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Supplementary Discussion

Relative influence of larger and smaller EWD impacts. To examine the relative
influence of varying disaster impact severity on the overall disaster signal in
the composites, we constructed histograms of eventa year differences from
control for extreme heat and drought. The distribution of eventa year differences
from control spans positive and negative values, with more values falling in the negative
(reda shaded areas, Extended Data Fig. 1). In all cases, upwards of 70% of points fall
within 20% of respective resampled control means, and fewer than 10% of disasters
reflect a deficit of more than 30%. The disaster response signals are thus driven by
moderate deficits in production, yield, and area, with a smaller influence of more
severe impacts. This finding emphasizes the global agricultural importance of

moderately severe disasters.

The influence of sample size. The SEA method as applied here functions under the
assumption that if the number of time series composited is sufficiently large, then the
signal due to all variables other than the disaster (for instance policy changes or
economic shocks) should be distributed evenly positively and negatively relative to
control, and therefore disappear after averaging. The composite should thus exhibit
only the impact of the disaster. While no definitive guidelines exist for what qualifies as
a sufficient sample size for effective compositing, previous applications of SEA have

employed samples of about 203132 and as low as 9 constituent time series33.
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Sample sizes by year are tabulated in Extended Data Tables 2 and 4. It should be
noted that sample sizes differ across years in a given composite due to varying numbers
of coinciding disasters per year removed during compositing to isolate the impacts of
specific disaster types (see Methods). At some points in the main letter, we present
sample sizes averaged across the years for clarity. Respective control composites were
resampled using corresponding year-specific sample sizes. While most of our analyses
involved much larger samples than those assessed in previous applications, in some
cases our sample sizes seemed potentially too small for effective compositing (less than
30, and as small as 14). For cases with small sample sizes, we questioned whether our
results may have included type 1 (persistent noise due to insufficient sample
misconstrued as disaster signal) and type II (insufficient sample to isolate disaster
signal) errors.

Regarding type [ errors, there are two effects of sample size on statistical
significance in our methodology, which must be considered together. First, with lower
sample size, each disaster composite exhibits more noise relative to signal compared to
larger samples, because the probability of non-disaster signals in each time series
contributing to the composite canceling out (i.e. being equally positive and negative
relative to control) increases with sample size. This effect is visible in the greater
variability in the extreme heat and cold composites (n~50) compared to those for flood
and drought (n>200) in Figures 1 and 2. Second, at lower sample size, each control
composite is more variable, so the distribution of sets controls is wider (visible in the
difference in widths of control boxplots between disaster types in Figure 1).

If a deficit signal in the disaster composite is significant, it should dip below most
of the 1000 controls (by our criterion, all but 5 of 1000 for two-tailed 99% significance).

Otherwise, the signal is not statistically significant (i.e., is within the variability of false-
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disaster controls). Since the distribution of controls depends on number of samples in
each replicate, the greater variability in disaster composites based on fewer samples
corresponds to equivalently wider control distributions (i.e., equivalently more
conservative thresholds for significance). We therefore consider this method of
significance testing robust to sample size, and are confident that our significant findings
in cases with fewer samples do not reflect type I errors.

Type Il errors could arise if the sample size is insufficient to isolate a strong
mean disaster signal that is differentiable from variability in controls. This may arise
due to a saturation effect in which the mean disaster signal becomes increasingly
different from control with additional samples as it asymptotically approaches the final
estimate. The existence of a saturation effect would call into question, for instance,
whether wheat and rice genuinely respond less to extreme heat, or if the sample is
simply too small for SEA to isolate an effect in rice and wheat (Figure 4).

To examine whether such a saturation effect exists, we performed an illustrative
resampling experiment in which we computed 200 pseudo-mean disaster impacts on
16-cereal aggregate production using random sub-samples of the full disaster sets of
size (1, 2, ..., n). This procedure enabled us to visualize the convergence of and
variability in 200 possible paths to our actual mean disaster impact at the full sample
size (Extended Data Figure 2). We used the set of 200 estimates at n-1 to estimate the
95% confidence intervals of our full-sample impact estimates34. At low sample sizes, the
impact of extreme values on the mean is greater, resulting in high variability among the
different estimates. With increasing samples, the variability of estimates reaches an
inflection point after which incremental samples result in only small incremental

decreases in the variability of estimates. With increasing samples below this point, the
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majority of noise is reduced by compositing. The fact that our actual sample sizes are far
beyond this zone lends us confidence that our sample sizes are sufficient.

If failures to reject the null hypothesis in cases with small samples were due to
insufficient sample size, then there would exist a bias towards under-estimating the
disaster signal relative to final estimate when resampling with smaller sample size
(N<n). In other words, if a saturation effect exists, then the pseudo-estimates at N<n
should approach the final estimate at N=n from the positive side. In that event, the
disaster signal may become significant with additional samples. Since the pseudo-
estimates are roughly evenly distributed on either side of the final estimate (grey dotted
line, Extended Data Figure 2), we deduce that no saturation effect is responsible for the
lack of significant findings for these cases, and that our lack of findings in these cases
are not reflective of a type Il error. The fact that significant signal was detected in some

cases with equivalently small samples provides us further confidence in our findings.

Comparative statistics and assumptions. For the individual crop, regional, and earlier-
versus-later droughts analyses, we assessed the significance of differences in disaster
impacts between groups by applying Kruskal-Wallis one-way non-parametric analysis
of variance to the sets of individual disaster responses in each grouping. We made this
choice because, after applying the Anderson-Darling test for normality to the data, we
rejected the null hypothesis of normality at the 5% significance level for all groups, and
therefore could not use parametric statistics which assume a normal distribution.
Kruskal-Wallis analysis of variance tests the significance of differences between
group distributions (without the assumption of normality), which includes differences
in both mean and variance. In comparing disaster impacts among regions, crops, and

times, differences in mean were more salient for our study than differences in variance.
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An initial application Levene’s Absolute test for equality of variances on the data
revealed unequal variance for many groupings that we wished to compare (at 5%
significance). Although inequality of variance does not violate the assumptions of the
Kruskal-Wallis test, it complicates the attribution of statistically significant differences
to mean versus variance.

Applying a quadratic transformation to the entire set of disaster-year responses
resolved the issue of unequal variance in most cases (Extended Data Table 6), and did
not in any way affect the Kruskal-Wallis results. A re-application of the Anderson-
Darling test revealed that the transformed data still deviated substantially from
normality. We therefore proceeded with quadratically-transformed data and the
Kruskal-Wallis test in assessing our comparisons for statistical significance. Where
differences between groups were significant but variances unequal, we have stated that
we cannot conclude whether the significance is due to differing mean or variance. This
situation arises most notably for individual crop yield for extreme heat (Figure 4d). In
this case, while the Kruskal-Wallis results fail to conclusively differentiate the mean

signals among crops, maize is still the only crop with significant yield impacts.

Comparison to previous studies. We cannot compare our estimated yield deficits from
extreme weather events to previous studies of the impact of seasonal mean climate
trends over the same period?? because we quantify mean per-disaster sensitivities and
not impacts due to climate trends. To compare our yield loss estimates based on
reported disasters to previous studies based growing season weather anomalies, it was
necessary to establish whether the reported disasters correspond to significant
seasonal weather anomalies. We therefore repeated the compositing procedure using

nationally-averaged JJA (DJF in Southern Hemisphere countries) mean temperatures
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and total precipitation from CRU TS 3.23> for our samples of extreme heat and drought
disaster over 1961-2010, and multiplied the percent anomalies by the global averages.
Drought did not correspond to any precipitation anomalies and showed only slight
temperature anomalies of 0.152C (Extended Data Figure 3b-c). We conclude that the
drought impacts observed here are therefore independent from those estimated in
previous studies based on seasonal mean anomalies. Meanwhile, the extreme heat
disasters corresponded to a significant mean temperature anomaly of +1.29C, which
implies a yield sensitivity of 6-7% per 12C (Extended Data Figure 3a). This value falls
within the range of sensitivity estimates in Lobell and Field (2007)3¢, which found 5-9%
yield reductions per 12C increase in seasonal temperature for a number of crops.
However, we cannot draw any deeper conclusions by comparing our numbers due to
the following methodological differences:

1) Comparing the two estimates for yield impacts at ~12C assumes that the years in
each sample feature comparable extremes. But since the relative contribution of
moderate versus extreme warm days to the mean anomaly is unknown, the two
samples cannot be assumed to reflect similarly extreme weather perturbations to the
Crops.

2) Estimated sensitivities in Lobell and Field (2007) are based on linear regressions
covering a temperature domain of about -1 to 12C in which the vast majority of points
fall below 12C. The sensitivities based on these linear regressions cannot be assumed to
be powerful at and above the maximum temperature in their domain, and therefore
may not reflect the level of extremes that we examine.

3) Our estimates are based on globally-averaged national weather and crop data,
while those in Lobell and Field (2007) are based on data averaged across cropping

regions that transcend borders3°. Because the estimates are made over differing spatial
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scales, they may not reflect variation in yield and weather similarly. The disasters in our
study do not include sub-national spatial data, so we cannot at present solve this

discrepancy by spatially disaggregating.

Number of disasters per year. The EM-DAT database is based on a compilation of
disaster reports gathered from various organizations including United Nations agencies,
governments, and the International Federation of Red Cross and Red Crescent Societies.
A time-series of reported disasters per year (Extended Data Figure 4) exhibits an
upward trend. This is likely a result primarily of an improvement in the completeness of
disaster reporting over time, but the trend may also partially reflect greater incidence of
disasters in recent decades. Assuming that incomplete disaster reporting in earlier
decades was independent of disaster impact severity, our estimates of cereal crop
sensitivities to EWDs are robust to this trend because we quantify them on a per-
disaster basis. But we likely underestimate the total global cereal production lost to

these disasters because we aggregated losses over an incomplete set of disasters.
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