
FedSQ: A Secure System for Federated Vector SimilarityQueries
Zeqi Zhu

SKLCCSE Lab,
Beihang University

zhuzeqi@buaa.edu.cn

Zeheng Fan
SKLCCSE Lab,

Beihang University
fanzh@buaa.edu.cn

Yuxiang Zeng
SKLCCSE Lab,

Beihang University
yxzeng@buaa.edu.cn

Yexuan Shi
SKLCCSE Lab,

Beihang University
skyxuan@buaa.edu.cn

Yi Xu
SKLCCSE Lab,

Beihang University
xuy@buaa.edu.cn

Mengmeng Zhou
Beijing Academy of
Blockchain and Edge

Computing
zhoumm@baec.org.cn

Jin Dong∗
Beijing Academy of
Blockchain and Edge

Computing
dongjin@baec.org.cn

ABSTRACT
Vector databases have emerged as crucial tools for managing and
retrieving representation embeddings of unstructured data. Given
the explosive growth of data, vector data is often distributed and
stored across multiple organizations. However, privacy concerns
and regulations like GDPR present new challenges in collaborative
and secure queries, also known as federated queries, over those
vector data distributed across various data owners. Although ex-
isting research has attempted to enable such query services for
low-dimensional data, such as relational and spatial data, these
solutions can be inefficient in answering vector similarity queries
involving high-dimensional data. Therefore, we are motivated to de-
velop a new prototype system called FedSQ that (1) ensures privacy
protection across data owners and (2) balances query efficiency and
result accuracy when processing federated vector similarity queries.
To achieve these goals, FedSQ utilizes advanced secure multi-party
computation techniques to prevent information leakage during
query processing and incorporates indexing and sampling based
optimizations to strike a proper performance balance.

PVLDB Reference Format:
Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, Yexuan Shi, Yi Xu, Mengmeng Zhou,
and Jin Dong. FedSQ: A Secure System for Federated Vector Similarity
Queries. PVLDB, 17(12): 4441 - 4444, 2024.
doi:10.14778/3685800.3685895

1 INTRODUCTION
Vector databases [7] have become powerful tools for managing and
retrieving embedding vectors, which effectively capture the seman-
tic meaning of unstructured data. By executing vector similarity
queries, such as k-Nearest Neighbor (kNN) search, these databases
can quickly retrieve relevant information based on the similarity of
the embedding vectors. Recently, vector databases have emerged as
“retrieval plugins” seamlessly integrated into the generation process
of Large Language Models (LLMs) [7]. By harnessing their retrieval

∗Jin Dong is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685895

capabilities, we can provide relevant external data to enhance the
accuracy of LLMs like ChatGPT when responding to queries that
extend beyond the training data.

Up until now, vector databases have primarily been designed to
handle data that do not contain private information. Conversely, in
private domains, data is often highly sensitive and difficult to inte-
grate into a single database due to regulations like GDPR. Therefore,
deploying a vector database in such application scenarios becomes
even more challenging. A typical example is as follows.
Example 1 (LLM-based Medical Question Answering). In the
realm of medical informatics, LLMs are revolutionizing medical
question answering systems [9]. Consider a scenario where an LLM
receives a complex medical query that requires accessing external
data like clinical cases or records related to the queried disease. In
practice, these records contain highly sensitive patient informa-
tion and are often distributed across multiple hospitals. Due to the
privacy regulations like GDPR, each hospital must independently
manage its own database, often in the form of a vector database
(e.g., Milvus [13]) containing embedding vectors of medical records.
In this scenario, it is imperative to provide joint and secure query
processing services across these hospitals’ local vector databases.

Recently, data federation systems [11] have been proposed to
securely process queries across multiple data owners, such as SM-
CQL [4], Conclave [12], and Hu-Fu [8, 10]. Existing work is usually
designed to answer exact queries on low-dimensional data, like
relational data [4, 12] and spatial data [8, 10, 14]. However, due
to the high-dimensional nature of vector data, existing solutions
can be inefficient in processing federated vector similarity queries
across local vector databases, which typically require approximate
answers. More specifically, the following technical challenges need
to be addressed in a vector data federation system:
• Privacy protection across data owners during query pro-

cessing. Each data owner could potentially act as a semi-honest
attacker, aiming to infer sensitive information during the speci-
fied query processing protocol. Meanwhile, the query requester
can only access information pertaining to the retrieved data,
remaining unaware of the other data.

• Balancing query efficiencywith result accuracy. Such queries
need to be processed rapidly to prevent reduction in the efficiency
(e.g., inference latency of LLMs). Simultaneously, the query an-
swer should be accurate and reliable enough to prevent misguid-
ance, especially in model reasoning. Given the aforementioned

4441

https://doi.org/10.14778/3685800.3685895
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685895


Figure 1: The architecture of FedSQ system

security requirement, it is very challenging to achieve a balanced
trade-off between query efficiency and result accuracy.
To fill this gap, we aim to propose a prototype system for provid-

ing secure and efficient query processing in a vector data federation
system. We have made the following major contributions:
• We have proposed a secure and efficient framework that pro-

cesses federated vector similarity queries across multiple vector
databases. This framework leverages both local plaintext queries
and collaborative secure computations. Local plaintext queries
are executed in vector databases to obtain partial results by using
high-dimensional vector data indexes like HNSW [6]. Collabora-
tive secure computations, such as secure aggregations of these
partial results, are implemented using secure multi-party com-
putation techniques.

• We have developed a user-friendly web client that enables DBAs
to easily configure and monitor the vector data federation system,
thereby enhancing the system’s usability. Additionally, we have
created easy-to-integrate APIs in Python to further facilitate the
incorporation of our solution into existing data retrieval and
analytics workflow.

• By combining previous core components, we have built a proto-
type system named FedSQ. Moreover, by using the open-source
framework LangChain [1], FedSQ is integrated into a chat-based
LLM and demonstrated to be useful in the application scenario
of medical question answering.
The rest of this paper is organized as follows. Section 2 presents

the system architecture and workflow. Section 3 introduces the
implementation. Section 4 illustrates our demonstration plan.

2 SYSTEM OVERVIEW
This section introduces the overall architecture and workflow.

2.1 Architecture of Our FedSQ System
FedSQ consists of three important layers, namely vector data feder-
ation, secure multi-party computation, and query coordinator layers,
as shown in Fig. 1. More details of these layers are as follows:
Vector Data Federation Layer. It consists of 𝑛 data owners. Data
owners can execute local vector similarity queries in vector databases.

Figure 2: The workflow of FedSQ system

In addition, these local vector databases provide convenient and
autonomous data management services for data owners.
Secure Multi-Party Computation Layer. This layer consists of
three components: secure operator, contribution estimator, and result
aggregator. When processing a federated vector similarity query, the
contribution estimator quantifies the proportion of partial answers
provided by each data owner. Then, the result aggregator assembles
the partial answers from all data owners. To protect the privacy
of each data owner, these two components are implemented via
secure multi-party computation [5].
Query Coordinator Layer. This layer also includes three compo-
nents: query interface, query parser, and query plan executor. The
query interface enables users to directly interact with the system
and submit their queries. The query parser performs syntax anal-
ysis on users’ query requests and extracts query conditions. The
query plan executor generates query plans according to the con-
ditions and distribute them to the vector data federation layer for
subsequent query executions.

2.2 Workflow of Our FedSQ System
Fig. 2 presents the main workflow of our FedSQ system. It starts
with a federated vector similarity query and ends with the query
answer. The entire processing procedure has the following steps:

Step 1. A user provides his federated vector similarity query in
Python based on the retrieval function in vector databases [13]. For
example, Fig. 2 shows a federated vector kNN query, where 𝑑𝑎𝑡𝑎
denotes the query object and 𝑙𝑖𝑚𝑖𝑡 denotes the parameter 𝑘 .

4442



Step 2. This step involves both (a) query parser and (b) query
plan executor. The query parser decomposes the Python code into
query parameters and predicates. Based on the query conditions, the
query plan executor decomposes the code into a series of plaintext
vector similarity queries over local vector databases and secure ag-
gregation protocols across the data owners, which are subsequently
distributed to the other layers for query executions.

Step 3. Each data owner now receives the plaintext vector similar-
ity queries. Local answers are obtained by executing these queries
within their vector databases, accelerated by vector data index.

Step 4. Based on predefined secure aggregation protocols, the
contribution estimator determines the proportion of partial results
in each local answer. Subsequently, the result aggregator collects
the estimated quantity from local answers via secure operations.

Step 5. The final answer will be returned to the user by the result
aggregator component in the secure multi-party computation layer.

3 PROTOTYPE IMPLEMENTATION
This section introduces the implementation details of FedSQ.
Vector Data Federation Layer. In this layer, a vector database
(Milvus [13]) is assumed to have been deployed by each data owner,
which facilitates local vector similarity queries via efficient index
likeHNSW [6]. To balance between the index construction overhead
and query efficiency, the maximum number of connections per node
is set to 16 in HNSW, and 200 candidate neighbors are saved per
node. Furthermore, the number of candidate neighbors accessed
during the search phase of HNSW is dynamically adjusted, thereby
providing an appropriate query latency across varying data sizes.
Secure Multi-Party Computation Layer. The secure multi-party
computation layer is integrated into an Django backend, serving
as a middleware that connects the other two layers. The CrypTen
library [2] is employed to implement secure operation protocols,
whereas the Protobuf library [3] enables efficient communication
among the data owners. Moreover, the contribution estimator is
designed by following the idea of “sample-and-seek”:

(1) Sample. The estimator begins by uniformly sampling from
all data owners to construct profiles for their local answers.

(2) Seek. According to the profiles, specific non-uniform sam-
pling techniques are employed to seek the complete query result.

Take the federated vector kNN query as an example. It will
be decomposed into several local kNN queries. After performing
these queries, each data owner will hold his local kNN answers.
Our contribution estimator can first sample the nearest neighbor
(distance) from each data owner. Based on the similarity of these
samples, the estimator can deducewhich vector database potentially
holds more relevant data to the query object. Thus, an iterative
process is employed to seek more samples from this database until
𝑘 objects have been collected. Finally, a secure set union operator
collects the vectors and their raw data as the final answer.
Query Coordinator Layer. We develop a user-friendly front-end
query interface utilizing the Vue.js framework, which enables users
to conveniently manage the vector data federation, post federated
vector similarity queries, and monitor the overall system status.
The query parser and query plan executor are also integrated in
the Django back-end. We also integrate the Celery task queue for

efficient asynchronous execution of query tasks, and create easy-
to-integrate APIs in Python to facilitate the incorporation of vector
databases into existing data retrieval and analytics workflow.

4 DEMONSTRATION SCENARIO
In this section, we introduce our demonstration plan for the audi-
ences. We will show the GUI interface of FedSQ and demonstrate
how to utilize FedSQ in LLM-based medical question answering.

4.1 GUI Interface of FedSQ
FedSQ offers a unified interface for query users, providing a co-
hesive and user-friendly system for both usage and management
purposes. As shown in Fig. 3, query users can obtain essential in-
formation about the vector data federation from the system, such
as the input query interface and retrieved answers, the accessible
data schema, and the participated data owners.
Query Interface. In this module, query users can write and submit
their vector similarity queries. They have the option to submit
queries as a single Python statement or by uploading an executable
file. Below the input area, users can view both the current and
historical query results. The query user can choose to download
the retrieved vector embeddings and the corresponding raw data.
Data Schema. The data schema displays the available attributes
of the vector data federation, including the raw data, vector em-
bedding, and other meta-data. For ease of vector data manage-
ment, FedSQ supports a series of data types. For example, in Fig. 3,
“FLOAT_VECTOR” represents the vector data, and “TEXT” repre-
sents the raw data type. The DBAs can manage the schema through
the “Delete” button and the “Add New Attribute” button.
Participated Data Owners. This module provides a management
board about the current status of data owners, which includes their
names, IPs, update times, etc. Moreover, the DBAs of this vector
data federation system can remove or add data owners flexibly.
Status of Vector Data Federation. FedSQ further provides a
graphical module to show the current status of the vector data
federation. The connected and disconnected data owners are de-
picted in different colors, allowing users to easily identify which
vector database is available through the visualization.

4.2 Medical Question Answering by FedSQ
We also show audiences how our FedSQ system can be deployed
into the scenario of LLM-based medical question answering.
LLM Configuration. We develop a user-friendly web interface
that integrates our FedSQ with LLMs. The interface allows users
to input queries, adjust LLM parameters, and obtain results. The
configuration menu on the left enables users to adjust settings
related to LLM. For example, users can select the underlying LLM
model or set the temperature parameter, among other options. On
the right side of the interface, there is a conversation windowwhere
users can enter their medical questions in the text box, and the
generated responses are displayed directly on the same interface.
Medical Query without FedSQ. When users ask questions with-
out FedSQ, the LLM relies solely on its internal knowledge embed-
ded within the model. As a result, the responses may lack immediate

4443



Figure 3: The GUl interface of our FedSQ system

Figure 4: Medical question answering enhanced by FedSQ

relevance due to the absence of real-time updates. For example, if a
user asks about “new diseases to be cautious of in Spring 2024”, a
LLM (e.g., ChatGLM) often acknowledges its inability to provide this
information for 2024. Instead, it offers general advice on common
seasonal ailments such as pollen allergies and influenza.
Medical Query with FedSQ. By using LangChain [1] to integrate
our FedSQ system into the inference procedure, the LLM collabo-
rates with the external vector databases to generate answers. This
integration allows the model to access fresh data, ensuring that the
outputs are based on the latest and most relevant information. In
our demonstration, the vector data federation consists of several
data repositories from different hospitals. As shown in Fig. 4, when
presented with the same query about new diseases to be cautious
of in Spring 2024, the LLM informs the user about recent disease
outbreaks. For instance, it can mention a Listeria outbreak linked to
certain dairy products or a surge in lead and chromium poisoning
associated with specific food items due to the retrieved external
data by federated vector similarity queries over the data federation.

Acknowledgments
This workwas partially supported byNational Key Research andDe-
velopment Program of China under Grant No. 2023YFF0725103, Na-
tional Science Foundation of China (NSFC) (Grant Nos. U21A20516,
62336003, 62076017) and Beijing Natural Science Foundation (Z2300
01), Beijing Advanced Innovation Center for Future Blockchain and
Privacy Computing(GJJ-23-004), CCF-Huawei Populus Grove Fund,
the Basic Research Funding in Beihang University No.YWF-22-L-
531, and Didi Collaborative Research Program NO2231122-00047.
Jin Dong is the corresponding author.

References
[1] 2022. LangChain. https://github.com/langchain-ai/langchain
[2] 2024. CrypTen. https://github.com/facebookresearch/CrypTen
[3] 2024. Protobuf. https://github.com/protocolbuffers/protobuf
[4] Johes Bater, Gregory Elliott, Craig Eggen, et al. 2017. SMCQL: Secure Query

Processing for Private Data Networks. PVLDB 10, 6 (2017), 673–684.
[5] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party computa-

tion. In CCS. 1575–1590.
[6] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
TPAMI 42, 4 (2020), 824–836.

[7] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Vector Database Manage-
ment Techniques and Systems. In SIGMOD. 597–604.

[8] Xuchen Pan, Yongxin Tong, Chunbo Xue, et al. 2022. Hu-Fu: A Data Federation
System for Secure Spatial Queries. PVLDB 15, 12 (2022), 3582–3585.

[9] Karan Singhal, Shekoofeh Azizi, Tao Tu, et al. 2023. Large Language Models
Encode Clinical Knowledge. Nature 620, 7972 (2023), 172–180.

[10] Yongxin Tong, Xuchen Pan, Yuxiang Zeng, et al. 2022. Hu-Fu: Efficient and
Secure Spatial Queries over Data Federation. PVLDB 15, 6 (2022), 1159–1172.

[11] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, et al. 2023. Federated Computing:
Query, Learning, and Beyond. IEEE Data Eng. Bull. 46, 1 (2023), 9–26.

[12] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, et al. 2019. Conclave:
secure multi-party computation on big data. In EuroSys. 1–18.

[13] Jianguo Wang, Xiaomeng Yi, Rentong Guo, et al. 2021. Milvus: A Purpose-built
Vector Data Management System. In SIGMOD. 2614–2627.

[14] Xinyi Zhang, Qichen Wang, Cheng Xu, et al. 2024. FedKNN: Secure Federated
k-Nearest Neighbor Search. SIGMOD 2, 1 (2024), V2mod011:1–V2mod011:26.

4444

https://github.com/langchain-ai/langchain
https://github.com/facebookresearch/CrypTen
https://github.com/protocolbuffers/protobuf

	Abstract
	1 INTRODUCTION
	2 SYSTEM OVERVIEW
	2.1 Architecture of Our FedSQ System
	2.2 Workflow of Our FedSQ System

	3 PROTOTYPE IMPLEMENTATION
	4 DEMONSTRATION SCENARIO
	4.1 GUI Interface of FedSQ
	4.2 Medical Question Answering by FedSQ

	Acknowledgments
	References

