dir(c) is a Dirich-
let distribution with the vector of shape parameters c, whose
components are all equal except one, which is different for
each j ∈ {1, . . . , J }.

Within each data set, all predictors in V2 have the same
CPT, which is similarly generated from a Dirichlet distribu-
tion. Each predictor in V2 is slightly redundant to the pre-
ceding and following predictor, i.e., H(Xi |Xi−1) < H(Xi )

and H(Xi |Xi+1) < H(Xi ) for i ∈ {p1 + 2, p1 + p2 − 1}
(assuming that predictors in V2 are preceded by predictors
in V1 and followed by predictors in V3). This redundancy is
achieved by setting the value of the predictor Xi to be equal
to either Xi−1 or Xi+1 with a probability equal to 0.5.

If predictors in V3 are irrelevant, they have the parameters
of a multinomial distribution, and they are generated from
a Dirichlet distribution with equal hyperparameters. In other
words, the CPT columns of each predictor in V3 are all equal.
If predictors in V3 are redundant, the parameters are gener-
ated as for irrelevant predictors. In this case, however, each
predictor has a very low conditional entropy given some ran-
domly selected predictor from V1. This is achieved by setting
the value of the predictor in V3 to be equal to the predictor in
V1 with a probability equal to 0.9. Note that, once the corre-
sponding predictor in V1 has been added, this predictor does
not carry any additional useful information at all.

1 http://archive.ics.uci.edu/ml.

In the continuous case, predictors are generated from
Gaussian distributions. For each predictor in V1, we sample

μi j ∼ Unif(−2, 2), σi j = 0.75,

where Unif(−2, 2) is the uniform distribution between −2
and 2.

As in the discrete case, all predictors in V2 have the same
parameters. Again, let Xi be equal to either Xi−1 or Xi+1

with a probability equal to 0.5.
If predictors in V3 are irrelevant, we haveμi j = mi , for all

j ∈ {1, . . . ,C}. The value mi is generated from a uniform
distribution in the interval (−2, 2). If predictors in V3 are
redundant, parameters are generated similarly, but, for each
data instance, each predictor in V3 is bound, with a probabil-
ity equal to 0.9, to have the same value as some predictor in
V1, plus some small noise.

Finally, we set π = (1/3, 1/3, 1/3) in all cases. Hence,
we have four different scenarios, which are the four possible
combinations of discrete/continuous predictors and irrele-
vant/redundant predictors within V3.

We generate 100 different data sets from each scenario
using the Bayes rule (taking into account the mentioned
redundancies). Table 1 shows, for each data set type, the
means and standard deviations of the testing misclassification
error, number of selected variables and number of (fully)
noisy-selected variables, for NB, SNB, WNB, aL1/L2-NB
and fsNB. We have run fsNB with parameters ε = 0.025, ν =
20, which we have empirically observed to be a good choice
in general. Also, we use early stopping (see Sect. 5). For com-
parison’s sake, we have also run NB on a subset of predictors,
selected by (prefiltering) correlation-based feature selection
[10]. We denote this approach as CFS + NB.

We find that there are two clearly different scenarios. First,
when the noisy predictors are irrelevant, the methods that do
not select variables (NB and WNB) perform best. This is
certainly expectable, because, as discussed in Sect. 4, NB
is relatively robust to irrelevant predictors, and there are
not enough to significantly reduce accuracy. Note, however,
that, in the discrete case at least, fsNB is closer to NB and
WNB than the other wrapper selective methods and also than
CFS + NB.

Second, when the noisy predictors are redundant, fsNB
beats the others. CFS + NB also works fine and turns out to be
the most accurate method in the continuous case. The differ-
ences between fsNB and SNB are probably due to the fsNB’s
balanced estimation of parameters of the predictors in V2. The
number of selected predictors is not very different for fsNB
and SNB in this case. CFS + NB clearly selects more predic-
tors than the wrapper approaches. Finally, note that, except-
ing for the continuous with irrelevant noise variables data
set, aL1/L2-NB does not excel. Although L1/L2-NB is not
shown in Table 1, aL1/L2-NB is slightly better than its non-
adaptive counterpart. Regarding computational cost, SNB
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Table 1 Mean testing misclassification error (top), mean number of selected variables (middle) and mean number of (fully) noisy selected variables
(bottom) for each synthetic data set type and each method

Data set type NB SNB WNB aL1/L2-NB fsNB CFS + NB

Misclassification error

DI 0.076 (±0.03) 0.080 (±0.03) 0.075 (±0.03) 0.079 (±0.06) 0.077 (±0.02) 0.166 (±0.18)

CI 0.082 (±0.04) 0.083 (±0.05) 0.082 (±0.04) 0.083 (±0.05) 0.083 (±0.05) 0.087 (±0.02)

DR 0.152 (±0.07) 0.076 (±0.02) 0.131 (±0.08) 0.171 (±0.10) 0.070 (±0.03) 0.082 (±0.06)

CR 0.132 (±0.05) 0.097 (±0.03) 0.132 (±0.05) 0.158 (±0.10) 0.090 (±0.03) 0.083 (±0.08)

Number of selected variables

DI − 6.2 (±1.4) − 6.5 (±2.1) 6.3 (±1.7) 10.8 (±0.8)

CI − 6.0 (±1.5) − 6.0 (±1.2) 5.3 (±1.8) 10.0 (±0.1)

DR − 5.7 (±1.5) − 10.2 (±2.1) 5.6 (±1.7) 10.4 (±0.6)

CR − 5.5∗ (±1.3) − 11.8 (±1.9) 6.6 (±2.3) 10.8 (±1.0)

Number of noisy selected variables

DI − 0.6 (±0.8) − 0.2 (±0.7) 0.3 (±0.9) 0.8 (±0.9)

CI − 0.8 (±0.8) − 0.1 (±0.3) 0.1 (±0.2) 0.4 (±0.5)

DR − 0.4 (±0.7) − 5.1 (±0.8) 0.2 (±0.5) 0.6 (±0.6)

CR − 0.8 (±0.4) − 5.9 (±0.8) 1.1 (±0.7) 1.0 (±1.0)

Data set types are discrete with irrelevant noise variables (DI), continuous with irrelevant noise variables (CI), discrete with redundant noise
variables (DR) and continuous with redundant noise variables (CR). The best result for each row is highlighted in bold. NB and WNB have been
omitted from the variable selection report because they do not perform variable selection

Table 2 Mean 10-CV cross-validated misclassification error (top) and number of selected variables (bottom) for each data set derived from the
Diabetes data set and each method

Data set NB SNB WNB aL1/L2-NB fsNB CFS + NB

Misclassification error

π = (1/4, 3/4) 0.28 (±0.06) 0.23 (±0.05) 0.28 (±0.06) 0.25 (±0.07) 0.21 (±0.06) 0.26 (±0.10)

π = (1/2, 1/2) 0.28 (±0.07) 0.27 (±0.06) 0.28 (±0.07) 0.27 (±0.08) 0.26 (±0.07) 0.27 (±0.15)

π = (3/4, 1/4) 0.20 (±0.04) 0.18 (±0.05) 0.20 (±0.04) 0.19 (±0.05) 0.16 (±0.06) 0.18 (±0.15)

Number of selected predictors

π = (1/4, 3/4) − 1.7 (±0.48) − 4.4 (±3.80) 2.2 (±0.42) 3.0 (±0.42)

π = (1/2, 1/2) − 3.3 (±0.48) − 8.3 (±0.48) 4.4 (±0.95) 4.2 (±0.51)

π = (3/4, 1/4) − 3.3 (±0.67) − 8.4 (±0.84) 2.4 (±0.51) 4.9 (±0.78)

The best result for each row is highlighted in bold. NB and WNB have been omitted from the variable selection report because they do not perform
variable selection

and fsNB take, respectively, 125.10 and 6732.25 evaluations
on average. The computational cost is similar for all data sets.

7.2 Diabetes data sets

We now carry out some experiments with real data. We use
the Diabetes data set, which has N = 442 instances and
p = 10 continuous predictors. Although the response is con-
tinuous, we generate data sets for binary classification by
means of the rule

yr =
{

0 if ỹr < τ,

1 if ỹr ≥ τ.

where ỹr is the continuous response and τ is some real con-
stant. We generate three different data sets by setting τ to be
equal to the first three quartiles. Therefore, for each data set,
we have, respectively, π = (1/4, 3/4),π = (1/2, 1/2) and
π = (3/4, 1/4).

Table 2 illustrates the results obtained from 10-fold cross-
validation, which include testing misclassification error and
number of selected variables. As before, the tested methods
are NB, SNB, WNB, aL1/L2-NB, fsNB and CFS + NB. We
have run fsNB with parameters ε = 0.025, ν = 20, using
early stopping.

Note that fsNB is the most accurate, followed by SNB and
CFS + NB.
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Table 3 Mean 10-CV cross-validated misclassification error (top) and number of selected variables (bottom) for each subject in the Starplus data
set and each method

Subject NB SNB WNB aL1/L2-NB fsNB CFS + NB

Misclassification error

04799 0.47 (±0.08) 0.45 (±0.04) 0.47 (±0.08) 0.52 (±0.07) 0.41 (±0.26) 0.50 (±0.23)

05675 0.44 (±0.07) 0.43 (±0.06) 0.44 (±0.07) 0.51 (±0.06) 0.50 (±0.11) 0.46 (±0.19)

04820 0.44 (±0.07) 0.43 (±0.06) 0.44 (±0.07) 0.55 (±0.03) 0.37 (±0.34) 0.34 (±0.21)

05680 0.45 (±0.05) 0.44 (±0.06) 0.45 (±0.05) 0.57 (±0.04) 0.35 (±0.26) 0.48 (±0.16)

04847 0.36 (±0.06) 0.33 (±0.05) 0.36 (±0.06) 0.57 (±0.06) 0.35 (±0.06) 0.44 (±0.18)

05710 0.40 (±0.07) 0.45 (±0.06) 0.40 (±0.07) 0.55 (±0.02) 0.36 (±0.26) 0.48 (±0.32)

Number of selected predictors

04799 − 3.8 (±1.51) − 0.2 (±0.02) 1.0 (±0.77) 1.1 (±0.81)

05675 − 3.5 (±1.32) − 0.3 (±0.01) 0.9 (±0.30) 1.0 (±0.66)

04820 − 4.9 (±1.31) − 0.1 (±0.01) 1.3 (±1.04) 0.9 (±1.01)

05680 − 5.5 (±2.50) − 0.3 (±0.02) 1.2 (±0.79) 1.2 (±0.36)

04847 − 4.2 (±1.51) − 0.1 (±0.02) 1.8 (±0.03) 2.1 (±0.77)

05710 − 5.9 (±1.82) − 0.2 (±0.03) 1.5 (±0.91) 2.0 (±0.52)

The best result for each row is highlighted in bold. NB and WNB have been omitted from the variable selection report because they do not perform
variable selection

Note that aL1/L2-NB is always worse than fsNB and
SNB, which is a possible sign of certain redundancy among
the predictors (that aL1/L2-NB is not purging). In these data
sets, WNB obtains very similar results to NB. None of the
methods, however, is very accurate when π = (1/4, 3/4).
In this case, the simple “most frequent class” rule obtains an
accuracy similar to NB (0.28), which is not greatly improved
by any method. On the other hand, the number of selected
predictors is reasonable for SNB, fsNB and CFS + NB,
and higher for aL1/L2-NB. The L1/L2-NB approach (not
shown) achieves similar results to aL1/L2-NB, for both accu-
racy and selected variables. The mean number of evaluations
for SNB is 30.7, whereas fsNB needs 905.4 evaluations on
average.

7.3 Neuroscience fMRI data

In this section, we report results on functional magnetic reso-
nance imaging (fMRI) data, the StarPlus data set2, collected
at Carnegie Mellon University.

Experiments are conducted on six subjects and forty trials
per subject. For each trial, the subject is shown a picture for
4 s and a sentence for 4 s. The objective is to discriminate
between these two mental states: “picture” or “sentence”.
Each data item matches a unique 3-dimensional image.
Images are captured every 0.5 s. Hence, each trial has 16 use-
ful images. In brief, there are six data sets, one per
subject, and they all have n = 40 × 16 = 640 data items. On
the other hand, each image has a number of voxels, split into

2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.

25 localized regions of interest (ROIs). In this paper, instead
of considering each individual voxel, we will use the mean
activation of voxels at each ROI. Therefore, our data set has
p = 25 covariates.

Table 3 shows the results obtained from 10-fold cross-
validation. Algorithms and parameter configuration are the
same than in Sects. 7.1 and 7.2.

In this example, fsNB beats the other wrapper algorithms
in four out of six subjects, whereas SNB is the best wrapper
method for the other two subjects. CFS + NB performs better
than fsNB and SNB in one of the subjects.

On the other hand, fsNB selects fewer predictors than SNB
in all cases. The number of selected predictors is not very dif-
ferent from CFS + NB.

The performance of aL1/L2-NB is poor, and the model
selection procedure often prefers the model with no predic-
tors. Note that, in general, none of the approaches behave
particularly well. We conjecture that this is because the data
have a very nonlinear nature.

The mean number of evaluations for SNB is 126.2,
whereas fsNB needs 9,311.1 evaluations on average.

7.4 Comparison across data sets

Finally, we perform an overall analysis of the methods that
includes the results obtained from all the data sets described
above. To do so, we follow the guidelines outlined by [8],
performing all pairwise comparisons among the classifiers
to detect (statistically) significant differences between each
pair. In particular, we use the [2] dynamic procedure to adjust
the raw p values. Table 4 shows, for each pair, these adjusted
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Table 4 Adjusted p values, via
the Bergmann–Hommel’s
dynamic procedure, for each
pair of methods

Pair Adjusted p value Pair Adjusted p value

fsNB versus NB 1.57E−6 SNB versus NB 0.783

fsNB versus WNB 3.35E−6 SNB versus WNB 0.783

fsNB versus aL1/L2-NB 3.35E−6 SNB versus aL1/L2-NB 0.783

fsNB versus SNB 9.86E−4 CFS + NB versus SNB 2.210

fsNB versus CFS + NB 0.030 aL1/L2-NB versus NB 2.424

CFS + NB versus NB 0.352 WNB versus NB 2.424

CFS + NB versus WNB 0.352 aL1/L2-NB versus NB 2.424

CFS + NB versus aL1/L2-NB 0.352

p values. We can observe that fsNB is significantly better than
all the other procedures, with a significance level of 0.05.

8 Discussion

In this paper, we have proposed a forward stagewise ver-
sion of the forward stepwise SNB approach. This approach
has some advantages over the usual SNB, and often beats
other naïve Bayes-based algorithms, like the WNB. We have
illustrated this point empirically on both synthetic and real
data sets. The forward stagewise approach is computation-
ally more expensive than SNB. Computational complexity,
however, can be modulated via the ν parameter, which, with
ε, defines the extent of the search at each step.

We have also extended the L1/L2-regularized naïve Ba-
yes approach taken by van Gerven and Heskes [9] to accom-
modate discrete predictors. In addition, we have introduced a
handy modification of this method based on adaptive
penalties [19]. Unlike the fsNB, however, the L1/L2-reg-
ularized naïve Bayes approach does not discard redundant
predictors and, hence, performs poorly when the data set con-
tains large sets of these noisy predictors. This phenomenon
has been discussed and observed in a comprehensive syn-
thetic experimental setting. L1/L2-regularized naïve Bayes
fares relatively well, though, when noisy predictors are irrele-
vant. Nonetheless, irrelevant predictors are considerably less
harmful to the classification than redundant predictors.

In addition, note that, whereas it is straightforward for the
fsNB approach to deal with data sets with both discrete and
continuous predictors, it is not so simple for the L1/L2-reg-
ularized naïve Bayes method. This is because the continuous
and discrete penalties scale differently. Besides discretizing
the continuous predictors, we have two choices to address this
issue. First, we can use two separate regularization parame-
ters for each type of penalty, which is an expensive solution
if they have to be estimated. Second, we can somehow scale
the continuous predictors to make the penalties scale simi-
larly. This is an approximate and rather tricky solution, and
we do not expect the results to be good.

Also, the WNB approach cannot be used with continuous
predictors unless they are discretized beforehand. In sum-
mary, flexibility is another advantage of the proposed fsNB
approach.

Future work could focus on the possibility of convert-
ing the fsNB approach into a boosting method, where all
intermediate models collaborate to output a final prediction.
Plugging more complex Bayesian classifiers into this frame-
work is also on the agenda. Of course, the algorithm structure
accepts other distributions than multinomial and Gaussian.
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