
The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium

San Antonio, Texas, January 26-29, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Unified Support for Heterogeneous Security Policies
 in Distributed Systems

Naftaly H. Minsky and Victoria Ungureanu
Rutgers University

Uni�ed Support for Heterogeneous Security Policies

in Distributed Systems

Naftaly H. Minsky� Victoria Ungureanu�

Department of Computer Science

Rutgers University

New Brunswick, NJ 08903

fminsky,ungureang@cs.rutgers.edu

Abstract

Modern distributed systems tend to be conglomer-

ates of heterogeneous subsystems, which have been

designed separately, by di�erent people, with little,

if any, knowledge of each other | and which may

be governed by di�erent security policies. A single

software agent operating within such a system may

�nd itself interacting with, or even belonging to,

several subsystems, and thus be subject to several

disparate policies. If every such policy is expressed

by means of a di�erent formalism and enforced with

a di�erent mechanism, the situation can get easily

out of hand.

To deal with this problem we propose in this

paper a security mechanism that can support

e�ciently, and in a uni�ed manner, a wide range

of security models and policies, including: conven-

tional discretionary models that use capabilities or

access-control lists, mandatory lattice-based access

control models, and the more sophisticated models

and policies required for commercial applications.

Moreover, under the proposed mechanism, a single

agent may be involved in several di�erent modes of

interactions that are subject to disparate security

policies.

1 Introduction

Modern distributed systems tend to be conglomer-

ates of heterogeneous subsystems, which have been

�Work partially supported by NSF grants No. CCR-96-

26577

designed separately, by di�erent people, with little,

if any, knowledge of each other | and which may be

governed by di�erent security policies. A single soft-

ware agent operating within such a system may �nd

itself interacting with, or even belonging to, several

subsystems, and thus be subject to several disparate

policies. For example, an agent may be subject to a

multi-level security policy when retrieving military

documents; it may carry capabilities that provide

it with certain access rights to computing resources;

and, while accessing certain �nancial information, it

may be subject to the \Chinese Wall" security pol-

icy [4]. If every such policy is expressed by means of

a di�erent formalism and enforced with a di�erent

mechanism, the situation can get easily out of hand.

To deal with this problem we propose in this paper

a security scheme under which policies are de�ned

formally and explicitly, and are enforced by a uni�ed

mechanism. Each policy under this scheme speci�es

the type of messages regulated by it and the law that

governs these messages.

The proposed mechanism is based on the concept

of \law-governed architecture" for distributed sys-

tems [13], and on the more recent concept of \regu-

lated interaction" (RI) [14]; it is currently imple-

mented by an experimental toolkit called Moses.

This toolkit can support a wide range of security

models and policies, including: conventional dis-

cretionary models that use capabilities or access-

control lists, mandatory lattice-based access control

models [18], and the more sophisticated models and

policies required for commercial [5] and clinical [1]

applications. Moreover, under Moses, a single agent

may be involved in several di�erent modes of inter-

actions that are subject to disparate security poli-

cies.

The paper is organized as follows: Section 2 at-

tempts to motivate the need for a uni�ed mechanism

by considering two security policies that are di�cult

to support by conventional mechanisms, and which

may need to coexist in a single system. Section 3 de-

�nes the concept of a security policy under RI, and

shows how such policies are de�ned and enforced.

Section 4 presents the detailed implementation un-

der RI of the policies of Sections 2. Sections 5 dis-

cusses some related work, and Section 6 concludes

this paper.

2 Motivating Examples

To motivate the need for a new uni�ed security

mechanism we describe here two policies designed

for commercial applications which are di�cult to

implement by traditional means, particularly in dis-

tributed systems; another such policy, involving ca-

pabilities, is discussed in Section 3.4. Later we will

present the implementation of these policies under

the security mechanism to be proposed here, mak-

ing it evident that a single agent can be subject,

concurrently, to several policies.

2.1 The Chinese Wall (CW) Policy

Consider a distributed database that contains �les

belonging to various commercial companies. Let

these companies be partitioned into a set of dis-

joint \competition cliques," where each clique con-

tains companies that compete with each other in the

market place. And let the clients of this database be

�nancial analysts, who may have access to any num-

ber of competition cliques. According to a common

commercial practice, such access is subject to the

Chinese Wall (CW) policy [4] which can be stated

as follows:

A priori, an analyst can get information

about any company of a clique q to which

he has access. But once the analyst gets

information about a given company in q,

he is not allowed to get information about

any other company in this clique.

Thus, under this policy, what the analyst can get

from the database, at a given moment in time, de-

pends on what he got from the database in the past.

Recently, it has been shown how this policy can be

implemented in MLS systems by casting it as a mul-

tilevel lattice based relabel policy [8], or by using

re
exive-
ow relations [7]. However, MLS does not

lend itself to distributed implementation, where the

�les of companies in a given clique are maintained

by several servers belonging to possible di�erent ad-

ministrative domains. Moreover, it is very di�cult

in this case (if at all possible) to implement this pol-

icy either by means of access control lists (ACL),

or by the capability-based scheme | the two main

access control techniques used in distributed sys-

tems [20]. The implementation of the CW policy

using ACL would require each server to know what,

if anything, his client got from other servers in the

past, or even what he is requesting from them con-

currently. This cannot be done in a scalable way,

since it requires multi-casting of all queries. The im-

plementation of CW-policy with capabilities would

mean that whenever a given client reads one of the

�les of a company, its capabilities for �les of other

companies in the same clique should be revoked.

But revocation is di�cult to carry out by traditional

means, in particular because it requires a central au-

thority, and is generally not supported.

2.2 The Sealed-Bid (SB) Auction Policy

A common way for selling artwork or real estate is

sealed-bid auction in which secret bids are issued

for an advertised item in a prede�ned time-frame.

The security requirements of this process have been

studied recently by Franklin and Reiter in [9], and

paraphrased here as follows:

1. every auction has a prede�ned time frame for

bidding, no bids can be issued outside of this

frame;

2. once a bid is issued it cannot be repudiated; but

one can out-bid himself any number of times.

3. the winner is the issuer of the highest bid;

4. the bidders identity are not revealed at any

time and to any party, not even to the auc-

tioneer; the same holds true for the sums bided

by losing participants.

5. the auctioneer is guaranteed to be able to col-

lect the money from the winning bidder; losing

bidders do not forfeit money;

6. an agent can participate concurrently in any

number of auctions.

Henceforth we will refer to these collection of re-

quirements for sealed-bid auction as the SB-policy.

Observing that this policy does not lend itself to

implementation by any of the traditional security

mechanisms, Franklin and Reiter proposed an ele-

gant new technique for it. Their implementation

uses a novel cryptographic technique called veri�-

able signature sharing, which requires replicating

the auction servers.

We will show in section 4.2 how this policy can be

implemented by the very same mechanism that we

use to implement the Chinese Wall policy. More-

over, our implementation does not require the du-

plication of the auction servers, thus being more ef-

�cient.

3 Security Policies Under Regulated

Interaction

We start by de�ning our concept of a security policy.

We continue by showing how a policy is de�ned by

what is called a \law", and how it is enforced under

Regulated Interaction (RI)|describing as much of

RI, and of the Moses1 toolkit that implements it,

as is needed for this purpose. In Section 3.4 we

illustrate this mechanism by showing how uncopy-

able capabilities can be implemented under RI. In

Section 3.5 we show how policies are created and

maintained; and we conclude with a brief discussion

of the fault tolerance and scalability of our mecha-

nism.

3.1 The Concept of a Security Policy

We de�ne a security policy P to be a triple

hM;G;Li ; where

� M is the set of messages, regulated by P. They

are called P-messages.

� G is a distributed group of agents, sometimes

called a \policy-group," that are permitted to

1We will use the names RI and Moses somewhat inter-

changeably.

send and receive P-messages, and thus are the

participants in policy P.

� L is the set of rules regulating the exchange

of P-messages between members of group G,

called the law of this policy. Broadly speaking,

the law determines who in group G can send

which P-messages to whom, and what should

the e�ect of such a message be.

For example, the components of the policy for

secure-bid auction are as follows: the group GSB
consists of all agents participating in the auction, in-

cluding the auctioneers. The set of messagesMSB

consists of all the messages exchanged during the

auction including: initiating an auction, issuing a

bid, and announcing the results; and the law LSB
is the set of rules described above for SB, written

in a given formal language. We introduce such a

language in the following section.

It should be pointed out that we take a policy to

have an independent existence, separate from the

agents participating in it. We provide means for an

agent to join a given policy P|subject to the law

of this policy|which will enable this agent to send

and receive P-messages.

3.2 The Law

A law L of a policy P determines the treatment

of P-messages is de�ned by specifying what should

be done when such a message is sent, and when it

arrives. More speci�cally, we deal with the following

two kinds of events that are regulated under RI2:

� sent(x,m,y)| occurs when agent x sends an

L-message m addressed to y. The receiver x is

considered the home of this event.

� arrived(x,m,y)| occurs when an L-message

m sent by x arrives at y. The receiver y is consid-

ered the home of this event. If the destination

is the keyword all, m is multicasted to all mem-

bers of the group. The sender x is considered

the home of this event.

We assume no prior knowledge of, or control over,

the occurrence of these regulated events. But the

2Note that RI regulates some additional types of events,

which are not relevant to security, and are, thus, ignored here.

e�ect that any given event e would actually have is

prescribed by the law L of the message in question.

This prescription, called the ruling of the law for this

event, is a (possibly empty) sequence of primitive

operations (discussed later) which are to be carried

out at the home of e, as the immediate response to

its occurrence.

Structurally, the law L is a pair hR; CSi; where R

is a �xed set of rules de�ned for the entire group G

of the policy in question, and CS is a mutable set

fCSx j x 2 Gg of what we call control states, one per

member of the group. These two parts of the law

are discussed in more detail below.

The control state CSx: This is the part of the law

L that is associated with the individual member x

of a group. It is a bag of terms, called the attributes

of this member. The main role of these attributes

is to enable L to distinguish between di�erent kinds

of members, so that the ruling of the law for a given

event may depend on its home. Some of the at-

tributes of an agent have a prede�ned semantics,

such as the attribute self(n) where n represents

the name of the member. However, the semantics

of attributes for a given group is de�ned by the law.

For instance, in our implementation of the Chinese

Wall policy, Section 4.1, an analyst x might have an

attribute companyPermit(c), which means that x

is allowed to access company's c data.

The Primitive Operations: The operations

that can be included in the ruling of the law for

a given regulated event e, to be carried out at the

home of this event, are called primitive operations.

They are \primitive" in the sense that they can be

performed only if thus authorized by the law. These

operations include:

� Operations that change the CS of the home

agent. Speci�cally, we can perform the follow-

ing operations: (1) +t which adds the term t

to the control state; (2) -t which removes the

term t; (3) t1 t2 which change term t1 with

term t2; and (4) incr(t(v),x) which incre-

ments the value v of a term t with some quan-

tity x.

� Operation forward(x,m,y) emits to the net-

work the message m addressed to y. (When a

message thus forwarded to y arrives, it would

trigger at y the event arrived(x,m,y).) The

most common use of this operation is in a rul-

ing for event sent(x,m,y), where operation

forward (with no arguments) simply completes

the passing of the intended message.

� Operation deliver(m) delivers the message

m to the home-agent. The most common

use of this operation is in a ruling for event

arrived(x,m,y), where operation deliver

(with no arguments) simply delivers the arriv-

ing message to the home agent.

The global set of rules R: The function of R is

to evaluate a ruling for any possible regulated-event

that occurs at an agent with a given control-state.

In our current model, R is represented by a very

simple Prolog-like program|or, if you will, a set

of situation{action rules. When this \program" R

is presented with a goal e, representing a regulated

event, and with the control-state of the home agent,

it produces a list of primitive-operations represent-

ing the ruling of the law for this event. For the

details of this formulation the reader is referred to

[15]; here we will illustrate it with a detailed exam-

ple in Section 3.4.

3.3 The Distributed Enforcement
Mechanism

The law for a given policy P=hL;M;Gi is en-

forced in principle as follows: there is a controller

associated with each member of group G, logically

placed between the agent and the communications

medium, as it is illustrated in Figure 1. All con-

trollers have identical copies of the global set of rules

R of L, and each controller maintains the control

states of the agents under its jurisdiction.

All controllers have identical copies of the global set

of rules R of L, and each controller maintains the

control states of the agents under its jurisdiction.

The steps taken when a member x wishes to send a

P-message m to a member y are:

1. x sends m to its assigned controller. The con-

troller evaluates the ruling of the law L for the

event send(x,m,y) and it carries out this rul-

ing. If part of the ruling is to forward the mes-

sage m to y, the controller sends m to the con-

troller assigned to y.

CSx

R

sent

deliver

forward

arrived

x

agent

communication
network

Legend:

a regulated event----------------------

a primitive operation ------ --------

R

R

R

controller

Figure 1: Enforcement of the Law

2. when m arrives to y's controller it generates

an arrived(x,m,y) event. The ruling for this

event is computed and carried out. The mes-

sage m is delivered to y if so required by the

ruling.

The essential aspect of this architecture is that all

controllers have identical copies of the law. It is in

this sense that the law is said to be global to the

group.

The correctness of the proposed mechanism is based

on the following assumptions: (1) messages are

securely transmitted over the network, and (2)

P-messages are sent and received only via correctly

implemented controllers, interpreting law L. To en-

sure the �rst of these conditions, every agent be-

longing to G, and each controller, have a pair of

(RSA) keys: a public key known to a trusted au-

thority and a secret key known only by itself. If

the messages sent across the network are digitally

signed, their authenticity is guaranteed as long as

the private key is not disclosed.

Condition (2) above is more problematic, and can

be handled at two levels of security. First, if one

is willing to trust the OS-kernel of the hosts of all

members of the policy-group G | which may be

the case within the intranet of a given enterprise {

then this condition can be satis�ed by placing the

controllers in the OS kernels. Each controller would

acquire the law that needs to be interpreted from

some trusted authority.

One way to handle the case of untrusted OS-kernels

is to ensure the integrity of the controllers by build-

ing them into physically secure coprocessors [22, 23],

or into smart cards [11]. Such a secure device con-

sists of a CPU, non-volatile memory, encryption

hardware and special sensing circuitry to detect in-

trusion. The sensing circuitry erases non-volatile

memory before attackers can penetrate far enough

to disable the sensors or read memory contents.

If Moses is implemented on such physically secure

hardware devices, the receiver of a P-regulated mes-

sage has a high degree of trust that this message is

authentic, in the sense that the message has been

sent by a genuine controller interpreting law L of

the policy P.

Controllers can also be trusted if they are main-

tained as a public utility by a large, trustworthy,

�nancial institution|like Visa or Master Card|by

an Internet provider, or by the post o�ces of var-

ious countries. More about such controller utility

can be found in a technical report obtainable from

the authors.

3.4 Example: A Capability Based
Regime

In centralized systems protection has been tradi-

tionally realized by means of capabilities and access-

control lists, each of these models o�ering its ad-

vantages. In distributed systems however, the full

power of capabilities has not been realized so far.

In particular, in timesharing operating systems like

Hydra [6] and StarOs [10] it was possible to control

dissemination of capabilities by specifying whether

a given capability can be moved or delegated to

others. This feature is no longer supported in

capability-based distributed systems [16], because

nothing prevents a user from duplicating the ca-

pabilities he holds. We do not have this problem

because capabilities are kept by controllers, which

are trusted to execute only prescribed operations.

This is demonstrated by policy CR which imposes a

capability based access control regime in which ca-

pabilities can be moved from one agent to another

but cannot be copied3.

The components of policy CR are as follows: The

group GCR consists of the servers and all their

clients. The set MCR consists of all the messages

exchanged between the server and its clients; and

the law LCR mirroring the rules described above, is

3This is only a �nger exercise, meant to illustrate the

mechanism; a full implementation of capabilities should con-

sider copyable capabilities, revocation, etc.

presented in Figure 2.

The set RCR of this law consists of four rules.

Each is followed with a comment (in italic), which

together with the following discussion, should be

understandable even for a reader not familiar

with Prolog. Consider a set of clients that per-

form operations by sending messages of the form

execute(o,op,p) to servers, where op is an op-

eration to be executed on object o, and p are pa-

rameters for this operation. We assume that ini-

tially clients have in their control state arbitrary

sets of capabilities represented by terms of the form

capability(o,ar), where o is the name of an ob-

ject, ar is the set of access rights the agent has for

o. What gives these terms their meaning as ac-

cess privileges is Rule R1 of our law, is that a re-

quest to execute an operation op on some object

o is forwarded only if the sender has an attribute

capability(o,ar) and if op belongs to ar. When

such a message arrives at a server, it is delivered

by Rule R2. Note that the servers need not know

about our access control scheme, they just respond

to every request they receive.

The rest of this law de�nes the manner in which

capabilities are to be moved from one agent to an-

other. This is done as follows: by rule R3, if

the owner of a capability for object o, sends a

move(capability(o,ar)) message, his capability

for o is removed from his control state. By rule R4,

the arrival of a move(capability(..)) message

causes the addition of the corresponding capability

in the control state of the receiver.

3.5 The Creation and the Maintenance
of a Policy

Under our current implementation of the Moses

toolkit, a new policy P is established by creating

a number of controllers that interpret law LP and

a server that provides persistent storage for the law

L of this policy{ including the control-states of all

members of the policy-group G. This server is called

the secretary of P, to be denoted by SP . The fol-

lowing are some of the services provided by such a

secretary.

For a process x to be able to exchange P-messages

under a policy P, it needs to send a connect(a)

message to SP , asking to be associated with some

agent a that is a member of the group G of P. SP

Initially: Every client has in its control state various at-

tributes of the form capability(O,AR), where O is

an object on which the client has the set AR of ac-

cess rights.

R1. sent(C,execute(Op,O,P),S) :-

capability(O,AR)@CS,

member(Op,AR),

do(forward).

A request to execute an operation Op on some

object O is forwarded only if the sender has a ca-

pability for O and if Op belongs to AR, the set of

access rights.

R2. arrived(C,execute(Op,O,P),S) :-

do(deliver).

Arrived execute messages are delivered without

further ado.

R3. sent(C,move(capability(O,AR)),D) :-

capability(O,AR)@CS,

do(-capability(O,AR)),

do(forward).

A move(capability(..))will be forwarded only

if the sender has a capability for the object O. The

sender's capability is removed from his control

state.

R4. arrived(C,move(capability(O,AR)),D) :-

do(+capability(O,AR)).

The arrival of a move(capability(..)) message

causes the addition of the corresponding capabil-

ity in the control state of the receiver .

Figure 2: Law LCR - Establishing a capability based

regime

is likely to require authentication, which can be in

form of a password, an X.509 certi�cate [12] or the

recently developed SDSI certi�cate [17]. If the secre-

tary agrees to make the connection, it would assign

x to some controller interpreting law LP, after pro-

viding this controller with the current control-state

and the public key of the agent.

Once this connection is made, the interaction of x

with the various members of policy P does not di-

rectly involve the secretary SP . However, if some

event at x ends up changing the control-state of the

member a it is associated with, this change would

be automatically communicated to SP .

The secretary of a policy also acts as a name server

for the members of its group G, and it provides

means for admitting new members into G, and for

removing existing members from it. These opera-

tions, which are subject to L, are not discussed here

in detail.

Finally, we note that a policy does not have to be

supported by a single secretary. It is possible, in

principle, for a policy to have several secretaries,

each maintaining a subgroup of G.

3.6 Fault Tolerance and Scalability

Regulated interaction lends itself to fault tolerant

and scalable implementations, as we argue brie
y

below.

Fault Tolerance: Since RI assumes nothing about

the interacting agents, it is tolerant to all their fail-

ures, even of a Byzantine kind. But RI is sensi-

tive to two kinds of failures: (a) the failure of the

secretary, which may have a devastating e�ect on

the long term existence of the policy-group, even

if it has no e�ect on the immediate interaction be-

tween its members; and (b) the failure of a con-

troller. Fail-stop failures of these two kinds can be

handled by well known methods. Failures of the

secretary can be addressed by means of the state-

machine approach [19], using a toolkit such as Isis

[2] for the active replication of the secretary. Fail-

ures by controllers can be analogously handled by

replication of each controller. Alternatively, given a

reliable secretary, it may be su�cient for the con-

trollers to notify the secretary of all state changes.

Scalability: Since the law is enforced strictly lo-

cally, by the controller of each agent, the size of

the policy-group has no e�ect on the interaction be-

tween its members. Therefore, RI is naturally scal-

able, particularly in the case of an open group. How-

ever, when a group is supported by a single secre-

tary, as in our current implementation, then the size

of the group does a�ect operations such as �nding

the name of a fellow member of a group, or report-

ing to the secretary a change of the CS of a given

member. But this has a second order e�ect on the

e�ciency of interaction under RI.

3.7 Implementation Status

An experimental prototype of the Moses toolkit has

been implemented. Our controllers are written in

Java, so that Moses toolkit is portable to di�er-

ent platforms. Because our rules do not require

the full power of Prolog language, we have built an

interpreter for the needed subset of Prolog. This

implementation distinguishes between two types of

agents:

(i) A bounded agents, driven by a speci�c program

(which is what \binds" it). This programs,

which can be written in C, C++, Java, or Pro-

log, uses a set of preprogrammed primitives for

communication with Moses' controllers.

(ii) An unbounded agents, which represents a hu-

man, not bound by any program. Such an

agent communicates with its assigned controller

via Netscape, using application speci�c inter-

faces consisting of HTML documents with em-

bedded applets. Our choice was motivated by

(1) the almost universal deployment of WWW

browsers; and (2) the ease of learning to use

this interface.

The implementation has been tested on UNIX plat-

forms including SunOS and Solaris. The controllers

have not yet been deployed on physically secure de-

vices.

4 Implementation of Our Example

Policies

To illustrate the expressive power of the proposed

mechanism, we present here the implementation in

Moses of two disparate policies mentioned previ-

ously: the Chinese Wall policy, and the sealed-bid

auction policy. Recall that although these policies,

and the one discussed in Section 3.4, are de�ned by

separate laws, unrelated to each other, a given agent

may be subject to several of these policies, with re-

spect to di�erent modes of interaction it is involved

in.

It should be pointed out that our implementation

of the sealed-bid policy assumes no loss of messages

and no failure of controllers. On the other hand the

implementation of the Chinese Wall policy is robust

with respect to loss of messages and fail-stop failures

of controllers.

4.1 An Implementation of the Chinese
Wall Policy

This policy is established by law LCW , displayed

in Figure 3. We assume that the servers of the

distributed �nancial database are trusted to re-

spond to LCW messages of the form request(c),

where c identi�es a company, by means of

respond(c,data), where data represents informa-

tion about c. Note that under this law no explicit

access control is required on the part of the server.

Under law LCW a client is authorized to access data

belonging to a company c if either of the following

conditions is satis�ed:

1. the client has a clique permit for clique q to

which c belongs|such a permit is represented

by a term cliquePermit(q) in the control

state of the client;

2. the client has a company permit for company

c|represented by the term companyPermit(c)

in the control state of the client.

If the access is granted based on a cliquePermit,

then this permit is automatically removed to

prevent the client from accessing data regard-

ing a competitor company, and replaced with a

companyPermit for company c.

This implementation deals with the exceptional sit-

uation when a �rst time request for a company is not

honored for whatever reason. In this case, a client

should be able to access information about another

company belonging to the same competition clique.

That is why we chose to replace a cliquePermit

by a companyPermit at the time the client receives

the information and not when he makes the request.

In this respect, the protocol presented is tolerant to

server faults of type fail/stop and to lost messages.

Note also that Rule R1 checks for the presence of

a company permit or a clique permit at the time

a request is sent. This check is not needed for the

correctness of the protocol, it is performed to en-

sure that only potentially valid requests are sent to

servers and thus diminish the possibility of server

congestion, and thus of denial of service.

Initially: Every client has in its control state some at-

tributes of the form cliquePermit(Q)

R1. sent(U,request(C),S) :-

(companyPermit(C)@CS |

(belongsTo(C,Q),cliquePermit(Q)@CS)),

do(forward).

If a user U has a permit for company C or he has

a permit for clique Q to which C belongs, then the

request is forwarded.

R2. arrived(U,request(C),S) :-

do(deliver),

do(+requested(C,U)).

If a requestmessage arrives at a server, the mes-

sage is delivered. Also, a term requested(C,U) is

added to the control state to record the fact that

user U is requesting data about company C.

R3. sent(S,response(C,Data),U) :-

requested(C,U)@CS,

do(-requested(C,U)), do(forward).

In response to a request(C) message, a server

can send a response(C,Data). Note that this

message may be sent only by the server to whom

the user addressed the request, i.e. the server

which has the term requested(C,U).

R4. arrived(S,response(C,Data),U) :-

companyPermit(C)@CS,do(deliver).

If user U receives information about a company C,

for which he has a permit, the data is delivered.

R5. arrived(S,response(C,Data),U) :-

belongsTo(C,Q),cliquePermit(Q)@CS,

do(-cliquePermit(Q)),

do(+companyPermit(C)),

do(deliver).

If user U receives information about a company

C, belonging to a clique Q he loses the permit for

clique Q and gets a permit for the company C.

R6. belongsTo(att,communication).

R7. belongsTo(ibm,communication).

.

.

.

This rules state that att and ibm belongs to com-

munication competition clique. There will be one

such rule for every company whose �nancial in-

formation is available.

Figure 3: Law LCW for Chinese Wall Policy

4.2 An Implementation of the Sealed-
Bid Auction Policy

We introduce LSB, displayed in Figure 4, which im-

plements the law of the sealed-bid auction policy

SB introduced in Section 2.2. This law regulates

two di�erent types of messages: the messages that

can be used by the agents involved in this policy

to withdraw and deposit money, and the messages

related to the auction per se.

The deposit and withdrawal of money. We

assume that an agent called bank is a �nancial insti-

tution to which both auctioneers and bidding agents

have accounts. The bank is trusted to respond only

to PSB messages of the form transaction(..) and

we assume it performs the �nancial operations cor-

rectly. Any agent has in its control state a term

cash(amount)where amount is the sum available for

bidding. Under this law, agents are allowed to trans-

fer money from their account to their bidding fund

and vice versa. An agent, wishing to withdraw sum

s from its bank account sends to bank the message

transaction(type(withdrawal),sum(s)). The

bank responds with an addCash(s) message if

the transaction is valid. When the agent re-

ceives such a message the amount s is automat-

ically added to its cash (Rule R4). Similarly,

an agent can make a deposit in amount of s

into his bank account, by sending the message

transaction(type(deposit),sum(s)) (Rule R1).

This message will be forwarded to the bank, only if

the agent has enough cash, after his cash term is

decreased accordingly (Rule R1).

The auction process. Intuitively, a sealed-bid

auction proceeds as follows. First, an auction-

eer x can start a sale by multicasting the mes-

sage startAuction(item(i),end(et)), where i is

a unique description of the item to be sold, and et is

the time when the auction ends (Rule R5). At the

same time, a term auction is added to the control

state of the auctioneer which records the highest bid

made so far (initially 0) and the name of its issuer

(initially null). When such a message arrives at an

agent y, a term bided(x,i,et,0) is added to y's

control state (Rule R6). This term serves two pur-

poses: (i) to enable y to bid for the item as many

times as he wants to, but only in the allotted time;

and (ii) to record the maximal bid made by y for

item i (initially 0). An agent y makes a bid of val

dollars for item i by sending a message bid(i,val)

to the auctioneer. Such a message is forwarded to

the destination only if the following conditions are

met: (i) the deadline et has not yet passed, (ii)

val is the highest bid y made so far, and (iii) y has

enough cash (Rule R7). Also, the cash amount y

possesses is decreased, and the bided term is mod-

i�ed to re
ect that val is his highest bid for i.

All such bid messages arrive at the controller of

the auctioneer x, which maintains a term auction

recording the largest bid so far and the name of the

winner (Rule R8). Note that the auctioneer himself

never gets the bids, the winner is determined by

the controller automatically, thus ensuring bidders

privacy and correctness of the computation.

The auction of item i is �nalized by a mes-

sage endAuction(i) from the auctioneer, which

he is allowed to send only after the deadline has

passed (R9). The e�ects of this message are

described brie
y below. First, the auctioneer's

amount of cash is increased by the value of the high-

est bid, which he can later deposit in the bank, by

Rule R1. Second, the controller of the auctioneer

will multicast the message endAuction(i,w) con-

taining the identi�er of the winner to all group

members. Note that the auctioneer himself does

not know the identity of the winner|only his

controller has this information. When the mes-

sage endAuction(i,w) arrives at a losing bidder,

his cash amount is increased by the highest value

he bided on i, so he does not loose any money

(Rule R10). When this message arrives at the win-

ner w, then, by the same rule, the message is deliv-

ered, thus notifying w that he won.

Note that for the sake of simplicity, we do not ad-

dress here the situation of an auctioneer denying the

winner his prize. This can be prevented by having

the controller of the auctioneer in question send the

winner an appropriate certi�cate.

Initially: Every agent has in his control state an attribute cash(Amount) where Amount is the sum the agent can use

for bidding (initially 0).

R1. sent(X,transaction(type(T), sum(S)),bank) :- (T = withdrawal |

(T=deposit, cash(Amount)@CS, S<Amount, do(dcr(cash(Amount),S)))), do(forward).

If the transaction is a deposit, the message is forwarded only if the client has enough cash. If this is the case,

the amount of cash is decreased by S.

R2. arrived(,transaction(type(T), sum(S)),bank) :- do(deliver).

R3. sent(bank, addCash(S),) :- do(forward).

Messages sent to the bank are delivered, and messages sent by the bank are forwarded without further ado.

R4. arrived(bank, addCash(S), X) :- cash(Amount)@CS, do(incr(cash(Amount),S)).

The cash amount is increased by S, when a successful bank transfer is performed.

R5. sent(X,startAuction(item(I),end(ET)),all) :- auctioneer@CS,

not (auction(I, , ,)@CS), do(+auction(I,ET,null,0)),

do(forward).

An auctioneer can start an electronic auction by sending a startAuction message to all members. The

message contains an identi�er I of the item to be auctioned and the time ET when the auction ends.

R6. arrived(X,startAuction(item(I),end(ET)),Y) :-

do(+bided(X, I, ET, 0)),do(deliver).

A startAuctionmessage is delivered to the destination. A term bided(X, I, ET, 0) is added to the control

state of the receiver.

R7. sent(Y,bid(I, Val),X) :- not(auctioneer@CS),clock(T), T < ET,

bided(X, I, ET, V)@CS, V<= Val, cash(Amount)@CS,

V + Amount >= Val, do(bided(X, I, ET, V) bided(X, I, ET, Val)),

do(dcr(cash(Amount)), Val-V), do(forward).

If the time to bid has not expired and the bidder has enough cash, then a bid message containing Val the

value of the bid, is forwarded to the initiator.

R8. arrived(Y,bid(I, Val),X) :- auction(I, ET, W, Max)@CS, Val > Max,

do(auction(I,ET,W,Max) auction(I,ET,Y,Val)).

If Val is the biggest amount bided so far for I, the sender's identi�er is recorded in the auction term along

with Val.

R9. sent(X,endAuction(I),all) :- clock(T),T > ET +100,

cash(Amount)@CS,auction(I,ET,W,Max)@CS,

do(incr(cash(Amount),Max)), do(forward(X,endAuction(I, W),all)).

Only the auctioneer X who organized the sale for item I can send a endAuctionmessage. The identi�er of the

winner W are sent to all group members. Also, the money collected from the winner are added to X's cash.

R10.

arrived(X,endAuction(I,W),Y) :- cash(Amount)@CS,

bided(X, I, ET, Val)@CS, do(-bided(X,I, ET, Val)),

W=Y!do(deliver) | do(incr(cash(Amount),Val)).

When a message endAuction arrives at a bidder Y, if he is a loser he gets his money back.

Figure 4: Law LSB for Sealed-Bid Auction Policy

5 Related Work

The need for a mechanism for specifying secu-

rity policies as an alternative to hard coding them

into an application occurred to several researchers.

Theimer, Nichols and Terry [21] introduced a con-

cept of generalized capabilities. Such capabilities

contain access control programs (ACP) encoding the

security policy to be enforced with respect to this

capability. When a server receives a request accom-

panied by such a generalized capability, it executes

the ACP to determine whether the request is valid

or not.

Finally, Blaze, Feigenbaum and Lacy [3] built a

toolkit called PolicyMaker which can interpret se-

curity policies. An agent receiving a request gives it

for evaluation to PolicyMaker together with its spe-

ci�c policy, and the requester's credentials. On this

basis the request can be found to be valid, invalid

or trust can be deferred to third parties. One of the

main di�erences between this work and ours is that

PolicyMaker provides no enforcement. In particu-

lar, after asking PolicyMaker for its ruling one can

proceed by ignoring it.

Also, in both these approaches the rights a user has

are static: they cannot be modi�ed in accordance

with its actions. Thus, a large range of security

policies, like separation of duties [5], Chinese Wall,

and the movable but uncopyable capabilities, where

the state of a user determines his rights, cannot be

enforced.

6 Conclusion

The essence of the security mechanism proposed

here is the existence of a law that is guaranteed to

be observed by all members of a given policy-group.

It is this uniform4 law that allows the members of

the group governed by it to trust each other. This

distributed trust has several bene�cial consequences:

(a) it simpli�es the formulation of a wide range of

policies, some of which cannot be supported by tra-

ditional means; (b) it allows a single agent to op-

erate under several distinct policies; (c) it makes

the enforcement of policies more e�cient; and (d)

it makes the mechanism itself scalable. This trust

4The law is uniform with respect to the members of each

group.

relies on the integrity of the controllers, and on the

ability to correctly identify P-messages. These con-

ditions can be met, with a very high level of con-

�dence, by implementing controllers on physically

secure devices, and by appropriate authentication

protocols. In some cases, however, it should be suf-

�cient to build the controllers into the kernel of the

operating systems involved.

References

[1] J. R. Anderson. A security policy model for

clinical information systems. In Proceedings of

the IEEE Symposium on Security and Privacy,

May 1996.

[2] K.P. Birman. The process group approach

to reliable distributed computing. Communi-

cations of the ACM, 36(12):36{53, December

1993.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-

tralized trust managemnt. In Proceedings of

the IEEE Symposium on Security and Privacy,

May 1996.

[4] D. Brewer and M. Nash. The Chinese Wall se-

curity policy. In Proceedings of the IEEE Sym-

posium in Security and Privacy. IEEE Com-

puter Society, 1989.

[5] D.D. Clark and D.R. Wilson. A comparison

of commercial and military computer security

policies. In Proceedings of the IEEE Symposium

in Security and Privacy, pages 184{194. IEEE

Computer Society, 1987.

[6] E. Cohen and D. Je�erson. Protection in the

HYDRA operating system. In Operating Sys-

tems Principles, pages 141{160. ACM, Nov.

1975.

[7] S. Foley. The speci�cation and implementation

of `commercial' security requirements including

dynamic segregation of duties. In Proceedings

of the 4th ACM Conference on Computer and

Communications Security, April 1997. (to ap-

pear).

[8] S Foley, L. Gong, and X. Qian. A security

model of dynamic labelling providing a tiered

approach to veri�cation. In Proceedings of

the IEEE Symposium on Security and Privacy,

May 1996.

[9] M. Franklin and M. Reiter. The design and

implementation of a secure auction service. In

Proceedings of the IEEE Symposium on Secu-

rity and Privacy, pages 2{14, May 1995.

[10] A. Jones, R. Chansler Jr., I. Durham,

K. Schwans, and S. Vegdahl. StarOS, a mul-

tiprocessor operating system for the support of

task forces. In Proceedings of the IEEE Sympo-

sium on Security and Privacy, pages 117{127,

Dec 1979.

[11] M. Jones and B. Schneier. Securing the World

Wide Web: Smart Tokens and their imple-

mentation. In Proceedings of the Fourth Inter-

national World Wide Web Conference, pages

397{409, December 1995.

[12] S. Kent. Internet privacy enhanced mail. Com-

munications of the ACM, August 1993.

[13] N.H. Minsky. The imposition of protocols over

open distributed systems. IEEE Transactions

on Software Engineering, February 1991.

[14] N.H. Minsky and V. Ungureanu. Regulated

coordination in open distributed systems. In

Proc. of Coordination'97: Second International

Conference on Coordination Models and Lan-

guages; LNCS 1282, pages 81{98, September

1997.

[15] N.H. Minsky, V. Ungureanu, W. Wang,

and J. Zhang. Building recon�guration

primitives into the law of a system. In

Proc. of the Third International Confer-

ence on Con�gurable Distributed Systems (IC-

CDS'96), March 1996. (available through

http://www.cs.rutgers.edu/~minsky/).

[16] S. Mullender, G. Rossum, A. Tanembaum,

R. Van Renesse, and H. Staveren. Amoeba:a

distributed operating system for the 1990s.

IEEE Computer, May 1990.

[17] R. Rivest and B. Lampson. SDSI-

a simple distributed security infras-

tructure. Technical report, 1996.

http://theory.lcs.mitedu/~rivest/sdsi.ps.

[18] Ravi Sandhu. Lattice-based access control

models. IEEE Computer, November 1993.

[19] F.B. Schneider. Implementing fault tolerant

services using the state machine approach.

ACM Computing Surveys, 22(4):300{319, 1990.

[20] A. Tanenbaum. Distributed Operating Systems.

Prentice Hall, 1995.

[21] M. Theimer, D. Nichols, and Douglas Terry.

Delegation through access control programs. In

Proceedings of Distributed Computing System,

pages 529{536, 1992.

[22] J.D. Tygar and B. Yee. Dyad: A system for

using physically secure coprocessors. Technical

Report CMU-CS-91-140R, CMU, 1991.

[23] B. Yee. Using Secure Coprocessors. PhD thesis,

Carnegie Mellon University, May 1994.

