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Codon usage and expression-based
features significantly improve prediction
of CRISPR efficiency

Check for updates

Shaked Bergman1 & Tamir Tuller 1,2

CRISPR is a precise and effective genome editing technology; but despite several advancements
during the last decade, our ability to computationally design gRNAs remains limited. Most predictive
models have relatively low predictive power and utilize only the sequence of the target site as input.
Here we suggest a new category of features, which incorporate the target site genomic position and
the presence of genes close to it. We calculate four features based on gene expression and codon
usage bias indices.We show, onCRISPR datasets taken from 3 different cell types, that such features
perform comparably with 425 state-of-the-art predictive features, ranking in the top 2–12% of
features. We trained new predictive models, showing that adding expression features to them
significantly improves their r2 by up to 0.04 (relative increaseof 39%), achieving average correlations of
up to 0.38 on their validation sets; and that these features are deemed important by different feature
importancemetrics.Webelieve that incorporating the target site’sposition, in addition to its sequence,
in features such as we have generated here will improve our ability to predict, design and understand
CRISPR experiments going forward.

CRISPR (clustered regularly interspaced short palindromic repeats) is a
powerful technology to induce mutations in precise genomic locations,
with potential to substantially aid the development of treatments to
various diseases (such as cancer and AIDS), as well as basic science1–3.
This technology is a marked improvement upon previous genome-
editing tools, such as zinc-finger nucleases (ZFNs) and Transcription
activator-like effector nucleases (TALENs), both in precision and
required resources; instead of engineering DNA-binding proteins,
CRISPR utilizes a guide RNA (gRNA), which binds to complementary
target sites and catalyzes a double stranded break (DSB) reaction per-
formed by an endonuclease. In the process of repairing the break, a
mutation could be induced – either randomly (via non-homologous
end joining, or NHEJ) or by inserting a short sequence of interest (via
homology-directed repair).

Despite its precision, the design of a sgRNA with high sensitivity and
specificity that would efficiently affect its target and only its target remains a
challenge; several computationalmodels were developed to aidwith various
aspects of this task: tools that predict CRISPR efficiency at a given target
site4–23; tools that predict themutations induced byNHEJ24–28; and tools that
find suitable gRNAs and potential off-target sites for an on-target or gene of
interest29–48. These tools, while considerably advancing the field of CRISPR,
have relatively low sensitivity and specificity49–55.

One possible explanation for the low performance is the nature of
predictive features used in these models: almost exclusively sequence-based
features, consisting of nucleotide identities at various target site positions, as
well as thermodynamic features, which are sequence-based as well, such as
the melting temperature of the DNA target site and the free energy of the
gRNA. Only a few models include epigenetic features in addition to the
sequence-based ones5,10,12,18. The usage of sequence-based features is related
to the fact that most state-of-the-art models are trained on in vitro data or
out-of-context target sites inserted via a lentivirus; inmany cases, the dataset
does not include the target site’s location at all and lists only its sequence. As
a result, features based on the target site’s genomic location are expected to
have low to negligible correlations with CRISPR efficiency, since the data
doesnot fully reflectCRISPRaction in its intended, in vivo setting.While the
in vitro datasets are larger and more numerous than the ex vivo datasets,
computational modeling of CRISPR should strive toward using ex vivo and
in vivo datasets.

Gene expression, being the basis for life, is a complex process governed
by amultitudeof factors and conditions (reviewed in ref. 56).Measurements
of gene expression reflect an orchestra of RNAs and proteins working in
tandem to produce the correct protein at the correct time and are related to
virtually every cellular process. Different aspects of gene expression are
encoded in the codon sequence itself (reviewed in ref. 57), and several codon
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usage bias (CUB) indices were created to estimate the way codon compo-
sition affects gene expression (reviewed in ref. 58). For these reasons – the
information encoded in expression levels, and the relative ease of estimating
expression via CUB indices—we chose to evaluate expression data as
potential predictive features of CRISPR efficiency. For example, highly
expressed regions may entail a higher rate of cellular functions, which may
be related to CRISPR’s ease-of-access to target sites, for example via chro-
matin accessibility or endogenous factors that aid CRISPR action. Here we
show that expressionmeasurements and CUB indices can be used as useful
features to predict CRISPR efficiency and could be an important tool in
understanding the way CRISPR works ex vivo and in vivo.

Results
The general structure of the study
In this study, we have set out to assess the viability of CUB and
expression features as predictive features of CRISPR efficiency. To that
end, we downloaded empirical CRISPR ex-vivo data (see “Acquiring ex-
vivo CRISPR efficiency”), generated features based on their corre-
sponding cell types (see “Calculating CUB and expression features”)
and checked that our features’ relation with CRISPR efficiency is not
diminished when controlling for chromatin accessibility (see “CUB/
expression correlation is not explained by chromatin accessibility”).
We compared our features to well-established features used in state-of-
the-art models (“CUB and expression features outperform most classic
features”) and checked whether they encode new information
compared to these models (“CUB and expression features encode
information orthogonal to state-of-the-art models”); we then checked
for consistent trends in the relationship between our features and
CRISPR efficiency (“High-efficiency sites reside in significantly higher-
expressed genes relative to low-efficiency sites”). Finally, we trained
predictive CRISPR models with the well-established features and
checked whether adding our features significantly improved them, and
whether our features are marked as important by various feature
importance metrics (“CUB and expression features significantly
improve CRISPR prediction”).

Acquiring ex-vivo CRISPR efficiency
To properly evaluate the predictive power of expression-based features, we
required efficiency data measured ex vivo rather than in vitro; we down-
loaded the 3 largest ex vivoCRISPRefficiency datasets, which are based on 3
different cell types: T cell data from Leenay et al., including 1574 sites26;
HEK293 data from TTISS, including 666 sites59; and U2OS data from
GUIDE-Seq, including 260 sites60. The Leenay dataset includes on-target
data, whereas the other two sets are largely off-target data.

Calculating CUB and expression features
To generate expression features, we downloaded the transcript sequences
and coordinates available in Ensembl v.10961 and found for each target site
its nearby genes (which we defined as genes whose genomic distance from
the target sites is up to 1000 codons, or 3000nt). The features are calculated
for each gene, and the feature value for each site is defined as the average
feature value over its nearby genes.

We had initially generated 7 different features, 3 of which were lowly
correlated with CRISPR efficiency (See methods and Supplementary
Table 1). We discarded these features and continued our analysis with the
remaining 4: (A) Expression, i.e. normalized mRNA levels of each gene,
downloaded from the ExpressionAtlas62 for T,HEK293 andU2OScells. (B)
ChimeraARS63; this index captures high-dimensional patterns in gene
sequences based on a reference set. We chose the top 2% expressed genes
(based on the Expression Atlas data) as a reference set. (C) Normalized
translational efficiency (nTE)64, which estimates the tRNA supply-and-
demand in the cell and how suited the gene is to that supply. (D) Relative
codon bias strength (RCBS), which estimates the codon usage bias of the
transcript65.We categorize featureAas an “Expression” feature, and features
B-D as “CUB” features. The first three features are calculated using

transcript sequences and expression levels, based on the dataset’s cell type;
whereasRCBS is based solely on transcript sequences, and is identical for the
3 cell types.

CUB/expression correlation is not explained by chromatin
accessibility
Epigenetic accessibility was shown to be related to CRISPR efficiency and is
used in a few predictive models5,10,12,18. To validate whether the correlations
between CUB/expression and CRISPR efficiency are due to that relation,
we calculated the partial correlation between our features and CRISPR
efficiency when controlling for chromatin accessibility based on DNAse
measurements (see the methods section for details). While the correlations
were indeed reduced after controlling for accessibility, the reductionwas not
substantial for the highly correlative features (partial correlations around
0.1, similar to the full correlations); on the other hand, the lowly correlative
features’ correlation was reducedmore noticeably, with a halving (or more)
of the correlation in somecases (SupplementaryTable 2). This indicates that
accessibility can explain some, but not all, of the CUB/expression correla-
tions with CRISPR efficiency. We note here and in the discussion section
that CUB/expression features are substantially easier to acquire and calcu-
late for a variety of cell types and tissues, compared to chromatin
accessibility.

CUB and expression features outperformmost classic features
To evaluate the CUB and expression, we first calculated 425 well-
established features used in most CRISPR models; of these, 420 were
sequence features, indicating the identity of each nucleotide at each
position, as well as the fraction of each nucleotide and dinucleotide in
the target site; and 5 were thermodynamic features, estimating the free
energy of different regions in the sgRNA and themelting temperature of
the DNA target site (see “Calculating classic features” for more details).
We then calculated the correlation between the features and CRISPR
efficiency (Fig. 1a). The CUB and expression features ranked highly in
all 3 datasets, with the best CUB feature ranked in the top 12%/2%/7% in
the T/HEK293/U2OS datasets, respectively. The expression feature was
highly correlative in the T and HEK293 dataset, ranking in the top 5%/
3%, respectively.

In the T and HEK293 datasets, the CUB features outperformed the
thermodynamic features: average correlation of 0.06 (CUB) vs. 0.03 (ther-
modynamic) in T cells, and 0.13 (expression) vs. 0.03 (thermodynamic) in
HEK293. In the U2OS set, while the best thermodynamic feature was more
correlative than the bestCUB feature (0.11 vs. 0.1, respectively), the averages
of the feature sets were similar, with a slight advantage for the CUB features
(0.06 vs. 0.07).

The expression feature outperformed the thermodynamic features in
the T andHEK293 sets as well, with correlations of 0.13/0.1 (expression) vs.
0.07/0.06 (best thermodynamic feature).

Since 400 out of the 425 classic features are binarywhile our expression
features are continuous, we conducted an additional comparison by con-
verting all continuous features to binary features. For each feature, we cal-
culated the average of its maximal and minimal values on the dataset; we
then defined feature values higher than that average as 1 and features lower
(or equal) than 0.We calculated themedian efficiencies of sites with feature
value 1/0 and took the ratio between the lower and higher values such that
the ratio is≤1.We expect this ratio to be lower formore informative features
since this would denote a clearer difference between high-efficiency and
low-efficiency sites (Supplementary Fig. 1). The best CUB feature was
ranked in the top 13%/37%/46% out of all features and the expression
feature was ranked in the top 14%/32%/7% out of all features, for the T cell/
HEK293/U2OS dataset, respectively. When comparing these features only
to the 29 features that were originally continuous, the best CUB feature was
ranked 3rd/12th/12th, and the expression feature was ranked 5th/9th/1st.

From these results, we concluded that CUB and expression features
perform well compared to the classic features and should be considered for
use in predictive models.
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CUB and expression features encode information orthogonal to
state-of-the-art models
Next, we assessed whether our features encode information that is not
included in current state-of-the-art prediction models; to that end, we used
5 such models to predict CRISPR efficiency: Azimuth66, DeepSpCas967,
CHOPCHOP47 (using the Moreno-Mateos4, i.e., CRISPRscan, scoring
scheme), DeepHF16 and sgRNA Scorer9. For each dataset we found the best
CUB/expression feature (based on its correlation with CRISPR efficiency)
and calculated its partial correlation with CRISPR efficiency when con-
trolling for the 5 model scores (Fig. 1b). For all 3 datasets, the partial
correlation was almost identical to the full correlation, indicating that the
CUB/expression features’ information is not included in the state-of-the-art
models and cannot be explained by them.

High-efficiency sites reside in significantly higher-expressed
genes relative to low-efficiency sites
We compared the CUB and expression feature values of sites with the top
20% to sites with bottom 20% efficiency, to discern whether these values
differ significantly between the two groups, andwhether the direction of the
relationship between expression and efficiency is consistent (Fig. 2); for each
dataset, 2–4 out of the 4 features were significantly different between the
groups (p-values were calculated using Wilcoxon’s rank-sum test and
appear in Supplementary Table 3), and in all cases the high-efficiency sites
resided in regionswith higher expression than the low-efficiency sites. Thus,

CUB and expression significantly differ between high-efficiency and low-
efficiency sites and is consistently positively related to CRISPR efficiency.

CUB and expression features significantly improve CRISPR
prediction
In order to check whether using expression-based features can aid in pre-
dicting CRISPR efficiency, we trained models on the 3 datasets using
repeated 5-fold cross validation (with 200 repeats). For each train-test split,
we trained amodel using only the classic features, and– separately– amodel
using these classic features and our 4 CUB/expression features. Thus, we
received a distribution of 1000 correlations for each feature set (classic vs.
classic + CUB/expression) in each cell type, and compared their perfor-
mances (Fig. 3).We conducted this analysis for LASSO and xgboostmodels
(using the Python scikit-learn and xgboost packages, respectively).

In all 6 cases, themodels were significantly improved when adding the
CUB/expression features. The average r2 of the T cell/HEK293/U2OS
dataset increased by 0.01/0.04/0.01 (4%/39%/11%) in the LASSO models,
and 0.02/0.03/0.01 (15%/32%/15%) in the xgboost models, respectively.

We then evaluated our features’ importance in the trained models
relative to the classic features (Fig. 4, Supplementary Table 4). For the
LASSO models, we counted the number of times each feature was selected
out of the 1000 cross validation repeats, as well as its permutation feature
importance (using scikit-learn). For xgboost, we used the permutation
feature importance, xgboost’s built-in “gain” importance measure, and the

Fig. 1 | CUB and Expression features are correlative with CRISPR efficiency and
encode new information. a Spearman correlations (absolute values) between pre-
dictive features and CRISPR efficiency. b Bar charts of Spearman correlations (blue)

and partial correlations (orange) between 5 state-of-the-art models and CUB/
expression feature with CRISPR efficiency. The partial correlation of each vector
controls for all other vectors in the cell subplot.
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popular SHAP importance68. The features were ranked highly, with the best
CUB/expression feature being ranked in the top 21 features (out of 429)
across all 5 measures and 3 cell types. In 14 out of the 15 per-cell measures,
the bestCUB/expression features ranked in the top10 features. These results
demonstrate that CUB/expression features can be used to improve CRISPR
predictive models.

Discussion
In this paper, we have analyzed the value of using predictive CUB and
expression features, that are based on the position – rather than only the

sequence – of CRISPR target sites. After generating 4 CUB/expression
features – based on mRNA levels, ChimeraARS score, nTE score and
RCBS – we evaluated them on the 3 largest ex vivo CRISPR datasets that
were published. The 3 dataset experiments were conducted on 3 different
cell types: T cells, HEK293 and U2OS.

Comparing the CUB and expression features to classic, sequence- and
thermodynamics-based features that are used in most CRISPR prediction
models, we found the CUB/expression features to correlate relatively highly
with CRISPR efficiency - with the best CUB/expression feature in each
dataset ranking in the top 2–12% of features. In 2 of the 3 datasets, the CUB
and expression features clearly outperformed established thermodynamic
features, and in the third database the two types of features performed
relatively similarly. Our features’ correlations with CRISPR efficiency were
not substantially reduced when controlling for 5 state-of-the-art models,
indicating our features indeed bring new information to the table, infor-
mation not encoded in current models.

The expression feature performed well on the T cell and HEK293
datasets, but had a relatively low correlation on the U2OS dataset; whereas
the CUB features as a whole were highly correlative on all 3 datasets, with
different features being ranked thebest in eachone.Codons encodemultiple
aspects of gene function via complexandhigh-level codes57, and it is possible
the CUB indices capture some of these codes better than the direct gene
expression measurements, which – despite having evolved considerably in
the last decades – can still be noisy, biased, and do not capture all gene
expression steps (e.g., the post transcriptional steps). Thus, we believe
incorporating both expression-based andCUB-based featureswould lead to
the best results.

We also found that gene expressionwas significantly different between
high-efficiency and low-efficiency sites, with high-efficiency sites residing in
regions with higher expression. This is consistent with the correlations
between the features and efficiency, which were all positive.

We evaluated the predictive power our features confer by training
LASSO and xgboost models with and without the CUB and expression
features, and comparing their performances; adding the 4 CUB/expression
features significantly improved themodels, by up to0.04 (relative increase of
39%), and the predictive models achieved average correlations of up to 0.38
on their validation sets. We believe the fact that only 4 features achieve that
much shows their potential for CRISPR prediction, especially considering
new CRISPR models continue to include sequence-based features almost
exclusively. The features were also ranked as highly important in their

Fig. 3 | CUB and expression features significantly
improve CRISPR prediction. Histograms of the
correlations between measured and predicted effi-
ciency in the T cell, HEK293 and U2OS datasets,
when testing LASSO and xgboost models. The blue/
orange histogram indicates the model with/without
the CUB and expression features, and the average
correlation is marked with a solid/dashed line,
respectively. Arrow: direction and magnitude of
difference between histograms’ averages. p-values
were calculated using Wilcoxon’s signed rank test.

Fig. 2 | High-efficiency sites reside in higher-expression regions. Boxplots of the
CUB/expression features for the sites with top/bottom 20% efficiency (orange/blue
plots, respectively) in the T cell, HEK293 and U2OS datasets. Asterisks denote
significance of difference between the top and bottom sites using Wilcoxon’s rank-
sum test. *p < 0.05; **p < 0.01; ***p < 0.001.
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models by the number of times they were selected by LASSO, permutation
importance, xgboost’s “gain” importance and SHAP values.

As described in the previous paragraphs, we endeavored to assess
our features using multiple angles and tests: correlation vs. other fea-
tures, full/partial correlation vs. other models, separation between high-
efficiency and low-efficiency sites, model improvement, feature selec-
tion and importance. Correlations in the field are relatively low – this is
the current state of CRISPR prediction efficiency, which we aim to
improve here. Correlations of up to 0.2 were observed in multiple pre-
vious studies17,52–55; this is demonstrated by the model performance
shown in Fig. 1b as well, where state-of-the-art models achieve corre-
lations of up to 0.2 – and in some cases considerably lower – with
CRISPR efficiency. These 5 models are well established in the field and
cited in numerous papers; they mark the de facto state-of-the-art in
CRISPR prediction.

Our features are based on ex vivo conditions, and as such have to be
evaluated on such data. Ex vivo measurements are a better representation
of the true efficiency of CRISPR in the cell, compared to in vitro mea-
surements – but they include more noise, heterogeneity, and relevant
affecting variables compared to in vitro measurements, making CRISPR
prediction a challenge.

Since gene expression is an outcome of many different processes, it is
hard to pinpoint the exact reason forwhichexpression is useful in predicting
CRISPR efficiency. We hypothesize that highly expressed regions are more
active regions, in which the CRISPR complex can find its waymore easily to
its target – for example, by a higher physical accessibility of the target sites
due to the three-dimensional conformation of the DNA, or a higher pre-
sence of endogenous factors in these areas which could aid CRISPR action.
We have shown that the correlation between expression/CUB and CRISPR
efficiency is reduced, but not completely diminished, when controlling for
chromatin accessibility; indicating some (but not all) of the expression-
CRISPR relationmay be attributed to accessibility. Such regionsmay have a
lower density ofDNA, leading to fewer siteswithpartial complementarity to
the gRNA; these sites can compete with the CRISPR on-target, thus having
fewer sites nearby is expected to increase CRISPR efficiency69.

One major advantage of CUB/expression features, compared to
other position-based features such as those based on epigenetics, is that
expression levels (measured by RNA-seq) are available for a large
number of cells and tissues, since they are relatively simpler and cheaper
to acquire. In the case of non-model organisms, for which experimental
data is scarce, many CUB features (such as the ChimeraARS and RCBS
used here) require only gene sequences to calculate, and so can be

Fig. 4 | CUB and expression features rank highly
compared to classic features.Ranks of features used
in the LASSO and xgboostmodels, averaged over the
1000 cross validation iterations; a higher rank indi-
cates a more important feature. The classic and
CUB/expression features are marked with blue and
orange dots, respectively. a Number of times each
feature was selected in the LASSOmodels. b Feature
rank based on LASSO permutation importance.
c Feature rank based on xgboost permutation
importance. d Feature rank based on xgboost’s
“gain” importance. e Feature rank based on SHAP
values of the xgboost models.
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generated on them as well. Thus, these features could easily be calcu-
lated for the vast majority of CRISPR experiments.

The main limitation of our work remains the relatively scarce mea-
surements of ex vivo CRISPR efficiency; there is a growing trend of con-
version frominvitromeasurements to exvivomeasurements, but the largest
datasets are still measured in vitro. While certainly useful to the field, the
intended use of CRISPR is, naturally, in vivo. Since ex vivo experiments can
prove to be very different from in vitro ones, additional ex vivo CRISPR
datasets would allow more accurate assessments of CRISPR usage in real-
world situations. In addition, while we assessed three different cell types, all
three were eukaryotic cells – and specifically, human cells. It remains to be
seen whether our features could improve CRISPR prediction in other
organisms; for example, since chromatin is absent in prokaryotes, our
hypothesis regarding the accessibility information contained in our features
would be relevant to a lesser extent there. Nevertheless, since expression
levels are the culmination of numerous cell processes, we believe it feasible
for expression-based features to be informative in prokaryotes as well,
perhaps indicating other favorable conditions for CRISPR action.

This study demonstrates the usefulness of using features that are based
on thewealth of information accumulated regarding each genomic location.
Incorporating such features, specific to the cell type in which the CRISPR
experiment is conducted, would enhance our ability to predict, understand
and utilize CRISPR technology.

Methods
Acquiring CRISPR efficiency measurements
ForTcellsweused the “MutationEfficiency”, “IndelCounts” and “Insertion”
files published by Leenay et al.26; we filtered out sites with fewer than 1000
mapped reads, and calculated the efficiency as the fraction of edited reads
out of all reads mapped to the site. For HEK293 cells we used the TTISS
dataset59; we defined each site’s efficiency as the average number of SpCas9
Seq reads mapped to it, keeping only sites with at least one such read. For
U2OS cells we used the number of GUIDE-Seq readsmapped to each site as
efficiency scores60.

Acquiring gene expression levels
We downloaded mRNA levels from the Expression Atlas62. For the T cell
andHEK293datasets,we usednormalizedexpression values fromaccession
IDs E-GEOD-36766 and E-GEOD-14429, respectively. For the U2OS
dataset, we used the TPM values from the osteosarcoma (MG63) mea-
surements in E-MTAB-2706.

Calculating CUB features
Wecalculated two versions of the codon adaptation index (CAI)70 scores for
each gene, using two different reference sets: the whole human tran-
scriptome, and transcripts with the top 2% expression. For each codon in
each reference set, we calculated its CAI weight as its frequency in the set
relative to the most frequent synonymous codon. The CAI weight of a gene
is then the geometric mean of its codons’ CAI weights.

We calculated the ChimeraARS score for each gene using the Chi-
meraUGEM program63, setting the reference set as the transcripts with the
top 2% expression for each cell type. ChimeraARS calculates the similarity
between a given sequence and a reference set by finding the longest sub-
string, common to the gene and the set, in each position of the sequence.

We calculated the tRNA adaptation index (tAI)71 using human tAI
weights from ref. 72; the tAI score of a gene is the geometric mean of its
codons’ tAI weights.

We used these same weights, and the downloaded per-cell mRNA
levels, to calculate the nTEweights; a codon’s nTEweight is defined as its tAI
weight (the “tRNA supply”) divided by its number of appearances in the
transcriptome (i.e., the sum of its appearances in each transcript, multiplied
by the transcript’s abundance; this is the “tRNA demand”).

We defined each genomic target site’s CUB/expression feature as the
average corresponding feature value of all genes which reside up to 3000nt
away from the target site.

Calculating epigenetic features
We downloaded DNAse bigwig files from ENCODE73, and defined the
accessibility feature as the average value over the target site’s coordinates.
The accession ID and files used are listed in Supplementary Table 5.

Calculating classic features
We calculated 420 sequence-based features and 5 thermodynamic features.

For the sequence-based features, we used binary features denoting the
identity of each nucleotide and dinucleotide along the 20nt target site (e.g.,
the feature pos5_G is 1 if there is a G in position 5, 0 otherwise). This results
in 4 × 20 (nucleotide at each position) + 16 × 20 (dinucleotide at each
position), i.e, 400, features. We also calculated the overall frequency of each
nucleotide and each dinucleotide over the target site, resulting in 20 features.

The method of calculating thermodynamic features was taken from
DeepHF16: 4 features denoting the melting temperatures of various regions
along the DNA target site (positions 1–20, 1–4, 5–12 and 13–20), and the
gRNA’s free energy. Melting temperatures were calculated with using Bio-
python, and free energy was calculated using RNAfold74.

The evaluation metric r2

We report the percentage increase in the performances on the r2 values. r2 is
a well-established metric that was used in previous studies in the field as it
estimates the percentage in the varianceof theCRISPRefficiency that can be
explained by ourmodels.We believe that the percentage of improvement is
a very important metric as it provides a good comparison to the current
“state-of-the-art”.

Data availability
The datasets utilized in this study have been downloaded from publicly
available datasets. CRISPR efficiency datasets were downloaded from refs.
26,59,60.mRNAlevelsweredownloaded fromExpressionAtlas62 (accession
IDs E-GEOD-36766, E-GEOD-14429, E-MTAB-2706). tAI weights were
downloaded from ref. 72. DNAse data was downloaded from ENCODE73

(accession IDs ENCFF268DVI, ENCFF412ONC, ENCFF437CNA,
ENCFF526NOL, ENCFF635ZUA, ENCFF529BOG, ENCFF418OBI).
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