
A Regularized Learning Method for Neural
Networks Based on Sensitivity Analysis

B. Guijarro-Berdiñas, O. Fontenla-Romero,
B. Pérez-Sánchez and A. Alonso-Betanzos ∗

Department of Computer Science, University of A Coruña, Spain
(e-mail: {cibertha, ofontenla, bperezs, ciamparo}@udc.es)

Abstract. The Sensitivity-Based Linear Learning Method (SBLLM)
is a learning method for two-layer feedforward neural networks, based on
sensitivity analysis, that calculates the weights by solving a system of lin-
ear equations. Therefore, there is an important saving in computational
time which significantly enhances the behavior of this method compared
to other learning algorithms. This paper introduces a generalization of
the SBLLM by adding a regularization term in the cost function. The
theoretical basis for the method is given and its performance is illustrated.

1 Introduction

There exists many successful algorithms for training feedforward neural net-
works. Most of them are based on the classical gradient descent method [1]. For
this reason, many of these algorithms have two main drawbacks: convergence to
local minima and slow learning speed. In [2] the authors described a new learning
method, Sensitivity-Based Linear Learning Method (SBLLM), that contributes
to the solution of the second problem. The main innovations of this method
are: 1) the cost function that is minimized is based on the sensitivities of each
layer’s parameters with respect to its inputs and outputs and 2) the weights of
each layer of the network are calculated by solving a system of linear equations.
As a result, the method exhibits a higher speed and reaches a minimum error
in few epochs of training [2]. This behavior is very suitable in situations that
deal with large data sets and networks. However, when the training set is not
representative enough, the few iterations employed by the method makes it very
difficult to avoid overtraining just employing techniques like early stopping.

An usual technique to avoid overfitting is regularization that consists in
adding a penalty term to the loss function. In this paper, a generalized ver-
sion of the SBLLM is presented that includes a regularization term based on
the well-known weight decay regularizer [3] defined as the sum of squares of all
adaptive parameters in the network.

∗We would like to acknowledge support from the Xunta de Galicia (PGIDT05TIC10502PR)
and the Ministerio de Educación y Ciencia, Spain (TIN2006-02402). Also, we thank the
Supercomputing Center of Galicia (CESGA) for allowing us the use of the high performance
computing servers.

289

2 The Sensitivity Learning Algorithm with regularization

Consider the network in Fig. 1. Being S the size of the training set, with I
inputs, xis, and J desired outputs, djs, the proposed method is described.

subnetwork 1
subnetwork 2

gK

g2

g1
w ki

(1)

f1

f J

x1s

x0s =1

xIs

y1s

yJs

w jk
(2)z1s

z2s

zKs

+

+

+

+

+

z0s =1

d1s

dJs

z1s

z2s

zKs

d1s

dJs

Fig. 1: Two-layer feedforward neural network.

Step 0: Initialization. Initialize the outputs of the intermediate layer as:

zks = gk

(
I∑

i=0

w
(1)
ki (0)xis

)
+ εks; εks ∼ U(−η, η); k = 1, . . . , K; s = 1, . . . , S,

where η is a small number, U is an uniform distribution and w(1)(0) are some
random weights.

Step 1: Subproblem solution. Consider the network as composed of two sub-
networks (see Fig. 1). The weights of layers 1 and 2 are calculated independently
by minimizing for each layer l a loss function:

Q(l) = L(l) + α

M∑
i=0

N∑
j=0

w2
ji, (1)

where α is the regularization parameter, the second term on the right-side hand
is the regularization term, and M and N are the number of inputs and outputs
of layer l. The term L(l) measures the training error. In this work, we consider
L(l) as the sum of squared errors before the nonlinear activation functions [4, 5].
Therefore the loss function used for solving subnetwork 1 can be written as

L(1) =
S∑

s=1

K∑
k=1

(g′k(z̄ks)ε̄ks)2 =
S∑

s=1

K∑
k=1

(
g′k(z̄ks)

(
I∑

i=0

w
(1)
ki xis − z̄ks

))2

(2)

where zks is the desired output for hidden neuron k, g′k(z̄ks) is the derivative
of the activation function and z̄ks = g−1

k (zks). Analogously is defined the loss
function for subnetwork 2:

L(2) =
S∑

s=1

J∑
j=1

(f ′
j(d̄js)ε̄js)2 =

S∑
s=1

J∑
j=1

(
f ′

j(d̄js)

(
K∑

k=0

w
(2)
jk zks − d̄js

))2

, (3)

290

where djs is the desired output for output neuron j and d̄js = f−1
j (djs). The

terms g′j(z̄ks) in eq. 2 and f ′
j(d̄js) in eq. 3 are scaling terms which weigh the er-

rors to ensure that they are magnified appropriately according to the operation
point of the nonlinearity at the corresponding value of the desired data point.
The inclusion of this term in the loss functions in eq. 2 and 3 is another im-
provement with respect to the original SBLLM [2]. The advantage of these loss
functions is that the optimum set of weights, can be easily calculated by solving
the systems of linear equations that are obtained by calculating derivative of
Q(1) and Q(2) with respect to the weights and equating to zero:

I∑
i=0

A
(1)
pi w

(1)
ki + αw

(1)
kp = b

(1)
pk ; p = 0, 1, . . . , I; k = 1, . . . , K

K∑
k=0

A
(2)
qk w

(2)
jk + αw

(2)
jq = b

(2)
qj ; q = 0, 1, . . . , K; j = 1, . . . , J,

where A
(1)
pi =

S∑
s=1

xisxpsg
′2
k (z̄ks); b

(1)
pk =

S∑
s=1

z̄ksxpsg
′2
k (z̄ks); z̄ks = g−1

k (zks)

and A
(2)
qk =

S∑
s=1

zkszqsf
′2
j (d̄js); b

(2)
qj =

S∑
s=1

d̄jszqsf
′2
j (d̄js); d̄js = f−1

j (djs).

Step 2: Evaluate the sum of squared errors. Using the new weights, the
MSE is evaluated for the entire network and also a new cost function defined as
Q(z) = Q(1)(z) + Q(2)(z). This cost function measures the global errors of the
network as the sum of the errors of each layer but before the nonlinearities, as
opposed to the MSE. Later on, based on this cost function, the new values of
the z will be obtained.

Step 3: Convergence checking. If |Q − Qprevious| < γ or |MSEprevious −
MSE| < γ′ stop and return the weights and the sensitivities.

Step 4: Check improvement of Q. If Q > Qprevious reduce the value of the
step size (ρ), and restore the weights, z = zprevious, Q = Qprevious and go to
Step 5. Otherwise, store the values Qprevious = Q, MSEprevious = MSE and
zprevious = z and obtain the sensitivities of the cost function Q respect to the

output z of the hidden layer,
∂Q

∂zks
=

∂Q(1)

∂zks
+

∂Q(2)

∂zks
where,

∂Q(1)

∂zks
is defined as,

−2

(
g
′
k(z̄ks)(g

−1)
′
(zks)

(
I∑

i=0

w
(1)
ki xis − z̄ks

))(
g
′
k(z̄ks) − g

′′
k (z̄ks)

(
I∑

i=0

w
(1)
ki xis − z̄ks

))

and

∂Q(2)

∂zks
= 2

J∑
j=1

(
f

′
j(d̄js)

(
K∑

r=0

w
(2)
jr zrs − d̄js

))
f

′
j(d̄js)w

(2)
jk

291

being z̄ks = g−1
k (zks), d̄js = f−1(djs), k = 1, . . . , K, j = 1, . . . , J and z0s = 1,∀s

Step 5: Update intermediate outputs. Using the Taylor series approxima-

tion over the cost function, Q(z + Δz) = Q(z) +
K∑

k=0

S∑
s=1

∂Q(z)
∂zks

Δzks ≈ 0, the

following increments are calculated to update the desired outputs of the hidden
neurons

Δz = −ρ
Q(z)

||∇Q||2∇Q, where ρ is step size (4)

The procedure continues from Step 1 until a convergence condition is achieved.

The complexity of this method is determined by the complexity of Step 1
which solves systems of linear equations. Several efficient methods can be used
with a complexity of O(n2), being n the number of weights of the network.

3 Experimental Results

In this section the performance of the proposed method and a comparative anal-
ysis with the original SBLLM is illustrated by its application to several regression
and classification problems. These data sets were obtained from the Eric’s Home
page1, the StatLib Datasets Archive2, the Time Series Data Library3, the UCI
Machine Learning Repository4 and the Data Mining Institute of the University
of Wisconsin5. The conditions of the experiments are summarized in tables 1
and 2, regarding the number of samples of each data set, the topology of the
neural network and the type of the cross-validation (10-fold cross-validation or
leave-one-out) used to estimate the true error. Each experiment was run 10
simulations and the results are presented as the mean of these trials. Finally, to
check the influence of the regularization parameter α, the proposed method was
run with different α ∈ {0, 0.002, 0.004, . . . , 0.03}. The results obtained for all
data sets are similar. As an example, fig. 2 shows the mean train and test error
curve calculated over all simulations for each α for the Oscillation data set. No-
tice that the point α = 0 corresponds to the method with no regularization term
(the original SBLLM). As can be observed, although the train error increases
with α the test error monotonically decreases down to a certain optimum α.
After this point, the test error increases due to the excessive influence of the
regularization term in the cost function.

In tables 3 and 4 is shown the performance of the method obtained with
α = 0 and using the optimum value of α. This performance is measured by
mean squared error (MSE) in table 3 and the classification accuracy in table 4.

1http://www.cse.ogi.edu/∼ericwan/data.html
2http://lib.stat.cmu.edu/datasets
3http://www-personal.buseco.monash.edu.au/∼hyndman/TSDL
4http://www.ics.uci.edu/∼mlearn/MLRepository.html
5http://www.cs.wisc.edu/dmi/

292

Data Set Samples Topology CV
Lorenz 500 8-10-1 10-Fold
Leuven 500 8-10-1 10-Fold
Dow-Jones 500 8-10-1 10-Fold
Waves 150 7-15-1 10-Fold
Henon 150 7-15-1 10-Fold
Kobe 100 5-10-1 10-Fold
TreeRings 110 5-12-1 10-Fold
CO2 40 8-15-1 Loo
Oscillation 20 4-15-1 Loo
Mackey-Glass 50 5-12-1 Loo
Blowfly 50 7-10-1 Loo

Table 1: Characteristics of the regression data sets.

Data Set Samples Topology CV
Iris data 150 4-7-3 10-Fold
Lenses data 24 4-4-3 Loo
Forest CoverType 500 54-100-2 50,620 test samples
Dim Data 150 14-10-2 10-Fold
Housing Data 150 13-10-2 10-Fold

Table 2: Characteristics of the classification data sets.

0 0.005 0.01 0.015 0.02 0.025 0.03
0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

α

M
ea

n
 M

S
E

Mse Train
Mse Test

Fig. 2: Mean MSE curve as a function of α for the Oscillation data set.

As can be observed in all cases, the use of α improves the performance as was
demonstrated by applying the Kruskal-Wallis test to check that the differences
were statistically significant.

4 Conclusions

In this paper a generalized version of the Sensitivity-Based Linear Learning
Method is presented by adding a regularization term. As was experimentally

293

Data Set Mse Train/Test(α = 0) Mse Train/Test(optimum α)
Lorenz 7.90 × 10−3 / 1.96 × 10−4 8.20 × 10−3 / 3.88 × 10−5 (0.012)
Leuven 7.90 × 10−3 / 1.45 × 10−4 8.10 × 10−3 / 3.89 × 10−5 (0.010)
Dow-Jones 7.90 × 10−3 / 1.45 × 10−4 8.20 × 10−3 / 3.90 × 10−5 (0.010)
Waves 1.23 × 10−2 / 0.24 × 10−2 1.29 × 10−2 / 0.20 × 10−2 (0.004)
Henon 2.61 × 10−2 / 5.50 × 10−3 2.67 × 10−2 / 5.40 × 10−3 (0.030)
Kobe 1.22 × 10−2 / 1.40 × 10−3 1.24 × 10−2 / 9.26 × 10−4 (0.004)
TreeRings 2.91 × 10−2 / 9.40 × 10−3 3.00 × 10−2 / 8.10 × 10−3 (0.030)
CO2 1.35 × 10−2 / 1.98 × 10−4 1.35 × 10−2 / 1.20 × 10−4 (0.002)
Oscillation 1.13 × 10−2 / 1.53 × 10−2 1.21 × 10−2 / 1.07 × 10−2 (0.026)
Mackey 2.63 × 10−2/ 2.40 × 10−3 2.64 × 10−2 / 2.30 × 10−3 (0.020)
Blowfly 1.94 × 10−2 / 2.00 × 10−3 1.96 × 10−2 / 1.90 × 10−3 (0.007)

Table 3: Mean Train and Test MSE values for α = 0 and the optimum α

Data Set Acc. Train/Test(α = 0) Acc. Train/Test(optimum α)
Iris 84.90 / 82.53 94.15 / 92.67 (0.004)
Lenses 91.89 / 76.67 93.73 / 79.58 (0.030)
Forest 80.06 / 72.02 80.30 / 72.99 (0.100)
Dim Data 88.19 / 80.00 89.67 / 90.00 (0.010)
Housing 89.87 / 84.00 90.15 /89.00 (0.002)

Table 4: Mean Train and Test Accuracy values for α = 0 and the optimum α

shown, this algorithm improves the performance of the original one when over-
fitting is possible. One of the distinctive features of the original SBLLM is
that it measures the error before the nonlinearities. Regarding this, another
enhancement of the algorithm was introduced by adding a scaling term to the
loss function that improves the equivalence between the errors calculated before
and after the nonlinearities.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Willian. Learning representations of back-
propagation errors. Nature, 323:533–536, 1986.

[2] E. Castillo, B. Guijarro-Berdiñas, O. Fontenla-Romero, and A. Alonso-Betanzos. A very
fast learning method for neural networks based on sensitivity analysis. Journal of Machine
Learning Research, 7:1159–1182, 2006.

[3] G. E. Hinton. Learning translation invariant recognition in massively parallel networks. In
Volume I: Parallel architectures on PARLE: Parallel Architectures and Languages Europe,
pages 1–13, London, UK, 1987. Springer-Verlag.

[4] E. Castillo, O. Fontenla-Romero, A. Alonso Betanzos, and B. Guijarro-Berdiñas. A global
optimum approach for one-layer neural networks. Neural Comp., 14(6):1429–1449, 2002.

[5] D. Erdogmus, O. Fontenla-Romero, J.C. Principe, A. Alonso-Betanzos, and E. Castillo.
Linear-least-squares initialization of multilayer perceptrons through backpropagation of
the desired response. IEEE Transactions on Neural Networks, 16(2):325–337, 2005.

294

