
Master/Slave Computing on the Grid

Gary Shao ∗

Department of Computer Science
and Engineering

University of California, San Diego
San Diego, CA 92093-0114

gshao@cs.ucsd.edu

Francine Berman †

Department of Computer Science
and Engineering

University of California, San Diego
San Diego, CA 92093-0114

berman@cs.ucsd.edu

Rich Wolski †

Department of Computer Science
107 Ayres Hall

University of Tennessee
Knoxville, TN 37996-1301

rich@cs.utk.edu

Abstract

Resource selection is fundamental to the performance
of master/slave applications. In this paper, we address
the problem of promoting performance for distributed mas-
ter/slave applications targeted to distributed, heteroge-
neous ”Grid” resources. We present a work-rate-based
model of master/slave application performance which uti-
lizes both system and application characteristics to select
potentially performance-ef£cient hosts for both the master
and slave processes. Using a Grid allocation strategy based
on this performance model, we demonstrate a performance
improvement over other selection options for a representa-
tive set of Master/Slave applications in both simulated and
actual Grid environments.

1. Introduction

The master/slave paradigm is a fundamental and com-
monly used approach for parallel and distributed applica-
tions. In master/slave applications, a single master process
controls the distribution of work to a set of identically oper-
ating slave processes. The master/slave paradigm has been
used successfully for a wide class of parallel applications
[12][6][14], and is well suited as a programming model for

∗Supported in part by NSF grant #ASC-9701333, DARPA/ITO contract
#N66001-97-C-8531, NPACI award #ASC9619020

†Supported in part by NSF grant #ASC-9701333, DARPA/ITO contract
#N66001-97-C-8531, NPACI award #ASC9619020

applications targeted to distributed, heterogeneous ”Grid”
resources[1].

Methods which can improve the performance of mas-
ter/slave applications are of considerable interest to many
people. Researchers and application developers have pre-
viously experimented with tuning the granularity of master
and slave processes to balance computation and communi-
cation, varying parameters such as the number and com-
plexity of tasks assigned to slaves, and varying the number
of slave processes used [3] [8][16]. Note that in a homoge-
neous environment, any processor can reasonably be chosen
as a master or a slave, as all resources are typically consid-
ered to be equivalent. However, in a heterogeneous Grid en-
vironment, non-uniformity in both the peak and deliverable
capacities of computational and communication resources
can produce very different application execution times de-
pending on which processor is chosen for the master and
which processors are chosen for the slaves.

In this paper, we address the problem of how to deter-
mine a performance-ef£cient placement of master and slave
processes running in shared, distributed and heterogeneous
environments. In a heterogeneous environment, the choice
of processor for the master can have a signi£cant effect on
total available work rate, directly impacting application per-
formance. Our strategy for selecting a location for the mas-
ter process involves identifying the host processor which
allows for the largest aggregated system work rate, which
we will de£ne in the next section. Our strategy for select-
ing slaves utilizes the performance capacity of the available
computation and communication resources to determine a



performance-ef£cient collection of workers.
This paper is organized as follows: Section 2 provides

a performance model for distributed master/slave applica-
tions. Section 3 describes how we obtain and use input pa-
rameters for calculating resource work capacity values in
our performance models. Section 4 describes our algorithm
for selecting the resources to use for the master and slave
processes. Section 5 gives a representative set of perfor-
mance results from our experiments, Section 6 includes a
short discussion of some related work, and Section 7 pro-
vides a summary of our work.

2. A master/slave performance model

We consider a model of master/slave applications in
which the primary function of the master process m is to
pass out and collect work from a set of slave processes
s ∈ S. 1 We assume that communication patterns are simple
and well-de£ned, requiring communication only between
the master process and individual slave processes. We will
de£ne the application’s work as a divisible set of tasks;
where each task may require some input data and produces
some output data.

Tasks are completed in an application by progressing
through four stages in the master/slave computation:

Stage 1 is the transmission of a command to initiate a
task on one of the slave processes, including any data
needed by the slave to perform the computation.

Stage 2 is the execution of the task by the designated slave.

Stage 3 is the transmission of results from the slave back
to the master.

Stage 4 is any immediate processing of task results from
the slave that must be done by the master.

While passing through each stage in the computation, a
particular system resource must be employed by a task for
some period of time, after which the task can move on to
the the next stage. As an example, we can consider the sim-
ple network topology shown in Figure 1. If processor A in
Figure 1 is designated as the master process, a task intended
for slave processor B during Stage 1 will employ the use of
network Net1 to transfer required data from processor A to
processor B. During Stage 2 the task will utilize processor
time on B to run task computations. During Stage 3 the task
will again utilize network Net1 to transfer result data from
B to A. Finally, during Stage 4 the task will utilize proces-
sor time on A to process the incoming results and to prepare
for initiating additional task transfers to B.

1It would be straightforward to extend this work to the case in which
the master may also perform some work as a slave.

A B C D

50 10

50

100150

80 60

Net2Net1

Net3

150200 60 90

Figure 1. Example network con£guration.

In constructing a performance model for master/slave
applications, we look at the rate that applications process
tasks. The rate at which an application cycles through tasks
can be used as a measure of application performance, as
faster overall cycle rates will correspond directly to reduced
application execution times.

If we consider the ¤ow of tasks between a master process
m and a slave process s, we can make the de£nition:

SlaveRate(m, s) is the task completion rate occurring be-
tween master m and slave s, in units of tasks per unit
of time.

For master/slave computations where there is no com-
munication between different slave processes, the total rate
of task completions for an application will be the sum of the
rates arising from task completions by individual slaves. We
de£ne AppRate(m,S) in Equation (1) to be the rate of task
completions by an application with master process m and a
set of slave processes S.

AppRate(m,S) =
∑

s∈S

SlaveRate(m, s) (1)

We can then de£ne execution time, ExecT ime(m,S),
for an application with a master process m and the set of
slave processes S, and where Tasks is the total number of
tasks in the application.

ExecT ime(m,S) = Tasks/AppRate(m,S), (2)

Application performance can thus be derived from val-
ues for SlaveRate(m, s). One way to solve for these
SlaveRate values is to consider the system resource con-
straints which bound achievable application performance.
To illustrate the concept, we go back to our simple example
system in Figure 1, and observe that each processor and net-
work has been labeled with one or more numerical values.
We de£ne the numbers in the diagram to represent resource
work capacities in terms of tasks per unit of time. The val-
ues next to network links represent network work capacity
for that network link, the upper number within each circle



represents slave work capacity for that processor, and the
lower number within each circle represents master work ca-
pacity for that processor.

Consider an application which uses processor C to host
the master process. To solve for application performance,
we would like to determine values for SlaveRate(C,A),
SlaveRate(C,B) and SlaveRate(C,D). The fundamen-
tal constraint condition to meet is that total task ¤ow rates
through any resource cannot exceed the capacity value of
that resource. This means, since task ¤ow from both pro-
cessor A and processor B passes through network Net3
in our example, that the sum of SlaveRate(C,A) and
SlaveRate(C,B) can be at most 50, the capacity of Net3.

In general, we can de£ne the following resource work
capacity terms for processor and network resources. All
terms are rates with units of tasks per unit of time.

WMasterCPU (i) = the maximum master work rate sup-
ported by a processor i. This is determined by proces-
sor i’s capacity to perform Stage 4 computations for a
speci£ed application.

WSlaveCPU (i) = the maximum slave work rate supported
by a processor i. This is determined by processor i’s
capacity to perform Stage 2 computations for a speci-
£ed application.

WNet(n) = the maximum communication rate supported
by a network n. This is determined by network n’s
capacity to perform the Stage 1 and Stage 3 communi-
cation of a speci£ed application.

Assuming we have a graph G representing network con-
nectivity (such as the diagram in Figure 1) that allows us to
identify which network resources are shared between dif-
ferent task ¤ows, and resource work capacity rates for each
of the resources in our system, we can form a set of upper
bounds on possible SlaveRate(m, s) values. The process
by which the network connectivity graph G and the work
capacity rate terms can be derived for resources in a Grid
environment will be discussed later in section 3.

First, to aid us in de£ning our upper bound constraints,
we de£ne a helper set constructor function:

ShareNet(G,S,m, n) takes as input a network connec-
tivity graph G, a set of slaves processes S, a master
process m, and a network resource n, and returns the
set of slave processes from S which share the use of
network resource n when communicating with m.

For master/slave applications, ShareNet(G,S,m, n)
can be easily determined for a network graph G, master pro-
cess m, set of slaves S, and network resource n by follow-
ing the single path in the graph G from each slave process
s ∈ S to the master process m, recording each path passing
through the resource n.

Now we can give bounds which form constraints on ap-
plication performance, as shown below2.

∑

i∈S

SlaveRate(m, i) ≤WMasterCPU (m) (3)

SlaveRate(m, i) ≤WSlaveCPU (i) (4)

∑

i∈ShareNet(G,S,m,n)

SlaveRate(m, i) ≤ WNet(n) (5)

Our goal is to £nd the values of SlaveRate(m, s) which
meet the constraints given above and which yield the largest
value of AppRate(m,S). The solution will correspond to a
con£guration which delivers the best achievable application
performance.

We can frame the problem of determining val-
ues for SlaveRate(m, s) which yield the largest
AppRate(m,S) value as a ¤ow-rate problem where:
(1) the SlaveRate(m, s) values are the ¤ows we wish
to solve for, (2) m is the sink for all ¤ows, (3) the set
S of slave processes are the sources for ¤ows, and (4)
the ¤ow constraints correspond to the WMasterCPU (i),
WSlaveCPU (i), and WNet(n) work capacities in our target
environment.

Because the work ¤ows in a master/slave computation
form a tree rooted at the master, and because we have lim-
ited our investigation to considering no more than one pro-
cess hosted on each processor, ef£cient algorithms like the
Maximum-Flow algorithm [5] exist for solving this prob-
lem. This approach can be used to solve the ¤ow-rate
problem for several candidate processes m, £nding the one
which is expected to deliver the maximum work ¤ow, and
hence the best expected application performance. Section 4
describes the implementation of one such maximum-¤ow
algorithm that can be used to £nd the largest possible work
¤ow.

3. Modeling work capacity rates in a Grid en-
vironment

In order to apply our work ¤ow performance model to
real applications running in a Grid environment, we must
derive a network connectivity graph G and appropriate
values for the work capacity rate terms WMasterCPU (i),
WSlaveCPU (i), and WNet(n).

The ¤ow-rate algorithm for determining application per-
formance requires a graph G which represents the network
connectivity between processor resources. For wide-area

2Since we consider here only cases where processors can host at most
one process from the same application, we allow the process identi£er to
be the identi£er of the processor hosting it in our inequality expressions.



Input Description Used How When
Data In Acquired Acquired

GraphNet Network connectivity G ENV periodically

TSlaveCPU CPU slave task time WSlaveCPU benchmark install

TMasterCPU CPU master task time WMasterCPU benchmark install

AvailCPU CPU availability WSlaveCPU , NWS run-time
WMasterCPU

SizeTaskXfer Task data transfer size WNet analysis, application
logging

BWNet Network bandwidth WNet NWS run-time

Table 1. Inputs for constructing the performance model.

Grid environments, it might be very dif£cult to get com-
plete physical network con£guration data about every plat-
form in the system. It is reasonable, however, to represent
the target computational resources and their interconnection
by a logical view which captures those areas where network
constraints present potential bottlenecks to application per-
formance. We derive a logical view of resource intercon-
nection using a logical network con£guration discovery tool
called Effective Network Views (ENV) [13]. (Other sys-
tems for discovery of effective system topology such as [9]
might also be used.) The output of the ENV tool is a net-
work graph representation where every processor belongs
to a cluster of one or more machines. Machines in a clus-
ter are connected together through a local network, where
the capacity of the local network represents the limiting ca-
pacity of a network resource shared by each machine in the
cluster. Clusters of local networks are connected together
in our logical representation through a single layer of non-
local network links. This representation is suitable for use
in graph-based analysis techniques like our maximum ¤ow-
rate problem, and directly translates to the network graph G
in our ¤ow-rate solution.

The processor work capacity rates WSlaveCPU (i) and
WMasterCPU (i) in our model are determined with two
components: an application-speci£c component represent-
ing the maximum performance delivered by a processor
resource in its unloaded state, and a dynamic component
that is determined at run-time to adjust capacity rates to
account for current loading conditions. The application-
speci£c component is obtained by running a benchmark of
the target application code on an unloaded processor, and
measuring the times TSlaveCPU (i) and TMasterCPU (i) that
are required to compute a single task on processor type i by
the slave and master processes respectively. If the task com-

putation time is variable over time, perhaps because of data
dependencies in the application, we take an average value
for all task times in one run of the application benchmark.
This value could be scaled for particular classes of data sets
at run-time if the variation in average task run times is large
when different data sets are used. The benchmark times
only have to be measured once for each platform type on
which the application is built to run, so obtaining these val-
ues is computationally ef£cient.

The dynamic component of the work capacity terms for
processor resources is calculated with the help of real-time
monitoring and forecasting services such as the Network
Weather Service [19] (NWS). The NWS provides real-time
predictions of dynamic processor availability AvailCPU (i)
(the percentage of CPU time a process can expect to get on
processor i). AvailCPU (i) describes the predicted avail-
ability status of a processor resource, and can be generated
independently from any particular application. This enables
a single NWS system to provide simultaneous service to
many applications requiring real-time information about re-
source behavior.

The processor work capacity rates can be calculated us-
ing the application-speci£c and dynamic components as
shown below. The input parameters for these functions are
summarized in Table 1.

WSlaveCPU (i) = AvailCPU (i)/TSlaveCPU (i) (6)

WMasterCPU (i) = AvailCPU (i)/TMasterCPU (i) (7)

The network work capacity rate WNet(n) in our model
is also calculated using two components. One component
is the application-speci£c term SizeTaskXfer, which rep-
resents the amount of data transferred between a master
process and a slave process for each task in an application.



If the task data transfer sizes are a variable quantity over
time, perhaps due to data dependencies in the application,
we must calculate an average data transfer value that rep-
resents expected steady-state communication behavior over
the time of an entire application run.

The second component used in calculating network work
capacities on a network resource n is a dynamic predic-
tion of expected available network bandwidth BW Net(n),
which we obtain from the NWS. The network work capac-
ity rates can be calculated using application-speci£c and dy-
namic components as shown below. The input parameters
are again summarized in Table 1.

WNet(n) = BW Net(n)/SizeTaskXfer (8)

Having constructed a set of resource constraint values
to help model the performance of a Grid environment, we
should also discuss an obvious limitation of our approach.
For each of the terms derived in this section, we have gen-
erated an average-value expression for use in our steady-
state application performance model. Yet each of the prop-
erties being modeled might in reality exhibit considerable
variability over time, either due to time-varying load con-
ditions or data dependent behavior of the application being
run. Our experience has been that despite the limitations of
converting many variable terms to average steady-state val-
ues, our approach still yields a performance model which
can do a good job at estimating application performance,
and which provides an effective tool for helping to solve the
resource selection problem, which we discuss next.

4. Selecting a master and the slaves

Given the work-rate performance model described in
Section 2 and a logical representation of the work capacities
of Grid resources, we can now consider strategies for select-
ing processors to host the master and slave processes. These
are important issues for master/slave applications running
in Grid environments, where users may be able to choose
from among many different types of resources, and where
availability of these resources may change over time.

Selection of the right processor to host the master pro-
cess can signi£cantly impact the overall application per-
formance, as the following section will show. Knowing
which master placement produces the best application per-
formance might also in¤uence other important decisions,
such as where to ef£ciently position input and output £les
for the application. Selection of the right set of processor
resources to host the slave processes has two goals: (1) se-
lecting enough resources from the available set to produce
the best achievable application performance,and (2) limit-
ing the selection to resources that will actually bene£t ap-
plication performance. The second goal is important for

Grid environments where resources can be shared by many
users, and resources can be owned and managed by many
different organizations. In these environments, it is desir-
able that applications use only those resources they really
need; thereby allowing limited pools of shared resources to
satisfy the largest number of users. We will £rst consider
the issue of selecting the right host for the master process.

4.1. Master selection example

In a heterogeneous system, selection of a location for
the master process very strongly depends on the deliverable
work capacity of candidate resources. Consider the logi-
cal Grid con£guration shown back in Figure 1, where four
processors are connected by a system of three networks. We
have labeled the network resources with values representing
the WNet capacity terms. The processor resources, shown
as circles in the diagram, have been labeled with two values:
a WSlaveCPU capacity term on top, and a WMasterCPU ca-
pacity term on the bottom. All capacity terms are in units
of tasks per second.

For this simple example system, we can determine the
assignment of the master process to a processor that gives
us the greatest achievable work ¤ow. If processor A is se-
lected to host the master process, processor B is able to pro-
vide 60 tasks/sec work rate as a slave. In addition, a max-
imum of 50 tasks/sec worth of data can be transferred over
network Net3, a work rate which can be supplied by proces-
sor C. The total expected application work rate with proces-
sor A hosting the master is therefore 110 tasks/sec. If we
consider selecting processor C to host the master process,
we observe that processor D can deliver a work rate of 10
tasks/sec working as a slave. In addition, we can transfer a
maximum of 50 tasks/sec worth of data over network Net3,
which can be supplied by processor A. It becomes apparent
that processor C is constrained from achieving any higher
application work rate by the limitations on the Net3 capac-
ity, as well as the capacity of processor C to serve as the
master host, to no more than 60 tasks/sec. We could pro-
ceed in a similar manner for all the processors, and derive
expected application work rates for each candidate. Table 2
shows one set of possible outcomes for this process. It is
apparent from the last column in Table 2 that processor B
is the best choice, yielding a potential application work rate
of 130 tasks/sec.

4.2. Selecting the master

More generally, we have developed a basic algorithm for
£nding the best performing host for the master process. It is
based on the well-known maximum-¤ow algorithm by Ford
and Fulkerson [7]. In this algorithm, we keep augmenting
the estimated ¤ow rate for each master host by adding the



Master WMasterCPU SlaveRate SlaveRate SlaveRate SlaveRate
Location m (m) (m,A) (m,B) (m,C) (m,D) AppRate(m)

A 200 0 60 50 0 110
B 150 80 0 50 0 130
C 60 50 0 0 10 60
D 90 40 0 50 0 90

Table 2. Work rates resulting from master placement decision.

contributions of slave processors. Additional contributing
slaves are selected £rst from those on the same local net-
work as the master. This continues until either all of the
slaves have been included, or no further slave work rates
can be incorporated because of either capacity limitations
on network resources, or capacity limitations of the master
processor itself. If further capacity is available from pro-
cessors on non-local networks, they are added one by one
to the accumulated master total until no further additions
are possible without exceeding one of the resource capaci-
ties. Figure 2 illustrates our basic algorithm for £nding the
best performing master host. Upon termination of the algo-
rithm, the processor with the highest calculated work rate is
selected as the master.

4.3. Complexity

In deriving the complexity of our algorithm, we note
that our simpli£ed logical representation of network con-
£guration reduces the entire system to sets of processors
connected by local networks. Each of these local networks
is then connected to other local networks by at most one
level of remote networking. With this logical topology,
data transfers between slaves on the same local network
pass through only one level of networking, and encounter
only one network resource constraint. Data transfers be-
tween slaves located on different local networks will pass
through at most three levels of networking, and must satisfy
at most three networking constraints. All slave work rates
must meet the resource constraints of the master processor.
With this arrangement, there are at most four tests of con-
straints in our algorithm that have to be checked for each
master and slave pairing.

If we have n processors in our system, then each master
candidate can have at most n−1 slaves, and each individual
master work rate calculation takes O(n) time to calculate.
Calculating maximum work rates for all n possible mas-
ter candidates thus takes O(n2) time. Since our algorithm
requires only simple compare and accumulation operations
for each resource constraint test, the entire algorithm is ef-
£cient for the numbers of processors and networks we cur-
rently £nd in Grid environments available to a typical user.

4.4. Selecting the slaves

After selecting the master processor, we turn to selec-
tion of the slave processors. The issue is to select a set of
processors for hosting slave processes that will deliver good
aggregate performance. One approach is to start with the set
of slave processors found in our master selection algorithm
that yielded the highest expected application performance.
Our algorithm keeps track of this set in the Found(m) list,
a list containing slaves used by the algorithm to calculate the
maximum work rate for an application with processor m as
the master host. Our master selection algorithm ensures that
this set of processors results in work ¤ows that fall within
the constraints imposed by resource capacity limitations.

In numerous experimental trials using the set of proces-
sors from Found(m) as slave hosts, we observed that the
slave processors were often not delivering the maximum
work rate values we expected in our algorithm. Observa-
tions of selected slaves showed the reduction in slave per-
formance was due to the presence of unaccounted idle time,
periods of time when slave processors were not doing use-
ful work. An explanation for the observed idle times comes
from observing the manner in which tasks are distributed to
slave processors from the master. Each master/slave appli-
cation we tested maintained a queue of available tasks on
the master process, and distributed new tasks to individual
slave processes upon request (a very commonly used tech-
nique). Because of contention for shared resources, such as
networks and the master processor, delays sometimes oc-
curred between the time a slave processor £nished one task
and the time at which the next task appeared for processing.
These delays appeared as idle time in our observations of
the slaves. With a minimum set of slaves selected to achieve
the desired work rate, the unexpected idle time in the slaves
resulted in a reduction of the actual total work rate achieved.

The work ¤ow-rate performance model correctly deter-
mines possible application performance based on resource
capacity limits. Our master selection algorithm uses this
performance model, and in the process identi£es a set of
slaves which delivers this performance, assuming that each
slave delivers its maximum work rate. Experimentation has
shown that sometimes these slaves actually deliver less than
their predicted maximum work rates, resulting in less per-



For all networks k
Calculate maximum network capacity WNet(k)

For all processors j
Calculate maximum master processor capacity WMasterCPU (j)
Calculate maximum slave processor capacity WSlaveCPU (j)

For each candidate master processor p on local network n
Set sum for candidate slave work rates CandRate(p) = 0
Set found set Found(p) to empty
For all networks k

Set network utilization sum NetUtil(k) = 0
Get maximum capacity WNet(n) of local network n
Get maximum master processor capacity WMasterCPU (p)
While CandRate(p) < WNet(n) and CandRate(p) < WMasterCPU (p)

Select new processor s from same local network as p with
the largest available WSlaveCPU (s) value
Get slave processor capacity WSlaveCPU (s)
Get fraction F of WSlaveCPU (s) that will not cause
utilization NetUtil(n) to exceed WNet(n)

Add F to CandRate(p)
Add F to NetUtil(n)
Add processor s to found set Found(p)

Total candidate work rate CandRate(p) = min(CandRate(p), WMasterCPU (p))
Total local network utilization NetUtil(n) = CandRate(p)
While CandRate(p) < WNet(n) and CandRate(p) < WMasterCPU (p)

Select new processor q from outside local network with
the largest available WSlaveCPU (q) value
Get slave processor capacity WSlaveCPU (q)
Get fraction F of WSlaveCPU (q) that will not cause
utilization NetUtil(i) to exceed WNet(i) for any network i

Add F to CandRate(p)
Add F to NetUtil(n)
Add F to other NetUtil(k) where network k is involved in
communications between processors p and q
Add processor q to found set Found(p)

Select processor p with largest CandRate(p) as master

Figure 2. Algorithm for £nding best processor for the master.



formance than resource capacity constraints would allow.
One way to get application performance back up to pre-
dicted levels is to add additional slave processors to the
originally selected mix, thereby raising the effective slave
work rates achieved up to expected values. Our goal is to
compensate for lost performance due to idle time on the in-
dividual slave processors, while keeping the number of ad-
ditional processors down to the minimum needed to accom-
plish this goal.

Our steady-state ¤ow-rate performance model was not
useful in helping to decide how many slaves to add to in-
crease effective performance because it could not account
for idle times caused by slaves waiting for new tasks to ar-
rive. To address this shortcoming and others in our steady-
state approaches to performance analysis, we developed a
master/slave application performance simulator to provide
signi£cant new capabilities. We discuss this simulator and
how it can be used to help solve the slave selection problem
in the following subsections.

4.5. An application performance simulator

We originally developed a master/slave application per-
formance simulator to provide detailed predictions of per-
formance and resource behavior for applications running in
Grid environments. One effective use we have found for this
simulator is to help determine how many additional slave
processors might be added to a predicted group of master
and slave processors to make up for performance losses due
to slave idle time.

At its core, our simulator is a set of routines which model
the behavior of tasks as they pass through a system com-
prised of two kinds of resources: processors and networks.
The resources are modeled as single servers with £rst-in-
£rst-out input queues. Service times for the processor re-
sources determine how long a task has control of the pro-
cessor before relinquishing the resource to the next task
in the input queue, and are dependent on the same pro-
cessor availability parameters AvailCPU (i) and estimated
task execution times TSlaveCPU (i) and TMasterCPU (i) de-
veloped earlier for our ¤ow-rate model. Service times for
the network resources determine how long a network re-
source is committed to servicing data transfers for each
task, and are dependent on the same network bandwidth pa-
rameters BW Net(n) and size of the data transfers values
SizeTaskXfer developed for the ¤ow-rate model presented
earlier. In addition, all of the parameters can be adjusted to
use either static steady-state values like those in the ¤ow-
rate performance model, or more dynamic data inputs such
as statistical distributions or actual measured trace values
from application runs. Network connectivity is represented
using the same graph G, an output of the ENV tool, used in
the work ¤ow-rate performance model.

The simulator is written in highly portable C-language
code, with the help of a simulation library package called
Sim++ [4]. This simulator can be easily embedded into
other programs, such as an application scheduler, to pro-
vide detailed predictions of application performance and
resource utilization levels. It is particularly useful for ob-
serving the performance impact of changing application or
resource parameters.

4.6. Using simulation to enhance slave selection

Our algorithm for £nding the correct set of slave proces-
sors starts with the master processor m and the Found(m)
set of slaves from the master selection algorithm. The sim-
ulator is run with these machines as the target environment,
using the same values for resource capacities as were used
in the master selection algorithm. Results from the simu-
lation are checked to see if any idle time on the simulated
slaves results in a signi£cant decrease in overall applica-
tion performance. If a substantial performance decrease is
found, resource utilization £gures from the simulation are
checked to see where additional processors might be added
without exceeding existing resource constraints. If more
slave processors are available to be added that will not vi-
olate any known resource constraints, they are added to the
set of found slaves. A new system con£guration with the
additional processors added in is constructed and simulated
once again. The process of slave additions and testing by
simulation repeats until either there are no further perfor-
mance gains realized by adding more slave processors, or no
more processors can be found and placed without exceed-
ing one of the known resource capacity constraints. Figure 3
illustrates our algorithm for £nding the set of slave proces-
sors.

The algorithm given above makes good use of simulator
results which calculate predicted resource utilization values
for every resource in the system. These values allow us
to quickly identify where in the system, if anywhere, slave
processors might be added to improve application perfor-
mance. In practice, the number of times the simulation cy-
cle needs to be run is small as the process quickly converges
to a situation where either additional performance gains are
insigni£cant, or no further additions can be made without
exceeding a resource constraint.

5. Experimental results

In this section, we describe experiments whose goal it
is to test the usefulness and accuracy of our work-rate per-
formance model and application performance simulator, as
well as the performance of our algorithms for selecting mas-
ter and slave processors.



Run master selection algorithm to get master processor m, set of slaves
Found(m), and predicted application work rate R

Run application performance simulator using m and Found(m) to get
simulated work rate S and slave utilization values U(s)

While S less than R
Using U(s), check which slaves s in Found(m) have large
simulated idle times

Find additional processors A′ that make up for idle time without
exceeding any WNet(n) or WMasterCPU (m) constraints

Add processors A′ to Found(m) to form Found′(m)

Run simulator using m and Found′(m) processors to get new
simulated work rate S′ and slave utilization values U ′(s)

If S = S′ or Found(m) = Found′(m)
Return Found(m) as slave solution

Set S equal to S′, all U(s) equal to U ′(s)
Set Found(m) equal to Found′(m)

Return Found(m) as slave solution

Figure 3. Algorithm for £nding best processors for slaves.

We use as an application test suite three applications cho-
sen to represent a spectrum of potential master/slave dis-
tributed applications. The applications were selected and
implemented to test the sensitivity of our approach to com-
putation and communication granularity. Our master/slave
implementation of the Mandelbrot image application is ex-
pected to display a relatively high sensitivity to communi-
cation constraints, as the amount of image data transferred
during execution is large compared to the overall computa-
tion time. At the other extreme is the NAS Parallel Bench-
marks’ EP [18] application, which performs relatively little
data transfer compared to the time spent computing. The
Povray [11] ray-tracing application falls somewhere in the
middle, with the transfer of one fourth the amount of image
data as the Mandelbrot application which was spread out
over a longer computation time.. Each of the applications
was initially benchmarked on all target processor types to
produce the application-speci£c parameters needed for our
performance analysis tools. The applications are summa-
rized in Table 3.

5.1. Experimental design

In the experiments, we compared predicted execution
time (resulting from our performance model), simulated
execution time (using the application simulator), and ac-
tual execution time (determined from experimental runs).
All comparisons were made in a non-dedicated environ-
ment where the load traces used for the predicted and simu-
lated execution times were determined from the NWS load
trace of the actual execution time runs. We used identical
parameter inputs for network con£guration, resource con-
straints, and application characteristics in both work-¤ow
analysis and performance simulation tools. In this way, we
attempted to compare each set of execution times under the
same environmental conditions.

The target experimental platform was a heterogeneous
mix of Intel processor-based machines running Linux, and
Sun SPARC machines running Solaris located in the Paral-
lel Computation Laboratory in the Department of Computer
Science and Engineering at the University of California,
San Diego. The experiments were run with all machines
in non-dedicated mode, but outside loading from compet-



Name Description Emphasis
Mandelbrot parallel fractal image generator communication
Povray parallel implementation of popular ray-tracer both
NBP EP NAS Parallel Benchmark EP variant computation

Table 3. List of applications used in experiments.

ing jobs was observed to be relatively light for most of the
machines during the course of experimentation.

5.2. Results

In the £rst set of experiments, we ran the test suite of
applications on a set of nine workstations shown in Ta-
ble 4. For the three applications, trials were run with each
of the nine processors being selected to run as the master
while the other eight were included to run as slaves. In
all cases, the work ¤ow-rate problem was solved for each
con£guration of master and slaves to give the expected ap-
plication execution time, shown as the light bars in Fig-
ures 4-6. The application performance simulator was run
for all cases to give a predicted application execution time,
shown by the middle bars in the graphs. And £nally, the
real applications were run on each con£guration and their
execution times recorded to appear as the dark bars on the
graphs.. Figure 4 shows the results while running the rela-
tively communication-heavy Mandelbrot application. Fig-
ure 5 shows the same set of execution times for the more
balanced Povray application, while Figure 6 shows exe-
cution times for the computation-intensive NAS Parallel
Benchmarks’ EP application.

In these experiments, the work-rate performance model
would have done a good job of identifying the correct mas-
ter host to produce the fastest application execution times.
In the Mandelbrot series of experiments, the machine thing1
was calculated to yield the lowest execution time, which
was con£rmed in the actual application run. For this ap-
plication the highest execution time, achieved with the ma-
chine named lorax, took 170% longer to £nish than the best
choice. For the other two applications, the work-rate per-
formance model estimates of execution time again showed
results which correlated closely with actual application run
times. For these applications, which exhibited lower de-
pendence on network constraints, the differences between
the worst and best performers was smaller: about 25% for
Povray and 10% for NAS EP. The work-rate based perfor-
mance model correctly ordered master performance for both
communication and computation constrained applications.
The results also show that the application performance sim-
ulator did a good job of tracking the actual application exe-
cution times as well.

The experimental results show a small number of cases

where the execution time was signi£cantly underestimated
for the Mandelbrot application. Analysis of experimen-
tal results leads us to believe the discrepancy in pre-
dicted and actual performance on the communication-heavy
application was due to inadequate benchmarking of the
WMasterCPU constraint terms. Actual application perfor-
mance is worse than that predicted by both the work-¤ow
model and the simulator because both tools overestimated
the capacity of the single master process to process in-
coming data and respond to new task requests. When the
real master process fails to keep up with projected work
rates, the overall application work rate is reduced and ex-
ecution time becomes relatively larger. Improved methods
for benchmarking master processor performance are cur-
rently being developed to overcome this shortcoming.

In the second set of experiments, we look at two of our
applications: Mandelbrot and Povray. In these trials we pick
a speci£c host for the master process, then run our appli-
cation for different numbers of slave processes. We show
measured execution times and simulated execution times
for our two applications as we increase the number of slave
processors.

Figure 7 shows results with our communication-
intensive Mandelbrot application for two different choices
of the master host. These results show that the number
of slaves which can bene£cially be employed varies un-
der different conditions, and is heavily constrained by the
network speed of the master process host. Figure 8 shows
results with the Povray application, whose performance is
less dominated by communication costs. In our test envi-
ronment, this application shows more scalable performance
than Mandelbrot, but eventually also reaches a point where
additional processors do not signi£cantly decrease execu-
tion time. Results are shown for only one master case be-
cause data for other cases produces almost identical graphs.
Results for our third application, NPB EP, are not shown
here, but they are very similar to those for povray, with sim-
ulation predicted run times and actual application run times
very close for all numbers of processors. These results indi-
cate that for our representative examples, the performance
simulator can be a useful tool to help predict the points at
which either additional slaves should be added to a com-
putation to increase performance, or when additional slaves
cease to have any useful effect.



tandem
azulejo

sojourner

saltim
banco

magie
thing1

kongo

kingkong
lorax

Hosts

0

10

20

30

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Master Selection Results
Mandelbrot

Analysis
Simulation
Application

Figure 4. Execution time of communication-intensive application while varying master host.

tandem
azulejo

sojourner

saltim
banco

magie
thing1

kongo

kingkong
lorax

Hosts

0

10

20

30

40

50

60

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Master Selection Results
Povray

Analysis
Simulation
Application

Figure 5. Execution time of application while varying master host.



tandem
azulejo

sojourner

saltim
banco

magie
thing1

kongo

kingkong
lorax

Hosts

0

10

20

30

40

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Master Selection Results
NPB EP

Analysis
Simulation
Application

Figure 6. Execution time of computation-intensive application while varying master host.

Name Processor Network OS
azulejo Intel Pentium Pro 200 100 Mbit/s ethernet Linux 2.0.36
kingkong Sun UltraSPARC-IIi 333MHz 100 Mbit/s ethernet Solaris 2.6
kongo Sun UltraSPARC 166MHz 100 Mbit/s ethernet Solaris 2.6
lorax Sun microSPARC II 85MHz 100 Mbit/s ethernet Solaris 2.6
magie Intel Pentium Pro 200 10 Mbit/s ethernet Linux 2.1.125
saltimbanco Intel Pentium II-400 10 Mbit/s ethernet Linux 2.1.125
sojourner Intel Pentium II-266 10 Mbit/s ethernet Linux 2.2.9
tandem Intel Pentium II-300 100 Mbit/s ethernet Linux 2.0.36
thing1 Sun UltraSPARC 200MHz 100 Mbit/s ethernet Solaris 2.6

Table 4. Partial list of heterogeneous mix of machines used in experiments.

6. Related Work

Many different approaches to predicting the performance
of parallel applications on distributed-memory machines
have appeared in the literature. A partial summary of some
earlier efforts can be found in [10]. Unfortunately, these
approaches often suffered from either limited accuracy un-
der real-world conditions (caused by making many simpli-
fying assumptions), or from excessive complexity when ei-
ther constructing or using the models. Our approach to per-
formance prediction focuses on achieving useful levels of
prediction accuracy while limiting model complexity and
allowing ef£cient measurement and quanti£cation of impor-
tant model parameters.

The application of performance prediction to the prob-

lem of resource selection has also been addressed recently
by Weissman and Zhao [17]. In their work, Weissman and
Zhao use heuristics to select a number of candidate con£g-
urations, then employ cost functions to derive computation
and communication times for each con£guration. They then
select the con£guration yielding the lowest total cost. Our
approach to resource selection ef£ciently evaluates appli-
cation performance for different con£gurations using only
simple constraint calculations.

Subhlok, Lieu and Lowekamp [15] have looked at au-
tomatically selecting processor nodes for applications run-
ning on high-speed networks. For their results, Subhlok,
Lieu and Lowekamp present algorithms which allow them
to automatically select nodes with three different goals:
maximizing computation capacity, maximizing communi-



0 5 10 15 20 25
Number of Slave Processes

0

10

20

30

40

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Slave Selection
Mandelbrot

Application (sojourner master)
Simulation (sojourner master)
Application (tandem master)
Simulation (tandem master)

Figure 7. Application performance with vary-
ing numbers of slaves.

cation capacity, or balancing computation and communica-
tion. Their paper does not explain how the correct goal is
selected to match speci£c application characteristics in or-
der to give optimum performance. Our approach automat-
ically determines performance bottlenecks based on both
computation and communication constraints, and £nds the
best performing con£guration for all cases.

7. Summary

In this paper, we have described a rate-based perfor-
mance model for master/slave applications running on dis-
tributed heterogeneous processors and networks. By param-
eterizing this steady-state performance model with some
dynamic run-time information, we are able to accurately
predict maximum achievable application performance rates
– even in the cases where application characteristics and re-
source behavior are not steady over time.

We have also described an application performance sim-
ulator which accurately simulates the dynamic interaction
of a master/slave application with a de£ned con£guration
of performance constrained resources. This simulator al-
lows for a detailed analysis of where performance bottle-
necks due to resource limitations may occur in an applica-
tion. This kind of detailed information about how applica-
tions interact with resources in a Grid environment can be
very valuable for resource selection at application runtime,
advanced application and platform planning, and program

0 5 10 15 20 25
Number of Slave Processes

0

100

200

300

400

500

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Slave Selection
Povray

Application (tandem master)
Simulation (tandem master)

Figure 8. Application performance with vary-
ing numbers of slaves.

development activities. The key to our success with our
performance prediction tools has been the identi£cation of
a common set of application and resource parameters which
could be quanti£ed and measured, and which captured both
the static and dynamic aspects of application performance
in Grid environments.

Based on the effectiveness of our performance prediction
tools, we have developed algorithms for master and slave
resource selection on Grid platforms. These algorithms en-
able the selection of a master processor and a set of slave
processors which allow maximum application performance
to occur. Actually achieving the maximum application per-
formance in dynamic Grid environments may also require
the use of other run-time techniques to handle issues like
load balancing and fault tolerance. These are issues we are
actively researching, and will be the subject of future publi-
cations.

Some brief experimental data was presented to verify
that both our performance prediction tools and our strate-
gies for selecting master and slave resources were sound.
We are currently integrating the performance tools and re-
source selection strategies into an AppLeS [2] Grid ap-
plication scheduler with the goal of providing an auto-
matic mechanism for high-quality distributed master/slave
scheduling in heterogeneous and dynamic Grid environ-
ments.

In the future, we would like to extend the work-rate-
based performance model to other common classes of paral-



lel computing in Grid environments. We would also like to
study whether other physical resource characteristics, such
as available memory, might be bene£cial to include in our
constraint analyses. Our experience has shown that the idea
of estimating application performance by accounting for ap-
plication/resource constraints appears promising as a tool
for enabling more effective application scheduling.

References

[1] F. Berman. High-performance schedulers. In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure, chapter 12. Morgan Kaufmann Pub-
lishers, July 1998.

[2] F. Berman and R. Wolski. Scheduling from the perspective
of the application. In Proceedings of the Fifth IEEE Sym-
posium on High Performance Distributed Computing, pages
100–111, Aug. 1996.

[3] A. Clematis and A. Corana. Performance analysis of task-
based algorithms on heterogeneous systems with message
passing. In Proceedings Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, 5th European
PVM/MPI Users’ Group Meeting, Sept. 1998.

[4] R. M. Cubert and P. Fishwick. Sim++, Version 1.0. Depart-
ment of Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL, 1995.

[5] J. R. Evans and E. Minieka. Optimization Algorithms for
Networks and Graphs, chapter 5, pages 178–233. Marcel
Dekker, Inc., second edition, 1992.

[6] K. Everaars and B. Koren. Using coordination to parallelize
sparse-grid methods for 3-d cfd problems. Parallel Comput-
ing, 24(7):1081–1106, 1998.

[7] L. R. Ford and D. R. Fulkerson. Flows in Networks. Prince-
ton University Press, Princeton, New Jersey, 1962.

[8] D. Gelernter, M. R. Jourdenais, and D. Kaminsky. Piranha
scheduling: Strategies and their implementation. Interna-
tional Journal of Parallel Programming, 23(1):5–33, Feb.
1995.

[9] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface
for network-aware applications. In Proceedings of Seventh
International Symposium on High Performance Distributed
Computing, July 1998.

[10] W. Meira. Modeling performance of parallel programs.
Technical Report 589, Computer Science Department, Uni-
versity of Rochester, Rochester, NY, June 1995.

[11] Persistence of vision raytracer. Persistence of Vision Devel-
opment Team, 1999. http://www.povray.org/.

[12] J. Pruyne and M. Livny. Interfacing condor and PVM to har-
ness the cycles of workstation clusters. Future Generation
Computer Systems, 12(1):67–85, 1996.

[13] G. Shao, F. Berman, and R. Wolski. Using effective network
views to promote distributed application performance. In
Proceedings of the 1999 International Conference on Paral-
lel and Distributed Processing Techniques and Applications,
June 1999.

[14] L. M. Silva, V. Batista, P. Martins, and G. Soares. Using
mobile agents for parallel processing. In Proceedings of the
International Symposium on Distributed Objects and Appli-
cations, Sept. 1999.

[15] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic node se-
lection for high performance applications on networks. In
to appear in Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, May 1999.

[16] A. S. Wagner, H. V. Sreekantaswamy, and S. T. Chanson.
Performance models for the processor farm paradigm. IEEE
Transactions on Parallel and Distributed Systems, 8(5):475–
489, May 1997.

[17] J. B. Weissman and X. Zhao. Scheduling parallel applica-
tions in distributed networks. Journal of Cluster Computing,
1(1), 1998.

[18] S. M. White, A. Alund, and V. S. Sunderam.
Nas parallel benchmark kernels for pvm 3.
http://www.nas.nasa.gov/NAS/NPB/, Oct. 1993.

[19] R. Wolski. Dynamically forecasting network performance
using the network weather service. In Proceedings of the
6th High-Performance Distributed Computing Conference,
pages 316–325, Aug. 1997.

Gary Shao is a graduate student in the Department of
Computer Science and Engineering at the University of
California, San Diego. His research interests include
parallel and distributed computing, adaptive scheduling,
and application development environments. He received
his B.S from the University of Missouri, Columbia and his
M.S. from Washington University in St. Louis, Missouri.

Francine Berman is a Professor of Computer Science and
Engineering at the University of California, San Diego. She
is also a Senior Fellow at the San Diego Supercomputer
Center, Fellow of the ACM, and founder of the Parallel
Computation Laboratory at UCSD. Her research interests
over the last two decades have focused on parallel and
distributed computation, and in particular the areas of
programming environments, tools, and models that support
high-performance computing. She received her B.A. from
the University of California, Los Angeles, her M.S. and
Ph.D. from the University of Washington.

Rich Wolski is an Assistant Professor in the Department
of Computer Science at the University of Tennessee and
a partner in the National Partnership for Advanced Com-
putational Infrastructure. His research interests include
parallel and distributed computing, on-line performance
analysis techniques and software, compiler runtime system,
and dynamic scheduling. He received his B.S. from the
California Polytechnic University, San Luis Obispo and
his M.S. and Ph.D. from the University of California at
Davis/Livermore Campus.


	. Introduction
	. A master/slave performance model
	. Modeling work capacity rates in a Grid environment
	. Selecting a master and the slaves
	. Master selection example
	. Selecting the master
	. Complexity
	. Selecting the slaves
	. An application performance simulator
	. Using simulation to enhance slave selection

	. Experimental results
	. Experimental design
	. Results

	. Related Work
	. Summary

