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The cell cycle of budding yeast is governed by an intricate protein regulatory network whose
dysregulation can lead to lethal mistakes or aberrant cell division cycles. In this work, we model this
network in a Boolean framework for stochastic simulations. Our model is sufficiently detailed to
account for the phenotypes of 40 mutant yeast strains (83% of the experimentally characterized
strains that we simulated) and also to simulate an endoreplicating strain (multiple rounds of DNA
synthesis without mitosis) and a strain that exhibits ‘Cdc14 endocycles’ (periodic transitions between
metaphase and anaphase). Because our model successfully replicates the observed properties of
both wild-type yeast cells and many mutant strains, it provides a reasonable, validated starting point
for more comprehensive stochastic-Boolean models of cell cycle controls. Suchmodels may provide
a better understanding of cell cycle anomalies in budding yeast and ultimately in mammalian cells.

Orderly progression through the eukaryotic cell cycle is governed by
molecular circuits that control the timely switching from G1 into S-G2-M
and back to G1. These transitions typically follow one another in an alter-
nating sequence, but certain disruptions of the control circuits can result in
aberrant cell cycles. For example, G1-S-G1-S andM-(G1)-M-(G1) cycles are
observed in some budding yeast mutant strains1–3. Moreover, aberrant cell
divisions are common occurrences in cancer cells4,5.

Ordinary differential equations (ODEs) are often used to model the
molecular control circuits governing cell cycle progression and to explain the
irreversible transitions fromone cell cycle phase to the next. ODEs have been
successfully applied to the complex cell cycle regulatory network in budding
yeast6–8, as well as specific cell cycle transitions controlled by different
checkpoints, e.g., the G1/S transition

9, mitotic exit10,11 and the spindle posi-
tioning checkpoint (SPOC)12. AlthoughODE-based approaches can provide
comprehensive quantitative details, they require accurate estimation ofmany
kinetic parameters in the equations and substantial computational time to
simulate large molecular regulatory networks13. Furthermore, accounting for
stochastic effects within this framework requires additional quantitative data
about cell constituents and significantly greater computational resources14,15.

To address these difficulties with ODE modeling, many authors have
turned toBooleanmethods16–19. Recentlywehave adopted aBooleanKinetic
MonteCarlo (BKMC) approach20 to explore stochasticBooleanmodelingof
the budding yeast cell cycle21. Although simple (only seven regulatory
proteins), the model successfully explained some basic observations of

stochastic cell growth and division in wild-type yeast strains; but it was too
simple to account for the phenotypes of anymutant strains. Our goal here is
todevelopamore comprehensivemodel that addresses in quantitative detail
the phenotypes of certain well-characterized mutant strains, including
aberrant cycles such as endoreplication and Cdc14 endocycles22. The
model’s promising results, on a limited subset of experimental data, suggest
that our approach to stochastic Booleanmodelingmaybeworthpursuing in
more detail in the future.

Themolecular mechanism of our model (Fig. 1) involves 22 cell cycle-
related components: fifteen proteins, three checkpoints, three ‘progress’
variables, and one ‘flag’, as defined in Supplementary Table 1.

Methods
Definition of the model
Our model is based on previous work20,21 where the Boolean functions and
time steps are updated asynchronously and continuously using Gillespie’s
stochastic simulation algorithm.Wehave extended andmodifiedour earlier
model in several ways, in order to account for the phenotypes of mutant
strains as well as the physiology of wild-type cells. As before, each protein in
the model is characterized by a Boolean variable, Xj,t, where j = 1, …, 15
indexes the proteins and t ≥ 0 is time. Unlike the BKMC of Stoll et al.20,
where the Boolean variables are updated according to certain specified
‘reaction propensities,’we update them by a uniform asynchronous scheme
in two steps.
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First, we determine which variables might possibly change in the next
time step by the following Boolean functions, where the ‘hat’ indicates the
‘potential’ value of Xi at time t+Δt:

X̂i;tþΔt ¼ Heav Wi;t

� � ¼ 1 if Wi;t>0

0 otherwise

�
;Wi;t ¼ ωi0 þ

X
j

ωijXj;t ; i ¼ 1 . . . 15

ð1Þ
Equation 1 takes as input the 15 Boolean variables representing the

proteins, and the 3 Boolean variables representing the states of the check-
points, in order to calculate an intermediate function,Wi(X1,…, X15, Cln3,
SAC, SPOC), and outputs a Boolean variable, X̂i;tþΔt , the potential update of
Xi. The ωij coefficients define the Boolean function for updating Xi. For
example, the Boolean function X1 =X2 AND X3 can be implemented by
W1 =− 1.5+X2+X3, and X1 =X2 OR X3 byW1 =− 0.5+X2+X3. Simi-
larly, X1 =X2 AND (NOTX3) is equivalent to W1 =− 0.5+X2 – X3; and
X1 =X2 OR (NOT X3) toW1 =+0.5+X2 – X3. In general, ωij > 0 if variable j
activates variable i (a green barbed arrow in Fig. 1), and ωij < 0 if variable j
inhibits variable i (a red blunt connector in Fig. 1). The ωij’s are pure
numbers, not rate constants. Their values are chosen once-and-for-all to fix
the logical relations in the Boolean dynamics implied by Fig. 1. They are not
adjusted to fit quantitative experimental observations (e.g., cycle times, cell
size distributions), but they have been adjusted to account for qualitative
phenotypes (viable or arrested in a particular phase of the cell cycle) of a
panel of mutant strains of budding yeast. In contrast to Boolean modeling
with logical functions, we prefer this approach, which is an extension of the
method introduced by Li et al.16, because the functional form of the Wi’s

(defined in Eq. 1) is a direct reflection of the network topology in Fig. 1, and
the arithmetic calculation is a very compact way to encode a Boolean
function. For example, for a node with 4 inputs, there are 2^(2^4) ≈ 65,000
potential Boolean functions, and the one we choose is specified by the
relative values of just five coefficients ωi0, ωi1, …, ωi4. However, this
approach is limited in that any linear functionWi;t ¼ ωi0 þ

P
j ωijXj;t can

be translated into a corresponding logical function for X̂i;tþΔt , but not all
possible logical functions can be represented by a linear function. An
obvious example is the ‘XOR’ function:X1 =X2 XORX3 = (X2 ORX3) AND (NOT
(X2 AND X3)).

TheWi functions that define our Boolean model for the 15 cell-cycle
regulatory proteins are displayed in Table 1. The values of the 65 ωi0andωij
coefficients in these functions (for wild-type cells) are specified in Supple-
mentary Table 2A. In Supplementary Table 3 we translate theWi functions
of our Boolean model into traditional logical functions in terms of the
elementary relations: AND, OR, NOT.

The second step in updating our model is to identify the change to be
made and the time step Δt to be taken. If more than one protein potentially
changes state (X̂i;tþΔt≠Xi;t), thenwe choose the one thatwill actually change
at randomwith equal probabilities, i.e., the Boolean model progresses from
one state to the next by uniform asynchronous updating. In the BKMC
approach, time is updated by choosingΔt from an exponential distribution,
parameterized by the total ‘propensity’ (probability per unit time) for any
one of the potential changes to occur. This scheme is based on the
assumption that each potential change is an elementary chemical reaction23,
which certainly doesn’t hold in the case of Booleanmodeling. If each change
(protein synthesis, degradation, phosphorylation, dephosphorylation, etc.)

Fig. 1 | Influence diagram describing ourmodel of
cell cycle regulation in budding yeast. The reg-
ulatory network consists of nodes connected by
edges representing inhibition (red lines with a blunt
end) or activation (green lines with a barbed end).
Ovals: proteins; hexagons: checkpoints; rectangles:
progress variables; triangle: flag variable.
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is a series of k elementary steps that are independent and identically dis-
tributed random variables following an exponential distribution with time
constant θ, then the total time,Δt, for completion of the process is given by a
gamma distribution, with density function:

gamma Δtð Þ ¼ 1

Γ kð Þθk Δtð Þk�1e�
Δt
θ ð2Þ

The parameters k and θ determine the mean value of Δt between
updates (mean = kθ) and its coefficient of variation (CV = 1=

ffiffiffi
k

p
). For wild-

type cells, we set k = 3 and θ = 0.3min (i.e., mean = 0.9min and CV = 0.58).
In some circumstances, the Boolean model of the protein interactions

settles on a steady state (X̂i;tþΔt ¼ Xi;t for all i = 1, …, 15), in which case
we allow t to increase by drawing Δt from a gamma distribution with
the same parameter values: k = 3 and θ = 0.3min. During the ensuing per-
iod, the ‘progress’ variables may change and induce the protein network to
leave the steady state and re-enter the cell cycle. For instance, wild-type cells
have aG1 steady state (Whi5=Cdh1= Sic1 = 1, all other Boolean variables =
0).As formalized below, for a cell in thisG1 steady state, the progress variable
sizet steadily increases as the cell grows. When sizet > S0, the ‘cell size
checkpoint’ is satisfied, and the checkpoint variable Cln3t is changed from 0
to 1. This change kicks the protein interaction network out of the G1 steady
state and sets the cell division program inmotion. In the simulation of some
mutants, the protein interaction network falls into a steady state that it
cannot leave (i.e., the cell is arrested at some point in the cell cycle), and we
stop the simulation after the arrested state becomes evident.

Finally, after the updated protein (say, Xk) is chosen and Δt is deter-
mined, all the protein variables are updated as follows:

Xk;tþΔt ¼ X̂k;tþΔt; andXi≠k;tþΔt ¼ Xi;t ð3Þ

This completes our description of how the protein variables are
updated. The changes we have made to the BKMC scheme of Stoll et al.20

precludes using their convenient simulation environment MaBoSS (Mar-
kovian Boolean Stochastic Simulator, https://maboss.curie.fr). Instead, we
have implemented our scheme inPython andprovided all codesonGitHub.

In addition to the Boolean variables tracking the protein interaction
network, the model has a Boolean ‘flag’ called ORI and three Boolean
‘checkpoints’ calledCln3, SAC and SPOC. They are updated as explained in
the following paragraphs.
• ORI specifies the state of the origins of replication on the chromo-

somes. ORI= 0 means the chromosomes are unreplicated and the
origins are ‘licensed’ to initiate replication. ORI = 1 means that

chromosome replicationhas been initiated and that the origins are now
‘unlicensed’ (i.e., unable to initiate a new round of DNA replication).
The value ofORI at any time t is determined simply by the presence of
Clb-dependent kinase activity:

ORIt ¼ Clb5t ORClb2Gt ORClb2Mt ð4Þ

• Cln3 is an indicator of cell growth. Cln3 = 0 indicates that a cell is too
small to start S phase;Cln3 = 1means that it has grown large enough to
warrant a new round of DNA replication and cell division:

Cln3t ¼ Heavðsizet � S0Þ ð5Þ

‘Size’ is the progress variable that controls the size checkpoint:
sizet > S0 > 0, where S0 is the minimum size necessary start the S-G2-
M sequence. S0 is a positive random variable assigned to a cell at birth
from a lognormal distribution,

lognormal S0
� � ¼ 1

S0σ
ffiffiffiffiffi
2π

p exp � lnS0 � μ
� �2

2σ2

 !
ð6Þ

For a lognormal distribution, Smean ¼ eμð1þ 1
2 σ

2 þ . . .Þ and
SCV ¼ σð1þ 1

4 σ
2 þ . . .Þ. For simplicity, we encode the lognormal

distribution with μ = ln(S0_mean) and σ = S0_CV, which are suitable
approximations for our purposes. We chose S0_mean = 0.6 so that the
size of dividing cells is roughly 1 (arbitrary unit), and S0_CV = 0.1 tofit
the observed variability (typically ~10%) of size at division. Note: the
CV of cell size at bud emergence is ~5%, according to Table S11 of Di
Talia et al.24.
During every time step Δt, sizet increases according to:

sizetþΔt ¼ sizet �er�Δt ð7Þ

where r is the specific growth rate of cells. In glucose medium, the
mass-doubling time is ~ 90min, so we choose r = 0.0077min−1. At
cell division (an event to be defined later), the size of the dividing cell,
size@div, is distributed asymmetrically to the progeny:

sizenewborn mother ¼ f � size@div; sizenewborn daughter ¼ 1� f
� � � size@div

ð8Þ

Table 1 | The Wi functions defining the Boolean network for updating the 15 proteins of the cell-cycle control system

1 WWhi5 ¼ ωWhi5 þ ωWhi5;Cdc14 � Cdc14� ωWhi5;Cln2 � Cln2� ωWhi5;Cln3 � Cln3
2 WSBF ¼ ωSBF � ωSBF;Whi5 � Whi5� ωSBF;Clb2G � Clb2Gþ ωSBF;Clb5 � Clb5þ ωSBF;Cln2 � Cln2þ ωSBF;Cln3 � Cln3
3 WMBF ¼ ωMBF � ωMBF;Nrm1 � Nrm1� ωMBF;Clb2G � Clb2Gþ ωMBF;Clb5 � Clb5þ ωMBF;Cln2 � Cln2þ ωMBF;Cln3 � Cln3
4 WNrm1 ¼ ωNrm1 � ωNrm1;Cdh1 � Cdh1þ ωNrm1;MBF � MBF

5 WClb5 ¼ ωClb5 � ωClb5;Sic1 � Sic1� ωClb5;Cdc20 � Cdc20þ ωClb5;MBF � MBF þ ωClb5;SBF � SBF
6 WCln2 ¼ ωCln2 þ ωCln2;SBF � SBF þ ωCln2;MBF � MBF

7 WSic1 ¼ ωSic1 þ ωSic1;Swi5 � Swi5� ωSic1;Clb2G � Clb2G� ωSic1;Clb2M � Clb2M� ωSic1;Clb5 � Clb5� ωSic1;Cln2 � Cln2
8 WCdh1 ¼ ωCdh1 þ ωCdh1;Cdc14 � Cdc14� ωCdh1;Clb2G � Clb2G� ωCdh1;Clb2M � Clb2M� ωCdh1;Clb5 � Clb5� ωCdh1;Cln2 � Cln2
9 WClb2G ¼ ωClb2G � ωClb2G;Cdh1 � Cdh1� ωClb2G;Sic1 � Sic1
10 WClb2M ¼ ωClb2M þ ωClb2M;Mcm1 � Mcm1� ωClb2M;Cdc20 � Cdc20
11 WMcm1 ¼ ωMcm1 þ ωMcm1;Clb2G � Clb2Gþ ωMcm1;Clb2M � Clb2M
12 WCdc5 ¼ ωCdc5 þ ωCdc5;Clb2G � Clb2Gþ ωCdc5;Clb2M � Clb2M� ωCdc5;Cdh1 � Cdh1
13 WCdc20 ¼ ωCdc20 þ ωCdc20;Mcm1 � Mcm1� ωCdc20;SAC � SAC
14 WCdc14 ¼ ωCdc14 þ ωCdc14;Cdc5 � Cdc5� ωCdc14;Clb2M � Clb2M� ωCdc14;SAC � SAC� ωCdc14;SPOC � SPOC
15 WSwi5 ¼ ωSwi5 þ ωSwi5;Cdc14 � Cdc14þ ωSwi5;Mcm1 � Mcm1� ωSwi5;Clb2M � Clb2M� ωSwi5;Clb2G � Clb2G
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We draw f from a lognormal distribution with fmean = 0.55 and
fCV = 0.1; these values give a good agreement with the mean and CV
of size at birth for bothmother and daughter cells growing in glucose
medium.

• SAC, the ‘spindle assembly checkpoint’, is aBooleanvariable indicating
the state of alignment of replicated chromosomes on the mitotic
spindle:

SACt ¼ Heav 1� SPNt

� �
ANDORIt ð9Þ

whereORIt = 1 indicates thatDNAreplicationhas been initiated, and
SPNt tracks the progression of the replicated chromosomes on the
spindle; SPNt = 1 indicating complete alignment. SPNt is initialized at
0 when the cell enters mitosis, i.e., when Clb2M turns on, and SPNt

increases in each time step thereafter, according to:

SPNtþΔt ¼ SPNt þ ΔSPN ð10Þ

where ΔSPN is chosen (in each time step) from a lognormal dis-
tribution with parameters SPNmean = 0.07 and SPNCV = 0.03. Hence,
it takes ~14 steps (14∙kθ = 13min) from entry into mitosis until all
chromosomes are aligned on the metaphase plate.

• SPOC, the ‘spindle position checkpoint’, is a Boolean variable indi-
cating that the fully alignedmitotic spindle is properly positioned in the
neck between mother and bud:

SPOCt ¼ Heav 1� SPOt

� �
ANDCdc20t ð11Þ

whereCdc20t = 1 indicates that anaphase has been initiated, and SPOt

tracks themovement of the two incipient nuclei during anaphase and
telophase. SPOt = 1 indicates that the bud has received its nucleus.
When SPOC turns off, Cdc14 is activated and the cell completes the
transition from telophase to G1. SPOt is initialized at 0 when the cell
enters anaphase, i.e.,whenCdc20 turnson, andSPOt increases in each
time step thereafter, according to:

SPOtþΔt ¼ SPOt þ ΔSPO ð12Þ

where ΔSPO is chosen (in each time step) from a lognormal dis-
tribution with parameters SPOmean = 0.07 and SPOCV = 0.03, so it
takes ~13min for the daughter chromosomes to be properly parti-
tioned to the bud.

In addition to the 65 ωi andωij coefficients defined in Supplementary
Table 2A, the equations defining our model involve 14 adjustable para-
meters: 4 parameters for updating the SPN and SPO variables, 2 parameters
for the specific growth rate (mass doubling time) in glucose and galactose
media, 4 parameters to determine the fraction f of a dividing cell that is
apportioned to the mother cell in glucose and galactose, 2 parameters to
determine the critical cell size S0, and 2 parameters to defineΔt for updating
the Boolean model. These 14 parameters are manually adjusted to fit the
model to experimental observations in both wild-type and mutant strains.
See Supplementary Tables 2B-D for their values in wild-type cells.

Experimental evidence for the Boolean model
Cell cycle progression through G1 phase is inhibited by Whi5, which is
inactivated (phosphorylated) by Cln3, Bck2, Cln1, and Cln225,26 and acti-
vated (dephosphorylated) by Cdc14 phosphatase. In our model (Fig. 1), the
‘Cln3’ variable accounts for both Cln3 and Bck2 proteins, and the ‘Cln2’
variable represents both Cln1 and Cln2. In G1 phase (Cln3 = Cln2 =
Cdc14 = 0), Whi5 is active, and it can be inactivated by either Cln3 = 1 or
Cln2 = 1.Whi5 stays inactive throughout S-G2-M and is activated byCdc14
as the cell exits mitosis, provided either Cln3 = 0 or Cln2 = 0. These inter-
actions imply the logical function on Row 1 of Supplementary Table 3:

Whi5 = (NOTCdc14 AND NOT(Cln2 OR Cln3)) OR (Cdc14 AND NOT(Cln2
AND Cln3)).

This logical function is implemented in our model by the ‘W’ function
in Row 1 of Table 1.

In late G1, Cln3 is activated by cell growth, causing inactivation ofWhi5
and subsequent activation of the SBF andMBF transcription factors (Table 1,
Rows 2 & 3). Activation of SBF andMBF defines the ‘START’ transition in the
buddingyeast cell cycle, afterwhich yeast cells set off onan irreversible path to
DNA synthesis,mitosis and cell division. Atfirst, the transcription factors are
kept active by Cln3-, Cln2- and Clb5-dependent kinase activities, but later
they are inactivated by Clb2-dependent kinase27–30. In addition, MBF is
regulated by a negative feedback loop with Nrm1 (Table 1, Rows 3 & 4)31.

After the START transition, MBF and SBF activate the synthesis of Clb5,
Clb6, and Cln1, Cln2 cyclins, which are responsible for DNA replication
(Row 5) and budding (Row 6), respectively32. (In our notation, ‘Clb5’
represents both Clb5 and Clb6 cyclins, and ‘Clb2’ represents both Clb1 and
Clb2 cyclins.) The origin licensing variableORI, is set to 0 (origins licensed)
when both Clb5 and Clb2 are inactivated as a mother cell exits mitosis and
divides, thenORI is flipped to 1 (DNA replication begins) when either Clb5
or Clb2 is activated in the next cell cycle (Eq. 4).

Once DNA replication is initiated, Clb5 activity promotes the accu-
mulation of active Clb1 and Clb2 cyclins by suppressing Sic1 (Row 7) and
Cdh1 (Row 8) in late S phase33. Subsequently, a positive feedback loop with
Mcm1 transcription factor sets off rapid accumulation of Clb1 and Clb2
cyclins, which drive the cell intoMphase34 (Rows 9-11). TheClb2G variable
representsClb1 andClb2 cyclin-dependent kinase activities in late S- andG2

phases, and Clb2M represents their higher activities in M phase. When
Clb2M = 1, the cell enters M phase and Cdc5 is activated (Row 12).

In M phase, the spindle assembly checkpoint (SAC) prevents the
metaphase-to-anaphase transitionuntil all sister chromatids achieve bipolar
alignment on the mitotic spindle. The SAC turns ON (SAC = 0→ 1) when
DNAreplicationbegins (ORI = 1) (Eq. 9). Progress in aligning the replicated
chromosomes on the mitotic spindle is tracked by the SPN variable. When
the cell entersMphase (Clb2M = 1), the (continuous) variable SPNt starts to
increase (Eq. 10).WhenSPNt reaches 1 (i.e., all chromosomes are aligned on
the metaphase plate), SAC is set to zero.

Once the cell passes the SAC (SAC = 1→ 0), Cdc20 is activated
(Cdc20 = 0→ 1) and it promotes the metaphase-anaphase transition. SPNt

is reset to zero, and the Spindle Position Checkpoint (SPOC) is activated
(SPOC = 0→ 1) to ensure that bothmother and daughter cells receive a full
set of chromosomes before cytokinesis35. Spindle positioning is monitored
by the (continuous) SPO variable (Eq. 12). When SPOt = 1, the SPOC is
satisfied (SPOC = 1→ 0), and SPO is reset to 0.

To exit mitosis, Cdc14 must be fully activated (i.e., released from the
RENT complex in the nucleolus), which is a consequence of both the FEAR
and MEN pathways36. FEAR is activated when SAC→ 0 and MEN when
SPOC→ 0 (Row14). Finally,Cdc14 activatesCdh1 andSwi5 (Rows8&15),
and Swi5 (a transcription factor) activates Sic1 (Row 7). Together Sic1 and
Cdh1 reverse the activities of all cyclins. When Clb5, Clb2M and Clb2G
activities are destroyed by the combined actions of Cdc20, Cdh1 and Sic1,
the mother cell divides according to the rule in Eq. 8, and the newborn cells
re-enter G1

37.

Description of mutant simulations
A mutant strain in which ‘gene K’ is deleted is modeled by setting the
Boolean variable for ‘protein K’ = 0 for all time t > 0. A mutant strain
overexpressing gene L from a GAL promoter is modeled by adding a con-
stant γL to the Boolean variable for protein L; i.e., if protein L is chosen to be
updated at time t, then Eq. 3 is modified to XL;tþΔt ¼ X̂L;tþΔt þ γL. Note
that this modificationmay change the logical Boolean function specified by
any Wi,t for which the sum includes XL,t (which now has the value γL or
1+ γL). Also, for all mutant strains with the GAL promoter, we set
r = 0.0046min−1 and fmean = 0.58.

Formutant strains that exhibit endoreplication andCdc14 endocycles,
we also change the parameters of the gamma distribution (Eq. 2) in order to
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match the period of oscillation to experimental observations. For example,
for the GAL-CLB2-dbΔmutant strain, Clb2 (which inhibits Cdh1) is non-
degradable and its level is high; therefore, the activation of Cdh1 is delayed
compared to wild-type cells with normal levels of Clb2. Also, because Clb2
activates Cdc5, the inactivation of Cdc5 is delayed when the level of Clb2 is
high. Therefore, for this mutant strain, the gamma-distribution parameters
are set to k = 15, θ = 1.5min (mean = 22.5 min and CV = 0.25) for calcu-
lating Δt for Cdc5 inactivation and Cdh1 activation. Similar reasoning
applies to the clb1-5Δmutant strain that exhibits endoreplication cycles. In
the absence ofmostClbs, Cdh1 inactivation andClb6 activation are delayed,
and therefore, we setmean = 22.5 min andCV = 0.25 for the timing of these
events in this mutant strain.

All parameter changes that are made to model mutant strains are
summarized in Supplementary Tables 4 and 5.

Results
To assess the potential of our method, we present simulations of wild-type
cell cycles, of population-level properties of budding yeast cultures, and of
mutant strains that exhibit aberrant cycles.We also use themodel to predict
phenotypes of mutant strains that have not yet been characterized
experimentally.

Simulation of cell cycle progression in wild-type cells
Figure 2 shows simulations of key components regulating cell cycle events in
wild-type budding yeast. Newborn yeast cellsmust grow to a ‘critical size’ in
order to activate Cln3 and subsequently to inactivate Whi5, which then
permits activation of SBF and MBF transcription factors (Fig. 2A). MBF
induces the synthesis of Clb5, which induces DNA replication (ORI= 1
identifies the onset of S phase, Fig. 2B). The spindle assembly progress
variable (SPN) indicates progression through G2/M into metaphase. When
SPN ≥ 1, the spindle assemble checkpoint variable (SAC) is set to zero,which
allows the activation of Cdc20 and the cell to progress into anaphase (see
Fig. 2C).

The spindle-orientation progress variable (SPO) accounts for proper
segregation of chromosomes into mother and daughter cell compartments
during anaphase. When SPO ≥ 1, the spindle orientation checkpoint
(SPOC) is set to zero, which allows Cdc14 to be fully released from the
nucleolus (Fig. 2D). Once Cdc14 is released, it activates Cdh1 and Swi5
(which initiates synthesis of Sic1), thereby resetting the cell back to G1

(Fig. 2E).
Model simulations of wild-type cells are very robust with respect to

perturbations of the 65ωij coefficients in SupplementaryTable 2A. Eachone
of them can be perturbed by at least 40% and the model predicts ‘viable’
wild-type cell cycles (see Supplementary Fig. 2A). When three specific
coefficients (ωMcm1,Clb2G,ωClb2M,Mcm1 andωCdc20,Mcm1,) are reducedby50%
(Supplementary Fig. 2B), the model fails to yield successful division cycles
because, in each case, a crucial component (Mcm1, Clb2M and Cdc20,
respectively) fails to activate.

Next, the model is used to simulate the exponential expansion of a
population of budding yeast cells, in order to estimate the means and
standard deviations of observable cell-cycle measures: the period from birth
to division (Tc), the duration of G1 phase frommitotic exit to S phase (TG1),
the period from budding to division (Tbud), and cell size at birth. We
compare these simulation results with corresponding experimental data
from ref.24. in Fig. 3. Overall, the model accurately simulates these
population-level properties in bothmother cells (Fig. 3A) and daughter cells
(Fig. 3B), although the model overestimates TG1 variability in both mother
anddaughter cells. Similar discrepancieswere observed in simulations based
onpreviousmodels21,38. Figure 3CandDshow the joint distributions of size-
at-birth andTG1 formother anddaughter cells. As in ref.24, we plot r ∙ TG1 vs.
ln(size/mean), where (in glucose medium) r = 0.0077min−1 and ‘mean’ =
mean size of mother cells at birth = 40 fL = 0.55 in units of dimensionless
size. The simulated data points are fitted with trendlines, as was done to
analyze the experimental data24. Although the estimated slopes of the
trendlines formother cells (− 0.74) and daughter cells (large−0.72& small
−1.29) show similar trends to the experimental data (slope = −0.1 for

Fig. 2 | Simulation of wild-type budding yeast cell cycles. Each subplot shows the
dynamics of key cell cycle components for five division cycles. A Cell size and
molecular components that regulate the progression through G1. B The initiation of
DNA replication. C Spindle assembly progress in response to the activation of
Clb2M. D Spindle orientation progress after anaphase. E Cdc14 activation and
resetting into G1. All simulations follow the lineage of mother cells from initial

conditions corresponding to stationary G1 phase: Whi5=Sic1=Cdh1 = 1, all other
variables = 0, and size=0.65 (the average size of a mother cell just after division).
Some of the variables are offset for clearer visualization: Clb5, SPN, Clb2M, SPO,
Cdc20, and Cdh1 are offset by 0.1; Cln3,MBF, SAC, SPOC and Swi5 are offset by 0.2;
and Cdc14 is offset by 0.3.

https://doi.org/10.1038/s41540-024-00452-3 Article

npj Systems Biology and Applications |          (2024) 10:121 5

www.nature.com/npjsba


mother cells;−0.3 &−0.7 for large & small daughter cells, respectively), the
theoretical slopes are considerably more negative than observations war-
rant, suggesting that size-control in themodel is considerably stronger than
in reality.

To estimate how fast a simulated population of cells loses synchrony
over time, 100 cellswith average size of 0.65were initiated in theG1 state and
tracked (bothmother anddaughter cells) for 500min (Fig. 4A). Cell size and
protein activities of all cells extant at time t were averaged and the results
plotted as functions of t (Fig. 4B). The population-average results clearly
show a loss of synchrony that agrees well with observations39. Protein
activities and cell size quickly lose synchrony due to the unequal division of
material between daughter and mother cells.

Some of the mutant strains discussed in later sections are grown in
galactose medium, rather than glucose. To simulate this change of growth
medium, we change the specific growth rate r to 0.0046min−1 (mass dou-
bling time = 150min, typical for growth on galactose) and the division
fraction fmean to 0.58 (cell division is more asymmetric in poorer growth

medium). With these changes, the interdivision times in galactose medium
for mother and daughter cells are computed to be 113min and 184min,
respectively, in good agreement with the observations of Lord and
Wheals (1980).

Simulation of known mutant phenotypes
To test the accuracy of our model in accounting for mutant phenotypes, we
simulated cell cycle progression in 48 experimentally characterized mutant
strains, including gene deletion and overexpression mutants. Of these
strains, our model agrees with 40 observed phenotypes; see Supplementary
Table 4. The model’s success rate for predicting phenotypes of mutant
strains depends on our choice of the 65 ωij parameters in Supplementary
Table 2A, because these parameters determine the precise logical functions
at play inwild type andmutant cells.Wehave obtained a success rate of 83%
by manual adjustment of the parameters. Presumably a higher success rate
could be achieved by an automated parameter estimation procedure, but we
defer this step to later developments of the modeling approach.

Fig. 3 | Population-level statistics from model simulations and experimental
observations. The mean values and coefficients of variation for four cell-cycle
properties in populations of mother cells (A) and daughter cells (B). To transform
dimensionless cell size into volume in fL, we used a conversion factor of 75 fL, which
was derived by equating the mean size of mother cells to the experimental mean

volume of ~40 fL. To visualize the joint distributions of size at birth and G1 duration
(TG1) in mother cells (C) and daughter cells (D), we plot (grey dots) 200 simulated
cells sampled from the whole population. To estimate the trends in the data, we plot
(red dots) the average value of the grey dots in bins of size 2 fL, exactly as imple-
mented by the authors of the experimental data24.
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In this subsection, we focus on mutant strains exhibiting aberrant
cycles. For the clb1-5Δ strain, in which all Clbs—except Clb6—are deleted,
cells replicate the genome multiple times without mitosis3, a phenotype
called endoreplication. Because the Clb5 variable represents both Clb5 and
Clb6, the action ofClb6 in clb1-5Δmutant is simulated by reducing the basal
parameter ωClb5 to −1.1, and the values of parameters ωi,Clb5 (which
describe the influence of Clb5 andClb6 on target protein i) were reduced by
eight-fold (see Supplementary Table 4). Because MBF-induced transcrip-
tion of the CLB6 gene is slower than the CLB5 gene, the accumulation of
Clb6 protein is delayed by 22.5min compared to 0.9 min in wild type cells.
Also, due to absence of most Clbs in the clb1-5Δmutant, Cdh1 inactivation
is delayed by 22.5minutes compared to 0.9minutes in wild type. As Fig. 5A
shows, after t = 250min when all Clbs except Clb6 are deleted, the clb1-5Δ
mutant fails to enter mitosis and to divide, and cell size becomes extremely
large. However, MBF, Clb6, Cdh1 and Nrm1 continue to oscillate, driven
by the negative feedback loop MBF → Clb6 –| Cdh1 –| Nrm1 –| MBF.
Figure 5B shows the distribution of endoreplication periods. The estimated
period of Clb6 oscillations, 57.9 ± 14.3min, is in good agreement with
experimental observations3.

Themeandelayswehave introduced (22.5 min for the accumulationof
Clb6 and the inactivation of Cdh1) are somewhat arbitrary. The experi-
mental observation (that theperiodof endoreplication is~60min)onlyfixes
the total delay to be ~45min (see Supplementary Fig. 3), which we split
evenly between the two processes.

Endoreplication cycles in our model disappear when any component
(i.e., Cdh1, Nrm1,MBF or Clb6) in the negative feedback loop is deleted. In
addition, Cln3, Cln2, and SBF are essential for endoreplication cycles.
Further, we tested all pairwise deletions of model components in clb1-5Δ
mutant strain to identify other mutant strains that might exhibit endor-
eplication cycles. Mutant strains that lose or retain endoreplication cycles
are shown in Supplementary Fig. 1A.

At this point we note that, despite the fact that MBF is a transcription
factor for Nrm1 (Fig. 1), our logical function for updating Nrm1 (Supple-
mentary Table 3, row 4) is Nrm1= NOTCdh1, independent of whetherMBF
is active or not. In other words, with our choice of ωNrm1 = 0.5, even if
MBF = 1, Nrm1 cannot accumulate if Cdh1 = 1. If we were to choose

ωNrm1 = 1.5, then the logical function would be Nrm1 =MBF OR NOTCdh1,
because MBF-induced expression of Nrm1 would overwhelm its degra-
dation initiated by Cdh1. In this case (ωNrm1 = 1.5), the clb1-5Δ mutant
strain still exhibits endoreplication, but the distribution of Clb6 oscillation
periods is bimodal (Supplementary Fig. 4). In these mutant cells, Cln3 = 1,
Clb2G=Clb2M= 0, andωMBF,Clb5 = 3/8; hence,WMBF > 0 if Nrm1 = 0 and
< 0 if Nrm1 = 1, so MBF = NOTNrm1. In this case, when Cdh1 = 1, the
regulatory network has a short, negative feedback loop (Nrm1=MBF,MBF
= NOTNrm1) that, under asynchronous updating, can oscillate a few times
(Nrm1 ON,MBF OFF, Nrm1 OFF,MBF ON,…) beforeMBF is selected to turn
on Clb6 and the cell proceeds to endoreplicate. This effect is evident in the
temporal simulations ofMBF andNrm1 in Supplementary Fig. 5.With our
preferred choice ofωNrm1 = 0.5, the short, negative feedback loop is broken
and the endoreplication cycles are more uniform (see Supplementary
Fig. 6). Furthermore,with the alternative parameter choice (ωNrm1 = 1.5), in
the strain clb1-5Δ cln2Δ, Cdh1 is constitutively active and the short NFL is
persistently inplay; hence, the cells exhibit rapid endoreplication cycleswith
a period of 6 updates. To avoid these unlikely results, we prefer the choice
ωNrm1 = 0.5 and the logical function Nrm1 = NOTCdh1.

Anothermutant strain that exhibits aberrant cycles isGAL-CLB2-dbΔ.
The high level of non-degradable Clb2 causes cell cycle arrest in mitosis.
Although the cells cannot exit mitosis, the high level of Clb2 supports the
activation of Cdc5 which promotes Cdc14 release, Cdc14 then activates
Cdh1which degrades Cdc5. This negative loop (Cdc5→Cdc14→Cdh1 –|
Cdc5) results in Cdc14 endocycles (Fig. 6A). Because Clb2 activity is high in
thismutant strain, the timedelays for inactivationofCdc5 and for activation
of Cdh1 are increased to 22.5 min. Figure 6B shows the distribution of
endocycle periods. The averaged period of Cdc14 oscillations is
57.1 ± 9.1min, in agreement with experimental observations1,2. Supple-
mentary Figure 1B shows that Cdc14 endocycles depend not only onCDC5,
CDH1 andCDC14 genes, as expected, but also onCLB2,MCM1 andCDC20
genes, and, furthermore, that the double-deletion strain, cdc20Δ mcm1Δ,
restores Cdc14 endocycles. The genetic dependencies of Cdc14 endocycles
are described as follows.
1. CDC20. Clb2M activity oscillates between 0 and 1 during normal cell

cycles.

Fig. 4 | Loss of synchrony of protein activities frommodel simulations. AA single
cell is tracked over time from one division to the next.Cdh1, Sic1 andCln2 are offset
by 0.2, 0.15 and 0.1, respectively. BMany such simulations are combined to predict

the loss of synchrony in a population of cells. Solid line = average activity, vertical
bar indicates ± 95% Confidence Interval.
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2. cdc20Δ. Clb2M = 1, and the cell cannot exit mitosis because Cdh1 and
Sic1 are inhibited.

3. GAL-CLB2-dbΔ. Clb2M activity oscillates between 0.5 and 1.5, which
supports Cdc14 endocycles but blocks return to G1.

4. GAL-CLB2-dbΔ cdc20Δ. Clb2M activity is constitutively high in this
strain because Mcm1 is constitutively active, and Clb2M = 1.5 blocks
Cdc14 endocycles by inhibiting Cdh1 and activating Cdc5.

5. GAL-CLB2-dbΔ cdc20Δ mcm1Δ. In the absence of both Mcm1 and
Cdc20, Clb2M = 0.5, which is a ‘sweet spot’ for Cdc14 endocycles.

Model predictions
Next, we used the model to predict the viability of mutant strains with single
and double deletions of model variables. Because some model variables
already represent two genes (MBF = SWI6+MBP1, SBF = SWI6+ SWI4,
CLN3 =CLN3+BCK2, CLN2 =CLN1+CLN2, CLB5 =CLB5+CLB6,
and CLB2 =CLB1+CLB2), combining their deletions with the deletion of
other model components generates triple- or quadruple-deletion strains of
budding yeast. The model, with 15 genetic components, correctly predicts
the viability/inviability of the 15 ‘single’ deletion strains (Fig. 7). Of the

Fig. 5 | Simulation of endoreplication cycles in the clb1-5Δmutant strain. AWildtype cell cycles for t < 250 min, and endoreplication cycles for t > 250 min.Cdh1,Clb6 and
MBF are offset by 0.30, 0.20, and 0.10, respectively. B The distribution Clb6 oscillation periods.

Fig. 6 | The simulation of Cdc14 endocycles in theGAL-CLB2-dbΔmutant strain.
A Wildtype cell cycles for t < 250 min, and Cdc14 endocycles for t > 250 min. As
before, Cdc5 and Cdc14 are offset by 0.20 and 0.10, respectively, for clearer

visualization. On the other hand, Clb2G (the green curve) is not offset for plotting
purposes but rather because Clb2 protein is overproduced in this mutant strain.
B The distribution of Cdc14 oscillation periods.
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15×14/2 = 105 ‘double’ deletion strains, only seven combinations have been
characterized experimentally, and the model correctly predicts six of them;
only the cln3Δ bck2Δwhi5Δ strain is incorrectly predicted to be inviable (see
also, row 26 of Supplementary Table 4). The viability of this strain indicates
that the only essential functionofCln3+Bck2 is to inactivateWhi5, but inour
model, evenwhenWhi5 = 0, Cln3must be activated (by cell growth) in order
toactivateSBFandMBFat START. In the cell (butnot inourmodel), this roleof
Cln3 is most likely backed up by Cln2.

The model predicts that eight double-deletion strains are syntheti-
cally lethal (the eight blue squares in the brown ‘background’ in Fig. 7).
Four of these strains are already known to be synthetic lethal; the other
four combinations, which are genuine predictions of the model, are
described below.
1. cdh1Δ clb5Δ. In cdh1Δ, SBF compensates for the inhibition of MBF by

Nrm1. In clb5Δ, Cln2 is available to inhibit Cdh1 and Sic1. In cdh1Δ
clb5Δ, Nrm1 and Sic1 are permanently active, and Cln2 and Clb2 are
permanently repressed.

2. cdh1Δ sbfΔ. In cdh1Δ, SBF compensates for the inhibition of MBF by
Nrm1. In sbfΔ,MBFdrivesClb5 synthesis and cell cycle progression. In
cdh1Δ sbfΔ, SBF is absent and MBF is inhibited by Nrm1, so the cell
arrests in G1.

3. clb5Δ sbfΔ. In clb5Δ, Cln2 is available to inhibit Cdh1 and Sic1. In sbfΔ,
MBF drives Clb5 synthesis and cell cycle progression. In clb5Δ sbfΔ,
neither Clb5 nor Cln2 are available to inactivate Cdh1 and Sic1, so the
cell is arrested in G1.

4. clb5Δ mbfΔ. In clb5Δ, Cln2 is available to inhibit Cdh1 and Sic1. In
mbfΔ, SBF drives Clb5 synthesis and cell cycle progression. Because
Cln2 synthesis requires both SBF andMBF activities in our model, the

clb5ΔmbfΔ strain, lacking bothClb5 andCln2, cannot inactivate Cdh1
and Sic1, so cells arrest in G1.

These explanations suggest that the synthetic lethal strains, cdh1Δ
clb5Δ and cdh1Δ sbfΔ, should be rescued by further deletion ofNRM1. The
triplemutants, cdh1Δ clb5Δnrm1Δ and cdh1Δ sbfΔnrm1Δ, are indeedviable
in our model simulations (Supplementary Fig. 7).

Discussion
In this study, we developed a stochastic Booleanmodel of the budding
yeast cell cycle that can correctly explain both normal cell cycle
progression and aberrant cycles (endoreplication and Cdc14 endo-
cycles). Understanding the mechanism of aberrant cycles and iden-
tifying controls that suppress these cycles in wild-type cells is
important because these cycles are found in many types of cancer40.
Our model suggests that endoreplication cycles are driven by the
negative feedback loop MBF → Clb6 –| Cdh1 –| Nrm1 –| MBF, and
that Cdc14 endocycles are driven by the negative loop Cdc5 →

Cdc14 → Cdh1 –| Cdc5. Although our model has not yet been opti-
mized to account for mutant phenotypes, it already accounts for the
viability/inviability of 40 gene deletion and overexpression mutant
strains out of 48 strains tested. Furthermore, we used the model to
predict the phenotypes of 120 mutant strains carrying one-, two-,
three- or four gene deletions.

The stochastic Boolean model proposed here is closely related to the
stochastic differential equation (SDE) approach proposed in Laomettachit
et al.38 and applied in great detail to the budding yeast cell cycle in Kraikivski
et al.8. At the core of the SDE approach is a nonlinearODEmodel of a protein

Fig. 7 | Predicted phenotypes of double-deletion
strains. Each rectangular cell corresponds to a
combination of two deleted components listed along
the vertical and horizontal axes. Blue = inviable,
brown = viable phenotype. A white dot indicates that
the prediction is consistent with experimental
observations, andX indicates a differencebetween the
simulated and observed viability. The elements along
the diagonal correspond to single-deletion strains.
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signaling network:

1
βi

dYi
dt ¼ H σ iWi

� �� Yi;whereWi ¼ ωi0 þ
P
j
ωijYj; andH σxð Þ ¼ 1

1þ e�σx

ð13Þ

where βi, σi, andωij ‘s are parameters. Equations 1 and 13 are closely related
because H(σx) → Heav(x) as σ→∞. With this identification in mind, it
would be (relatively) easy to translate a stochastic Boolean model (in the
format proposed here) to a continuous, nonlinear SDE model of the type
proposed by Laomettachit et al.38. Indeed, some predictions by Kraikivski
et al.8 are consistent with our stochastic Booleanmodel: e.g., the cln1Δ cln2Δ
swi6Δ mbp1Δ strain is predicted to be viable, whereas the cln3Δ bck2Δ
cdh1Δ strain is inviable.

It is instructive to compare ourmodel to theBooleanmodels of Li et al.16,
Irons19 and Fauré et al.18, see Supplementary Table 6. Li et al.16 were primarily
concernedwithdemonstrating the ‘robustness’of cell cycle progression: START
→ DNA synthesis & budding → prophase-metaphase-anaphase-telophase
→ early G1 arrest. In addition to emphasizing the robustness of the cell-cycle
control system, Irons focused on ‘sub-network analysis,’ identifying a ‘core
network’ (his Fig. 6C) that is very similar to the four-variable ODEmodel of
Battogtokh andTyson41 (their Fig. 5, where their ‘Hct1’ plays the same role as
Iron’s ‘CKI’). Fauré et al.18 were concerned to showhowsimple logicalmodels
could be ‘composed’ into a single ‘comprehensive’model that rivals a detailed
ODEmodel6 in terms of successfully simulatingmutant cell phenotypes.We
are primarily concerned with modifying the Boolean approach to allow for
stochastic modeling in terms of real time and real cell-size variables, in order
to compare model simulations with experimental data, as well as to simulate
the phenotypes of ~150mutant strains (40%known experimentally and 60%
novel predictions).

All four models follow the time evolution of 10 dynamical variables
representing the core cell-cycle regulatory proteins Cdh1, Sic1, Cln3/Bck2,
SBF/MBF, Cln1/2, Clb5/6, Mcm1, Swi5, Clb1/2 and Cdc20. Irons adds
Cdc14, Yhp1/Yox1 (a transcriptional repressor of Cln3), and two ‘pathways’
FEAR andMEN. Fauré et al.18 ignore Yhp1/Yox1 and unpack the FEAR and
MENpathways.We addWhi5,Nrm1 andCdc5. Like Li et al.16, we define the
protein interaction network throughHeav(Wi) functions, whereas Irons and
Fauré et al.18 use logical functions. Li/Irons/Fauré update their models syn-
chronously and deterministically in discrete time steps, whereas we update
our model asynchronously and stochastically in real time (min). Irons
introduces ‘dummy’variables to simulate timedelays inprotein synthesis and
degradation and in cell cycle events; Fauré et al.18 achieve similar effects by
assuming that ~40% of their proteins (e.g., Clb2, Clb5 and Cdc20) aremulti-
state variables (2 or 3 ‘active’ states). We have only one multi-state variable:
Clb2G (low activity of Clb2 in G2 phase) and Clb2M (higher activity form in
M phase). We account for time delays by choosing Δt (updating intervals)
from a gamma distribution with mean and CV chosen to fit observed tem-
poral progression through the cell cycle in wild-type and endocycling
mutants. Only our model has a real variable ‘size(t)’ to track cell growth. To
track cell growth and division, Fauré introduced two multistate variables,
called ‘MASS’ and ‘CYTOKINESIS,’whichwere updated separately from the
other variables by a set of ‘priority rules.’ Li’s model goes through a sequence
of 13 states fromSTART (activationofCln3) to ‘StationaryG1’ (Cdh1=Sic1 = 1,
all other variables = 0), and it ‘cycles’ only if Cln3= 0 in Stationary G1 is
flipped to 1 ‘externally’ (say, by cell growth). Iron’s model goes through a
repetitive sequence of 19 states, driven by a negative feedback loop, Cln3→
SBF/MBF→ Yhp1/Yox1−| Cln3, with a lengthy time delay. Fauré’s model
has a 22-state cycle because the activation of MASS in early G1 phase drives
the START transition. Li et al.16 discussed checkpoints briefly but did not
consider mutant phenotypes. Irons’model is consistent with the phenotypes
(viable/inviable) of 13 deletion mutants and with 4 types of checkpoints
(‘START,’ ‘morphogenesis,’ ‘spindle assembly,’ and ‘DNA damage’). Fauré
et al.18 successfully simulated 135 mutant strains by defining alternative
logical rules for particular components of the network, to account for the
genetic changes in each mutant strain. Using our model, we analyzed both

deletion andoverproductionmutants (correctly predicting the phenotypes of
40/48 strains) and simulated mutant strains exhibiting endoreplication
(multiple rounds of DNA replication) and Cdc14 endocycles (multiple
attempts at mitotic exit). We also predicted the phenotypes of ‘double dele-
tion’mutants: of 105 such strains, 9 phenotypes are known experimentally,
andourmodel agreeswith 8of them. In addition, ourmodel is stochastic, so it
can be used to predict cell-cycle time distributions, cell size distributions, and
correlations between birth size and time spent in G1 phase. Our model
simulations are in good agreement with most of these statistical measures.

When updating Boolean models asynchronously, there are subtle
timing issues that must be recognized. In our approach (which was moti-
vated by Gillespie’s stochastic simulation algorithm), we first identify those
variables that potentially change in thenext iteration and then choose oneof
them at random to actually change. Alternatively, in each iteration one
might choose at random any variable to be updated, whether or not it
changes state. The latter method avoids certain unrealistic consequences of
the former method; e.g., the period of a negative feedback oscillator (in
terms of number of iterations) may depend on how other variables could
potentially change state, whether or not the ‘other variables’ are causally
connected to the oscillator variables. For example, in our model, Cdc5,
Cdc14 and Cdh1 are engaged in a negative feedback loop, but potential
oscillations of this loop are suppressed by the overpowering cycle of ClbM
activation during normal cell division cycles. However, in the GAL-CLB2-
dbΔmutant strain, the constitutively high activity of ClbMallows theCdc5-
Cdc14-Cdh1 NFL to oscillate freely, albeit at an unrealistically high fre-
quency. To match the Cdc14 oscillation period to observations, we
‘renormalize’ the transition times by increasing the mean delays of the
gamma distributions. This parameter change is, in a sense, the price we pay
to fit a simple, stochastic Boolean model to experimental data in real time.

Our modeling approach supplements the simplicity of Boolean
models with quantitative details, such as real continuous time, and with
easily interpretable, adjustable parameters that are helpful in accounting
for mutant phenotypes. Therefore, our approach lies somewhere between
Boolean models that lack quantitative details necessary to explain
experimental observations and ODE models that provide all these details
at the expense of estimating many obscure kinetic rate constants. In our
approach, only the parameters that determine the delays must be esti-
mated by fitting model simulations to experimental data. Also, our
approach incorporates stochastic effects at minimal computational cost.

Data availability
The generated data for reproducing all figures in this study are available on
GitHub: https://github.com/Ktaoma/A-continuous-time-Boolean-model-
of-the-endocycle-events-in-budding-yeast.

Code availability
The model is available in BioModels42 with the identifier
MODEL2405030001 (https://www.ebi.ac.uk/biomodels/MODEL2405030
001). Computer codes to simulate all figures are available on GitHub:
https://github.com/Ktaoma/A-continuous-time-Boolean-model-of-the-
endocycle-events-in-budding-yeast.
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