
  

 

 Abstract— Stroke is a leading cause of long-term sensori-

motor deficits in upper limb function. Yet, current upper limb 

interventions have limited effectiveness. Multiple efforts have 

been initiated for augmenting intervention with advanced 

technology, yet high system costs limit access to the technology. 

Planar movements constitute an important sub-set of motions 

that need to be re-trained following stroke. The current paper 

describes the development of a low-cost, virtual reality system 

with a supporting passive manipulator, suitable for training arm 

movement in the horizontal plane. To increase tracking 

accuracy, the system integrates two 3D cameras: a Kinect and a 

Leap Motion. A camera reference-frame calibration algorithm 

is presented.     

I. INTRODUCTION 

Stroke is a leading cause of long-term sensorimotor 
disability with deficits in upper limb function persisting into 
the chronic stage in a large proportion of stoke survivors [1]. 
This is partly due to the limited effectiveness of current upper 
limb rehabilitation interventions [2]. Since repetition is a key 
element in post-stroke rehabilitation, multiple efforts have 
been initiated for augmenting rehabilitation following stroke 
with advanced technologies, such as robotics and virtual 
reality (VR) [3-4], which can support and motivate more 
intensive motion repetition. VR enables the creation of 
enriched practice environments leading to increased 
motivation and improved practice, relevant to activities of 
daily living. Robots facilitate limb support and control of 
motion dynamics. Additionally, these technologies can be 
used to monitor the patient’s motion and thus can provide 
objective progress assessment.  

High-intensity, repetitive training is an essential 
component to facilitate motor recovery which may however, 
be limited by the high cost of adopting rehabilitation 
technologies such as VR and robotic systems. Making VR and 
robotic-based training affordable is challenging since 
precision and robustness of low-cost systems is typically low, 
which limits their utility. If a VR system represents motion 
imprecisely, the participant may learn non-optimal motion 
profiles with unwanted characteristics. This may contribute to 
the phenomenon of ‘learned dis-use’ and lead to the learning 
of maladaptive movement patterns [5]. In the current research, 
we set out to develop a low-cost, yet accurate and robust VR 
training system with an anti-gravity support passive 
manipulator for whole-arm upper limb stroke rehabilitation.  
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II. SYSTEM 

A. System overview 

The developed low-cost system supports planar, horizontal 
whole-arm motion. Such movement is frequently encountered 
in activities of daily living and many existing high-cost upper 
limb rehabilitation robotic systems, e.g., the MIT-Manus (now 
In-Motion) [6] have been constructed for such movement. 
While upper limb movement in 3D space is important, 
constructing an arm support mechanism for such movement is 
complex. In comparison, supporting planar horizontal 
movement is less challenging, more affordable and therefore 
suitable for the current effort.     

The system comprises three modules. A passive 
manipulator for supporting horizontal motion against gravity, 
motion tracking with Kinect and Leap Motion cameras, and an 
interactive VR game environment to enhance motivation. The 
participant sits in a chair with a high backrest and no armrests. 
When needed, trunk motion is limited by two crossed Velcro 
straps attached to the chair’s backrest, to reduce compensatory 
trunk motion. The system limits endpoint motion to the 
horizontal plane. Whole arm motion is recorded and used as 
input to the game environment presented on the screen. 

B. The supporting manipulator 

The supporting passive manipulator was modeled after an 
ergonomic computer desk armrest. Such devices support the 
arm while facilitating smooth horizontal motion. The 
manipulator has two links and three horizontal joints. The 
wrist is placed on a padded wrist holder and connected to the 
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Figure 1. Developed system. Left: complete system, Right: chair and 

supporting manipulator. Fix figure – Its Leap Motion.  
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Figure 1. Developed system. Left: complete system, Right: chair and 

supporting manipulator.  
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manipulator using a Velcro strap. The hand is free, so the 
participant can use it for making task relevant motion.  

 An effort was made to support comfortable motion 
throughout the arm workspace, while keeping the manipulator 
simple and small. Three link-size configurations were tested 
(Table 1). With the original armrest and the first prototype, 
motion range was limited, and task execution was 
uncomfortable. The second prototype facilitated smooth 
motion throughout the workspace while still having a small 
footprint. In this system, the manipulator is connected at an 
adjustable vertical level to a supporting stand that is connected 
to a large weight (about 50kg) for stability. The stand is also 
used for placing the cameras.     

C. Motion tracking  

Arm motion is tracked using low-cost 3D cameras. 
Preliminary tests were conducted for assessing whether the 
accuracy of the Kinect camera alone was sufficient. Three 
different camera locations and six wrist locations in the 
horizontal plane were tested in four participants. The average 
error of estimating the elbow extension angle was 10°, which 
is high. We aim at reducing the error to about 1°.   

Due to the low accuracy of the single Kinect camera, we 
decided to perform tracking based on fusion of two 3D 
cameras. The Kinect camera has a larger field of view yet 
lower accuracy then the Leap Motion camera. Therefore, they 
were combined to attain high accuracy for gross arm motion. 
The Kinect camera is placed facing the participant about 
150cm away and the Leap Motion camera is connected to the 
stand about 40cm above the participant’s wrist. Attaching the 
camera from the side was also considered but since 3D camera 
precision in the parallel plane is typically greater than its depth 
precision, the location above the hand was preferred.  

A rigid transformation between the respective reference 
frames of the Kinect and Leap Motion cameras is required for 
integrating their outputs. The Leap Motion camera returns 
only 3D locations of a limited set of landmarks, such as 
fingertips, palm, wrist, and elbow positions. Such landmarks 
can be used for aligning reference frames. Prior work [7] 
calibrated the Kinect and Leap Motion cameras based on 
fingertip locations and the Corresponding Point Set 
Registration (CPSR) algorithm [8]. As fingertip locations are 
not readily available from the Kinect SDK, their locations 
were extracted from the Kinect 3D image.  

In the current system, camera position is set during system 
setup, and both cameras are statically connected to their base 
placement. Therefore, we developed a two-stage calibration 
procedure, which utilizes these constraints. An initial 
transformation matrix is measured based on camera position 
and orientation. In the second stage, the matrix is optimized 
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based on landmark positions recorded in parallel from both 
cameras. Since the SDK’s of both cameras identify wrist and 
elbow locations, these are used as landmarks. Data are 
recorded as the participant moves his arm throughout the 
workspace. The participant’s movement profile is semi-static, 
i.e., the participant moves slowly and holds a posture for a few 
seconds and then moves again. To reduce recording noise, 
movement samples in the static positions are averaged. The 
static position coordinates of both cameras serve as inputs to 
an optimization algorithm. The constrained-optimization 
function in the MatlabTM optimization toolbox1 is used, where 
the initial transformation matrix is the matrix computed during 
the initial stage. A non-linear equality constraint is imposed so 
rotation matrix orthogonality is maintained, 

𝑅−1 = 𝑅𝑇               (1) 

The calibration procedure was tested by recording 3000 
elbow position samples from both Kinect and Leap Motion 
cameras. Thirty static elbow positions were identified and 10 
samples were averaged for each static position, for each 
camera. With the optimized transformation matrix, the average 
difference between transformed Kinect readings and Leap 
Motion readings across all static positions was 4.7 cm, which 
is acceptable taking into account inaccuracies in determining 
elbow joint center of rotation.  

D. The interactive game environment 

A sample game was programed using the UnityTM game 
development engine. The programed game is of a simple task 
of feeding a fish. A fish bowl and fish food appear in different 
positions on a virtual table. The participant must take the food 
and bring it to the fish. The food is taken and released based 
on the proximity of the hand to the target location, i.e., based 
on gross arm motion. When food is successfully released, a 
star appears on the screen. Participants have a time-period 
within which they should complete the task. The duration of 
this period can be adjusted based on the participant’s 
capabilities. The participant’s success score (number of times 
food reached the fish within the time-period) is presented on 
the screen. There are three different target positions for the fish 
bowl and three food positions, making nine fish-food 
combinations. These combinations are repeated during each 
training session, where the number of repetitions is adjusted 
according to the period allotted for performing the task and the 
determined training duration. The camera view selected in the 

TABLE I.  MANIPULATOR LINK LENGTHS 

Version Link 1 [mm] Link 2 [mm] 

Original arm-rest 122 111 

First prototype 170 150 

Second prototype 170 185 

 

Figure 2. Game environemnt. One fish bowl-food position 

combinations presented.  

 



  

game is a first-person view, so that the view of the game arena 
and the arm movement are unobstructed (Fig. 2).   

III. CONCLUSION 

The basic components of a low-cost VR rehabilitation 

system with anti-gravity support for horizontal upper limb 

motion have been developed. We are currently developing a 

model integrating camera measurements with environment 

and biomechanical constraints, e.g., arm segment length and 

horizontal wrist motion plane, for improving joint angle 

computations. We are also enhancing the game environments, 

calibrating the food and fish bowl positions to the 

participant’s arm length so that the objects are perceived as 

reachable. Additionally we are testing addition of negative 

feedback when the trunk is used for reaching a target within 

arm’s length. 
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