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FOREWORD
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1 Department of Computer Science, University of Freiburg

E-mail address: salbers@informatik.uni-freiburg.de

2 Loria and ENS des Mines de Nancy

E-mail address: jean-yves.marion@loria.fr

The Symposium on Theoretical Aspects of Computer Science (STACS) is held alter-
nately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg,
is the 26th in this series. Previous meetings took place in Paris (1984), Saarbrücken (1985),
Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg
(1991), Cachan (1992), Würzburg (1993), Caen (1994), München (1995), Grenoble (1996),
Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002),
Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and
Bordeaux (2008).

The interest in STACS has remained at a high level over the past years. The STACS
2009 call for papers led to over 280 submissions from 41 countries. Each paper was assigned
to three program committee members. The program committee held a two-week electronic
meeting at the beginning of November and selected 54 papers. As co-chairs of the program
committee, we would like to sincerely thank its members and the many external referees for
their valuable work. The overall very high quality of the submissions made the selection a
difficult task.

We would like to express our thanks to the three invited speakers, Monika Henzinger,
Jean-Éric Pin and Nicole Schweikardt, for their contributions to the proceedings.

Special thanks are due to A. Voronkov for his EasyChair software (www.easychair.org).
Moreover we would like to thank Sonja Lauer for preparing the conference proceedings and
continuous help throughout the conference organization.

For the second time this year’s STACS proceedings are published in electronic form. A
printed version was also available at the conference, with ISBN 978-3-939897-09-5. The elec-
tronic proceedings are available through several portals, and in particular through HAL and
DROPS. HAL is an electronic repository managed by several French research agencies, and
DROPS is the Dagstuhl Research Online Publication Server. We want to thank both these
servers for hosting the proceedings of STACS and guaranteeing them perennial availability.
The rights on the articles in the proceedings are kept with the authors and the papers are
available freely, under a Creative Commons license (see www.stacs-conf.org/faq.html for
more details).

c© S. Albers and J.-Y. Marion
CC© Creative Commons Attribution-NoDerivs License
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STACS 2009 received funds from the German Research Foundation (Deutsche For-
schungsgemeinschaft, DFG) and the University of Freiburg. We thank them for their
support!

December 2008 Susanne Albers
Jean-Yves Marion
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Richard Baron
Cédric Bastoul
Sylvain Béal
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József Békési
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Boaz Patt-Shamir
Romain Péchoux
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René Sitters
Isabelle Sivignon
Alex Slivkins



FOREWORD 7

Robert Sloan
Shakhar Smorodinsky
William F. Smyth
Christian Sohler
Philippe Solal
Jonathan Sorenson
Alexander Souza
Srikanth Srinivasan
Heiko Stamer
Ian Stark
Rob van Stee
Damien Stehlé
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Locally Decodable Quantum Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
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Computing Graph Roots Without Short Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
B. Farzad, L. C. Lau, V. B. Le and N. N. Tuy

A Generalization of Nemhauser and Trotter’s Local Optimization
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

M. R. Fellows, J. Guo, H. Moser and R. Niedermeier

Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves . 421
H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh and

Y. Villanger

Forward Analysis for WSTS, Part I: Completions . . . . . . . . . . . . . . . . . . . . . . . . . 433
A. Finkel and J. Goubault-Larrecq

Approximating Acyclicity Parameters of Sparse Hypergraphs . . . . . . . . . . . . . 445
F. V. Fomin, P. A. Golovach and D. M. Thilikos

Optimal Cache-Aware Suffix Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
G. Franceschini, R. Grossi and S. Muthukrishnan

Randomness on Computable Probability Spaces. A Dynamical Point of
View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
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Abstract. As the World Wide Web is growing rapidly, it is getting increasingly challeng-
ing to gather representative information about it. Instead of crawling the web exhaustively
one has to resort to other techniques like sampling to determine the properties of the web.
A uniform random sample of the web would be useful to determine the percentage of web
pages in a specific language, on a topic or in a top level domain. Unfortunately, no ap-
proach has been shown to sample the web pages in an unbiased way. Three promising web
sampling algorithms are based on random walks. They each have been evaluated individ-
ually, but making a comparison on different data sets is not possible. We directly compare
these algorithms in this paper. We performed three random walks on the web under the
same conditions and analyzed their outcomes in detail. We discuss the strengths and the
weaknesses of each algorithm and propose improvements based on experimental results.

Introduction

The World Wide Web is a rich source of information about the world but very little
information is known about the web itself. We do not know what percentage of web pages
are in a specific language or on a topic or in a top level domain. There are estimates on
what percentage of web pages change per day [7, 8] but they depend on how deeply the
sites were crawled. Trying to determine these statistics based on exhaustive enumeration
of the web is not feasible because of its size and its rapidly changing nature. However, a
uniform random sample of the web1 would provide answers to many of the above questions
and repeated sampling would also allow to monitor changes in the web’s composition.

1998 ACM Subject Classification: G.2.2 Graph Algorithms, H.2.8 Data Mining.
Key words and phrases: Random walks, sampling web pages.
Preliminary results of this paper were presented at IIWeb 2006 Workshop.

1We refer to a uniform random sample of the web as the uniform random sample of the web pages not of
the graph structure of the web.
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In the literature there are four major approaches for sampling web pages: Lawrence
and Giles [12] tested random IP addresses to determine characteristics of hosts. However,
it leaves the question open how to deal with multiple hosts sharing the same IP address or
hosts being spread over multiple IP addresses. Additionally, it is not clear how to sample
the web pages accessible at a given IP address. Thus, this approach samples IP addresses,
but not web pages.

Bar-Yossef et al. [1] and Henzinger et al. [9, 10] independently proposed to use random
walks on the web to sample web pages. They present algorithms that in theory should
lead to uniform random samples but cannot be implemented in their pure form. Instead,
the implementations need to make some simplifications which lead to various biases in the
resulting samples. Both evaluated their walks on different artificially generated graphs and
on the web (at different times). Based on this work, Rusmevichientong et al. [13] proposed
two different random walks, which in theory should lead to uniform random samples. One
of their approaches can be implemented without modifications. However, they evaluated
their approaches only on small artificially generated graphs consisting of 100, 000 nodes.
On these graphs they showed that their approaches and the approach in [1] lead to samples
that reflect the indegree and outdegree distributions of the underlying graph correctly, while
the approach by Henzinger et al. [9, 10] does not. Henzinger et al. [10] had found a bias in
their approach for the indegree distribution but not for the outdegree distribution. More
recently, Bar-Yossef et al. [2] showed how to generate a random sample of web pages relevant
to a given user specified topic and Chakrabarti et al. [6] developed techniques to estimate
the background topic distribution on the web. Both [2] and [6] use a variant of the sampling
algorithm proposed in [1].

In the rest of the paper we will denote the algorithm proposed in [13] as Algorithm A,
the algorithm proposed in [1] as Algorithm B and the algorithm in [10] as Algorithm C.
Each algorithm consists of a walk phase that performs a random walk and of a subsampling
phase that subsamples the web pages visited by the random walk. We performed the walk
phase of each of these algorithms on the web with the same computation power and with the
same amount of time. Then we experimented with different subsampling phases, including
the ones proposed by the above papers. This resulted in four types of samples generated
by Algorithm A, called A Samples, four types of samples generated by Algorithm B, called
B Samples, and three types of samples generated by Algorithm C, called C Samples.

Our experiments provide the following new insights about the above mentioned algo-
rithms: (1) A Samples and B Samples exhibit a strong bias to internally highly connected
hosts with few outedges to other hosts. The reason is that Algorithm A and Algorithm B
frequently had problems leaving such hosts. After a certain (large) number of consecutive
visits of web pages on the same host, we say that the walk is unable to leave the host or,
more informally, got stuck at a host. Both Algorithm A and Algorithm B have a problem
with getting stuck. Algorithm C is designed to have a very low probability of getting stuck,
due to random resets. Indeed in our experiments it was never unable to leave a host. (2)
C Samples exhibit a bias towards high outdegree web pages. This was shown before for
artificially generated graphs [13] but not for the web. Furthermore we show that C Samples
show a bias towards high PageRank web pages. (3) We experimented with different subsam-
pling phases for each algorithm. The subsampling techniques had an impact on A Samples
and B Samples while they had only a very small impact on C Samples.

This paper is organized as follows: Section 1 describes the evaluated algorithms and
their corresponding subsampling phases. Section 2 presents some challenges met during the
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implementation and how we dealt with them. Section 3 presents the experiments and their
results in detail. In Section 4 we give a comparison of results for sampling algorithms. We
conclude with proposals for further work in Section 5.

1. Description of the algorithms

We define the web graph as a graph where every web page is a node and every hyperlink
is a directed edge between the nodes. A memoryless random walk on the web graph is a
Markovian chain that visits a sequence of nodes where the transitions between nodes depend
only on the last node of the walk and not on earlier nodes. In a Markov chain on the web
graph states correspond to web pages, i.e. the nodes on the web graph, and each visit to a
node results in one step of the random walk. We call a step a selfloop step when the walk
visits the same node in two consecutive steps of the walk by traversing a selfloop. We define
the visit count of a node to be the number of visits to the node including selfloop steps.
Edges, degree, PageRank, inlinks, outlinks and selfloop of a state are the edges, degree,
PageRank value, inlinks, outlinks and selfloop of the corresponding node.

Each algorithm consists of two phases: (1) A walk phase, where a memoryless random
walk is performed on the web graph. We denote the walk phase of Algorithm A, Algorithm B
and Algorithm C as Walk A, Walk B and Walk C respectively. (2) The second phase is a
subsampling phase, where either states or steps of the walk phase are subsampled randomly.

According to a fundamental theorem of Markovian chains, a random walk on an ape-
riodic and irreducible graph will converge to a unique stationary distribution. Once the
walk reaches its unique stationary distribution, the probability of being in a node will not
change although the walk takes more steps. Algorithm A and Algorithm B are designed to
perform a random walk on an undirected, aperiodic and irreducible graph. On such a graph
a random walk converges to a unique stationary distribution where the probability of being
in a node is proportional to its degree. Walk A leads to a biased stationary distribution
because the nodes do not have the same degree. If we subsample states after the point
where the walk reaches the stationary distribution, high degree nodes will be more likely
to be sampled. To remove this bias we subsample states or steps of Walk A with values
inversely proportional to the corresponding node’s degree. Walk B is performed on a regu-
lar graph, i.e. on a graph where each node has the same degree. Furthermore this regular
graph has the above mentioned properties required for converging to a unique stationary
distribution. Thus, in the stationary distribution values of Walk B every node is equally
likely to be visited. Algorithm C is designed to perform a random walk on a directed,
aperiodic and irreducible graph. This walk leads to a unique stationary distribution where
the probability of being in a node is equal to its PageRank value. In other words Walk C
has a biased stationary distribution, as does Walk A. To get a uniform random sample of
Walk C, we subsample its states with values inversely proportional to the PageRank values
of the corresponding nodes. We next describe the algorithms in more detail.

1.1. Algorithm A

Walk phase: Consider the following random walk on an undirected graph. From the
current node choose an adjacent edge uniformly at random and select the other endpoint
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of the edge as next node to visit. It can be proven that if run long enough on an undi-
rected, irreducible and aperiodic graph this random walk converges to a unique stationary
distribution where the probability of visiting a node is proportional to its degree.

Algorithm A executes Walk A on the web graph which it modifies as follows: (1) It gives
a selfloop to each node that does not yet have a selfloop to make the web graph aperiodic.
(2) It ignores the direction of the (directed) hyperlinks. The latter leads to complications
in the implementation since the inlinks of a node in the web graph can not be determined
directly from the corresponding web page. Additionally the web graph changes constantly
as web pages are edited. We deal with the former problem by querying a web search engine
and retrieving up to 10 inlinks per node, chosen randomly from all returned inlinks. We do
not retrieve more inlinks since it was shown experimentally in [1] that Algorithm A returns
better results when the number of retrieved inlinks is limited. These inlinks and outlinks
together with the inlinks (if any) from previously visited nodes form the set of adjacent
edges of a node. To deal with the changes in the web we store the set of adjacent edges of
a node at the first visit of the node in a database. At every later visit of the node the set
of its adjacent edges is taken from the database. This guarantees that the degree of a node
does not change during the execution of the walk.

Subsampling phase: After Walk A reaches its unique stationary distribution each node
can be the next step of the walk with probability proportional to its degree. To remove this
bias, states or steps are subsampled randomly with probability inversely proportional to
their degree after the step where the walk reached the stationary distribution. We wanted
to implement the algorithms described in [1] and [13] as closely as possible, however it
was not clearly described whether they subsampled states or steps. Thus we created two
types of samples, one subsampling states and one subsampling steps. The number of steps
until the walk has reached a stationary distribution is called the mixing time. No bounds
for the mixing time on the web graph are known. However, intuitively the distribution of
states towards the end of the walk should lead to better results than the distribution of all
the states in the whole walk. We tested this intuition by exploring the following different
subsampling phases. (1) We determined all the states visited in the last half of the steps
of Walk A and subsampled them randomly with probability inversely proportional to their
degree. This sample is called A StatesOnLastHalf. (2) We determined all states visited in
the last quarter of the steps of Walk A and subsampled them randomly with probability
inversely proportional to their degree. This sample is called A StatesOnLastQuarter. (3)
From the last half of the steps of Walk A, the steps are subsampled randomly with proba-
bility inversely proportional to the corresponding web page’s degree. This sample is called
A StepsOnLastHalf. (4) From the last quarter of the steps of Walk A, the steps are sub-
sampled randomly with probability inversely proportional to the corresponding web page’s
degree. This sample is called A StepsOnLastQuarter.

1.2. Algorithm B

Walk phase: Consider the same random walk as for Walk A on an undirected, regular and
irreducible graph. If run long enough this random walk converges to a uniform distribution
of the nodes. The web graph is neither undirected nor regular. The web graph is modified as
described in Section 1.1 to make it undirected. To make it regular we add enough selfloops
to each node to increase their degree to max. Following [1] we set max = 10, 000, 000. Thus,
the only difference between Walk A and Walk B is the number of selfloops in the graph.
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Subsampling phase: We subsampled Walk B in the same four ways as Walk A, but sub-
sampling states uniformly at random creating B StatesOnLastHalf, B StatesOnLastQuarter
and subsampling steps uniformly at random creating the samples B StatesOnLastHalf,
B StepsOnLastQuarter.

1.3. Algorithm C

Walk phase: Algorithm C tries to imitate the PageRank random walk [4] as closely
as possible. When choosing the next node to visit, Walk C first flips a biased coin. With
probability d = 1/7 it performs a random jump or random reset, described below. With
probability 1−d, it chooses an outlink of the current node uniformly at random and selects
the head of the selected outlink as next step of the walk. We say that the algorithm traverses
the chosen outlink. If a chosen node does not have any outlinks or if it cannot be fetched,
a random jump is performed. Ideally a random jump would jump to a randomly selected
node of the web graph. However, the walk does not know all the nodes on the web graph.
Instead it can choose a node out of all visited or all seen nodes. A node is seen if it either has
already been visited or if it is the head of an outlink of a visited node. However, even when
restricting the random jumps to all visited or all seen nodes, there is a potential problem. As
pointed out in [9] if almost all of the seen nodes are on the same host, a random jump would
with high probability jump to a node on this host. As a result it is possible that the walk
gets stuck on this host. To remedy this problem [9] proposed to perform a random jump in
the following biased way: First select a host from all the visited hosts uniformly at random,
then select a web page from all the visited web pages on that host uniformly at random
and finally visit the node corresponding to the selected web page. In our implementation
we “got stuck” in domains using this approach and thus we added one additional layer,
the domain2 layer. Additionally we switched from visited to seen entities. A seen host is a
host on which the walk has seen a web page and a seen domain is a domain on which the
walk has seen a web page. Our Walk C first selects a domain uniformly at random from all
the seen domains, secondly it selects a host uniformly at random from all the seen hosts in
that domain, then it selects a web page uniformly at random from all the seen web pages
in that host and finally the walk visits the node corresponding to the selected web page.
Since the set of seen nodes is on the average a factor of roughly 10 larger than the set of
visited nodes, this modification allowed us to more closely imitate the PageRank random
walk that chooses a random node out of all nodes on the web graph in random jump phase.
Due to our way of imitating PageRank random walk our Walk C is not memoryless since
it keeps track of all the visited states as well as their outlinks.

Subsampling phase: Following [10] we use three different subsampling phases to sub-
sample states of Walk C. One is simply a uniform random sample of all the nodes, called
C Random. However this will be biased towards high PageRank nodes as they are more
likely to be visited. The other two sampling techniques try to correct for this bias. The idea
is to sample inversely proportional to PageRank values. Since the PageRank values for the
whole web is not known, a PageRank substitute is used during the sampling. It is computed
in one of the two possible ways: (1) The PageRank of the subgraph of the visited states is
computed and the visited states are subsampled inversely proportional to their PageRank
values. This sample is called C PR. (2) The ratio of the number of visits of a node to the
total number of steps of the walk is called as visit ratio of the node. The PageRank random

2We denote by domain second level domains like epfl.ch or berkeley.edu.
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walk converges to a unique stationary distribution where the probability that a node is
visited is proportional to its PageRank value. In the limit, i.e. when the length of the walk
goes to infinity, the visit ratio values of the nodes are equivalent to PageRank values of the
nodes. For the C VR sample the states are sampled with probability inversely proportional
to the visit ratio values of the nodes corresponding to them.

2. Implementation details

In this section we describe various complications that arose during the implementation
and how we addressed them.

Fetching: In our walks we did not crawl the web pages whose encoded version were
more than 300 characters long following [1]. We only downloaded HTML/Text documents,
ignored Javascript links and frame src links on them. To avoid wasting bandwidth, we
downloaded only the first 5 MB of a web page. We stopped fetching a web page if we could
not download it after 1, 500 seconds. In this case Walk A and Walk B selected uniformly
at random a sibling of the current node, while Walk C made a random reset.

Host overload: If a walk tried to fetch web pages on the same host consecutively more
than 3, 000 times, we put the walk to sleep for 20 minutes to avoid host overload. If this
happened 12 times on the same host, we stopped the walk and declared that it was unable
to leave the host.

Parallel links: If there were multiple parallel hyperlinks from one web page to another,
we kept only two of them.

HTTP and HTML redirects: If a web page redirected to an another web page we
treated them as the same node in the web graph. This applied iteratively to the whole
“redirect chain”. We combined the inlinks of all the web pages in the redirect chain. If
this combination resulted in more than 10 inlinks retrieved from a search engine, we stored
only a uniform random sample of 10 of them. If a newly visited web page redirected to a
previously visited web page, we did not retrieve inlinks for the new web page and instead
used the inlinks of the previous web page. We followed only up to 10 HTTP or HTML
redirects. If there were more than 10 redirects or we detected a redirection loop, Walk A
and Walk B selected a random sibling of the previous node while Walk C made a random
reset.

Truncation: URLs with and without session id usually represent the same web page.
Thus, we treated them as one node to avoid bias during the walk and the subsampling
phase. Session ids are notoriously hard to detect in general, but frequently they come after
question marks in the URLs of the web pages. Thus we truncated URLs with question
mark at the question mark, but only under certain conditions. First we experimented with
a walk that always truncated at session ids. However, sites for webmaster referral programs
frequently encode a web page after the question mark and redirect to it. Truncating after
the question mark prevented the walk to follow those redirections. Truncating only if no
error page is returned does not solve the problem either because the truncated page might
not return an error page but cause a new redirection. Thus we chose the following strategy:
When fetching a web page the walk first follows all redirects that it can follow and if the
URL of the final web page in the redirect chain contains a question mark it is truncated.
If the truncation leads to an error page or a new HTTP redirect, the walk undoes the
truncation.
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Speed up: To speed up the walk phase of all the algorithms we used multiple walks in
parallel which shared the database. These walks started from the same initial node and they
were not completely independent of each other since they shared the database. However,
the shared database only makes sure that all the walks “see the same graph”, i.e., that the
edges adjacent to a node remain same throughout all the walks.

Sampling steps or states: In the subsampling phase the last half of the steps of the
multiple walks are merged and a subgraph is formed from these steps. We recorded the
number of times the merged walk spent at each node, namely the visit count for each
node. For the A StatesOnLastHalf sample the states of the merged Walk A on the formed
subgraph are sampled with probability inversely proportional to the degree of the states.
For the A StepsOnLastHalf sample the states of the formed subgraph are sampled with
probability proportional to the state’s visit count divided by its degree. The samples from
the last quarter of the steps of the multiple walks are taken exactly the same way except
that we formed the subgraph from the last quarter of the steps of each walk. We proceded
in the same way for the other algorithms. We set the sampling probabilities such that each
sample consisted of around 10, 000 nodes.

Average of samples: For each sample type of each algorithm we took 5 samples. Each
number given in Section 3 is actually the average of these 5 samples.

3. Experiments

Recall that Walk A and Walk B differ only in the number of selfloops in the underlying
graphs on which they are performed. To save resources we did not perform a random
walk for Algorithm A and a random walk for Algorithm B. Instead we performed only
one random walk ignoring selfloop steps for Algorithm A and Algorithm B. We call this
Walk AB. In a postprocessing step we simulated Walk A and Walk B with selfloop steps by
flipping a suitably-biased random coin (dependent on the algorithm) once at every step of
Walk AB and adding a suitable number of selfloop steps when the coin comes up heads. For
Walk B the probability of traversing a selfloop is very high. Thus instead of flipping often a
random coin each deciding on just one step, namely the next one, we model the number of
selfloop steps at the current node by a geometric random variable and determine how many
selfloop steps are executed at the current node using one random number. This approach
was already proposed by [1]. It results in exactly the same random walk as Walk A, resp.
Walk B, would have performed with the same coin flips and random walk choices. As a
result of simulating Walk A and Walk B from one common walk, the data for Walk A
and Walk B are highly correlated. However this has the positive side-effect that it allows
to evaluate whether Algorithm A, which is a modification of Algorithm B, does lead to
better results, as claimed by [13]. In our implementation Algorithm A and Algorithm B
agree in all non-selfloop transitions. Thus, if changing the number of selfloops per state
and subsampling states inversely proportionally to degree instead of randomly does indeed
change the quality of the sample as claimed by [13] our evaluation should show that. We
performed a completely separate random walk for Algorithm C.

We ran both walks, Walk AB and Walk C, for 240 hours on two identical machines
equipped with a Intel Pentium 4 processor 3.0 Hz (HyperThreading enabled), 4 GB of RAM,
and a 4 Seagate HD (250GB each) in RAID5 on 3ware RAID controller 8506. As database
we used PostgreSQL 7.4.8. The implementations shared as much code as possible. Both
Walk AB and Walks C started from http://www.yahoo.com/ and used 50 walks in parallel
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as explained in Section 2. Three of the walks of Walk AB had to be stopped because of
host overloading before the end of the walk. We removed their nodes and transitions from
Walk AB. None of the C walks had to be stopped. Walk AB visited 842,685 nodes, leading
to 1.7 million steps for Algorithm A and 4.3 trillion steps for Algorithm B. Walk C visited
695,458 nodes with almost 1 million steps.

Random walk Duration # of visited nodes # of seen hosts # of seen domains
AB 240 hours 842, 685 2, 360, 329 1, 041, 903
C 240 hours 695, 458 1, 814, 444 991, 687

Table 1: Random walks on the web

Table 1 shows that the number of seen domains is almost identical for Walk AB and
Walk C. When compared to Walk AB, Walk C visited 20% fewer nodes and saw about 25%
fewer hosts. This drop is not surprising since Walk C made a random jump to an already
seen node in about 21% of the transitions while Walk AB does not perform random jumps.

In Walk AB about 58% of the non-selfloop transitions traversed an outlink, 42% tra-
versed an inlink. We conjecture that the reason for this imbalance is that we artificially
limit the number of inlinks at 10, while the average number of outlinks for Walk AB is
46.71.

In Walk C an outlink was traversed in 79% and a random jump happened in 21% of all
the transitions. This number does not vary much over the length of the walk. Based on the
reset probability of 1/7 one would expect that random jumps account only in 14% of the
transitions in Walk C. However dead ends, problems while fetching a page, long redirect
chains, or redirect loops all caused a random jump and are the reason for the additional 7%
of transitions with random jumps.

Each of the following subsections compares Walk A, Walk B, Walk C and the samples
generated by them using different measures. The first subsection compares the algorithms
using their “nodes per host” distribution. The following subsections compare the algorithms
using their “PageRank bias” and “outdegree” distribution. These subsections all point out
the weaknesses of different sampling approaches. The last two subsection presents results
for connectivity-independent statistics namely the “top level domain” and the “document
content length” distribution.

3.1. Nodes per host distribution

A uniform random sample of the nodes on the web graph should contain about as many
different hosts as there are nodes in the sample [3]. This is the case for each of C Samples,
each contain about 9,500 unique hosts out of about 10,000 nodes. However, A Samples and
B Samples contain many fewer hosts even though we omitted all the data from the three
walks of Walk AB that were stopped because they were unable to leave a host.

As can be seen in Table 2, all A Samples and B Samples except the B samples subsam-
pling states contain about three times as many visited nodes on the host fr.shopping.com
than from other hosts. This is a significant bias towards the nodes on that host being due to
multiple walks almost “getting stuck” in it. It seems like a fundamental flaw in Algorithm A
and Algorithm B: They have a large problem with hosts that are highly connected within
but have few edges leaving them. Here is an intuitive explanation: Consider an undirected
graph of n nodes, consisting of a complete graph of n/2 nodes with a chain of n/2 nodes
attached to one of the nodes in the complete graph. If Walk A were run on this graph, it
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# of nodes % of nodes Host
A StatesOnLastHalf

2051 20.60% fr.shopping.com
874 8.78% www.rechtschutzversicherung.de
520 5.22% www.friday.littledusty.org

A StatesOnLastQuarter
1850 18.94% fr.shopping.com
648 6.63% www.rechtschutzversicherung.de
627 6.41% classifieds.fr

A StepsOnLastHalf
2849 29.49% fr.shopping.com
874 9.04% www.hostpooling.com
771 7.98% www.friday.littledusty.org

A StepsOnLastQuarter
3170 32.73% fr.shopping.com
825 8.44% www.hostpooling.com
677 6.92 www.friday.littledusty.org

B StatesOnLastHalf
916 9.11% fr.shopping.com
455 4.53% www.rechtschutzversicherung.de
356 3.54% www.smart.com

B StatesOnLastQuarter
730 7.34% fr.shopping.com
302 3.03% www.rechtschutzversicherung.de
256 2.57% www.smart.com

B StepsOnLastHalf
2551 26.63% fr.shopping.com
880 9.18% www.hostpooling.com
521 5.44% www.friday.littledusty.org

B StepsOnLastQuarter
2787 29.13% fr.shopping.com
833 8.70% www.hostpooling.com
542 5.67% classifieds.fr

Table 2: The hosts with the most nodes in A Samples and B Samples

would have a very good chance of getting stuck in the complete subgraph when run long
enough. To avoid this problem Algorithm B added selfloops to make the graph regular. As
a result the walk is equally likely to “get stuck” on the chain as in the complete subgraph.
However, the fundamental problem of “getting stuck”, i.e., staying within a small part of
the graph, is not solved. Walk C avoids this problem by performing random jumps. Indeed,
the host with the largest number of states in any of C Samples, www.amazon.com, has only
32 nodes in the sample.

Table 2 shows that subsampling from the last half of the steps or the last quarter of
the steps does not seem to have a impact on the resulting samples for Algorithm A and
Algorithm B. The top 2 hosts with the most nodes are same in A Samples and B Samples
subsampling states. Subsampling from the last half of the steps or the last quarter of the
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Sample # of unique hosts
A StatesOnLastHalf 1,449
A StatesOnLastQuarter 1,277
A StepsOnLastHalf 671
A StepsOnLastQuarter 702
B StatesOnLastHalf 3,405
B StatesOnLastQuarter 3,442
B StepsOnLastHalf 656
B StepsOnLastQuarter 750
C VR 9,498
C PR 9,504
C Random 9,499

Table 3: The number of unique hosts in A Samples, B Samples and C Samples

steps does not affect the top 3 hosts list for A Samples and B Samples subsampling steps
either. On the other hand subsampling states or steps seems to make a difference. With no
exception fr.shopping.com is the host with the most nodes in A Samples and B Samples.
However in the B StatesOnLastHalf sample and in the B StatesOnLastQuarter sample the
percentage of nodes on the top hosts is smaller when compared to the other A Samples and
B Samples. Table 3 presents the number of unique hosts in A Samples, B Samples and
C Samples. It shows that the number of unique hosts in B Samples subsampling states is
almost 5 times greater than the number for B Samples subsampling steps. For C Samples
as can be observed in Table 2 the number of unique hosts is roughly same as the number
of the nodes. Thus we can conclude that sampling states leads to less biased distribution
for the number of nodes per host.

3.2. PageRank bias

Page-based analysis: Walk C tries to visit nodes roughly according to their PageRank
values. Thus the most frequently visited nodes should have high PageRank values. Table 4
presents the top visited 10 nodes3 during Walk C. We also give the PageRank as returned by
the Google toolbar next to each node. For one node no PageRank is returned, all others have
Toolbar PageRank 7 or above. We conclude that our walk did indeed succeed in visiting
high PageRank nodes more frequently than other nodes. We observed no such bias towards
high PageRank nodes in Walk AB as can be seen from Table 5. Indeed no PageRank value
is returned by the Google toolbar.

We call the PageRank of the subgraph traversed in Walk C the subgraph PageRank4.
Figure 1 shows the percentage of nodes in certain subgraph PageRank ranges for the whole
crawled subgraph, for the C PR sample and for the C VR sample. Since the C PR sample
was created by subsampling states inversely proportional to the subgraph PageRank values
we would expect that nodes with low subgraph PageRank values are more frequent in the

3The most visited node is a web page on a tracking site for website visitors. This web page is the result
of our truncation of URLs after questions marks for many different web pages, i.e., it is an artifact of our
implementation of session id handling.

4The subgraph PageRank value of a state can be very different from its PageRank value in the whole
web graph.
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PRank Visit
count Node

8 929 http://extreme-dm.com/tracking/
10 810 http://www.google.com/
8 696 http://www.macromedia.com/shockwave/download/download.cgi
- 478 http://www.sitemeter.com/default.asp

10 364 http://www.statcounter.com/
7 336 http://www.mapquest.com/features/main.adp

10 312 http://www.microsoft.com/windows/ie/default.mspx
9 312 http://www.yahoo.com/

10 294 http://www.adobe.com/products/acrobat/readstep2.html
9 286 http://www.blogger.com/start

Table 4: The most visited 10 nodes of our Walk C

PRank Visit
count Node

- 10,228 http://66.40.10.184/browses/AlphaBrowses/NF manufacturer.asp
- 7,496 http://www.mix-networks.com/forum/index.php
- 7,436 http://www.fatmp3.com/sitemap.html
- 6,899 http://bbs.dingding.org/RssFeed.asp
- 5,005 http://www.hotels55.info/a-z-test.php
- 2,457 http://www.hostpooling.com/berlin/hotel/billig/lease/home & garden.htm
- 2,434 http://sms.3721.com/rsearch/ivr.htm
- 2,411 http://www.sh-netsail.com/www7/default.asp
- 2,185 http://www.hostpooling.com/berlin/hotel/billig/lease/health.htm
- 1,999 http://forums.gamedaily.com/index.php

Table 5: The most visited 10 nodes of Walk AB
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Figure 1: PageRank value distribution in the crawled subgraph for Walk C, in C PR sample
and in C VR sample

sample than in the graph as a whole and very few nodes with high subgraph PageRank
values are in the sample. This is exactly what we see in Figure 1. We also included the
C VR sample in the figure although we did not use PageRank values for getting the C VR
sample. In Figure 1 we see that the C VR sample behaves very similar to the C PR Sample.
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This shows that using the visit ratio as a substitute to PageRank works as well. However
neither subsampling phase is powerful enough to erase the PageRank bias present in Walk C.

Host-based analysis: The visit count of a node is the number of visits to the node as
defined in Section 1. The visit count of a host is the sum of the visit counts of the nodes,
namely web pages, on that host. Table 6 shows the top visited hosts of Walk C together
with their visit counts. It shows a clear bias towards well-known popular hosts. The most
visited 10 hosts of Walk AB show no obvious bias to well-known, popular hosts. Table 6
shows also the top visited hosts of Walk 2 in [9]. Only three of the hosts, namely Amazon,
Microsoft and Adobe, are in the top 10 list for both years. We attribute these differences
to the big changes that have occurred in the web in the mean time.

Our Walk C Walk 2 in [9]
Visit count Host Host Visit count

4,509 www.macromedia.com www.microsoft.com 32,452
3,262 www.amazon.com home.netscape.com 23,329
2,848 www.google.com www.adobe.com 10,884
2,246 www.microsoft.com www.amazon.com 10,146
1,617 www.cyberpatrol.com www.netscape.com 4,862
1,462 www.sedo.com excite.netscape.com 4,714
1,412 www.adobe.com www.real.com 4,494
1,132 www.cafepress.com www.lycos.com 4,448
1,069 www.blogger.com www.zdnet.com 4,038

929 extreme-dm.com www.linkexchange.com 3,738

Table 6: The most visited 10 hosts of our Walk C and of Walk 2 in [9]

3.3. Outdegree distribution

As was shown in the literature the outdegree distribution of the nodes on the web
graph follows a power law. Thus the outdegree distribution of a uniform random sample
of the nodes on the web graph should ideally follow a power law distribution. In Fig-
ure 2(a), Figure 2(b) and Figure 2(c) we present the outdegree distribution on log-log scale
for A Samples, B Samples and C Samples respectively. In these figures for all the samples
we observe that the percentage of nodes with high outdegree is lower when compared to
the percentage of nodes with low outdegree.

The power law exponent for outdegree distribution of the nodes on web graph is given
as 2.72 in [5]. It would be interesting to see how our samples agree with this value. For the
A StatesOnLastHalf sample and the B StepsOnLastHalf sample the power law exponent is
2.01. On the other hand for the B StatesOnLastHalf sample the exponent is 1.41. In other
words, B samples sampling states are more biased to high outdegree nodes when compared
to other B Samples and A Samples. The outdegree power law exponent is about 1.49 for
C Samples. This indicates that C Samples have a bias to high outdegree nodes. For none
of our samples does the power law exponent agree with the value in the literature, giving
evidence that all our samples are biased to high outdegree nodes.

The average outdegree on the web graph was estimated by prior work [11] to be around
10. A uniform random sample of the web graph should have this property. In order
to investigate this we present the statistics about outdegree distribution of A Samples,
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Figure 2: Outdegree distribution of nodes in (a) A Samples (on log-log scale), (b) B Samples
(on log-log scale), (c) C Samples (on log-log scale)

B Samples and C Samples in Table 7. As can be seen in this table all A Samples, the
B StepsOnLastHalf sample and the B StepsOnLastQuarter sample have an average out-
degree of roughly 10. However, the C Samples, the B StatesOnLastHalf sample and the
B StatesOnLastQuarter sample have an average outdegree that is a factor of 4 to 6 larger.
We already discussed above that the C Samples have a bias to high outdegree nodes. At a
first glance looking at the average outdegree seems to indicate that the A and the B samples
sampling steps have no bias towards high outdegree nodes, contradicting our above finding
based on the power law exponent. However a closer investigation showed that many of the
most frequently visited hosts have nodes with outdegree 0. Thus the very biased distribution
of nodes per host of the samples sampling steps leads to their low average outdegree.
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Sample Outdegree
Avg Max

A StatesOnLastHalf 8.03 656
A StatesOnLastQuarter 7.80 1,031
A StepsOnLastHalf 7.01 916
A StepsOnLastQuarter 6.95 1,041
B StatesOnLastHalf 46.76 27,994
B StatesOnLastQuarter 47.08 27,994
B StepsOnLastHalf 6.63 822
B StepsOnLastQuarter 6.63 1,003
C VR 59.06 26,423
C PR 60.22 62,021
C Random 57.82 11,138

Table 7: Statistics about outdegree distribution

3.4. Top level domain (TLD) distribution

A top level domain is the last part of the domain name, like “.com” or “.net”. The
distribution of web pages over the top level domains is not known, but could be estimated
if we could sample the web uniformly at random. Even though, unlike for the outdegree
distribution or the nodes per host distribution we do not know the “correct” answer, it is
interesting to compare the results achieved by the different sampling techniques. A rough
agreement would give us an indication of what the correct answer is likely to be. Thus in
this subsection we present the top level domain distribution for A Samples, B Samples and
C Samples (see Table 8 and Table 9).

TLD A Samples B Samples
A States A States A Steps A Steps B States B States B Steps B Steps
OnLast OnLast OnLast OnLast OnLast OnLast OnLast OnLast

Half Quarter Half Quarter Half Quarter Half Quarter
.com 53.81 50.82 64.87 62.77 49.29 44.26 64.55 62.67
.edu 0.22 0.24 0.06 0.08 0.41 0.32 0.05 0.08
.org 8.26 8.67 12.57 11.72 4.18 4.23 10.89 8.70
.net 6.83 7.39 8.42 7.71 8.93 10.11 8.17 7.85
.jp 0.81 0.96 0.25 0.38 2.09 2.62 0.24 0.39
.gov 0.13 0.15 0.05 0.03 0.24 0.20 0.05 0.04
.uk 1.26 0.66 0.51 0.29 1.40 0.99 0.59 0.33
.us 0.13 0.16 1.02 1.29 0.39 0.46 0.97 1.87
.de 11.96 11.02 3.70 3.92 7.74 6.03 3.49 3.21
.ca 0.16 0.12 0.04 0.06 0.33 0.26 0.04 0.05
.fr 5.68 8.44 2.32 4.36 1.53 2.00 3.56 7.10

Table 8: Top level domain distribution for A Samples and B Samples

Recall that Walk AB and Walk C were performed completely independent of each other.
Still the samples generated from them roughly agree: About 44-65% of the nodes, namely
web pages, are in “.com” domain, making it clearly the largest domain on the web. The
domains “.net ” and “.org” contain about 4-9% of the nodes.
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TLD C Samples Samples from 2000
C Random C PR C VR B Sample C VR

from [1] from [10]
.com 63.20 62.94 63.13 49.15 45.62
.edu 0.64 0.60 0.67 8.28 9.84
.org 9.79 9.94 9.82 6.55 9.12
.net 6.19 6.14 6.20 5.60 4.74
.jp 0.44 0.48 0.46 2.87 3.87
.gov 0.47 0.46 0.49 2.08 3.42
.uk 3.28 3.34 3.26 2.75 2.59
.us 0.63 0.62 0.56 1.12 1.77
.de 3.28 3.32 3.28 3.67 3.26
.ca 0.83 0.83 0.84 1.58 2.05
.fr 0.43 0.40 0.43 1.01 0.99

Table 9: Top level domain distribution for C Samples, B Sample from [1] and C VR sample
from [10]

The domains “.de” and “.fr” show large variances in the percentage of the nodes in
them. For “.de” the large values (around 11%) for the A StatesOnLastHalf sample and the
A StatesOnLastQuarter sample are due to the high frequency of a German host, which in
turn is caused by the inability of Walk AB of leaving highly connected hosts. Thus these
percentages are artificially high and should be ignored. Additionally all percentages for the
“.de” domain are inflated due to the fact that we performed our walks from Switzerland for
which the country of originator for domain forwarding is Germany.

The results for top level domain distribution from [1] and from [10] (Table 9) roughly
agree and “.com” is the largest top level domain as in our A Samples, B Samples and
C Samples.

3.5. Document content length distribution

In this subsection we study the document content length distribution for A Samples,
B Samples and C Samples. We bucketed the content length values as follows: the first
bucket, 0-10k, contains the percentage of nodes (web pages) in the samples whose content
length is between 0 and 10k. The definition for the other buckets is analogous. For the last
bucket (100-110k) we put all the nodes whose content length is greater than 100k, causing
a relatively large value in that bucket for all the samples.

Figure 3 presents the document content length distribution for the different samples.
B Samples subsampling states (Figure 3(c)) have a similar document content length dis-
tribution as C Samples (Figure 3(e)). Generally the percentage of nodes per bucket is
monotonically decreasing with the content length. However, there is a spike for A samples
sampling states in bucket 0-10k and a spike for A samples and B samples sampling steps
in bucket 20-30k. A detailed analysis showed that these spikes are caused by the uneven
distribution of nodes over hosts.
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Figure 3: Content length (in bytes) distribution of nodes (web pages) in (a) A Samples
subsampling states, (b) A Samples subsampling steps, (c) B Samples subsampling
states and (d) B Samples subsampling steps (e) C Samples
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4. Comparison of techniques

In this section we compare the different samples of each algorithm over all the different
measures we have used.

Subsampling from the last half or from the last quarter of the steps: Since we ran walks
for a fixed amount of time starting from the same node, the results are somewhat influenced
by the chosen starting node. The longer the walks run, the smaller this bias should become.
Thus we wanted to evaluate whether subsampling Walk A and Walk B from the last quarter
of the steps gives improved results over subsampling these walks from the last half of the
steps. Our results indicate that this is not the case. For none of the samples did we see a
large difference in the results whether they were based on the last half or the last quarter
of the steps. Thus either approach seems to work equally well and the starting-node bias
seems small.

Subsampling from steps versus from states: After determining the set of steps to sub-
sample from, we either subsampled steps directly from these steps or we determined the
states represented by them and subsample the states. Obviously, when a random walk was
unable to leave a host for a long time and frequently revisits nodes on the same host, these
nodes have a higher chance of being in the sample when we subsample steps than when we
subsample states. This can be seen in Table 2: When steps are subsampled, a much larger
percentage of the samples belongs to the same host than when states are subsampled. As
a result various measures exhibit unexpected spikes for the samples based on steps, see for
example the document content length distribution in Figure 3. This indicates that it is
better to subsample states. However, for top-level domain distribution the samples based
on steps both for Walk A and for Walk B showed a large agreement with C Samples, while
the samples based on states disagreed with each other and with the C Samples. Further
investigation is necessary to understand this behaviour.

Algorithm A versus Algorithm B versus Algorithm C: Algorithm C has a clear bias
towards high PageRank and high outdegree nodes. However, it generates a roughly uniform
distribution of nodes per host. Algorithm A and Algorithm B generate a very unbalanced
distribution of nodes over hosts, with more than 30% of the nodes in the sample belonging
to only three hosts. As a consequence it is hard to believe that the results produced by this
sample are representative of the whole web. All A Samples as well as B Samples subsampling
steps exhibit this problem. Thus Algorithm B combined with state subsampling appears
superior to Algorithm A. Recall that Algorithm A and Algorithm B were both implemented
by the same walk. They differ however, (1) by the number of selfloops of the nodes and (2)
by the subsampling probabilities (inversely proportionally to the degree for Algorithm A and
uniformly at random for Algorithm B). Let us compare the A Samples subsampling states
with the B Samples subsampling states. Both subsample from the states in the last half or
in the last quarter of the steps of the walk. There are two possible reasons for the different
quality of their samples: (1) Due to the selfloops the set of nodes from which Algorithm A
and Algorithm B sample is very different. (2) Due to the probabilities used for subsampling
different nodes are picked. To determine which of these reasons applies we compared the
set of nodes used to subsample from. Our analysis showed they are almost identical for
Algorithm A and Algorithm B. Thus, the subsampling probabilities are the reason for the
difference in host frequency distribution for A Samples and B Samples subsampling states.
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5. Conclusions and future work

We compared Algorithm A, Algorithm B and Algorithm C under conditions that are as
equal as possible. Walk C has a clear bias towards high PageRank and high outdegree web
pages and there seems to be no obvious way of correcting it. Algorithm A and Algorithm B
has a serious problem with “getting stuck” in hosts. This had a clear impact on the nodes
per host, outdegree, top level domain and document content length distribution. However,
we believe that this problem can be corrected. We tried to eliminate the problem by
stopping the walk when it could not leave a host for a large number of steps. However, a
better approach might be to perform a random reset every x steps, like in Algorithm C.
This is also the approach taken by [2] and by [6] in their work on the distribution of topics
on the web.
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Abstract. This survey paper presents the success story of the topological approach to
automata theory. It is based on profinite topologies, which are built from finite topogical
spaces. The survey includes several concrete applications to automata theory.

In mathematics, p-adic analysis is a powerful tool of number theory. The p-adic topology
is the emblematic example of a profinite topology, a topology that is in a certain sense built
from finite topological spaces. The aim of this survey is to convince the reader that profinite
topologies also play a key role in automata theory, confirming once again the following quote
of Marshall Stone [38, p.814]:

’A cardinal principle of modern mathematical research may be stated as a
maxim: “One must always topologize” ’.

Unfortunately, this topic is rather abstract and not really intuitive. In particular, the
appropriate framework to present the whole theory, namely uniform spaces, is unlikely to
be sufficiently familiar to the average participant to STACS. To thwart this “user unfriendly”
aspect, I downgraded from uniform spaces to metric spaces in this survey. This is sufficient
to address most of the theory and it certainly makes the presentation easier to follow. When
uniform spaces are really needed, I simply include a short warning addressed to the more
advanced readers, preceded by the sign �. More details can be found in specialized articles
[1, 2, 3, 5, 27, 30, 40].

Profinite topologies for free groups were explored by M. Hall in [13]. However, the idea
of profinite topologies goes back at least to Birkhoff [8, Section 13]. In this paper, Birkhoff
introduces topologies defined by congruences on abstract algebras and states that, if each
congruence has finite index, then the completion of the topological algebra is compact.
Further, he explicitly mentions three examples: p-adic numbers, Stone’s duality of Boolean
algebras and topologization of free groups. The duality between Boolean algebras and Stone
spaces also appears in [1], [2, Theorem 3.6.1] and [31]. It is also the main ingredient in [12],
where the extended duality between lattices and Priestley spaces is used. This duality
approach is so important that it would deserve a survey article on its own. But due to the
lack of space, I forwent, with some regrets, from presenting it in the present paper. The
interested reader will find duality proofs of the results of Sections 4 and 5 in [12].
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The survey is organised as follows. Section 1 is a brief reminder on metric spaces.
Profinite words are introduced in Section 2 and used to give equational descriptions of
varieties of finite monoids in Section 3 and of lattices of regular languages in Sections 4 and
5. We discuss various extensions of the profinite metric in Section 6 and we conclude in
Section 7.

1. Metric spaces

A metric d on a set E is a map d : E → R+ from E into the set of nonnegative real
numbers satisfying the three following conditions, for every x, y, z ∈ E:

(1) d(x, y) = 0 if and only if x = y,

(2) d(y, x) = d(x, y),

(3) d(x, z) 6 d(x, y) + d(y, z)

An ultrametric satisfies the stronger property

(3′) d(u,w) 6 max{d(u, v), d(v,w)}.

A metric space is a set E together with a metric d on E. The topology defined by d is
obtained by taking as a basis the open ε-balls defined for x ∈ E and ε > 0 by B(x, ε) =
{y ∈ E | d(x, y) < ε}. In other words, an open set is a (possibly infinite) union of open
balls. The complement of an open set is called a closed set. A set is clopen if it is both open
and closed. Every metric space is Hausdorff, which means that any two distinct points can
be separated by open sets.

A Cauchy sequence is a sequence (xn)n>0 of elements of E such that for each ε > 0,
there exists a integer k such that, for each n > k and m > k, d(xn, xm) < ε.

Let (E, d) and (E′, d′) be two metric spaces. A function ϕ from E into E′ is said to be
uniformly continuous if for each ε > 0, there exists δ > 0 such that the relation d(x, y) < δ
implies d′(ϕ(x), ϕ(y)) < ε. If ϕ is uniformly continuous, the image under ϕ of a Cauchy
sequence of E is a Cauchy sequence of E′. We say that ϕ is a uniform isomorphism if it is
a uniformly continuous bijection and ϕ−1 is also uniformly continuous. Two metric spaces
are uniformly isomorphic is there is a uniform isomorphism between them.

A metric space is complete if every Cauchy sequence is convergent. The completion of a

metric space E is a complete metric space Ê together with an isometric embedding of E as

a dense subspace of Ê. One can prove that every metric space admits a completion, which
is unique up to uniform isomorphism. Further, if ϕ is a uniformly continuous function from

(E, d) in a metric space (E′, d′), ϕ admits a uniformly continuous extension ϕ̂ : Ê → E′

and this extension is unique.
The completion of E can be constructed as follows. Let C(E) be the set of Cauchy

sequences in E. Define an equivalence relation ∼ on C(E) as follows. Two Cauchy sequences
x = (xn)n>0 and y = (yn)n>0 are equivalent if the interleave sequence x0, y0, x1, y1, . . . is

also a Cauchy sequence. The completion of E is defined to be the set Ê of equivalence

classes of C(E). The metric d on E extends to a metric on Ê defined by

d(x, y) = lim
n→∞

d(xn, yn)

where x and y are representative Cauchy sequences of elements in Ê. The definition of the
equivalence insures that the above definition does not depend on the choice of x and y in
their equivalence class and the fact that R is complete ensures that the limit exists.
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2. Profinite words

In this section, A denotes a finite alphabet. The set of profinite words is defined as the
completion of A∗ for a certain metric. One can actually choose one of two natural metrics,
which define the same uniform structure. One makes use of finite automata and the other
one of finite monoids.

2.1. Separating words

A deterministic finite automaton (DFA) separates two words if it accepts one of them
but not the other. Similarly, a finite monoid M separates two words u and v of A∗ if there
is a monoid morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v).

Example 2.1.

(1) The words ababa and abaa can be separated by a group of order 2. Indeed, let
π : A∗ → Z/2Z be the morphism defined by π(x) = |x| (mod 2). Then π(ababa) = 1
and π(abaa) = 0 and hence π separates u and v.

(2) More generally, two words u and v of unequal length can be separated by a finite
cyclic group. Indeed, suppose that |u| < |v| and let n = |v|. Let π : A∗ → Z/nZ be
the morphism defined by π(x) = |x| (mod n). Then π(v) = 0 but π(u) 6= 0. A similar
idea can be applied if the number of occurrences of some letter a is not the same in
u and v.

(3) Let U2 be the monoid defined on the set {1, a, b} by the operation aa = ba = a,
bb = ab = b and 1x = x1 = x for all x ∈ {1, a, b}. Let u and v be words of {a, b}∗.
Then the words ua and vb can be separated by the morphism π : A∗ → U2 defined by
π(a) = a and π(b) = b since π(ua) = a and π(ub) = b.

These examples are a particular case of a general result.

Proposition 2.1. Any pair of distinct words of A∗ can be separated by a finite monoid.

Proof. Let u and v be two distinct words of A∗. Since the language {u} is regular, there
exists a morphism ϕ from A∗ onto a finite monoid M which recognizes it, that is, such that
ϕ−1(ϕ(u)) = {u}. It follows that ϕ(v) 6= ϕ(u) and thus ϕ separates u and v.

2.2. Profinite metrics

We now define two metrics on A∗ with the following idea in mind: two words are close
for d1 [d2] if a large DFA [monoid] is required to separate them. Let us denote by |A| the
number of states of a DFA A. Given two words u, v ∈ A∗, we set

r1(u, v) = min {|A| | A is a DFA that separates u and v}

r2(u, v) = min {|M | | M is a monoid that separates u and v}

We also set d1(u, v) = 2−r1(u,v) and d2(u, v) = 2−r2(u,v) with the usual conventions min ∅ =
+∞ and 2−∞ = 0.

Proposition 2.2. Let d be one of the functions d1 or d2. Then d is an ultrametric and it
satisfies the relations d(uw, vw) 6 d(u, v) and d(wu,wv) 6 d(u, v) for all u, v,w ∈ A∗.

Note that the topology induced on A∗ by d1 or d2 is discrete: every subset of A∗ is
clopen. Further, d1 and d2 define the same uniform structure.
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Proposition 2.3. The metrics d1 and d2 are uniformly equivalent. More precisely, the

following relation holds: 2
− 1

d1 6 d2 6 d1.

We let the reader verify that changing DFAs to NFAs in the definition of d1 would also
lead to a uniformly equivalent metric. Thus (A∗, d1) and (A∗, d2) are metric spaces, and
their completion are uniformly isomorphic. In the sequel, we shall only use d2 (rather than
d1) and simplify the notation to d.

The completion of (A∗, d), denoted by Â∗, is the set of profinite words on the alphabet
A. Let us state some useful properties.

Proposition 2.4.

(1) The concatenation product is a uniformly continuous from A∗ ×A∗ to A∗.

(2) Every morphism ϕ from A∗ into a discrete finite monoid M is uniformly continuous.

It follows from Proposition 2.4 and from the density of A∗ in Â∗ that the product on

A∗ can be extended by continuity to Â∗. This extended product makes Â∗ a topological
monoid, called the free profinite monoid.

By the same argument, every morphism ϕ from A∗ onto a finite monoid M extends

uniquely to a uniformly continuous morphism from Â∗ onto M . However, there are some

noncontinuous morphisms form Â∗ onto a finite monoid. For instance, the morphism ϕ

from Â∗ to {0, 1}, defined by ϕ(u) = 1 if u ∈ A∗ and ϕ(u) = 0 otherwise, is not continuous
since ϕ−1(1) = A∗ is not closed. Now, the restriction of ϕ to A∗, which is continuous, has

a continuous extension to Â∗. But this extension maps every profinite word to 1 and is
therefore not equal to ϕ.

Another useful example is the following. The set 2A of subsets of A is a monoid under
union and the function c : A∗ → 2A defined by c(a) = {a} is a morphism. Thus c(u) is the

set of letters occurring in u. Now c extends into a uniformly continuous morphism from Â∗

onto 2A, also denoted c and called the content mapping.

Since A∗ embeds naturally in Â∗, every finite word is a profinite word. However, it
is relatively difficult to give “concrete” examples of profinite words which are not words.
One such example is the profinite word xω, associated with every finite word x. The formal
definition is

xω = lim
n→∞

xn!

and is justified by the fact that the sequence xn! has a limit in Â∗.

Proposition 2.5. For each word x, the sequence (xn!)n>0 is a Cauchy sequence. It con-

verges to an idempotent element of Â∗.

Proof. For the first part of the statement, it suffices to show that for p, q > n, xp! and
xq! cannot be separated by a monoid of size 6 n. Let indeed ϕ : A∗ → M be a monoid
morphism, with |M | 6 n, and put s = ϕ(x). Since M is finite, s has an idempotent power
e = sr, with r 6 n. By the choice of p and q, the integer r divides simultaneously p! and
q!. Consequently, sp! = sq! = e, which shows that M cannot separate xp! and xq!.

For n large enough, we also have ϕ(xn!)ϕ(xn!) = ee = e = ϕ(xn!). It follows that the
limit of the sequence (xn!)n>0 is idempotent.

Note that xω is simply a notation and one should resist the temptation to interpret
it as an infinite word. To get the right intuition, let us compute the image of xω under a
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morphism onto in a finite monoid. Let M be a finite monoid, ϕ : A∗ → M a morphism and
let s = ϕ(u). Then the sequence sn! is ultimately equal to sω, the unique idempotent of the
subsemigroup of M generated by s. Consequently, we obtain the formula ϕ̂(xω) = ϕ(x)ω ,
which justifies the notation xω.

Another convenient way to define profinite words is to use projective systems (see [3] for
more details). Suppose we are given, for each morphism ϕ from A∗ onto a finite monoid M ,
an element xϕ of M . This system of elements is projective if for any surjective morphisms
ϕ : A∗ → M and π : M → N , one has xπ◦ϕ = π(xϕ).

Proposition 2.6. For each projective system of elements (xϕ), there is a unique profinite
word x such that, for every morphism ϕ : A∗ → M , one has ϕ̂(x) = xϕ. In particular, if
two profinite words u and v satisfy ϕ̂(u) = ϕ̂(v) for all morphisms ϕ onto a finite monoid,
then they are equal.

We now state the most important topological property of Â∗.

Theorem 2.7. The set of profinite words Â∗ is compact.

�
If A is infinite, a profinite uniform structure can also be defined on A∗ and its completion

is still a compact space. However, this space is not metrizable anymore.

What about sequences? First, every profinite word is the limit of a Cauchy sequence
of words. Next, a sequence of profinite words (un)n>0 is converging to a profinite word u if
and only if, for every morphism ϕ from A∗ onto a finite monoid, ϕ̂(un) is ultimately equal
to ϕ̂(u).

Here is another example. Recall that a nonempty subset I of a monoid M is an ideal
if, for each s ∈ I and x, y ∈ M , xsy ∈ I. One can show that any finite monoid and any
compact monoid has a unique minimal ideal (for inclusion), called the minimal ideal of M .

Let us fix a total order on the alphabet A and let u0, u1, . . . be the ordered sequence of
all words of A∗ in the induced shortlex order. For instance, if A = {a, b} with a < b, the
first elements of this sequence would be

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

It is proved in [32, 4] that the sequence of words (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)(n+1)!

converges to a profinite word ρA, which is idempotent and belongs to the minimal ideal of

Â∗. We shall meet again this profinite word at the end of Section 5.2.

3. Equational definitions of varieties

A variety of monoids is a class of monoids closed under taking submonoids, quotients
and direct products. Similarly, a variety of finite monoids is a class of finite monoids
closed under taking submonoids, quotients and finite direct products. For instance, finite
groups form a variety of finite monoids (the trick is that a submonoid of a finite group is
a group). Another famous example is the variety of finite aperiodic monoids. Recall that
a finite monoid M is aperiodic if there exists a positive integer n such that, for all x ∈ M ,
xn = xn+1.
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Formally, an identity is a pair (u, v) of words of A∗, for some finite alphabet A. A
monoid M satisfies the identity u = v if, for every morphism ϕ : A∗ → M , ϕ(u) = ϕ(v).
It is a well known theorem of Birkhoff that varieties can be defined by a set of identities.
A variety that can be defined by a finite set of identities is said to be finitely based. For
instance, the variety of commutative monoids is finitely based, since it is defined by the
single identity xy = yx. But in general, a variety is not finitely based, even if it is generated
by a finite monoid. Consider the monoid M = {1, a, b, ab, ba, 0} defined by the relations
aa = bb = 0, aba = a and bab = b. It has been proved that the variety generated by M is
not finitely based.

An interesting question is to know whether varieties of finite monoids can also be defined
by identities. The problem was solved by several authors but the most satisfactory answer

is due to Reiterman [33]. A profinite identity is a pair (u, v) of profinite words of Â∗, for
some finite alphabet A. A finite monoid M satisfies the profinite identity u = v if, for every
morphism ϕ : A∗ → M , ϕ̂(u) = ϕ̂(v). Reiterman’s theorem is now the exact counterpart of
Birkhoff’s theorem:

Theorem 3.1. Every variety of finite monoids can be defined by a set of profinite identities.

For instance the variety of finite aperiodic monoids is defined by the identity xω = xω+1

and the variety of finite groups is defined by the identity xω = 1.

4. Recognizable languages and clopen sets

A series of results, mainly due to Almeida [1, 3], [2, Theorem 3.6.1] and Pippenger [31],
establishes a strong connection between regular languages and clopen sets. This section
gives a short overview of these results.

Recall that a subset P of a monoid M is recognizable if there exists a morphism ϕ from
M onto a finite monoid F such that P = ϕ−1(ϕ(P )). For instance, the recognizable subsets
of a free monoid are the regular languages.

The syntactic congruence of P is the congruence ∼P defined on M by u ∼P v if and
only if, for all x, y ∈ M , the conditions xuy ∈ P and xvy ∈ P are equivalent. The monoid
M/∼P is called the syntactic monoid of P .

In the context of uniform spaces, the morphisms are uniformly continuous. It is there-
fore natural to extend the notion of recognizable set as follows: A subset P of a compact
monoid M is recognizable if there exists a uniformly continuous morphism ϕ from M onto a
finite discrete monoid F such that P = ϕ−1(ϕ(P )). When M is a free profinite monoid, the
recognizable subsets have a nice topological characterization, due to Hunter [14, Lemma 4].

Proposition 4.1. Let P be a subset of Â∗. The following conditions are equivalent:

(1) P is clopen,

(2) the syntactic congruence of P is a clopen subset of Â∗ × Â∗,

(3) P is recognizable (in the topological sense).

Proof. Let us denote by ∼P the syntactic congruence of P and by η̂ : Â∗ → M its syntactic

morphism. Recall that s ∼P t if, for all u, v ∈ Â∗, the conditions usv ∈ P and utv ∈ P are
equivalent.
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(1) implies (2). It follows from the definition of ∼P that

∼P =
⋂

u,v∈cA∗

(
(u−1Pv−1 × u−1Pv−1) ∪ (u−1P cv−1 × u−1P cv−1)

)
(4.1)

If P is clopen, each set u−1Pv−1 is also clopen. Indeed, u−1Pv−1 is the inverse image of
the clopen set P under the continuous function x 7→ uxy. Now, Formula (4.1) shows that
∼P is closed.

In order to show that the complement of ∼P is closed, consider a sequence (sn, tn) of
elements of (∼P )c, converging to a limit (s, t). Since sn 6∼P tn, there exist some profinite

words un, vn such that unsnvn ∈ P and untnvn /∈ P . Since Â∗×Â∗ is compact, the sequence
(un, vn) has a convergent subsequence. Let (u, v) be its limit. Since both P and P c are

closed and since the multiplication in Â∗ is continuous, one gets usv ∈ P and utv /∈ P .
Therefore, s 6∼P t, which shows that (∼P )c is closed. Thus ∼P is clopen.

(2) implies (3). If ∼P is clopen, then for each s ∈ Â∗, there exists an open neighbour-
hood U of s such that U × U ⊆ ∼P . Therefore U is contained in the ∼P -class of s. This
proves that the ∼P -classes form an open partition of Â∗. By compactness, this partition
is finite and thus P is recognizable. Further, since each ∼P -class is open, the syntactic
morphism of P is continuous.

(3) implies (1). Let π : Â∗ → M be the syntactic morphism of P . Since P is recog-
nizable, M is finite. One has P = π−1(π(P )) and since M is finite, π(P ) is clopen in M .

Finally, since π is continuous, P is clopen in Â∗.

We now turn to languages of A∗.

Proposition 4.2. If L be a language of A∗, then L = L ∩ A∗. Further, the following
conditions are equivalent:

(1) L is recognizable,

(2) L = K ∩A∗ for some clopen subset K of Â∗,

(3) L is clopen in Â∗,

(4) L is recognizable in Â∗ (in the topological sense).

Proof. The inclusion L ⊆ L ∩ A∗ is obvious. Let u ∈ L ∩ A∗ and let M be the syntactic
monoid of {u}. Since M separates u from any word v different from u, one gets r(u, v) 6 |M |
if u 6= v. Let (un)n∈N be a sequence of words of L converging to u. If d(un, u) < 2−|M |, one
has necessarily u = un and thus u ∈ L.

(1) implies (2). If L is recognizable, there is a morphism ϕ from A∗ onto a finite monoid
M such that L = ϕ−1(ϕ(L)). Let K = ϕ̂−1(ϕ(L)). Since M is discrete, ϕ(L) is a clopen
subset of M and since ϕ̂−1 is continuous, K is also clopen. Further, ϕ and ϕ̂ coincide on
A∗ and thus L = ϕ̂−1(ϕ(L)) ∩A∗ = K ∩A∗.

(2) implies (3). Suppose that L = K ∩ A∗ with K clopen. Since K is open and A∗ is

dense in Â∗, K ∩A∗ is dense in K. Thus L = K ∩A∗ = K = K. Thus L is clopen in Â∗.
(3) implies (4) follows from Proposition 4.1.

(4) implies (1). Let η̂ : Â∗ → F be the syntactic morphism of L and let P = η̂(L). Let
η be the restriction of η̂ to A∗. Then we have L = L ∩ A∗ = η̂−1(P ) ∩A∗ = η−1(P ). Thus
L is recognizable.

We now describe the closure in Â∗ of a recognizable language of A∗.
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Proposition 4.3. Let L be a regular language of A∗ and let u ∈ Â∗. The following condi-
tions are equivalent:

(1) u ∈ L,

(2) ϕ̂(u) ∈ ϕ(L), for all morphisms ϕ from A∗ onto a finite monoid,

(3) ϕ̂(u) ∈ ϕ(L), for some morphism ϕ from A∗ onto a finite monoid that recognizes L,

(4) η̂(u) ∈ η(L), where η is the syntactic morphism of L.

Proof. (1) implies (2). Let ϕ be a morphism from A∗ onto a finite monoid F and let ϕ̂

be its continuous extension to Â∗. Then ϕ̂(L) ⊂ ϕ̂(L) since ϕ̂ is continuous, and ϕ̂(L) =
ϕ̂(L) = ϕ(L) since F is discrete. Thus if u ∈ L, then ϕ̂(u) ∈ ϕ(L).

(2) implies (4) and (4) implies (3) are trivial.
(3) implies (1). Let ϕ be a morphism from A∗ onto a finite monoid F . Let un be a

sequence of words of A∗ converging to u. Since ϕ̂ is continuous, ϕ̂(un) converges to ϕ̂(u).
But since F is discrete, ϕ̂(un) is actually ultimately equal to ϕ̂(un). Thus for n large enough,
one has ϕ̂(un) = ϕ̂(u). It follows by (3) that ϕ(un) = ϕ̂(un) ∈ ϕ(L) and since ϕ recognizes
L, we finally get un ∈ ϕ−1(ϕ(L)) = L. Therefore u ∈ L.

Let us denote by Clopen(Â∗) the Boolean algebra of all clopen sets of Â∗.

Theorem 4.4. The maps L 7→ L and K 7→ K ∩ A∗ define mutually inverse isomorphism

between the Boolean algebras Reg(A∗) and Clopen(Â∗). In particular, the following formulas
hold, for all L,L1, L2 ∈ Reg(A∗):

(1) Lc = (L)c,

(2) L1 ∪ L2 = L1 ∪ L2,

(3) L1 ∩ L2 = L1 ∩ L2.

Proof. Property (1) follows from Proposition 4.3. Indeed, let η be the syntactic morphism
of L. Then since L = η−1(η(L)) and Lc = η−1(η(L)c), one has η(Lc) = η(L)c. Therefore,
one gets the following sequence of equalities:

Lc = η̂−1(η(Lc)) = η̂−1(η(L)c) = [η̂−1(η(L))]c = (L)c

Property (2) is a general result of topology and (3) is a consequence of (1) and (2).

Theorem 4.4 shows that the closure operator behaves nicely with respect to Boolean
operations. It also behaves nicely for the left and right quotients and for inverse of mor-
phisms.

Proposition 4.5. Let L be a regular language of A∗ and let x, y ∈ A∗. Then x−1Ly−1 =
x−1Ly−1.

Proposition 4.6. Let ϕ : A∗ → B∗ be a morphism of monoids and L be a regular language
of B∗. Then ϕ̂−1(L) = ϕ−1(L).

5. Equational characterization of languages

A lattice of languages of A∗ is a set of regular languages of A∗ containing the empty
language ∅, the full language A∗ and which is closed under finite union and finite intersection.
The aim of this section is to show that each lattice can be, in a certain sense, defined by a
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set of profinite equations. These results were obtained jointly with Mai Gehrke and Serge
Grigorieff and first presented at ICALP’08 [12].

5.1. Lattices of languages

Formally, an explicit equation is a pair (u, v) of words of A∗ and a profinite equation is

a pair (u, v) of profinite words of Â∗. We say that a language L of A∗ satisfies the explicit
equation u → v if the condition u ∈ L implies v ∈ L and that it satisfies the profinite
equation u → v if the condition u ∈ L implies v ∈ L. Since L ∩A∗ = L, the two definitions
are consistent, that is, one can really consider explicit equations as a special case of profinite
equations. Proposition 4.3 leads immediately to some equivalent definitions:

Corollary 5.1. Let L be a regular language of A∗, let η be its syntactic morphism and
let ϕ be any morphism onto a finite monoid recognizing L. The following conditions are
equivalent:

(1) L satisfies the equation u → v,

(2) η̂(u) ∈ η(L) implies η̂(v) ∈ η(L),

(3) ϕ̂(u) ∈ ϕ(L) implies ϕ̂(v) ∈ ϕ(L).

Given a set E of equations of the form u → v, the subset of Reg(A∗) defined by E is the set
of all regular languages of A∗ satisfying all the equations of E. It is easy to see that it is a
lattice of languages.

Our aim is now to show that the converse also holds. We start with a result on languages
interesting on its own right. Note in particular that there is no regularity assumption in
this proposition.

Proposition 5.2. Let L, L1, . . . , Ln be languages. If L satisfies all the explicit equations
satisfied by L1, . . . , Ln, then L belongs to the lattice of languages generated by L1, . . . , Ln.

Proof. We claim that

L =
⋃

I∈I

⋂

i∈I

Li (5.1)

where I is the set of all subsets of {1, . . . , n} for which there exists a word v ∈ L such that
v ∈ Li if and only if i ∈ I. Let R be the right member of (5.1). If u ∈ L, let I = {i | u ∈ Li}.
By construction, I ∈ I and u ∈ ∩i∈ILi. Thus u ∈ R. This proves the inclusion L ⊆ R.

To prove the opposite direction, consider a word u ∈ R. By definition, there exists a
set I ∈ I such that u ∈ ∩i∈ILi and a word v ∈ L such that v ∈ Li if and only if i ∈ I. We
claim that the equation v → u is satisfied by each language Li. Indeed, if i ∈ I, then u ∈ Li

by definition. If i /∈ I, then v /∈ Li by definition of I, which proves the claim. It follows that
v → u is also satisfied by L. Since v ∈ L, it follows that u ∈ L. This concludes the proof of
(5.1) and shows that L belongs to the lattice of languages generated by L1, . . . , Ln.

It follows that finite lattices of languages can be defined by explicit equations.

Corollary 5.3. A finite set of languages of A∗ is a lattice of languages if and only if it can
be defined by a set of explicit equations of the form u → v, where u, v ∈ A∗.

Proof. Consider a finite lattice L of languages and let E be the set of explicit equations
satisfied by all the languages of L. Proposition 5.2 shows that any language L that satisfies
the equations of E belongs to L. Thus L is defined by E.

We now are now ready for the main result.
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Theorem 5.4. A set of regular languages of A∗ is a lattice of languages if and only if it

can be defined by a set of equations of the form u → v, where u, v ∈ Â∗.

Proof. For each regular language L, set

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u → v}

Lemma 5.5. For each regular language L, EL is a clopen subset of Â∗ × Â∗.

Proof. One has

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u → v}

= {(u, v) ∈ Â∗ × Â∗ | u ∈ L implies v ∈ L}

= {(u, v) ∈ Â∗ × Â∗ | v ∈ L or u /∈ L}

= (L
c
× Â∗) ∪ (Â∗ × L)

The result follows since, by Proposition 4.2, L is clopen.

Let L be a lattice of languages and let E be the set of profinite equations satisfied by
all languages of L. We claim that E defines L. First, by definition, every language of L
satisfies the equations of E. It just remains to proving that if a language L satisfies the
equations of E, then L belongs to L.

First observe that the set
EL ∪ {E

c
K | K ∈ L}

is a covering of Â∗ × Â∗. Indeed, if (u, v) /∈ ∪K∈LEc
K , then (u, v) ∈ ∩K∈LEK , which means

by definition that all the languages of L satisfy u → v. It follows that L also satisfies this
equation, and thus (u, v) ∈ EL. Further, Proposition 5.5 shows that the elements of this

covering are open sets. Since Â∗ × Â∗ is compact, it admits a finite subcovering, and we
may assume that this covering contains EL and is equal to

EL ∪ {E
c
L1

, . . . , Ec
Ln
}

for some languages L1, . . . , Ln of L. By the same argument as above, it follows that if an
equation u → v is satisfied by L1, . . . , Ln, then it is satisfied by L. By Proposition 5.2, L
belongs to the lattice of languages generated by L1, . . . , Ln and hence belongs to L.

Writing u ↔ v for (u → v and v → u), we get an equational description of the Boolean
algebras of languages.

Corollary 5.6. A set of regular languages of A∗ is a Boolean algebra of languages if and

only if it can be defined by a set of profinite equations of the form u ↔ v, where u, v ∈ Â∗.

These results apply in particular to any class of regular languages defined by a fragment
of logic closed under conjunctions and disjunctions (first order, monadic second order, tem-
poral, etc.). Consider for instance Büchi’s sequential calculus, which comprises the relation
symbols S and < and a predicate a for each letter a. To each word nonempty word u ∈ A∗

is associated a structure
Mu = ({1, 2, . . . , |u|}, S, (a)a∈A)

where S denotes the successor relation on {1, 2, . . . , |u|}, < is the usual order and a is set
of all positions i such that the i-th letter of u is an a. For instance, if A = {a, b} and
u = abaab, then a = {1, 3, 4} and b = {2, 5}. The language defined by a sentence ϕ is
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the set of words which satisfy ϕ. Several fragments will be considered in this survey. We
use a transparent notation of the form Type [Signature] to designate these fragments. For
instance FO[<] denotes the set of first order formulas in the signature < and BΣ1[S] consists
of the Boolean combinations of existential first order formulas in the signature S.

This latter fragment allows to specify some combinatorial properties of words, like “the
factor aa occurs at least twice”, which defines the language A∗aaA∗aaA∗∪A∗aaaA∗. Indeed,
this language is described by the formula

ϕ = ∃x1 ∃x2 ∃y1 ∃y2 (¬(x1 = y1) ∧ Sx1x2 ∧ Sy1y2 ∧ ax1 ∧ ax2 ∧ ay1 ∧ ay2

The BΣ1(S)-definable languages form a lattice of languages. An equational description of
these languages can be derived from the results of [25]: for all r, s, u, v, x, y ∈ A∗,

uxωy ↔ uxω+1v uxωryωsxωtyωv ↔ uxωtyωsxωryωy

xωuyωvxω ↔ yωvxωuyω y(xy)ω ↔ (xy)ω ↔ (xy)ωx

Note that this example because it does not enter in the category considered in the next
section since the correspondence lattice of languages is not closed under quotient.

We now specialize Theorems 5.4 and Corollary 5.6 to lattices of languages closed under
quotient in Section 5.2 and to varieties and C-varieties of languages in Section 5.3.

5.2. Lattices of languages closed under quotient

We say that a lattice of regular languages L is closed under quotient if for every L ∈ L
and u ∈ A∗, u−1L and Lu−1 are also in L. The equational description of such lattices can
be simplified by introducing a convenient definition.

Let u and v be two profinite words of Â∗. We say that L satisfies the equation u 6 v

if, for all x, y ∈ Â∗, it satisfies the equation xvy → xuy. Since A∗ is dense in Â∗, it is
equivalent to state that L satisfies these equations only for all x, y ∈ A∗. But there is a
much more convenient characterization using the syntactic ordered monoid of L.

Recall that the syntactic preorder of a language L is the relation 6L over A∗ defined
by u 6L v if and only if, for every x, y ∈ M ,

xvy ∈ L ⇒ xuy ∈ L

It is easy to see that 6L is a partial preorder on A∗, whose associated equivalence relation
is the syntactic congruence of L. Therefore, 6L induces a partial order on the syntactic
monoid M of L, called the syntactic order of L. The ordered monoid (M,6L) is called the
syntactic ordered monoid of L.

Proposition 5.7. Let L be a regular language of A∗, let (M,6L) be its syntactic ordered
monoid and let η : A∗ → M be its syntactic morphism. Then L satisfies the equation u 6 v
if and only if η̂(u) 6L η̂(v).

Proof. Corollary 5.1 shows that L satisfies the equation u 6 v if and only if, for every x, y ∈
A∗, η̂(xvy) ∈ η(L) implies η̂(xuy) ∈ η(L). Since η̂(xvy) = η̂(x)η̂(v)η̂(y) = η(x)η̂(v)η(y) and
since η is surjective, this is equivalent to saying that, for all s, t ∈ M , sη̂(v)t ∈ η(L) implies
sη̂(u)t ∈ η(L), which exactly means that η̂(u) 6L η̂(v).

We can now state the equational characterization of lattices of languages closed under
quotients.
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Theorem 5.8. A set of regular languages of A∗ is a lattice of languages closed under
quotients if and only if it can be defined by a set of equations of the form u 6 v, where

u, v ∈ Â∗.

Theorem 5.8 can be readily extended to Boolean algebras. Let u and v be two profinite
words. We say that a regular language L satisfies the equation u = v if it satisfies the
equations u 6 v and v 6 u. Proposition 5.7 now gives immediately:

Proposition 5.9. Let L be a regular language of A∗ and let η be its syntactic morphism.
Then L satisfies the equation u = v if and only if η̂(u) = η̂(v).

This leads to the following equational description of the Boolean algebras of languages
closed under quotients.

Corollary 5.10. A set of regular languages of A∗ is a Boolean algebra of languages closed
under quotients if and only if it can be defined by a set of equations of the form u = v,

where u, v ∈ Â∗.

Let us illustrate these results by three examples taken from [12].

(1) A language with zero is a language whose syntactic monoid has a zero. Languages
with zero form a lattice of languages closed under quotient. They are characterized by
the equations xρA = ρA = ρAx for all x ∈ A∗, where ρA is the profinite word defined
at the end of Section 2.

(2) A language L of A∗ is dense if, for every word u ∈ A∗, L ∩ A∗uA∗ 6= ∅. One can
show that regular nondense or full languages form a lattice of languages closed under
quotients. They are characterized by the equations x 6 ρA and xρA = ρA = ρAx for
all x ∈ A∗.

(3) Recall that a language L is sparse if it has a polynomial density, that is, if |L∩An| =
O(nk) for some k > 0. Equivalently, a language is sparse if it is a finite union of
languages of the form u0v

∗
1u1 · · · v

∗
nun, where u0, v1, . . . , vn, un are words. Sparse

or full languages form a lattice of languages closed under quotient and thus admit
an equational description. On a one letter alphabet, every recognizable language is
sparse and the result is trivial. If |A| > 2, one can take the following set of equations:
xρA = ρA = ρAx for all x ∈ A∗ and (xωyω)ω = ρA for each x, y ∈ A+ such that the
first letter of x is different from the first letter of y.

5.3. Varieties of languages

A class of languages F associates with each alphabet A a set F(A∗) of regular languages
of A∗. A positive variety of languages is a class of languages V such that

(1) for each alphabet A, V(A∗) is a lattice of languages closed under quotient,

(2) for each morphism of monoid ϕ : A∗ → B∗, X ∈ V(B∗) implies ϕ−1(X) ∈ V(A∗),

A variety of languages is a positive variety of languages closed under complement.

For [positive] varieties, is is wise to use identities as we did for Reiterman’s theorem.
Intuitively, an identity is an equation in which one can substitute a word for each letter.

More formally, let u and v be two profinite words of B̂∗ and let L be a regular language
of A∗. One says that L satisfies the profinite identity u 6 v [u = v] if, for all morphisms
γ : B∗ → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)].
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Theorem 5.11. A class of languages is a positive variety of languages if and only if it can
be defined by a set of profinite identities of the form u 6 v. It is a variety of languages if
and only if it can be defined by a set of profinite identities of the form u = v.

Theorem 5.11 and Reiterman’s theorem allows one to recover Eilenberg’s variety theo-
rem. Let us first recall this important result.

If V is a variety of finite monoids, denote by V(A∗) the set of regular languages of A∗

whose syntactic monoid belongs to V. The correspondence V → V associates with each
variety of finite monoids a variety of languages. Conversely, to each variety of languages
V, we associate the variety of monoids V generated by the monoids of the form M(L)
where L ∈ V(A∗) for a certain alphabet A. Eilenberg’s variety theorem [10] states that
the correspondences V → V and V → V define mutually inverse bijective correspondences
between varieties of finite monoids and varieties of languages.

Now, it follows from Theorem 5.11 that any variety of languages can be defined by a
set of profinite identities. And Reiterman’s theorem states that varieties of finite monoids
can also be defined by profinite identities. This gives the variety theorem.

There is an analogous result for ordered monoids [22], which gives mutually inverse
bijective correspondences between the varieties of finite ordered monoids and the positive
varieties of languages.

Equational descriptions are known for a large number of [positive] varieties of languages.
We just give a few emblematic examples in elliptic style below, but many more can be found
in the survey articles [9, 24].

(1) Finite or full languages: yxω = xω = xωy and y 6 xω.

(2) Star-free languages (closure of finite languages under Boolean operations and prod-
uct): xω+1 = xω. These languages are also captured by the logical fragment FO[<].

(3) Shuffle ideals (finite unions of languages of the form A∗a1A
∗a2A

∗ · · · akA
∗, where

a1, . . . , ak are letters): x 6 1. These languages are also captured by the logical
fragment Σ1[<].

(4) Piecewise testable languages (the Boolean closure of shuffle ideals): xω+1 = xω and
(xy)ω = (yx)ω. These languages are also captured by the logical fragment BΣ1[<].

(5) Unambiguous star-free languages (closure of finite languages under Boolean opera-
tions and unambiguous product): xω+1 = xω and (xy)ω(yx)ω(xy)ω = (xy)ω. These
languages are also captured by the logical fragments FO2[<] (first order with two vari-
ables), by ∆2[<] or by unary temporal logic (based on the operators eventually in the
future and eventually in the past). Finally, they are disjoint unions of unambiguous
products of the form A∗

0a1A
∗
1 · · · akA

∗
k, where a1, . . . , ak are letters and A0, . . . , Ak

are subsets of A.

A more general notion was introduced by Straubing [39] (see also Ésik and Ito [11]). Let
C be a class of morphisms between finitely generated free monoids that is closed under
composition and contains all length-preserving morphisms. Examples include the classes of
length-preserving morphisms, of length-multiplying morphisms, of non-erasing morphisms,
of length-decreasing morphisms and of course the class of all morphisms.
A positive C-variety of languages is a class of languages V such that

(1) for every alphabet A, V(A∗) is a lattice of languages closed under quotient,

(2) if ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),

A C-variety of languages is a positive C-variety of languages closed under complement.
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It is easy to extend Theorem 5.11 to C-varieties by using C-identities. Let us say
that a language L satisfies the profinite C-identity u 6 v [u = v] if, for all C-morphisms
γ : B∗ → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)]. Then we can state

Theorem 5.12. A class of languages of A∗ is a positive C-variety of languages if and only
if it can be defined by a set of profinite C-identities of the form u 6 v. It is a C-variety of
languages if and only if it can be defined by a set of profinite C-identities of the form u = v.

5.4. Summary

We summarize below the various types of equations. . .

Closed under Equations Definition

∪,∩ u → v η̂(u) ∈ η̂(L) ⇒ η̂(v) ∈ η̂(L)

quotient u 6 v xvy → xuy

complement u ↔ v u → v and v → u

quotient and complement u = v xvy ↔ xuy

. . . and the various types of C-identities.

Class of morphisms C Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters

6. Pro-V uniformities

The profinite uniformities defined in Section 2 can be generalized in various ways using
varieties of finite ordered monoids [30] or even lattices of languages [12]. In this section, we
only consider the case of a variety of finite monoids V.

The idea is to generalize the metric d on A∗ by defining dV as follows:

rV(u, v) = min {|M | | M is a monoid of V that separates u and v}

dV(u, v) = 2−rV(u,v)

Unfortunately, dV is not always a metric since the monoids of V may not suffice to separate
two distinct words. For instance, if V is the variety Com of finite commutative monoids,
there is no way to separate the words ab and ba.

There are two possibilities to overcome this difficulty. The first solution is algebraic:
the relation ∼V defined on A∗ by u ∼V v if and only if dV(u, v) = 0 is a congruence on A∗

and dV induces a metric on the quotient monoid A∗/∼V and one can take the completion of
the metric space (A∗/∼V, dV). For instance, if V = Com, A∗/∼V is the free commutative
monoid N

A.
The second solution is topological. Even if dV fails to be a metric, it still satisfies

conditions (2) and (3) of the definition of a metric and this suffices to define an Hausdorff
completion. A systematic study of the corresponding uniform spaces can be found in [30].
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The two methods lead to the same object, called the free pro-V monoid on A, denoted

by F̂V(A). This monoid is compact and can be alternatively defined as the quotient of Â∗

by the congruence induced by the profinite identities defining V.
The study of these free profinite monoids, for various varieties V, is a central topic of

the theory of finite monoids and regular languages. It is not possible to describe in detail
the numerous results obtained in this area, and we refer the interested reader to the survey
articles [3, 5] and to the articles of Almeida, Auinger, Margolis, Steinberg, Weil, Zeitoun or
the author for more information.

We limit ourselves in this survey to direct consequences in automata theory. First,
uniform continuous functions have a very concrete characterization.

Theorem 6.1. A function f : A∗ → B∗ is uniformly continuous for dV if and only if, for
every language L of B∗ recognized by a monoid of V, the language f−1(L) is also recognized
by a monoid of V.

It is worth considering separately the case where V is the variety of all finite monoids.

Corollary 6.2. A function f : A∗ → B∗ is uniformly continuous for d if and only if, for
every regular language L of B∗, the language f−1(L) is also regular.

We illustrate the power of this approach by solving a standard exercise in automata
theory: Show that the square root of a regular language is regular.

Proof. Since the concatenation product is uniformly continuous, the product h of two uni-
formly continuous functions f and g, defined by h(u) = f(u)g(u), is also uniformly contin-
uous. In particular, the function u → u2, from A∗ into itself, is uniformly continuous. It
follows that, if L is regular, the set {u ∈ A∗ | u2 ∈ L} is also regular.

Here are two more advanced results. Given a class L of regular languages, the polynomial
closure Pol(L) of L is the set of all languages which are finite unions of languages of the
form L0a1L1 · · · akLk where a1, . . . , ak are letters and L0, . . . , Lk are languages of L. It can
be shown that if V is a variety of languages, then Pol(V) is a positive variety of languages.
Further, it follows from the results of [29] that, given the profinite equations satisfied by V,
one can find, at least implicitly, the profinite equations defining Pol(V) .

Theorem 6.3. The positive variety Pol(V) is defined by the profinite identities of the form
xωyxω 6 xω where x and y are profinite words such that the identities x = y = x2 hold in
V.

Similar results hold for the unambiguous polynomial closure (the identities are now of
the form xωyxω = xω) and for the closure under Boolean operations and product.

Theorem 6.4. The closure under Boolean operations and product of a variety of languages
V is defined by the profinite identities of the form xω+1 = xω where x and y are profinite
words such that the identities x = y = x2 hold in V.

We now concentrate on two important particular cases which proved to have unexpected
connections with automata theory: the variety of finite groups G and the variety of finite
p-groups Gp, where p is a prime number. Recall that a p-group is a finite group whose order
is a power of p.
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6.1. Progroup topology

The pro-group topology was originally introduced by M. Hall in group theory [13]. It
was first considered for the free monoid by Reutenauer [34, 35] and studied in full details in
[19, 26, 23], notably in connection with a celebrated problem of Rhodes in finite semigroup
theory. This problem was ultimately solved by Ash using a combinatorial approach [6] and
by Ribes and Zalesskii using profinite methods [36].

The definition of the pro-group metric is obtained by taking V = G in the definition
of dV. One can show that dG is an ultrametric, but contrary to the profinite metric d, the
topology induced by dG on A∗ is not discrete and it is an interesting question to decide
whether a given regular language is open, closed or clopen for this topology.

Recall that a group language is a language whose syntactic monoid is a group, or,
equivalently, is recognized by a finite deterministic automaton in which each letter defines
a permutation of the set of states. According to the definition of a polynomial closure, a
polynomial of group languages is a finite union of languages of the form L0a1L1 · · · akLk

where a1, . . . , ak are letters and L0, . . . , Lk are group languages. It can be shown that a
regular language is clopen if and only if it is a group language. For the open sets, the
following characterization holds.

Theorem 6.5. Let L be a regular language. The following conditions are equivalent:

(1) L is a polynomial of group languages,

(2) L is open in the group topology,

(3) L satisfies the identity xω 6 1,

(4) the minimal deterministic automaton of L contains no configuration of the form

q2 p q q1
y x y

x

where x, y ∈ A∗, q1 is final and q2 is nonfinal.

One can show also that the closure of regular language for dG is again regular and can
be effectively computed [26, 36].

These results also permit to study another class of finite automata. A reversible au-
tomaton is a finite automaton whose transitions are both deterministic and co-deterministic.
In other words, each letter a induces a partial one-to-one map from the set of states into
itself. However, we make no assumption on the set of initial states and the set of final states,
which can be arbitrary. It is not difficult to see that any finite language can be accepted
by a reversible automaton. For instance, a reversible automaton accepting {a, ac, bc} is
represented below:

1 2 3 4 5
a

a

b

c

It is tempting to guess that a language is accepted by some reversible automaton if and
only if its minimal DFA is reversible, but this is not the case and the characterization of
these languages [20] is more involved.
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Theorem 6.6. Let L be a regular language and let M be its syntactic monoid. The following
conditions are equivalent:

(1) L is accepted by a reversible automaton,

(2) the idempotents of M commute and L is closed in the profinite group topology of A∗.

(3) L satisfies the identities xωyω = yωxω and 1 6 ω,

6.2. Pro-p topology

The definition of the pro-p metric is obtained by taking V = Gp in the definition of
dV. The resulting ultrametric dp defines the p-adic topology on A∗. When A is a one
letter alphabet, the free monoid A∗ is isomorphic to the additive monoid N and its pro-p
completion is the additive group of p-adic numbers.

As for dG, the closure of regular language for dp is again regular and can be effectively
computed [37, 18], but this is a difficult result.

There is also a nice connection [21] between this topology and a generalization of the
binomial coefficients. Let u and v be two words of A∗. Let u = a1 · · · an, with a1, . . . , an ∈ A.
Then u is a subword of v if there exist v0, . . . , vn ∈ A∗ such that v = v0a1v1 . . . anvn.
Following [10, 15], we define the binomial coefficient of u and v by setting

(
v

u

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

Observe that if a is a letter, then
(
v
a

)
is simply the number of occurrences of a in v. Further,

if u = an and v = am, then
(
v
u

)
=

(
m
n

)
and hence these numbers constitute a generalization

of the classical binomial coefficients. Let us set now

r′p(u, v) = min

{
|x|

∣∣ x ∈ A∗ and

(
u

x

)
6≡

(
v

x

)
(mod p)

}

d′p(u, v) = p−r′p(u,v).

It is proved in [21, Theorem 4.4] that d′p is an ultrametric uniformly equivalent to dp.
The next proposition should be compared with Proposition 2.5.

Proposition 6.7. For every word u ∈ A∗, one has lim
n→∞

upn

= 1 for the metric dp.

Proof. By the definition of the topology, it suffices to show that if ϕ : A∗ → G is a monoid
morphism onto a discrete p-group G, then lim

n→∞
ϕ(gpn

) = 1. But if |G| = pk, then for n > k,

ϕ(gpn

) = 1 since the order of ϕ(g) divides pk.

There is another nice example of converging sequence, related to the Prouhet-Thue-
Morse word t = abbabaabbaababba · · · . Recall that this infinite word on the alphabet {a, b}
is obtained from a by iterating the morphism τ defined by τ(a) = ab and τ(b) = ba.

Denoting by t[m] the prefix of length m of t, one has:

Theorem 6.8 (See [7]). For every prime number p, there exists a strictly increasing se-
quence m1 < m2 < · · · such that lim

n→∞
t[mn] = 1.

The sequence mn depends on p but can be explicitly given. For p 6= 2, one can choose
mn = 2np1+⌊logpn⌋, but as often in mathematics, the case p = 2 is singular. In this case,
one can take mn = 2k if Fk−1 6 n < Fk, where F denotes the Fibonacci sequence defined
by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for every n > 0.
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The connection between the pro-p topology and the binomial coefficients comes from the
characterization of the languages recognized by a p-group given by Eilenberg and Schützen-
berger (see [10, Theorem 10.1, p. 239]). Let us call a p-group language a language recognized
by a p-group.

Proposition 6.9. A language of A∗ is a p-group language if and only if it is a Boolean
combination of the languages

L(x, r, p) = {u ∈ A∗ |

(
u

x

)
≡ r mod p},

for 0 6 r < p and x ∈ A∗.

We conclude this section with a result presented at STACS last year [28], which extends
a classical result of Mahler [16, 17].

Let f : A∗ → Z be a function. For each letter a, we define the difference operator ∆a

by (∆af)(u) = f(ua)−f(u). One can now define inductively an operator ∆w for each word
w ∈ A∗ by setting (∆1f)(u) = f(u), and for each letter a ∈ A, (∆awf)(u) = (∆a(∆wf))(u).
It is easy to see that these operators can also be defined directly by setting

∆wf(u) =
∑

06|x|6|w|

(−1)|w|+|x|
(

w

x

)
f(ux)

For instance, ∆aabf(u) = −f(u) + 2f(ua) + f(ub)− f(uaa)− 2f(uab) + f(uaab).
One can show that for each function f : A∗ → Z, there exists a unique family 〈f, v〉v∈A∗

of integers such that, for all u ∈ A∗, f(u) =
∑

v∈A∗〈f, v〉
(
u
v

)
. These coefficients are given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|
(

v

x

)
f(x)

If n is a non-zero integer, we denote by |n|p the p-adic norm of n, which is the real number

p−k, where k is the largest integer such that pk divides n. By convention, |0|p = 0. The
main result of [28] gives a simple description of the uniformly continuous functions for dp.

Theorem 6.10. Let f(u) =
∑

v∈A∗〈f, v〉
(
u
v

)
be the Mahler’s expansion of a function from

A∗ to Z. The following conditions are equivalent:

(1) f is uniformly continuous for dp,

(2) the partial sums
∑

06|v|6n〈f, v〉
(
u
v

)
converge uniformly to f ,

(3) lim|v|→∞ |〈f, v〉|p = 0.

7. Conclusion

Profinite topologies are a powerful tool to solve decidability problems on regular lan-
guages. In particular, they lead to equational definitions of lattices of languages which can
sometimes be used to obtain decidability results. For instance, it follows from the deep re-
sults of McNaughton and Schützenberger that FO[<]-definable languages are defined by the
identity xω = xω+1. Since Büchi has shown that monadic second order MSO[<] captures
all regular languages, it follows that one can effectively decide whether a monadic second
order formula is equivalent to a first order formula on finite words (or, in the language of
model theory, on finite coloured linear orders).
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There are however two problems to extend this type of arguments to a given lattice of
languages. First, one needs to find effectively the equations foretold by Theorem 5.4. This
step can be extremely difficult. For instance, it is conjectured that the languages captured
by the logical fragment BΣ2[<] are defined by the identities

(
(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω

)
=

(
(xωpyωqxω)ω(xωryωsxω)ω

)

where x, y, p, q, r, s ∈ Â∗ are profinite words with the same content, but this conjecture is
still open.

If some set of equations have been found, one still needs to decide whether a given
regular language satisfies these equations. This second problem might also be difficult to
solve. For instance, it is not clear whether the implicit descriptions given in Theorems 6.3
ant 6.4 lead to effective decision criteria. A lot of work has been done, notably by Almeida
and Steinberg, to address this type of questions. A key idea is that certain varieties can be
defined by identities involving words and simple profinite operations, like the ω operation.
When a basis of such identities can be found, the second problem becomes generally easy.

To conclude, we would like to suggest a new path of research. The starting point is
the following observation: the hierarchies considered in computability, in complexity theory
and in descriptive set theory are defined in terms of appropriate reductions. In each case,
the definition of a reduction follows the same pattern: given two sets X and Y , Y reduces to
X if there exists a function f such that X = f−1(Y ). In complexity theory, f is required to
be computable in polynomial time. In descriptive set theory, f is continuous. We propose
to study the reductions between regular languages based on uniformly continuous functions
(for instance for some metric dV). One could then explore the corresponding hierarchies,
as it has been done in descriptive set theory and in computability theory.

References

[1] J. Almeida, Residually finite congruences and quasi-regular subsets in uniform algebras, Partugaliæ
Mathematica 46 (1989), 313–328.

[2] J. Almeida, Finite semigroups and universal algebra, World Scientific Publishing Co. Inc., River Edge,
NJ, 1994. Translated from the 1992 Portuguese original and revised by the author.

[3] J. Almeida, Profinite semigroups and applications, in Structural theory of automata, semigroups, and
universal algebra, pp. 1–45, NATO Sci. Ser. II Math. Phys. Chem. vol. 207, Springer, Dordrecht, 2005.
Notes taken by Alfredo Costa.

[4] J. Almeida and M. V. Volkov, Profinite identities for finite semigroups whose subgroups belong to
a given pseudovariety, J. Algebra Appl. 2,2 (2003), 137–163.

[5] J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, in NATO
Advanced Study Institute Semigroups, Formal Languages and Groups, J. Fountain (éd.), vol. 466, pp. 73–
117, Kluwer Academic Publishers, 1995.

[6] C. J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision procedures,
Internat. J. Algebra Comput. 1,1 (1991), 127–146.

[7] J. Berstel, M. Crochemore and J.-E. Pin, Thue sequence and p-adic topology of the free monoid,
Discrete Mathematics 76 (1989), 89–94.

[8] G. Birkhoff, Moore-Smith convergence in general topology, Ann. of Math. (2) 38,1 (1937), 39–56.
[9] M. J. J. Branco, Varieties of languages, in Semigroups, algorithms, automata and languages (Coimbra,

2001), pp. 91–132, World Sci. Publ., River Edge, NJ, 2002.
[10] S. Eilenberg, Automata, languages, and machines. Vol. B, Academic Press [Harcourt Brace Jovanovich

Publishers], New York, 1976.
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ABSTRACT. This paper gives a brief overview of computation models fordata stream process-
ing, and it introduces a new model for multi-pass processingof multiple streams, the so-called
mp2s-automata. Two algorithms for solving the set disjointness problem with these automata are
presented. The main technical contribution of this paper isthe proof of a lower bound on the size
of memory and the number of heads that are required for solving the set disjointness problem with
mp2s-automata.

1. Introduction

In the basic data stream model, the input consists of a streamof data items which can be read
only sequentially, one after the other. For processing these data items, a memory buffer of limited
size is available. When designing data stream algorithms, one aims at algorithms whose memory
size is far smaller than the size of the input.

Typical application areas for which data stream processingis relevant are, e.g., IP network
traffic analysis, mining text message streams, or processing meteorological data generated by sensor
networks. Data stream algorithms are also used to support query optimization in relational database
systems. In fact, virtually all query optimization methodsin relational database systems rely on
information about the number of distinct values of an attribute or the self-join size of a relation —
and these pieces of information have to be maintained while the database is updated. Data stream
algorithms for accomplishing this task have been introduced in the seminal paper [2].

Most parts of the data stream literature deal with the task ofperformingone pass over a single
stream. For a detailed overview on algorithmic techniques for thisscenario we refer to [23].Lower
boundson the size of memory needed for solving a problem by a one-pass algorithm are usually
obtained by applying methods fromcommunication complexity(see, e.g., [2, 20]). In fact, for many
concrete problems it is known that the memory needed for solving the problem by a deterministic
one-pass algorithm is at least linear in the sizen of the input. For some of these problems, however,
randomizedone-pass algorithms can still compute goodapproximateanswers while using memory
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of size sublinear inn. Typically, such algorithms are based onsampling, i.e., only a “representative”
portion of the data is taken into account, andrandom projections, i.e., only a rough “sketch” of
the data is stored in memory. See [23, 10] for a comprehensivesurvey of according algorithmic
techniques and for pointers to the literature.

Also the generalization wheremultiple passes over a single stream are performed, has re-
ceived considerable attention in the literature. Techniques for proving lower bounds in this scenario
can be found, e.g., in [20, 18, 9, 12, 22].

A few articles also deal with the task ofprocessing several streams in parallel. For example,
the authors of [28] consider algorithms which perform one pass over several streams. They introduce
a new model of multi-party communication complexity that issuitable for proving lower bounds on
the amount of memory necessary for one-pass algorithms on multiple streams. In [28], these results
are used for determining the exact space complexity of processing particular XML twig queries.
In recent years, the database community has also addressed the issue of designing general-purpose
data stream management systemsand query languages that are suitable for new application areas
where multiple data streams have to be processed in parallel. To get an overview of this research
area, [3] is a good starting point. Foundations for a theory of stream querieshave been laid in
[19]. Stream-based approaches have also been examined in detail in connection withXML query
processing and validation, see, e.g. the papers [27, 26, 13, 8, 4, 5, 16].

Thefinite cursor machines(FCMs, for short) of [14] are a computation model for performing
multiple passes over multiple streams. FCMs were introduced as an abstract model of database
query processing. Formally, they are defined in the framework of abstract state machines. Infor-
mally, they can be described as follows: The input for an FCM is a relational database, each relation
of which is represented by atable, i.e., an ordered list of rows, where each row corresponds toa
tuple in the relation. Data elements are viewed as “indivisible” objects that can be manipulated by
a number of “built-in” operations. This feature is very convenient to model standard operations on
data types like integers, floating point numbers, or strings, which may all be part of the universe of
data elements. FCMs can operate in a finite number ofmodesusing aninternal memoryin which
they can store bitstrings. They access each relation through a finite number ofcursors, each of
which can read one row of a table at any time. The model incorporates certainstreamingor sequen-
tial processingaspects by imposing a restriction on the movement of the cursors: They can move
on the tables only sequentially in one direction. Thus, oncethe last cursor has left a row of a table,
this row can never be accessed again during the computation.Note, however, that several cursors
can be moved asynchronously over the same table at the same time, and thus, entries in different,
possibly far apart, regions of the table can be read and processed simultaneously.

A common feature of the computation models mentioned so far in this paper is that the in-
put streams areread-onlystreams that cannot be modified during a pass. Recently, alsostream-
based models for external memory processing have been proposed, among them theStrSort
model[1, 24], theW-Streammodel [11], and the model ofread/write streams[17, 16, 15, 7, 6].
In these models, several passes may be performed over a single stream or over several streams in
parallel, and during a pass, the content of the stream may be modified.

A detailed introduction toalgorithms on data streams, respectively, to the related area ofsub-
linear algorithmscan be found in [23, 10]. A survey ofstream-based models for external memory
processingand of methods for provinglower boundsin these models is given in [25]. A database
systems oriented overview of so-calleddata stream systemscan be found in [3]. For a list ofopen
problemsin the area of data streams we refer to [21].
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In the remainder of this article, a new computation model formulti-pass processing of multiple
streams is introduced: themp2s-automata. In this model, (read-only) streams can be processed by
forward scans as well as backward scans, and several “heads”can be used to perform several passes
over the streams in parallel. After fixing the basic notationin Section 2, the computation model of
mp2s-automata is introduced in Section 3. In Section 4, we consider theset disjointness problem
and prove upper bounds as well as lower bounds on the size of memory and the number of heads
that are necessary for solving this problem with an mp2s-automaton. Section 5 concludes the paper
by pointing out some directions for future research.

2. Basic notation

If f is a function from the set of non-negative integers to the setof reals, we shortly write
f(n) instead of⌈f(n)⌉ (where⌈x⌉ denotes the smallest integer> x). We write lg n to denote the
logarithm ofn with respect to base 2. For a setD we writeD

∗ to denote the set of all finite strings
over alphabetD. We viewD

∗ as the set of all finitedata streamsthat can be built from elements in
D. For a stream~S ∈ D

∗ write |~S| to denote the length of~S, and we writesi to denote the element
in D that occurs at thei-th position in~S, i.e., ~S = s1s2 · · · s|~S|.

3. A computation model for multi-pass processing of multiple streams

In this section, we fix a computation model for multi-pass processing of multiple streams. The
model is quite powerful: Streams can be processed by forwardscans as well as backward scans, and
several “heads” can be used to perform several passes over the stream in parallel. For simplicity, we
restrict attention to the case where justtwostreams are processed in parallel. Note, however, that it
is straightforward to generalize the model to an arbitrary number of streams.

The computation model, calledmp2s-automata1, can be described as follows: LetD be a set,
and letm,kf , kb be integers withm > 1 andkf , kb > 0. An

mp2s-automatonA with parameters(D,m, kf , kb)

receives as input two streams~S ∈ D
∗ and~T ∈ D

∗. The automaton’s memory consists ofm different
states (note that this corresponds to a memory buffer consisting of lg m bits). The automaton’s state
space is denoted byQ. We assume thatQ contains a designatedstart stateand that there is a
designated subsetF of Q of so-calledaccepting states.

On each of the input streams~S and ~T , the automaton haskf heads that process the stream
from left to right (so-calledforward heads) andkb heads that process the stream from right to left
(so-calledbackward heads). The heads are allowed to move asynchronously. We usek to denote
the total number of heads, i.e.,k = 2kf + 2kb.

In the initial configurationof A on input(~S, ~T ), the automaton is in thestart state, all forward
heads on~S and~T are placed on the leftmost element in the stream, i.e.,s1 resp.t1, and allbackward
heads are placed on the rightmost element in the stream, i.e., s|~S| resp.t|~T |.

During each computation step, depending on (a) the current state (i.e., the current content of the
automaton’s memory) and (b) the elements of~S and~T at the current head positions, a deterministic
transition function determines (1) the next state (i.e., the new content of the automaton’s memory)
and (2) which of thek heads should be advanced to the next position (where forwardheads are

1“mp2s” stands for multi-pass processing of 2streams
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D : set ofdata itemsof which input streams~S and ~T are composed

m : size of the automaton’sstate spaceQ (this corresponds tolg m bits of memory)

kf : number offorward headsavailable on each input stream

kb : number ofbackward headsavailable on each input stream

k : 2kf + 2kb (total number of heads)

Figure 1: The meaning of the parameters(D,m, kf , kb) of an mp2s-automaton.

advanced one step to the right, and backward heads are advanced one step to the left). Formally, the
transition function can be specified in a straightforward way by a function

δ : Q× (D ∪ {end})k −→ Q× {advance, stay}k

whereQ denotes the automaton’s state space, andend is a special symbol (not belonging toD)
which indicates that a head has reached the end of the stream (for a forward head this means that
the head has been advanced beyond the rightmost element of the stream, and for a backward head
this means that the head has been advanced beyond the leftmost element of the stream).

The automaton’s computation on input(~S, ~T ) ends as soon as each head has passed the entire
stream. The input isacceptedif the automaton’s state then belongs to the setF of accepting states,
and it isrejectedotherwise.

The computation model of mp2s-automata is closely related to thefinite cursor machinesof
[14]. In both models, several streams can be processed in parallel, and several heads (or, “cur-
sors”) may be used to perform several “asynchronous” passesover the same stream in parallel. In
contrast to the mp2s-automata of the present paper, finite cursor machines were introduced as an
abstract model for database query processing, and their formal definition in [14] is presented in the
framework ofabstract state machines.

Note that mp2s-automata can be viewed as a generalization ofother models for one-pass or
multi-pass processing of streams. For example, the scenario of [28], where a single pass over two
streams is performed, is captured by an mp2s-automaton where 1 forward head and no backward
heads are available on each stream. Also, the scenario wherep consecutive passes of each input
stream are available (cf., e.g., [20]), can be implemented by an mp2s-automaton: just usep forward
heads and0 backward heads, and let thei-th head wait at the first position of the stream until the
(i−1)-th head has reached the end of the stream.

4. The set disjointness problem

Throughout Section 4 we consider a particular version of theset disjointness problemwhere,
for each integern > 1, Dn := { a1, b1, . . . , an, bn } is a fixed set of2n data items. We write
Disjn to denote the following decision problem: The input consists of two streams~S and ~T over
Dn with |~S| = |~T | = n. The goal is to decide whether the sets{s1, . . . , sn} and{t1, . . . , tn} are
disjoint.

An mp2s-automatonsolvesthe problemDisjn if, for all valid inputs toDisjn (i.e., all ~S, ~T ∈ D
∗

with |~S| = |~T | = n), it accepts the input if, and only if, the corresponding sets are disjoint.
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4.1. Two upper bounds for the set disjointness problem

It is straightforward to see that the problemDisjn can be solved by an mp2s-automaton with
22n states and a single forward head on each of the two input streams: During a first phase, the
head on~S processes~S and stores, in the automaton’s current state, the subset ofDn that has been
seen while processing~S. Afterwards, the head on~T processes~T and checks whether the element
currently seen by this head belongs to the subset ofDn that is stored in the automaton’s state.
Clearly,22n states suffice for this task, since|Dn| = 2n. We thus obtain the following trivial upper
bound:

Proposition 4.1. Disjn can be solved by an mp2s-automaton with parameters(Dn, 22n, 1, 0).

The following result shows that, at the expense of increasing the number of forward heads on
each stream to

√
n, the memory consumption can be reduced exponentially:

Proposition 4.2. Disjn can be solved by an mp2s-automaton with parameters(Dn, n+2,
√

n, 0).2

Proof. The automaton proceeds in two phases.
The goal inPhase 1is to move, for eachi ∈ {1, . . . ,√n }, the i-th head on~S onto the

(

(i−1)
√

n + 1
)

-th position in ~S. This way, after having finishedPhase 1, the heads partition
~S into

√
n sub-streams, each of which has length

√
n. Note thatn + 1 − √

n states suffice for
accomplishing this: The automaton simply stores, in its state, the current position of the rightmost
head(s) on~S. It starts by leaving head 1 at position1 and moving the remaining heads on~S to the
right until position

√
n + 1 is reached. Then, it leaves head 2 at position

√
n + 1 and proceeds by

moving the remaining heads to the right until position2
√

n + 1 is reached, etc.
DuringPhase 2, the automaton checks whether the two sets are disjoint. This is done in

√
n sub-

phases. During thej-th sub-phase, thej-th head on~T processes~T from left to right and compares
each element in~T with the elements on the current positions of the

√
n heads on~S. When thej-th

head on~T has reached the end of the stream, each of the heads on~S is moved one step to the right.
This finishes thej-th sub-phase. Note thatPhase 2can be accomplished by using just 2 states: By
looking at the combination of heads on~T that have already passed the entire stream, the automaton
can tell which sub-phase it is currently performing. Thus, for Phase 2we just need one state for
indicating that the automaton is inPhase 2, and an additional state for storing that the automaton
has discovered already that the two sets arenot disjoint.

4.2. Two lower bounds for the set disjointness problem

We first show a lower bound for mp2s-automata where only forward heads are available:

Theorem 4.3. For all integersn, m, kf , such that, fork = 2kf and v = k2
f + 1,

k2 · v · lg(n+1) + k · v · lg m + v · (1 + lg v) 6 n ,

the problem Disjn cannot be solved by any mp2s-automaton with parameters(Dn,m, kf , 0).

Proof. Let n, m, andkf be chosen such that they meet the theorem’s assumption. For contradiction,
let us assume thatA is an mp2s-automaton with parameters(Dn,m, kf , 0) that solves the problem
Disjn.

2To be precise, the proof shows that alreadyn + 2−
√

n states suffice.
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Recall thatDn = { a1, b1, . . . , an, bn } is a fixed set of2n data items. Throughout the proof
we will restrict attention to input streams~S and ~T which are enumerations of the elements in a set

AI := {ai : i ∈ I} ∪ {bi : i ∈ I}

for arbitraryI ⊆ {1, . . , n} and its complementI := {1, . . , n} \ I.
Note that for allI1, I2 ⊆ {1, . . , n} we have

AI1 andAI2 are disjoint ⇐⇒ I2 = I1. (4.1)

For eachI ⊆ {1, . . , n} we let ~SI be the stream of lengthn which is defined as follows: For each
i ∈ I, it carries data itemai at positioni; and for eachi 6∈ I, it carries data itembi at positioni. The
stream~T I contains the same data items as~SI , but in the opposite order: For eachi ∈ I, it carries
data itemai at positionn− i + 1; and for eachi 6∈ I, it carries data itembi at positionn− i + 1.

For setsI1, I2 ⊆ {1, . . , n}, we writeD(I1, I2) to denote the input instance~SI1 and~T I2 for the
problemDisjn. From (4.1) and our assumption that the mp2s-automatonA solvesDisjn, we obtain
that

A acceptsD(I1, I2) ⇐⇒ I2 = I1. (4.2)

Throughout the remainder of this proof, our goal is to find twosetsI, I ′ ⊆ {1, . . , n} such that

(1) I 6= I ′, and

(2) the accepting run ofA on D(I, I) is “similar” to the accepting run ofA on D(I ′, I ′), so
that the two runs can be combined into an accepting run ofA on D(I, I ′) (later on in the
proof, we will see what “similar” precisely means).

Then, however, the fact thatA accepts inputD(I, I ′) contradicts (4.2) and thus finishes the proof
of Theorem 4.3.

For accomplishing this goal, we let

v := k2
f

+ 1 (4.3)

be 1 plus the number of pairs of heads on the two streams. We subdivide the set{1, . . , n} into v

consecutive blocksB1, . . . , Bv of equal sizen
v
. I.e., for eachj ∈ {1, . . , v}, block Bj consists of

the indices in{ (j−1)n
v

+ 1, . . . , j n
v
}.

We say that a pair(hS , hT ) of heads ofA checks blockBj during the run on inputD(I1, I2)
if, and only if, at some point in time during the run, there exist i, i′ ∈ Bj such that headhS is on
elementai or bi in ~SI1 and headhT is on elementai′ or bi′ in ~T I2.

Note that each pair of heads can check at most one block, sinceonly forward heads are available
and the data items in~T I2 are arranged in the reverse order (with respect to the indices i of elements
ai andbi) than in~SI1 . Since there arev blocks, but onlyv − 1 pairs(hS , hT ) of heads on the two
streams, we know that for eachI1, I2 ⊆ {1, . . , n} there exists a blockBj that isnot checkedduring
A’s run onD(I1, I2).

In the following, we determine a setX ⊆ {I : I ⊆ {1, . . , n}} with |X| > 2 such that for all
I, I ′ ∈ X, item (2) of our goal is satisfied. We start by using a simple averaging argument to find a
j0 ∈ {1, . . , v} and a setX0 ⊆ {I : I ⊆ {1, . . , n}} such that

• for eachI ∈ X0, blockBj0 is not checked duringA’s run on inputD(I, I), and

• |X0| > 2n

v
.
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For the remainder of the proof we fix̂B := Bj0.
We next choose a sufficiently large setX1 ⊆ X0 in which everything outside block̂B is fixed:
A simple averaging argument shows that there is aX1 ⊆ X0 and aÎ ⊆ {1, . . , n} \ B̂ such that

• for eachI ∈ X1, I \ B̂ = Î, and

• |X1| >
|X0|

2n−n
v

> 2
n
v
−lg v.

We next identify a setX2 ⊆ X1 such that for allI, I ′ ∈ X2 the runs ofA onD(I, I) andD(I ′, I ′)
are “similar” in a sense suitable for item (2) of our goal. To this end, for each headh of A we let
configIh be theconfiguration(i.e., the current state and the absolute positions of all the heads) in the
run ofA on inputD(I, I) at the particular point in time where headh has just left blockB̂ (i.e.,
headh has just left the last elementai or bi with i ∈ B̂ that it can access). We letconfigI be the
ordered tuple of the configurationsconfigIh for all headsh of A. Note that the number of possible
configurationsconfigIh is 6 m · (n+1)k, sinceA hasm states and since each of thek = 2kf

heads can be at one out ofn+1 possible positions in its input stream. Consequently, the number of
possiblek-tuplesconfigI of configurations is6

(

m · (n+1)k
)k

.
A simple averaging argument thus yields a tuplec of configurations and a setX2 ⊆ X1 such that

• for all I ∈ X2, configI = c, and

• |X2| >
|X1|

(m·(n+1)k)k > 2
n
v
−lg v − k lg m − k2 lg(n+1).

Using the theorem’s assumption on the numbersn, m, andkf , one obtains that|X2| > 2. Therefore,
we can find two setsI, I ′ ∈ X2 with I 6= I ′.

To finish the proof of Theorem 4.3, it remains to show that the runs ofA on D(I, I) and on
D(I ′, I ′) can be combined into a run ofA onD(I, I ′) such thatA (falsely) accepts inputD(I, I ′).
To this end let us summarize what we know aboutI andI ′ in X2:

(a) I andI ′ only differ in blockB̂.

(b) Block B̂ is not checked duringA’s runs onD(I, I) and onD(I ′, I ′). I.e., while any head on
~SI (resp.~SI′) is at an elementai or bi with i ∈ B̂, no head on~T I (resp.~T I′) is on an element
ai′ or bi′ with i′ ∈ B̂.

(c) ConsideringA’s runs onD(I, I) and onD(I ′, I ′), each time a head leaves the last position
in B̂ that it can access, both runs are are in exactly the same configuration. I.e., they are in
the same state, and all heads are at the same absolute positions in their input streams.

Due to item (a),A’s run on inputD(I, I ′) starts in the same way as the runs onD(I, I) and
D(I ′, I ′): As long as no head has reached an element in blockB̂, the automaton has not yet seen
any difference betweenD(I, I ′) on the one hand andD(I, I) andD(I ′, I ′) on the other hand.

At some point in time, however, some headh will enter block B̂, i.e., it will enter the first
elementai or bi with i ∈ B̂ that it can access. The situation then is as follows:

• If h is a head on~SI , then, due to item (b), no head on~T I′ is at an element in̂B. Therefore,
until headh leaves blockB̂, A will go through the same sequence of configurations as in
its run on inputD(I, I). Item (c) ensures that whenh leaves blockB̂, A is in the same
configuration as in its runs onD(I, I) and onD(I ′, I ′).
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• Similarly, if h is a head on~T I′ , then, due to item (b), no head on~SI is at an element
in B̂. Therefore, until headh leaves blockB̂, A will go through the same sequence of
configurations as in its run on inputD(I ′, I ′). Item (c) ensures that whenh leaves blockB̂,
A is in the same configuration as in its runs onD(I ′, I ′) and onD(I, I).

In summary, inA’s run onD(I, I ′), each time a headh has just left the last element in block̂B that
it can access, it is in exactly the same configuration as inA’s runs onD(I, I) and onD(I ′, I ′) at
the points in time where headh has just left the last element in block̂B that it can access. After
the last head has left block̂B, A’s run onD(I, I ′) finishes in exactly the same way asA’s runs
on D(I, I) andD(I ′, I ′). In particular, it acceptsD(I, I ′) (since it acceptsD(I, I) andD(I ′, I ′)).
This, however, is a contradiction to (4.2). Thus, the proof of Theorem 4.3 is complete.

Remark 4.4. Let us compare the lower bound from Theorem 4.3 with the upperbound of Proposi-
tion 4.2: The upper bound tells us thatDisjn can be solved by an mp2s-automaton withn+2 states
and

√
n forward heads on each input stream. The lower bound implies (for large enoughn) that

if just 5
√

n forward heads are available on each stream, not even2
3
√

n states suffice for solving the
problemDisjn with an mp2s-automaton.

Remark 4.5. A straightforward calculation shows that the assumptions of Theorem 4.3 are satisfied,

for example, for all sufficiently large integersn and all integersm andkf with 4kf 6 4

√

n
lg n

and

lg m 6 n
4kf ·(k2

f
+1)

.

Theorem 4.3 can be generalized to the following lower bound for mp2s-automata where also
backward heads are available:

Theorem 4.6. For all n, m, kf , kb such that, fork = 2kf +2kb and v = (k2
f
+k2

b
+1)·(2kf kb+1),

k2 · v · lg(n+1) + k · v · lg m + v · (1 + lg v) 6 n ,

the problem Disjn cannot be solved by any mp2s-automaton with parameters(Dn,m, kf , kb).

Proof. The overall structure of the proof is the same as in the proof of Theorem 4.3. We consider
the same setsAI , for all I ⊆ {1, . . , n}. The stream~SI is chosen in the same way as in the proof of
Theorem 4.3, i.e., for eachi ∈ I, the stream~SI carries data itemai at positioni; and for eachi 6∈ I,
it carries data itembi at positioni.

Similarly as in the proof of Theorem 4.3, the stream~T I contains the same data items as~SI .
Now, however, the order in which the elements occur in~T I is a bit more elaborate. For fixing this
order, we choose the following parameters:

v1 := k2
f

+ k2
b

+ 1 , v2 := 2kfkb + 1 , v := v1 · v2 . (4.4)

We subdivide the set{1, . . , n} into v1 consecutive blocksB1, . . . , Bv of equal sizen
v1

. I.e., for each
j ∈ {1, . . , v1}, blockBj consists of the indices in{ (j−1) n

v1
+ 1, . . . , j n

v1
}.

Afterwards, we further subdivide each blockBj into v2 consecutive subblocks of equal sizen
v
.

These subblocks are denotedB1
j , . . . , Bv2

j . Thus, each subblockBj′

j consists of the indices in
{ (j−1) n

v1
+ (j′−1)n

v
+ 1, . . . , (j−1) n

v1
+ j′ n

v
}.

Now let π be the permutation of{1, . . , n} which maps, for allj, r with 1 6 j 6 v1 and
1 6 r 6

n
v1

, element(j−1) n
v1

+ s onto element(v1−j) n
v1

+ s. Thus,π maps elements in block
Bj onto elements in blockBv1−j+1, and inside these two blocks,π maps the elements of subblock
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B
j′

j onto elements in subblockBj′

v1−1+1. Note thatπ reverses the blocksBj in order, but it doesnot

reverse the order of the subblocksB
j′

j .

Finally, we are ready to fix the order in which the elements inAI occur in the stream~T I : For
eachi ∈ I, the stream~T I carries data itemai at positionπ(i); and for eachi 6∈ I, it carries data
item bi at positionπ(i).

In the same way as in the proof of Theorem 4.3, we writeD(I1, I2) to denote the input instance
~SI1 and ~T I2.

A pair of heads(hS , hT ) is calledmixedif one of the heads is a forward head and the other is
a backward head. Sinceπ reverses the order of the blocksB1, . . , Bv1

, it is straightforward to see
that everynon-mixedpair of heads can check at most one of the blocksB1, . . , Bv1

. Since there
arev1 blocks, but only(v1 − 1) non-mixed pairs of heads, we know that for allI1, I2 ⊆ {1, . . , n}
there exists a blockBj that isnot checkedby any non-mixed pair of heads duringA’s run on input
D(I1, I2).

The same averaging argument as in the proof of Theorem 4.3 thus tells us that there is aj1 ∈
{1, . . , v1} and a setX ′

0 ⊆ {I : I ⊆ {1, . . , n}} such that

• for eachI ∈ X ′
0, blockBj1 is not checked by any non-mixed pair of heads duringA’s run

on inputD(I, I), and

• |X ′
0| > 2n

v1
.

From our particular choice ofπ, it is straightforward to see that everymixedpair of heads can check
at most one of the subblocksB1

j1
, . . . , Bv2

j1
. Since there arev2 such subblocks, but only(v2 − 1)

mixed pairs of heads, there must be aj2 ∈ {1, . . , v2} and a setX0 ⊆ X ′
0 such that

• for eachI ∈ X0, subblockBj2
j1

is not checked by any pair of heads duringA’s run on input

D(I, I), and

• |X0| >
|X′

0
|

v2
>

2n

v
.

For the remainder of the proof we fix̂B := B
j2
j1

, and we letk := 2kf + 2kb denote the total
number of heads. Using these notations, the rest of the proofcan be taken vertatim from the proof
of Theorem 4.3.

The proof of Theorem 4.6 is implicit in [14] (see Theorem 5.11in [14]). There, however, the
proof is formulated in the terminology of a different machine model, the so-calledfinite cursor
machines.

5. Final remarks

Several questions concerning the computational power of mp2s-automata occur naturally. On
a technical level, it would be nice to determine the exact complexity of the set disjointness problem
with respect to mp2s-automata. In particular: Is the upper bound provided by Proposition 4.2
optimal? Can backward scans significantly help for solving the set disjointness problem? Are

√
n

heads really necessary for solving the set disjointness problem when only a sub-exponential number
of states are available?

A more important task, however, is to consider also randomized versions of mp2s-automata,
to design efficient randomized approximation algorithms for particular problems, and to develop
techniques for proving lower bounds in the randomized model.
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Abstract. In this paper we study a variant of the shortest path problem in graphs: given
a weighted graph G and vertices s and t, and given a set X of forbidden paths in G, find a
shortest s-t path P such that no path in X is a subpath of P . Path P is allowed to repeat
vertices and edges. We call each path in X an exception, and our desired path a shortest

exception avoiding path. We formulate a new version of the problem where the algorithm
has no a priori knowledge of X, and finds out about an exception x ∈ X only when a path
containing x fails. This situation arises in computing shortest paths in optical networks.
We give an algorithm that finds a shortest exception avoiding path in time polynomial in
|G| and |X|. The main idea is to run Dijkstra’s algorithm incrementally after replicating
vertices when an exception is discovered.

1. Introduction

One of the most fundamental combinatorial optimization problems is that of finding
shortest paths in graphs. In this paper we study a variant of the shortest path problem:
given a weighted graph G(V,E), and vertices s and t, and given a set X of forbidden
paths in G, find a shortest s-t path P such that no path in X is a subpath of P . We
call paths in X exceptions, and we call the desired path a shortest exception avoiding path.
We allow an exception avoiding path to be non-simple, i.e., to repeat vertices and edges.
In fact the problem becomes hard if the solution is restricted to simple paths [20]. This
problem has been called the Shortest Path Problem with Forbidden Paths by Villeneuve and
Desaulniers [22]. Unlike them, we assume no a priori knowledge of X. More precisely, we
can identify a forbidden path only after failing in our attempt to follow that path. This
variant of the problem has not been studied before. It models the computation of shortest
paths in optical networks, described in more detail in the “Motivation” section below. Note
that when we fail to follow a path because of a newly discovered exception, we are still
interested in a shortest path from s to t as opposed to a detour from the failure point. This
is what is required in optical networks, because intermediate nodes do not store packets,
and hence s must resend any lost packet.
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This paper presents two algorithms to compute shortest exception avoiding paths in
the model where exceptions are not known a priori. The algorithms take respectively
O(kn log n + km) and O((n + L) log(n + L) + m + dL) time to find shortest exception
avoiding paths from s to all other vertices, where n = |V |, m = |E|, d is the largest degree
of a vertex, k is the number of exceptions in X, and L is the total size of all exceptions.

Our algorithm uses a vertex replication technique similar to the one used to handle non-
simple paths in other shortest path problems [6, 22]. The idea is to handle a forbidden path
by replicating its vertices and judiciously deleting edges so that one copy of the forbidden
path is missing its last edge and the other copy is missing its first edge. The result is to
exclude the forbidden path but allow all of its subpaths. The main challenge is that vertex
replication can result in an exponential number of copies of any forbidden path that overlaps
the current one. Villeneuve and Desaulniers [22] address this challenge by identifying and
compressing the overlaps of forbidden paths, an approach that is impossible for us since we
do not have access to X. Our new idea is to couple vertex replication with the “growth”
of a shortest path tree. By preserving certain structure in the shortest path tree we prove
that the extra copies of forbidden paths that are produced during vertex replication are
immaterial. Our algorithm is easy to implement, yet the proof of correctness and the
run-time analysis are non-trivial.

1.1. Motivation

Our research on shortest exception avoiding path was motivated by a problem in optical
network routing from Nortel Networks. In an optical network when a ray of light of a
particular wavelength tries to follow a path P consisting of a sequence of optical fibers, it
may fail to reach the endpoint of P because of various transmission impairments such as
attenuation, crosstalk, dispersion and non-linearities [12, 17]. This failure may happen even
though the ray is able to follow any subpath P ′ of P . This non-transitive behavior occurs
because those impairments depend on numerous physical parameters of the traversed path
(e.g., length of the path, type of fiber, wavelength and type of laser used, location and
gain of amplifiers, number of switching points, loss per switching point, etc.), and the effect
of those parameters may be drastically different in P than in P ′ [2]. Forbidden subpaths
provide a straight-forward model of this situation.

We now turn to the issue of identifying forbidden paths. Because of the large number
of physical parameters involved, and also because many of the parameters vary over the
lifetime of the component [3], it is not easy to model the feasibility of a path. Researchers
at Nortel suggested a model whereby an algorithm identifies a potential path, and then
this path is tried out on the actual network. In case of failure, further tests can be done
to pinpoint a minimal forbidden subpath. Because such tests are expensive, a routing
algorithm should try out as few paths as possible. In particular it is practically impossible to
identify all forbidden paths ahead of time—we have an exponential number of possible paths
to examine in the network. This justifies our assumption of having no a priori knowledge of
the forbidden paths, and of identifying forbidden paths only by testing feasibility of a path.

The shortest exception avoiding path problem may also have application in vehicle
routing. Forbidden subpaths involving pairs of edges occur frequently (“No left turn”) and
can occur dynamically due to rush hour constraints, lane closures, construction, etc. Longer
forbidden subpaths are less common, but can arise, for example if heavy traffic makes it
impossible to turn left soon after entering a multi-lane roadway from the right. If we are
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routing a single vehicle it is more natural to find a detour from the point of failure when
a forbidden path is discovered. This is different from our model of rerouting from s upon
discovery of a forbidden path. However, in the situation when vehicles will be dispatched
repeatedly, our model does apply.

1.2. Preliminaries

We are given an directed graph G(V,E) with n = |V | vertices and m = |E| edges where
each edge e ∈ E has a positive weight denoting its length. We are also given a source vertex
s ∈ V , a destination vertex t ∈ V , and a set X of paths in G. The graph G together with X

models a communication network in which a packet cannot follow any path in X because
of the physical constraints mentioned in Sec. 1.1. We assume that the algorithm can access
the set X of forbidden paths only by performing queries to an oracle. Each query is a path
P , and the oracle’s response is either the confirmation that P is exception avoiding, or else
an exception x ∈ X that is a subpath of P and whose last vertex is earliest in P . Ties can
be broken arbitrarily. In our discussion we say “we try a path” instead of saying “we query
the oracle” because the former is more intuitive. In Sec. 4 we modify our algorithm for the
case of an oracle that returns any exception on a path (not just the one that ends earliest).
This requires more calls to the oracle but gives a faster run-time.

We want to find a shortest path from s to t that does not contain any path in X as a
subpath—we make the goal more precise as follows. A path is a sequence of vertices each
joined by an edge to the next vertex in the sequence. Note that we allow a path to visit
vertices and edges more than once. If a path does not visit any vertex more than once, we
explicitly call it a simple path. A simple directed path from vertex v to vertex w in G is called
a forbidden path or an exception if a packet cannot follow the path from v to w because of
the physical constraints. Given a set A of forbidden paths, a path (v1, v2, v3, . . . , vl) is said
to avoid A if (vi, vi+1, . . . vj) 6∈ A for all i, j such that 1 ≤ i < j ≤ l. A path P from s to t

is called a shortest A-avoiding path if the length of P is the shortest among all A-avoiding
paths from s to t. We will use the term “exception avoiding” instead of “X-avoiding” when
A is equal to X, the set of all forbidden paths in G.

1.3. Related work

A shortest s-t path in a graph can be computed in O(n log n+m) time and linear space
using Dijkstra’s algorithm with Fibonacci heaps if all edge weights are non-negative, and
in O(mn) time and linear space using the Bellman-Ford algorithm otherwise [5]. When
the edge weights are non-negative integers, the problem can be solved in deterministic
O(m log log n log log log n) time and linear space if the graph is directed [13], and in optimal
O(m) time if the graph is undirected [21]. In many of these cases, there are randomized
algorithms with better expected times as well as approximation schemes. See Zwick [23]
for a survey of shortest path algorithms, and Cabello [4], Goldberg and Harrelson [11] and
Holzer et al. [15] for some of the more recent work.

Two recent papers on shortest paths in graphs address the issue of avoiding a set
of forbidden paths, assuming that all the forbidden paths are known a priori. The first
paper gives a hardness result. Szeider [20] shows, using a reduction from 3-SAT, that the
problem of finding a shortest simple exception avoiding path is NP-complete even when
each forbidden path has two edges. If the forbidden paths are not known a priori, the
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hardness result still applies to the case of simple paths because the lack of prior knowledge
of the forbidden paths only makes the problem harder.

The second paper, by Villeneuve and Desaulniers [22], gives an algorithm for a shortest
(possibly non-simple) exception avoiding path for the case when all the forbidden paths
are known a priori. They preprocess the graph in O((n + L) log(n + L) + m + dL) time
and O(n + m + dL) space so that a shortest path from s to a query vertex can be found
in O(n + L) time. They first build a deterministic finite automaton (DFA) from the set
of forbidden paths using the idea of Aho and Corasick [1], which can detect in linear time
whether a given path contains any of the forbidden paths. They then “insert” the DFA into
G by replicating certain vertices of G in the manner introduced by Martins [6], and then
build a shortest path tree in this modified graph. Their algorithm cannot handle the case
where the set of all forbidden paths is not explicitly given. Our algorithm is strictly more
general, and we show in Sec. 4 that it solves their problem in roughly the same time but in
less (O(n + m + L)) space.

We now mention two problems that seem related to ours, but do not in fact provide
solutions to ours. The first one is maintaining shortest paths in a dynamic graph, i.e., where
nodes or edges may fail [7, 9, 14], or edge weights may change (e.g., [7, 8]). Forbidden
paths cannot be modeled by deleting edges or by modifying edge costs because all edges
in a particular forbidden path may be essential—see Fig. 1 for an example. The second
seemingly related problem is finding the k shortest paths in a graph. This was the subject
of Martins [6] who introduced the vertex replication technique that we use in our algorithm.
There is considerable work on this problem, see Eppstein [10] for a brief survey. But the
k shortest path problem is again different from our situation because a forbidden subpath
may be a bottleneck that is present in all of the k shortest paths even for k ∈ Ω(2n/2), see
Villeneuve and Desaulniers [22].

In the context of optical networks researchers have studied many theoretical problems.
See Ramaswami and Sivarajan [19] for details on optical networks, and Lee and Shay-
man [17] and McGregor and Shepherd [18] for a brief survey of the theoretical problems
that have been investigated. In the previous work, the effect of physical constraints on
paths in optical networks is either not considered at all (e.g., Khuller et al. [16]), or simply
modeled by a known constant upper bound on the length of such a path (e.g., Gouveia
et al [12], Lee and Shayman [17] and McGregor and Shepherd [18]). To the best of our
knowledge, none of the previous work on shortest paths in optical networks considers the
fact that it is practically infeasible to know a priori all the forbidden paths in the network,
i.e., all the constraints in X. Our paper handles the issue of physical constraints from a
different and much more practical perspective.

2. Algorithm for a shortest s-t path

In our algorithm we begin with a shortest path tree rooted at s, ignoring the exceptions.
We then “try out” the path from s to t in the tree. If the path is free of exceptions, we are
done. Otherwise, to take the newly discovered exception into account, we modify the graph
using path replication as described in the Introduction, and we modify the shortest path tree
to match. In general, we maintain a modified graph and a shortest path tree in the graph
that gives a shortest path in the original graph from s to every other vertex avoiding all the
currently-known exceptions. We will first illustrate the idea with an example. Consider the
graph G in Fig. 1(a), where the integers denote edge weights, and the dashed arrow marks
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Figure 1: (a) Shortest paths and (b) shortest x-avoiding paths in a graph, where x =
(s, a, b, t).

the forbidden path x = (s, a, b, t). Note that for simplicity we have used undirected edges
in the figure to denote bidirectional edges. It is not hard to see that P = (s, c, a, b, t) is
the shortest x-avoiding path from s to t. To find P , we first construct a shortest path tree
rooted at s (marked using the heavy edges in Fig. 1(a)), and then try the path (s, a, b, t) in
the tree. The path fails because it contains x, so we use a vertex replication technique similar
to the one by Martins [6] to make duplicates of vertices a and b and delete edges (s, a′) and
(b, t), as shown in Fig. 1(b). We then construct a shortest path tree rooted at s (marked
using the heavy edges in Fig. 1(b)) in the modified graph, and try the path (s, c, a′, b′, t)
which “represents” the path P in G. We are done if x is the only forbidden path in G.
Note that this approach can double the number of undiscovered forbidden paths. Suppose
y = (c, a, b) is another forbidden path in G. We have two copies of y in the modified graph:
(c, a, b) and (c, a′, b′), and we have to avoid both of them. Our solution to this doubling
problem is to “grow” the shortest path tree in such a way that at most one of these two
copies is encountered in future. Our algorithm is as follows:

construct the shortest path tree T0 rooted at s in G0 = G;1

let i = 1;2

send a packet from s to t through the path in T0;3

while the packet fails to reach t do4

let xi be the exception that caused the failure;5

construct Gi from Gi−1 by replicating the intermediate vertices of xi and then6

deleting selected edges;
construct the shortest path tree Ti rooted at s in Gi using Ti−1;7

send a packet from s to t through the path in Ti;8

let i = i + 1;9

In the above algorithm, the only lines that need further discussion are Lines 6 and 7;
details are in Sections 2.1 and 2.2 respectively. In the rest of the paper, whenever we focus
on a particular iteration i > 0, we use the following notation: (i) the path from s to t in
Ti−1, i.e., the path along which we try to send the packet to t in Line 4 in the iteration, is
(s, v1, v2, . . . , vp, t), and (ii) the exception that prevented the packet from reaching t in the
iteration is xi = (vr−l, vr−l+1, . . . , vr, vr+1), which consists of l + 1 edges.
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Figure 2: Modifying Gi−1 to Gi: (a) The part of Gi−1 at an exception
(vr−3, vr−2, vr−1, vr, vr+1), with l = 3. (b) Replicating vertices to create
G′

i−1. The dashed paths show two of the 8 copies of the exception. (c) Deleting
edges to create Gi. The dotted lines denote deleted edges.

2.1. Modifying the graph

The modification of Gi−1 into Gi (Line 6) in the ith iteration eliminates exception xi

while preserving all the xi-avoiding paths in Gi−1. We do the modification in two steps.
In the first step, we create a graph G′

i−1 by replicating the intermediate vertices of xi

(i.e., the vertices vr−l+1, vr−l+2, . . . , vr). We also add appropriate edges to the replica v′

of a vertex v. Specifically, when we add v′ to Gi−1, we also add the edges of appropriate
weights between v′ and the neighbors of v. It is easy to see that if a path in Gi−1 uses l′ ≤ l

intermediate vertices of xi, then there are exactly 2l′ copies of the path in G′

i−1. We say

that a path in G′

i−1 is xi-avoiding if it contains none of the 2l copies of xi.
In the second step, we build a spanning subgraph Gi of G′

i−1 by deleting a few edges
from G′

i−1 in such a way that all copies of xi in G′

i−1 are eliminated, but all xi-avoiding
paths in G′

i−1 remain unchanged. To build Gi from G′

i−1, we delete the edges (vj−1, v
′

j)

and (v′j, vj−1) for all j ∈ [r − l + 1, r]. We also delete the edge (vr, vr+1), all the outgoing

edges from v′r except (v′r, vr+1), and all the outgoing edges from v′j except (v′j , v
′

j+1) for all

j ∈ [r− l + 1, r− 1]. Figure 2 shows how the “neighborhood” of an exception changes from
Gi−1 to Gi. As before, the undirected edges in the figure are bidirectional.

Observation 2.1. Graph Gi has no copy of xi.

In Sec. 3.1 we will prove that Gi still contains all the xi-avoiding paths of Gi−1.
The vertices in Gi [G′

i−1] that exist also in Gi−1 (i.e., the ones that are not replica
vertices) are called the old vertices of Gi [respectively G′

i−1]. Note that the vertices of G0

exist in Gi for all i ≥ 0. These vertices are called the original vertices of Gi.

2.2. Constructing the tree

In Line 7 of our algorithm we construct a tree Ti that contains a shortest xi-avoiding
path from s to every other vertex in Gi−1. Tree Ti is rooted at s, and its edges are directed
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away from s. Not every shortest path tree rooted at s in Gi will work. In order to guarantee
termination of the algorithm, Ti must be similar to Ti−1, specifically, every xi-avoiding path
from s in Ti−1 must be present in Ti. The necessity of this restriction is explained in Sec. 3.3.

We construct the required Ti by preserving as much of Ti−1 as possible. We apply
Dijkstra’s algorithm starting from the part of Ti−1 that can be preserved. Let V ′ be the
set of vertices that are either replica vertices in Gi, or descendants of vr+1 in Ti−1. We first
set the weight of each v ∈ V ′ to infinity, and temporarily set Ti = Ti−1 − V ′. Then, for
each v ∈ V ′, we set the weight of v to the minimum, over all edges (u, v), of the sum of the
weight of u and the length of (u, v). Finally, we initialize the queue used in Dijkstra with
all the vertices in V ′ and run the main loop of Dijkstra’s algorithm. Each iteration of the
loop adds one vertex in V ′ to the temporary Ti. When the queue becomes empty, we get
the final tree Ti.

3. Correctness and analysis

3.1. Justifying the graph modification

In this section we prove the following lemma, which uses the notion of a corresponding
path. Consider any path Pi in Gi. By substituting every vertex in Pi that is not present
in Gi−1 with the corresponding old vertex in Gi−1, we get the corresponding path Pi−1 in
Gi−1. This is possible because any “new” edge in Gi is a replica of an edge in Gi−1. We
define the corresponding path Pj in Gj for all j < i by repeating this argument.

Lemma. If Pi is a shortest path from s to an original vertex v in Gi, P0 is a shortest
{x1, x2, . . . , xi}-avoiding path from s to v in G0.

To prove the above lemma (repeated as Lemma 3.3 below), we will first prove that xi-
avoiding paths in Gi−1 are preserved in Gi (Lemma 3.2), using the following characteristic
of an xi-avoiding path in the intermediate graph G′

i−1:

Lemma 3.1. For any xi-avoiding path P from s to v that uses only the old vertices in G′

i−1,
there exists a copy of P in Gi that starts and ends at the old vertices s and v respectively,
and possibly passes through the corresponding replicas of its intermediate vertices.

Proof. Graph Gi contains all the edges between pairs of old vertices in G′

i−1 except for the
directed edge (vr, vr+1). Thus P can remain unchanged if it does not use this directed edge.
Otherwise we will re-route any portion of P that uses the directed edge (vr, vr+1) to use
the replica edge (v′r, vr+1) instead. Let P = (s = w1, w2, . . . , wq = v), and (wj , wj+1) be
an occurrence of (vr, vr+1) in P . Tracing P backwards from wj , let h ≤ j be the minimum
index such that (wh, wh+1, . . . , wj+1) is a subpath of xi. Because P is xi-avoiding, wh must
be an intermediate vertex of xi. This implies that h > 1, since s = w1 is not an intermediate
vertex of xi because of the following reasons: (i) xi is a path in the shortest path tree rooted
at s in Gi, and (ii) there is no replica of s in Gi. Therefore wh−1 exists. We will reroute the
portion of P between wh−1 and wj+1 by using the corresponding replica vertices in place of
the subpath (wh, . . . , wj) of xi. Note that the required edges exist in Gi (since P does not
contain the whole exception xi), and that the portions of P that we re-route are disjoint
along P . Moreover, P starts and ends at the old vertices s and v respectively.
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Lemma 3.2. Any xi-avoiding path from s to v in Gi−1 has a copy in Gi that starts and
ends at the old vertices s and v respectively, and possibly goes through the corresponding
replicas of its intermediate vertices.

Proof. Let P be the xi-avoiding path in Gi−1. As we do not delete any edge to construct
G′

i−1 from Gi−1, P remains unchanged in G′

i−1. Moreover, P uses no replica vertex in G′

i−1.
So, Lemma 3.1 implies that P exists in Gi with the same old vertices at the endpoints,
possibly going through the corresponding replicas of the intermediate vertices.

Lemma 3.3. If Pi is a shortest path from s to an original vertex v in Gi, P0 is a shortest
{x1, x2, . . . , xi}-avoiding path from s to v in G0.

Proof. For any j ∈ [0, i], let Xj = {xj+1, xj+2, . . . , xi}. We show that for any j, if Pj is a
shortest Xj-avoiding path in Gj , then Pj−1 is a shortest Xj−1-avoiding path in Gj−1. The
lemma then follows by induction on j, with basis j = i, because Xi = ∅ and thus Pi is a
shortest Xi-avoiding path in Gi.

If Pj is a shortest Xj-avoiding path in Gj , Pj is Xj−1-avoiding because Pj is xj-avoiding
by Observation 2.1, and Xj ∪ {xj} = Xj−1. So, the corresponding path Pj−1 is also Xj−1-
avoiding. If we assume by contradiction that Pj−1 is not a shortest Xj−1-avoiding path in
Gj−1, then there exists another path P ′

j−1 from s to v in Gj−1 which is Xj−1-avoiding and

is shorter than Pj−1. Since xj ∈ Xj−1, P ′

j−1 is xj-avoiding, and hence by Lemma 3.2, there

is a copy P ′

j of path P ′

j−1 in Gj which has the same original vertices at the endpoints. As

P ′

j−1 is Xj-avoiding, P ′

j is also Xj-avoiding. This is impossible because P ′

j is shorter than
Pj . Therefore, Pj−1 is a shortest Xj−1-avoiding path in Gj−1.

3.2. Justifying the tree construction

To show that the “incremental” approach used in Sec. 2.2 to construct Ti is correct, we
first show that the part of Ti−1 that we keep unchanged in Ti is composed of shortest paths
in Gi:

Lemma 3.4. For every vertex v that is not a descendant of vr+1 in Ti−1, the path P from
s to v in Ti−1 is a shortest path in Gi.

Proof. First we show that P exists in Gi. Every vertex in Ti−1 exists in Gi as an old vertex.
So, P exists in Gi through the old vertices if no edge of P gets deleted in Gi. The only
edge between a pair of old vertices in Gi−1 that gets deleted in Gi is (vr, vr+1). Since v is
not a descendant of vr+1 in Ti−1, P does not use the edge (vr, vr+1). Therefore, no edge of
P gets deleted in Gi. So, P exists in Gi through the old vertices.

Neither the modification from Gi−1 to G′

i−1 nor the one from G′

i−1 to Gi creates any
“shortcut” between any pair of vertices. So, there is no way that the distance between a
pair of old vertices decreases after these modifications. Since these modifications do not
change P , which is a shortest path in Gi−1, P is a shortest path in Gi.

Lemma 3.5. The tree Ti is a shortest path tree in Gi.

Proof. For every vertex v that is not a descendant of vr+1 in Ti−1, the path P from s to v

in Ti is the same as the one in Ti−1 and hence, a shortest path in Gi (Lemma 3.4). For all
other vertices v in Gi, it follows from Dijkstra’s algorithm that the path from s to v in Ti

is a shortest path.
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Lemmas 3.3 and 3.5 together prove that our algorithm is correct provided it terminates,
which we establish in the next section.

3.3. Analyzing time and space requirement

Although in every iteration we eliminate one exception by modifying the graph, we
introduce copies of certain other exceptions through vertex replication. Still our algorithm
does not iterate indefinitely because, as we will show in this section, the incremental con-
struction of the shortest path tree (Sec. 2.2) guarantees that we do not discover more than
one copy of any exception. We first show that any exception in Gi−1 has at most two copies
in Gi (Lemma 3.6), and then prove that one of these two copies is never discovered in the
future (Lemma 3.7):

Lemma 3.6. Let y 6= xi be any exception in Gi−1. If the last vertex of y is not an
intermediate vertex of xi, then Gi contains exactly one copy of y. Otherwise, Gi contains
exactly two copies of y. In the latter case, one copy of y in Gi ends at the old vertex v and
the other copy ends at the corresponding replica v′.

Proof. Let π = (w1, w2, . . . , wj) be a maximal sequence of vertices in y that is a subsequence
of (vr−l+1, vr−l+2, . . . , vr). Let w′

j be the replica of wj in Gi. We will first show that if there

is a vertex v in y right after π, then exactly one of the edges (wj , v) and (w′

j , v) exists in Gi.

Consider the subgraph of Gi induced on the set of replica vertices {v′r−l+1
, v′r−l+2

, . . . , v′r}:
this subgraph is a directed path from v′r−l+1 to v′r, and the only edge that goes out of
this subgraph is (v′r, vr+1). Therefore, (i) when (wj , v) = (vr, vr+1), (w′

j , v) ∈ Gi and

(wj , v) 6∈ Gi, and (ii) otherwise, (wj , v) ∈ Gi and (w′

j , v) 6∈ Gi.
Now Gi has exactly two copies of π: one through the old vertices, and another through

the replicas. The above claim implies that when there is a vertex v in y right after π, Gi

has at most one copy of the part of y from w1 to v. However, when π is a suffix of y, Gi

has both the copies of the part of y from w1 to wj . The lemma then follows because any
part of y that contains no intermediate vertex of xi has exactly one copy in Gi.

Lemma 3.7. Let y 6= xi be any exception in Gi−1 such that the last vertex of y is an
intermediate vertex v of xi. The copy of y that ends at the old vertex v in Gi is not
discovered by the algorithm in any future iteration.

Proof. The copy of the path (s, v1, v2, . . . , vr) through the old vertices in Gi contains v. Let
P be the part of this path from s to v. Clearly, P ∈ Ti−1, and P does not contain any
exception because the oracle returns the exception with the earlier last vertex. So, the way
we construct Tj from Tj−1 for any iteration j ≥ i ensures that P ∈ Tj .

Let y1 be the copy of y that ends at v. Now y1 is not a subpath of P because P does
not contain any exception. For any j ≥ i, P ∈ Tj , and both P and y1 end at the same
vertex, therefore y1 6∈ Tj. So, a packet in iteration j will not follow y1, and y1 will not be
discovered in that iteration.

Lemma 3.8. The while loop iterates at most k = |X| times.

Proof. For any iteration i, Gi−1 contains xi, and Gi does not contain xi. Every exception
other than xi in Gi−1 has either one or two copies in Gi (Lemma 3.6). By Lemma 3.7, if an
exception has two copies in Gi, only one of them is relevant in the future. Thus the number
of exceptions effectively decreases by one in each iteration. The lemma then follows.
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To determine the running time, observe that the number of vertices increases in each
iteration. However, we run Dijkstra’s algorithm on at most n vertices in any iteration, be-
cause the number of replica vertices added in each iteration is always less than the number
of vertices in the part of the shortest path tree that is carried over from the previous tree
in our incremental use of Dijkstra. Moreover, we can make sure that Dijkstra’s algorithm
examines at most m edges in iteration i, by deleting a few more edges from Gi after per-
forming the graph modification described in Sec. 2.1. More precisely, for each old vertex
v ∈ {vr−l+1, vr−l+2, . . . , vr}, since the label (i.e., the “distance” from s) put on v by Dijk-
stra’s algorithm in the previous iterations remains unchanged later on, we can safely delete
from Gi all the incoming edges of v without affecting future modifications. (Note that for
all j ∈ [r− l +1, r], old vertices vj and vj+1 are no longer adjacent in Gi, although the edge
(vj , vj+1) still exists in Ti.) It is not hard to see that the number of new edges in Gi is now
equal to the number of edges deleted from Gi−1.

Theorem 3.9. The algorithm computes a shortest X-avoiding path in O(kn log n + km)
time and O(n + m + L) space.

Proof. The correctness of the algorithm follows from Lemmas 3.3 and 3.5.
Let li be the number of intermediate vertices of the exception discovered at the ith

iteration (thus the size of the exception is li + 2). The ith iteration adds li vertices. Since

the algorithm iterates k times (Lemma 3.8), there are n +
∑k

i=1 li < n + L vertices in the
graph at termination. Because in each iteration the number of added edges is equal to the
number of deleted edges, the space requirement is O(n + m + L).

Each iteration of our algorithm takes O(|V | log |V | + |E|) = O(n log n + m) time, and
the total time requirement follows.

We note that in practice, the algorithm will not discover all k of the forbidden paths.
It will discover only the ones that “interfere” in getting from s to t.

4. Extensions

This section contains: (1) an algorithm to compute shortest paths from s to every other
vertex in G; (2) an analysis in the case when X is given explicitly; and (3) a version of
the algorithm where the oracle returns any exception on a query path, rather than the
exception that ends earliest.

The algorithm in Sec. 2 can be extended easily to compute a shortest path from s to
every other vertex in G. We simply repeat the previous algorithm for every vertex in G, but
with a small change: in every iteration (except of course the first one) we use the graph and
the shortest path tree constructed at the end of previous iteration. Since every exception
in X is handled at most once, the while loop still iterates at most k times, and therefore,
the time and space requirements remain the same.

Theorem 4.1. The algorithm computes shortest X-avoiding paths from s to all other ver-
tices in O(kn log n + km) time and O(n + m + L) space.

Our algorithm applies when X is known explicitly; taking into account the cost of
sorting X so that we can efficiently query whether a path contains an exception we obtain:

Theorem 4.2. When X is known a priori, we can preprocess the graph in O(kn log(kn) +
km) time and O(n + m + L) space so that we can find a shortest X-avoiding path from s

to any vertex in O(n + L) time.
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Recall that Villeneuve and Desaulniers [22] solved this problem in O((n + L) log(n +
L) + m + dL) preprocessing time, O(n + m + dL) space and O(n + L) query time. Our
algorithm is more space efficient than theirs. Our preprocessing is slightly slower in general,
although it is slightly faster in the special case L = Θ(kn) and m = o(dn) (intuitively, when
the exceptions are long, and the average degree of a vertex is much smaller than the largest
degree).

Finally, returning to the case where X is not known a priori, we consider a weaker
oracle that returns any exception on the query path, rather than the exception that ends
earliest. At the cost of querying the oracle more often, we obtain a better run-time. The
idea is to query the oracle during the construction of a shortest path tree. The algorithm is
very similar to Dijkstra’s, the only difference is that it handles exceptions inside Dijkstra’s
loop. More precisely, right after a vertex v is dequeued and added to the current tree, we
try the s-v path in the tree. If the path is exception avoiding, we update the distances of
the neighbors of v and go to the next iteration, as in “traditional” Dijkstra’s algorithm.
Otherwise, we remove v from the current tree, perform vertex replication and edge deletion
as described in Sec. 2.1, and then go to the next iteration.

Theorem 4.3. The algorithm described above computes shortest X-avoiding paths from s

to all other vertices in O((n + L) log(n + L) + m + dL) time and O(n + m + L) space.

Proof. There are at most n+L vertices in the modified graph in any iteration. So, the loop
in the modified Dijkstra’s algorithm executes at most n + L times, and the priority queue
holds at most n + L entries. Moreover, within Dijkstra’s loop vertex replication and edge
deletion take O(dL) time in total. The running time then follows. The proof of correctness
is similar to that of Theorem 4.1 except that the “current” shortest path tree is no longer
a spanning tree in the current graph.

This new algorithm is faster than the old algorithm of Theorem 4.1 in general but makes
as many as n+L queries to the oracle versus at most k oracle queries for the old algorithm.
The old algorithm is slightly faster in the special case L = Θ(kn) and m = o(dn).

5. Conclusion

Motivated by the practical problem of finding shortest paths in optical networks, we in-
troduced a novel version of the shortest path problem where we must avoid forbidden paths,
but we only discover the forbidden paths by trying them. We gave an easily implementable,
polynomial time algorithm that uses vertex replication and incremental Dijkstra.

As we have mentioned before, in practice our algorithms will not discover all the forbid-
den paths in X. In fact, the running time of each of our algorithms is determined by only
the forbidden paths that “interfere” in getting from s to t. An interesting open problem
is to bound the number of such paths. We conjecture that in a real optical network, the
number of such paths is o(k), and therefore, our algorithms run much faster in practice.
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Abstract. We revisit the problem of generating a “hard” random lattice together with a
basis of relatively short vectors. This problem has gained in importance lately due to new
cryptographic schemes that use such a procedure for generating public/secret key pairs.
In these applications, a shorter basis directly corresponds to milder underlying complexity
assumptions and smaller key sizes.

The contributions of this work are twofold. First, using the Hermite normal form as an
organizing principle, we simplify and generalize an approach due to Ajtai (ICALP 1999).
Second, we improve the construction and its analysis in several ways, most notably by
tightening the length of the output basis essentially to the optimum value.

1. Introduction

A (point) lattice is a discrete additive subgroup of Rm; alternatively, it is the set of
all integer linear combinations of some linearly independent basis vectors b1, . . . ,bn ∈ Rm.
Lattices appear to be a rich source of computational hardness, and in recent years, lattice-
based cryptographic schemes have emerged as an intriguing alternative to more traditional
ones based on, e.g., the factoring and discrete logarithm problems. Among other reasons,
this is because such schemes have yet to be broken by quantum algorithms, and their security
(on the average, for almost all choices of random keys) can be based solely on worst-case
computational assumptions.

In 1996, Ajtai’s seminal work [Ajt04] in this area demonstrated a family of random
lattices for which finding relatively short nonzero lattice vectors is at least as hard as ap-
proximating the well-known Shortest Vector Problem (among others) in the worst case.
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This family of “hard random lattices” has since been used as the foundation for several im-
portant cryptographic primitives, including one-way and collision-resistant hash functions,
public-key encryption, digital signatures, and identity-based encryption (see, for example,
[GGH96, MR07, Reg05, GPV08]).

Ajtai’s initial paper also showed that a hard random lattice can be generated along
with one relatively short lattice vector, which can be useful as a secret key in cryptographic
settings (though such applications seem spare; see [MV03] for the one example of which
we are aware). Shortly thereafter, Goldreich, Goldwasser and Halevi [GGH97] proposed
public-key cryptographic schemes (though without security proofs) in which the secret key
is a short basis (i.e., a basis in which all of the vectors are relatively short) of some public
lattice. One method proposed in [GGH97] for generating a lattice along with a short basis
is first to choose the short basis vectors, and then to transform it into a “random” public
basis by a sequence of lattice-preserving transformations. Unfortunately, this method does
not produce lattices from the provably hard family defined in [Ajt04]. Although improve-
ments to the GGH lattice generator and public-key cryptosystem were later proposed by
Micciancio [Mic01] (following a cryptanalysis of the original scheme by Nguyen [Ngu99]),
there is still no known proof that the resulting random lattices are actually hard on the
average. (We should also mention that the digital signature scheme from [GGH97] has
since been shown to be insecure regardless of the particular method used for generating
lattices [NR06].)

Following [GGH97], Ajtai demonstrated an entirely different method of generating a
lattice together with a short basis [Ajt99]. This generator has the important advantage
that the resulting lattice is drawn, under the appropriate distribution, from the hard family
defined in [Ajt04]. Interestingly, the algorithm apparently went without application until
very recently, when Gentry, Peikert and Vaikuntanathan [GPV08] constructed provably se-
cure (under worst-case assumptions) cryptographic schemes that crucially use short bases
as their secret keys; see also the subsequent works [PVW08, PV08, Pei08] for other appli-
cations. At this point we should mention that technically, the main algorithm of [Ajt99]
actually produces a full-rank set of short lattice vectors (not necessarily a basis), which
nonetheless suffices for all the applications in question.

The maximal length of the generated basis vectors directly affects the security and effi-
ciency of the application in which it is used, both in theory and in practice. More specifically,
it determines the approximation factor in the underlying worst-case lattice assumptions, as
well as the concrete dimensions and key sizes needed for security against real attacks (see
Section 2.1 for details). Therefore, it is very desirable to generate a set that is as short as
possible. Unfortunately, the result from [Ajt99] is far from optimal — the length is bounded

only by O(m5/2), versus the optimal bound of about
√

m (for commonly used parameters)
— and the method appears not to have attracted much attention or improvement since its
publication almost a decade ago (probably due to the lack of applications until recently).

1.1. Our Contributions

Our first contribution is to elucidate and generalize Ajtai’s algorithm [Ajt99] for gen-
erating a hard random lattice along with a relatively short full-rank set of lattice vectors.
We endeavor to give a high-level, modular exposition of the method and the main concerns
that motivate its structure (in the process, we also correct some minor errors in the original
paper). One novelty in our approach is to design and analyze the algorithm around the
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concept of the Hermite normal form (HNF), which is a unique canonical representation for
(integer) lattices. Micciancio [Mic01] has proposed using the HNF in cryptographic appli-
cations to specify a lattice in its “least revealing” representation; here we use the HNF as
the central organizing tool for ensuring that the short basis corresponds to a (uniformly
random) lattice from the hard family of [Ajt04].

Our second contribution is to refine the algorithm and its analysis, improving it in
several ways. First and most importantly, we improve the length of its output set from
O(m5/2) to as low as O(

√
m), where m is the dimension of the output lattice (see Section 3

for precise statements of the new bounds). For the cryptographic schemes of, e.g. [GPV08],
this immediately implies security under significantly milder worst-case assumptions: we
need only that lattice problems are hard to approximate to within an Õ(n3/2) factor, rather

than Õ(n7/2) as before. Our second main improvement is to make the generator work for
an arbitrary integer modulus q and to output a basis of the resulting lattice, whereas the
original algorithm of [Ajt99] works only for odd q and produces just a full-rank set. Using
an even modulus q happens to be important in recent cryptosystems of Peikert [Pei08] that
are based on the standard worst-case shortest vector problem. Generating a basis (versus a
full-rank set) seems to be less of an advantage, but it may have unanticipated uses elsewhere.

We hasten to add that [GPV08, Section 5] mentions that Ajtai’s algorithm can be
improved to yield an O(m1+ǫ) bound on the short set, but does not provide any further de-
tails. The focus of [GPV08] is on applications of a short basis, independent of the particular
method of its generation. The present work is a full exposition of an improved generation
algorithm, and is meant to complement [GPV08] and other applications requiring a short
basis.

1.2. Relation to Ajtai’s Construction

Our construction is inspired by Ajtai’s, but differs from it in most of the details. The
greatest similarity is in our use of a specially crafted unimodular matrix (called B in this
work) that has small entries, but whose inverse matrix B−1 contains geometrically increasing
sequences of integers. As in [Ajt99], a crucial step in our construction involves assembling
other matrices with large entries via products of short vectors and B−1.

In terms of its main differences from [Ajt99], our construction is guided from the “top
down” by the abstract block structure of the short basis, the desired distribution of its Her-
mite normal form, and the unimodular transformation relating the two. This approach also
yields various technical simplifications and corrections. In particular, it lets us completely
separate the structural constraints on the basis from the randomization of the output lat-
tice, and it facilitates a generalization to arbitrary moduli q. (In Ajtai’s construction, the
structure and randomization are tightly coupled, and q is assumed to be odd when arguing
that the output set is full-rank.)

2. Preliminaries

For a positive integer k, let [k] denote the set {1, . . . , k}. We denote the set of integers
modulo q by Zq, and identify it with the set {0, . . . , q − 1} in the natural way. Row vectors
are named by lower-case bold letters (e.g., x) and matrices by upper-case bold letters (e.g.,
X). The ith entry of a vector x is denoted xi and the ith row of a matrix X is denoted
xi. We identify a matrix X with the (ordered) set {xi} of its row vectors, and define
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‖X‖ = maxi ‖xi‖. We let ei denote the ith standard basis vector, where its dimension will
be clear from context. The symbol Id denotes the d× d identity matrix.

2.1. Lattices

Generally defined, a lattice Λ is a discrete additive subgroup of Rm for some nonneg-
ative integer m. In this work, every lattice will be a full-rank integer lattice, which is a
discrete additive subgroup of Zm having finite index, i.e., the quotient group Zm/Λ is finite.
The determinant of Λ, denoted det(Λ), is the cardinality |Zm/Λ| of this quotient group.
Geometrically, the determinant is a measure of the “sparsity” of the lattice.

A lattice Λ ⊆ Zm can also be viewed as the set of all integer linear combinations of m
linearly independent basis vectors B = {b1, . . . ,bm} ⊂ Zm:

Λ = L(B) =

{

cB =
∑

i∈[m]

cibi : c ∈ Zm

}

.

A lattice has infinitely many bases (when m ≥ 2), which are related to each other by
unimodular transformations, i.e., B and B′ generate the same lattice if and only if B = U·B′

for some unimodular matrix U ∈ Zm×m. The determinant of a basis matrix B is exactly
the determinant of the lattice it generates, up to sign: |det(B)| = det(L(B)).

Every lattice Λ ⊆ Zm has a unique canonical basis H = HNF(Λ) ∈ Zm×m called
its Hermite normal form (HNF). The matrix H is upper triangular and has non-negative
entries (i.e., hi,j ≥ 0 with equality for i > j), has strictly positive diagonal entries (i.e.,
hi,i ≥ 1), and every entry above the diagonal is strictly smaller than the diagonal entry
in its column (i.e., hi,j < hj,j for i < j). Note that because H is upper triangular, its
determinant is simply the product

∏

i∈[m] hi,i > 0 of its diagonal entries. For a lattice basis

B, we write HNF(B) to denote HNF(L(B)). It follows that for H = HNF(B), there exists
a (unique) unimodular matrix U such that B = U ·H. In addition, the matrices U and H

can be computed in polynomial time given B (see [MW01] and references therein).

Hard random lattices. We will be especially concerned with a certain family of lattices in
Zm as first defined by Ajtai [Ajt04]. A lattice from this family is most naturally specified
not by a basis, but instead by a parity check matrix A ∈ Zm×n

q for some positive integer n
and positive integer modulus q. (We discuss the parameters m, n, and q in detail below).
The associated lattice is defined as

L⊥(A) = {x ∈ Zm : xA = 0 mod q} ⊆ Zm.

It is routine to check that L⊥(A) contains the identity 0 ∈ Zm and is closed under addition,
hence it is a subgroup of (and lattice in) Zm. Also observe that q · ei ∈ L⊥(A) for every
A and every i ∈ [m], so membership in L⊥(A) is determined solely by a vector’s entries
modulo q.

We review some basic facts about this family of lattices. Let Λ = L⊥(A) for some
arbitrary A ∈ Zm×n

q . First, we have det(Λ) ≤ qn, by the following argument: let φ :
(Zm/Λ)→ Zn

q be the homomorphism mapping the residue class (x + Λ) to xA ∈ Zn
q . Then

φ is injective, because if φ(x + Λ) = φ(x′ + Λ) for some x,x′ ∈ Zm, we have (x− x′)A = 0

which implies x − x′ ∈ Λ, i.e., (x + Λ) = (x′ + Λ) ∈ (Zm/Λ). Therefore there are at most
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|Zn
q | = qn residue classes in Zm/Λ. Minkowski’s first inequality states that the minimum

distance of Λ (i.e., the length of a shortest nonzero lattice vector) is at most
√

m · det(Λ)1/m ≤
√

m · qn/m. (2.1)

For reasons that will become clear from the statement of Proposition 2.1 below, the
hardness of these lattices is most naturally parameterized by n (not m, even though m is the
dimension of the lattices). Therefore, it is standard to consider the parameters m = m(n)
and q = q(n) as functions of n. Given n and q, one of the most interesting parameter choices
(which essentially minimizes the bound in (2.1)) is to let m = c · n lg q for some constant
c ≥ 1. Then by (2.1), the minimum distance of L⊥(A) for any A ∈ Zm×n

q is at most
√

m · qn/m =
√

m · q1/(c lg q) =
√

m · 21/c = Θ(
√

n lg q).

For a random A, a volume argument reveals that with high probability, this bound is
essentially tight (up to a small constant factor). Note that for larger choices of m, the
minimum distance does not increase because we can just ignore the extra rows of A. As
long as m does not grow extremely large,

√
n lg q remains a good estimate for the minimum

distance of L⊥(A) for random A.
The following proposition, proved first by Ajtai [Ajt04] (in a quantitatively weaker

form) and in its current form in [MR07, GPV08], relates the average-case and worst-case
complexity of certain lattice problems.

Proposition 2.1. For any m = m(n), β = β(n) = poly(n) and any q = q(n) ≥ β ·
ω(
√

n log n), finding a nonzero x ∈ L⊥(A) having length at most β for uniformly random
A ∈ Zm×n

q (with nonnegligible probability over the choice of A and the randomness of the
algorithm) is at least as hard as solving (with overwhelming probability) the approximate
shortest vector problem GapSVP (and others) on n-dimensional lattices to within a γ(n) =

β · Õ(
√

n) factor in the worst case.

Note that Proposition 2.1 is meaningful only when β is at least the minimum distance
of a random L⊥(A), otherwise no nonzero vector x ∈ L⊥(A) of length at most β is likely
to exist. For q = poly(n) and m as described above above, we can therefore take β to be
as small as O(

√
n lg n), which yields a problem that is hard on the average assuming the

worst-case hardness of approximating GapSVP (and other problems) to within an Õ(n)
factor.

In certain cryptographic applications, however, an adversary that breaks the scheme is
guaranteed only to produce lattice vectors that are much longer than the shortest vector in
the lattice, so one needs to assume average-case hardness for larger values of β. For example,
the secret key in the digital signature schemes of [GPV08] is a basis of L⊥(A) having some
length L, and its signatures are vectors of length ≈ L

√
m. It is shown in [GPV08] that an

adversary that is capable of forging a signature is also capable of finding a nonzero lattice
vector of length β ≈ L

√
m in L⊥(A), which by Proposition 2.1 (for our choice of m) is as

hard as approximating GapSVP in the worst case to within L · Õ(n) factors. Therefore, a
shorter secret basis immediately induces a weaker underlying hardness assumption.

Note also that Proposition 2.1 requires the modulus q to exceed β by a significant
amount (otherwise the trivial vector q · e1 would be a valid solution), and that m grows
with lg q. Therefore, a polynomial factor improvement in the length L of the basis also
yields a constant factor improvement in the dimension m and magnitude q of entries in the
parity check matrix A (i.e., the public key).
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2.2. Probability

We denote the uniform probability distribution over a finite set G by U(G). For two
probability distributions D1,D2 (viewed as functions) over a finite set G, the statistical
distance ∆(D1,D2) is defined to be 1

2

∑

g∈G |D1(g)−D2(g)|.
Lemma 2.2 (Leftover Hash Lemma (Simplified) [HILL99]). Let H be a family of 2-universal
hash functions from a domain X to range Y. and let X be a random variable over X . Then
for h ← H and X ← X chosen independently and uniformly, (h, h(X)) is 1

2

√

|Y| / |X |-
uniform over H× Y.

3. Construction

Our goal is to generate a (nearly) uniform parity check matrix A ∈ Zm×n
q , together

with a basis S ∈ Zm×m of L⊥(A) whose vectors are relatively short. Our approach consists
of two steps. First we investigate the structure of the Hermite normal form of L⊥(A), for a
given (random) A. Then we describe how to generate S so that its HNF has the appropriate
structure and distribution, so as to induce a (nearly) uniform parity check matrix A.

We give two constructions that are, in general, incomparable. The first construction,
described in Theorem 3.1 below, works for a small dimension m = O(n log q), but the

resulting basis length is Õ(m), which is not optimal. The second construction, described in
Theorem 3.2, provides a basis of essentially optimal length O(

√
n log q), but at the cost of

a somewhat larger dimension m = O(n log2 q). More generally, Theorem 3.2 can actually
be parameterized by a base r to yield various trade-offs between the basis length and
dimension m; in general, we can obtain a basis of length Θ(r ·

√
n log q) with a dimension

m = Θ(n log q logr q).
Most applications use a polynomial modulus q = poly(n), so the extra log q = O(log n)

factor (or logr q = O(1/δ) factor, when r = nδ) in the dimension m in Theorem 3.2 is
of little consequence for the resulting key sizes and underlying hardness assumptions, at
least asymptotically. However, certain applications (like the GapSVP-based cryptosystems
of [Pei08]) in some cases rely on an exponentially large q ≈ 2n, in which case the extra log q
factor increases the key size significantly.

Theorem 3.1. There is a probabilistic polynomial-time algorithm that, on input a positive
integer n (in unary), positive integer q ≥ 2 (in binary), and a poly(n)-bounded positive
integer m ≥ 3(1+ δ)n lg q for some δ > 0, outputs a pair (A ∈ Zm×n

q ,S ∈ Zm×m) such that:

• A is (m · q−δn/2)-uniform over Zm×n
q ,

• S is a basis of L⊥(A), and

• For any ω(
√

log n) function, ‖S‖ ≤ m · ω(
√

log n) with all but n−ω(1) probability.

Theorem 3.2. There is a probabilistic polynomial-time algorithm that, on input the pa-
rameters n, q, and m as above with m ≥ 2n lg2 q, outputs a pair (A,S) as above, where

• ‖S‖ ≤ 5
√

n lg q for every i ∈ [m].

The remainder of this section is devoted to proving the theorems.
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3.1. Parity Check and Hermite Normal Form

As a warm-up to motivate the construction, we first consider how a given parity check
matrix A ∈ Zm×n

q relates to the Hermite normal form of the lattice L⊥(A). One may
imagine that the rows a1, . . . ,am ∈ Zn

q of A are uniformly random and independent, though
most of the discussion below applies to arbitrary A.

We determine the HNF matrix H ∈ Zm×m of the lattice Λ = L⊥(A) inductively from
the bottom up. Starting with the mth row hm = (0, . . . , 0, hm,m) = hm,m · em ∈ Zm, it
must be the case that

hm ·A = hm,m · am = 0 ∈ Zn
q ,

because every row of H must be in Λ. Let k ≤ q be the smallest positive integer solution
to k · am = 0 ∈ Zn

q . Then k · em ∈ Λ, so we must be able to write k · em =
∑

i∈[m] zihi for

some integers zi. Now because hi,i > 0 for every i ∈ [m], it must therefore be the case that
zi = 0 for all i < m, which implies hm,m = k.

Observe that when am is uniformly random, we typically have hm,m = q, but other
values of hm,m are also possible. For example, if q is even and every entry of am also
happens to be even, then we would have hm,m ≤ q/2.

More generally, suppose that we have determined hi+1, . . . ,hm for some 1 ≤ i < m.
Then by similar reasoning, hi ∈ Zm is given by the unique solution to the equation

hi,i · ai +
m∑

j=i+1

hi,j · aj = 0 ∈ Zn
q

in which hi,i > 0 is minimized and 0 ≤ hi,j < hj,j ≤ q for every j > i. To illustrate
further, let Mi+1 ⊆ Zn

q be the subgroup of Zn
q generated by (all integer linear combinations

of) ai+1, . . . ,am. Then if ai ∈ M , we have ai =
∑m

j=i+1 zjaj for some integers zj , so
hi,i = 1, hi,j = −zj mod hj,j, and Mi = Mi+1. On the other hand, if ai 6∈M , then we have
1 < hi,i ≤ q and Mi ) Mi+1. Note that once Mi = Zn

q , we have hi′,i′ = 1 and hi′,j′ = 0 for
every i′ < j′ < i.

Now suppose that A is uniformly random, and that d = (1 + δ)n lg q ≤ m for some

positive constant δ > 0. Let m′ = m− d, and break A into two matrices A1 ∈ Zm′×n
q and

A2 ∈ Zd×n
q , where A1 consists of the first m′ rows of A and A2 consists of the remaining

d. It can be shown (e.g., using the leftover hash lemma) that the rows of A2 generate the
entire group Zn

q with overwhelming probability over the choice of A2. So almost all lattices

L⊥(A) have an HNF of the form

H =










Im′ H1

0 H2










, (3.1)

where H2 ∈ Zd×d
q is the Hermite normal form of the lattice L⊥(A2) ⊂ Zd, which has

determinant qn. Note that there is a bijection between Zd modulo H2 (formally, the group
Zd/(Zd·H2)) and Zn

q , given by φ(h) = h·A2 ∈ Zn
q . Note also that because H·A = 0 ∈ Zm×n

q ,

we have A1 = −H1 ·A2 ∈ Zm′×d
q . Therefore, the rows of A1 are uniformly random if and

only if the rows of H1 are uniformly random modulo H2. Our construction (described
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below) produces a basis S of short vectors whose HNF has the above form and a nearly
identical probability distribution.

3.2. The Block Structure

To guarantee that the HNF matrix H of our constructed basis S has the desired struc-
ture and distribution, we design S together with the unimodular matrix U relating it to H.
We first set up the basic block structures of S and U according to the principal equation
S = U ·H. We then make a few simplifying choices and extract a few constraints on the
blocks, and specify the blocks so as to satisfy these constraints.

Our construction first chooses A2 ∈ Zd×n
q uniformly at random and computes the HNF

H2 of the induced lattice L⊥(A2) ⊆ Zd. Recall that H2 is nonsingular and |det(H2)| ≤ qn

(note that it will usually be the case that A2 generates all of Zn
q and |det(H2)| = qn, though

we do not need this fact explicitly.) Following the form of H in (3.1), we obtain the following
block structure on S and U, where we have named the blocks of S for convenience.

S =










B D

P V










=










B U1,2

P U2,2










︸ ︷︷ ︸

U

×










Im′ H1

0 H2










︸ ︷︷ ︸

H

(3.2)

Strictly speaking, our construction of S and U does not correspond to an H that
is in full normal form; specifically, some entries of H1 might exceed their corresponding
diagonal entries in H2. This is not a problem, because the rows of H1 can always be
reduced modulo H2 via additional unimodular operations. But it is not even necessary to
compute this reduced form of H1 in our algorithm; instead, it suffices to output S, A2,
and A1 = −H1 ·A2 ∈ Zm′×n

q , and to show that the joint distribution of (A1,A2) is nearly
uniform.

One of the most sensitive conditions to satisfy is to make U unimodular. Because we
only care about H1 modulo H2, the particular choices of the rightmost blocks U1,2 and U2,2

are not of much consequence. For convenience, we make U block lower-triangular, setting
U1,2 = 0 and U2,2 = −Id, which implies that B must be unimodular. Substituting these
choices, we obtain the following constraints.

H1 = B−1 ·D (3.3)

V + H2 = P ·H1 = P ·B−1 ·D (3.4)

Note that the left-hand sides of the above equations have large entries, while we need all the
blocks of S to have small entries. The B−1 term will therefore bear the sole responsibility
for generating large entries. Note also the common term H1 = B−1 · D that appears in
both equations, which causes tension between the two constraints: while we need H1 to be
nearly uniform modulo H2, we also need to be able to construct P with small entries so
that P ·H1 closely approximates the matrix H2 that is imposed upon us.
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To resolve this tension, we write H1 as the sum of two matrices, a random matrix R

and a deterministic “structured” matrix G:

H1 = B−1 ·D = G + R.

• Each row ri of R is an independent, uniformly random vector in {0, 1}d with random

sign. We show using the leftover hash lemma that R·A2 is nearly uniform in Zm′×n
q ,

hence so is A1 = −H1 ·A2.
• The matrix G is designed so that small integer combinations of its rows may be

assembled to produce (a matrix close to) H2; more specifically,

P ·G = H′
2 = H2 − Id

for some P having small entries (we subtract Id from H2 simply for convenience,
to put the diagonals of H′

2 in the range {0, . . . , q − 1}). Furthermore, G and B are
designed together to make B ·G have small entries, so that

D = B ·H1 = B ·G + B ·R
has small entries as well.

We then let V = P ·R− Id; observe that V has small entries because P, R, and Id do, and
that (3.4) is satisfied because

P ·H1 = P · (G + R) = H2 + V.

3.3. Building the Blocks

Here we list the principal constraints on the as-yet undefined matrices B, P, and G

from the above discussion, and show how to satisfy those constraints.

(1) Matrix B must be unimodular and have small entries.
(2) The product W = B ·G must have small entries.
(3) We must satisfy P ·G = H′

2 = H2 − Id for some P with small entries.

Below we give two constructions, corresponding to Theorems 3.1 and 3.2, respectively.
In both constructions, we assemble B from copies of a certain component matrix Tk ∈ Zk×k,
which is defined to be the k × k lower-triangular matrix with 1s along the diagonal, −2s
directly below the diagonal, and 0s elsewhere, i.e., ti,i = 1 for i ∈ [k] and ti+1,i = −2 for
i ∈ [k − 1]. It may be verified that Tk is lower triangular and unimodular. Moreover,
its inverse T−1

k has a very useful form: its (i, j)th entry is 2i−j for every i ≥ j, and zero
elsewhere.

3.3.1. Construction for Theorem 3.1. Define m′ = m − d ≥ 2d. The basic idea is to
construct G = B−1 ·W ∈ Zm′×d so that it contains enough power-of-2 multiples of each of
the standard basis vectors in Zd; this is done by assembling B from copies of Tk and letting
W have small entries, thus satisfying constraint 2. Then any vector in Zd with bounded
entries (specifically, every row of H′

2) can be expressed as a binary combination of the rows
of G, thus satisfying constraint 3.

We now proceed in more detail. Recall that we are given H2 ∈ Zd×d; say its diagonal
entries (from top to bottom) are r1, . . . , rd, and recall that their product is (at most) qn.
Let ℓj = ⌈lg rj⌉ ≤ 1 + lg rj , and define the partial sums s0 = 0, sj = sj−1 + ℓj for j ∈ [d],
and define the total sum s = sd ≤ d + n lg q ≤ m′.
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Define B ∈ Zm′×m′
to be the block diagonal matrix

B = diag(Tℓ1, . . . ,Tℓd
, Im′−s),

i.e., the direct sum of Tℓj
for j ∈ [d], plus an identity matrix of the appropriate re-

maining dimension. Observe that B is lower triangular and unimodular, and that B−1 =
diag(T−1

ℓ1
, . . . ,T−1

ℓd
, Im′−s).

Now define W so that wsj−1+1 = ej ∈ Zd for each j ∈ [d], and wi = 0 elsewhere.

Recalling that G = B−1 ·W, one can then check that for each j ∈ [d] and each k ∈ [ℓj ], we
have

gsj−1+k = 2k−1 · ej ∈ Zd

(and gi = 0 for s < i ≤ m′).
Because G has such a useful form, satisfying constraint 3 (i.e., making P ·G = H2−Id)

is straightforward. For each j ∈ [d], every entry of the jth column of H′
2 is in {0, . . . , rj − 1},

by construction of H2. Therefore, each row of H′
2 can be represented as a binary combina-

tion of rows g1, . . . ,gs of G. These binary combinations are specified in the natural way via
the d rows of P, and we have satisfied constraint 3 where each entry of P has magnitude
at most 1.

3.3.2. Construction for Theorem 3.2. Define m′ = m − d ≥ d · ⌈lg q⌉. The basic idea is

to construct G = B−1 ·W ∈ Zm′×d so that G itself contains the rows of H′
2, which can

then be trivially selected by very short rows pi having length 1 (rather than almost
√

m
as above). To do this, we let B be made up of copies of Tk much like above, and let W

encode the binary representation of each row of H′
2. Note that H′

2 has d rows with entries
that can be as large as q − 1, so we can represent it in binary using d · ⌈lg q⌉ ≤ m′ rows.
(More generally, using the base-r analog of Tk instead of base 2, we can represent H′

2 using
d · logr q rows, at the expense of using vectors bi having length O(r).)

Define ℓ = ⌈lg(q − 1)⌉ and define B ∈ Zm′×m′
be the block diagonal matrix

B = diag(Tℓ, . . . ,Tℓ, Im′−d·ℓ)

(where the above expression includes d copies of Tℓ). Observe that B is lower triangular
and unimodular, and that B−1 = diag(T−1

ℓ , . . . ,T−1
ℓ , Im′−d·ℓ).

We now define W. Let h′j ∈ Zd denote the jth row of H′
2, and observe that every entry

of h′j is nonnegative and at most q−1, so it can be written in binary using ℓ bits. Therefore

h′j can be seen as the ℓth row of T−1
ℓ ·Wj for a binary matrix Wj ∈ {0, 1}ℓ×d, where the

rows of Wj consist of the coordinate-wise bits of h′j from most significant down to least

significant. Finally, let W ∈ Zm′×d be the vertical block matrix consisting of W1 through
Wd, followed by the zero matrix of dimension (m′− d · ℓ)× d. Then for G = B−1 ·W, it is
apparent from the above discussion that row gj·ℓ = h′j for each j ∈ [d]. The corresponding

rows of P are pj = ej·ℓ ∈ Zm′
for j ∈ [d].

3.4. Analysis

We now prove that the above constructions satisfy the claims in Theorems 3.1 and 3.2,
respectively. We have already shown by construction that S is a basis of L⊥(A). It remains
to show that the distribution of A is statistically close to uniform over Zm×n

q , and that the
rows of S are all relatively short (in both constructions).
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3.4.1. Distribution of A. Recall that in both constructions, A is of the form

(A1 = −H1 ·A2 , A2) = (−(G + R) ·A2 , A2) ∈ Zm×n
q ,

where A2 ∈ Zd×n
q is uniform, G is deterministic, and each row of R is independent and

uniform from {0, 1}d (with random sign).
We claim that {hA2

: hA2
(r) = rA2} is a family of 2-universal hash functions from

domain {0, 1}d to range Zn
q . First, note that rA2 = r′A2 if and only if (r− r′)A2 = 0, and

0 6= r − r′ ∈ {0,±1} for any distinct r, r′ ∈ {0, 1}. Fix such r, r′, and suppose that they
differ in their ith entry. Finally, observe that

Pr
A2

[(r− r′)A2 = 0] = q−n = 1/
∣
∣Zn

q

∣
∣ ,

by averaging over any fixed choice of all but the ith row of A2.
Now because d = (1 + δ)n lg q for some constant δ > 0, Lemma 2.2 (the leftover hash

lemma) and the triangle inequality imply that (R · A2,A2) is (m · q−δn/2)-uniform over
Zm×n

q , as desired.

3.4.2. Length of S. We need to analyze the lengths of the rows of B, P, D, and V, where

D = BG + BR

V = PR− Id

• In both constructions, BG = W is a binary matrix (or in the base-r generalization

of Theorem 3.2, an r-ary matrix). Thus ‖BG‖ ≤
√

d (more generally, (r − 1)
√

d).

• We have ‖R‖ ≤
√

d by construction, and the ℓ1 norm (i.e., the sum of the absolute
values of each entry) of each bi is at most 3 (more generally, at most r + 1). So by

the triangle inequality, we have ‖BR‖ ≤ 3
√

d (more generally, (r + 1)
√

d).
• Note that ‖V‖ ≤ ‖PR‖+ 1 by the triangle inequality.

It remains to analyze ‖PR‖ for the two constructions. In the construction for The-

orem 3.2, each pi has just a single 1 entry (and 0s elsewhere), so ‖PR‖ ≤
√

d. Putting
all the blocks of S together, we conclude that in the construction for Theorem 3.2, ‖S‖ ≤
(2r + 1)

√
d, as desired.

We now analyze the construction for Theorem 3.1. Let s be the random variable
corresponding to any entry of PR. Because P is a fixed binary matrix, s is the sum of at
most m independent random variables ri,j that individually have expectation 0 (because
the sign of each ri is random) and magnitude at most 1. By the Hoeffding bound, we have
|s| ≤ t ·√m except with probability at most exp(−Ω(t2)). Setting t = ω(

√
log n) and taking

a union bound over all poly(n) entries of PR, we conclude that ‖PR‖ ≤ t ·
√

m · d ≤ t ·m,

except with probability n−ω(1), as desired.
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ABSTRACT. Motivated by the quantum algorithm for testing commutativity of black-box groups
(Magniez and Nayak, 2007), we study the following problem: Given a black-box finite ring by an
additive generating set and a multilinear polynomial over that ring, also accessed as a black-box
function (we allow the indeterminates of the polynomial to be commuting or noncommuting), we
study the problem of testing if the polynomial is anidentity for the given ring. We give a quantum
algorithm with query complexity sub-linear in the number ofgenerators for the ring, when the number
of indeterminates of the input polynomial is small (ideallya constant). Towards a lower bound, we
also show a reduction from a version of the collision problem(which is well studied in quantum
computation) to a variant of this problem.

1. Introduction

For any finite ring(R,+, ·) the ring R[x1, x2, · · · , xm] is the ring of polynomials in com-
muting variablesx1, x2, · · · , xm and coefficients inR. The ringR{x1, x2, · · · , xm} is the ring of
polynomials where the indeterminatesxi arenoncommuting. By noncommuting variables, we mean
xixj − xjxi 6= 0 for i 6= j.

For the algorithmic problem we study in this paper, we assumethat the elements of the ring
(R,+, ·) are uniformly encoded by binary strings of lengthn andR = 〈r1, r2, · · · , rk〉 is given by
an additive generating set{r1, r2, · · · , rk}. That is,

R = {
∑

i

αiri | αi ∈ Z}.

Also, the ring operations ofR are performed by black-box oracles for addition and multiplication
that take as input two strings encoding ring elements and output their sum or product (as the case
may be). Additionally, we assume that the zero element ofR is encoded by a fixed string. The
black-box model for finite rings was introduced in [ADM06]. We now define the problem which
we study in this paper.

1998 ACM Subject Classification:F.2.1 Computation on Polynomials.
Key words and phrases:Quantum Algorithm, Identity Testing, Query Complexity, Multilinear Polynomials.
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The Multilinear Identity Testing Problem (MIT): The input to the problem is a black-box ring
R = 〈r1, · · · , rk〉 given by an additive generating set, and a multilinear polynomial f(x1, · · · , xm)
(in the ringR[x1, · · · , xm] or the ringR{x1, · · · , xm}) that is also given by a black-box access.
The problem is to test iff is an identity for the ringR. More precisely, the problem is to test if
f(a1, a2, · · · , am) = 0 for all ai ∈ R.

A natural example of an instance of this problem is the bivariate polynomialf(x1, x2) =
x1x2 − x2x1 over the ringR{x1, x2}. This is an identity forR precisely whenR is a commutative
ring. Clearly, it suffices to check if the generators commutewith each other, which gives a naive
algorithm that makesO(k2) queries to the ring oracles.

Given a polynomialf(x1, · · · , xm) and a black-box ringR by generators, we briefly discuss
some facts about the complexity of checking iff = 0 is an identity forR. The problem can be
NP-hard when the number of indeterminatesm is unbounded, even whenR is a fixed ring. To see
this, notice that a 3-CNF formulaF (x1, · · · , xn) can be expressed as aO(n) degree multilinear
polynomialf(x1, x2, · · · , xn) over F2, by writing F in terms of addition and multiplication over
F2. It follows thatf = 0 is an identity forF2 if and only if F is an unsatisfiable formula. However
in this paper we focus only on the upper and lower bounds on thequery complexityof the problem.

In our query model, each ring operation, which is performed by a query to one of the ring
oracles, is of unit cost. Furthermore, we consider each evaluation off(a1, · · · , am) to be of unit
cost for a given input(a1, · · · , am) ∈ Rm. This model is reasonable because we considerm as a
parameter that is much smaller thank.

The starting point of our study is a result of Magniez and Nayak in [MN07], where the authors
study the quantum query complexity of group commutativity testing: LetG be a finite black-box
group given by a generating setg1, g2, · · · , gk and the group operation is performed by a group
oracle. The algorithmic task is to check ifG is commutative. For this problem the authors in
[MN07] give a quantum algorithm with query complexityO(k2/3 log k) and time complexity
O(k2/3 log2 k). Furthermore, aΩ(k2/3) lower bound for the quantum query complexity is also
shown. The main technical tool for their upper bound result was a method of quantization of ran-
dom walks first shown by Szegedy [Sze04]. More recently, Magniez et al in [MNRS07] discovered
a simpler and improved description of Szegedy’s method.

Our starting point is the observation that Magniez-Nayak result [MN07] for group commuta-
tivity can also be easily seen as a commutativity test for arbitrary finite black-boxringswith similar
query complexity. Furthermore, as mentioned earlier, notice that the commutativity testing for a
finite ring coincides with testing if the bivariate polynomial f(x1, x2) = x1x2− x2x1 is an identity
for the ring. Sincef(x1, x2) is a multilinear polynomial, a natural question is, whetherthis approach
would extend to testing if any multilinear polynomial is an identity for a given ring. Motivated by
this connection, we study the problem of testing multilinear identities for any finite black-box ring.

The upper bound result in [MN07] is based on a group-theoretic lemma of Pak [Pak00]. Our
(query complexity) upper bound result takes an analogous approach. The main technical contri-
bution here is a suitable generalization of Pak’s lemma to a multilinear polynomial setting. The
multilinearity condition is crucially required. The rest of the proof is a suitable adaptation of the
Magniez-Nayak result.

For the lower bound result, we show a reduction to a somewhat more general version ofMIT
from a problem that is closely related to them-COLLISION problem studied in quantum com-
putation. Them-COLLISION problem is the following. Given a functionf : {1, 2, · · · , k} →
{1, 2, · · · , k} as an oracle and a positive integerm, the task is to determine if there is some element
in the range off with exactlym pre-images.
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We define them-SPLIT COLLISIONproblem that is closely related tom-COLLISION problem.
Here the domain{1, 2, · · · , k} is partitioned intom equal-sized intervals (assumek is a multi-
ple of m) and the problem is to determine if there is some element in the range off with ex-
actly one pre-image in each of them intervals. We show a reduction fromm-SPLIT COLLISION
to a general version ofMIT . There is an easy randomized reduction fromm-COLLISION prob-
lem tom-SPLIT COLLISIONproblem. The best known quantum query complexity lower bound for
m-COLLISIONproblem isΩ(k

2
3 ) [AS04] and thus we get the same lower bound for the general ver-

sion of MIT that we study. Improving, the current lower bound form-COLLISION is an important
open problem in quantum computation since last few years.1

Our reduction for lower bound is conceptually different from the lower bound proof in [MN07].
It uses ideas from automata theory to construct a suitable black-box ring. We recently used similar
ideas in the design of a deterministic polynomial-time algorithm for identity testing of noncommu-
tative circuits computing small degree sparse polynomials[AMS08].

2. Black-box Rings and the Quantum Query model

We briefly explain the standard quantum query model. We modify the definition of black-box
ring operations by making them unitary transformations that can be used in quantum algorithms. For
a black-box ringR, we have two oraclesOa

R andOm
R for addition and multiplication respectively.

For any two ring elementsr, s, and a binary stringt ∈ {0, 1}n we haveOa
R|r〉|s〉 = |r〉|r + s〉 and

Om
R |r〉|s〉|t〉 = |r〉|s〉|rs ⊕ t〉, where the elements ofR are encoded as strings in{0, 1}n. Notice

that Oa
R is a reversible function by virtue of(R,+) being an additive group. On the other hand,

(R, ·) does not have a group structure. Thus we have madeOm
R reversible by defining it as a3-place

function Om
R : {0, 1}3n → {0, 1}3n. Whenr or s do not encode ring elements these oracles can

compute any arbitrary string.
The query model in quantum computation is a natural extension of classical query model. The

basic difference is that a classical algorithm queries deterministically or randomly selected basis
states, whereas a quantum algorithm can query a quantum state which is a suitably prepared su-
perposition of basis states. Our query model closely follows the query model of Magniez-Nayak
[MN07, Section 2.2]. For black-box ring operations the query operators are simplyOa

R andOm
R (as

defined above). For an arbitrary oracle functionF : X → Y , the corresponding unitary operator
is OF : |g〉|h〉 → |g〉|h ⊕ F (g)〉. In the query complexity model, we charge unit cost for a single
query to the oracle and all other computations are free. We will assume that the input black-box
polynomialf : Rm → R is given by such an unitary operatorUf .

All the quantum registers used during the computation can beinitialised to |0〉. Then ak-
query algorithm for a black-box ring is a sequence ofk + 1 unitary operators andk ring oracle
operators:U0, Q1, U1, · · · , Uk−1, Qk, Uk whereQi ∈ {Oa

R, Om
R , OF } are the oracle queries and

Ui’s are unitary operators. The final step of the algorithm is tomeasure designated qubits and
decide according to the measurement output.

3. Quantum Algorithm for Multilinear Identity Testing

In this section we describe our quantum algorithm for multilinear identity testing (MIT). Our
algorithm is motivated by (and based on) the group commutativity testing algorithm of Magniez
and Nayak [MN07]. We briefly explain the algorithm of Magniez-Nayak. Their problem is the

1Ambainis in [Amb07] show a quantum query complexity upper bound ofO(km/m+1) for m-COLLISIONproblem.
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following: given a black-box groupG by a set of generatorsg1, g2, · · · , gk, the task is to find
nontrivial upper bound on the quantum query complexity to determine whetherG is commutative.
The group operators (corresponding to the oracle) areOG andOG−1 .

Note that for this problem, there is a trivial classical algorithm (so as quantum) of query com-
plexity O(k2). In an interesting paper, Pak showed a classical randomizedalgorithm of query com-
plexity O(k) for the same problem [Pak00]. Pak’s algorithm is based on thefollowing observation
([Pak00, Lemma 1.3]): Consider a subproducth = ge1

1 ge2
2 · · · gek

k whereei’ s are picked uniformly
at random from{0, 1}. Then for any proper subgroupH of G, Prob[h 6∈ H] ≥ 1/2.

One important step of the algorithm in [MN07] is a generalization of Pak’s lemma. LetVℓ be
the set of all distinct elementℓ tuples of elements from{1, 2, · · · , k}. Foru = (u1, · · · , uℓ), define
gu = gu1 · gu2 · · · guℓ

. Let p = ℓ(ℓ−1)+(k−ℓ)(k−ℓ−1)
k(k−1) .

Lemma 3.1. [MN07] For any proper subgroupK of G, Probu∈Vℓ
[gu 6∈ K] ≥ 1−p

2 .

As a simple corollary of this lemma, Magniez and Nayak show in[MN07] that, if G is non
abelian then for randomly pickedu andv from Vℓ the elementsgu andgv will not commute with

probability at least(1−p)2

4 . Thus, for non abelianG there will be at least(1−p)2

4 fraction of noncom-
muting pairs(u, v). Call such pairs asmarked pairs. Next, their idea is to do a random walk in the
space of all pairs and to decide whether there exists a markedpair. They achieved this by defining
a random walk and quantizing it using [Sze04]. We briefly recall the setting from [MN07, Section
2.3], and the main theorem from [Sze04], which is the centralto the analysis of Magniez-Nayak
result.

3.0.1. Quantum Walks.Let P be an irreducible and aperiodic Markov chain on a graphG = (V,E)
with n vertices. A walk following such a Markov chain is always ergodic and has unique stationary
distribution. LetP (u, v) denote the transition probability fromu → v, andM be a set of marked
nodes ofV . The goal is to make a walk on the vertices ofG following the transition matrixP and
decide whetherM is nonempty. Assume that every nodev ∈ V is associated with a databaseD(v)
from which we can determine whetherv ∈ M . This search procedure is modelled by a quantum
walk. To analyze the performance of the search procedure, weneed to consider the cost of the
following operations:

Set up Cost (S):The cost to set upD(v) for v ∈ V .
Update Cost (U):The cost to updateD(v), i.e. to update fromD(v) to D(v′), where the move

v → v′ is according to the transition matrixP .
Checking Cost (C):To check whetherv ∈ M usingD(v).
The costs are specific to the application for e.g. it can be query complexity or time complexity.

The problem that we consider or the group commutativity problem of Magniez-Nayak, concern
about query complexity. The following theorem due to Szegedy gives a precise analysis of the total
cost involved in the quantum walk.

Theorem 3.2. [Sze04]Let P be the transition matrix of an ergodic, symmetric Markov Chain on
a graphG = (V,E) andδ be the spectral gap ofP . Also, letM be the set of all marked vertices
in V and |M |/|V | ≥ ǫ > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whetherM is nonempty with constant success probability and costS+O((U+C)/

√
δǫ).

S is the set up cost of the quantum process,U is the update cost for one step of the walk andC is
the checking cost.

Later, Magniez-Nayak-Ronald-Santha [MNRS07] improve thetotal cost of the quantum walk.
We state their main result.
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Theorem 3.3. [MNRS07]LetP be the transition matrix of a reversible, ergodic Markov Chain on
a graphG = (V,E) and δ be the spectral gap ofP . Also letM be the set of all marked vertices
in V and |M |/|V | ≥ ǫ > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whetherM is nonempty and in that case finds an element ofM , with constant success
probability and cost of orderS + 1√

ǫ
( 1√

δ
U + C). S is the set up cost of the quantum process,U is

the update cost for one step of the walk andC is the checking cost.

The analysis of Magniez-Nayak [MN07] is based on Theorem 3.2. For our problem also, we
follow similar approach.

3.1. Query Complexity Upper Bound

Now we describe our quantum algorithm forMIT . Our main technical contribution is a suitable
generalization of Pak’s lemma. For anyi ∈ [m], consider the setRi ⊆ R defined as follows:

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}
Clearly, if f is not a zero function fromRm → R, then|Ri| < |R|. In the following lemma,

we prove that iff is not a zero function then|Ri| ≤ |R|/2.

Lemma 3.4. Let R be any finite ring andf(x1, x2, · · · , xm) be a multilinear polynomial overR
such thatf = 0 is not an identity forR. For i ∈ [m] define

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}.
ThenRi is an additive coset of a proper additive subgroup ofR and hence|Ri| ≤ |R|/2.

Proof. Write f = A(x1, · · · , xi−1, xi, xi+1, · · · , xm) + B(x1, · · · , xi−1, xi+1, · · · , xm) whereA
is the sum of all the monomials off containingxi andB is the sum of the rest of the monomials. Let
v1, v2 be any two distinct elements inRi. Then for any fixed̄y = (y1, · · · , yi−1, yi+1, · · · , ym) ∈
Rm−1, consider the evaluation ofA andB over the points(y1, · · · , yi−1, v1, yi+1, · · · , ym) and
(y1, · · · , yi−1, v2, yi+1, · · · , ym) respectively. For convenience, we abuse the notation and write,

A(v1, ȳ) + B(ȳ) = A(v2, ȳ) + B(ȳ) = 0,

where ȳ is an assignment tox1, x2, · · · , xi−1, xi+1, · · · , xk andv1, v2 are the assignments toxi

respectively. Note that, asf is a multilinear polynomial, the above relation in turns implies that
A(v1 − v2, ȳ) = 0.

Consider the set̂Ri, defined as follows: Fix anyu(i) ∈ Ri,

R̂i = {w − u(i) | w ∈ Ri}.
We claim thatR̂i is an (additive) subgroup ofR. We only need to show that̂Ri is closed under
the addition (ofR). Consider(w1 − u(i)), (w2 − u(i)) ∈ R̂i. Then(w1 − u(i)) + (w2 − u(i)) =

(w1 +w2−u(i))−u(i). It is now enough to show that for anȳy ∈ Rm−1, f(w1 +w2−u(i), ȳ) = 0

(note thatw1 + w2 + u(i) is an assignment toxi). Again using the fact thatf is multilinear, we can
easily see the following:

f(w1 + w2 − u(i), ȳ) = A(w1, ȳ) + A(w2, ȳ)−A(u(i), ȳ) + B(ȳ)

and,
A(w1, ȳ) + A(w2, ȳ)−A(u(i), ȳ) + B(ȳ) = A(w2, ȳ)−A(u(i), ȳ) = 0.
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Note that the last equality follows becausex2 andu are inRi. Hence we have proved that̂Ri

is a subgroup ofR. SoRi = R̂i + u(i) i.e. Ri is a coset ofR̂i insideR. Also |Ri| < |R| (f is not
identically zero overR). Thus, finally we get|Ri| = |R̂i| ≤ |R|/2.

Our quantum algorithm is based on the algorithm of [MN07]. Inthe rest of the paper we denote
by Sℓ the set of allℓ sizesubsetsof {1, 2, · · · , k}. We follow a quantization of a random walk on
Sℓ × · · · × Sℓ = Sm

ℓ . Foru = {u1, u2, · · · , uℓ}, defineru = ru1 + · · · + ruℓ
. Now, we suitably

adapt Lemma 1 of [MN07] in our context.2

Let R be a finite ring given by a additive generating setS = {r1, · · · , rk}. W.l.o.g. assume
thatr1 is the zero element ofR. Let R̂ be a proper additive subgroup of(R,+). Let j be the least
integer in[k] such thatrj 6∈ R̂. SinceR̂ is a proper subgroup ofR, such aj always exists.

Lemma 3.5. Let R̂ < R be a proper additive subgroup ofR andT be an additive coset of̂R in R.
ThenProbu∈Sℓ

[ru 6∈ T ] ≥ 1−p
2 , wherep = ℓ(ℓ−1)+(k−ℓ)(k−ℓ−1)

k(k−1) .

Proof. Let j be the least integer in[k] such thatrj 6∈ R̂. Fix a setu of sizeℓ such that1 ∈ u and
j 6∈ u. Denote byv the set obtained fromu by deleting1 and insertingj. This defines a one to
one correspondence (matching) between all such pair of(u, v). Moreoverrv = ru + rj (notice that
r1 = 0). Then at least one of the elementru or rv is not inT . For otherwise(rv−ru) ∈ R̂ implying
rj ∈ R̂, which is a contradiction.

Therefore,

Probu∈Sℓ
[ru ∈ T | j ∈ u xor 1 ∈ u] ≤ 1

2
.

For any two indicesi, j,

Probu∈Sℓ
[i, j ∈ u or i, j 6∈ u] =

ℓ(ℓ− 1) + (k − ℓ)(k − ℓ− 1)

k(k − 1)
= p.

Thus,
Probu∈Sℓ

[ru ∈ T ] ≤ (1− p)/2 + p ≤ (1 + p)/2.

This completes the proof.

Let T = Ri in Lemma 3.5, whereRi is as defined in Lemma 3.4.
Supposef = 0 is not an identity for the ringR. Then, using Lemma 3.5, it is easy to see

that, for u1, u2, · · · , um picked uniformly at random fromSℓ, f(ru1, · · · , rum) is non zero with
non-negligible probability. This is analogous to [MN07, Lemma 2]. We include a proof for the sake
of completeness.

Lemma 3.6. Let f(x1, · · · , xm) be a multilinear polynomial (in commuting or noncommuting in-
determinates) overR such thatf = 0 is not an identity for the ringR. Then,

Probu1,··· ,um∈Sℓ
[f(ru1 , · · · , rum) 6= 0] ≥

(

1− p

2

)m

.

Proof. For i ∈ [m], let Ri be the additive coset defined in Lemma 3.4. The proof is by simple
induction onm. The proof for the base case of the induction (i.e form = 1) follows easily from
the definition ofRi and Lemma 3.5. By induction hypothesis assume that the result holds for all
t-variate multilinear polynomialsg such thatg = 0 is not an identity forR with t ≤ m− 1.

2Notice that in [MN07], the author consider the set of allℓ tuples instead of subsets. This is important for them as
they work in non abelian structure in general (where order matters). But we will be interested only over additive abelian
structure of a ring and thus order does not matter for us.
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Consider the given multilinear polynomialf(x1, x2, · · · , xm). Then, by Lemma 3.4,Rm is
a coset of an additive subgroup̂Rm insideR. Pick um ∈ Sℓ uniformly at random. Iff = 0 is
not an identity onR then by Lemma 3.5 we getrum 6∈ Rm with probability at least1−p

2 . Let
g(x1, x2, · · · , xm−1) = f(x1, · · · , xm−1, rum). Sincerum 6∈ Rm with probability at least1−p

2 , it
follows thatg = 0 is not an identity onR with probability at least1−p

2 . Given thatg is not an
identity for R, by induction hypothesis we have that,Probu1,··· ,um−1∈Sℓ

[g(ru1 , · · · , rum−1) 6= 0] ≥
(

1−p
2

)m−1
. Hence we get,Probu1,··· ,um∈Sℓ

[f(ru1 , · · · , rum) 6= 0] ≥
(

1−p
2

)m
, which proves the

lemma.

We observe two simple consequences of Lemma 3.6. Notice that1−p
2 = ℓ(k−ℓ)

k(k−1) . Letting

ℓ = 1 we get 1−p
2 = 1/k, and Lemma 3.6 implies that iff = 0 is not an identity forR then

f(a1, · · · , am) 6= 0 for one of thekm choices for theai from the generating set{r1, · · · , rk}.
Letting ℓ = k/2 in Lemma 3.6, we get1−p

2 ≥ 1/4. Hence we obtain the following randomized
test which makes4mmk queries.

Corollary 3.7. There is a randomized4mmk query algorithm forMIT with constant success prob-
ability, wheref is m-variate andR is given by an additive generating set of sizek. This can be
seen as a generalization of Pak’sO(k) query randomized test for group commutativity.

We use Lemma 3.6 to design our quantum algorithm. Technically, our quantum algorithm is
similar to the one described in [MN07]. The Lemma 3.6 is used to guarantee that there will at least
(

1−p
2

)m
fraction of marked pointsin the spaceSm

ℓ i.e. the points wheref evaluates to non-zero.

The underlying graph in our random walk is a Johnson Graph andour analysis require some simple
modification of the analysis described in [MN07].

3.1.1. Random walk onSℓ. Our random walk can be described as a random walk over a graph
G = (V,E) defined as follows: The vertices ofG are all possibleℓ subsets of[k]. Two vertices are
connected by an edge whenever the corresponding sets differby exactly one element. Notice thatG
is a connectedℓ(k − ℓ)-regular Johnson graph, with parameter(k, ℓ, ℓ− 1) [BCN89]. LetP be the
normalized adjacency matrix ofG with rows and columns are indexed by the subsets of[k]. Then
PXY = 1/ℓ(k − ℓ) if |X ∩ Y | = ℓ− 1 and0 otherwise. It is well known that the spectral gapδ of
P (δ = 1−λ, whereλ is the second largest eigenvalue ofP ) is Ω(1/ℓ) for ℓ ≤ k/2 [BCN89]. Now
we describe the random walk onG.

Let the current vertex isu = {u1, u2, · · · , uℓ} andru = ru1 +ru2 + · · ·+ruℓ
. With probability

1/2 stay atu and with probability1/2 do the following: randomly pickui ∈ u andj ∈ [k]\u. Then
move to vertexv such thatv is obtained fromu by removingui and insertingj. Computerv by
simply subtractingrui from ru and addingrj to it. That will only cost2 oracle access. Staying in any
vertex with probability1/2 ensures that the random walk is ergodic. So the stationary distribution
of the random walk is always uniform. It is easy to see that thetransition matrix of the random walk
is A = (I + P )/2 whereI is the identity matrix of suitable dimension. So the spectral gap of the
transition matrixA is δ̂ = (1− λ)/2 = δ/2.

The query complexity analysis is similar to the analysis of Magniez-Nayak. But to fit it with
our requirement, we need some careful parameter setting. Weinclude a brief self-contained proof.

Theorem 3.8. Let R be a finite black-box ring given as an oracle andf(x1, · · · , xm) be a mul-
tilinear polynomial overR given as a black-box. Moreover let{r1, · · · , rk} be a given additive
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generating set forR. Then the quantum query complexity of testing whetherf is an identity forR,
is O(m(1 + α)m/2k

m
m+1 ), assumingk ≥ (1 + 1/α)m+1.

Proof. Setup cost(S): For the quantum walk step we need to start with an uniform distribution on
Sm

ℓ . With eachu ∈ Sℓ, we maintain a quantum register|du〉 that computesru. So we need to
prepare the following state|Ψ〉:

|Ψ〉 =
1

√

|Sm
ℓ |

∑

u1,u2,··· ,um∈Sm
ℓ

|u1, ru1〉 ⊗ |u2, ru2〉 ⊗ · · · ⊗ |um, rum〉.

It is easy to see that to compute anyruj , we needℓ − 1 oracle access to the ring oracle. Since in
each ofm independent walk, quantum queries over all choices ofu will be made in parallel (using
quantum superposition), the total query cost for setup ism(ℓ− 1).

Update cost(U): It is clear from the random walk described in the section 3.1.1, that the update
cost overSℓ is only 2 oracle access. Thus for the random walk on Sm

ℓ which is justm independent
random walks, one on each copy of Sℓ, we need a total update cost2m.3

Checking cost(C): To check whetherf is zero on a point during the walk, we simply query the
oracle forf once.

Recall from Szegedy’s result [Sze04] (as stated in Theorem 3.2), the total cost for query com-

plexity is Q = S + 1√
δ̂ǫ

(U + C) whereǫ =
(

1−p
2

)m
is the proportion of the marked elements

and δ̂ is the spectral gap of the transition matrixA described in section 3.1.1. Combining to-

gether we get,Q ≤ m

[

(ℓ− 1) + 3√
δ̂ǫ

]

. From the random walk described in the section 3.1.1,

we know thatδ̂ ≥ 1
2ℓ . Hence,Q ≤ m

[

(ℓ− 1) + 3
√

2ℓ

( 1−p
2 )

m
2

]

. Notice that, 1−p
2 = ℓ

k

(

1− ℓ
k

1− 1
k

)

.

Substituting for 1−p
2 we get, Q ≤ m

[

(ℓ− 1) + 3
√

2km/2 1

ℓ
m−1

2 ( k−ℓ
k−1)

m/2

]

. We will choose

a suitably smallα > 0 so that k−1
k−ℓ < 1 + α. Then we can upper boundQ as follows.

Q ≤ m

[

(ℓ− 1) + 3
√

2 · (1 + α)m/2km/2 1

ℓ
m−1

2

]

. Now our goal is to minimizeQ with respect

to ℓ andα. For that we chooseℓ = kt where we will fixt appropriately in the analysis. Substituting

ℓ = kt we get,Q ≤ m
[

(kt − 1) + 3
√

2 · (1 + α)m/2t1/2k
m−(m−1)t

2

]

. Choosingt = (m/(m+1)),

we can easily see that the query complexity of the algorithm is O(m(1 + α)m/2k
m

m+1 ). Finally,
recall that we need choose anα > 0 so thatk−1

k−ℓ ≤ 1 + α. Clearly, it suffices to chooseα so that

(1 + α)ℓ ≤ αk. Letting ℓ = km/m+1 we get the constraint(1 + 1/α)m+1 ≤ k which is satisfied if
e(m+1)/α ≤ k. We can chooseα = m+1

ln k .

Remark 3.9. The choice ofα in the above theorem shows some trade-offs in the query complexity
between the parametersk andm. For constantm notice that this gives us anO(km/m+1) query
complexity upper bound for the quantum algorithm, which is similar to the best known query upper
bound form-COLLISION [Amb07], when the problem instance is a functionf : [k] → [k].

Generalized Multilinear Identity Testing (GMIT): We now consider a variant of theMIT problem,
which we callGMIT (for generalized-MIT ).

3In [MN07] the underlying group operation is not necessarilycommutative (it is being tested for commutativity). Thus
the update cost is more.
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Let f : Rm → R be a black-box multilinear polynomial. Consider anyadditive subgroupA of
the black-box ringR, given by a set of generatorsr1, r2, · · · , rk, so thatA = {∑i βiri | βi ∈ Z}.
TheGMIT(R,A, f) problem is the following: test whether a black-box multilinear polynomialf is
an identity forA. In other words, we need to test iff(a1, · · · , am) = 0 for all ai ∈ A.

It is easy to observe that the quantum algorithm actually solvesGMIT and the correctness proof
and analysis given in Theorem 3.8 also hold forGMIT problem. We summarize this observation in
the following theorem.

Theorem 3.10. Let R be a black-box finite ring given by ring oracles andA = 〈r1, r2, · · · , rk〉
be anadditive subgroupof R given by generatorsri ∈ R. Let f(x1, x2, · · · , xm) be a black-box
multilinear polynomialf : Rm → R. Then there is a quantum algorithm with query complexity
O(m(1 + α)m/2k

m
m+1 ) for theGMIT(R,A, f) problem (assumingk ≥ (1 + 1/α)m+1).

4. Query Complexity Lower Bound

In this section we show thatGMIT problem of multilinear identity testing for additive subgroups
of a black-box ring (described in Section 3.1.1), is at leastas hard asm-SPLIT COLLISION(again,
m-SPLIT COLLISIONproblem is defined in Section 1). Also, the well-knownm-COLLISION prob-
lem can be easily reduced tom-SPLIT COLLISIONproblem using a simple randomized reduction.
In the following lemma, we briefly state the reduction.

Lemma 4.1. There is a randomized reduction fromm-COLLISION to m-SPLIT COLLISIONwith
success probability close toe−m.

Proof. Let f : [k] → [k] be a ‘yes’ instance ofm-COLLISION, and supposef−1(i) =
{i1, i2, · · · , im}. To reduce this instance tom-SPLIT COLLISIONwe pick a randomm-partition
I1, I2, · · · , Im of the domain[k] with each|Ij | = k/m. It is easy to see that, with probability close
to e−m, the set{i1, i2, · · · , im} will be a split collision for the functionf .

Consequently, showing a quantum lower bound ofΩ(kα) for m-COLLISIONwill imply a quan-
tum lower bound ofΩ(kα/em) for m-SPLIT COLLISION. It will also show similar lower bound for
GMIT because of our reduction.

If f : [k] → [k] is an instance ofm-SPLIT COLLISIONproblem, then the classical randomized
query complexity lower bound isΩ(k). This is observed in [MN07] form = 2. Due to our
reduction, we get similar randomized query complexity lower bound forGMIT.

Currently the best known quantum query complexity lower bound for m-COLLISION prob-
lem is Ω(k2/3) (in the casem = 2) [AS04]. Thus we obtain the same explicit lower
bound for m-SPLIT COLLISION problem due to the random reduction fromm-COLLISION to
m-SPLIT COLLISION. It also implies quantum query complexity lower bound forGMIT.

Our reduction fromm-SPLIT COLLISION to GMIT problem is based on some new automata
theoretic ideas. We first describe necessary automata theoretic ideas those are useful for our reduc-
tion.

4.1. Automata theory background

We recall some standard automata theory notations (see, forexample, [HU78]). Fix a finite
automatonA = (Q,Σ, δ, q0, qf ) which takes as input strings inΣ∗. Q is the set of states ofA,
Σ is the alphabet,δ : Q × Σ → Q is the transition function, andq0 and qf are the initial and
final states respectively (throughout, we only consider automata with unique accepting states). For
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each letterb ∈ Σ, let δb : Q → Q be the function defined by:δb(q) = δ(q, b). These functions
generate a submonoid of the monoid of all functions fromQ to Q. This is the transition monoid of
the automatonA and is well-studied in automata theory: for example, see [Str94, page 55]. We now
define the0-1 matrix Mb ∈ F

|Q|×|Q| as follows:Mb(q, q
′) = 1 if δb(q) = q′, and0 otherwise.

The matrixMb is simply the adjacency matrix of the graph of the functionδb. As the entries of
Mb are only zeros and ones, we can considerMb to be a matrix over any fieldF.

Furthermore, for anyw = w1w2 · · ·wk ∈ Σ∗, we define the matrixMw to be the matrix product
Mw1Mw2 · · ·Mwk

. If w is the empty string, defineMw to be the identity matrix of dimension
|Q| × |Q|. For a stringw, let δw denote the natural extension of the transition function tow. If w
is the empty string,δw is simply the identity function. It is easy to check that:Mw(q, q′) = 1 if
δw(q) = q′ and0 otherwise. Thus,Mw is also a matrix of zeros and ones for any stringw. Also,
Mw(q0, qf ) = 1 if and only if w is accepted by the automatonA. We now describe the reduction.

Theorem 4.2. Them-SPLIT COLLISIONproblem reduces toGMIT problem for additive subgroups
of black-box rings.

Proof. An instance ofm-SPLIT COLLISIONis a functionf : [k] → [k] given as an oracle, where we
assume w.l.o.g. thatk = nm. Divide{1, 2, · · · , k} into m intervalsI1, I2, · · · , Im, each containing
n consecutive points of[k]. Recall from Section1 that,f is said to have anm-split collision if for
somej ∈ [k] we have|f−1(j)| = m and|f−1(j) ∩ Ii| = 1 for each intervalIi.

Consider the alphabetΣ = {b, c, b1, b2, · · · , bm}. LetA = (Q,Σ, δ, q0, qf ) be a deterministic
finite state automaton that accepts all stringsw ∈ Σ∗ such that eachbj, 1 ≤ j ≤ m occurs at least
once inw. It is easy to see that such an automaton with a single final state qf can be designed with
total number of states|Q| = 2O(m) = t. W.l.o.g. let the set of statesQ be renamed as{1, 2, · · · , t},
where1 is the initial state andt is the final state.

For each lettera ∈ Σ, letMa denote thet×t transition matrix forδa (as defined in Section 4.1).
Since eachMa is at×t 0-1 matrix, eachMa is in the ringMt(F2) of t×t matrices with entries from
the fieldF2. Let R denote thek-fold product ring(Mt(F2))

k. Clearly,R is a finite ring (which is
going to play the role of the black-box ring in our reduction). We now define an additive subgroup
T of R, where we describe the generating set ofT using them-SPLIT COLLISIONinstancef .

For each indexi ∈ [k], define ank-tupleTi ∈ R as follows. Ifi 6= f(i), then defineTi[i] = Mb,
Ti[f(i)] = Mbj

(wherei ∈ Ij) and and for each indexs 6∈ {i, f(i)} defineTi[s] = Mc. For
i = f(i), defineT [i] = Mbj

(i ∈ Ij) and the rest of the entries asMc. The additive subgroup ofR
that we consider isT = 〈T1, T2, · · · , Tk〉 generated by theTi, 1 ≤ i ≤ k.

Furthermore, define twot × t matricesA andB in Mt(F2) as follows. LetA[1, 1] = 1 and
A[u, ℓ] = 0 for (u, ℓ) 6= (1, 1). For the matrixB, let B[t, 1] = 1 andB[u, ℓ] = 0 for (u, ℓ) 6= (t, 1).

Claim 1. Let w = w1w2 · · ·ws ∈ Σ∗ be any string. Then the automatonA defined above accepts
w if and only if the matrixAMw1Mw2 · · ·MwsB is nonzero.

Proof of ClaimBy definition of the matricesMa, the(1, t)th entry of the productMw1Mw2 · · ·Mws

is 1 if and only if w is accepted byA. By definition of the matricesA andB the claim follows
immediately.

Now, consider the polynomialP (x1, x2, · · · , xm) with coefficients from the matrix ringR
defined as follows:

P (x1, x2, · · · , xm) = Āx1x2 · · · xmB̄,

whereĀ = (A,A, . . . , A) ∈ R and B̄ = (B,B, · · · , B) ∈ R arek-tuples ofA’s andB’s re-
spectively. We claim that the multilinear polynomialP (x1, x2, · · · , xm) = 0 is an identity for the
additive subgroupT if and only if f has nom-split collision.



MULTILINEAR IDENTITY TESTING 97

Claim 2. P (x1, · · · , xm) = 0 is an identity for the additive subgroupT = 〈T1, · · · , Tk〉 if and only
if f has nom-split collision. In other words,GMIT(R,T, P ) is an ‘yes’ instance if and only iff
has nom-split collision.

Proof of ClaimSupposef has anm-split collision. Specifically, letij ∈ Ij (1 ≤ j ≤ m and
i1 < i2 < · · · < im) be indices such thatf(i1) = · · · = f(im) = ℓ. In the polynomialP , we
substitute the indeterminatexj by Tij .

ThenP (Ti1 , Ti2 , · · · , Tim) = ĀMB̄, whereM = Ti1 · · ·Tim . M is ak-tuple oft× t matrices
such that theℓth component ofM is

∏m
j=1 Mbj

whereij ∈ Ij . Sincebi1bi2 · · · bim ∈ Σ∗ is a length

m-string containing all thebj ’s it will be accepted by the automatonA. Consequently, the(q0, qf )th

entry of the matrixM , which is the(1, t)th entry, is1 (as explained in Section 4.1). It follows that
the(1, 1) entry of the matrixAMB is 1. HenceP = 0 is not an identity over the additive subgroup
T .

For the other direction, assume thatf has nom-split collision. We need to show thatP = 0 is
an identity for the ringT . For anym elementsS1, S2, · · · , Sm ∈ T considerP (S1, S2, · · · , Sm) =
ĀS1S2 · · ·SmB̄. Since EachSj is anF2-linear combination of the generatorsT1, · · · , Tk, it follows
by distributivity in the ringR thatP (S1, S2, · · · , Sm) is anF2-linear combination of terms of the
form P (Tk1 , Tk2 , · · · , Tkm) for somem indicesk1, · · · , km ∈ [k]. Thus, it suffices to show that
P (Tk1 , Tk2 , · · · , Tkm) = 0.

Let T̂ = Tk1Tk2 · · ·Tkm . Then, for eachj ∈ [k] we haveT̂ [j] = Tk1[j]Tk2 [j] · · · Tkm [j].
Sincef has nom-split collision, for eachj ∈ [N ] the set of matrices{Mb1 ,Mb2 , · · · ,Mbm} is not
contained in the set{T1[j], T2[j], · · · , Tk[j]}. Thus,T̂ [j] = Tk1 [j]Tk2 [j] · · · Tkm [j] is a product of
matricesMw1Mw2 · · ·Mwm for a wordw = w1w2 · · ·wm that is not accepted byA. It follows from
the previous claim thatAT̂ [j]B = 0. HenceP (Tk1 , Tk2 , · · · , Tkm) = 0 which completes the proof.

In Section 3.1, we have already shown a quantum algorithm of query complexityO(k
m

m+1 ) for
MIT (m is a constant). This bound holds as well forGMIT. We conclude this section by showing that
any algorithm of query complexityq(k,m) (q is any function) forGMIT will give an algorithm of
similar query complexity form-COLLISIONproblem. In particular an algorithm forGMIT of query
complexityko(m/m+1) will improve the best known algorithm form-COLLISION problem due to
Ambainis [Amb07]. The following corollary is an easy consequence of Theorem 4.2.

Corollary 4.3. Let f : [k] → [k] be an instance ofm-SPLIT COLLISION problem and
GMIT(R,T, P ) be an instance ofGMIT problem, where the multilinear polynomialP : Rm → R
and T is an additive subgroup ofG given byk generators. Then, if we have a quantum al-
gorithm of query complexityq(k,m) for GMIT problem, we will have a quantum algorithm for
m-SPLIT COLLISIONwith query complexityO(q(k,m)).

Proof. LetA be an algorithm forGMIT with quantum query complexityq(k,m). Given an instance
of m-SPLIT COLLISION, the generators for the additive subgroupT is indexed by1, 2, · · · , k (as
defined in the proof of Theorem 4.2). Also, define the polynomial P (x1, x2, · · · , xm) So the inputs
of our GMIT problem are1, 2, · · · , k andP . Using the algorithmA, we define another algorithm
A′ which does the following. Wheni ∈ [k] is invoked byA for the ring operation, the algorithm
A′ constructs the generatorTi by making only one query to the oracle forf . One more query to
thef -oracle is required to erase the output. Moreover, ifA wants to check whether the output of
the ring operation is a valid generator (sayTj for somej), then alsoA′ uses just two queries to the
oracle off . Thus we have an algorithmA′ for m-SPLIT COLLISIONwith query complexity4q(k).
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Recall that the best known lower bound form-SPLIT COLLISIONproblem isΩ(k2/3). Then,
combining Theorem 4.2 and Corollary 4.3, we getΩ(k2/3) quantum query lower bound forGMIT
problem.
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Abstract. Traditionally a tiling is defined with a finite number of finite forbidden pat-
terns. We can generalize this notion considering any set of patterns. Generalized tilings
defined in this way can be studied with a dynamical point of view, leading to the notion of
subshift. In this article we establish a correspondence between an order on subshifts based
on dynamical transformations on them and an order on languages of forbidden patterns
based on computability properties.

Introduction

Given a finite set of tilesA and a finite set of forbidden patterns P , a d-dimensional tiling

is an element of AZd

where the local conditions imposed by P are satisfied at every point ofZd. This basic model captures geometrical aspect of computation [Ber66, Rob71, Han74].
To establish structural properties of tilings, it is interesting to study the set of tilings which
satisfy the conditions imposed by P [BDJ08].

It is easy to generalize the usual notion of tiling considering an infinite set of forbidden
patterns. A set of generalized tilings can be studied with a dynamical point of view with
the notion of subshift [LM95, Kit98]. In this theory, a set of usual tilings corresponds to a
subshift of finite type.

In dimension 1, the class of subshifts of finite type is well understood. In particular,
the language of a subshift of finite type is given by a local automaton [Bea93]. Given this
result, it is natural to characterize subshifts whith a language given by a finite automaton.
It is the class of sofic subshifts, which can all be obtained as a factor of a subshift of finite
type [LM95]. Thus, each sofic subshift is obtained by a dynamical transformation of a
subshift of finite type.

Multidimensional subshifts of finite type are not well understood. For example, it is not
easy to describe their languages. Moreover, in addition to factors, there exist other types of
dynamical transformations on multidimensional subshift: the sub-action of a d-dimensional

1998 ACM Subject Classification: G.2.m.
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tiling consists in taking the restriction of a tiling to a subgroup of Zd. Hochman showed
that every d-dimensional subshift whose set of forbidden patterns is recursively enumerable
can be obtained by sub-action and factor of a d + 2-subshift of finite type [Hoc07].

This result suggests that a subshift can simulate another one, where the notion of
simulation is given by operations on subshifts inspired by the dynamical theory. This in-
volves different orders depending on the operations which are considered. In this paper, we
present five types of operations: product, factor, finite type, sub-action and superposition.
It is possible to formulate classic results with this formalism. Our main result (Theorem 4.2)
establishes a correspondence between an order on subshifts based on dynamical transfor-
mations on them and an order on languages of forbidden patterns based on computability
properties.

The paper is organized as follows: Section 1 is devoted to introduce the concepts of
tiling and subshift. In Section 2, we present several operations on subshifts which allow to
define the notion of simulation of a subshift by another one. Then, in Section 3, we define
an important tool to define runs of a Turing machine with a sofic subshift. This tool is used
to prove our main result in the last Section.

1. Definitions

1.1. Generalized tilings

Let A be a finite alphabet and d be a positive integer. A configuration x is an element

of AZd

. Let S be a finite subset of Zd. Denote xS the restriction of x to S. A pattern is
an element p ∈ AS and S is the support of p, which is denoted by supp(p). For all n ∈ N,
we call Sd

n = [−n;n]d the elementary support of size n. A pattern with support Sd
n is an

elementary pattern. We denote by Ed
A = ∪n∈NA[−n;n]d the set of d-dimensional elementary

patterns. A d-dimensional language L is a subset of Ed
A. A pattern p of support S ⊂ Zd

appears in a configuration x if there exists i ∈ Zd such that for all j ∈ S, pj = xi+j, we
note p ⊏ x.

Definition 1.1. A tile set is a tuple τ = (A, P ) were P is a subset of Ed
A called the set of

forbidden patterns.
A generalized tiling by τ is a configuration x such that for all p ∈ P , p does not appear

in x. We denote by Tτ the set of generalized tilings by τ . If there is no ambiguity on the
alphabet, we just denote it by TP .

Remark 1.2. If P is finite, it is equivalent to define a generalized tiling by allowed patterns
or forbidden patterns, the latter being the usual definition of tiling.

1.2. Dynamical point of view : subshifts

One can define a topology on AZd

by endowing A with the discrete topology, and

considering the product topology on AZd

. For this topology, AZd

is a compact metric space
on which Zd acts by translation via σ defined by:

σi
A : AZd

−→ AZd

x 7−→ σi
A(x) such that σi

A(x)u = xi+u ∀u ∈ Zd.

for all i in Zd. This action is called the shift.
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Definition 1.3. A d-dimensional subshift on the alphabet A is a closed and σ-invariant

subset of AZd

. We denote by S (resp. Sd, S≤d) the set of all subshifts (resp. d-dimensional
subshifts, d′-dimensional subshifts with d′ ≤ d).

Let T ⊆ AZd

be a subshift. Denote Ln(T) ⊆ A[−n;n]d the set of elementary patterns
of size n which appear in some element of T, and L(T) = ∪n∈NLn(T) the language of T

which is the set of elementary patterns which appear in some element of T.

It is also usual to study a subshift as a dynamical system [LM95, Kit98], the next
proposition shows the link between both notions.

Proposition 1.4. The set T ⊂ AZd

is a subshift if and only if T = TL(T)c where L(T)c

is the complement of L(T) in Ed
A.

Definition 1.5. Let A be a finite alphabet and T ⊂ AZd

be a subshift.

The subshift AZd

is the full-shift associated to A. Denote FS the set of all full-shifts.
If there exists a finite set P ⊆ Ed

A such that T = TP then T is a subshift of finite type.
Denote SFT the set of all subshifts of finite type. Subshifts of finite type correspond to
the usual notion of tiling.

If there exists a recursively enumerable set P ⊆ Ed
A such that T = TP then T is a

recursive enumerable subshift. Denote RE the set of all recursive enumerable subshifts.

2. Operations on tilings

2.1. Simulation of a tiling by another one

An operation op on subshifts transforms a subshift or a pair of subshifts into another
one; it is a function op : S → S or op : S × S → S. We remark that a subshift T (resp. a
pair of subshifts (T′,T′′)) and the image by an operation op(T) (resp. op(T′,T′′)) do not
necessary have the same alphabet or dimension. An operation can depend on a parameter.

Let Op be a set of operations on subshifts. Let U ⊂ S be a set of subshifts. We define
the closure of U under a set of operations Op, denoted by ClOp(U), as the smallest set stable
by Op which contains U .

We say that a subshift T simulates a subshift T′ by Op if T′ ∈ ClOp(T). Thus there
exists a finite sequence of operations chosen among Op, that transforms T into T′. We note
it by T′ ≤Op T. We remark that ClOp(T) = {T′ : T′ ≤Op T}.

2.2. Local transformations

We describe three operations that modify locally the subshift.
• Product P :

Let T ⊆ AZd

and T′ ⊆ BZd

be two subshifts of the same dimension, define:

φP (T,T′) = T×T′ ⊆ (A×B)Zd

.

One has ClP (FS) = FS and ClP (SFT ) = SFT .
• Finite type FT:

These operations consist in adding a finite number of forbidden patterns to the initial

subshift. Formally, let A be an alphabet, P ⊆ Ed
A be a finite subset and let T ⊆ AZd

be a
subshift. By Proposition 1.4, there exists P ′ such that T = TP ′ . Define:

φFT (P,T) = TP∪P ′ .
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If P and T have not the same alphabet or the same dimension, put φFT (P,T) = T.
We remark that φFT (P,T) could be empty if P prohibits too many patterns. By FT , one
lists all operations on subshifts which are obtained by φFT .

By definition of subshift of finite type, one has ClFT (FS) = SFT .
• Factor F:

These operations allow to change the alphabet of a subshift by local modifications. Let

A and B be two finite alphabets. A morphism π : AZd

→ BZd

is a continuous function
which commutes with the shift action (i.e. σi ◦ π = π ◦ σi for all i ∈ Zd). In fact, such a
function can be defined locally [Hed69]: that is to say, there exists U ⊂ Zd finite, called
neighborhood, and π : AU → B, called local function, such that π(x)i = π(xi+U) for all
i ∈ Zd. Let T be a subshift, define:

φF (π,T) = π(T).

If the domain of π and T do not have the same alphabet or the same dimension, put
φF (π,T) = T. By F , one lists all operations on subshifts which are obtained by φF .

One verifies that ClF (SFT ) 6= SFT .

Definition 2.1. A sofic subshift is a factor of a subshift of finite type. Thus, the set of
sofic subshifts is Sofic = ClF (SFT ).

2.3. Transformation on the group of the action

We describe two operations that modify the group on which the subshift is defined,
thus we change the dimension of the subshift.
• Sub-action SA:

These operations allow to take the restriction of a subshift of AZd

according to a
subgroup of Zd. Let G be a sub-group of Zd generated by u1, u2, . . . , ud′ (d′ ≤ d). Let

T ⊆ AZd

be a subshift, define:

φSA(G,T) =
{

y ∈ AZd
′

: ∃x ∈ T such that ∀i1, . . . , id′ ∈ Zd′ , yi1,...,i
d′

= xi1u1+···+i
d′ud′

}
.

It is easy to prove that φSA(G,T) is a subshift of AZd
′

. If T ⊆ AZd

and G is not a
subgroup of Zd, put φSA(G,T) = T. By SA, one lists all operations on subshifts which are
obtained by φSA.

One verifies that ClSA(SFT ) 6= SFT and ClSA(SFT ) 6= Sofic.

Theorem 2.2. ClSA(RE) = RE.

• Superposition SP:

These operations increase the dimension of a subshift by a superposition of the initial
subshift. Let d, d′ ∈ N∗. Let G and G′ be two subgroups of Zd+d′ such that G is isomorphic

to Zd and G⊕G′ = Zd+d′ . Let T ⊆ AZd

be a subshift, define:

φSP (G, G′,T) =
{
x ∈ AZd+d

′

: ∀i ∈ G′, xi+G ∈ T
}

.

If T ⊆ AZd

and G is not isomorphic to Zd or G⊕G′ 6= Zd+d′ , put φSP (G, G′,T) = T.
By SP , one lists all operations on subshifts which are obtained by φSP .

It is easy to verify that ClSP (SFT ) = SFT .
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With this formalism, the result of M. Hochman [Hoc07] can be written:

ClF,SA(SFT ) = RE .

More precisely, he proves that ClF,SA(SFT ∩ Sd+2) ∩ S≤d = RE ∩ S≤d.

3. Simulation of Turing machines by subshifts

A Turing machine is a model of calculation defined by local rules. It seems natural to
represent the runs of a machine by a 2-dimensional subshift: one dimension representing
the tape and the other time evolution. But the main problem is that in general the Turing
machine uses a finite part of the space-time diagram which is represented by the subshift.
Robinson [Rob71] proposes a self-similar structure to construct an aperiodic subshift of
finite type of dimension 2. In fact, it is also possible to use a general construction with
substitutions due to Mozes [Moz89]. This construction allows to give to the machine finite
spaces on which it calculates independently. The problem is that we cannot control the
entry of the Turing machine in view to recognize a configuration of a subshift. To obtain
this property, Hochman [Hoc07] uses similar tools to construct a sofic subshift of dimension
3 in order to to prove that ClF,S!A(SFT ) = RE . In this Section, we present a similar
construction which is used to prove our main result in Section 4.

3.1. Substitution tilings

Let A be a finite alphabet. A substitution is a function s : A → AUk where Uk =
[1; k] × [1; k]. We naturally extend s to a function sn : AUn → AUnk by identifying AUnk

with (AUk)Un . Starting from a letter placed in (1, 1) ∈ Z2 and applying successively

s, sk, . . . , skn−1

we obtain a sequence of patterns in AUki for i ∈ {0, . . . , n}. Such patterns
are called s-patterns.

Definition 3.1. The subshift Ss defined by the substitution s is

Ss =
{
x ∈ AZ2

: every finite pattern of x appears in a s-pattern
}

.

3.2. A framework for Turing machines

We now describe a family of substitutions sn defined on the alphabet {◦, •}, which
are used by M. Hochman [Hoc07] to prove ClF,SA(SFT ) = RE . For every integer n the
substitution sn is given by :

◦ 7−→

◦ . . . ◦ ◦

.

.

.
.

.

.

• ◦

◦ .

.

.

.

.

.
.

.

.

• ◦ . . . ◦

and • 7−→

◦ . . . ◦ •

.

.

.
.

.

.

• ◦

◦ .

.

.

.

.

.
.

.

.

• ◦ . . . ◦

where the patterns are of size n× n. Let Sn be the tiling defined by substitution sn.
These substitutions have good properties, in particular they are unique derivation sub-

stitutions and for this reason they verify [Moz89]; one obtains:

Proposition 3.2. For every integer n, there exists a SFT S̃n and a letter-to-letter morphism

πn such that Sn = πn(S̃n).
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Definition 3.3. If T ⊆ AZ2

is a subshift, we define T(↑) by :

T(↑) =
{
x ∈ AZ2

: ∃y ∈ T,∀(i, j) ∈ Z2, x(i,j) = y(i,j−i)

}
.

Notice that if T is an SFT, then T(↑) is also an SFT (just shift the forbidden patterns

of T to get those of T(↑)).

We now work on the space Z3 = Ze1 ⊕ Ze2 ⊕ Ze3 and we construct the SFT W2, W3

and W5 ⊆ {◦, •}
Z3

defined by :

x ∈W2 ⇐⇒

{
∀k ∈ Z, x|Z2×{k} ∈ S

(↑)
2

∀u ∈ Z3, xu = xu+e3
(∗)

x ∈W3 ⇐⇒

{
∀j ∈ Z, x|Z×{j}×Z ∈ S

(↑)
3

∀u ∈ Z3, xu = xu+e2
(∗∗)

x ∈W5 ⇐⇒

{
∀k ∈ Z, x|Z2×{k} ∈ S

(↑)
5

∀u ∈ Z3, xu = xu+e3
(∗ ∗ ∗)

Let x be a configuration of the subshift W2 ×W3 ×W5 ⊆ ({◦, •}3)Z3

. If we focus on
the subshift W3 ×W5, we can see rectangles whose corners are defined by the letter (•, •)
of {◦, •}2. These rectangles of size 5n × 3m are spaces of calculation on which the Turing
machine runs independently. Moreover the information brought by W2 gives the size of the
entry pattern p on each rectangle : scanning the base of a rectangle from left to right, the
entry word is located between the left corner and the first symbol • due to W2 that occurs.
This results are resumed in Proposition 3.4.

Proposition 3.4. The product W2 ×W3 ×W5 is a partition of the space into rectangles,

in which each plane {i} × Z2 is paved by rectangles of same width and height. Moreover if

there is a 5m× 3p-rectangle in (i, j, k) ∈ Z3 with entry of size 2n, then there exists i′ and i′′

such that there exists a 5m+1×3p-rectangle in (i′, j, k) and a 5m×3p+1-rectangle in (i′′, j, k)
both with entry of size 2n.

This result will be used in Section 4.2.2 to prove that, thanks to these arbitrary large
rectangles, one can simulate a calculation with an arbitrary number of steps.

3.3. A 2-dimensional sofic subshift

We now explain how we can use the previously constructed framework to simulate a
Turing machine by a subshift. First we recall the formal definition of a Turing machine.

Definition 3.5. Let M = (Q,A,Γ, ♯, q0, δ,QF ) be a Turing machine, where :

• Q is a finite set of states; q0 ∈ Q is the initial state;
• A are Γ are two finite alphabets such that A ( Γ;
• ♯ /∈ Γ is the blank symbol;
• δ : Q× Γ→ Q× Γ× {←, · ,→} is the transition function;
• F ⊂ QF is the set of final states.

We can describe its behaviour with a set of 2-dimensional patterns. First dimension
stands for the tape and second dimension for time evolution. For example the rule δ(q1, x) =
(q2, y,←) will be coded by :

(q2, z) y z′

z (q1, x) z′
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Denote by PM the set of forbidden patterns constructed according to the rules of M.
One can consider the subshift of finite type TPM where each local pattern corresponds to
calculations of the machineM. Then thanks to a product operation we superimpose these
calculations on the framework, with the following finite conditions :

• condition Init : to copy out the entry word ;
• condition Head : the initial state q0 appears on every rectangle bottom left corner

and only here;
• condition Stop : when a side of a rectangle is reached by the head of the machine,

the calculation stops and if necessary the tape content is just copied out until the
top of the rectangle;
• condition Final : when a final state is reached, the tape content is just copied out

for next steps of calculation until the top of the rectangle.

Define TM the subshift:

TM = φFT

(
{Init,Head,Stop,Final},AZ3

×(W2×W3×W5)×φSP (Ze2 ⊕ Ze3,Ze1,TPM)
)
.

By stability of the class of subshifts of finite type by SP , TM is a subshift of finite
type up to a letter-to-letter morphism; thus TM ∈ Sofic. For all i ∈ Z, in the plane
{i} ×Z2, it is possible to find rectangles of size 5m× 3p arbitrary large and an entry of size
2n also arbitrarily large. On each rectangle, thanks to the conditions PM, we can observe
the evolution of the Turing machine M.

Remark 3.6. The construction described here only works for usual Turing machines. In
Section 4.2.2 we explain how to add finite conditions on the subshift TM ifM is a Turing
machine with oracle.

4. Study of the semi-order ≤P,F,FT,SA,SP

In this section we focus on the five operations described previously. Our aim is to study
the semi-order ≤P,F,FT,SA,SP .

4.1. A semi-order on languages

A Turing machine with semi-oracle is a usual machine with a special state q? and an
oracle tape. The behaviour of a Turing machine with semi-oracle L, where L is a language,
is the following : the machine reads an entry pattern p and writes a pattern on the oracle
tape, until the state q? is reached. If the pattern written on the oracle tape is in L then the
machine stops, else it keeps on calculating.

We define a semi-order on languages :

L � L′ ⇐⇒ ∃ML′ a Turing machine with semi-oracle L′ such that dom(ML′) = L,

where dom(M) is the domain of the machine M, that is to say the set of entry words on
which M stops. We refer to [RJ87] for definitions and properties of similar semi-orders on
languages based on computability.

Proposition 4.1. � is a semi-order.
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Consider the equivalence relation L ≈ L′ if and only if L � L′ and L′ � L. This
equivalence relation defines classes of languages, and we can compare them within the
semi-order. For instance, the class of recursively enumerable languages is the smallest for
this semi-order. We have ∅ ≈ L for every recursively enumerable language L.

4.2. Closure theorem:

The semi-order on languages defined by semi-oracle Turing machines corresponds to a
semi-order on subshifts:

Theorem 4.2. Let T be a subshift, one has:

ClP,F,SA,SP,FT(T) = {TL : L � L(T)c} .

Or equivalently, if T′ and T′′ are two subshifts of dimension d′ and d′′, one has:

T′ ≤P,F,FT,SA,SP T′′ ⇐⇒ L(T′)c � L(T′′)c.

4.2.1. Direct inclusion. Put L = L(T)c. To show ClP,F,SA,SP,FT(T) ⊆ {TL′ : L′ � L}, it

is sufficient to show the stability of {TL′ : L′ � L} by all the operations. Let L1 ⊆ E
d1

A1

and L2 ⊆ E
d2

A2
be two languages such that Li � L for i ∈ {1, 2}. Thus, for i ∈ {1, 2}, there

exists a Turing machine Mi with semi-oracle L whose domain is exactly Li.
• Stability under product: Let T′ = φP (T1,T2), so T′ = TL′ with L′ = L1×E

d2

A2
∪

Ed1

A1
× L2. The language L′ could be the domain of a Turing machine M′ with semi-oracle

L. It suffices to simulate the two Turing machinesM1 andM2 (each machine runs during
one step successively) on each coordinate of a pattern of L′. Thus L′ � L.
• Stability under finite type: Let T′ = φFT (P,TL1

). Since P is finite, one has
L1 ∪ P � L1 � L and T′ = TL1∪P .

• Stability under factor map: Let T′ = φ(π,TL1
) where π : AZd1

1 → BZd1 is a
morphism of neighborhood Sd1

n and local function π. One has T′ = TL′ where L′ = (π(Lc
1))

c.

Moreover, one has L′ � L1. Indeed, if p ∈ Ed1

B , we simulate the machineM1 on all pattern

p′ ∈ Asupp(p)+Sd1
n such that π(p′) = p, running successively one step for each pattern.

• Stability under sub-action: Let T′ = φSA(G,TL1
) ⊆ AZd

′

1 where G is a subgroup

of Zd1 of dimension d′ ≤ d1. We consider the language L′ ⊆ Ed1

A1
which is the domain of the

Turing machine M′: on a pattern p ∈ Ed′

A1
of support U, a Turing machine M′ simulates

successively M1 on every entry word of support [−n;n]d1 which completes p in Ed1

A1
where

[−n;n]d1 is the minimal support which contains U embedded in G. Thus L′ � L1, moreover
T′ = TL′ . This is exactly the same principle as in the proof of Theorem 2.2.
• Stability under superposition: Let T′ = φSP (G, G′,TL1

) where G is isomorph

to Zd1 and G ⊕ G′ = Zd1+d. Let L′ ⊆ Ed1+d
A1

be the language where each pattern p is the

superposition of patterns p1, . . . , pd ∈ E
d1

A1
and there exists i ∈ {1, . . . , d} such that pi ∈ L1.

Thus L′ � L1 and T′ = TL′ .
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4.2.2. Reciprocal inclusion. Let T ⊆ AZd

be a subshift; define L = L(T)c ⊆ Ed
A. Let

L′ ⊆ Ed′

B be a language such that L′ � L. We want to prove that TL′ ∈ ClP,F,SA,SP,FT (T).
Here, we assume that L and L′ are one-dimensional languages, but the proof can be

adapted to the general case. We explain how to construct the subshift TL′ thanks to
operations P,F, FT, SA and SP applied on T = TL.

Since L′ � L there exists a Turing machineM with semi-oracle L such that dom(M) =
L′. We transform this Turing machine so that it only takes in input patterns of support
[0, 2n−1] (because checked patterns are given by W2) and at the moment when the state q?

is reached, the word written on the oracle tape is copied out in the alphabet Ã, which is
simply a copy of A, then again copied out in the alphabet A once the oracle has given its
answer.

We first list auxiliary subshifts that we need to construct TL′ :

• the original subshift TL written in the copy of A: T̃L ⊆ Ã
Z will simulate the oracle;

• Turing machine M is coded by a subshift of finite type TM ⊆ O
Z2

, where O is an

alphabet that contains at least A, Ã and B;
• the framework for this Turing machine will be given by W2, W3 and W5 defined

in Section 3; they are defined on the alphabet {•, ◦} and are subshifts of finite type
up to a letter-to-letter morphism.

Construction of TL′ . The principle is to construct Σ ∈ ClP,F,SA,SP,FT(TL) a 4-dimensional

subshift on the alphabet C = A× Ã× B × {•; ◦}3 ×O. Denote (e1, e2, e3, e4) the canonical
basis of Z4. We need these four dimensions for different reasons :

• the subshift TL′ will appear on Ze1;
• thanks to Ze1⊕Ze2⊕Ze3, we construct a framework forM, so that every rectangle

of this framework is in a plane {i} × Z× Z× {k} where i, k ∈ Z;

• on Ze4 we have the oracle simulated by T̃L.

Step 1 : First notice that changing TL into T̃L only requires a letter-to-letter morphism.

Then we construct W̃ = φSP (Ze4,Ze1 ⊕ Ze2 ⊕ Ze3, T̃L) to place T̃L in a 4-dimensional

subshift. We finally add through a product operation P all letters from C : W = W̃× (A×

B × {•; ◦}3 ×O)Z4

so that W ∈ ClP,F,SP (TL) ∩ CZ4

.

Step 2 : We want TL′ to appear on Ze1. Simulations of the Turing machineM will take in
input a word written on Ze2. So we need to copy out Ze1 on Ze2 so that these simulations
apply to what will be the subshift XL′ . We get to it with the finite condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e1−e2
.

We also want to keep accessible all along the simulation the entry word of every rectangle
of the framework. To do that we add the finite condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e3
.

We thus obtain a subshift W′ ∈ ClP,F,SP,FT (TL).
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Step 3 : Then we add to W′ a framework for the Turing machine. We construct Wrect ⊆
{•, ◦}Z3

an auxiliary subshift of finite type up to a letter-to-letter morphism, containing

well-chosen rectangles. Denote Fi the finite type condition that ensures ∀x ∈ {•, ◦}Z3

,∀u ∈Z3, xu = xu+ei
. As in Section 3, we define:

• W2 = φFT (F3, φSP (Ze1 ⊕Ze2,Ze3 ⊕ Ze4,S
(↑)
2 ));

• W5 = φFT (F3, φSP (Ze1 ⊕Ze2,Ze3 ⊕ Ze4,S
(↑)
5 ));

• W3 = φFT (F2, φSP (Ze1 ⊕Ze3,Ze2 ⊕ Ze4,S
(↑)
3 )).

The rectangles are obtained in W̃rect = W2 ×W5 ×W3. Each rectangle of length
5m given by W5 knows the length of its input 2n given by W2. Thus we can simulate
the Turing machine on words of length 2n, on a tape of length 5m and simulations are
bounded by 3p steps of calculation. Up to a letter-to-letter morphism, W̃rect is a subshift
of finite type, so there exists a finite set of patterns Frect and a morphism πrect such that
W̃rect = πrect(TFrect

). We add this framework to W′ via Wrect = πrect(φFT (Frect,W
′)) so

that we have Wrect ∈ ClP,F,SP,FT (TL).

Step 4 : We add the behaviour of M in rectangles of Wrect but for the moment we do not
take into consideration calls for oracle. As in Section 3, we consider the finite conditions
PM given by the rule of M and the conditions Pcalc = {Init,Head,Stop,Final} which
control the interaction of the head of M with the rectangles. For the moment every time
the machine calls the oracle it keeps on calculating. Thus WM = φFT (PM∪Pcalc,Wrect) ∈
ClP,F,FT,SP (TL).

Step 5 : To simulate the oracle, we add finite type conditions to ensure that during a
calculation, when the machine calls for the oracle in (i, j, k, l) ∈ Z4, the pattern p ∈ Ãn on
which the oracle is called coincides with the pattern in Ze4 between (i, j, k, l) and (i, j, k, l+
n). These new allowed patterns look like :

↑e4

ã .

b̃ ã
,

ã .

(q?, b̃) ã
→e2

However, these conditions are only valid in the interior of a rectangle. We denote these finite
type conditions by Foracle. Then we have WMoracle

= φFT (Foracle,WM) ∈ ClP,F,SP,FT (TL).

Step 6 : In order to avoid dependence problems between different calculations, each config-
uration of TL that appears on Z4 is used for the same calculation, thanks to the finite type
condition :

∀x ∈ CZ4

,∀u ∈ Z4, xu = xu+e1+e4
.

Finally we consider the final state qstop as a forbidden pattern and we denote by Σ this
subshift. We have Σ ∈ ClP,F,SP,FT (TL).

We simulate the running of the Turing machine M on a pattern p ∈ E1
B of length 2n.

As soon as M calls for the oracle, we compare the word on which the oracle is called and
the word on Ze4. If the two words coincide then M keeps on calculating, else it comes to
the final state qstop. If the machine cannot terminate its calculation within the time given
by the rectangle, Proposition 3.4 ensures that we can find a larger rectangle in which the
machine will calculate on the same entry word.

The following picture resumes the behaviour of the machine M on the framework :
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e1

e2

e3

e4

p

p

q?

q?

q?

qstop

Proof that this construction works. We now prove that φSA(Ze1,Σ), the projection of
Σ on Ze1 is TL′ , up to a morphism that just consists in keeping information about B.

Proof of φSA(Ze1,Σ) ⊆ TL′ : Let y ∈ Σ, we prove that x = y|Ze1
∈ TL′ . It is sufficient to

prove that every pattern in x is not in L′. Let p be a pattern in x; it is a sub-pattern of
a certain p′ ⊏ x where p′ is chosen such that it is of length 2n. By construction of Wrect

there exists t, s ∈ N arbitrary large such that there exists a rectangle of size 5s × 3t with
the entry word p′. Since y ∈ Σ, in every rectangle the calculation of the machineM on the
word p′ does not reach the final state qstop. Since these rectangles are arbitrarily large, we
can conclude that the machine M never reaches qstop. It means that p′ /∈ L′, thus p /∈ L′.

Proof of TL′ ⊆ φSA(Ze1,Σ): Let x ∈ TL′ , we construct y ∈ CZ4

such that y ∈ Σ and
y|Ze1

= x. To insure that y ∈ Σ we just need to check that for all (i, j, k) ∈ Z3, we can
impose that y|{i}×{j}×{k}×Z ∈ TL while the calculations of M in the rectangles containing
any (i, j, k, l) do not reach the state qstop.

Let us now focus on a specific rectangle of the framework, on which the machine M
calculates on a pattern p of size 2n that appears in x. Since p appears in x, p /∈ L′ so the
machineM loops on the entry p. It means that every time the calculation ofM on p calls
for the oracle on a pattern p′, p′ is not in L. Since L = L(T)c, for all pattern p′ on which
the oracle is called, there exists a configuration z ∈ TL such that z|[0;|m′|−1] = p′. Thus we
complete y on the following way :

- if in (i, j, k) ∈ Z3 the calculation of M calls for the oracle on a pattern p′, then
y|{i}×{j}×{k}×Z = z previously constructed;

- if the oracle is not called, we complete y with any y|{i}×{j}×{k}×Z ∈ TL.

This makes sure that y is in the subshift Σ, so x ∈ φSA(Ze1,Σ).

The proof of Theorem is completed. �

An application of Theorem 4.2: There does not exist an “universal” subshift T which
could simulate every element of S. Indeed, consider L = L(T)c, one has ClP,F,SA,SP,FT (T) =
{TL′ : L′ � L}. But there exists L′′ strictly superior to L (see [RJ87]). Moreover, one can
choose L′′ such that for all patterns p ∈ L′′ ⊆ Ed

A, then for all p′ ∈ Ed
A such that p ⊏ p′, one

has p′ ∈ L′′. Thus L(TL′′)
c = L′′. One deduces that TL′′ /∈ ClP,F,SA,SP,FT (T).
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Conclusion

In this article we generalize the notion of tilings considering any set of forbidden pat-
terns. We present operations on sets of tilings, called subshifts, inspired by the dynamical
theory. We obtain different notions of simulation, depending on the set of operations which
are considered. These notions involve different semi-orders on subshifts and in this article
we focus on the semi-order which consider all the transformations presented. This semi-
order is quite well understood since we establish a correspondence with a semi-order on
languages of forbidden patterns based on computability properties. The following points
are still open questions :

• In our construction, considering two subshifts T1 and T2 respectively of dimension
d1 and d2 such that L(T2)

c � L(T1)
c, we need Σ ∈ ClP,F,SA,SP,FT(T1) of dimension

d1 + d2 + 2 to simulate T2. It is possible to decrease the dimension of Σ?
• For which class U ⊆ S there exists a subshift T such that ClP,F,SA,SP,FT(T) = U?

We can also consider other semi-orders involved by other sets of operations and look for
general tools to study them. In fact, some of these semi-orders have already been studied.
For example, the set of space-time diagrams of a cellular automaton can be viewed as a
subshift, and the orders presented in [MR99, Oll03, The05] could be formalized with the
tools introduced in Section 2.
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JÉRÉMY BARBAY AND GONZALO NAVARRO

Dept. of Computer Science (DCC), University of Chile.
E-mail address: {jbarbay,gnavarro}@dcc.uchile.cl

Abstract. We explore various techniques to compress a permutation π over n integers,
taking advantage of ordered subsequences in π, while supporting its application π(i) and
the application of its inverse π−1(i) in small time. Our compression schemes yield several
interesting byproducts, in many cases matching, improving or extending the best existing
results on applications such as the encoding of a permutation in order to support iterated
applications πk(i) of it, of integer functions, and of inverted lists and suffix arrays.

1. Introduction

Permutations of the integers [n] = {1, . . . , n} are a basic building block for the succinct
encoding of integer functions [38], strings [1, 18, 39, 41], and binary relations [5, 4], among
others. A permutation π is trivially representable in n⌈lg n⌉ bits, which is within O(n) bits
of the information theory lower bound of lg(n!) bits.1 In many interesting applications,
efficient computation of both the permutation π(i) and its inverse π−1(i) is required.

The lower bound of lg(n!) bits yields a lower bound of Ω(n log n) comparisons to sort
such a permutation in the comparison model. Yet, a large body of research has been dedi-
cated to finding better sorting algorithms which can take advantage of specificities of each
permutation to sort. Trivial examples are permutations sorted such as the identity, or con-
taining sorted blocks [32] (e.g. (1 , 3 , 5 , 7 , 9 , 2,4,6, 8,10) or (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5)),
or containing sorted subsequences [28] (e.g. (1 ,6, 2 ,7, 3 ,8, 4 , 9, 5 , 10)): algorithms per-
forming only O(n) comparisons on such permutations, yet still O(n log n) comparisons in
the worst case, are achievable and obviously preferable. Less trivial examples are classes
of permutations whose structure makes them interesting for applications: see Mannila’s
seminal paper [32] and Estivil-Castro and Wood’s review [14] for more details.

Each sorting algorithm in the comparison model yields an encoding scheme for permu-
tations: It suffices to note the result of each comparison performed to uniquely identify the
permutation sorted, and hence to encode it. Since an adaptive sorting algorithm performs
o(n log n) comparisons on many classes of permutations, each adaptive algorithm yields a
compression scheme for permutations, at the cost of losing a constant factor on some other

Key words and phrases: Compression, Permutations, Succinct Data Structures, Adaptive Sorting.
Second author partially funded by Fondecyt Grant 1-080019, Chile.

1In this paper we use the notations lg x = log
2
x and [x] = {1, . . . , x}.
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“bad” classes of permutations. We show in Section 4 some examples of applications where
only “easy” permutations arise. Yet such compression schemes do not necessarily support
in reasonable time the inverse of the permutation, or even the simple application of the
permutation: this is the topic of our study. We describe several encodings of permutations
so that on interesting classes of instances the encoding uses o(n log n) bits while supporting
the operations π(i) and π−1(i) in time o(log n). Later, we apply our compression schemes
to various scenarios, such as the encoding of integer functions, text indexes, and others,
yielding original compression schemes for these abstract data types.

2. Previous Work

Definition 2.1. The entropy of a sequence of positive integers X = 〈n1, n2, . . . , nr〉 adding

up to n is H(X) =
∑r

i=1
ni

n lg n
ni

. By convexity of the logarithm, r lg n
n ≤ H(X) ≤ lg r.

Succinct Encodings of Sequences. Let S[1, n] be a sequence over an alphabet [r]. This
includes bitmaps when r = 2 (where, for convenience, the alphabet will be {0, 1}). We
will make use of succinct representations of S that support operations rank and select:
rankc(S, i) gives the number of occurrences of c in S[1, i] and selectc(S, j) gives the position
in S of the jth occurrence of c.

For the case r = 2, S requires n bits of space and rank and select can be supported
in constant time using O(n log log n

log n ) = o(n) bits on top of S [36, 10, 17]. The extra space

is more precisely O(n log b
b + 2b polylog(b)) for some parameter b, which is chosen to be, say,

b = 1
2 lg n to achieve the given bounds. In this paper, we will sometimes apply the technique

over sequences of length ℓ = o(n) (n will be the length of the permutations). Still, we will
maintain the value of b as a function of n, not ℓ, which ensures that the extra space will be
of the form O( ℓ log log n

log n ), i.e., it will tend to zero when divided by ℓ as n grows, even if ℓ stays

constant. All of our o() terms involving several variables in this paper can be interpreted
in this strong sense: asymptotic in n. Thus we will write the above space simply as o(ℓ).

Raman et al. [40] devised a bitmap representation that takes nH0(S)+ o(n) bits, while
maintaining the constant time for the operations. Here H0(S) = H(〈n1, n2, . . . , nr〉) ≤ lg r,
where nc is the number of occurrences of symbol c in S, is the so-called zero-order entropy of
S. For the binary case this simplifies to nH0(S) = m lg n

m +(n−m) lg n
n−m = m lg n

m +O(m),
where m is the number of bits set in S.

Grossi et al. [19] extended the result to larger alphabets using the so-called wavelet
tree, which decomposes a sequence into several bitmaps. By representing those bitmaps in
plain form, one can represent S using n⌈lg r⌉(1 + o(1)) bits of space, and answer S[i], as
well as rank and select queries on S, in time O(log r). By, instead, using Raman et al.’s
representation for the bitmaps, one achieves nH0(S)+o(n log r) bits of space, and the same
times. Ferragina et al. [15] used multiary wavelet trees to maintain the same compressed

space, while improving the times for all the operations to O(1 + log r
log log n).

Measures of Disorder in Permutations. Various previous studies on the presortedness
in sorting considered in particular the following measures of order on an input array to be
sorted. Among others, Mehlhorn [34] and Guibas et al. [21] considered the number of pairs
in the wrong order, Knuth [27] considered the number of ascending substrings (runs), Cook
and Kim [12], and later Mannila [32] considered the number of elements which have to be
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removed to leave a sorted list, Mannila [32] considered the smallest number of exchanges of
arbitrary elements needed to bring the input into ascending order, Skiena [44] considered the
number of encroaching sequences, obtained by distributing the input elements into sorted
sequences built by additions to both ends, and Levcopoulos and Petersson [28] considered
Shuffled UpSequences and Shuffled Monotone Sequences. Estivil-Castro and Wood [14] list
them all and some others.

3. Compression Techniques

We first introduce a compression method that takes advantage of (ascending) runs
in the permutation. Then we consider a stricter variant of the runs, which allows for
further compression in applications when those runs arise, and in particular allows the
representation size to be sublinear in n. Next, we consider a more general type of runs,
which need not be contiguous.

3.1. Wavelet Tree on Runs

One of the best known sorting algorithm is merge sort, based on a simple linear proce-
dure to merge two already sorted arrays, resulting in a worst case complexity of O(n log n).
Yet, checking in linear time for down-step positions in the array, where an element is fol-
lowed by a smaller one, partitions the original arrays into ascending runs which are already
sorted. This can speed up the algorithm when the array is partially sorted [27]. We use
this same observation to encode permutations.

Definition 3.1. A down step of a permutation π over [n] is a position i such that π(i+1) <
π(i). A run in a permutation π is a maximal range of consecutive positions {i, . . . , j} which
does not contain any down step. Let d1, d2, . . . , dk be the list of consecutive down steps in
π. Then the number of runs of π is noted ρ = k + 1, and the sequence of the lengths of the
runs is noted Runs = 〈d1, d2 − d1, . . . , dk − dk−1, n + 1− dk〉.

For example, permutation (1 , 3 , 5 , 7 , 9 , 2,4,6, 8,10) contains ρ = 2 runs, of lengths
〈5, 5〉. Whereas previous analyses [32] of adaptive sorting algorithms considered only the
number ρ of runs, we refine them to consider the distribution Runs of the sizes of the runs.

Theorem 3.2. There is an encoding scheme using at most n(2 + H(Runs))(1 + o(1)) +
O(ρ log n) bits to encode a permutation π over [n] covered by ρ runs of lengths Runs. It
supports π(i) and π−1(i) in time O(1 + log ρ) for any value of i ∈ [n]. If i is chosen
uniformly at random in [n] then the average time is O(1 + H(Runs)).

Proof. The Hu-Tucker algorithm [23] (see also Knuth [27, p. 446]) produces in O(ρ log ρ)
time a prefix-free code from a sequence of frequencies X = 〈n1, n2, . . . , nρ〉 adding up to
n, so that (1) the i-th lexicographically smallest code is that for frequency ni, and (2) if
ℓi is the bit length of the code assigned to the i-th sequence element, then L =

∑
ℓini is

minimal and moreover L < n(2 + H(X)) [27, p. 446, Eq. (27)].
We first determine Runs in O(n) time, and then apply the Hu-Tucker algorithm to

Runs. We arrange the set of codes produced in a binary trie (equivalent to a Huffman tree
[24]), where each leaf corresponds to a run and points to its two endpoints in π. Because
of property (1), reading the leaves left-to-right yields the runs also in left-to-right order.
Now we convert this trie into a wavelet-tree-like structure [19] without altering its shape,
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as follows. Starting from the root, first process recursively each child. For the leaves do
nothing. Once both children of an internal node have been processed, the invariant is that
they point to the contiguous area in π covering all their leaves, and that this area of π has
already been sorted. Now we merge the areas of the two children in time proportional to
the new area created (which, again, is contiguous in π because of property (1)). As we do
the merging, each time we take an element from the left child we append a 0 bit to a bitmap
we create for the node, and a 1 bit when we take an element from the right list.

When we finish, we have the following facts: (1) π has been sorted, (2) the time for
sorting has been O(n + ρ log ρ) plus the total number of bits appended to all bitmaps, (3)
each of the ni elements of leaf i (at depth ℓi) has been merged ℓi times, contributing ℓi bits
to the bitmaps of its ancestors, and thus the total number of bits is

∑
niℓi.

Therefore, the total number of bits in the Hu-Tucker-shaped wavelet tree is at most
n(2+H(Runs)). To this we must add the O(ρ log n) bits of the tree pointers. We preprocess
all the bitmaps for rank and select queries so as to spend o(n(2+H(Runs)) extra bits (§2).

To compute π−1(i) we start at offset i at the root bitmap B, with position p ← 0,
and bitmap size s ← n. If B[i] = 0 we go down to the left child with i ← rank0(B, i)
and s ← rank0(B, s). Otherwise we go down to the right child with i ← rank1(B, i),
p← p + rank0(B, s), and s← rank1(B, s). When we reach a leaf, the answer is p + i.

To compute π(i) we do the reverse process, but we must first determine the leaf v and
offset j within v corresponding to position i: We start at the root bitmap B, with bitmap
size s ← n and position j ← i. If rank0(B, s) ≥ j we go down to the left child with
s ← rank0(B, s). Otherwise we go down to the right child with j ← j − rank0(B, s) and
s ← rank1(B, s). We eventually reach leaf v, and the offset within v is j. We now start
an upward traversal using the nodes that are already in the recursion stack (those will be
limited to O(log ρ) soon). If v is a left child of its parent u, then we set j ← select0(B, j),
else we set j ← select1(B, j), where B is the bitmap of u. Then we set v ← u until reaching
the root, where j = π(i).

In both cases the time is O(ℓ), where ℓ is the depth of the leaf arrived at. If i is chosen
uniformly at random in [n], then the average cost is 1

n

∑
niℓi = O(1 + H(Runs)). However,

the worst case can be O(ρ) in a fully skewed tree. We can ensure ℓ = O(log ρ) in the worst
case while maintaining the average case by slightly rebalancing the Hu-Tucker tree: If there
exist nodes at depth ℓ = 4 lg ρ, we rebalance their subtrees, so as to guarantee maximum
depth 5 lg ρ. This affects only marginally the size of the structure. A node at depth ℓ cannot
add up to a frequency higher than n/2⌊ℓ/2⌋ ≤ 2n/ρ2 (see next paragraph). Added over all
the possible ρ nodes we have a total frequency of 2n/ρ. Therefore, by rebalancing those

subtrees we add at most 2n lg ρ
ρ bits. This is o(n) if ρ = ω(1), and otherwise the cost was

O(ρ) = O(1) anyway. For the same reasons the average time stays O(1 + H(Runs)) as it

increases at most by O( log ρ
ρ ) = O(1).

The bound on the frequency at depth ℓ is proved as follows. Consider the node v at
depth ℓ, and its grandparent u. Then the uncle of v cannot have smaller frequency than
v. Otherwise we could improve the already optimal Hu-Tucker tree by executing either a
single (if v is left-left or right-right grandchild of u) or double (if v is left-right or right-left
grandchild of u) AVL-like rotation that decreases the depth of v by 1 and increases that
of the uncle of v by 1. Thus the overall frequency at least doubles whenever we go up two
nodes from v, and this holds recursively. Thus the weight of v is at most n/2⌊ℓ/2⌋.
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The general result of the theorem can be simplified when the distribution Runs is not
particularly favorable.

Corollary 3.3. There is an encoding scheme using at most n⌈lg ρ⌉(1 + o(1)) + O(log n)
bits to encode a permutation π over [n] with a set of ρ runs. It supports π(i) and π−1(i) in
time O(1 + log ρ) for any value of i ∈ [n].

As a corollary, we obtain a new proof of a well-known result on adaptive algorithms
telling that one can sort in time O(n(1 + log ρ)) [32], now refined to consider the entropy
of the partition and not only its size.

Corollary 3.4. We can sort an array of length n covered by ρ runs of lengths Runs in
time O(n(1 + H(Runs))), which is worst-case optimal in the comparison model among all
permutations with ρ runs of lengths Runs so that ρ log n = o(nH(Runs)).

3.2. Stricter Runs

Some classes of permutations can be covered by a small number of runs of a stricter
type. We present an encoding scheme which uses o(n) bits for encoding the permutations
from those classes, and still O(n lg n) bits for all others.

Definition 3.5. A strict run in a permutation π is a maximal range of positions satisfying
π(i + k) = π(i) + k. The head of such run is its first position. The number of strict runs of
π is noted τ , and the sequence of the lengths of the strict runs is noted SRuns. We will call
HRuns the sequence of run lengths of the sequence formed by the strict run heads of π.

For example, permutation (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5) contains τ = 2 strict runs, of
lengths SRuns = 〈5, 5〉. The run heads are 〈6 ,1〉, and contain 2 runs, of lengths HRuns =
〈1, 1〉. Instead, (1 , 3 , 5 , 7 , 9 ,2,4, 6,8,10) contains τ = 10 strict runs, all of length 1.

Theorem 3.6. There is an encoding scheme using at most τH(HRuns)(1+o(1))+2τ lg n
τ +

o(n)+O(τ +ρ log τ) bits to encode a permutation π over [n] covered by τ strict runs and by
ρ ≤ τ runs, and with HRuns being the ρ run lengths in the permutation of strict run heads.
It supports π(i) and π−1(i) in time O(1 + log ρ) for any value of i ∈ [n]. If i is chosen
uniformly at random in [n] then the average time is O(1 + H(HRuns)).

Proof. We first set up a bitmap R marking with a 1 bit the beginning of the strict runs. Set
up a second bitmap Rinv such that Rinv[i] = R[π−1(i)]. Now we create a new permutation
π′ of [τ ] which collapses the strict runs of π, π′(i) = rank1(R

inv, π(select1(R, i))). All
this takes O(n) time and the bitmaps take 2τ lg n

τ +O(τ) + o(n) bits using Raman et al.’s
technique, where rank and select are solved in constant time (§2).

Now build the structure of Thm. 3.2 for π′. The number of down steps in π is the same
as for the sequence of strict run heads in π, and in turn the same as the down steps in π′.
So the number of runs in π′ is also ρ and their lengths are HRuns. Thus we get at most
τ(2+H(HRuns))(1+o(1))+O(ρ log τ) bits to encode π′, and can compute π′ and its inverse
in O(1 + log ρ) worst case and O(1 + H(HRuns)) average time.

To compute π(i), we find i′ ← rank1(R, i) and then compute j′ ← π′(i′). The final
answer is select1(R

inv, j′)+i−select1(R, i′). To compute π−1(i), we find i′ ← rank1(R
inv, i)

and then compute j′ ← (π′)−1(i′). The final answer is select1(R, j′) + i− select1(R
inv, i′).

This adds only constant time on top of that to compute π′ and its inverse.
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Once again, we might simplify the results when the distribution HRuns is not particularly
favorable, and we also obtain interesting algorithmic results on sorting.

Corollary 3.7. There is an encoding scheme using at most τ⌈lg ρ⌉(1 + o(1)) + 2τ lg n
τ +

O(τ) + o(n) bits to encode a permutation π over [n] covered by τ strict runs and by ρ ≤ τ
runs. It supports π(i) and π−1(i) in time O(1 + log ρ) for any value of i ∈ [n].

Corollary 3.8. We can sort a permutation of [n], covered by τ strict runs and by ρ runs,
and HRuns being the run lengths of the strict run heads, in time O(n + τH(HRuns)) =
O(n+τ log ρ), which is worst-case optimal, in the comparison model, among all permutations
sharing these ρ, τ , and HRuns values, such that ρ log τ = o(τH(HRuns)).

3.3. Shuffled Sequences

Levcopoulos and Petersson [28] introduced the more sophisticated concept of parti-
tions formed by interleaved runs, such as Shuffled UpSequences (SUS). We discuss here the
advantage of considering permutations formed by shuffling a small number of runs.

Definition 3.9. A decomposition of a permutation π over [n] into Shuffled UpSequences
is a set of, not necessarily consecutive, subsequences of increasing numbers that have to
be removed from π in order to reduce it to the empty sequence. The minimum number
of shuffled upsequences in such a decomposition of π is noted σ, and the sequence of the
lengths of the involved shuffled upsequences, in arbitrary order, is noted SUS.

For example, permutation (1 ,6, 2 ,7, 3 ,8, 4 ,9, 5 , 10) contains σ = 2 shuffled upse-
quences of lengths SUS = 〈5, 5〉, but ρ = 5 runs, all of length 2. Whereas the decomposition
of a permutation into runs or strict runs can be computed in linear time, the decomposition
into shuffled upsequences requires a bit more time. Fredman [16] gave an algorithm to
compute the size of an optimal partition, claiming a worst case complexity of O(n log n). In
fact his algorithm is adaptive and takes O(n(1 + log σ)) time. We give here a variant of his
algorithm which computes the partition itself within the same complexity, and we achieve
even better time on favorable sequences SUS.

Lemma 3.10. Given a permutation π over [n] covered by σ shuffled upsequences of lengths
SUS, there is an algorithm finding such a partition in time O(n(1 + H(SUS))).

Proof. Initialize a sequence S1 = (π(1)), and a splay tree T [45] with the node (S1), ordered
by the rightmost value of the sequence contained by each node. For each further element
π(i), search for the sequence with the maximum ending point smaller than π(i). If any, add
π(i) to this sequence, otherwise create a new sequence and add it to T . Fredman [16] already
proved that this algorithm computes an optimal partition. The adaptive complexity results
from the mere observation that the splay tree (a simple sorted array in Fredman’s proof)
contains at most σ elements, and that the node corresponding to a subsequence is accessed
once per element in it. Hence the total access time is O(n(1 + H(SUS))) [45, Thm. 2].

The complete description of the permutation requires to encode the computation of
both the partitioning algorithm and the sorting one, and this time the encoding cost of
partitioning is as important as that of merging.
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Theorem 3.11. There is an encoding scheme using at most 2n(1 + H(SUS)) + o(n log σ) +
O(σ log n) bits to encode a permutation π over [n] covered by σ shuffled upsequences of
lengths SUS. It supports the operations π(i) and π−1(i) in time O(1+log σ) for any value of

i ∈ [n]. If i is chosen uniformly at random in [n] the average time is O(1+H(SUS)+ log σ
log log n).

Proof. Partition the permutation π into σ shuffled upsequences using Lemma 3.10, resulting
in a string S of length n over alphabet [σ] which indicates for each element of the permu-
tation π the label of the upsequence it belongs to. Encode S with a wavelet tree using
Raman et al.’s compression for the bitmaps, so as to achieve nH(SUS) + o(n log σ) bits of
space and support retrieval of any S[i], as well as symbol rank and select on S, in time
O(1 + log σ) (§2). Store also an array A[1, σ] so that A[ℓ] is the accumulated length of all
the upsequences with label less than ℓ. Array A requires O(σ log n) bits. Finally, consider
the permutation π′ formed by the upsequences taken in label order: π′ has at most σ runs
and hence can be encoded using n(2 + H(SUS))(1 + o(1)) +O(σ log n) bits using Thm. 3.2,
as SUS in π corresponds to Runs in π′. This supports π′(i) and π′−1(i) in time O(1+ log σ).

Now π(i) = π′(A[S[i]]+rankS[i](S, i)) can be computed in time O(1+ log σ). Similarly,

π−1(i) = selectℓ(S, (π′)−1(i) − A[ℓ]), where ℓ is such that A[ℓ] < (π′)−1(i) ≤ A[ℓ + 1], can
also be computed in O(1 + log σ) time. Thus the whole structure uses 2n(1 + H(SUS)) +
o(n log σ) +O(σ log n) bits and supports π(i) and π−1(i) in time O(1 + log σ).

The obstacles to achieve the claimed average time are the operations on the wavelet
tree of S, and the binary search in A. The former can be reduced to O(1 + log σ

log log n)

by using the improved wavelet tree representation by Ferragina et al. (§2). The latter is
reduced to constant time by representing A with a bitmap A′[1, n] with the bits set at
the values A[ℓ] + 1, so that A[ℓ] = select1(A

′, ℓ) − 1, and the binary search is replaced by
ℓ = rank1(A

′, (π′)−1(i)). With Raman et al.’s structure (§2), A′ needs O(σ log n
σ ) bits and

operates in constant time.

Again, we might prefer a simplified result when SUS has no interesting distribution, and
we also achieve an improved result on sorting, better than the known O(n(1 + log σ)).

Corollary 3.12. There is an encoding scheme using at most 2n lg σ(1+o(1))+σ lg n
σ +O(σ)

bits to encode a permutation π over [n] covered by σ shuffled upsequences. It supports the
operations π(i) and π−1(i) in time O(1 + log σ) for any value of i ∈ [n].

Corollary 3.13. We can sort an array of length n, covered by σ shuffled upsequences of
lenghts SUS, in time O(n(1 + H(SUS))), which is worst-case optimal, in the comparison
model, among all permutations decomposable into σ shuffled upsequences of lenghts SUS

such that σ log n = o(nH(SUS)).

4. Applications

4.1. Inverted Indexes

Consider a full-text inverted index which gives the word positions of any word in a text.
This is a popular data structure for natural language text retrieval [3, 46], as it permits for
example solving phrase queries without accessing the text. For each different text word, an
increasing list of its text positions is stored.
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Let n be the total number of words in a text collection T [1, n] and ρ the vocabulary size
(i.e., number of different words). An uncompressed inverted index requires (ρ+n)⌈lg n⌉ bits.
It has been shown [31] that, by δ-encoding the differences between consecutive entries in the
inverted lists, the total space reduces to nH0(T ) + ρ⌈lg n⌉, where H0(T ) is the zero-order
entropy of the text if seen as a sequence of words (§2). We note that the empirical law by
Heaps [22], well accepted in Information Retrieval, establishes that ρ is small: ρ = O(nβ)
for some constant 0 < β < 1 depending on the text type.

Several successful methods to compress natural language text take words as symbols
and use zero-order encoding, and thus the size they can achieve is lower bounded by nH0(T )
[35]. If we add the differentially encoded inverted index in order to be able of searching the
compressed text, the total space is at least 2nH0(T ).

Now, the concatenation of the ρ inverted lists can be seen as a permutation of [n]
with ρ runs, and therefore Thm. 3.2 lets us encode it in n(2+H0(T ))(1+ o(1))+O(ρ log n)
bits. Within the same space we can add ρ numbers telling where the runs begin, in an array
V [1, ρ]. Now, in order to retrieve the list of the i-th word, we simply obtain π(V [i]), π(V [i]+
1), . . . , π(V [i + 1] − 1), each in O(1 + log ρ) time. Moreover we can extract any random
position from a list, which enables binary-search-based strategies for list intersection [2, 42,
13]. In addition, we can also obtain a text passage from the (inverse) permutation: To find
out T [j], π−1(j) gives its position in the inverted lists, and a binary search on V finds the
interval V [i] ≤ π−1(j) < V [i + 1], to output that T [j] = ith word, in O(1 + log ρ) time.

This result is very interesting, as it constitutes a true word-based self-index [39] (i.e., a
compressed text index that contains the text). Similar results have been recently obtained
with rather different methods [9, 11]. The cleanest one is to build a wavelet tree over T
with compression [15], which achieves nH0(T ) + o(n log ρ) + O(ρ log n) bits of space, and
permits obtaining T [i], as well as extracting the jth element of the inverted list of the ith

word with selecti(T, j), all in time O(1 + log ρ
log log n).

Yet, one advantage of our approach is that the extraction of ℓ consecutive entries
π−1([i, i′]) takes O(ℓ(1+log ρ

ℓ )) time if we do the process for all the entries as a block: Start
at range [i, i′] at the root bitmap B, with position p← 0, and bitmap size s← n. Go down to
both left and right children: to the left with [i, i′]← [rank0(B, i), rank0(B, i′)], same p, and
s← rank0(B, s); to the right with [i, i′]← [rank1(B, i), rank1(B, i′)], p← p + rank0(B, s),
and s ← rank1(B, s). Stop when the range [i, i′] becomes empty or when we reach a leaf,
in which case report all answers p + k, i ≤ k ≤ i′. By representing the inverted list as π−1,
we can extract long inverted lists faster than the existing methods.

Corollary 4.1. There exists a representation for a text T [1, n] of integers in [1, ρ] (regarded
as word identifiers), with zero-order entropy H0, that takes n(2+H0)(1+ o(1))+O(ρ log n)
bits of space, and can retrieve the text position of the jth occurrence of the ith text word, as
well as the value T [j], in O(1 + log ρ) time. It can also retrieve any range of ℓ successive
occurrences of the ith text word in time O(ℓ(1 + log ρ

ℓ )).

We could, instead, represent the inverted list as π, so as to extract long text passages
efficiently, but the wavelet tree representation can achieve the same result. Another in-
teresting functionality that both representations share, and which is useful for other list
intersection algorithms [6, 4], is that to obtain the first entry of a list which is larger than x.
This is done with rank and select on the wavelet tree representation. In our permutation
representation, we can also achieve it in O(1 + log ρ) time by finding out the position of a
number x within a given run. The algorithm is similar to those in Thm. 3.2 that descend
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to a leaf while maintaining the offset within the node, except that the decision on whether
to descend left or right depends on the leaf we want to arrive at and not on the bitmap
content (this is actually the algorithm to compute rank on binary wavelet trees [39]).

Finally, we note that our inverted index data structure supports in small time all the
operations required to solve conjunctive queries on binary relations.

4.2. Suffix Arrays

Suffix arrays are used to index texts that cannot be handled with inverted lists. Given a
text T [1, n] of n symbols over an alphabet of size ρ, the suffix array A[1, n] is a permutation
of [n] so that T [A[i], n] is lexicographically smaller than T [A[i + 1], n]. As suffix arrays
take much space, several compressed data structures have been developed for them [39].
One of interest for us is the Compressed Suffix Array (CSA) of Sadakane [41]. It builds
over a permutation Ψ of [n], which satisfies A[Ψ[i]] = (A[i] mod n) + 1 (and thus lets us
move virtually one position forward in the text) [20]. It turns out that, using just Ψ and
O(ρ log n) extra bits, one can (i) count the number of times a pattern P [1,m] occurs in T
using O(m log n) applications of Ψ; (ii) locate any such occurrence using O(s) applications

of Ψ, by spending O(n log n
s ) extra bits of space; and (iii) extract a text substring T [l, r]

using at most s + r − l applications of Ψ. Hence this is another self-index, and its main
burden of space is that to represent permutation Ψ.

Sadakane shows that Ψ has at most ρ runs, and gives a representation that accesses
Ψ[i] in constant time by using nH0(T )+O(n log log ρ) bits of space. It was shown later [39]
that the space is actually nHk(T ) + O(n log log ρ) bits, for any k ≤ α logρ n and constant
0 < α < 1. Here Hk(T ) ≤ H0(T ) is the kth order empirical entropy of T [33].

With Thm. 3.2 we can encode Ψ using n(2 + H0(T ))(1 + o(1)) + O(ρ log n) bits of
space, whose extra terms aside from entropy are better than Sadakane’s. Those extra terms
can be very significant in practice. The price is that the time to access Ψ is O(1 + log ρ)
instead of constant. On the other hand, an interesting extra functionality is that to compute
Ψ−1, which lets us move (virtually) one position backward in T . This allows, for example,
displaying the text context around an occurrence without having to spend any extra space.
Still, although interesting, the result is not competitive with recent developments [15, 30].

An interesting point is that Ψ contains τ ≤ min(n, nHk(T ) + ρk) strict runs, for any k
[29]. Therefore, Cor. 3.7 lets us represent it using τ⌈lg ρ⌉(1+o(1))+2τ lg n

τ +O(τ)+o(n) bits

of space. For k limited as above, this is at most nHk(T )(lg ρ+2 lg 1
Hk(T ) +O(1))+o(n log ρ)

bits, which is similar to the space achieved by another self-index [29, 43], yet again it is
slightly superseded by its time performance.

4.3. Iterated Permutation

Munro et al. [37] described how to represent a permutation π as the concatenation of
its cycles, completed by a bitvector of n bits coding the lengths of the cycles. As the cycle
representation is itself a permutation of [n], we can use any of the permutation encodings
described in §3 to encode it, adding the binary vector encoding the lengths of the cycles. It
is important to note that, for a specific permutation π, the difficulty to compress its cycle
encoding π′ is not the same as the difficulty to encode the original permutation π.

Given a permutation π with c cycles of lengths 〈n1, . . . , nc〉, there are several ways
to encode it as a permutation π′, depending on the starting point of each cycle (Πi∈[c]ni



120 J. BARBAY AND G. NAVARRO

choices) and the order of the cycles in the encoding (c! choices). As a consequence, each
permutation π with c cycles of lengths 〈n1, . . . , nc〉 can be encoded by any of the Πi∈[c]i×ni

corresponding permutations.

Corollary 4.2. Any of the encodings from Theorems 3.2, 3.6 and 3.11 can be combined
with an additional cost of at most n+o(n) bits to encode a permutation π over [n] composed
of c cycles of lengths 〈n1, . . . , nc〉 to support the operation πk(i) for any value of k ∈ Z, in
time and space function of the order in the permutation encoding of the cycles of π.

The space “wasted” by such a permutation representation of the cycles of π is
∑

lg ni+
c lg c bits. To recover some of this space, one can define a canonical cycle encoding by
starting the encoding of each cycle with its smallest value, and by ordering the cycles in
order of their starting point. This canonical encoding always starts with a 1 and creates
at least one shuffled upsequence of length c: it can be compressed as a permutation over
[n− 1] with at least one shuffled upsequence of length c + 1 through Thm 3.11.

4.4. Integer Functions

Munro and Rao [38] extended the results on permutations to arbitrary functions from
[n] to [n], and to their iterated application fk(i), the function iterated k times starting
at i. Their encoding is based on the decomposition of the function into a bijective part,
represented as a permutation, and an injective part, represented as a forest of trees whose
roots are elements of the permutation: the summary of the concept is that an integer
function is just a “hairy permutation”. Combining the representation of permutations from
[37] with any representation of trees supporting the level-ancestor operator and an iterator
of the descendants at a given level yields a representation of an integer function f using
(1 + ε)n lg n + O(1) bits to support fk(i) in O(1 + |fk(i)|) time, for any fixed ε, integer
k ∈ Z and i ∈ [n].

Janssen et al. [25] defined the degree entropy of an ordered tree T with n nodes, having
ni nodes with i children, as H∗(T ) = H(〈n1, n2, . . .〉), and proposed a succinct data structure
for T using nH∗(T )+O(n(lg lg n)2/ lg n) bits to encode the tree and support, among others,
the level-ancestor operator. Obviously, the definition and encoding can be generalized to a
forest of k trees by simply adding one node whose k children are the roots of the k trees.

Encoding the injective parts of the function using Janssen et al.’s [25] succinct encoding,
and the bijective parts of the function using one of our permutation encodings, yields a
compressed representation of any integer function which supports its application and the
application of its iterated variants in small time.

Corollary 4.3. There is a representation of a function f : [n]→ [n] that uses n(1+⌈lg ρ⌉+
H∗(T ))+ o(n lg n) bits to support fk(i) in O(log ρ+ |fk(i)|) time, for any integer k and for
any i ∈ [n], where T is the forest representing the injective part of the function, and ρ is
the number of runs in the bijective part of the function.

5. Conclusion

Bentley and Yao [8], when introducing a family of search algorithms adaptive to the
position of the element searched (aka the “unbounded search” problem), did so through
the definition of a family of adaptive codes for unbounded integers, hence proving that the
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link between algorithms and encodings was not limited to the complexity lower bounds
suggested by information theory.

In this paper, we have considered the relation between the difficulty measures of adap-
tive sorting algorithms and some measures of “entropy” for compression techniques on
permutations. In particular, we have shown that some concepts originally defined for adap-
tive sorting algorithms, such as runs and shuffled upsequences, are useful in terms of the
compression of permutations; and conversely, that concepts originally defined for data com-
pression, such as the entropy of the sets of sizes of runs, are a useful addition to the set of
difficulty measures that one can consider in the study of adaptive algorithms.

It is easy to generalize our results on runs and strict runs to take advantage of permu-
tations which are a mix of up and down runs or strict runs (e.g. (1 , 3 , 5 , 7 , 9 ,10,8,6,4,2),
with only a linear extra computational and/or space cost. The generalization of our re-
sults on shuffled upsequences to SMS [28], permutations containing mixes of subsequences
sorted in increasing and decreasing orders (e.g. (1 ,10, 2 ,9, 3 ,8, 4 ,7, 5 , 6)) is sligthly more
problematic, because it is NP hard to optimally decompose a permutation into such subse-
quences [26], but any approximation scheme [28] would yield a good encoding.

Refer to the associated technical report [7] for a longer version of this paper, in particular
including all the proofs.
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Abstract. We prove that, for any arbitrary finite alphabet and for the uniform distri-
bution over deterministic and accessible automata with n states, the average complexity
of Moore’s state minimization algorithm is in O(n log n). Moreover this bound is tight in
the case of unary automata.

1. Introduction

Deterministic automata are a convenient way to represent regular languages that can be
used to efficiently perform most of usual computations involving regular languages. There-
fore finite state automata appear in many fields of computer science, such as linguistics,
data compression, bioinformatics, etc. To a given regular language one can associate a
unique smallest deterministic automaton, called its minimal automaton. This canonical
representation of regular languages is compact and provides an easy way to check equality.
As a consequence, state minimization algorithms that compute the minimal automaton of
a regular language, given by a deterministic automaton, are fundamental.

Moore proposed a solution [15] that can be seen as a sequence of partition refinements.
Starting from a partition of the set of states, of size n, into two parts, successive refine-
ments lead to a partition whose elements are the subsets of indistinguishable sets, that can
be merged to form a smaller automaton recognizing the same language. As there are at most
n − 2 such refinements, each of them requiring a linear running time, the worst-case com-
plexity of Moore’s state minimization algorithm is quadratic. Hopcroft’s state minimization
algorithm [11] also uses partition refinements to compute the minimal automaton, selecting
carefully the parts that are split at each step. Using suitable data structures, its worst-case
complexity is in O(n log n). It is the best known minimization algorithm, and therefore
it has been intensively studied, see [1, 5, 9, 12] for instance. Finally Brzozowski’s algo-
rithm [6, 7] is different from the other ones. Its inputs may be non-deterministic automata.
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The results of Fig.1 and Fig.2 were obtained with the C++ library REGAL (available at:
http://regal.univ-mlv.fr/) to randomly generate deterministic accessible automata

[2, 3, 4]. Each value is computed from 20 000 automata over a 2-letter alphabet.

It is based on two successive determinization steps, and though its worst-case complexity is
proved to be exponential, it has been noticed that it is is often sub-exponential in practice.
The reader is invited to consult [17], which presents a taxonomy of minimization algorithms,
for a more exhaustive list.

In this paper we study the average time complexity of Moore’s algorithm. From an
experimental point of view, the average complexity of Moore’s algorithm seems to be smaller
than the complexity of Hopcroft’s algorithm (Fig.1) and the number of partition refinements
increases very slowly as the size of the input grows (Fig.2). In the following we mainly prove
that in average, for the uniform distribution, Moore’s algorithm performs only O(log n)
refinements, thus its average complexity is in O(n log n).

After briefly recalling the basics of minimization of automata in Section 2, we prove
in Section 3 that the average time complexity of Moore’s algorithm is O(n log n) and show
in Section 4 that this bound is tight when the alphabet is unary. The paper closes with a
short discussion about generalizations of our main theorem to Bernoulli distributions and
to incomplete automata in Section 5, and the presentation of a conjecture based on the slow
growth of the number of refinements (Fig.2 when the alphabet is not unary in Section 6.

2. Preliminaries

This section is devoted to basic notions related to the minimization of automata. We
refer the reader to the literature for more details about minimization of automata [10, 14, 18].
We only record a few definitions and results that will be useful for our purpose.

2.1. Finite automata

A finite deterministic automaton A is a quintuple A = (A,Q, ·, q0, F ) where Q is a
finite set of states, A is a finite set of letters called alphabet, the transition function · is a
mapping from Q × A to Q, q0 ∈ Q is the initial state and F ⊂ Q is the set of final states.
An automaton is complete when its transition function is total. The transition function can
be extended by morphism to all words of A∗: p · ε = p for any p ∈ Q and for any u, v ∈ A∗,



ON THE AVERAGE COMPLEXITY OF MOORE’S STATE MINIMIZATION ALGORITHM 125

p · (uv) = (p · u) · v. A word u ∈ A∗ is recognized by an automaton when p · u ∈ F . The set
of all words recognized by A is denoted by L(A). An automaton is accessible when for any
state p ∈ Q, there exists a word u ∈ A∗ such that q0 · u = p.

A transition structure is an automaton where the set of final states is not specified.
Given such a transition structure T = (A,Q, ·, q0) and a subset F of Q, we denote by
(T , F ) the automaton (A,Q, ·, q0, F ). For a given deterministic and accessible transition
structure with n states there are exactly 2n distinct deterministic and accessible automata
that can be built from this transition structure. Each of them corresponds to a choice of
set of final states.

In the following we only consider complete accessible deterministic automata and com-
plete accessible deterministic transition structures, except in the presentation of the gen-
eralizations of the main theorem in Section 5. Consequently these objects will often just
be called respectively automata or transition structures. The set Q of states of an n-state
transition structure will be denoted by {1, · · · , n}.

2.2. Myhill-Nerode equivalence

Let A = (A,Q, ·, q0, F ) be an automaton. For any nonnegative integer i, two states
p, q ∈ Q are i-equivalent, denoted by p ∼i q, when for all words u of length less than or
equal to i, [[p · u ∈ F ]] = [[q · u ∈ F ]], where the Iverson bracket [[Cond]] is equal to 1 if the
condition Cond is satisfied and 0 otherwise. Two states are equivalent when for all u ∈ A∗,
[[p · u ∈ F ]] = [[q · u ∈ F ]]. This equivalence relation is called Myhill-Nerode equivalence. An
equivalence relation ≡ defined on the set of states Q of a deterministic automaton is said
to be right invariant when

for all u ∈ A∗ and all p, q ∈ Q, p ≡ q ⇒ p · u ≡ q · u.

The following proposition [10, 14, 18] summarizes the properties of Myhill-Nerode equiva-
lence that will be used in the next sections.

Proposition 2.1. Let A = (A,Q, ·, q0, F ) be a deterministic automaton with n states. The
following properties hold:

(1) For all i ∈ N, ∼i+1 is a partition refinement of ∼i, that is, for all p, q ∈ Q, if
p ∼i+1 q then p ∼i q.

(2) For all i ∈ N and for all p, q ∈ Q, p ∼i+1 q if and only if p ∼i q and for all a ∈ A,
p · a ∼i q · a.

(3) If for some i ∈ N (i + 1)-equivalence is equal to i-equivalence then for every j ≥ i,
j-equivalence is equal to Myhill-Nerode equivalence.

(4) (n− 2)-equivalence is equal to Myhill-Nerode equivalence.
(5) Myhill-Nerode equivalence is right invariant.

Let A = (A,Q, ·, q0, F ) be an automaton and ≡ be a right invariant equivalence relation
on Q. The quotient automaton of A by ≡ is the automaton

(A/≡) = (A,Q/≡, ∗, [q0], {[f ], f ∈ F}),
where Q/≡ is the set of equivalent classes, [q] is the class of q ∈ Q, and ∗ is defined for any
a ∈ A and any q ∈ Q by [q] ∗ a = [q · a]. The correctness of this definition relies on the right
invariance of the equivalence relation ≡.
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Theorem 2.2. For any complete, accessible and deterministic automaton A, the automaton
A/∼ is the unique smallest automaton (in terms of the number of states) that recognizes the
same language as the automaton A. It is called the minimal automaton of L(A).

The uniqueness of the minimal automaton is up to labelling of the states. Theorem 2.2
shows that the minimal automaton is a fundamental notion in language theory: it is the
most space efficient representation of a regular language by a deterministic automaton, and
the uniqueness defines a bijection between regular language and minimal automata. For
instance, to check whether two regular languages are equal, one can compare their minimal
automata. It is one of the motivations for the algorithmic study of the computation of the
minimal automaton of a language.

2.3. Moore’s state minimization algorithm

In this section we describe the algorithm due to Moore [15] which computes the mini-
mal automaton of a regular language represented by a deterministic automaton. Recall that
Moore’s algorithm builds the partition of the set of states corresponding to Myhill-Nerode
equivalence. It mainly relies on properties (2) and (3) of Proposition 2.1: the partition π
is initialized according to the 0-equivalence ∼0, then at each iteration the partition corre-
sponding to the (i + 1)-equivalence ∼i+1 is computed from the one corresponding to the
i-equivalence ∼i using property (2). The algorithm halts when no new partition refine-
ment is obtained, and the result is Myhill-Nerode equivalence according to property (3).
The minimal automaton can then be computed from the resulting partition since it is the
quotient automaton by Myhill-Nerode equivalence.

Algorithm 1: Moore

if F = ∅ then1

return (A, {1}, ∗, 1, ∅)2

end3

if F = {1, · · · , n} then4

return (A, {1}, ∗, 1, {1})5

end6

forall p ∈ {1, · · · , n} do7

π′[p] = [[p ∈ F ]]8

end9

π = undefined10

while π 6= π′ do11

π = π′
12

compute the partition π′ s.t.13

π′[p] = π′[q] iff π[p] = π[q]
and ∀a ∈ A π[p · a] = π[q · a]14

end15

return the quotient of A by π16

Algorithm 2: Computing π′ from π

forall p ∈ {1, · · · , n} do1

s[p] = (π[p], π[p · a1], · · · , π[p · ak])2

end3

compute the permutation σ that sorts the4

states according to s[]

i = 05

π′[σ(1)] = i6

forall p ∈ {2, · · · , n} do7

if s[p] 6= s[p− 1] then i = i + 18

π′[σ(p)] = i9

end10

return π′
11

In the description of Moore’s algorithm, ∗ denotes the function such that 1 ∗ a = 1 for
all a ∈ A. Lines 1-6 correspond to the special cases where F = ∅ or F = Q. In the process,
π′ is the new partition and π the former one. Lines 7-9 consists of the initialization of π′ to
the partition of ∼0, π is initially undefined. Lines 11-14 are the main loop of the algorithm
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where π is set to π′ and the new π′ is computed. Line 13 is described more precisely in
the algorithm on the right: with each state p is associated a k + 1-uple s[p] such that two
states should be in the same part in π′ when they have the same k + 1-uple. The matches
are found by sorting the states according to their associated string.

The worst-case time complexity of Moore’s algorithm is in O(n2). The following result
is a more precise statement about the worst-case complexity of this algorithm that will be
used in the proof of the main theorem (Theorem 3.1). For sake of completeness we also give
a justification of this statement.

For any integer n ≥ 1 and any m ∈ {0, · · · , n − 2}, we denote by A(m)
n the set of

automata with n states for which m is the smallest integer such that the m-equivalence
∼m is equal to Myhill-Nerode equivalence. We also denote by Moore(A) the number of
iterations of the main loop when Moore’s algorithm is applied to the automaton A,

Lemma 2.3. For any automaton A of A(m)
n ,

• the number of iterations Moore(A) of the main loop in Moore’s algorithm is at
most equal to m + 1 and always less than or equal to n− 1.

• the worst-case time complexity W(A) of Moore’s algorithm is in Θ((m+1)n), where
the Θ is uniform for m ∈ {0, · · · , n− 2}, or equivalently there exist two positive real
numbers C1 and C2 independent of n and m such that C1(m + 1)n ≤ W(A) ≤
C2(m + 1)n.

Proof. The result holds since the loop is iterated exactly m + 1 times when the set F
of final states is neither empty nor equal to {1, · · · , n}. Moreover from property (4) of
Proposition 2.1 the integer m is less than or equal to n − 2. If F is empty or equal to
{1, · · · , n}, then necessarily m = 0, and the time complexity of the determination of the
size of F is Θ(n).

The initialization and the construction of the quotient are both done in Θ(n). The
complexity of each iteration of the main loop is in Θ(n): this can be achieved classically
using a lexicographic sort algorithm. Moreover in this case the constants C1 and C2 do not
depend on m, proving the uniformity of both the upper and lower bounds.

Note that Lemma 2.3 gives a proof that the worst-case complexity of Moore’s algorithm
is in O(n2), as there are no more than n− 1 iterations in the process of the algorithm.

2.4. Probabilistic model

The choice of the distribution is crucial for average case analysis of algorithms. Here we
are considering an algorithm that builds the minimal automaton of the language recognized
by a given accessible deterministic and complete one. We focus our study on the average
complexity of this algorithm for the uniform distribution over accessible deterministic and
complete automata with n states, and as n tends toward infinity. Note that for the uniform
distribution over automata with n states, the probability for a given set to be the set of final
states is equal to 1/2n. Therefore the probability that all states are final (or non-final) is
exponentially unlikely. Some extensions of the main result to other distributions are given
in Section 5.

The general framework of the average case analysis of algorithms [8] is based on the
enumeration properties of studied objects, most often given by generating functions. For
accessible and deterministic automata, this first step is already not easy. Although the
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asymptotic of the number of such automata is known, it can not be easily handled: a result
from Korshunov [13], rewritten in terms of Stirling numbers of the second kind in [2] and
generalized to possibly incomplete automata in [4], is that the number of accessible and

deterministic automata with n states is asymptotically equal to αβnn(|A|−1)n where α and
β are constants depending on the cardinality |A| of the alphabet, and α depends on whether
we are considering complete automata or possibly incomplete automata.

Here some good properties of Myhill-Nerode equivalence allow us to work independently
and uniformly on each transition structure. In this way the enumeration problem mentioned
above can be avoided. Nevertheless it should be necessary to enumerate some subsets of
this set of automata in order to obtain a more precise result. One refers the readers to the
discussion of Section 6 for more details.

3. Main result

This section is devoted to the statement and the proof of the main theorem.

Theorem 3.1. For any fixed integer k ≥ 1 and for the uniform distribution over the
accessible deterministic and complete automata of size n over a k-letter alphabet, the average
complexity of Moore’s state minimization algorithm is O(n log n).

Note that this bound is independent of k, the size of the alphabet considered. Moreover,
as we shall see in Section 4, it is tight in the case of a unary alphabet.

Before proving Theorem 3.1 we introduce some definitions and preliminary results. Let
T be a fixed transition structure with n states and ℓ be an integer such that 1 ≤ ℓ < n.
Let p, q, p′, q′ be four states of T such that p 6= q and p′ 6= q′. We define Fℓ(p, q, p′, q′) as
the set of sets of final states F for which in the automaton (T , F ) the states p and q are
(ℓ− 1)-equivalent, but not ℓ-equivalent, because of a word of length ℓ mapping p to p′ and
q to q′ where p′ and q′ are not 0-equivalent. In other words Fℓ(p, q, p′, q′) is the following
set:

Fℓ(p, q, p′, q′) = {F ⊂ {1, · · · , n} | for the automaton (T , F ), p ∼ℓ−1 q, [[p′ ∈ F ]] 6= [[q′ ∈ F ]],

∃u ∈ Aℓ, p · u = p′ and q · u = q′}
Note that when ℓ grows, the definition of Fℓ is more constrained and consequently fewer
non-empty sets Fℓ exist.

From the previous set Fℓ(p, q, p′, q′) one can define the undirected graph Gℓ(p, q, p′, q′),
called the dependency graph, as follows:

• its set of vertices is {1, · · · , n}, the set of states of T ;
• there is an edge (s, t) between two vertices s and t if and only if for all F ∈
Fℓ(p, q, p′, q′), [[s ∈ F ]] = [[t ∈ F ]].

The dependency graph contains some information that is a basic ingredient of the proof:
it is a convenient representation of necessary conditions for a set of final states to be in
Fℓ(p, q, p′, q′), that is, for Moore’s algorithm to require more than ℓ iterations because of
p, q, p′ and q′. These necessary conditions will be used to give an upper bound on the
cardinality of Fℓ(p, q, p′, q′) in Lemma 3.3.

Lemma 3.2. For any integer ℓ ∈ {1, · · · , n − 1} and any states p, q, p′, q′ ∈ {1, · · · , n}
with p 6= q, p′ 6= q′ such that Fℓ(p, q, p′, q′) is not empty, there exists an acyclic subgraph of
Gℓ(p, q, p′, q′) with ℓ edges.



ON THE AVERAGE COMPLEXITY OF MOORE’S STATE MINIMIZATION ALGORITHM 129

Proof. If Fℓ(p, q, p′, q′) is not empty, let u = u1 · · · uℓ with ui ∈ A be the smallest (for the
lexicographic order) word of length ℓ such that p · u = p′ and q · u = q′. Note that every
word u of length ℓ such that p · u = p′ and q · u = q′ can be used. But a non-ambiguous
choice of this word u guarantees a complete description of the construction.

For every i ∈ {0, · · · , ℓ− 1}, let Gℓ,i be the subgraph of Gℓ(p, q, p′, q′) whose edges are
defined as follows. An edge (s, t) is in Gℓ,i if and only if there exists a prefix v of u of length
less than or equal to i such that s = p · v and t = q · v. In other words the edges of Gℓ,i are
exactly the edges (p ·v, q ·v) between the states p ·v and q ·v where v ranges over the prefixes
of u of length less than or equal to i. Such edges belong to Gℓ(p, q, p′, q′) since p ∼ℓ−1 q.
Moreover, the graphs (Gℓ,i)0≤i≤ℓ−1 have the following properties:

(1) For each i ∈ {0, · · · , ℓ− 2}, Gℓ,i is a strict subgraph of Gℓ,i+1. The graph Gℓ,i+1 is
obtained from Gℓ,i by adding an edge from p · w to q ·w, where w is the prefix of u
of length i + 1. This edge does not belong to Gℓ,i, for otherwise there would exist
a strict prefix z of w such that either p · z = p · w and q · z = q · w or p · z = q · w
and q · z = p · w. In this case, let w′ be the word such that u = ww′, then either
p · zw′ = p′ and q · zw′ = q′ or p · zw′ = q′ and q · zw′ = p′. Therefore there
would exist a word of length less than ℓ, zw′, such that, for F ∈ Fℓ(p, q, p′, q′),
[[p · zw′ ∈ F ]] 6= [[q′ · zw′ ∈ F ]] which is not possible since p ∼ℓ−1 q and Fℓ(p, q, p′, q′)
is not empty. Hence this edge is a new one.

(2) For each i ∈ {0, · · · , ℓ−1}, Gℓ,i contains i+1 edges. It is a consequence of property
(1), since Gℓ,0 has only one edge between p and q.

(3) For each i ∈ {0, · · · , ℓ−1}, Gℓ,i contains no loop. Indeed p ·v 6= q ·v for any prefix of
u since p 6∼ q for any automaton (T , F ) with F ∈ Fℓ(p, q, p′, q′), which is not empty.

(4) For each i ∈ {0, · · · , ℓ− 1}, if there exists a path in Gℓ,i from s to t, then s ∼ℓ−1−i t
in every automata (T , F ) with F ∈ Fℓ(p, q, p′, q′). This property can be proved by
induction.

We claim that every Gℓ,i is acyclic. Assume that it is not true, and let j ≥ 1 be the
smallest integer such that Gℓ,j contains a cycle. By property (1), Gℓ,j is obtained from
Gℓ,j−1 by adding an edge between p · w and q · w where w is the prefix of length j of u.
As Gℓ,j−1 is acyclic, this edge forms a cycle in Gℓ,j . Hence in Gℓ,j−1 there already exists a
path between p · w and q · w. Therefore by property (4) p · w ∼ℓ−j q · w in any automaton
(T , F ) with F ∈ Fℓ(p, q, p′, q′). Let w′ be the word such that u = ww′. The length of w′

is ℓ − j, hence p · u and q · u are both in F or both not in F , which is not possible since
F ∈ Fℓ(p, q, p′, q′).

Thus Gℓ,ℓ−1 is an acyclic subgraph of Gℓ(p, q, p′, q′) with ℓ edges according to property
(2), which concludes the proof.

Lemma 3.3. Given a transition structure T of size n ≥ 1 and an integer ℓ with 1 ≤ ℓ < n,
for all states p, q, p′, q′ of T with p 6= q and p′ 6= q′ the following result holds:

|Fℓ(p, q, p′, q′)| ≤ 2n−ℓ.

Proof. If Fℓ(p, q, p′, q′) is empty, the result holds. Otherwise, from Lemma 3.2, there exists
an acyclic subgraph G of Gℓ(p, q, p′, q′) with ℓ edges. Let m be the number of connected
components of G that are not reduced to a single vertex. The states in such a component
are either all final or all non-final. Therefore there are at most m choices to make to
determine whether the states in those components are final or non-final. As the graph G
is acyclic, there are exactly m + ℓ vertices that are not isolated in G. Hence there are at
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Figure 3: Illustration of the proof of Lemma 3.2 for n = 9, ℓ = 5, p = 3, q = 7, p′ = 3
and q′ = 8 on a given transition structure. (a) u = abbaa is the smallest word of
length 5, for the lexicographic order, such that 3 · u = 3 and 7 · u = 8. The set
F5(3, 7, 3, 8) is not empty, as it contains {4, 8}. The bold transitions are the ones
followed when reading u from p and from q. (b) The construction of an acyclic
subgraph of G5(3, 7, 3, 8) with 5 edges. To each strict prefix v of u = abbaa is
associated an edge between 3 · v and 7 · v. It encodes some necessary conditions
for a set of final states F to be in F5(3, 7, 3, 8), as two states in the same connected
component must be either both final or both not final.

most 2m2n−(m+ℓ) = 2n−ℓ elements in Fℓ(p, q, p′, q′): 2m corresponds to the possible choices

for the connected components and 2n−(m+ℓ) to the choices for the isolated vertices.

Proposition 3.4. Let k ≥ 1. There exists a positive real constant C such that for any
positive integer n and any deterministic and complete transition structure T of size n over
a k-letter alphabet, for the uniform distribution over the sets F of final states, the average
number of iterations of the main loop of Moore’s algorithm applied to (T , F ) is upper bounded
by C log n.

Proof. Let T be a deterministic and complete transition structure of size n over a k-letter
alphabet. Denote by F≥ℓ the set of sets F of final states such that the execution of Moore’s

algorithm on (T , F ) requires more than ℓ iterations or equivalently such that (T , F ) ∈ A(m)
n

with m ≥ ℓ (see Section 2.3 for notation).
A necessary condition for F to be in F≥ℓ is that there exist two states p and q with

p 6= q and such that p ∼ℓ−1 q and p 6∼ℓ q. Therefore there exists a word u of length ℓ such
that [[p · u]] 6= [[q · u]]. Hence F ∈ Fℓ(p, q, p · u, q · u) and

F≥ℓ =
⋃

p,q,p′,q′∈{1,··· ,n}
p 6=q, p′ 6=q′

Fℓ(p, q, p′, q′).

In this union the sets Fℓ(p, q, p′, q′) are not disjoint, but this characterization of F≥ℓ is pre-
cise enough to obtain a useful upper bound of the cardinality of F≥ℓ. From the description
of F≥ℓ we get

|F≥ℓ| ≤
∑

p,q,p′,q′∈{1,··· ,n}
p 6=q, p′ 6=q′

|F(p, q, p′, q′)|,
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and using Lemma 3.3 and estimating the number of choices of the four points p, q, p′, q′, we
have

|F≥ℓ| ≤ n(n− 1)n(n − 1)2n−ℓ ≤ n42n−ℓ. (3.1)

For a fixed integer ℓ and for the uniform distribution over the sets F of final states, the
average number of iterations of the main loop of Moore’s algorithm is

1

2n

∑

F⊂{1,...,n}
Moore(T , F ) =

1

2n

∑

F∈F<ℓ

Moore(T , F ) +
1

2n

∑

F∈F≥ℓ

Moore(T , F ),

where F<ℓ is the complement of F≥ℓ in the set of all subsets of states. Moreover by
Lemma 2.3, for any F ∈ F<ℓ, Moore(T , F ) ≤ ℓ. Therefore, since |F<ℓ| ≤ 2n

1

2n

∑

F∈F≤ℓ

Moore(T , F ) ≤ ℓ

Using Lemma 2.3 again to give an upper bound for Moore(T , F ) when F ∈ F≥ℓ and the
estimate of |F≥ℓ| given by Equation 3.1 we have

1

2n

∑

F⊂F≥ℓ

Moore(T , F ) ≤ n52−ℓ.

Finally, choosing ℓ = ⌈5 log2 n⌉, we obtain that there exists positive real C such that

1

2n

∑

F⊂{1,...,n}
Moore(T , F ) ≤ ⌈5 log2 n⌉+ n52−⌈5 log

2
n⌉ ≤ C log n,

concluding the proof.

Now we prove Theorem 3.1:

Proof of the main theorem: Let Tn denote the set of deterministic, accessible and com-
plete transition structures with n states. For a transition structure T ∈ Tn, there are exactly
2n distinct automata (T , F ).

Recall that the set An of deterministic, accessible and complete automata with n states
is in bijection with the pairs (T , F ) consisting of a deterministic, accessible and complete
transition structure T ∈ Tn with n states and a subset F ⊂ {1, · · · , n} of final states.
Therefore, for the uniform distribution over the set An, the average number of iterations of
the main loop when Moore’s algorithm is applied to an element of An is

1

|An|
∑

A∈An

Moore(A) =
1

2n|Tn|
∑

T ∈Tn

∑

F⊂{1,··· ,n}
Moore(T , F )

Using Proposition 3.4 we get

1

|An|
∑

A∈An

Moore(A) ≤ 1

|Tn|
∑

T ∈Tn

C log n ≤ C log n.

Hence the average number of iterations is bounded by C log n, and by Lemma 2.3, the
average complexity of Moore’s algorithm is upper bounded by C1Cn log n, concluding the
proof. ⊓⊔
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4. Tight bound for unary automata

In this section we prove that the boundO(n log n) is optimal for the uniform distribution
on unary automata with n states, that is, automata on a one-letter alphabet.

We shall use the following result on words, whose proof is given in detail in [8, p. 285].
For a word u on the binary alphabet {0, 1}, the longest run of 1 is the length of the longest
consecutive block of 1’s in u.

Proposition 4.1. For any real number h and for the uniform distribution on binary words
of length n, the probability that the longest run of 1 is smaller than ⌊log2 n + h⌋ is equal to

e−α(n)2−h−1

+O
(

log n√
n

)

,

where the O is uniform on h, and α(n) = 2log n−⌊log n⌋.

Corollary 4.2. For the uniform distribution on binary words of length n, the probability
that the longest run of 1 is smaller than ⌊1

2 log2 n⌋ is smaller than e−
√

n/2.

Proof. Set h = −1
2 log2 n in Proposition 4.1 and use that for any integer n, α(n) ≥ 1.

The shape of an accessible deterministic and complete automaton with n states on a
one-letter alphabet A = {a} is very specific. If we label the states using the depth-first
order, then for all q ∈ {1, · · · , n − 1} q · a = q + 1. The state n · a entirely determines the
transition structure of the automaton. Hence there are n2n distinct unary automata with
n states. We shall also use the following result from [16]:

Proposition 4.3. For the uniform distribution on unary automata with n states, the prob-
ability that an automaton is minimal is asymptotically equal to 1

2 .

We can now prove the optimality of the O(n log n) bound for unary automata:

Theorem 4.4. For the uniform distribution on unary automata with n states, the average
time complexity of Moore’s state minimization algorithm is Θ(n log n).

Proof. From Theorem 3.1 this time complexity is O(n log n). It remains to study the lower
bound of the average time complexity of Moore’s algorithm.

For any binary word u of size n, we denote by F (u) the subset of {1, · · · , n} such that
i ∈ F (u) if and only if the i-th letter of u is 1. The map F is clearly a bijection between
the binary words of length n and the subsets of {1, · · · , n}. Therefore a unary automaton
with n states is completely defined by a word u of length n, encoding the set of final states,
and an integer m ∈ {1, · · · , n} corresponding to n · a; we denote such an automaton by the
pair (u,m) ∈ {0, 1}n × {1, · · · , n}. Let ℓ be the integer defined by ℓ = ⌊1

2 log2 n⌋. Let Mn

be the set of minimal unary automata with n states, and Sn be the subset of Mn defined
by

Sn = {(u,m) ∈ Mn | the longest run of 1 in u is smaller than ℓ}
As the number of element in Sn is smaller than the number of automata (u,m) whose
longest run of 1 in u is smaller than ℓ, from Corollary 4.2, we have |Sn| = o(n2n). Let
(u,m) be a minimal automaton in Mn \ Sn. The word u has a longest run of 1 greater
or equal to ℓ. Let p ∈ {1, · · · , n} be the index of the beginning of such a longest run in
u. The states p and p + 1 requires ℓ iterations in Moore’s algorithm to be separated, as
p · ai and (p + 1) · ai are both final for every i ∈ {0, · · · , ℓ − 2}. They must be separated
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by the algorithm at some point since (u,m) is minimal. Hence Moore((u,m)) ≥ ℓ for any
(u,m) ∈ Mn \ Sn. Therefore

1

n2n

∑

(u,m)∈{0,1}n×{1,··· ,n}
Moore((u,m)) ≥ 1

n2n

∑

(u,m)∈Mn\Sn

Moore((u,m))

≥ 1

n2n
|Mn \ Sn|ℓ ≥

1

n2n
|Mn|ℓ−

1

n2n
|Sn|ℓ

≥ 1

2
ℓ− o(ℓ)

The last inequality is obtained using Proposition 4.3, concluding the proof since by hypoth-
esis ℓ = ⌊1

2 log2 n⌋.

5. Extensions

In this section we briefly present two extensions of Proposition 3.4 and Theorem 3.1.

5.1. Bernoulli distributions for the sets of final states

Let p be a fixed real number with 0 < p < 1. Let T be a transition structure with
n states. Consider the distribution on the sets of final states for T defined such that each
state as a probability p of being final. The probability for a given subset F of {1, · · · , n}
to be the set of final states is P(F ) = p|F |(1− p)n−|F |.

A statement analogous to Proposition 3.4 still holds in this case. The proof is similar
although a bit more technical, as Proposition 3.4 corresponds to the special case where
p = 1

2 . Hence, for this distribution of sets of final states, the average complexity of Moore’s
algorithm is also O(n log n).

5.2. Possibly incomplete automata

Now consider the uniform distribution on possibly incomplete deterministic automata
with n states and assume that the first step of Moore’s algorithm applied to an incomplete
automaton consists in the completion of the automaton making use of a sink state. In this
case Proposition 3.4 still holds. Indeed, Lemma 3.3 is still correct, even if the sets of final
states F are the sets that do not contain the sink state. As a consequence, if a transition
structure T is incomplete, the average complexity of Moore’s algorithm for the uniform
choice of set of final states of the completed transition structure, such that the sink state is
not final, is in O((n + 1) log(n + 1)) = O(n log n).
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6. Open problem

We conjecture that for the uniform distribution on complete, accessible and determinis-
tic automata with n states over a k-letter alphabet, with k ≥ 2, the average time complexity
of Moore’s algorithm is in O(n log log n).

This conjecture comes from the following observations. First, Figure 2 seems to show
a sub-logarithmic asymptotic number of iterations in Moore’s algorithm. Second, if the
automaton with n states is minimal, at least Ω(log log n) iterations are required to isolate
every state: log n words are needed, and this can be achieved in the best case using all
the words of length less than or equal to log log n. Moreover, in [2] we conjectured that
a constant part of deterministic automata are minimal; if it is true, this would suggest
that Ω(log log n) is a lower bound for the average complexity of Moore’s algorithm. The
conjecture above is that this lower bound is tight.
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Abstract. We consider the task of testing properties of Boolean functions that are invari-
ant under linear transformations of the Boolean cube. Previous work in property testing,
including the linearity test and the test for Reed-Muller codes, has mostly focused on such
tasks for linear properties. The one exception is a test due to Green for “triangle freeness”:
A function f : Fn

2 → F2 satisfies this property if f(x), f(y), f(x + y) do not all equal 1, for
any pair x, y ∈ Fn

2 .
Here we extend this test to a more systematic study of testing for linear-invariant non-

linear properties. We consider properties that are described by a single forbidden pattern
(and its linear transformations), i.e., a property is given by k points v1, . . . , vk ∈ Fk

2 and
f : Fn

2 → F2 satisfies the property that if for all linear maps L : Fk

2 → Fn

2 it is the case
that f(L(v1)), . . . , f(L(vk)) do not all equal 1. We show that this property is testable if
the underlying matroid specified by v1, . . . , vk is a graphic matroid. This extends Green’s
result to an infinite class of new properties.

Our techniques extend those of Green and in particular we establish a link between the
notion of “1-complexity linear systems” of Green and Tao, and graphic matroids, to derive
the results.

1. Introduction

Property testing considers the task of testing, “super-efficiently”, if a function f : D →
R mapping a finite domain D to a finite range R essentially satisfies some desirable property.
Letting {D → R} denote the set of all functions from D to R, a property is formally specified
by a family F ⊆ {D → R} of functions. A tester has oracle access to the function f and
should accept with high probability if f ∈ F and reject (also with high probability) functions
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that are far from F , while making very few queries to the oracle for f . Here, distance
between functions f, g : D → R, denoted δ(f, g), is simply the probability that f(x) 6= g(x)
when x is chosen uniformly at random from D and δ(f,F) = ming∈F{δ(f, g)}. We say f is
δ-far from F if δ(f,F) ≥ δ and δ-close otherwise. The central parameter associated with a
tester is the number of oracle queries it makes to the function f being tested. In particular,
a property is called (locally) testable if there is a tester with query complexity that is a
constant depending only on the distance parameter δ. Property testing was initiated by
the works of Blum, Luby and Rubinfeld [12] and Babai, Fortnow and Lund [9] and was
formally defined by Rubinfeld and Sudan [25]. The systematic exploration of property
testing was initiated by Goldreich, Goldwasser, and Ron [15] who expanded the scope of
property testing to combinatorial and graph-theoretic properties (all previously considered
properties were algebraic). In the subsequent years, a rich collection of properties have been
shown to be testable [4, 5, 1, 13, 24, 3, 2, 21, 20] and many property tests have ended up
playing a crucial role in constructions of probabilistically checkable proofs [8, 7, 11, 18, 27].

The rich collection of successes in property testing raises a natural question: Why are
so many different properties turning out to be locally testable? Are there some broad
“features” of properties that make them amenable to such tests? Our work is part of
an attempt to answer such questions. Such questions are best understood by laying out
broad (infinite) classes of properties (hopefully some of them are new) and showing them
to be testable (or characterizing the testable properties within the class). In this paper we
introduce a new such class of properties, and show that (1) they are locally testable, and
(2) that they contain infinitely many new properties that were not previously known to be
testable.
The properties, and our results: The broad scope of properties we are interested in
are properties that view their domain D as a vector space and are invariant under linear
transformations of the domain. Specifically, we consider the domain D = Fn

2 , the vector
space of n-dimensional Boolean vectors, and the range R = F2. In this setting, a property
F is said to be linear-invariant if for every f ∈ F and linear map L : Fn

2 → Fn
2 we have that

f ◦ L ∈ F . Specific examples of linear-invariant properties that were previously studied
(esp. in the Boolean setting) include that of linearity (studied by Blum et al. [12] and
Bellare et al. [10]) and the property of being a “moderate-degree” polynomial (a.k.a. Reed-
Muller codeword) studied by Alon et al. [2]1. While the tests in the above mentioned works
potentially used all features of the property being tested, Kaufman and Sudan [22] show
that the testability can be attributed principally to the linear-invariance of the property.
However their setting only considers linear properties, i.e., F itself is a vector space over
F2 and this feature plays a key role in their results: It lends an algebraic flavor to all the
properties being tested and plays a central role in their analysis.

We thus ask the question: Does linear-invariance lead to testability even when the
property F is not linear? The one previous work in the literature that gives examples of
non-linear linear-invariant properties is Green [16] where a test for the property of being
“triangle-free” is described. A function f : Fn

2 → F2 is said to be triangle-free if for every
x, y ∈ Fn

2 it is the case that at least one of f(x), f(y), f(x+y) does not equal 1. The property
of being triangle-free is easily seen to be linear-invariant and yet not linear. Green [16] shows
that the natural test for this property does indeed work correctly, though the analysis is

1In the literature, the term low-degree polynomial is typically used for polynomials whose degree is smaller
than the field size. In the work of [2] the degrees considered are larger than the field size, but are best thought
of as large constants. The phrase “moderate-degree” above describes this setting of parameters.
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quite different from that of typical algebraic tests and is more reminiscent of graph-property
testing. In particular, Green develops an algebraic regularity lemma to analyze this test.
(We note that the example above is not the principal objective of Green’s work, which is
directed mostly at abelian groups D and R. The above example with D = Fn

2 and R = F2

is used mainly as a motivating example.)
Motivated by the above example, we consider a broad class of properties that are

linear-invariant and non-linear. A property in our class is given by k vectors v1, . . . , vk in
the k-dimensional space Fk

2. (Throughout this paper we think of k as a constant.) These
k vectors uniformly specify a family F = Fn;v1,...,vk

for every positive integer n, containing

all functions that, for every linear map L : Fk
2 → Fn

2 take on the value 0 on at least one of
the points L(v1), . . . , L(vk). (In the Appendix of the full version [14] we consider an even
more generalized class of properties where the forbidden pattern of values for f is not 1k

but some other string and show a limited set of cases where we can test such properties.)
To see that this extends the triangle-freeness property, note that triangle-freeness is just
the special case with k = 3 and v1 = 〈100〉, v2 = 〈010〉, v3 = 〈110〉. Under different linear
transforms, these three points get mapped to all the different triples of the form x, y, x + y

and so Fn;v1,v2,v3 equals the class of triangle-free functions.
Before giving a name to our class of functions, we make a quick observation. Note that

the property specified by v1, . . . , vk is equivalent to the property specified by T (v1), . . . , T (vk)
where T is a non-singular linear map from Fk

2 → Fk
2. Thus the property is effectively spec-

ified by the dependencies among v1, . . . , vk which are in turn captured by the matroid2

underlying v1, . . . , vk. This leads us to our nomenclature:

Definition 1.1. Given a (binary, linear) matroid M represented by vectors v1, . . . , vk ∈ Fk
2,

the property of being M-free is given by, for every positive integer n, the family

FM = {f : Fn
2 → F2|∀ linear L : Fk

2 → Fn
2 , 〈f(L(v1)), . . . , f(L(vk))〉 6= 1k}.

The property of being M-free has a natural k-local test associated with it: Pick a
random linear map L : Fk

2 → Fn
2 and test that 〈f(L(v1)), . . . , f(L(vk))〉 6= 1k}. Analyzing

this test turns out to be non-trivial, and indeed we only manage to analyze this in special
cases.

Recall that a matroid M = {v1, . . . , vk}, vi ∈ Fk
2 , forms a graphic matroid if there exists

a graph G on k edges with the edges being associated with the elements v1, . . . , vk such that
a set S ⊂ {v1, . . . , vk} has a linear dependency if and only if the associated set of edges
contains a cycle. In this paper, we require that the graph G be simple, that is, without any
self-loops or parallel edges. Our main theorem shows that the property F associated with
a graphic matroid v1, . . . , vk ∈ Fk

2 is testable.

Theorem 1.2. For a graphic matroid M, the property of being M-free is locally testable.
Specifically, let M = {v1, . . . , vk} be a graphic matroid. Then, there exists a function
τ : R+ → R+ and a k-query tester that accepts members of M-free functions with probability
one and rejects functions that are ǫ-far from being M-free with probability at least τ(ǫ).

Our bound on τ is quite weak. We let W (t) denote a tower of twos with height ⌈t⌉ .
Our proof only guarantees that τ(ǫ) ≥ 1

W (poly(1/ǫ)) , a rather fast vanishing function. We do

not know if such a weak bound is required for any property we consider.

2The definition of matroids may be found in, e.g., [30]. However a reader unfamiliar with this notion may
just use the word matroid as a synonym for a finite collection of binary vectors, for the purposes of reading
this paper.
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We describe the techniques used to prove this theorem shortly (which shed light on
why our bound on τ is so weak) but first comment on the implications of the theorem .
First, note that for a graphic matroid it is more natural to associate the property with
the underlying graph. We thus use the phrase G-free to denote the property of being M-
free where M is the graphic matroid of G. This terminology recovers the notion of being
triangle-free, as in [16], and extends to cover the case of being k-cycle free (also considered
in [16]). But it includes every other graph too!

Syntactically, Theorem 1.2 seems to include infinitely many new properties (other than
being k-cycle free). However, this may not be true semantically. For instance the property
of being triangle-free is essentially the same as being G-free for every G whose biconnected
components are triangles. Indeed, prior to our work, it was not even explicitly noted whether
being Ck-free is essentially different from being triangle-free. (By “essentially”, we ask if
there exist triangle-free functions that are far from being Ck-free.) It actually requires
careful analysis to conclude that the family of properties being tested include (infinitely-
many) new ones. Our second theorem addresses this point.

Theorem 1.3. The class of G-free properties include infinitely many distinct ones. In
particular:

(1) For every odd k, if f is Ck+2-free, then it is also Ck-free. Conversely, there exist
functions g that are Ck-free but far from being Ck+2-free.

(2) If k ≤ ℓ and f is Kk-free, then it is also Kℓ-free. On the other hand, if k ≥ 3 and

ℓ ≥
(k
2

)
+ 2 then there exists a function g that is Kℓ-free but far from being Kk-free.

Techniques: Our proof of Theorem 1.2 is based on Green [16]’s analysis of the triangle-free
case. To analyze the triangle-free case, Green develops a “regularity” lemma for groups,
which is analogous to Szemeri’s regularity lemma for graphs. In our setting, Green’s reg-
ularity lemma shows how, given any function f : Fn

2 → F2, one can find a subgroup H of
Fn

2 such that the restriction of f to almost all cosets of H is “regular”, where “regularity”
is defined based on the “Fourier coefficients” of f . (These notions are made precise in
Section 3.1.)

This lemma continues to play a central role in our work as well, but we need to work
further on this. In particular, a priori it is not clear how to use this lemma to analyze
M-freeness for arbitrary matroids M. To extract a large feasible class of matroids we use a
notion from a work of Green and Tao [17] of the complexity of a linear system (or matroids,
as we refer to them). The “least complex” matroids have complexity 1, and we show that
the regularity lemma can be applied to all matroids of complexity 1 to show that they are
testable (see Section 3).

The notion of a 1-complex matroid is somewhat intricate, and a priori it may not even
be clear that this introduces new testable properties. We show (in Section 4) that these
properties actually capture all graphic matroids which is already promising. Yet this is not
a definite proof of novelty, and so in Section 5 we investigate properties of graphic matroids
and give some techniques to show that they are “essentially” different. Our proofs show
that if two (binary) matroids are not “homomorphically” equivalent (in a sense that we
define) then there is an essential difference between the properties represented by them.

Though our result on graphic matroids is derived from the notion of the complexity
of systems of equations, the proof essentially boils down to “Fourier analysis on graphs”.
This notion had previously been considered and analyzed in the line of works investigating
the amortized query complexity of PCPs [26, 19], where long-code tests based on graphs
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were analyzed. One difference is that in their model, vertices correspond to labeled vectors
whereas edges are labeled in our setting.

Though it’s likely that one can show the testability of graphic matroids directly using
similar techniques from [26] and [19], we remark that our technique gives a more inclusive
viewpoint. First, non-graphic patterns are also shown to be testable. Second, we provide a
framework toward an analytic proof of Green’s conjecture.
Significance of problems/results: We now return to the motivation for studying M-free
properties. Our interest in these families is mathematical. We are interested in broad classes
of properties that are testable; and invariance seems to be a central notion in explaining the
testability of many interesting properties. Intuitively, it makes sense that the symmetries
of a property could lead to testability, since this somehow suggests that the value of a
function at any one point of the domain is no more important than its values at any other
point. Furthermore this intuition is backed up in many special cases like graph-property
testing (where the family is invariant under all permutations of the domain corresponding to
relabeling the vertex names). Indeed this was what led Kaufman and Sudan [22] to examine
this notion explicitly in the context of algebraic functions. They considered families that
were linear-invariant and linear, and our work is motivated by the quest to see if the latter
part is essential.

In contrast to other combinatorial settings, linear-invariance counts on a (quantita-
tively) very restricted collection of invariances. Indeed the set of linear transforms is only
quasi-polynomially large in the domain (which may be contrasted with the exponentially
large set of invariances that need to hold for graph-properties). So ability to test properties
based on this feature is mathematically interesting and leads to the question: what kind of
techniques are useful in these settings. Our work manages to highlight some of those (in
particular, Green’s regularity lemma).
Parallel Works: After completing our work, we learned from Asaf Shapira that, inde-
pendently of us, M-freeness for an arbitrary matroid M has been shown to be testable in
Shapira’s recent preprint [28]. This solves a question that we posed as open in an earlier
version of this paper. His result is built on the work of Král’, Serra, and Vena in [23], where
an alternate proof of Green’s cycle-freeness result is provided. Essentially the authors in [23]
demonstrate a reduction from testing freeness of the cycle matroid in a function to testing
freeness of the cycle subgraph in a graph, and then they apply regularity lemmas for graphs
to analyze the number of cycles in a function far from being cycle-free. In this manner, the
authors show that Theorem 1.2 holds as well. By extending this method and utilizing hy-
pergraph regularity lemmas, Shapira [28] shows that arbitrary monotone matroid-freeness
properties are testable.

We remark that our proofs are very different from [23] and [28], and in particular,
our view on invariance leads us to develop techniques to show that syntactically different
properties are indeed distinct.
Organization of this paper: In the following section (Section 2) we define a slightly
broader class of properties that we can consider (including some non-monotone properties).
We also define the notion of 1-complexity matroids which forms a central tool in our anal-
ysis of the tests. In Section 3 we show that for any 1-complexity matroid M, M-freeness
is testable. In Section 4 we show that graphic matroids are 1-complexity matroids. Theo-
rem 1.2 thus follows from the results of Section 3 and 4. In Section 5 we prove that there
are infinitely many distinct properties among G-free properties. Due to space constraint
we omit some proofs from this conference version. All the missing proofs as well as some
additional results may be found in the full version of this paper [14].
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2. Additional Definitions, Results, and Overview of Proofs

In this section, we describe some further results that we present in the paper and give
an outline of proofs.

2.1. Extensions to Non-Monotone families

We first generalize Definition 1.1 to a wider collection of forbidden patterns.

Definition 2.1. Given Σ ∈ Fk
2 and a binary matroid M represented by vectors v1, . . . , vk ∈

Fk
2, the property of being (M,Σ)-free is given by, for every positive n, the family F(M,Σ) =

{f : Fn
2 → F2|∀ linear L : Fk

2 → Fn
2 , 〈f(L(v1)), . . . , f(L(vk))〉 6= Σ}.

If for some linear L : Fk
2 → Fn

2 , 〈f(L(v1)), . . . , f(L(vk))〉 = Σ, then we say f contains
(M,Σ) at L. Also for simplicity we suppress mention of Σ when Σ = 1k.

Recall that a property P ⊆ {D → {0, 1}} is said to be monotone if f ∈ P and g ≺ f

implies g ∈ P, where g ≺ f means that g(x) ≤ f(x) for all x ∈ D.

Observation 2.2. For a binary matroid M, (M,Σ)-freeness is a monotone property if and
only if Σ = 1k.

In addition to our main results (Theorems 1.2 and 1.3) on monotone properties, we also
obtain local testability results for a limited class of non-monotone properties.

Theorem 2.3. Let Ck denote the cycle on k vertices and let Σ be an arbitrary element
of Fk

2. Then there exists a function τ : R+ → R+ and a k-query tester that accepts f in
F(Ck ,Σ) with probability 1 and rejects f that are ǫ-far from F(Ck ,Σ) with probability at least
τ(ǫ).

However, in strong contrast to Theorem 1.3, we show that unless Σ equals 0k or 1k, the
class of (Ck,Σ)-freeness properties is not at all very rich semantically.

Theorem 2.4. The class of properties {F(Ck ,Σ) : k ≥ 3,Σ 6= 0k,Σ 6= 1k} is only finitely
large.

The goal of Theorem 2.3 is not to introduce new testable properties but rather to
illustrate possible techniques for analyzing local tests that may lead to more classes of
testable non-monotone properties.

2.2. Overview of Proofs

We now give an outline of the proofs of our main theorems (Theorems 1.2 and 1.3),
and also the extensions (Theorems 2.3 and 2.4).

Our claim in Theorem 1.2, that graphic matroid freeness properties are locally testable,
is based on analyzing the structure of dependencies among elements of a graphic matroid.
To this end, we first recall the classification of linear forms due to Green and Tao in [17].
We require a minor reformulation of their definition since, for us, the structure of the linear
constraints is described by elements of a matroid.

Definition 2.5. Given a binary matroid M represented by v1, . . . , vk ∈ Fk
2 , we say that

M has complexity c at coordinate i if we can partition {vj}j∈[k]\{i} into c + 1 classes such
that vi is not in the span of any of the classes. We say that M has complexity c if c is the
minimum such that M has complexity c at coordinate i for all i ∈ [k].
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The above definition makes sense because the span of a set of elements is not dependent
on the specific basis chosen to represent the matroid. As a motivating example, consider
the graphic matroid of Ck studied by Green in [16]. It can be represented by v1 = e1, v2 =
e2, . . . , vk−1 = ek−1 and vk = e1+· · ·+ek−1. We see then that the graphic matroid of Ck has
complexity 1 because for every i < k, the rest of the matroid elements can be partitioned

into two sets {ej}j 6=i and
{∑

j∈[k] ej

}
such that vi is not contained in the span of either

set, and for i = k, any nontrivial partition of the remaining elements ensures that vk does
not lie in the span of either partition. In Section 4, we extend this observation about Ck to
all graphs.

Lemma 2.6. For all graphs G, the graphic matroid of G has complexity 1.

Green and Tao in [17] showed that if a matroid M has complexity c and if A is a subset
of Fn

2 , then the number of linear maps L : Fk
2 → Fn

2 such that L(vi) ∈ A for all i ∈ [k]
is controlled by the (c + 1)’th Gowers uniformity norm of A. Previously, Green proved
in [16] an arithmetic regularity lemma, which essentially states that any set A ⊆ Fn

2 can
be partitioned into subsets of affine subspaces such that nearly every partition is nearly
uniform with respect to linear tests. We show in Section 3 how to combine these two results
to obtain the following:

Lemma 2.7. Given any binary matroid M represented by v1, . . . , vk ∈ Fk
2, if M has com-

plexity 1, then there exists a function τ : R+ → R+ and a k-query tester that accepts
members of FM with probability 1 and rejects f that are ǫ-far from FM with probability at
least τ(ǫ).

Theorem 1.2 directly follows from combining Lemma 2.6 and Lemma 2.7. In fact,
Lemma 2.7 implies testability of all matroids that have complexity one, not only those that
are graphic. In Section 4, we give examples of binary matroids that have complexity 1 and
yet are provably not graphic.

Theorem 1.3 provides a proper hierarchy among the graphical properties. Moreover,
the containments P1 ( P2 in this hierarchy are shown to be “statistically proper” in the
sense that we demonstrate functions f that are ǫ-far from P1 but are in P2. The theorem
implies the following hierarchy:

· · · ( Ck+2-free ( Ck-free ( · · · ( C3-free = K3-free ( · · · ( Kk-free ( K(k

2)+2-free ( · · ·

Thus, the class of properties FG does indeed contain infinitely many more properties than
the cycle freeness properties considered by Green in [16].

Both the hierarchy among the cyclic freeness properties and among the clique freeness
properties are derived in Section 5 using a general technique. In order to show a statistically
proper containment M1-free ( M2-free, we construct a function f that, by its definition,
contains M1 at a large number of linear maps and so is far from being M1-free. On
the other hand, the construction ensures that if f is also not M2-free, then there is a
matroid homomorphism fromM2 toM1. We define a matroid homomorphism from a binary
matroid M2 to a binary matroid M1 to be a map from the ground set of M2 to the ground
set of M1 which maps cycles to cycles. The separation between M2-freeness and M1-
freeness is then obtained by proving that there do not exist any matroid homomorphisms
from M2 to M1. This proof framework suffices for both the claims in Theorem 1.3 and
is reminiscent of proof techniques involving graph homomorphisms in the area of graph
property testing (see [6] for a survey).
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Theorem 2.3 is the result of a more involved application of the regularity lemma. To
deal with non-monotone properties, we employ a different “rounding” scheme inspired by
the testability of non-monotone graph properties in [1]. Unlike Szemeri’s regularity lemma,
a “strong form” of the arithmetic regularity lemma is not known, so we restrict our attention
to cyclic matroids and exploit the additive structure of the pattern. Theorem 2.4 is based
on a characterization theorem that classifies (Ck,Σ)-freeness properties into 9 classes when
Σ 6= 0k, 1k. Please see [14] for more details.

3. Freeness of Complexity 1 Matroids is Testable

In this section we prove Lemma 2.7. Before doing so, we fix our notation and provide a
quick background on Fourier analysis. If H is a subgroup of G, the cosets of H are indicated
by g + H, with g in G. Let fg+H : H → F2 denote f restricted to the coset g + H, defined
by sending h to f(g + h); that is, for every h ∈ H, g ∈ G, fg+H(h) := f(g + h). For σ ∈ F2,
we define µσ(fg+H) := Prh∈H [fg+H(h) = σ] to be the density of σ in f restricted to coset
g + H.

3.1. Fourier Analysis and Green’s Regularity Lemma

Definition 3.1 (Fourier transform). If f : Fn
2 → F2, then we define its Fourier transform

f̂ : Fn
2 → R to be f̂(α) = Ex∈F

n

2
[f(x)χα(x)], where χα(x) = (−1)

P

i∈[n] αixi . f̂(α) is called
the Fourier coefficient of f at α, and the {χα}α are the characters of Fn

2 .

It is easy to see that for α, β ∈ Fn, 〈χα, χβ〉 := Ex∈Fn

2
[χα(x)χβ(x)] is 1 if α = β

and 0 otherwise. So the characters form an orthonormal basis for Fn
2 , and we have the

Fourier inversion formula f(x) =
∑

α∈F
n

2
f̂(α)χα(x) and Parseval’s Identity

∑
α∈F

n

2
f̂(α)2 =

Ex[f(x)2] = f̂(0).
Next we turn to Green’s arithmetic regularity lemma, the crux of the analysis of our lo-

cal testing algorithm. Green’s regularity lemma over Fn
2 is a structural theorem for Boolean

functions. It asserts that for every Boolean function, there is some decomposition of the
Hamming cube into cosets, such that the function restricted to most of these cosets are uni-
form and pseudorandom with respect to the linear functions. An alternate and equivalent
way is that no matter where we slice the Hamming cube by a hyperplane, the density of f

on these cosets of the hyperplane is what we expect a random function looks like. Formally,
we say that a function is uniform if all of its nonzero Fourier coefficients are small.

Definition 3.2 (Uniformity). For every 0 < ǫ < 1, we say that a function f : Fn
2 → F2 is

ǫ-uniform if for every α 6= 0 ∈ Fn
2 , |f̂(α)| ≤ ǫ.

Recall that we let W (t) denote a tower of twos with height ⌈t⌉. To obtain a partition of
the Hamming cube that satisfies the required uniformity requirement, the number of cosets
in the partition may be rather large. More precisely,

Lemma 3.3 (Green’s Regularity Lemma over Fn
2 ). Let f : Fn

2 → F2. Let ǫ ∈ (0, 1).
Then there exists a subspace H of G = {0, 1}n of co-dimension at most W (ǫ−3), such that
Prg∈G[fg+H is ǫ-uniform] ≥ 1− ǫ.
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3.2. Testability of Complexity 1 Matroid Freeness

The proposition below is proved in [17]. Collectively, statements capturing the phenom-
enon that expectation over certain forms are controlled by varying degrees of the Gowers
norm are termed generalized von-Neumann type Theorems in the additive combinatorics
literature. In particular, as we only require the degree 2 Gowers norm of a function, which
is the sum of its Fourier coefficients raised to the fourth power, the following holds:

Proposition 3.4 ([17]). Suppose a binary matroid M = {v1 . . . , vk} has complexity 1 and

let f1, . . . , fk : Fn
2 → F2. Then EL:Fk

2→F
n

2

[∏k
i=1 fi(L(vi))

]
≤ mini∈[k]

∑
α∈F

n

2
f̂i(α)4.

It is an easy deduction from Proposition 3.4 to see that if f is uniform, then the number
of linear maps L where f has a M-pattern is close to E[f ]mNd, where N = 2n. Combining
this observation with the regularity lemma, we prove Lemma 2.7.

Proof of Lemma 2.7. Consider a test that picks a linear map L uniformly at random from
all linear maps from Fk

2 → Fn
2 and rejects iff for all i ∈ [k], f(L(vi)) = 1. Clearly the test

has completeness one.
Now we analyze the soundness of this test. Suppose f is ǫ-far from being M-free. We

want to show that the test rejects with probability at least τ(ǫ), such that τ(ǫ) > 0 whenever
τ > 0. Let a(ǫ) and b(ǫ) be two functions of ǫ that satisfy the constraint a(ǫ) + b(ǫ) < ǫ, we
shall specify these two functions at the end of the proof. We now apply Lemma 3.3 to f to
obtain a subspace H of G of co-dimension at most W (a(ǫ)−3). Consequently, f restricted
to all but at most a(ǫ) fraction of the cosets of H are a(ǫ)-uniform. We define a reduced
function fR : Fn

2 → F2 as follows.
For each g ∈ G, if f restricted to the coset g + H is a(ǫ)-uniform, then define

fR
g+H(x) =

{
0 if µ(fg+H) ≤ b(ǫ)

fg+H otherwise.

Else, define fR
g+H = 0.

Note that at most a(ǫ) + b(ǫ) fraction of modification has been made to f to ob-
tain fR. Since f is ǫ-far from being M-free, fR has a M-pattern at some linear map L.
More precisely, for every i ∈ [k], fR(L(vi)) = 1. Now consider the cosets L(vi) + H. By
our choice of rounding, we know that f restricted to each of these cosets is a(ǫ)-uniform
and at least b(ǫ) dense. We will count the number of linear maps φ : Fk

2 → H such
that f has a M pattern at L + φ. Notice that the probability the test rejects is at least

2−k·W (a(ǫ)−3) Prφ:Fk

2→H

[
∀i, fL(vi)+H(φ(vi)) = 1

]
.

To lower-bound this rejection probability, it suffices to show that the probability
Prφ:Fk

2→H

[
∀i, fL(vi)+H(φ(vi)) = 1

]
is bounded below by at least some constant depending

on ǫ. To this end, we rewrite this probability as Eφ:Fk

2→H

[∏
i∈[k] fi(φ(vi))

]
, where fi =

fL(vi)+H . By replacing each function fi by f̂i(0) + (fi − f̂i(0)), it is easy to see that the

above expression can be expanded into the sum of 2k terms, one of which is
∏

i∈[k] f̂i(0),

which is at least b(ǫ)k. For the other 2k − 1 terms, by applying Proposition 3.4 and using
Parseval’s Identity, each of these terms is bounded above by a(ǫ)2. So the expression is at
least b(ǫ)k − (2k − 1)a(ǫ)2. To finish the analysis, we need to specify a(ǫ), b(ǫ) such that
b(ǫ)k − (2k − 1)a(ǫ)2 > 0 and a(ǫ) + b(ǫ) < ǫ. Both are satisfied by setting b(ǫ) = ǫ

2 , a(ǫ) =

( ǫ
2 )k. Thus, the rejection probability is at least τ(ǫ) ≥ 2−kW (( 2

ǫ
)3k)2−k(ǫk − ǫ2k), completing

the proof.
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4. Graphic Matroids have Complexity 1

Here we prove that graphic matroids have complexity 1. While the proof is simple,
we believe it sheds insight into the notion of complexity and shows that even the class of
1-complexity matroids is quite rich.

As we have seen earlier, Lemma 2.7 holds for any matroid of complexity 1. Hence, it is
a natural question to ask whether there exist non-graphic matroids which have complexity
1. In the Appendix of the full version [14] we show that such matroids do exist. It is an
open question to come up with a natural characterization of matroids having complexity 1.

5. Infinitely many Monotone Properties

In this section we prove Theorem 1.3, that there are infinitely many matroids for which
the property of being M-free are pairwise very different.

To do so we consider a pair of target matroids M1 and M2. Based on just the first
matroid M1, we create a canonical function f = fM1 : Fn

2 → F2. We show, using a simple
analysis, that this canonical function is far from being M1 free. We then show that if this
function has an instance of M2 inside, then there is a “homomorphism” (in a sense we
define below) from M2 to M1. Finally we show two different ways in which one can rule
out homomorphisms between pairs of graphic matroids; one based on the odd girth of the
matroids, and the other based on the maximum degree of M1. Together these ideas lead
to proofs of distinguishability of many different matroids.

Definition 5.1. Given a binary matroid M represented by vectors v1, . . . , vk ∈ Fk
2, and

integer n ≥ k, let the canonical function f = fM : Fn
2 → F2 be given by f(x, y) = 1 if

x ∈ {v1, . . . , vk} and 0 otherwise; where x ∈ Fk
2 and y ∈ Fn−k

2 .

Claim 5.2. Let M be a binary matroid with vi 6= 0 for all i ∈ {1, . . . , k}. Then fM is
1
2k -far from being M-free.

We now introduce our notion of a “homomorphism” between binary matroids. (We
stress that the phrase homomorphism is conjured up here and we are not aware of either
this notion, or the phrase being used in the literature. We apologize for confusion if this
phrase is used to mean something else.)

Definition 5.3. LetM1 andM2 be binary matroids given by v1, . . . , vk ∈ Fk
2 and w1, . . . , wℓ

∈ Fℓ
2. We say that M2 has a homomorphism to M1 if there is a map φ : {w1, . . . , wℓ} →

{v1, . . . , vk} such that for every set T ⊆ [ℓ] such that
∑

i∈T wi = 0, it is the case that∑
i∈T φ(wi) = 0.

For graphic matroids, the matroid-homomorphism from G to H is a map from the edges
of G to the edges of H that ensures that cycles are mapped to even degree subgraphs of H.

Lemma 5.4. If the canonical function fM1 contains an instance of M2 somewhere, then
M2 has a homomorphism to M1.

The above lemma now motivates the search for matroids M2 that are not homomorphic
to M1. Proving non-homomorphism in general may be hard, but we give a couple of settings
where we can find simple proofs. Each addresses a different case of Theorem 1.3.

For a matroid M, let its odd girth, denoted og(M), be the size of the smallest dependent
set of odd cardinality, i.e. the size of the smallest odd set T ⊆ [ℓ] such that

∑
i∈T wi = 0.

Lemma 5.5. If M2 has a homomorphism to M1, then og(M2) ≥ og(M1).
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For graphic matroids constructed from the odd cycle graph Ck, we have that its odd
girth is just k and so the above lemmas combine to give that Ck-freeness is distinguishable
from Ck+2-freeness, and this suffices to prove Part (1) of Theorem 1.3.

However the odd girth criterion might suggest that G-freeness for any graph containing
a triangle might be equivalent. Below we rule this possibility out.

Lemma 5.6. Let M1 be the graphic matroid of the complete graph Ka on a vertices, and
let M2 be the graphic matroid of Kb. Then, if b ≥

(
a
2

)
+ 2, there is no homomorphism from

M2 to M1.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. First note that Ck+2-free functions are also Ck-free. Informally, sup-
pose a function f has a k cycle at point x1, . . . , xk, i.e., f(xi) = 1 at these points and∑

i xi = 0. Then f has a k + 2 cycle at the points x1, x1, x1, x2, . . . , xk. (This informal
argument can obviously be converted to a formal one once we specify the graphic matroids
corresponding to Ck and Ck+2 formally.)

On the other hand, if we take M1 to be the graphic matroid corresponding to Ck and
f to be the canonical function corresponding to M1, then by Claim 5.2 it is 2−k-far from
M1-free, and by Lemmas 5.4 and 5.5 it does not contain M2, the graphic matroid of Ck+2.

For the second part of the theorem, note that every property that is G-free is also
H-free if G is a subgraph of H. Thus Kk-free is contained in Kℓ free if k ≤ ℓ. The proper
containment can now be shown as above, now using Claim 5.2 and Lemmas 5.4 and 5.6.

6. Conclusions and Future Work

We introduced an infinite family of properties of Boolean functions and showed them to
be testable. These properties were specified by a matroid M on k elements and a pattern
Σ ⊆ {0, 1}k . However to capture the full range of linear-invariant non-linear properties
that allow one-sided error local tests, we should also allow the conjunction of a constant
number of constraints. We believe this could lead to a characterization of all linear-invariant
non-linear properties that allow one-sided error local tests.

In a different direction, we feel that it would also be nice to develop richer techniques to
show the distinguishability of syntactically different properties. For instance, even for the
graphic case we don’t have a good understanding of when two different graphs represent
essentially the same properties, and when they are very different.
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Abstract. Solovay [19] proved that there exists a computable upper bound f of the
prefix-free Kolmogorov complexity function K such that f(x) = K(x) for infinitely many x.
In this paper, we consider the class of computable functions f such that K(x) ≤ f(x)+O(1)
for all x and f(x) ≤ K(x) + O(1) for infinitely many x, which we call Solovay functions.
We show that Solovay functions present interesting connections with randomness notions
such as Martin-Löf randomness and K-triviality.

1. Introduction

The plain and prefix-free Kolmogorov complexities (which we denote respectively by C
and K) are both non-computable functions, but they do admit computable upper bounds.
How good can these upper bounds be? That is, how close to C (resp. K) can a com-
putable upper bound of C (resp. K) be? It can be easily proven that no computable upper
bound of C can be close to C on all values, i.e. given any computable upper bound f of C,
the ratio f(x)/C(x) is not bounded. To see this, we use a variation of Berry’s paradox:
take a computable upper bound f of C, and define, for all n ∈ N, xn to be the smallest
string x such that f(x) ≥ n. Since f is computable, xn can be computed from n, hence
C(xn) ≤ log(n) + O(1). Thus, f(xn)/C(xn) ≥ n/(log(n) + O(1)) which proves the result.
The exact same argument shows that no computable upper bound of K approximates K
well on all values.

Therefore, one may ask the natural question: are there computable upper bounds for
C or K that are good approximations on infinitely many values? The answer is trivially
yes for C. Indeed, for most strings x, we have C(x) = |x|+ O(1) (see for example Downey
and Hirschfeldt [7]), hence for some constant c, the function f defined by f(x) = |x|+ c is a
computable upper bound of C, and f(x) = C(x) + O(1) for infinitely many strings x. The
case of K is less clear: indeed, the maximal prefix-free complexity of a string x of length n
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(attained by most strings of that length) is n + K(n) + O(1). And giving a good upper
bound of this last expression already necessitates a good upper bound on K! Solovay [19]
nonetheless managed to construct a computable upper bound f of K such that f(x) = K(x)
for infinitely many x. In this paper, we consider the class of computable functions f such
that K(n) ≤ f(n)+ O(1) for all n and f(n) ≤ K(n)+ O(1) for infinitely many n, which we
call Solovay functions.

Our first main result (Theorem 2.5) is that Solovay functions have a very simple char-

acterization: they correspond to the computable functions f such that
∑

x 2−f(x) is finite
and is a Martin-Löf random real.

Then, we discuss the role of Solovay functions in the characterization of randomness
notions. In particular, we show (Theorem 3.4) that Solovay functions are particularly
relevant to the Miller-Yu characterization of Martin-Löf random sequences via the plain
Kolmogorov complexity of the initial segments. We prove along the way a theorem of
independent interest (Theorem 3.5) showing that the Levin-Schnorr characterization of
Martin-Löf randomness by prefix-free Kolmogorov complexity is very sharp, and derive
several interesting consequences of this result.

Finally, we study two triviality notions that relate to computable upper bounds of
prefix-free Kolmogorov complexity and Solovay functions. In the spirit of the Miller-Yu
theorem, we obtain (Theorem 4.3) a characterization of K-triviality via computable upper
bounds of K.

We assume that the reader is familiar with the field of algorithmic randomness. If not,
one can consult Downey and Hirschfeldt [7] or Nies [18]. We denote by 2<ω and 2ω the set
of binary sequences (or “strings”) and binary infinite sequences respectively. For a binary
sequence x (finite or infinite), we denote by x(i) the (i + 1)-th bit of x, and by x ↾ i the
string made of the first i bits of x (that is, x ↾ i = x(0)x(1) . . . x(i − 1)). The length of a
string x is denoted by |x|. Throughout this paper, we identify 2<ω with N, via the usual
length-lexicographic bijection: 0 = ǫ (ǫ being the empty string), 1 = 0, 2 = 1, 3 = 00,
4 = 01, 5 = 10. . . . We also identify any element r ∈ [0, 1] to an element α ∈ 2ω such that
r =

∑

n α(n)2−n+1. If r is not dyadic then α is unique; if r is dyadic, there are two possible
choices for α ∈ 2ω and which one we choose does not matter in this paper. We say that a
real number is left-c.e. if it is the limit of a computable nondecreasing sequence of rational
numbers. Given a nondrecreasing unbounded function f : N → N, we denote by f−1 the
function defined by f−1(k) = min{n ∈ N | f(n) ≥ k}. As we stated earlier, we denote by
C(x) and K(x) the plain Kolmogorov complexity and prefix-free Kolmogorov of a string x.
Since C and K are enumerable from above (i.e. their upper graph is a c.e. set), for a fixed
enumeration, let Cs(x) and Ks(x) be the value of C(x) and K(x) at the s-th stage of the
enumeration. In particular, this means that the function (x, s) 7→ Ks(x) is computable and,
for any fixed x, s 7→ Ks(x) is nonincreasing and converges to K(x) (and the same is true
for C).

2. Computable upper bounds of Kolmogorov complexity

The class of computable upper bounds of Kolmogorov complexity has been studied in
Bienvenu and Merkle [2] (in the setting of “decidable machines”), where they were used
to give characterizations of a wide variety of randomness notions of randomness, such as
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Martin-Löf randomness, Schnorr randomness, Kurtz randomness or computable dimension.
Here, we are interested in the class of Solovay functions, which is a subclass of computable
upper bounds of K (here and from now on, we use a slight abuse of terminology, calling
“upper bound” of K a function f such that K ≤ f + O(1)).

Let us first mention that computable upper bounds of K admit a very simple charac-
terization.

Lemma 2.1. Let f : N → N be a computable function. The following are equivalent:
(i) K ≤ f + O(1)

(ii) The sum
∑

n∈N
2−f(n) is finite.

Proof. (i) ⇒ (ii) is trivial as
∑

n 2−K(n) ≤ 1. For (ii) ⇒ (i), let c be such that
∑

n 2−f(n) ≤
2c. Using the Kraft-Chaitin theorem, we effectively construct a prefix-free c.e. set of strings
{xn | n ∈ N} with |xn| = f(n) + c for all n. Then, we define a (computable) function F
by F (xn) = n for all n. Since F has prefix-free domain and is computable, we have
K(n) ≤ |xn|+ O(1) for all n, hence K(n) ≤ f(n) + c + O(1).

Definition 2.2. We denote by K the class of computable functions such that
∑

n 2−f(n) < +∞
(or equivalently, the computable functions f such that K ≤ f + O(1)).
We call Solovay function any function f ∈ K such that lim infn→+∞ f(n) − K(n) < +∞
(or equivalently, any function f ∈ K such that for some c, f(n) ≤ K(n) + c for infinitely
many n).

Theorem 2.3 (Solovay [19]). Solovay functions exist.

Proof. Let us start by an observation. Given x ∈ 2<ω, and some p such that U(p) = x, if
we call t the computation time of U(p), we have

K (〈x, p, t〉) ≤ |p|+ O(1)

(where 〈., ., .〉 is a computable bijection from 2<ω × 2<ω × 2<ω to 2<ω). Indeed, given p
only, one can easily compute x and t. Suppose now that p is a shortest U-program for x
i.e. U(p) = x and K(x) = |p|. We then have:

|p| = K(x) ≤ K (〈x, p, t〉) ≤ |p|+ O(1)

Thus, let f be the function defined by:

f(〈x, p, t〉) =

{

|p| if U(p) outputs x in exactly t steps of computation
+∞ otherwise

(here we use the value +∞ for convenience, but any coarse upper bound of K(〈x, p, t〉),
like 2|x| + 2|p| + 2 log t, would do). By the above discussion, we have K ≤ f + O(1) and
f(〈x, p, t〉) ≤ K(〈x, p, t〉) + O(1) for all triples (x, p, t) such that p is a shortest U-program
for x and U(p) outputs x in exactly t steps of computation. Thus, f is as desired.

Remark 2.4. In fact, what Solovay actually proved is that there exists a computable
function f such that K ≤ f and K(n) = f(n) for infinitely many n. This can be easily
deduced from Theorem 2.3. Indeed, given a computable function f such that K ≤ f +O(1)
and c = lim infn→+∞ f(n) − K(n) < +∞, the (computable) function f ′ = f − c is such
that f ′(n) = K(n) for infinitely many n, and f ′(n) ≥ K(n) for almost all n. Hence, up to
modifying only finitely many values of f ′, we may assume that f ′(n) ≥ K(n) for all n.
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It turns out that, among the computable functions f such that the sum
∑

n 2−f(n) is
finite, the Solovay functions are precisely those for which this sum is not only finite but also
a Martin-Löf random real.

Theorem 2.5. Let f be a computable function. The following are equivalent:
(i) f is a Solovay function.

(ii) The sum
∑

n 2−f(n) is finite and is a Martin-Löf random real.

Proof. (i) ⇒ (ii). If f is a Solovay function, we already know by definition that α =
∑

n 2−f(n) is finite. Let us now prove that α is a Martin-Löf random real. Suppose it is
not. Then for arbitrarily large c there exists k such that K(α ↾ k) ≤ k − c (this because of
the Levin-Schnorr theorem, see next section). Given α ↾ k, one can effectively find some s
such that

∑

n>s

2−f(n) ≤ 2−k

Thus, by a standard Kraft-Chaitin argument, one has K(n|α ↾ k) ≤ f(n)− k + O(1) for all
n > s. Thus, for all n > s:

K(n) ≤ f(n) + K(α ↾ k)− k + O(1) ≤ f(n) + (k − c)− k −O(1) ≤ f(n)− c−O(1)

And since c can be taken arbitrarily large, this shows that limn→+∞ f(n) − K(n) = +∞
i.e. f is not a Solovay function.

(ii) ⇒ (i). Suppose now for the sake of contradiction that f is not a Solovay function and
that α is Martin-Löf random. We will prove that under these assumptions, the number
Ω =

∑

n 2−K(n) is not Martin-Löf random, which indeed is a contradiction (see for example
Downey and Hirschfeldt [7]).

Since α is Martin-Löf random and is left-c.e., we can apply the Kučera-Slaman the-
orem [13]. This theorem states that given a Martin-Löf random left-c.e. real η, for any
left-c.e. real ξ, there exists a constant d and a partial recursive function ϕ such that for
every rational q < η, ϕ(q) is defined and ξ−ϕ(q) < 2d(η−q). We will use this fact for η = α
and ξ = Ω and also call d and ϕ the associated constant and partial recursive function.

Now, let c be a large integer (to be specified later). Suppose also that α ↾ k is given for
some k. Since α− (α ↾ k) < 2−k, by the Kučera-Slaman theorem:

Ω− ϕ(α ↾ k) < 2−k+d

Thus, from α ↾ k, one can effectively compute some s(k) such that
∑

n>s(k)

2−K(n) ≤ 2−k+d

If k is large enough, then s(k) is large enough and hence n > s(k) ⇒ K(n) ≤ f(n)− c− d
(this because f is not a Solovay function). Thus, for all k large enough:

∑

n>s(k)

2−f(n) ≤ 2−c−d
∑

n>s(k)

2−K(n) ≤ 2−c−d · 2−k+d ≤ 2−k−c

This tells us that for k large enough, knowing α ↾ k suffices to compute s(k) and then (by
the above inequality) effectively compute an approximation of α by at most 2−k−c. In other
words, α ↾ (k + c) can be computed from α ↾ k and c. Therefore, for all k large enough:

K(α ↾ (k + c)) ≤ K(α ↾ k, c) + O(1) ≤ K(α ↾ k) + 2 log c + O(1)



KOLMOGOROV COMPLEXITY AND SOLOVAY FUNCTIONS 151

The constant d is fixed, and c can be taken arbitrarily large. Choose c such that the
expression 2 log c + O(1) in the above inequality is smaller than c/2. Then, for all k large
enough,

K(α ↾ (k + c)) ≤ K(α ↾ k) + c/2

An easy induction then shows that K(α ↾ k) ≤ O(k/2), contradicting the fact that α is
random.

An interesting corollary of this theorem is that there are nondecreasing Solovay func-
tions (which is not really obvious from the definition). To see that it is the case, it suffices
to take a computable sequence (rn)n∈N of rational numbers such that every rn is a negative
power of 2, the rn are nonincreasing and

∑

n rn is a Martin-Löf random number (it is very
easy to see that such sequences exist). Then, take f(n) = − log(rn) for all n. The function f
is computable, nondecreasing and by Theorem 2.5 is a Solovay function.

3. Solovay functions and Martin-Löf randomness

One of the most fundamental theorems of algorithmic randomness is the Levin-Schnorr
theorem, proven independently by Levin and Schnorr in the 1970’s. It characterizes Martin-
Löf random sequences by the prefix-free Kolmogorov complexity of their initial segments.
More precisely, a sequence α ∈ 2ω is Martin-Löf random if and only if

K(α ↾ n) ≥ n−O(1)

This theorem left open a fundamental question: is there a similar characterization of Martin-
Löf randomness in terms of plain Kolmogorov complexity?

3.1. The Miller-Yu theorem

This question remained open for almost three decades. It was finally answered positively
in a recent paper of Miller and Yu [16].

Theorem 3.1 (Miller and Yu1 [16]). Let α ∈ 2ω. The following are equivalent:
(i) α is Martin-Löf random.
(ii) C(α ↾ n) ≥ n−K(n)−O(1).
(iii) For all functions f ∈ K, C(α ↾ n) ≥ n− f(n)−O(1).

Remarkably, Miller and Yu showed that in the item (iii) above, the “for all f” part can
be replaced by a single function:

Theorem 3.2 (Miller and Yu [16]). There exists a function g ∈ K such that for all α ∈ 2ω:

α is Martin-Löf random ⇔ C(α ↾ n) ≥ n− g(n) −O(1) (3.1)

Informally, the function g ∈ K in this last proposition is a “good” upper bound of K,
in the sense that it is close enough to K to make possible the replacement of K by g in the
equivalence (i) ⇔ (ii) of Theorem 3.1. This reminds us of the Solovay functions which are
also “good” upper bounds of K in their own way. And indeed, the function g constructed
by Miller and Yu to make the equivalence (3.1) true is a Solovay function. We will show
that this is not a coincidence, as all functions g satisfying (3.1) are Solovay functions. But
before that, we state a related theorem:

1Gács [10] proved the equivalence (i) ⇔ (ii) of Theorem 3.1
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Theorem 3.3 (Bienvenu and Merkle [2]). A sequence α is Martin-Löf random if and only
if for all f ∈ K, f(α ↾ n) ≥ n− O(1). Moreover, there exists a unique function g ∈ K such
that

α is Martin-Löf random ⇔ g(α ↾ n) ≥ n−O(1) (3.2)

We will prove:

Theorem 3.4. Any function g satisfying the equivalence (3.1) of Theorem 3.2 is a Solovay
function. The same is true for any function g satisfying the equivalence (3.2) of Theo-
rem 3.3.

In order to prove this theorem, we show that in both characterizations of Martin-Löf
randomness (K(α ↾ n) ≥ n − O(1) and C(α ↾ n) ≥ n −K(n)− O(1)) the lower bound on
complexity is very sharp, that is there is no “gap phenomenon”.

3.2. A “no-gap” theorem for randomness

Chaitin [4] proved an alternative characterization of Martin-Löf randomness: α ∈ 2ω is
Martin-Löf random if and only if K(α ↾ n)− n tends to infinity. Together with the Levin-
Schnorr characterization, this shows a dichotomy: given a sequence α ∈ 2ω, either α is not
Martin-Löf random, in which case K(α ↾ n)−n takes arbitrarily large negative values, or α
is Martin-Löf random, in which case K(α ↾ n)− n tends to +∞. This means for example
that there is no sequence α ∈ 2ω such that K(α ↾ n) = n + O(1). One may ask whether
this dichotomy is due to a gap phenomenon, that is: is there a function h that tends to
infinity, such that for every Martin-Löf random sequence α, K(α ↾ n) ≥ n + h(n) − O(1)?
Similarly, is there a function h′ that tends to infinity such that for every sequence α,
K(α ↾ n) ≥ n− h′(n)− O(1) implies that α is Martin-Löf random? We answer both these
questions (and their plain complexity counterpart) negatively.

Theorem 3.5. There exists no function h : N → N (computable or not) which tends to
infinity and such that

K(α ↾ n) ≥ n− h(n)−O(1)

is a sufficient condition for α to be Martin-Löf random (in fact, not even for α to be Church
stochastic).

Similarly, there is no function h : N → N which tends to infinity and such that

C(α ↾ n) ≥ n−K(n)− h(n)−O(1)

is a sufficient condition for α to be Martin-Löf random (in fact, not even for α to be Church
stochastic).

Proof. First, notice that since we want to prove this for any function that tends to infinity,
we can restrict our attention to the nondecreasing ones. Indeed, if h is a function that tends
to infinity, the function

h̃(n) = min{f(k) | k ≥ n}

also tends to infinity and h̃ ≤ h.

Now, assume we are in the simple case where the function h is nondecreasing and
computable. A standard technique to get a non-random binary sequence β such that
K(β ↾ n) ≥ n − h(n) − O(1) is the following: take a Martin-Löf random sequence α,
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and insert zeroes into α in positions h−1(0), h−1(1), h−1(2), . . .. It is easy to see that the
resulting sequence β is not Martin-Löf random (indeed, not even Church stochastic), and
that the Kolmogorov complexity of its initial segments is as desired. This approach was
refined by Merkle et al. [15] where the authors used an insertion of zeroes on a co-c.e. set
of positions in order to construct a left-c.e. sequence β that is not Mises-Wald-Church
stochastic, but has initial segments of very high complexity.

Of course, the problem here is that the function h in the hypothesis may be non-
computable, and in particular may grow slower than any computable nondecreasing func-
tion. In that case, the direct construction we just described does not necessarily work:
indeed, inserting zeroes at a noncomputable set of positions may not affect the complexity
of α. To overcome this problem, we invoke the Kučera-Gács theorem (see Kučera [12],
Gács [11], or Merkle and Mihailovic [14]). This theorem states that any subset of N (or
function from N to N) is Turing-reducible to a Martin-Löf random sequence. Hence, instead
of choosing any Martin-Löf sequence α, we pick one that computes the function h−1 and
then insert zeroes into α at positions h−1(0), h−1(1), . . .. Intuitively, the resulting sequence
β should not be random, as the bits of α can be used to compute the places where the zeroes
have been inserted. This intuition however is not quite correct, as inserting the zeroes may
destroy the Turing reduction Φ from α to h−1. In other words, looking at β, we may not
be able to distinguish the bits of α from the inserted zeroes.

The trick to solve this last problem is to delay the insertion of the zeroes to “give enough
time” to the reduction Φ to compute the positions of the inserted zeroes. More precisely,
we insert the k-th zero in position nk = h−1(k)+ t(k) where t(k) is the time needed by Φ to
compute h−1(k) from α. This way, nk is computable from α ↾ nk in time at most nk. From
this, it is not too hard to construct a computable selection rule that selects precisely the
inserted zeroes, witnessing that β is not Church stochastic (hence not Martin-Löf random).
Moreover, since the “insertion delay” only makes the inserted zeroes more sparse, we have
K(β ↾ n) ≥ n− h(n)−O(1). And similarly, since α is Martin-Löf random, we have by the
Miller-Yu theorem: C(α ↾ n) ≥ n−K(n)− h(n)−O(1).

The formal details are as follows. Let h be a nondecreasing function. By the Kučera-
Gács theorem, let α be a Martin-Löf random sequence and Φ be a Turing functional such
that Φα(n) = h−1(n) for all n. Let t(n) be the computation time of Φα(n) (we can assume
that t is a nondecreasing function). Let β ∈ 2ω be the sequence obtained by inserting zeroes
into α in positions h−1(n) + t(n). To show that β is not Church stochastic, we construct
a (total) computable selection rule that filters the inserted zeroes from β. Let S be the
selection rule that works as follows on a given sequence ξ ∈ 2ω. We proceed by induction;
we call kn the number of bits selected by S from ξ ↾ n and xn the prefix ξ ↾ n of ξ from
which these kn bits are deleted (x0 is thus the empty string, and k0 = 0).

At stage n + 1, having already read ξ ↾ n, S computes Φxn

n (kn). If the computation
halts after s steps, S checks whether Φxn

n (kn) + s returns n. If so, S selects the n-th bit of
ξ(n) of ξ and then sets xn+1 = xn and kn+1 = kn + 1. Otherwise, S just reads the bit ξ(n),
and sets xn+1 = xnξ(n) and kn+1 = kn.

It is clear that S is a total computable selection rule. Now suppose that we run it on β.
We argue that S selects exactly the zeroes that have been inserted into α to get β. We prove
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this by induction. If S has already selected from β the first i inserted zeroes, then the next
selected bit is the bit in position n = Φxn(kn) + s where Φxn(kn) is computed in s steps.
But since the selected bits are exactly the zeroes that were inserted in α, we have kn = i
and xn = α ↾ n − i, and thus s is the computation time of Φxn(kn) = Φα↾n−i(i), which we
called t(i). And by definition of Φ, Φα↾n−i(i) = h−1(i). Therefore, n = h−1(i) + t(i), i.e.
the selected bit was an inserted zero. This proves that S only selects bits that belong to
the zeroes that were inserted into α. Conversely, we need to prove that all such bits are
indeed selected by S. Let i ∈ N. The i + 1-th inserted zero is in position n = h−1(i) + t(i).
At stage n, we have by the induction hypothesis xn = α ↾ n − i and kn = i. Thus,

Φxn

n (kn) = Φ
α↾t(i)+h−1(i)−i

h−1(i)+t(i)
(i), which has to halt because both quantities t(i) + h−1(i) − i

and h−1(i)+ t(i) are greater than t(i), which is the computation time of Φα(i). Thus the bit
in position n is indeed selected. Therefore, S satisfies the desired properties, and witnesses
the fact that β is not Church stochastic.

Finally, for all n, calling i the number of inserted zeroes in β ↾ n, we easily see that
β ↾ n and α ↾ n − i can each be computed from the other one (by insertion or deletion of
zeroes). Thus: K(β ↾ n) = K(α ↾ n − i) ≥ n − i (since α is Martin-Löf random). And by
definition of the positions where the zeroes are inserted, we have n ≥ h−1(i− 1) + t(i− 1),
hence i ≤ h(n) + O(1). Therefore:

K(β ↾ n) ≥ n− i ≥ n− h(n) + O(1)

for all n. This completes the proof.

As a consequence of the construction performed in this proof, we get the dual version
of Theorem 3.5:

Proposition 3.6. There exists no function h : N → N (computable or not) which tends to
infinity and such that

K(α ↾ n) ≥ n + h(n)−O(1)

is a necessary condition for α to be Martin-Löf random.

Similarly, there is no function h : N → N which tends to infinity and such that

C(α ↾ n) ≥ n−K(h) + h(n)−O(1)

is a necessary condition for α to be Martin-Löf random.

Proof. Suppose for the sake of contradiction that there exists a function h′ which tends
to infinity and such that K(α ↾ n) ≥ n + h′(n) − O(1) is a necessary condition for α to
be Martin-Löf random. Once again, we can assume that h′ is non-decreasing. Then, we
perform the exact same construction as in the proof of Theorem 3.5 for a given function h.
Then, at the end of proof, when evaluating the complexity of β, we have K(β ↾ n) = K(α ↾

n − i) + O(1), with i ≤ h(n) + O(1), and since α is Martin-Löf random, K(α ↾ n − i) ≥
(n− i) + h′(n − i)−O(1). It follows that

K(β ↾ n) ≥ n− h(n) + h′(n− h(n))−O(1)

Thus, if we take h to be sufficiently slow growing (for example h(n) = log(h′(n))), we have
K(β ↾ n) ≥ n−O(1) for all n. This is a contradiction since by the Levin-Schnorr theorem,
this would imply that β is Martin-Löf random, which it is not by construction. The proof
of the second part of the proposition is almost identical.
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Theorem 3.4 now easily follows:

Proof (of Theorem 3.4). Let g be a function satisfying the equivalence (3.1) of Theorem 3.2.
Suppose that g is not a Solovay function. This means, by definition, that h(n) = g(n)−K(n)
tends to infinity. Then, we can rewrite the equivalence (3.1) as:

α is Martin-Löf random ⇔ C(α ↾ n) ≥ n−K(n)− h(n)−O(1)

which contradicts Theorem 3.5. Similarly, if a function g satisfies the condition (3.2) of
Theorem 3.3, and is such that h(n) = g(n)−K(n) tends to infinity, then for all α ∈ 2ω, α
is Martin-Löf random if and only if K(α ↾ n) ≥ n− h(n), contradicting Theorem 3.5.

The consequences of Theorem 3.5 go beyond its applications to Solovay functions. For
example, it gives an alternative proof of the fact that Schnorr randomness does not imply
Church stochasticity (a result originaly proven by Wang [20]). Indeed, it is rather well-
known that if h tends to infinity slower than any computable nondecreasing function, then
the condition K(α ↾ n) ≥ n− h(n)−O(1) is sufficient for α to be Schnorr random (see for
example Bienvenu and Merkle [2]), whereas we just saw that it was not sufficient for α to
be Church stochastic.

One can also adapt the proof of Theorem 3.5 to separate Church stochasticity from
Schnorr randomness within the left-c.e. reals. Informally, this is done as follows. Take a
left-c.e. Martin-Löf random sequence α ∈ 2ω. Call t(n) the settling time of α ↾ n, i.e. given
a computable nondecreasing sequence (qs)s∈N that converges to α, t(n) is the smallest s
such that |α − qs| < 2−n. It is easy to see that t is enumerable from below. Thus, the
sequence β ∈ 2ω which we obtain from α by inserting zeroes in positions t(0) < t(1) < . . .
is left-c.e. and for the same reason as above, is not Church stochastic. And the same kind
of computation as above shows that K(β ↾ n) ≥ n − t−1(n) − O(1). Since it can easily
be shown that t grows faster than any computable function, it follows that t−1 tends to
infinity more slower than any nondecreasing unbounded computable function. Thus, β is
not Church stochastic. This improves a result of Merkle et al. [15] (Theorem 26), who
proved an equivalent fact for a weaker notion of stochasticity. For details on that result,
see Bienvenu [1].

4. Solovay functions and triviality notions

A very successful line of research in algorithmic randomness over the last years concerns
triviality and lowness notions. Informally, a sequence α ∈ 2ω is trivial if its Kolmogorov
complexity is minimal or quasi-minimal, while a sequence α is low for randomness if it
has little computation power, i.e. if relativizing the definition of random sequences to the
oracle α does not change the class of random sequences. Perhaps the most important result
in this direction was given by Nies [17]: a sequence α ∈ 2ω is low for Martin-Löf ran-
domness (i.e. Martin-Löf randomness relativized to α coincides with standard Martin-Löf
randomness) if and only if α is K-trivial (i.e. K(α ↾ n) ≤ K(n) + O(1)). Other interesting
notions of triviality have been studied, like Schnorr triviality, introduced by Downey et
al. [6]: a sequence α is Schnorr trivial if for every prefix-free machine M whose domain
has measure 1, there exists a machine M ′ whose domain also has measure 1, and such that
KM ′(α ↾ n) ≤ KM (n) + O(1). This notion was extensively studied by Franklin [8, 9].
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In the same spirit, we can consider the class of sequences α such that for all computable
upper bounds f of K, there exists a computable upper bound f ′ of K such that f ′(α ↾ n) ≤
f(n) + O(1). However, because of the existence of Solovay functions, only computable
sequences have this property.

Proposition 4.1. Let α ∈ 2ω. Suppose that for all f ∈ K, there exists f ′ ∈ K such that

f ′(α ↾ n) ≤ f(n) + O(1)

Then α is computable.

To prove this proposition, we need the following lemma:

Lemma 4.2 (Chaitin [3]). For every n, c ∈ N:

#
{

w ∈ 2<ω | |w| = n ∧ K(w) ≤ K(n) + c
}

≤ 2c+O(1)

where the O(1) term does not depend on n or c.

Proof (of Proposition 4.1). Let α ∈ 2ω satisfy the hypothesis of the proposition. Let f be a
Solovay function. By the assumption on α, there is a function f ′ ∈ K and a constant c such
that f ′(α ↾ n) ≤ f(n) + c for all n. Let d be a constant such that K ≤ f ′ + d. Since f is a
Solovay function, there exists a constant e such that f(n) ≤ K(n)+ e for infinitely many n.
For any such n, we have:

#
{

w ∈ 2<ω | |w| = n ∧ f ′(w) ≤ f(n) + c
}

≤ #
{

w ∈ 2<ω | |w| = n ∧ K(w) ≤ K(n) + c + d + e
}

≤ 2c+d+e+O(1)

(the last inequality comes from Lemma 4.2). From this, we see that the Π0
1 class

{ξ ∈ 2ω | ∀n f ′(ξ ↾ n) ≤ f(ξ ↾ n) + c}

to which α belongs, has only finitely many elements (at most 2c+d+e+O(1)), hence all these
elements are computable.

Another thing we can do is to study a weakened version of K-triviality: we consider the
class of sequences α such that for any f ∈ K, K(α ↾ n) ≤ f(n)+ O(1). As we shall now see,
this is equivalent to K-triviality, hence we obtain an analogue of the Miller-Yu theorem for
K-triviality.

Theorem 4.3. Let α ∈ 2ω. Then, α is K-trivial if and only if for all functions f ∈ K,
K(α ↾ n) ≤ f(n) + O(1). Moreover, there exists a unique function g ∈ K such that for all
α ∈ 2ω:

α is K-trivial ⇔ K(α ↾ n) ≤ g(n) + O(1) (4.1)

Proof. By Lemma 2.1, it is obvious that any K-trivial α satisfies K(α ↾ n) ≤ f(n) + O(1)
for all f ∈ K. Thus, all we have to do to prove this theorem is to construct a function g such
that the implication “⇐” of equation (4.1) holds. In fact, we just take for g the function f
constructed in the proof of Theorem 2.3.

Let then α be a sequence such that K(α ↾ n) ≤ g(n)+c for some constant c and all n. As
usual, we prove that α is K-trivial by building a c.e. set L of pairs (wi, ki)i∈N (with wi ∈ 2<ω

and ki ∈ N) such that
∑

i 2
−ki < +∞ and for all n, some pair (α ↾ n,K(n) + O(1)) belongs
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to L.

Let n be a fixed integer. We describe the strategy to enumerate strings of length n
into L. We proceed by stages. At stage s, we look at the value of Ks(n) , and work under
the assumption that Ks(n) = K(n) (this assumption might turn out to be incorrect, we shall
see below what to do when this happens). We then effectively find a U-program p of length
at most Ks(n) such that U(p) = n. By definition of g, if we call t the computation time of
U(p), we have g(〈n, p, t〉) = |p| ≤ Ks(n) (by definition of the function g), which, under the
assumption Ks(n) = K(n) implies K(〈n, p, t〉) = K(n)+O(1) = g(〈n, p, t〉)+O(1). In other
words, at every stage s, we can find a witness ms = 〈n, p, t〉 such that K(ms) = g(ms)+O(1),
provided Ks(n) = K(n).

Then, we enumerate all strings w of length ms such that K(w) ≤ g(ms) + c, and for
each such string we find, we put (w ↾ n,Ks(n)) into L (without repetitions). Under the
assumption Ks(n) = K(n), we have g(ms) = K(ms)+ O(1) hence by Lemma 4.2, there are
at most d = 2c+O(1) different strings w of length ms such that K(w) ≤ g(ms) + c, hence at
most d pairs of type (w ↾ n,Ks(n)) enter L.

As we noted above, we might realize at some point that the assumption Ks(n) = K(n)
is incorrect, i.e. there might exist a stage s′ > s such that Ks′(n) < Ks(n). In this case, we
simply compute a new witness ms′ and restart the strategy. However, the false assumption
g(ms) = K(ms) + O(1) may have caused us to enumerate many strings w of length ms

such that K(w) ≤ g(ms) + c hence many pairs (w ↾ n,Ks(n)) may enter L. We avoid this
situation by only allowing d such pairs to enter L. Indeed, if more than d such pairs ask
to enter L, we immediately know that the assumption Ks(n) = K(n) is incorrect, hence
we can stop acting and simply wait for a stage s′ such that Ks′(n) < Ks(n) and only then
restart the strategy.

It remains to be verified that this strategy works, i.e. that the set L has the desired
properties. For a fixed n, and any k ≥ K(n), by construction of L, there are at most d
pairs of type (w ↾ n, k) in L. Thus, the total measure of the domain of L is at most

∑

n

∑

k≥K(n)

d · 2−k =
∑

n

d · 2−K(n)+1 ≤ 2d

hence is finite. Finally, for a given n, at some stage t we do have Kt(n) = K(n). We then
have g(mt) = K(mt) + O(1) hence for all strings w of length mt satisfying K(w ↾ mt) ≤
g(mt)+ c, the pair (wuhn,Kt(n)) is enumerated into L (the restriction that at most d such
pairs can enter L is not an actual restriction when g(mt) = K(mt) + O(1)). By definition
of α, K(α ↾ mt) ≤ g(mt) + c, hence by assumption (α ↾ n,Kt(n)) = (α ↾ n,K(n)) is
enumerated into L. This completes the proof.

We would like to end this paper with two questions.

Question 1. Does any Solovay function g make the equivalence (3.1) of Miller-Yu’s theorem
true?

Question 2. Is any computable function g satisfying the equivalence (4.1) of Theorem 4.3
necessarily a Solovay function?
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Note that one cannot invoke a “no-gap” theorem to answer the second question, as it
was noted by Csima and Montalbán [5] that there is a nondecreasing unbounded function h
such that K(α ↾ n) ≤ K(n) + h(n) + O(1) implies that α is K-trivial.
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Abstract. A new class of languages of infinite words is introduced, called the max-

regular languages, extending the class of ω-regular languages. The class has two equivalent
descriptions: in terms of automata (a type of deterministic counter automaton), and in
terms of logic (weak monadic second-order logic with a bounding quantifier). Effective
translations between the logic and automata are given.

1. Introduction

This paper introduces a new class of languages of infinite words, which are called
max-regular languages, and include all ω-regular languages. Max-regular languages can be
described in terms of automata, and also in terms of a logic. A typical language in the class
is the property “the distance between consecutive b’s is unbounded”, i.e. the language

L = {an1ban2ban3 . . . : ∀m ∃i ni > m} . (1.1)

A practical motivation can be given for considering properties that speak of bounded
distance; e.g. a formula of the logic in this paper could specify that a system responds to
requests with bounded delay. We will begin, however, with a more fundamental motivation,
which is the question: what is a regular language of infinite words?

There is little doubt as to what is a regular language of finite words. For instance,
the requirement that the Myhill-Nerode equivalence relation has finitely many equivalence
classes uniquely determines which languages of finite words should be regular. Other no-
tions, such as finite semigroups, or monadic-second order logic also point to the same class.

For infinite words, however, there is more doubt. Of course, the class of ω-regular
languages has much to justify calling it regular, but some doubts remain as to its uniqueness.
Consider, for instance, the language L mentioned above, or the set K of ultimately periodic
words, i.e. words of the form wvω, say over alphabet a, b. None of these languages are
ω-regular. However, under the commonly accepted definition of Myhill-Nerode equivalence
for infinite words, given by Arnold in [2], both languages have exactly one equivalence class.

Should these languages be called regular? If yes, what is the appropriate notion of regu-
larity? In this paper we propose a notion of regular languages, which are called max-regular
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languages, that captures the language L, but not the language K. This new notion has many
properties that one would wish from regular languages. The class is (effectively) closed un-
der boolean operations, including negation. There is a finite index Myhill-Nerode relation,
and equivalence classes are regular languages of finite words. There is an automaton model,
there is a logical description, and translations between the two are effective. Emptiness
is decidable. Membership is decidable (although since we deal with infinite words, the
membership test is for certain finitely presented inputs, such as ultimately periodic words).

So, what is this new class? One definition is in terms of logic. The max-regular
languages are the ones that can be defined by formulas of weak monadic second-order logic
extended with the unbounding quantifier. The term “weak” means that only quantification
over finite sets is allowed. The unbounding quantifier UX.ϕ(X) was introduced1 in [3], it
says that the size of sets X satisfying ϕ(X) is unbounded, i.e.

UX.ϕ(X) =
∧

n∈N

∃X
(

ϕ(X) ∧ n ≤ |X| < ∞
)

. (1.2)

Monadic second-order logic with the unbounding quantifier for infinite trees was studied
in [3], where an emptiness procedure was presented for formulas with restricted quantifi-
cation patterns. This study was continued in [4], where the models where restricted from
infinite trees to infinite words, but the quantification patterns considered were more relaxed.
However, no decision procedure was given in [4] for full monadic second-order logic with the
unbounding quantifier, and the expressive power of the logic seemed to be far too strong
for the techniques used (no undecidability results are known, though).

The basic idea in this paper is to restrict the set quantification to finite sets (i.e. weak
quantification), while keeping the unbounding quantifier. It turns out that with this re-
striction, lots of the problems encountered in [4] are avoided, and the resulting class is
surprisingly robust. Note that for infinite words and without unbounding quantification,
weak monadic second-order logic has the same expressive power as full monadic second-
order logic; this is no longer true when the unbounding quantifier is allowed (we prove this
using topological techniques).

The main contribution of this paper is Theorem 3.2, which shows that weak monadic
second-order logic with the unbounding quantifier has the same expressive power as deter-
ministic max-automata. A max-automaton is a finite automaton equipped with counters,
which store natural numbers. The important thing is that the counters are not read dur-
ing the run (and therefore do not influence the control of the automaton), which avoids
the usual undecidability problems of counter machines. The counters are only used in the
acceptance condition, which requires some counter values to be bounded, and some to be
unbounded.

To the best of the authors knowledge, quantifiers similar to the unbounding quantifier
have only been considered in [3, 4]. On the other hand, the idea to use automata with
quantitative acceptance conditions, has a long history, going back to weighted automata of
Schützenberger [11] (see [7] for a recent paper on weighted automata and related logics).

The max-automata used in this paper are closely related to an automaton model that
has been variously called a distance desert automaton in [10], a BS-automaton in [4], or an
R-automaton in [1]. One important application, see [10], of these automata is that they can

1The quantifier introduced in [3] was actually the negation of U , saying that the size is bounded.
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be used to solve the famous star-height problem2, providing simpler techniques and better
complexities than in the famous result of Hashiguchi [8]. (The reduction from the star-
height problem is not to emptiness of the automata, but to something called limitedness.)
Other problems that can be tackled using this type of automata include the star-height of
tree languages [5] or the Mostowski index of ω-regular languages [6].

2. The automaton

We begin our presentation with the automaton model.
A max-automaton has a finite set of states Q and a finite set of counters Γ. It also has

a finite set of transitions. Each transition reads an input letter, changes the state, and does
a finite sequence of counter operations. The counter operations are:

c := c + 1. Increment counter c.
c := 0. Reset counter c.
output(c). Output the value of counter c.
c := max(c, d). Store in counter c the maximal value of counters c, d.

A max-automaton is run on an infinite word w ∈ Σω. A run is an infinite sequence of
transitions, with the usual requirement on consistency with the letters in the input word.
Fix a run ρ. With each counter c ∈ C, we associate the sequence counter values ρc ∈ N

∗∪N
ω

that have been output by the instruction output(c). These outputs are used by the accepting
condition, which is a boolean combination of clauses: “the sequence ρc is bounded”.

Note that with this acceptance condition, it is only the set of values in ρc that matters,
and not their order or multiplicity. This is unlike the parity condition (where multiplicity is
important), or the S-condition of [4], where the sequence ρc is required to tend to infinity.

The toolkit of counter operations could be modified without affecting the expressive
power of max-automata. For instance, we could have an operation c := d, which is equivalent
to c := 0 followed by c := max(c, d). On the other hand, the output instruction can be
removed (in this case, ρc would contain all values of the counter during the run). The
output operation can be simulated by the others as follows: for every counter c, we add
a new output counter c′, which is never incremented. Instead of doing output(c), we do
c′ := c. This way, the counter c′ gets only the values that were output on the original
counter c.

Theorem 2.1. Emptiness is decidable for max-automata.

Proof. The difficulty in the proof is dealing with the max operation.
We will reduce the problem to a result from [4]. A direct and elementary proof can also

be given. A U-automaton is a max-automaton that does not use the max operation, and
where the acceptance condition is a positive boolean combination of clauses “counter c is
unbounded”.

Let A be a max-automaton that we want to test for emptiness. As is often the case,
we will be searching not for an input word accepted by A, but for an accepting run of A
(which is also an infinite word). Fix a single clause in the accepting condition, e.g. “counter
c is unbounded”. Below, we will show that the set of runs which satisfy this clause can be
recognized by a nondeterministic U-automaton. In particular, the set of accepting runs of

2This is the question of calculating the least number of nested stars in a regular expression (without
negation) that defines a regular language L ⊆ Σ∗.
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A is a boolean combination of languages accepted by U-automata. The result then follows
from [4], where emptiness is shown decidable for boolean combinations of nondeterministic
U-automata3.

Before we define the U-automaton that tests if counter c is unbounded, we introduce
some auxiliary definitions. Let c, d be counters of the automaton A. Below we define what
it means for a finite sequence of counter operations ρ to transfer c to d, possibly with an
increment. (Formally, we are defining two ternary relations: T (ρ, c, d), for transfers, and
TI(ρ, c, d), for transfers with an increment.) The idea is that after executing the operations
ρ, the value of counter d is at least as big as the value of counter c before executing ρ. The
definition of transfers is by induction on the length of ρ:

• Every counter is transferred to itself by the empty sequence of operations, as well
as the operations c := c + 1 and output(c). Furthermore, c := c + 1 also transfers c

to itself with an increment.
• The operation c := 0 transfers every counter to itself, except c.
• The operation c = max(c, d) transfers every counter to itself, and also d to c.
• If a sequence of operations ρ1 transfers c to e, and a sequence of operations ρ2

transfers e to d, then their concatenation ρ1ρ2 transfers c to d. If either of the
transfers in ρ1 or ρ2 does an increment, then so does the transfer in ρ1ρ2.

Note that the transfer relation is regular in the following sense: for any counters c and d,
the set of words ρ that transfer counter c to d is a regular language of finite words, likewise
for transfers with an increment.

Let c be a counter. A finite sequence of positions x1 < · · · < xn in a run of A is
called a c-loop if for any i < n, counter c is transferred to itself with an increment by the
subrun between positions xi to xi+1. For a counter d, a d-trace is a sequence of positions
x1 < · · · < xn < y such that for some counter c, the positions x1 < · · · < xn are a c-loop,
and counter c is transferred to d by the subrun between positions xn and y.

Equipped with these definitions, we are ready to define a (nondeterministic) U-automaton
that tests if counter c is unbounded in an input run. The U-automaton has only one counter,
and it accepts if unbounded values are output to this counter. A run of this automaton
(which inputs a run of the automaton A) proceeds as follows. It uses nondeterminism to
guess a d-trace x1 < · · · < xn < y, and it increments its counter at each of the positions xi.
Once it sees position y, it outputs the counter value (which is n), and resets the counter.
It then finds another d-trace, and again outputs its length, and so on. It is not difficult to
verify the correctness of this construction.

In this paper, we will be mainly interested in deterministic max-automata.

3. The logic

We consider an extension of weak monadic second-order logic, called weak unbounding

logic. Recall that weak monadic second-order logic is an extension of first-order logic that
allows quantification over finite sets (the restriction to finite sets is the reason for the name
“weak”). In weak unbounding logic, we further add the unbounding quantifier UX, as
defined in (1.2).

3The result in [4] is for S-automata, which are more powerful than U-automata. It is shown that a boolean
combination of S-automata is equivalent to a BS-automaton, which has decidable emptiness.
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Example 3.1. Consider the set L from (1.1). This language is not regular, but defined by
the following formula of weak unbounding logic:

UX ∀x ≤ y ≤ z x, z ∈ X ⇒ a(y) ∧ y ∈ X

The main result of this paper is that the logic and automata coincide, i.e.

Theorem 3.2. Weak unbounding logic defines exactly the same languages as deterministic

max-automata.

The more difficult direction in Theorem 3.2 is presented in Section 4. The easier direc-
tion, where an automaton is simulated by the logic, can be shown by combining standard
techniques with the concepts from the proof of Theorem 2.1. The key idea is that a formula
of weak unbounding logic can test if a set of positions {x1 < · · · < xn < y} forms a d-trace.
It is important that the automata are deterministic, which allows a formula of weak logic
to uniquely decode the run that corresponds to the input word.

The formulas that are sufficient to simulate a deterministic max-automaton are of a
special type, which gives a normal form for weak unbounding logic:

Proposition 3.3. Each formula of weak unbounding logic is equivalent to a boolean com-

bination of formulas UXϕ(X), where ϕ(X) does not use the unbounding quantifier.

Proof. By translating a formula into an automaton and then back into a formula.

4. Weak bounding logic is captured by deterministic max-automata

We now turn to the more difficult part of Theorem 3.2, namely showing that for every
formula of weak unbounding logic there is an equivalent deterministic max-automaton.

The proof is by induction on the size of the formula. To simplify the proof, we use
the usual technique of removing first-order quantification, as in [13]. That is, first-order
quantification is replaced by three new predicates, all of which can be recognized by the
deterministic max-automata: “set X has one element”, “set X is included in set Y ” and
“all elements of set X are before all elements of set Y ”. Together with weak second-order
quantification, these new three predicates can be used to simulate first-order quantification,
so the logic is the same. However, since we have removed first-order quantification, in the
translation to automata we only have to deal with quantification over finite sets (weak
second-order quantification) and the new quantifier.

For purposes of the induction, we generalize the statement to formulas with free vari-
ables. What is the word language corresponding to a formula ϕ(X1, . . . ,Xn)? This language
contains words annotated with valuations for the free set variables. We use the usual en-
coding, where the label of a word position x ∈ N is extended with a bit vector in {0, 1}n

that says which of the sets X1, . . . ,Xn contain position x. More formally, for sets of word
positions X1, . . . ,Xn ⊆ N and an infinite word w ∈ Σω, we define the word

w[X1, . . . ,Xn] ∈ (Σ× {0, 1}n)ω

as follows. On position x, the new word has a tuple (a, b1, . . . , bn), with a the label of the
x-th position of the original word w, and the value of bit bi being 1 if and only if position
x belongs to the set Xi, for i = 1, . . . , n. With this notation, we can define the set of words
satisfying a formula ϕ(X1, . . . ,Xn) to be

Lϕ = {w[X1, . . . ,Xn] : w,X1, . . . ,Xn |= ϕ} .
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Equipped with the above definition, we can use induction to show that the logic is
captured by automata, as stated in the proposition below. This result is the main ingredient
in the proof of Theorem 3.2.

Proposition 4.1. For every formula ϕ of weak unbounding logic, the set Lϕ is recognized

by a deterministic max-automaton.

The proof is by induction on the size of the formula ϕ. The induction base, which
corresponds to the predicates “set X has one element”, “set X is included in set Y ” and
“all elements of set X are before all elements of set Y ” is easy, since all of these are ω-regular
languages, and we have:

Lemma 4.2. Deterministic max-automata capture all ω-regular languages.

Proof. By simulating a deterministic automaton with the Muller or parity condition. We
add a new counter cq for each state q of the automaton. Each time state q appears, counter
cq is incremented and output. The counters are never reset. In a run of this automaton, a
state appears infinitely often if and only if its counter is unbounded. Therefore, the Muller
acceptance condition can be encoded in the unbounding condition of a max-automaton.

The induction step for boolean operations—including negation—is no more difficult,
since the automata are deterministic and the accepting condition is closed under boolean
operations. We are left with weak second-order quantification and the unbounding quanti-
fier. We first deal with weak quantification, in Section 4.1, while the unbounded quantifier
is treated in Section 4.2.

4.1. Weak existential quantification

This section is devoted to showing:

Proposition 4.3. Languages recognized by deterministic max-automata are closed under

weak quantification. In other words, if L is a language over Σ × {0, 1} recognized by a

deterministic max-automaton, then there is a deterministic max-automaton recognizing

{w ∈ Σω : w[X] ∈ L for some finite set X} .

A convenient way to prove this result would be to use nondeterministic automata.
Unfortunately, as we will later show, adding nondeterminism to max-automata gives power
beyond that of weak unbounding logic, so we cannot use this strategy. We will have to do
the existential quantification directly in the deterministic automata.

The proof technique is actually very generic. It would work for any model of determin-
istic automata that all ω-regular languages and satisfies some relaxed assumptions, mainly
that the acceptance condition is prefix-independent.

Fix a deterministic max-automaton A that recognizes L, with state space Q.
A partial run in an infinite word w is a run that begins in any position of the word

(not necessarily the first position) and in any state (not necessarily the initial one). In
other words, this is a word in ⊥∗δω ∪ ⊥ω, where δ is the set of transitions of A, that is
consistent with the word w on those positions where it is defined (i.e. where it is not ⊥).
Since the automaton is deterministic, a partial run is uniquely specified by giving the first
configuration where it is defined, this is called the seed configuration. (There is also the
undefined partial run ⊥ω, which has no seed configuration.) Here, a configuration is a pair
(q, x), where q is a state and x is a word position. Note that we do not include the counter
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values in the seed configuration, since the acceptance condition is not sensitive to finite
perturbations.

We say that two partial runs converge if they agree from some position on. Equivalently,
they converge if they share some configuration, or both are undefined. We say a set of
partial runs spans a word w if every partial run over w converges with some run from the
set. Usually, we will be interested in finite sets of spanning runs.

Lemma 4.4. For every word w, there is a set of at most |Q| spanning runs.

Proof. We begin with some arbitrary configuration, and take the partial run ρ1 that begins
in that configuration. If {ρ1} is spanning, then we are done. Otherwise, we take some
partial run ρ2 that does not converge with ρ1, and see if the set {ρ1, ρ2} is spanning. If it
is not, we add a third partial run ρ3, and so on. This process terminates after at most Q

steps, because if two partial runs do not converge, then they must use different states on
each position where they are both defined. So |Q| partial runs that do not converge will
use up all the states.

To prove Proposition 4.3, we use a result stronger than Lemma 4.4. We will show that
not only the spanning set of runs exists, but it can also be computed by a (deterministic,
letter-to-letter) transducer. By transducer we mean a finite deterministic automaton where
each transition is equipped with an output letter, from an output alphabet Γ. Therefore,
the transducer defines a function f : Σω → Γω. The transducer does not have any accepting
conditions (using bounds or even parity or Muller), it just scans the word and produces its
output. It is easy to see that deterministic max-automata are closed under preimages of
transducers, as shown in the following lemma.

Lemma 4.5. If f is a transducer and A is a deterministic max-automaton, then there is

a deterministic max-automaton recognizing the set of words w such that f(w) is accepted

by A.

We now describe how the spanning partial runs will be encoded in the output of the
transducer. When speaking of spanning partial runs, we mean spanning partial runs of the
automaton A in Proposition 4.3. A single partial run can be encoded as an infinite word
over the alphabet Q× {0, 1}. The idea is that {0, 1} is used as a marker, with 0 meaning
“ignore the prefix until this position”, and 1 meaning “do not ignore”. Formally, an infinite
word

(q1, a1)(q2, a2), . . . ∈ (Q× {0, 1})ω

is interpreted as the partial run which on position i has ⊥ if aj = 0 for some j ≥ i, otherwise
it has qi. Note that if the word above has infinitely many positions j with aj = 0, then the
partial run is nowhere defined, i.e. it is ⊥∞. If we want to encode n partial runs, we use n

parallel word sequences, encoded as a single sequence over the product alphabet

(Q× {0, 1})n .

With the encoding of spanning runs defined, we are now ready to present the stronger
version of Lemma 4.4.

Lemma 4.6. Let n = |Q|. There is a transducer

f : Σω → ((Q× {0, 1})n)ω

such that for any word w, the output f(w) encodes n spanning partial runs.
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Proof. The idea is to implement the proof of Lemma 4.4 in a transducer. The states of the
transducer will be permutations of the state space, i.e. tuples from Qn where each state
appears exactly once. The initial state is any arbitrarily chosen permutation. When reading
an input letter a in state π = (q1, . . . , qn), the transducer does the following operations.
First, it transforms each state in π according to the letter a, giving a tuple x = (q1a, . . . , qna).
This tuple is not necessarily a permutation, i.e. there are may be some coordinates i ∈
{1, . . . , n} such that the state qia appears already in {q1a, . . . , qi−1a}. Let I = {i1, . . . , ik}
be these coordinates, and let {p1, . . . , pm} be the states that do not appear in the new tuple
x. These two sets have the same size, i.e. k = m. We can now correct x to be a permutation
σ, by replacing its coordinate i1 with the state p1, the coordinate i2 with state p2, and so
on. Note that on a the coordinates from I, the new permutation σ has a value unrelated
to the one from π (i.e. σ begins a new run), while on coordinates from outside I, the new
permutation σ simply continues the runs from π. This is signified in the output of the
transducer, which is decorates each coordinate i of the permutation σ with a bit, which is
0 when i ∈ I and 1 otherwise.

We are now ready to prove Proposition 4.3. By properties of spanning sets of runs,
a word w ∈ Σω belongs to the language of the proposition if and only if there is some
i = 1, . . . , n such that the following two properties hold:

(A) The i-th run encoded by f(w) is defined (i.e. the encoding does not contain infinitely
many cancelling 0s) and satisfies the accepting condition in the automaton A.

(B) There is some finite set X ⊆ N such that the run of A over w[X] converges with the
i-th run encoded by f(w).

Since deterministic max-automata are closed under union, it suffices to show that for each
fixed i, both properties (A) and (B) are recognized by deterministic max-automata. For
property (A), we use Lemma 4.5 on preimages. Property (B), on the other hand, is an
ω-regular property, which can be recognized by a deterministic max-automaton thanks to
Lemma 4.2.

4.2. Unbounding quantification

We now turn to the more difficult part of Proposition 4.1, namely that deterministic
max-automata are closed under unbounding quantification.

Proposition 4.7. Languages recognized by deterministic max-automata are closed under

unbounding quantification. In other words, if L is a language over Σ× {0, 1} recognized by

a deterministic max-automaton, then so is

UL = {w ∈ Σω : w[X] ∈ L for arbitrarily large finite sets X} .

Fix a deterministic max-automaton A recognizing the language L in the proposition.
Given a finite prefix w ∈ Σ∗ and a state q of A, let max(q, w) be the maximal size of a set X

of positions in w such that the automaton A reaches state q after reading w[X]. We claim
that the sets max(q, w) can be computed in the counters of a deterministic max-automaton
(not surprisingly, using the max operation).

Lemma 4.8. There is a deterministic max-automaton with counters {cq}q∈Q such that the

value of cq after reading a prefix a1 · · · an of the input is exactly max(q, a1 · · · an).
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We will use the values from the above lemma to capture the unbounding quantifier.
However, some more effort is needed: it is not the case that an input word w = a1a2 · · ·
belongs to UL if and only if the values max(q, a1 · · · an) are unbounded. In general, only
the left to right implication holds. The right to left implication may fail since a value
max(q, a1 · · · an) is relevant only if the run of A over w that begins in configuration (q, n)
can be extended to an accepting one over the rest of the word. The correct characterization
is given below:

Lemma 4.9. A word a1a2 · · · ∈ Σω belongs to UL if and only if for some state q, the

following values are unbounded

{max(q, a1 · · · an) : an+1an+2 · · · [∅] ∈ (Σ× {0, 1})ω is accepted by A when starting in q}

As suggested by the above lemma, to recognize the language UL it would be conve-
nient to have an extension of max-automata, where the automaton would have the abil-
ity to output max(q, a1 · · · an) only in case a certain property was satisfied by the suffix
an+1an+2 · · · . Below, we introduce such an extension of max-automata, which we call a
guarded max-automaton. We then show that this extension can be simulated by a standard
max-automaton, thus completing the proof of Proposition 4.7.

An guarded max-automaton is like a max-automaton, except that it is also allowed to
use the following counter operation:

if L then output(c). Output the value of counter c, but only if the suffix of the
input beginning at the next position belongs to L ⊆ Σω .

In the above operation, the language L—called the guard of the transition—must be a
language recognized by a max-automaton (without guards, although allowing guards would
give the same result). This new operation is all we need to recognize the language UL:

Lemma 4.10. If a language L is recognized by a deterministic max-automaton, then UL

is recognized by a deterministic guarded max-automaton.

We will show that guarded outputs are redundant, and can be simulated by non-guarded
outputs. This completes the proof Proposition 4.7. The difficulty in the proof below is that
we are dealing with deterministic automata, while a guard looks to the future.

Proposition 4.11. For every deterministic guarded max-automaton there is an equivalent

deterministic max-automaton.

Proof. Let A be a deterministic guarded max-automaton. To simplify notation, we assume
that only one guarded operation,

o = if L then output(c) ,

is used. The general case is done the same way. Let B be a deterministic max-automaton
recognizing the guard language L.

In the construction, we will use a concept of thread. A thread consists of a state of
the automaton B, as well as a number, which corresponds to the value of counter c output
by the guarded operation o. Note that a thread does not contain information about values
of the counters of automaton B. The idea is that threads will be alive for only finitely
many steps, so the counters of B are not relevant. We will denote threads by τ . If a ∈ Σ
is an input letter, then we write τa for the thread obtained from τ by updating the state
according to a (and leaving the number unchanged).
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The (non-guarded) max-automaton C that simulates A works as follows. At each point,
the simulating automaton contains a finite set {τ1, . . . , τi} of active threads. There will be
at most one thread per state of B, so the set of threads can be stored using finitely many
counters and the finite memory of the automaton. This set of active threads is initially
empty. Whenever A does the guarded output operation o, a new active thread is created,
with the initial state of B, and the number set to the value of counter c. Furthermore, after
reading an input letter a ∈ Σ, the set of active threads is updated to {τ1a, . . . , τia}. If two
active threads have the same state, then they are merged, and only the greater number is
kept (using the max operation).

Similarly to the proof of Proposition 4.3, the automaton C will also read the output of a
transducer f that computes spanning partial runs of the automaton B used for the guards.
Recall that the transducer f outputs n spanning partial runs of the automaton B, where n

is the number of states in B.
The automaton C accepts a word w if and only if there is some i = 1, . . . , n such that:

(A) The i-th run encoded by f(w) is defined (i.e. the encoding does not contain infinitely
many cancelling 0s) and satisfies the accepting condition in the automaton B.

(B) For every m, some thread storing a number greater than m converges with i-th run
encoded by f(w).

Since deterministic max-automata are closed under finite union, we only need to show
the construction for some fixed i. As in the previous section, property (A) is recognized by
a deterministic max-automaton. For property (B), it suffices to output the number stored
in a thread τ whenever its state is the same as in ρi. The automaton then accepts if the
numbers thus produced are unbounded.

5. Problems with nondeterminism

In this section we show that nondeterministic max-automata are more expressive than
deterministic ones.

Theorem 5.1. Nondeterministic max-automata recognize strictly more languages than de-

terministic ones.

Contrast this result with the situation for Muller or parity automata, which are equally
expressive in the deterministic and nondeterministic variants. Since full monadic second-
order can capture nondeterministic automata by existentially quantifying over infinite sets,
the above theorem immediately implies:

Corollary 5.2. Full monadic second-order logic with the unbounding quantifier is stronger

than weak monadic second-order with the unbounding quantifier.

The separating language in Theorem 5.1 is

L = {an1ban2ban3b . . . : some number appears infinitely often in n1, n2, . . .} . (5.1)

This language is captured by a nondeterministic max-automaton. The automaton uses
nondeterminism to output a subsequence of n1, n2, . . . and accepts if this subsequence is
bounded. Clearly, if it is bounded, then it contains an infinite constant subsequence.

It remains to show that the language L cannot be recognized by a deterministic max-
automaton. For this, we will use topological complexity. In Lemmas 5.3 and 5.4, we
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will show that every language recognized by a deterministic max-automaton is a boolean
combination of sets on level Σ2 in the Borel hierarchy, while the language L is not.

Below we briefly describe the Borel hierarchy, a way of measuring the complexity of
a subset of a topological space. The topology that we use on words is that of the Cantor
space, as described below. A set of infinite words (over a given alphabet Σ) is called open

if it is a union
⋃

i∈I

wiΣ
ω wi ∈ Σ∗ ,

with the index set I being possibly infinite. In other words, membership of a word w in
an open set is assured already by a finite prefix of w. For the Borel hierarchy, as far as
max-automata are concerned, we will only be interested in the first two levels Σ1,Π1,Σ2,Π2.
The open subsets are called Σ1, the complements of these (the closed subsets) are called Π1.
Countable intersections of open subsets are called Π2, the complements of these (countable
unions of closed subsets) are called Σ2.

Lemma 5.3. Any language accepted by a deterministic max-automaton is a boolean com-

bination of Σ2 sets.

Proof. Fix a max-automaton A, and a counter c of this automaton. We will examine the
topological complexity of the set of runs of this automaton (here, a run is an infinite sequence
of transitions). For any fixed n, the following set of runs is clearly open:

A value of at least n is output at least once on counter c.

In particular, its complement

All values of counter c are at most n.

is a closed set of runs. By taking a countable union of the above over n ∈ N, we deduce
that the property

The values of counter c are bounded.

is a Σ2 property. In particular, the set of accepting runs of any max-automaton is a boolean
combination of Σ2 sets. Since the automata are deterministic, the function that maps an
input word to its run is continuous, i.e. preimages of open sets are also open. Since preimages
of continuous functions preserve the levels of the hierarchy, we conclude that any language
accepted by a deterministic max-automaton is a boolean combination of Σ2 sets.

Lemma 5.4. The language L is not a boolean combination of Σ2 sets.

Proof. Consider the mapping from N
∗ to {a, b}∗ω defined by

n1, n2, . . . . . . 7→ an1ban2ban3b . . .

This is a continuous mapping. The language L is the image, under this mapping, of the set
X of sequences in N

ω that have a bounded subsequence. The set X is known not to be a
boolean combination of Σ2 sets, see Excercise 23.2 in [9].
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6. Conclusion

This paper is intended as a proof of concept. The concept is that ω-regular languages
can be extended in various ways, while still preserving good closure properties and decid-
ability. The class presented in this paper, max-regular languages, is closed under boolean
operations, inverse morphisms, and quotients. It is not closed under morphic images (which
corresponds to nondeterminism on the automaton side).

Some questions on max-automata are left unresolved. Is the max operation necessary
in the automaton? In our construction, we use the max twice: when defining the values
max(q, a1 · · · an), and in Proposition 4.11. While in the first case, the max operation can
be avoided by a subtle use of factorization forests [12], it is not clear how to show Propo-
sition 4.11 without using the max operation. Another question is the exact complexity of
emptiness. It would be nice to get matching upper and lower bounds, even more so if the
lower bound would use acceptance conditions in DNF.

There are several other possibilities of future work. One is to investigate weak bounding
logic for infinite trees (note that we will not capture all regular languages of infinite trees
in this case). Another possibility would be to investigate full monadic-second order logic,
or possibly other quantifiers that can be added to weak monadic second-order logics. The
techniques used in this paper are fairly generic, so it seems plausible that such quantifiers
can be found.
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Abstract. We present the first polynomial-time approximation schemes (PTASes) for
the following subset-connectivity problems in edge-weighted graphs of bounded genus:
Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run
in O(n log n) time for graphs embedded on both orientable and non-orientable surfaces.
This work generalizes the PTAS frameworks of Borradaile, Klein, and Mathieu [BMK07,
Kle06] from planar graphs to bounded-genus graphs: any future problems shown to admit
the required structure theorem for planar graphs will similarly extend to bounded-genus
graphs.

1. Introduction

In many practical scenarios of network design, input graphs have a natural drawing on
the sphere or equivalently the plane. In most cases, these embeddings have few crossings,
either to avoid digging multiple levels of tunnels for fiber or cable or to avoid building
overpasses in road networks. But a few crossings are common, and can easily come in
bunches where one tunnel or overpass might carry several links or roads. Thus we naturally
arrive at graphs of small (bounded) genus, which is the topic of this paper.

We develop a PTAS framework for subset-connectivity problems on edge-weighted
graphs of bounded genus. In general, we are given a subset of the nodes, called termi-
nals, and the goal is to connect the terminals together with some substructure of the graph
by using cost within 1+ε of the minimum possible cost. Our framework applies to three well-
studied problems in this framework. In Steiner tree, the substructure must be connected,
and thus forms a tree. In subset TSP (Traveling Salesman Problem), the substructure
must be a cycle; to guarantee existence, the cycle may traverse vertices and edges multiple
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Steiner tree, survivable-network design, subset TSP.
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times, but pays for each traversal. In {0, 1, 2}-edge-connectivity survivable network design,
the substructure must have min{cx, cy} edge-disjoint paths connecting terminals x and y,
where each cx ∈ {0, 1, 2}; we allow the substructure to include multiple copies of an edge
in the graph, but pay for each copy. In particular, if cx = 1 for all terminals x and y, then
we obtain the Steiner tree problem; if cx = 2 for all terminals x and y, then we obtain the
minimum-cost 2-edge-connected submultigraph problem.

Our framework yields the first PTAS for all of these problems in bounded-genus graphs.
These PTASs are efficient, running in O(f(ε, g)n + h(g)n log n) time for graphs embedded
on orientable surfaces and non-orientable surfaces. (We usually omit the mention of f(ε, g)
and h(g) by assuming ε and g are constant, but we later bound f(ε, g) as singly exponential
in a polynomial in 1/ε and g and h(g) as singly exponential in g.) In contrast, the problems
we consider are APX-complete (and O(1)-approximable) for general graphs.

We build upon recent PTAS framework of Borradaile, Klein, and Mathieu [BMK07] for
subset-connectivity problems on planar graphs. In fact, our result is strictly more general:
any problem to which the previous planar-graph framework applies automatically works
in our framework as well, resulting in a PTAS for bounded-genus graphs. For example,
Borradaile, Klein and Pritchard [BKP] have recently claimed a PTAS for the {0, 1, . . . , k}-
edge-connectivity survivable network design problem using the planar framework. This will
imply a similar result in bounded genus graphs. In contrast to the planar-graph framework,
our PTASes have the attractive feature that they run correctly on all graphs with the
performance degrading with genus.

Our techniques for attacking bounded-genus graphs include two recent results from
SODA 2007: decompositions into bounded-treewidth graphs via contractions [DHM07] and
fast algorithms for finding the shortest noncontractible cycle [CC07]. We also use a simpli-
fied version of an algorithm for finding a short sequence of loops on a topological surface
from SODA 2005 [EW05], and sophisticated dynamic programming.

2. Basics

All graphs G = (V,E) have n vertices, m edges and are undirected with edge lengths
(weights). The length of an edge e, subgraph H, and set of subgraphs H are denoted ℓ(e),
ℓ(H) and ℓ(H), respectively. The shortest distance between vertices x and y in graph G is
denoted distG(x, y). The boundary of a graph G embedded in the plane is denoted by ∂G.
For an edge e = uv, we define the operation of contracting e as identifying u and v and
removing all loops and duplicate edges.

We use the basic terminology for embeddings as outlined in [MT01]. In this paper, an
embedding refers to a 2-cell embedding, i.e. a drawing of the vertices and faces of the graph
as points and arcs on a surface such that every face is homeomorphic to an open disc. Such
an embedding can be described purely combinatorially by specifying a rotation system, for
the cyclic ordering of edges around vertices of the graph, and a signature for each edge of
the graph; we use this notion of a combinatorial embedding. A combinatorial embedding
of a graph G naturally induces such a 2-cell embedding on each subgraph of G. We only
consider compact surfaces without boundary. When we refer to a planar embedding, we
actually mean an embedding in the 2-sphere. If a surface contains a subset homeomorphic
to a Möbius strip, it is non-orientable; otherwise it is orientable. For a 2-cell embedded
graph G with f facial walks, the number g = 2 + m − n − f is called the Euler genus of
the surface. The Euler genus is equal to twice the usual genus for orientable surfaces and
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equals the usual genus for non-orientable surfaces. The dual of an embedded graph G is
defined as having the set of faces of G as its vertex set and having an edge between two
vertices if the corresponding faces of G are adjacent. We denote the dual graph by G⋆ and
identify each edge of G with its corresponding edge in G⋆. A cycle of an embedded graph is
contractible if it can be continuously deformed to a point; otherwise it is non-contractible.
The operation of cutting along a 2-sided cycle C is essentially: partition the edges adjacent
to C into left and right edges and replace C with two copies Cℓ and Cr, adjacent to the
left or right edges, accordingly. The inside of these new cycles is “patched” with two new
faces. If the resulting graph is disconnected, the cycle is called separating, otherwise non-
separating. Cutting along a 1-sided cycle C on non-orientable surfaces is defined similarly,
only that C is replaced by one bigger cycle C ′ that contains every edge of C exactly twice.

Next we define the notions related to treewidth as introduced by Robertson and Sey-
mour [RS86]. A tree decomposition of a graph G is a pair (T, χ), where T = (I, F ) is a tree
and χ = {χi|i ∈ I} is family of subsets of V (G), called bags, such that

(1) every vertex of G appears in some bag of χ;
(2) for every edge e = uv of G, there exists a bag that contains both u and v;
(3) for every vertex v of G, the set of bags that contain v form a connected subtree Tv

of T .

The width of a tree decomposition is the maximum size of a bag in χ minus 1. The treewidth
of a graph G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

The input graph is G0 = (V0, E0) and has genus g0; the terminal set is Q. We assume
G0 is equipped with a combinatorial embedding; such an embedding can be found in linear
time, if the genus is known to be fixed, see [Moh99]. Let P be the considered subset-
connectivity problem. In Section 5.1, we show how to find a subgraph G = (V,E) of G0,
so that for 0 ≤ ε ≤ 1 any (1 + ε)-approximate solution of P in G0 also exists in G. Hence,
we may use G instead of G0 in the rest of the paper. Note that as a subgraph of G0, G is
automatically equipped with a combinatorial embedding.

Let OPT denote the length of an optimal Steiner tree spanning terminals Q. We define
OPTP to be the length of an optimal solution to problem P. For the problems that we solve,
we require that OPTP = Θ(OPT) and in particular that OPT ≤ OPTP ≤ ξ OPT. The
constant ξ will be used in Section 5 and is equal to 2 for both the subset TSP and {0, 1, 2}-
edge-connectivity problems. This requirement is also needed for the planar case; see [BK08].
Because OPTP ≥ OPT, upper bounds in terms of OPT hold for all the problems herein.
As a result, we can safely drop the P subscript throughout the paper.

We show how to obtain a (1 + cε)OPTP solution for a fixed constant c. To obtain a
(1 + ε)OPTP solution, we can simply use ε′ = ε/c as input to the algorithm.

3. Structure Theorem

In [BMK07] and [BMK07b], Borradaile, Klein and Mathieu developed a PTAS for the
Steiner tree problem in planar graphs. The method involves finding a grid-like subgraph
called the mortar graph that spans the input terminals and has length O(OPT). The set of
feasible Steiner trees is restricted to those that cross between adjacent faces of the mortar
graph only at a small number (per face of the mortar graph) of pre-designated vertices called
portals. A Structure Theorem guarantees the existence of a nearly optimal solution (one
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(a) (b) (c) (d)

Figure 1: (a) An input graph G with mortar graph MG given by bold edges. (c) The set
of bricks corresponding to MG (d) A portal-connected graph, B+(MG, θ). The
portal edges are grey. (e) B+(MG, θ) with the bricks contracted, resulting in
B÷(MG, θ). The dark vertices are brick vertices.

that has length at most (1 + ε)OPT) in this set. We review the details that are relevant to
this work and generalize to genus-g graphs.

3.1. Mortar Graph

Here we define the mortar graph in such a way that generalizes to higher genus graphs.
A path P in a graph G is t-short in G if for every pair of vertices x and y on P , the
distance from x to y along P is at most (1 + t) times the distance from x to y in G:
distP (x, y) ≤ (1 + t)distG(x, y). Given a graph G embedded on a surface and a set of
terminals Q, a mortar graph is a subgraph of G with the following properties (where κ, to
be defined later, will depend polynomially on ε−1 and g):

Definition 3.1 (Mortar Graph and Bricks). Given an embedded graph G and a set of
terminals Q, a mortar graph is a subgraph MG of G spanning Q such that each facial walk
of MG encloses an area homeomorphic to an open disk. For each face of MG, we construct
a brick B of G by cutting G along the facial walk. B is the subgraph of G embedded inside
the face, including the facial walk. Each brick satisfies the following properties:

(1) B is planar.
(2) The boundary of B is the union of four paths in the clockwise order W , N , E, S.
(3) Every terminal of Q that is in B is on N or on S.
(4) N is 0-short in B, and every proper subpath of S is ε-short in B.
(5) There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from left to right

along S such that, for any vertex x of S[si, si+1), the distance from x to si along S
is less than ε times the distance from x to N in B: distS(x, si) < εdistB(x,N).

The mortar graph and the set of bricks are illustrated in Figures 1 (a), (b) and (c).
Constructing the mortar graph for planar graphs first involves finding a 2-approximate
Steiner tree T and cutting open the graph along T creating a new face with boundary H
and then:

(1) Finding shortest paths between certain vertices of H. These paths result in the N
and S boundaries of the bricks.

(2) Finding shortest paths between vertices of the paths found in Step 1. These paths
are called columns, do not cross each other, and have a natural order.

(3) Taking every κth path found in Step 2. These paths are called supercolumns and
form the E and W boundaries of the bricks.
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The mortar graph is composed of the edges of T (equivalently, H) and the edges found
in Steps 1 and 3. In [BMK07], it is shown that the total length of the mortar graph edges
is 9ε−1 OPT1. For the purposes of this paper, we bound the length of the mortar graph in
terms of ℓ(H). The following theorem can be easily deduced from [Kle06] and [BMK07]:

Theorem 3.2. [Kle06, BMK07] Given a planar graph with boundary H containing the
terminals and a number κ, there is a mortar graph containing H whose length is at most
(ε−1+1)2ℓ(H) and whose supercolumns have length at most 1

κε−1(ε−1+1)ℓ(H). The mortar
graph can be found in O(n log n) time.

We will use this theorem to prove the existence of a mortar graph for genus-g embedded
graphs. Section 5 is devoted to proving the following theorem:

Theorem 3.3. Let G be an embedded graph with fixed genus g. Let Q be a subset of vertices.
For γ = 2(8ξg + 2)(ε−1 + 1)2 and κ = γ/ε, there is a mortar graph MG of G such that the
length of MG is ≤ γ OPT and the supercolumns of MG have length ≤ εOPT. The mortar
graph can be found in O(n log n) time.

3.2. Structural properties

Along with the mortar graph, Borradaile et al. [BMK07b] define an operation B+ called
brick-copy that allows a succinct statement of the Structure Theorem. For each brick B,
a subset of θ vertices are selected as portals such that the distance along ∂B between any
vertex and the closest portal is at most ℓ(∂B)/θ. For every brick B, embed B in the
corresponding face of MG and connect every portal of B to the corresponding vertex of
MG with a zero-length portal edge: this defines B+(MG, θ). B+(MG, θ) is illustrated in
Figure 1 (d). We denote the set of all portal edges by {portal edges}. The following simple
lemma, proved in [BMK07b] holds also for bounded-genus graphs:

Lemma 3.4. [BMK07b] If A is a connected subgraph of B+(MG, θ), then A\{portal edges}
is a connected subgraph of G spanning the same nodes of G.

The following Structure Theorem is the heart of the correctness of the PTASs.

Theorem 3.5 (Structure Theorem). Let G be an embedded graph of genus g. There exists
a constant θ(γ, α) depending polynomially on γ and α such that

OPT(B+(MG, θ), Q) ≤ (1 + cε)OPT(G,Q).

Here α = o(ε−2.5κ) for Steiner tree and {0, 1, 2}-edge connectivity and α = O(κ) for subset
TSP. Recall that κ and γ depend polynomially on ε−1 and g (Theorem 3.3).

Since the bricks are always planar, the proof for bounded-genus graphs follows as for
the planar cases: see [BMK07b] for the Steiner tree problem and [BK08] for the {0, 1, 2}-
edge-connectivity problem. In the remainder of this section, we sketch the proof for the
subset-TSP problem.

We will use the following lemma due to Arora:

Lemma 3.6 (Patching Lemma [Aro03]). Let S be any line segment of length s and π be a
closed path that crosses S at least thrice. Then we can break the path in all but two of these
places and add to it line segments lying on S of total length at most 3s such that π changes
into a closed path π′ that crosses S at most twice.

1Actually, they claim that the length is 5ε
−1 OPT. The correction is forthcoming in a journal version.
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This lemma applies to embedded graphs as well. Note: the patching process connects
paths in the tour that end on a common side of S by a subpath of S.

Let H be a subgraph of a graph G and let P be a path in H. A joining vertex of H with
P is a vertex of P that is the endpoint of an edge of H \ P . The proof of Theorem 3.2 for
subset-TSP follows from the following TSP Property of Bricks using the same technique as
the planar case for, e.g., Steiner tree. See [BMK07b] for details. The condition that E and
W are crossed at most twice each is achieved by including two copies of each supercolumn
in the solution and rerouting the tour around these copies.

Theorem 3.7 (TSP Property of Bricks). Let B be a brick of graph G with boundary
N ∪ E ∪ S ∪ W (where E and W are supercolumns). Let T be a tour in G such that T
crosses E and W at most 2 times each. Let H be the intersection of T with B. Then there
is another subgraph of B, H ′, such that:

(T1) H ′ has at most α(ε) joining vertices with ∂B.
(T2) ℓ(H ′) ≤ (1 + 3ε)ℓ(H).
(T3) There is a tour in the edge set T \H ∪H ′ that spans the vertices in ∂B ∩ T .

In the above, α(ε) = O(κ).

Proof. Let H be the subgraph of T that is strictly enclosed by B (i.e., H contains no edges of
∂B). We can write H as the union of 4 sets of minimal ∂B-to-∂B paths PS∪PN∪PEW∪PNS

where paths in: PS start and end on S; PN start and end on N ; PEW start on E or W and
end on ∂B; PNS start on S and end on N .

Because T crosses E and W at most 4 times, |PEW | ≤ 4 and PEW results in at most

8 joining vertices with ∂B. For each path P ∈ PN , let P̂ ′ be the minimal subpath of N

that spans P ’s endpoints and let P̂N be the resulting set. Similarly define P̂S . Because N
is 0-short and S is ε-short,

ℓ(P̂N ) + ℓ(P̂S) ≤ ℓ(PN ) + (1 + ε)ℓ(PS). (3.1)

Because P̂N and P̂S are subpaths of ∂B, they result in no joining vertices with ∂B.
It remains to deal with the paths in PNS .
Let s0, s1, s2, . . . , sk (where k ≤ κ) be the vertices of S guaranteed by the properties of

the bricks (see Section 3.1). Let Xi be the subset of paths of PNS that start on S strictly
between si and si+1. Let X be the remaining paths (note: |X | ≤ κ + 1).

If |Xi| > 2, we do the following: Let Pi be the path in Xi whose endpoint x on S is
closest to si+1. Let Qi be the subpath of S from si to x. By the properties of the bricks,
ℓ(Qi) ≤ εℓ(Pi). Apply the Patching Lemma to the tour T and path Qi: as a result, at
most two paths of Xi occur right before (or after) crossings of Q in the new tour T ′. Let
X ′

i whose endpoints are not crossings in T ′: |X ′
i | ≤ |Xi| − 2. Let Qi be the subpaths of Qi

that are added to the tour. By the Patching Lemma,

ℓ(Qi) ≤ 3ℓ(Qi) ≤ 3εℓ(Pi). (3.2)

While |X ′
i | ≥ 2, we do the following: Let P be any path in X ′

i . As a result of the
patching process P is connected to another path P ′ in Xi via a path Q′ ∈ Qi: that is,
P ∪ Q′ ∪ P ′ is a subpath of the tour. Let L be the minimal subpath of N connecting the
endpoints of P and P ′. Because N is 0-short, ℓ(L) ≤ ℓ(P )+ ℓ(Q′)+ ℓ(P ′). By the patching
process, the endpoints of P and P ′ on S are spanned by a part of the tour “on the other
side” of Qi. Remove Qi from Qi and add L. Remove P and P ′ from Xi. When we are
done, X ′

i is empty.
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Let Q̂i be the set resulting from all such replacements. Let P̂NS be the union of X ,

Xi \ X
′
i and Q̂i over all i. Because Q̂i is a set of subpaths of N and S, these paths result in

no joining vertices with ∂B. Because |Xi \ X
′
i | ≤ 2, these paths result in at most 4 joining

vertices with ∂B. Because |X | ≤ κ + 1, these paths have at most 2(κ + 1) joining vertices

with ∂B. Therefore P̂NS has at most 6(κ + 1) joining vertices with ∂B.
Because the only added length is introduced via the patching process, by Equation (3.2),

ℓ(P̂NS) ≤ ℓ(PNS) +
∑

i

3εℓ(Pi) ≤ (1 + 3ε)ℓ(PNS). (3.3)

Let H ′ be the union of the paths in PEW , P̂S , P̂N , and P̂NS . Combining Equations (3.1)
and (3.3), we find that ℓ(H ′) ≤ (1 + 3ε)ℓ(H). By construction, the edges in T \ H ∪ H ′

contains a tour. H ′ has 6(κ + 1) + 8 = 6κ + 14 joining vertices with ∂B.

4. Algorithm

In [Kle06], Klein gave a framework for designing PTASes in planar graphs that is based
on finding a spanner for a problem, a subgraph containing a nearly optimal solution having
length O(OPT). It is possible, using the techniques in this paper and in [DHM07], to find
such a spanner for bounded-genus graphs. We omit the details in favour of generalizing
the framework of Borradaile et al. [BMK07b]. While both methods result in O(n log n)
algorithms, the first method is doubly exponential in a polynomial in g and ε−1 and the
second is singly exponential.2

The idea in [BMK07b] is to perform dynamic programming over the bricks of the brick
decomposition after performing a thinning step which groups the bricks into manageable
groups. To this end, the operation brick-contraction B÷ is defined to be the application of
the operation B+ followed by contracting each brick to become a single vertex of degree at
most θ (see Figure 1(e)). The thinning algorithm decomposes the mortar graph MG into
parts, called parcels, of bounded dual radius (implying bounded treewidth). Applying B÷

to each parcel maintains bounded dual radius. The dynamic program computes optimal
Steiner trees inside the bricks using the method of [EMAFV87] only at the leaves of the
dynamic programming tree, thus eliminating the need of an a-priori constructed spanner.
The interaction between subproblems of the dynamic programming is restricted to the
portals, of which there are a few.

For embedded graphs with genus > 0, the concept of bounded dual radius does not apply
in the same way. We deal with treewidth directly by applying the following Contraction
Decomposition Theorem due to Demaine et al. [DHM07]:

Theorem 4.1. [DHM07, Theorem 1.1] For a fixed genus g, and any integer k ≥ 2 and
for every graph G of Euler genus at most g, the edges of G can be partitioned into k sets
such that contracting any one of the sets results in a graph of treewidth at most O(g2k).

Furthermore, such a partition can be found in O(g5/2n3/2 log n) time.

2For the subset-TSP problem, it is possible to obtain a singly exponential algorithm by following the
spanner construction of Klein [Kle06] after performing the planarizing step (Lemma 5.2). Our presentation
here is chosen to unify the methods for all problems studied.
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(Recent techniques [CC07] have improved the above running time to O(n log n).)
We apply the above theorem directly to B÷(MG) and contract a set of edges S⋆ in

B÷(MG). In B÷(MG), we modify the definition of contraction: after contracting an edge,
we do not delete parallel portal edges. Because portal edges connect the mortar graph
to the bricks, they are not parallel in the graph in which we find a solution via dynamic
programming. With this modified definition, we have the following algorithm:

Thinning(G,MG):

(1) Assign the weight ℓ(∂F ) to each portal edge e enclosed in a face F of MG.
(2) Apply the contraction decomposition of Theorem 4.1 to B÷(MG) with

k := 3θγε−1 to obtain edge sets S1, . . . , Sk; let S⋆ be the set of minimum weight.
(3) If S⋆ includes a portal edge e of a brick B enclosed in a face F of MG,

add ∂F to S⋆ and mark B as ignored.
(4) Let K :=B÷(MG)/S⋆ and (T, χ) be a tree decomposition of width O(g2k) of K.
(5) For each vertex b of K that represents an unignored contracted brick with portals

{p1, . . . , pθ}:
5.1. Replace every occurence of b in χ with {p1, . . . , pθ};
5.2. Add a bag {b, p1, . . . , pθ} to χ and connect it to a bag containing {p1, . . . , pθ}.

(6) Reset the weight of the portal edges back to zero.
(7) Return (T, χ) and S⋆.

Lemma 4.2. The algorithm Thinning(G,MG) returns a set of edges S⋆ and a tree de-
composition (T, χ) of B÷(MG), so that

(i) the treewidth of (T, χ) is at most ω where ω(ε−1, g) = O(g2kθ);
(ii) every brick is either marked as ignored or none of its portal edges are in S⋆;
(iii) ℓ(S⋆) ≤ εOPT;

Proof. We first verify that (T, χ) is indeed a tree decomposition. For a vertex v and a tree
decomposition (T ′, χ′), let T ′

v denote the subtree of T ′ that contains v in all of its bags.
Let us denote the tree decomposition of step (4) by (T 0, χ0). For each brick vertex b and
each of its portals pi, we know that T 0

b is connected and T 0
pi

is connected and that these
two subtrees intersect; it follows that after the replacement in step (5.2), we have that
Tpi

= T 0
b ∪T 0

pi
is a connected subtree of T and hence, (T, χ) is a correct tree decomposition.

Note that Theorem 4.1 guarantees a tree decomposition of width O(g2k) if any of S1, . . . , Sk

are contracted; and in step (3), we only add to the set of edges to be contracted. Hence,
the treewidth of (T 0, χ0) is indeed O(g2k) and with the construction in line (5.1), the size
of each bag will be multiplied by a factor of at most θ. This shows the correctness of claim
(i). The correctness of claim (ii) is immediate from the construction in line (3). It remains
to verify claim (iii).

Let L denote the weight of B÷(MG) after setting the weights of the portal edges
according to step (1) of the algorithm. We have that

L ≤ ℓ(MG) +
∑

F

ℓ(∂F )θ ≤ γ OPT +θ
∑

F

ℓ(∂F ) ≤ γ OPT+θ · 2γ OPT ≤ 3θγ OPT .

Hence, the weight of S⋆, as selected in step (2), is at most L/k ≤ 3θγ OPT
3θγε−1 ≤ εOPT. The

operation in step (3) does not add to the weight of S⋆: when the boundary of a face F is
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added to S⋆, its weight is subtracted again when resetting the weights of the portal edges
back to 0 in step (6).

If a brick is “ignored” by Thinning, the boundary of its enclosing mortar graph face is
completely added to S⋆. Because S⋆ can be added to the final solution, every potential
connection through that brick can be rerouted through S⋆ around the boundary of the
brick. The interior of the brick is not needed.

An almost standard dynamic programming algorithm for bounded-treewidth graphs
(cf. [AP89, KS90]) can be applied to K and (T, χ). However, for the leaves of the tree
decomposition that are added in step (5.2) of the Thinning procedure, the cost of a subset
of portal edges is calculated as, e.g., the cost of the minimum Steiner tree interconnecting
these portals in the corresponding brick. Because the bricks are planar, this cost can be
calculated by the algorithm of Erickson et al. [EMAFV87] for Steiner tree or [BK08] for
2-edge connectivity. Because all the portal edges of this brick are present in this bag
(recall that we do not delete parallel portal edges after contractions), all possible solutions
restricted to the corresponding brick will be considered. Because the contracted brick
vertices only appear in leaves of the dynamic programming tree, the rest of the dynamic
programming algorithm can be carried out as in the standard case, considering the portal
edges, whenever they occur again, as having zero length.

Analysis of the running time. As was shown in [BMK07b], the total time spent in
the leaves of the dynamic programming is O(4θn). The rest of the dynamic programming

takes time O(2poly(ω)n). The running time of the thinning algorithm is dominated by the
contraction decomposition of Theorem 4.1 which is O(n log n) [CC07]. Hence, the total

time is O(2poly(ω)n + n log n) for the general case; particularly, this is singly exponential in
ε−1 and g, as desired.

5. Constructing a Mortar Graph for Bounded-Genus Graphs

Let G0 = (V0, E0) be the input graph of genus g0 and Q be the terminal set. In a first
preprocessing step, we delete a number of unnecessary vertices and edges of G0 to obtain
a graph G = (V,E) of genus g ≤ g0 that still contains every (1 + ε)-approximate solution
for terminal set Q for all 0 ≤ ε ≤ 1 while fulfilling certain bounds on the length of shortest
paths. In the next step, we find a cut graph CG of G that contains all terminals and whose
length is bounded by a constant times OPT. We cut the graph open along CG, so that it
becomes a planar graph with a simple cycle σ as boundary, where the length of σ is twice
that of CG. See Figure 2 for an illustration. Afterwards, the remaining steps of building
the mortar graph can be the same as in the planar case, by way of Theorem 3.2.

For an edge e = vw in G0, we let distG0
(r, e) = min{distG0

(r, v),distG0
(r, w)} + ℓ(e)

and say that e is at distance distG0
(r, e) from r. If the root vertex represents a contracted

graph H, we use the same terminology with respect to H.

5.1. Preprocessing the Input Graph

Our first step is to apply the following preprocessing procedure:
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Preprocess(G0, Q, ξ):

(1) Find a 2-approximate Steiner tree T0 of G0 and Q; contract T0 to a vertex r.
(2) Find a shortest-path tree rooted at r.
(3) Delete all vertices v and edges e of G0 with distG0

(r, v),distG0
(r, e) > 2ξℓ(T0).

Any deleted vertex or edge is at distance > 2ξℓ(T0) > 2ξ OPT from any terminal and hence,
can not be part of a (1 + ε)-approximation for any 0 ≤ ε ≤ 1. We call the resulting graph
G = (V,E) and henceforth use G instead of G0 in our algorithm. The preprocessing step
can be accomplished in linear time: T0 can be calculated with the recent improvement on
Mehlhorn’s algorithm [Meh88] by Tazari and Müller-Hannemann [TMH08], and the shortest
path tree with Henzinger et al.’s algorithm [HKRS97]. Trivially, we have

Proposition 5.1. Any vertex and any edge of G is at distance at most 4ξ OPT from T0.

5.2. Constructing the Cut Graph

Start again with T0 contracted to a vertex r. We construct our cut graph as a system
of loops rooted at r: iteratively find short non-separating cycles through r and cut the
graph open along each cycle. Erickson and Whittlesey [EW05] showed that, for orientable
surfaces, taking the shortest applicable cycle at each step results in the shortest system of
loops through r. They suggest an implementation of their algorithm using the tree-cotree
decomposition, introduced by Eppstein [Epp03], that runs in linear time on bounded-genus
graphs. A tree-cotree decomposition of an embedded graph G is a triple (T, T ⋆,X), so that
T is a spanning tree of G rooted at r, T ⋆ is a spanning tree of the dual of G \ T , and X is
the remaining set of edges (recall that we identify the edges of G and G⋆). Eppstein showed
that the set of elementary cycles {loop(T, e) : e ∈ X} is a cut graph of G where loop(T, e) is
the cycle formed by the paths in T from r to the endpoints of e plus the edge e. Eppstein’s
decomposition also works for non-orientable embeddings. As we only need to bound the
length of our cut graph, we present a simpler algorithm:

Planarize(G,R):

(1) Contract T0 to become a single vertex r.
(2) Find a shortest paths tree SPT rooted at r.
(3) Uncontract r and set T1 = T0 ∪ SPT . (T1 is a spanning tree of G.)
(4) Find a spanning tree T ⋆

1 in (G \ T1)
⋆. (T ⋆

1 is a spanning tree of G⋆.)
(5) Let X = E \ (T1 ∪ T ⋆

1 ).
(6) Return CG = T0 ∪ {loop(T1, e) : e ∈ X}.

Lemma 5.2. The algorithm Planarize returns a cut graph CG, so that cutting G open
along CG results in a planar graph Gp with a distinguished face whose facial walk σ

(1) is a simple cycle;
(2) contains all terminals (some terminals might appear more than once as multiple

copies might be created during the cutting process);
(3) has length ℓ(σ) ≤ 2(8ξg + 2)OPT.

The algorithm can be implemented in linear time.
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(a) (b)

Figure 2: (a) a cut graph of a tree drawn on a torus; (b) the result of cutting the surface
open along the cut graph: the shaded area is now homeomorphic to a disc and
the white area is the new distinguished face of the planarized surface.

Proof. Clearly, (T1, T
⋆
1 ,X) is tree-cotree decomposition of G and so, by Eppstein’s lemma

[Epp03], CG is a cut graph. By Euler’s formula, we get that |X| = g, the Euler genus of G.
Each edge e = vw ∈ X completes a (non-surface-separating, not-necessarily simple) cycle
as follows: a shortest path P1 from T0 to v, the edge e, a shortest path P2 from w to T0

and possibly a path P3 in T0. By Proposition 5.1, we know that e is at distance at most
4ξ OPT from T0 and so, P1, P2, and at least one of P1 ∪ {e} and P2 ∪ {e} have length at
most 4ξ OPT. Hence, we have that ℓ(P1 ∪{e}∪P2) ≤ 8ξ OPT. Because there are (exactly)
g such cycles in CG, we get that

ℓ(CG) ≤ g · 8ξ OPT+ℓ(T0) ≤ (8ξg + 2)OPT .

Because CG is a cut graph, it follows that it consists of a single facial walk σ′; this follows
easily from Euler’s formula, because CG has Euler genus g (because G \ CG is planar),
with some k vertices and k + g − 1 edges. So, σ′ contains every edge of CG exactly twice
(cf. [MT01]), i.e. ℓ(σ′) = 2ℓ(CG). Cutting the graph open along σ′ results in a planar graph
with a simple cycle σ = σ′ as its boundary, as desired (see Fig. 2).

As mentioned in the previous section, T0 and SPT can be computed in linear time on
bounded-genus graphs [HKRS97, TMH08]. T ⋆

1 can be obtained, for example, by a simple
breadth-first-search in the dual. The remaining steps can also easily be implemented in
linear time.

5.3. Proof of Theorem 3.3

We complete the construction of a mortar graph for genus-g embedded graphs.
Let Gp be the result of planarizing G as guaranteed by Lemma 5.2. Gp is a planar

graph with boundary σ spanning Q and with length ≤ 2(8ξg + 2)OPT. Let MG be the
mortar graph guaranteed by Theorem 3.2. Every edge of MG corresponds to an edge of G.
Let MG′ be the subgraph of G composed of edges corresponding to MG. Every face f of
MG (other than σ) corresponds to a face f ′ of MG′ and the interior of f ′ is homeomorphic
to a disk on the surface in which G is embedded. It is easy to verify that MG′ is a mortar
graph of G satisfying the length bounds of Theorem 3.3.

Acknowledgements. The authors thank Jeff Erickson for pointing out that Theorem 4.1
can be implemented in O(n log n) time in both orientable and non-orientable surfaces.
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3 Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX - UKE-mail address: anders�s.rhul.a.ukAbstrat. The MULTICUT IN TREES problem onsists in deiding, given a tree, a setof requests (i.e. paths in the tree) and an integer k, whether there exists a set of k edgesutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer in[10℄. They also provided an exponential kernel. They asked whether this problem has apolynomial kernel. This question was also raised by Fellows in [1℄.We show that MULTICUT IN TREES has a polynomial kernel.1. IntrodutionAn e�ient way of dealing with NP-hard problems is to identify a parameter whihontains its omputational hardness. For instane, instead of asking for a minimum vertexover in a graph - a lassial NP-hard optimization question - one an ask for an algorithmwhih would deide, in O(f(k).nd) time for some �xed d, if a graph of size n has a vertexover of size at most k. If suh an algorithm exists, the problem is alled �xed-parametertratable, or FPT for short. An extensive litterature is devoted to FPT, the reader is invitedto read [4℄, [7℄ and [12℄.Kernelization is a natural way of proving that a problem is FPT. Formally, a kernel-ization algorithm reeives as input an instane (I, k) of the parameterized problem, andoutputs, in polynomial time in the size of the instane, another instane (I ′, k′) suh that
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184 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOThe redued instane (I ′, k′) is alled a kernel. The existene of a kernelization algo-rithm learly implies the FPT harater of the problem sine one an kernelize the instane,and then solve the redued instane G′, k′ using brute fore, hene giving an O(f(k) + nd)algorithm. A lassial result asserts that being FPT is indeed equivalent to having kerneliza-tion. The drawbak of this result is that the size of the redued instane G′ is not neessarilysmall with respet to k. A muh more onstrained ondition is to be able to redue to aninstane of polynomial size in terms of k. Consequently, in the zoology of parameterizedproblems, the �rst distintion is done between three lasses: W[1℄-hard, FPT, polykernel.A kernelization algorithm an be used as a preproessing step to redue the size of theinstane before applying an algorithm. Being able to ensure that this kernel has atuallypolynomial size in k enhanes the overall speed of the algorithm. See [11℄ for a reent reviewon kernalization.The existene of a polynomial kernel an be a subtle issue. A reent result by Fernau etal [6℄ shows that Rooted k-Leaf Outbranhing has a ubi kernel while k-Leaf Outbranhingdoes not, unless polynomial hierarhy ollapses to third level, using a breakthrough lowerbound result by Bodlaender and al [5℄.In the (unweighted) MULTICUT IN TREES problem, we onsider a tree T together witha set P of pairs of distint nodes of T , alled requests. Hene, a request an also be seen asa presribed path joining these two nodes. We will often identify the request and its path.A multiut of (T, P ) is a set S of edges of T whih interset every request in P , i.e. everypath orresponding to a request ontains an edge of S.Problem 1.1. MULTICUT IN TREES:Input: A tree T = (V,E), a set of requests P , an integer k.Output: TRUE if there is a multiut of size at most k, otherwise FALSE.Note that a more general presentation of this problem is to assign weights to edges, andask for a multiut of minimal weight. Our tehnique does not seem to generalize to theweighted ase.This problem appears in network issues (routing, teleommuniation, ...). See [3℄ for asurvey on multiommodity �ow problems and multiut problems. It was shown in [8℄ thatMULTICUT IN TREES is NP-omplete, and its assoiated deision problem is MaxSNP-hardand has a fator-2 polynomial time approximation algorithm.This problem is known to be FPT, see [9℄ or [10℄ for a branhing algorithm and anexponential kernel. The existene of a polynomial kernel was asked in [1℄. We verify thatMULTICUT IN TREES has indeed an O(k6) kernel. Our redution is very muh inspiredfrom [9℄ and [10℄. In the next setion, we �rst illustrate our tehniques when the tree T is aaterpillar. In Setion 3 we extend the proof to general trees.2. A polynomial kernel for aterpillarsA node of T whih is not a leaf is an internal node. The internal tree of T is the treerestrited to its internal nodes. We say that T is a aterpillar if its internal tree is a path. Weonsider the restrition of the MULTICUT IN TREES problem to aterpillars, as it ontainsthe ore of our proof in the general ase.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 185Let us give some general de�nitions whih will apply both for the aterpillar ase andfor the general ase.We say that two nodes x and y are R-neighbors if there exists a request xy. A leaf xand an internal node y are quasi-R-neighbors if there exists a request xy, or a request xz,where z is a leaf rooted at y. An internal node with no leaf attahed to it is an inner node.If x is a leaf, we denote by e(x) and all the edge of x the edge adjaent to x. A group ofleaves is the set of leaves onneted to the same internal node. A group request is a request
xy where x and y belong to the same group. A leaf whih is an endpoint of a group requestis a bad leaf. A leaf to leaf request is a request between two leaves. An internal request isa request between two internal nodes. A request between an internal node and a leaf is amixed-request. Two requests are disjoint if their edge sets are disjoint. Two requests x1y1and x2y2 are endpoint-disjoint if x1, y1, x2, y2 are pairwise di�erent.The internal path of a request is the intersetion between the path of the request andthe internal tree. The ommon fator of two requests is the intersetion of their paths. Arequest R1 dominates a request R2 if the internal path of R1 ontains the internal path of
R2. Contrating an edge e in (T, P ) means ontrating e in T , and transforming eah requestof the form (e1, . . . , et, e, et+1, . . . , el) in P into (e1, . . . , et, et+1, . . . , el). Deleting an edge emeans ontrating e in T and removing every request ontaining e from P .Two requests of length at least 2 from a given leaf x have the same diretion if theseond edge of their path starting at x is the same. Two requests from an internal node xhave the same diretion if the �rst edge of their paths (starting at x) is the same. All therequests from x have the same diretion if they pairwise have the same diretion.In the following, our instane T is assumed to be a aterpillar. We all the two extrem-ities of the internal path the left end and the right end of T . The path between a node xand the right (resp. left) end will be alled right and left relatively to x.Let T ′ be the internal tree of the aterpillar T . The following �ve sets partition T :

• The set I1 of leaves of T ′.
• The set I2 of degree two nodes of T ′.
• The set L1 of leaves rooted at I1.
• The set L′

2 of bad leaves rooted at I2.
• The set L2 of the other leaves rooted at I2.The wingspan W of a leaf x is the path between the losest quasi-R-neighbor on theright of x and the losest quasi-R-neighbor on the left of x (if no suh neighbor exists, wetake the father f(x) of x by onvention). The size of a wingspan is the number of L2-leavespending from it. The subaterpillar of the wingspan W onsists in W and the leaves rootedat W . The wingspan W dominates a request yz if both y and z belong to the subaterpillarof W .The usual way of exhibiting a kernel is to de�ne a set of redution rules. These rulesshould be safe, meaning that after applying a rule, the truth value of the problem onthe instane does not hange. Moreover the repeated appliation of the rules should takepolynomial time. Finally, after iterating these rules on an instane, we want the reduedinstane to be of polynomial size in k.The redution rules. We apply the following redution rules to an instane:(0) Unit Request: if a request R has length one, i.e. R = e for some edge e of T , thenwe delete e and derease k by one.



186 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(1) Disjoint Requests: if there are k+1 disjoint requests in P , then we return a triviallyfalse instane.(2) Unique Diretion: if all the requests starting at a leaf x have the same diretion, thenontrat e(x). If all the requests starting at an inner node x have the same diretion,then ontrat the edge e adjaent to x whih does not belong to any request startingat x.(3) Inlusion: if a request R is inluded in another request R′, then delete R′ from theset of requests.(4) Common Fator: let R be a request. If k + 1 requests R1, . . . , Rk+1 di�erent from
R but interseting R are suh that for every i 6= j, the ommon fator of Ri and Rjis a subset of R, then delete R from the set of requests.(5) Dominating Wingspan: if x is an L2-leaf with a wingspan dominating at least k + 1endpoint-disjoint leaf to leaf or mixed requests, then ontrat e(x).Eah iteration of the redution onsists in applying the �rst appliable rule, in the aboveorder.Lemma 2.1. Rules Unit Request, Disjoint Requests, Unique Diretion, Inlusion, CommonFator and Dominating Wingspan are safe.Proof. (0) Rule Unit Request is obvious.(1) Rule Disjoint Requests is obvious.(2) For Rule Unique Diretion, assume �rst that all the requests from a leaf x have thesame diretion, and that a multiut ontains e(x). Let e′ be the seond ommonedge of all these paths. As e′ uts all the requests ut by e(x), if e(x) is in a solution
S then S\{e(x)} ∪ {e′} is also a solution. So we an ontrat e(x). Now, assumethat all the requests from an inner node x go to the right. If a solution S ontainsthe edge e adjaent to x on the left then S\{e} ∪ {e′}, where e′ is the right edgeadjaent to x, is a solution sine a request going through e also goes through e′.(3) For Rule Inlusion, observe that an edge utting R also uts all the paths ontaining
R.(4) If there is a multiut of k edges, then one of these edges must interset two requestsamong the k+1 mentioned in Rule Common Fator. This edge lies in the intersetionof two paths, hene in R, so request R is ut in any multiut of P \ {R}.(5) Let x be an L2-leaf with a wingspan W dominating k +1 endpoint-disjoint requests.If a multiut of size k exists, it ontains an edge e whih uts two of these requests.As the requests are endpoint-disjoint, their intersetion is inluded in the internaltree, hene in W . Assume, for example, that e is on the left of the leaf x. Then allthe requests from x whih go to the left go through e, and moreover x has no grouprequest. Thus, if a solution exists, there is a solution without e(x), sine e(x) anbe replaed by the edge e′ whih is on the right of the neighbor of x.Lemma 2.2. Deiding whether a rule applies and applying it takes polynomial time.Proof. Denote by n the number of nodes in T and by r the number of requests, whih is

O(n2).(0) The appliation of Rule Unit Request takes time O(r).(1) The maximum edge-disjoint paths problem in trees is polynomial, see [8℄, thus RuleDisjoint Requests is polynomial.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 187(2) Rule Unique Diretion an be applied in time O(rn2).(3) Rule Inlusion an be applied in time O(r2).(4) For the running time of Rule Common Fator, onsider a request R. Informally, weare looking for a large enough set of requests whih interset R, possibly leaving itat one or two plaes, suh that the edges through whih they leave are all distint.More formally, let Z be the set of edges not in R but sharing a vertex with someedge in R. Let Y be the set of edges e in Z suh that there exists a request startingat a node in R and going through e. We an assume without any loss that onerequest per suh edge e is hosen. Let G be the graph whih verties are Z − Y andwhih edges are the pairs (e, e′) suh that there exists a request going through both
e and e′. There exist k + 1 paths as in Rule Common Fator if and only if G has amathing of size at least k + 1 − |Y |. As the mathing problem is polynomial, theappliation of Rule Common Fator takes polynomial time.(5) Let W be a wingspan, let G be the graph whih verties are the leaves pending from
W and where two leaves are adjaent if there is a request between them. There exist
k + 1 endpoint-disjoint requests dominated by W if and only if G has a mathing ofsize k + 1, thus Rule Dominating Wingspan is polynomial.Lemma 2.3. The redution proess has a polynomial number of iterations.Proof. Eah rule dereases the sum of the lengths of the requests, whih is initially less thanthe number of requests times the number of nodes.In the following we onsider an instane in whih none of these rules an be applied,and prove that suh a redued instane has polynomial size in k.Let us introdue two graphs theoreti lemmas whih are used in our proof.Lemma 2.4. Let G be an undireted graph having m edges, of maximal positive degree ∆.Then G has a mathing of size ⌊ m

2∆−1⌋.Proof. Suh a mathing an be obtained by a greedy algorithm, as taking an edge uv in themathing forbids the edges adjaent to u and those adjaent to v (there are at most 2∆− 1suh edges, inluding uv).Lemma 2.5. Let H be an undireted graph on n verties, of maximal degree ∆. Then Hhas an independent set of size ⌊ n
∆+1⌋.Proof. Suh an independent set an be obtained by a greedy algorithm, as taking a vertex

u in the independent set forbids the verties adjaent to u.Theorem 2.6. The MULTICUT IN CATERPILLARS problem has a kernel of size O(k5).The rest of this setion is dediated to the proof of the theorem.Observation 2.7. A node has at most k + 1 R-neighbors in eah diretion.Proof. If a node x has k + 2 R-neighbors in, say, the right diretion, then Rule CommonFator applies to any longest right request of x.



188 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOClaim 1. There are at most 2(k + 1)(2k + 1)− 1 bad leaves.Proof. A bad leaf is onneted to at most k+1 leaves of some given group, by Rule CommonFator. Let G be the undireted graph whose verties are the bad leaves of T and wherethere is an edge between two leaves if there is a group request between them. The minimaldegree in G is at least 1, and the maximal degree is at most k + 1. If there are at least
2(k + 1)(2k + 1) bad leaves then there are at least (k + 1)(2k + 1) edges in G. Thus byLemma 2.4 there exist a mathing of size k+1 whih implies the existene of k+1 endpoint-disjoint (thus disjoint) group requests. In this ase, Rule Disjoint Requests would apply.Claim 2. A wingspan has size at most 2(k + 1)(4k + 3)− 1.Proof. Let W be a wingspan. As Rule Dominating Wingspan does not apply, W does notdominate k + 1 endpoint-disjoint requests. Let W ′ be the set of leaves pending from W .Let G be the undireted graph whih verties are the leaves in W ′ and the nodes in W . Foreah leaf to leaf request zy suh that z and y are in W ′, reate an edge zy in G. For eahmixed-request zy suh that z is in W ′ and y in W , reate an edge zy in G. Finding k + 1endpoint-disjoint requests is equivalent to �nding a mathing of size k + 1 in G. The degreeof a vertex u in G is at most 2k+2 beause there are at most k+1 requests in eah diretionfor u in T (by Observation 2.7). Moreover, if u orresponds to a node of W ′, the degree of
u is at least one. Indeed, sine the wingspan of x is maximal, eah L2-leaf pending from Wmust have a request dominated by W .If there are 2(k + 1)(4k + 3) L2-leaves in W ′, then G ontains at least (k + 1)(4k + 3)edges, and so G has a mathing of size k + 1 by Lemma 2.4, whih in turn means theexistene of k + 1 endpoint-disjoint requests.Claim 3. There are O(k3) L2-leaves.Proof. Let x be a L2-leaf of wingspan W . By the previous laim, there are less than 2(k +
1)(4k + 3) leaves pending from W . At most 2(k + 1)(4k + 3) L2-leaves not pending from
W have wingspans interseting W for eah diretion, as the furthest leaf (on the right)of wingspan interseting W has a wingspan whih dominates all other leaves of wingspaninterseting W from the right. Let H be the auxillary graph on L2, where two L2-leaves areadjaent if their wingspans intertset. H has maximum degree less than 6(k + 1)(4k + 3)by the above disussion. By Lemma 2.5, if T has at least 6(k + 1)(k + 2)(4k + 3) verties,then H has a stable set of size k + 1. Thus T would have k + 1 disjoint wingspans, and thus
k + 1 disjoint requests, a ontradition.Claim 4. There are O(k5) I2-nodes.Proof. By Claim 3, there are O(k3) I2-nodes with leaves. Let us bound the number of innernodes. Let I ′ be the set of inner nodes in T . Consider the graph G on the set of verties I ′where there is an edge xy if xy is a request in T .Beause of Rule Inlusion, eah inner node has degree at most two in G (one in eahdiretion). Thus G is a disjoint union of paths, alled request paths. The length of a requestpath is at most k by Rule Disjoint Requests. A node with degree 1 in G is an extremal innernode.Eah extremal inner node must be an R-neighbor in T of a leaf or of an internal nodewith a leaf (otherwise it would be redued by Rule Unique Diretion). Denote by X the setof leaves and internal nodes with a leaf attahed to it. Eah node in X has O(k) R-neighborsamong the inner nodes, and |X| = O(k3), so there are O(k4) inner nodes with a neighbor in
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X (in partiular, at most O(k4) extremal inner nodes). Eah extremal inner node belongsto a unique request path of size at most k. Moreover eah inner node with no neighbor in
X must belong to a request path. So there are O(k5) inner nodes in T .There are O(k3) leaves and O(k5) internal nodes in a redued instane. Thus theMULTICUT IN CATERPILLARS problem has a kernel of size O(k5).3. General TreesShould no onfusion arise, we retain the terminology of the previous setion.Let (T , P , k) be an instane. Let T ′ be the tree obtained from T by deleting the leaves.We partition the set of nodes of T into the following seven sets:

• The set I1 of leaves in T ′.
• The set I2 of degree 2 nodes in T ′.
• The set I3 of the other nodes in T ′.
• The set L1 of leaves rooted at I1.
• The set L2 of leaves rooted at I2, endpoint of no group request.
• The set L′

2 of leaves rooted at I2, endpoint of at least one group request.
• The set L3 of leaves rooted at I3.We also denote by I the set of internal nodes of T , and by L the set of leaves of T .We need a few tehnial de�nitions. A aterpillar of T is a maximal onneted ompo-nent of T − I3 − L3. The bakbone of a aterpillar is the set of internal nodes of T in thisaterpillar. A aterpillar C is non-trivial if the set of internal nodes in C seen as a aterpillarhas size at least two. The extremities of a non-trivial aterpillar C are the two nodes of Cwhih are I2 or I1-nodes of T and beome I1-nodes in C. A minimal request of a node x is arequest having x as an endpoint and whih internal path is minimal for inlusion among allinternal paths of requests with x as an endpoint. If several requests have the same internalpaths, we arbitrarily distinguish one as minimal and will not onsider the others as minimal.If xy is a minimal request of x then y is alled a losest R-neighbor of x.Let x and y be nodes in T . If z lies on the path between x and y, or is a leaf rooted atthe path between x and y, we say that z lies toward y from x (and we do not write "from

x" should no onfusion arise).Assume x is an L2-leaf of a aterpillar C (that is, an L2-leaf of T whih belongs to C).Let f(x) be the node from whih x is pending. Let Gr(x) be the group of leaves pendingfrom f(x). Let A(x) and B(x) be the two onneted omponents of T −{f(x)}−Gr(x). Let
a(x) (resp. b(x)) be the extremity of C in A(x) (resp. B(x)). If A(x) (resp. B(x)) ontainsno extremity of C, that is if f(x) is an extremity of C, then we de�ne a(x) = f(x) (resp.
b(x) = f(x)). A wingspan W of x is formed by the restrition to internal nodes of the unionof two requests between x and two of its losest R-neighbors lying respetively in A(x) and
B(x). Observe that x an have several wingspans. The subaterpillar of the wingspan Wonsists in W and the leaves rooted at W .An L2-leaf x overs a aterpillar C if either x /∈ C and there is a request starting at xand going through the whole bakbone of C, or if x ∈ C and there are two minimal requestsstarting at x whih together over the whole bakbone of C.We apply the following redution rules to an instane: Rules (0), (1), (2), (3), and (4)are stated in the previous setion. Rule Dominating Wingspan is split for onveniene intotwo rules, one similar to the aterpillar ase and a more general one, as follows:



190 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(5a) Bidimensional Dominating Wingspan: if x is an L2-leaf of a aterpillar C with awingspan W suh that W ∩ C dominates at least k + 1 endpoint-disjoint requests,then we ontrat e(x).(5b) Generalized Dominating Wingspan: assume that x is an L2-leaf of the aterpillar C,and that x overs C. Assume that for every losest neighbor z of x in A(x), thereexist k + 1 endpoint-disjoint requests between a node lying toward b(x) from x anda node toward z from a(x). Then we ontrat e(x).Eah iteration of the redution onsists in applying the �rst appliable rule, in the aboveorder.Lemma 3.1. Rules (5a) and (5b) are safe.Proof. Safeness of Rule Bidimensional Dominating Wingspan follows from the safeness proofof Rule Dominating Wingspan in the previous setion.Assume Rule Generalized Dominating Wingspan an be applied to x. Let z1, . . . , zlbe the losest R-neighbors of x in A(x). For every i ∈ {1, . . . , l}, beause of the k + 1endpoint-disjoint requests mentionned in the rule, any k-multiut ontains an edge in thepath between zi and b(x). Assume that a k-multiut S ontains an edge e′′ between x and
b(x). Let e′ be the edge adjaent to e(x) in the path between x and a(x). If S ontains
e(x), then S − {e(x)} ∪ {e′} is also a k-multiut. Indeed, any request x, u with u ∈ A(x) isut by e′, and any request x, v with v ∈ B(x) is ut by e′′. Assume now that a k-multiut Sontains no edge between x and b(x), then for every i ∈ {1, . . . , l}, S must ontain an edge
ei in the path between zi and f(x). Let e′ be the edge adjaent to e(x) in the path between
x and b(x). If S ontains e(x), then S − {e(x)} ∪ {e′} is a k-multiut. Indeed, any request
x, u with u ∈ A(x) is ut by an edge ei, and any request x, v with v ∈ B(x) is ut by e′.Proposition 3.2. The repeated appliation of these rules on the instane until none an beapplied takes polynomial time.Proof. The proof of the �rst �ve ases was made for general trees in the previous setion.The polynomiality of Rule Bidimensional Dominating Wingspan follows from the proof ofRule Dominating Wingspan's polynomiality in the previous setion. Deiding whether thereexist k + 1 endpoint-disjoint requests between presribed areas an still be expressed asa mathing problem as in Rule Dominating Wingspan's proof, so the appliation of RuleGeneralized Dominating Wingspan also takes polynomial time.Theorem 3.3. The number of nodes in a redued instane is O(k6).The rest of this setion is devoted to the proof of this theorem.Claim 5. |I1| = O(k)Proof. There are at most k groups of leaves with a group request, by the k + 1 disjointrequests rule. Every group of L1-leaves has a group request, otherwise any leaf of this groupwould be deleted by Rule Unique Diretion. Every I1-node has at least one L1-leaf pendingfrom it, thus |I1| ≤ k.Claim 6. |I3| = O(k)Proof. In a tree, there are at most as many nodes of degree at least 3 as the number ofleaves, so |I3| ≤ |I1| ≤ k.
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2| = O(k2)Proof. Eah leaf in L1 is a bad leaf by Rule Unique Diretion, and eah leaf in L′

2 is badby de�nition. As in Claim 1 there are at most 2(k + 1)(2k + 1) − 1 bad leaves in T . Thus
|L1 ∪ L′

2| = O(k2)We now show that:
• |L3| = O(k4)
• |L2| = O(k4)
• |I2| = O(k6)Claim 8. The number of requests from a node x to a group of leaves is at most k + 1.Proof. Otherwise Rule Common Fator would apply to these requests.Claim 9. The number of requests from a node x to all the L2-leaves in a given aterpillar

C is at most 2k + 2 if x ∈ C and k + 1 if x /∈ C.Proof. Otherwise there would be at least k + 2 requests sharing the same diretion between
x and leaves in this aterpillar, and Rule Common Fator would apply to these requests.Claim 10. There are at most (2k + 1)(k + 2)− 1 requests between two groups of leaves.Proof. Let G be the bipartite graph whih verties are the leaves of the two groups Y and
Z, and where a leaf in Y and a leaf in Z are adjaent if there is a request between them.The maximum degree in G is at most k + 1 by Claim 8, thus if there are (2k + 1)(k + 2)requests between Y and Z, then by Lemma 2.4 there would be a mathing of size k+2 in G.Thus there would be k + 2 endpoint disjoint requests between Y and Z, and Rule CommonFator would apply.Claim 11. The number of requests between a group of leaves E and the nodes in a givenaterpillar C is at most 2(2k + 1)(k + 2) − 2.Proof. Assume by ontradition that there are at least 2(2k + 1)(k + 2) − 1 suh requests.Let f be the node in whih the leaves of E are rooted. If f belongs to C, then C − f hastwo onneted omponents. Among these two omponents, we selet the omponent C ′ inwhih there is the largest number of requests from E. If f does not belong to C, then welet C ′ = C. There are at least (2k + 1)(k + 2) requests between C ′ and E. Consider theundireted (bipartite) graph G whih verties are the leaves of E and the nodes of C ′, andwhere there is an edge between a leaf from E and node from C if there is a request betweenthem. This graph has maximum degree k +1 by Rule Common Fator, thus by Lemma 2.4,
G has a mathing of size k + 2. Thus there would be k + 2 endpoint disjoint requests, andRule Common Fator would apply to them.Claim 12. There are at most 2k − 1 aterpillars in T .Proof. There are at most 2k nodes in I1 ∪ I3. Let us all them separating nodes. Let rbe one of these separating nodes. Let us onsider r as the root of T . Eah aterpillaris adjaent to exatly two separating nodes. Let us assoiate to eah aterpillar of T itsadjaent separating node further away from the root r. This mapping is a bijetion, and noaterpillar is mapped on r, thus there are at most 2k − 1 aterpillars.
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|L3| = O(k4)Proof. We have that |I3| = O(k) by Claim 6. Let X be an L3-group rooted in y ∈ I3.Beause of Rule Disjoint Requests, at most (2k + 1)(k + 1) − 1 leaves in X are endpointsof group requests (by Lemma 2.4 on the usual auxilliary request graph on X). Eah leafof X must be the endpoint of at least one request, so let us ount the maximal numberof requests ontributed by eah type of nodes. By Claim 10, and as there are at most kgroups of L1-leaves and k groups of L3-leaves, at most k((2k + 1)(k + 2) − 1) leaves of Xhave a request toward an L1-leaf or an L3-leaf. There are at most 2k − 1 aterpillars in Tby Claim 12, and leaves in X have in total at most 2(2k + 1)(k + 2) − 2 R-neighbors inany aterpillar by Claim 11. Thus O(k3) leaves in X are endpoints of a request toward aaterpillar node, and I3 nodes an ontribute for at most O(k2) requests, so |X| = O(k3).This gives |L3| = O(k4).Claim 14.
|L2| = O(k4)Proof. Assume by ontradition that |L2| ≥ 3(2k − 1)(k + 1)(k + 1)(4k + 3). Let C be aaterpillar of T ontaining the maximum number of L2-leaves. By Claim 12, there are atmost 2k − 1 aterpillars in T , thus C ontains at least 3(k + 1)(k + 1)(4k + 3) L2-leaves.Assume �rst that C is not overed. We obtain a ontradition as in the aterpillarase. Consider x to be the L2-leaf having a wingspan whih intersetion W̃ with C hasmaximal size. Let C ′ be the subaterpillar of bakbone W̃ . Then C ′ ontains at least
(k + 1)(4k + 3) L2-leaves, otherwise one would �nd k + 1 disjoint wingspans by taking W̃ ,then a W̃1 disjoint from W̃ , then a W̃2 disjoint from W̃ and W̃1, . . . , and �nally a W̃kdisjoint from W̃ , W̃1, . . . , ˜Wk−1, as in Claim 3. Note that the aterpillars W,W1, . . . ,Wkare disjoint, as their intersetions W̃ , W̃1, . . . , W̃k with C are disjoint and non-empty. Thusthere would be k + 1 disjoint requests, a ontradition. Sine W̃ is maximal, eah L2-leaf yin C ′ is the endpoint of a request r ⊆ C ′. The existene of (k +1)(4k +3) suh leaves meansthere are at least k+1 endpoint-disjoint requests dominated by W̃ , by Lemma 2.4 applied tothe usual auxiliary request graph G on the L2-leaves of C ′ (note that the maximum degreeof G is at most 2k + 2). Whih means Rule (5a) should apply, a ontradition.Assume now that C is overed by some L2-leaf x. If more than (k+1)(4k+3) L2-leavesin C do not dominate C, then some wingspan of x dominates (k + 1)(4k + 3) requests,and thus dominates at least k + 1 endpoint-disjoint requests, by the usual appliation ofLemma 2.4. So Rule Bidimensional Dominating Wingspan should apply, a ontradition.So at least 3(k + 1)(k + 1)(4k + 3) − (k + 1)(4k + 3) L2-leaves in C over C, let X be theset of these leaves. Let d1, . . . , dj be the I1-nodes in A(x). Note that j ≤ k.For suh an I1-node di and a leaf x ∈ X having at least one quasi-R-neighbor lyingtoward di, let us denote by rn(x, i) the losest quasi-R-neighbor of x toward di. Let RN(i)be the set of all nodes rn(x, i) for leaves x ∈ X having at least one quasi-R-neighbor lyingtoward di. Note that the nodes of RN(i) lie on the segment [a(x), di]. Denote by xi

1, . . . , x
i
tthe leaves in X having at least one quasi-R-neighbor lying toward di, ordered aording tothe distane between a(x) and rn(x, i), from losest to furthest. If t ≥ (k + 1)(4k + 3),denote by Xi the set {xi

1, . . . , x
i
(k+1)(4k+3)}.When less than (k +1)(4k +3) L2-leaves in X have a quasi-R-neighbor toward di, mark

di as invalid, and proeed. Note that at least one di must be valid, as |X| > k(k+1)(4k+3).



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 193Now we have a list of at most k sets (the sets Xi for di valid) of size (k+1)(4k+3). Theunion X ′ of these is of size at most k(k +1)(4k +3) < |X|. Thus there exists an L2-leaf z in
X − X ′. Consider the losest quasi-R-neighbor ni of z toward a valid di. There are either
(k+1)(4k+3) L2-leaves of Xi between z and a(x) or (k+1)(4k+3) L2-leaves of Xi between zand b(x). Thus there are k + 1 endpoint-disjoint requests either between the subaterpillarsspanned by the segments ]z, a(x)[ and ]a(x), ni[ or between the subaterpillars spanned bythe segments ]b(x), z[ and ]a(x), ni[, by Lemma 2.4 on the usual auxiliary request graph. Inthe former ase Rule Common Fator applies, in the latter Rule Generalized DominatingWingspan applies.Claim 15.
|I2| = O(k6)Proof. There are O(k4) internal nodes with leaves in T , by Claim 14. It remains to boundthe ardinal of the set Z of inner nodes in I2.Let r be an I1-node of T , we now onsider r as the root of T . Let u be a node of Z.Let C(u) be the aterpillar ontaining u, denote by a(u) and b(u) its extremities, with b(u)an anestor of a(u) with respet to r. Let A(u) be the onneted omponent of T − {u}ontaining a(u). If the node u has an R-neighbor in A(u), selet suh node v(u). Note that uis on the path bewteen v(u) and r. Thus, by Rule Inlusion, v(u) 6= v(u′) whenever u 6= u′.Let G be the graph with vertex set Z, and with edge set {(u, v(u))|u ∈ Z}. This graph Gis a disjoint union of paths. By Rule Disjoint Requests, paths in G have length at most k.Verties u in G whih have no R-neighbor in A(u) must be adjaent in T to some node notin Z, by Rule Unique Diretion. There are O(k4) nodes not in Z, eah of whih an haveat most k R-neighbors in Z. Indeed, a vertex annot have two di�erent R-neighbors in thesame diretion, by Rule Inlusion. Thus there are O(k5) verties u without R-neighbor in
A(u) in G, whih gives that there are O(k6) verties in G, whih �nally means that thereare O(k6) inner nodes in T . �This onludes the proof of the theorem.4. ConlusionWe have shown that the (unweighted) MULTICUT IN TREES problem admits a polyno-mial kernel. This kernelization algorithm, or just some partiular sequene using some ofthe redution rules presented above, an be used as a preproessing or in-proesssing stepin a pratial algorithm.This analysis might not be tight, so one an hope to improve this O(k6) bound retainingthe same set of redution rules. New redution rules might be needed to derease this boundeven further.Our tehnique does not seem to generalize to the weighted version of MULTICUT INTREES. Thus deiding whether the Weighted MULTICUT IN TREES problem admits a poly-nomial kernel is still open.It is not known whether the general Multiut in Graphs problem is FPT with respetto this parameter k, even for graphs of bounded treewidth. If it turned out to be true, thenthe question of the existene of a polynomial kernel for Multiut in Graphs would rise.Among the most notorious open problems on polynomial kernelization stand DiretedFeedbak Vertex Set and Clique Cover. Direted Feedbak Vertex Set onsists in deidingwhether a graph admits k verties whih removal makes the graph ayli. This problem
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Abstract. Cellular automata (CA) are dynamical systems defined by a finite local rule
but they are studied for their global dynamics. They can exhibit a wide range of complex
behaviours and a celebrated result is the existence of (intrinsically) universal CA, that
is CA able to fully simulate any other CA. In this paper, we show that the asymptotic
density of universal cellular automata is 1 in several families of CA defined by local sym-
metries. We extend results previously established for captive cellular automata in two
significant ways. First, our results apply to well-known families of CA (e.g. the family
of outer-totalistic CA containing the Game of Life) and, second, we obtain such density
results with both increasing number of states and increasing neighbourhood. Moreover,
thanks to universality-preserving encodings, we show that the universality problem remains
undecidable in some of those families.

Introduction and definitions

The model of cellular automata (CA) is often chosen as a theoretical framework to study
questions raised by the field of complex systems. Indeed, despite their formal simplicity,
they exhibit a wide range of complexity attributes, from deterministic chaos behaviours
(e.g. [3]) to undecidability in their very first dynamical properties (e.g. [2]). One of their
most important feature is the existence of universal CA. Universality in CA is sometimes
defined by an adaptation from the model of Turing machines and sequential calculus. But
a stronger notion, intrinsic to the model of CA, has emerged in the literature [7]: a CA is
intrinsically universal if it is able to fully simulate the behaviour of any other CA (even on
infinite configurations).

Besides, when it comes to modelling [1] or experimental studies [10, 11], most works
focus on some particular syntactical families (elementary CA, totalistic CA, etc), either
to reduce the size of the rule space to explore, or to match hypothesis of the studied
phenomenon at microscopic level (e.g. isotropy).
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In a word, CA are known for their general ability to produce complex global behaviours,
but local rule considered in practice are often very constrained. This paper studies the link
between syntactical restriction on CA local rules and typical global behaviours obtained. It
establishes a probabilistic result: for various symmetry criterions over local rules, randomly
choosing a local rule within the symmetric ones yields almost surely universal CA. Mean-
while, the universality problem is shown to remain undecidable even restricted to symmetric
rules (for some of the symmetry criterions).

A family of CA defined by a simple syntactical constraint (namely captive CA) and
containing almost only universal CA has already been proposed by one of the authors [9],
but the present paper goes further. First, it generalises the probabilistic framework: the
neighbourhood of CA is no longer fixed as it was needed in [9]. Second, it considers well-
known families of CA (e.g. totalistic or outer-totalistic CA) and generalisations of them,
namely multiset CA, which are meaningful for modelling (they are ’isotropic’ CA).

After having recalled standard definitions about CA (end of this section), section 1
presents the families considered in this paper. Then, section 2 defines intrinsic universality
and the simulation relation involved in that notion. Section 3 gives the probabilistic setting
of the paper and establishes the main probabilistic results. Finally, section 4 is dedicated
to existence proofs of universal CA in the families considered. Combined with probabilistic
results, it proves that almost all CA are universal in those families.

Definitions and notations. In this paper, we adopt the setting of one-dimensional cellular
automata. Formally, a CA is a 3-uple A = (n, k, δA) where n and k are positive integers, re-
spectively the size of the state set Qn = {1, . . . , n} and of the neighbourhood [[−⌊k−1

2 ⌋; ⌊k
2⌋ ]],

δA : Qk
n → Qn is the local transition function.

A coloring of the lattice Z with states from Qn (i.e. an element of QZ
n) is called a

configuration. To A we associate a global function GA acting on configurations by synchro-
nous and uniform application of the local transition function. Formally, GA : QZ

n → QZ
n is

defined by: GA(x)z = δA(xz−⌊k−1
2
⌋, . . . , xz+⌊k

2
⌋) for all x ∈ QZ

n and z ∈ Z.

The local function δA naturally extends to Q∗
n, the set of finite words over alphabet Qn

(with δA(u) being the empty word if |u| < k). For p ∈ N, this function maps an element of

Qp+k
n to an element of Qp+1

n .
The size of A = (n, k, δA) is the pair (n, k). The set of all CA is denoted by CA, and

the set of all CA of size (n, k) by CAn,k. Moreover for any set F ⊆ CA, Fn,k is defined
by Fn,k = F ∩CAn,k. Formally a CA is a 3-uple but, to simplify notation, we sometimes

consider that Fn,k is a set of local functions of type Qk
n → Qn.

This paper will intensively use (finite) multisets. A multiset M of elements from a set E
is denoted by M = {{(e1, n1), . . . , (ep, np)}} where a pair (ei, ni) ∈ E×N denotes an element
and its multiplicity. The cardinality of M is |M | =

∑

i ni. The cardinality notation is the
same for sets.

1. Families of CA with Local Symmetries

In this section, we define various families of CA characterised by some local symmetry.
’Symmetry’ must be taken in a broad sense since it may concern various aspects of the local
function. We first consider families where the local function does not depend on the exact
configuration of the neighbourhood (a k-uple of states) but only on a limited amount of
information extracted from this configuration.
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MultiSet CA. Multiset cellular automata are cellular automata with a local rule invariant
by permutation of neighbours. Equivalently, they are CA whose local function depends only
on the multiset of states present in the neighbourhood. Formally, A ∈ CAn,k is multiset,
denoted by A ∈ MSn,k, if for any permutation π of {1 . . . k}, the local function δA satisfies

∀a1, . . . , ak ∈ Qn : δA(a1, . . . , ak) = δA(aπ(1), . . . , aπ(k)).

Set CA. Set CA are a special case of multiset CA: they are CA whose local function
depends only on the set of states present in the neighbourhood. Formally, A ∈ CAn,k with
arity k is a set CA, denoted by A ∈ Setn,k, if

∀u, v ∈ Qk
n : {u1, . . . , uk} = {v1, . . . , vk} ⇒ δA(u) = δA(v).

Note that for fixed n, there is a constant N such that, for all k, |Setn,k| ≤ N . Thus there
is no hope that the asymptotic density of a non-trivial property for fixed n be 1 for family
Set.

Totalistic CA. Totalistic CA are also a special case of Multiset CA: they are CA whose
local functions depends only on the sum of the neighbouring states. Formally, A ∈ CAn,k

k is totalistic, denoted by A ∈ Totn,k, if

∀u, v ∈ Qk
n :

k
∑

i=1

ui =
k

∑

i=1

vi ⇒ δA(u) = δA(v).

Partial Symmetries. We can consider weaker forms of each family above, by excluding
some neighbours from the ’symmetry’ constraint and treating them as a full dependency
in the local function. For instance, we define the set of outer-multiset CA as those with a
local rule depending arbitrarily on a small central part of their neighbourhood and on the
multiset of other neighbouring states. Formally, for any k′, 0 ≤ k′ ≤ k, Ok′MSn,k is the set
of CA with n states, arity k and such that for any permutation π of {1 . . . k − k′} and any
a1, . . . , ak−k′ , b1, . . . , bk′ ∈ Qn we have:

δA(a1, . . . , a⌊(k−k′)/2⌋,b1, . . . , bk′ , a⌊(k−k′)/2⌋+1, . . . , ak−k′)

= δA(aπ(1), . . . , aπ(⌊(k−k′)/2⌋), b1, . . . , bk′ , aπ(⌊(k−k′)/2⌋+1), . . . , aπ(k−k′)).

We define in a similar way outer-totalistic and outer-set, and denote them by Ok′Totn,k

and Ok′Setn,k respectively. Note that what is classically called outer-totalistic is exactly
the family O1Totn,k.

State symmetric CA. Families above are variations around the invariance by permu-
tations of neighbours. State symmetric CA are CA with a local function invariant by
permutation of the state set. Formally, a CA A ∈ CAn,k is state symmetric, denoted by
A ∈ SSn,k, if for any permutation π of Qn we have:

∀a1, . . . , ak : δA(a1, . . . , ak) = π−1
(

δA(π(a1), . . . , π(ak))
)

.

Note that we have a situation similar to the case of Set: for fixed k, there is a constant K
such that, for all n, |SSn,k| ≤ K. Thus their is no hope that the asymptotic density of a
non-trivial property for fixed k be 1 in state symmetric CA.
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Captive CA. Finally, we consider the family of captive CA already introduced in [8]: they
are CA where the local function is constrained to produce only states already present in
the neighbourhood. Formally, a CA A ∈ CAn,k is captive, denoted by A ∈ Kn,k, if:

∀a1, . . . , ak : δA(a1, . . . , ak) ∈ {a1, . . . , ak}.

The following lemma shows a strong relationship between captive and state symmetric CA.

Lemma 1.1. Let n and k be such that 1 ≤ k ≤ n− 2. Then we have SSn,k ⊆ Kn,k.

Combining symmetries. In the sequel, we will often consider intersections of two of the
families above. Note that all intersections are generally non-trivial. However, for the case
of Totn,k and Kn,k, the intersection is empty as soon as there exists two k-uple of states
with disjoint support but with the same sum, because the ’captive’ constraint forces the two
corresponding transitions to be different whereas the ’totalistic’ constraint forces them to be
equal. This happens for instance when n ≥ 3 and k is even with k-uples (1, 3, 1, 3, . . . , 1, 3)
and (2, 2, 2, . . . , 2).

2. Simulations and Universality

The property we are mostly interested in is intrinsic universality (see [7] for a survey
on universality). To formalize it, we first define a notion of simulation.

A CA A is a sub-automaton of a CA B, denoted A ⊑ B, if there is an injective map ϕ
from A to B such that ϕ ◦GA = GB ◦ ϕ, where ϕ : AZ → BZ denotes the uniform extension
of ϕ to configurations. We sometimes write A ⊑ϕ B to make ϕ explicit. This definition is
standard but yields to a very limited notion of simulation: a given CA can only admit a
finite set of (non-isomorphic) CA as sub-automata. Therefore, following works of J. Mazoyer
and I. Rapaport [4] and later N. Ollinger [5, 7], we will consider the following notion of
simulation: a CA A simulates an AC B if some rescaling of A is a sub-automaton of some
rescaling of B. The ingredients of the rescalings are simple: packing cells into blocs, iterating
the rule and composing with a translation (formally, we use shift CA σz, z ∈ Z, whose global
rule is given by σ(c)x = cx−z for all x ∈ Z). Formally, given any state set Q and any m ≥ 1,

we define the bijective packing map bm : QZ →
(

Qm
)

Z
by:

∀z ∈ Z :
(

bm(c)
)

(z) =
(

c(mz), . . . , c(mz +m− 1)
)

for all c ∈ QZ. The rescaling A<m,t,z> of A by parameters m (packing), t ≥ 1 (iterating)
and z ∈ Z (shifting) is the CA of state set Qm and global rule:

bm ◦ σz ◦G
t
A ◦ b

−1
m .

With these definitions, we say that A simulates B, denoted B 4 A, if there are rescaling
parameters m1, m2, t1, t2, z1 and z2 such that B<m1,t1,z1> ⊑ A<m2,t2,z2>. In the sequel, we
will discuss supports of simulations, i.e. sets of configurations on which simulations occur.
If B<m1,t1,z1> ⊑ϕ A

<m2,t2,z2>, the support of the simulation is the set of configuration of A
defined by b−1

m2
◦ ϕ ◦ bm1(Q

Z

B). It is a subshift: a closed shift-invariant set of configurations.
In the sequel we denote by B 4X A the fact that A simulates B on support X.

Once formalised the notion of simulation, we naturally get a notion of universality:
CA able to simulate any other CA, denoted A ∈ U . This notion associated to 4 is called
intrinsic universality in the literature (see [7]). Actually, an intrinsically universal CA A



ON LOCAL SYMMETRIES AND UNIVERSALITY IN CELLULAR AUTOMATA 199

has the following stronger property (see [7, 5]): for all B, there are rescaling parameters m,
t and z such that B ⊑ A<m,t,z>.

3. Asymptotic Density and Monotone Properties

3.1. Asymptotic density

When considering a property P and a family F (two sets of CA), we can define the

probability of P in Fn,k by pn,k =
|Fn,k∩P|
|Fn,k|

. Our probabilistic framework consists in taking

the limit of this probability pn,k when the ”size” (n and/or k) of the automata grows toward
infinity. In [9], only a particular case was considered: k fixed, and n → ∞. The following
definition consider all possible enumerations of ’size’ through the notion of path.

Definition 3.1. A path is an injective function ρ : N → N
2. When the limit exists, we

define the asymptotic density of P in F following a path ρ by

dρ,F (P) = lim
x→∞

|Fρ(x) ∩ P|

|Fρ(x)|

The family of possible paths is huge and two different paths do not always define
different densities.

We denote Nc0 = N \ {0, 1, . . . , c0 − 1}. Since we consider asymptotics, we can restrain
to paths ρ : N → Nn0 × Nk0 without loss of generality.

In the following, we will obtain limit densities of value 1, which justifies the use of
non-cumulative density : in our case a density 1 following a given path implies a cumulative
limit density 1 along this path.

3.2. Density of monotone properties among symmetric family

A property P is said to be increasing with respect to simulation if ∀A ∈ P, A 4 B
implies B ∈ P. Decreasing properties are defined analogously. In this section we prove that
monotone properties have density 0 or 1 among symmetric families introduced in section
1 following particular paths. More precisely, we are going to show that any non-trivial
increasing property has density 1.

For any local function f : Qk
n → Qn, for any set E ⊆ Qk

n, we denote by f |E the restriction
of f to E. We also denote Fn,k|E = {f |E : f ∈ Fn,k}. Let {Ei}i∈I be a finite family of

subsets of Qk
n and denote E = ∪i∈IEi. We say that the family {Ei}i∈I is independent for

F if the map

ψ : Fn,k → Fn,k|Qk
n\E

×
∏

i∈I

Fn,k|Ei

defined by ψ(f) = (f |Qk
n\E

, f |E1, . . . , f |Ei
, . . . ) is a bijection (it is always injective).

By extension, we say that a collection of subshifts {Xi}i∈I is independent if the family
{E(Xi)}i∈I is independent, where E(Xi) ⊆ Qk

n is the set of words of length k occurring in
Xi.

Let SA0 = {A ∈ CA : A0 4 A} and SA0,X = {A ∈ CA : A0 4X A}.
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Lemma 3.2. Let F ⊆ CA, and A0 ∈ Fn0,k0 a given CA. For any size (n, k) (n ≥ n0,

k ≥ k0) and any collection of subshifts {Xi}i∈I , we denote αi =
|Fn,k∩SA0,Xi

|

|Fn,k|
for all i. If

{Xi}i∈I is independent for F , then

|Fn,k ∩ SA0 |

|Fn,k|
. ≥ 1−

∏

i∈I

(1− αi)

Proof. We use the notations above. As the property A0 4Xi
A is only determined by

the restriction of A to E(Xi), there exists Ai ⊆ Fn,k|Ei
such that ψ(Fn,k ∩ SA0,Xi

) =
Fn,k|Qk

n\E
× Fn,k|E1 × · · · × Fn,k|Ei−1 × Ai × Fn,k|Ei+1 · · · . And as the family {Ei}i∈I is

independent for F , ψ is bijective and αi = |Ai|
|Fn,k|Ei

| .

By definition of SA0 we have the following inclusion:
⋃

i∈I(Fn,k∩SA0,Xi
) ⊆ (Fn,k∩SA0).

To conclude, it is enough to use the fact that ψ is bijective in order to express the size of
these sets’ complement in Fn,k.

3.2.1. Increasing n, fixed k.

Proposition 3.3. In the following, E is chosen among CA, MS, Set, Ok′Set, Ok′MS.
For any A0 ∈ E ∩Kn0,k0, for all ǫ, there exists nǫ,k0 such that if n ≥ nǫ,k0

|(E ∩Kn,k0)
⋂

SA0 |

|E ∩Kn,k0|
≥ 1− ǫ

Thus, any increasing property P such that ∃A0 ∈ E∩Kn,k ∩P has density 1 in family
E ∩K for paths with fixed k. The case E = CA was already proved in [9].

Proof. Let {Xi}i∈[[ 1;⌊ n
n0
⌋ ]] be a collection of fullshifts on disjoints alphabets of size n0. They

are independent for family E∩K, whatever the choice of E. Because of captivity constraint,

the simulation happens on Xi with probability αi,n,k0 ≥ c0 = 1/n
n

k0
0

0 . We obtain by lemma

3.2
|(E∩Kn,k0

)
T

SA0
|

|E∩Kn,k0
| ≥ 1− (1− c0)

⌊ n
n0
⌋
.

3.2.2. Increasing n, fixed k. In the following, we use lemma 3.2, with an increasing number
l = O(k) of independent simulation subshifts, each providing the desired property for a

constant fraction dn of Fn,k (n is fixed). It gives
|Fn,k∩SA0

|

|Fn,k|
≥ 1− (1− dn)l and we obtain a

limit density dk,F(SA0) = 1.

Multiset CA.

Proposition 3.4. For all A0 ∈ MSn0,k0, for all ǫ > 0, for all n ≥ n0 + 2, there exists kǫ

such that for all k > kǫ,
|MSn,k∩SA0

|

|MSn,k|
> 1− ǫ.

Proof. We consider a multiset CA A0 ∈ MSn0,k0, a size n ≥ n0 +2k0 +4, and a given ǫ > 0.
In order to clarify the construction we denote the 2 biggest states of Qn by 00 and 10. For
any size k, we define l = ⌊k−k0

k0−1⌋ and o = k − l.k0. And for any j ∈ [[ k0 + 1; l − k0 − 1 ]], Mj

is the word Mj = 0l−j
0 · 1j

0.



ON LOCAL SYMMETRIES AND UNIVERSALITY IN CELLULAR AUTOMATA 201

We define the simulating subshift Xj as the set of configurations alternating a state of
Qn0 and a pattern Mj . The family {Xj}j is independent for multiset CA. On every such
subshift, the simulation will happen if the CA maintains the structure (eventually shifted)
and computes steps of A0. Multisets corresponding to patterns of length k occurring in Xj

are:

• Vj,{{(x1,1),(x2,1),...,(xk0
,1)}} =

{{(00, (k0 − 1).j + o), (10, (k0 − 1).(l − j)), (x1, 1); (x2, 1), . . . , (xk0 , 1)}}
• For 0 ≤ s ≤ o, W 0

j,s,k0−1 =

{{(00, (k0 − 1).j + o+ 1− s), (10, (k0 − 1).(l − j) + s), (x1, 1), (x2, 1), . . . , (xk0−1, 1)}}
• W 1

j,k0−1 = {{(00, (k0−1).j), (10 , (k0−1).(l−j)+o+1), (x1 , 1), (x2, 1), . . . , (xk0−1, 1)}}

• For 0 ≤ s ≤ o− 1, W 1
′

j,s,k0
=

{{(00, (k0 − 1).j + s), (10, (k0 − 1).(l − j) + o− s), (x1, 1), (x2, 1), . . . , (xk0 , 1)}}

A0 is simulated on support Xj if we have the following:

• δA(Vj,{{(x1,1),(x2,1),...,(xk0
,1)}}) = δA0({{(x1, 1), (x2, 1), ...(xk0 , 1)}})

• δA(W 0
j,s,k0−1) = 00 with 0 ≤ s ≤ o

• δA(W 1
j,k0−1) = δA(W 1

′

j,s,k0
) = 10 with 0 ≤ s ≤ o− 1

The number of involved legal multiset transitions for a given subshift Xj is less than

(2.k0 + 1).nk0
0 . Thus, the proportion of CA in MSn,k simulating A0 on Xj is at least

1/n(2.k0+1).n
k0
0 which is constant with increasing k. And the number of such possible subshift

is l = O(k). We conclude with lemma 3.2 as explained before.

Totalistic CA. We manage to make the multiset construction above to become totalistic.

To do it, we define the mapping ϕj by: ∀x ∈ Qn0 , ϕj(x) = (x(n0 +1)) ·0l−j
0 ·1j

0, with 00 = 0
and 10 = n0(n0 + 1) + 1. The j-th subshift is defined as the smallest subshift containing
(

ϕj(Q
k
n)

)Z
. The transitions are distinguishable by the number of 10, and the number of

states smaller than n0(n0 + 1) in any legal neighbourhood. The probability to simulate the
original CA on the j-th subshift is constant, and the simulating subshifts are independent
for totalistic CA. As the number of possible simulation increases, the limit probability for
any CA to simulate a given CA is increasing to 1.

Outer-multiset CA. We still consider the same possible simulations of any multiset CA
A0 ∈ CAn0,k0 by a CA Ok′MSn,k.

As A is only partially multiset, the number of transitions involved in a simulation on
one given subshift has increased: we have to consider the transitions with every possible
central pattern of size k′. Using a precise account, we ensure that the number of transitions
involved in one given simulation is bounded by ck

′
with c only depending on n0 and k0. And

the number of possible subshifts for the simulation to happen is the same as in the totally

multiset case: it is still given by ⌊k/2⌋−1. We obtain
|Ok′MSn,k∩SA0

|

|Ok′MSn,k|
> 1−

(

1− 1

(n0+2)ck′

)l

with l = O(k). To ensure that dk,Ok′MSn,k
(SA0) = 1 it is enough to suppose that k′ =

o(log(log(k)).

3.2.3. More general paths.
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Multiset captive CA. We prove a slightly more general result with the family of multiset
captive CA KMS defined by KMS = K ∩MS.

Proposition 3.5. For any path ρ : N → N
2 such that the lower limit of x 7→ n = π1(ρ(x))

is infinite, and for any A0 ∈ KMSn0,k0, for all ǫ, there exists sǫ such that if x > sǫ then

|SA0 ∩KMSρ(x)|

|KMSρ(x)|
> 1− ǫ

Proof. The collection of subshifts, and the simulation behaviour are exactly the same as in
the multiset case. If A0 is captive, each simulating transition is also captive. The number of
involved transitions is the same as in the MS case: (2.k0 + 1).nk0

0 . But using the captivity
constraint, the probability for the simulation on the j-th subshift to happen is also bounded
by : 1/(2.k0 + 1).nk0

0 . We use the fact that the number of possible simulations is still O(k)
to conclude using lemma 3.2.

Set captive CA.

Proposition 3.6. For any path ρ : N → N
2 such that the lower limit of x→ n = π1(ρ(x))

is infinite, and for any A0 ∈ KSetn0,k0, for all ǫ, there exists sǫ such that if x > sǫ then

|SA0 ∩KSetPath(x)|

|KSetPath(x)|
> 1− ǫ

Proof. Given A0, n, and k big enough, we denote the 2k0 + 4 first states of Qn by 0i

and 1i, i ∈ [[ 1; k0 + 2 ]]. The j-th subshift is the set of configurations alternating words

0o
i 1

l−o
i (with l = ⌊k−k0

k0−1⌋ and o = k − l.k0) legally ordered and simulating states taken from

Σj = [[ 2k0 + 4 + j.n0; 2k0 + 4 + j.n0 + n0 − 1 ]]. Legal set transitions for this subshift are

• {a1, . . . , ak0} ∪ {0i, 1i, . . . , 0i+k−1, 1i+k−1, 0i+k} → δA0({a1, . . . , ak})

• {a1, . . . , ak0+e} ∪ {1i−1, 0i, 1i, . . . , 0i+k−1, 1i+k−1, 0i+k} → 1i+k/2 with e ∈ {0,−1}
• {a1, . . . , ak0+e}∪{0i, 1i, 0i+1, 1i+1, . . . , 1i+k−1, 0i+k, 1i+k} → 0i+k/2 with e ∈ {0,−1}

With indicies modulo k + 2, and ax ∈ Σj for all x. For all i those transitions may be
identified by a set CA using the underlined state.

So we need n0 + 2.(k0 + 2) different states to make the simulation on this subshift and
the number of involved transitions is equal to 3.(k0 + 2). Thus, because of captivity, the
proportion p of CA in which one given simulation happens is constant when k, or n is

increasing. And the family of the ⌊n−2(k0+2)
n0

⌋ possible simulation subshifts is independent.

With lemma 3.2, we obtain the inequality
|SA0

∩KSetn,k |

|KSetn,k |
> 1−(1−p)

⌊
n−2(k0+2)

n0
⌋
. We conclude

the proof using the hypothesis on the path, limx→∞n = limx→∞π1(x) = ∞.
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4. Encodings

In the following we prove that there exists universal cellular automata in most of the
families defined above. This is an important step considering the fact that some well known
locally defined family, such as LR-permutative CA, do not contain any universal CA (be-
cause intrinsic universality implies non-surjectivity, see [5]). In fact, for every given family
F , we introduce an encoding map ϕF : CA → F such that for any A, its corresponding
encoded version ϕF (A) verifies A 4 ϕF (A). The existence of a universal CA in F follows
by application of the encoding to any universal CA. Moreover, in some cases, we obtain a
stronger result: the encoded CA is universal if and only if the original CA is universal.

Set CA. Given a CA A ∈ CAn,k of state set Qn, we construct Ψ(A) ∈ Set with state set
Q = Qn × {0, . . . , k + 1} ∪ {#} of size n.(k + 2) + 1.

A configuration c ∈ QZ is said legal if c(z) 6= # for all z and if the projection of c on
the second component of states (which is well-defined) is periodic of period 1 · 2 · · · (k + 2).
Thus, for any legal configuration c and any position z, the set of states of cells which are
neighbours of z is of the form:

Ei(a1, . . . , ak) = {(a1, i), (a2, i+ 1 mod k + 2), ..., (ak , i+ k − 1 mod k + 2)}

for some i ∈ {1, . . . , k + 2} (with aj ∈ Qn for all j). Ψ(A) is defined by the local rule f as
follows:

f(x1, . . . , xk) =

{

(

δA(a1, . . . , ak), i+ ⌊k/2⌋ mod k + 2
)

if {x1, . . . , xk} = Ei(a1, . . . , ak),

# else.

By construction, we have Ψ(A) ∈ Set. Moreover the encoding preserves universality.
As a direct corollary, we get the undecidability of universality in family Set (universality
was proven undecidable in the general case in [6]).

Theorem 4.1. The encoding Ψ : CA → Set satisfies the following:

(1) A 4 Ψ(A) for all A,
(2) A is universal if and only if Ψ(A) is universal.

Captive set CA. We denote by KSet the intersection K ∩ Set. The previous construction
does not generally produce captive CA (even if the original CA is captive). We now describe
a new encoding which produces only CA belonging to KSet. It could have been used to
prove the existence of universal set CA, but we have no proof that it satisfies the second
assertion of theorem 4.1 (hence the usefulness of previous construction).

The new mapping ϕ : CA → KSet is an adaptation of Ψ. We keep the idea of states
being a cartesian product of the original alphabet Qn and a family of labels which is
in this case {0, ..., 2k − 2}. But, in order to have every transition satisfying the captive
constraint, we introduce ’libraries’ of states placed regularly in legal configurations: between
two computing cells, we place the i-th library for some i, denoted by Li, which contains the
n states {(x, i)}x∈Qn . For technical reasons, it also contains special states (#, i) and (#′, i),
and it is ordered as follows: Li = (#, i) · (1, i) · (2, i) · · · (n, i) · (#′, i). Thus, ϕ(A) has state
set Q = {0, . . . , 2k − 2} × (Qn ∪ {#,#

′}).
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The simulation of A by ϕ(A) takes place on ’legal’ configurations defined by an alter-
nation of an isolated state of label i, and a library of type k + i, precisely:

· · · (q1, i) · Lk+i mod 2k−1 · (q2, i+ 1 mod 2k − 1) · Lk+i+1 mod 2k−1 · · ·

Those legal configurations will be maintained in one-to-one correspondence with configu-
rations of A, successive isolated states between libraries corresponding to successive states
from A. However, this time, the simulation of 1 step of A will use 2 steps of ϕ(A) and only
even time steps of ϕ(A) (including time 0) will produce legal configurations. For odd time
steps, we introduce ’intermediate’ configurations defined by an alternation of an isolated
state of label i, and a library of type r + i, precisely:

· · · (q1, i) · Lr+i mod 2k−1 · (q2, i+ 1 mod 2k − 1) · Lr+i+1 mod 2k−1 · · ·

where r = ⌊k/2⌋ is the radius of A.
To describe the local rule of ϕ(A), we introduce the following sets:

• Vi(a1, . . . , ak) = {(a1, i), (a2, i+ 1 mod 2k − 1) . . . (ak, i+ k − 1 mod 2k − 1)};
• Li is the set of states present in the word Li;
• Bi,x = {(#, i), (1, i), ..., (b − 1, i)} is the set of states in the prefix of of Li of length
x;

• Ei,x = {(e, i), ..., (n, i), (#′ , i)} is the set of states in the suffix of Li of length
n− x+ 1.

ϕ(A) has arity k′ = k + (k − 1) · (n+ 2) and, on legal configurations, the set of states
seen in a neighbourhood has one of the following types:

T1: Vi(a1, . . . , ak) ∪ Li+k mod 2k−1 ∪ . . . ∪ Li+2k−2 mod 2k−1;
T2: Vi(a1, . . . , ak) ∪ Ei+k−1 mod 2k−1,x ∪ Li+k mod 2k−1 ∪ . . .
. . . ∪ Li+2k−3 mod 2k−1 ∪Bi+2k−2 mod 2k−1,x.

On intermediate configurations, the set of states seen in a neighbourhood has one of
the following types:

T3: Vi(a1, . . . , ak) ∪ Li−r mod 2k−1 ∪ . . . ∪ Li−r+k−2 mod 2k−1;
T4: Vi(a1, . . . , ak) ∪ Ei−r−1 mod 2k−2,x ∪ Li−r mod 2k−1 ∪ . . .
. . . ∪ Li−r+k−3 mod 2k−1 ∪Bi−r+k−2 mod 2k−1,x.

An important point is that the 4 types are disjoint: it is obvious that each of T1 and
T3 is disjoint from each of T2 and T4, and the overall disjointness follows from the fact
that sets of type T3 and T4 have less elements than T1 and T2 since set Li are disjoint but

Vi(a1, . . . , ak) ∩ Lj 6= ∅ ⇐⇒ i ≤ j ≤ i+ k − 1

Using notations above, the behaviour of ϕ(A) is defined by 4 kinds of transitions ac-
cording to the kind of neighbourhood seen:

T1: → (δA(a1, ...ak), i+ 2k − 2 mod 2k − 1)
T2: → (x, i+ k − 1 mod 2k − 1)
T3: → (a1+r, i+ r mod 2k − 1)
T4: → (x, i+ r)

The crucial point for transition of type T3 to be well-defined is that a1+r can be unam-
biguously determined given that the libraries present have labels ranging from i− r − 1 to
i− r + k − 2 = i+ r − 1 whereas a1+r is associated to label i+ r in Vi(a1, . . . , ak) (every-
thing is taken modulo 2k − 1).
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Intuitively, type T1 corresponds to simulation of transitions of A and the three other
types are devoted to the modification of label of isolated states or the displacement of
libraries according to the following scheme:

• At even steps, transitions of type T1 apply the local rule δA, but the result receive a
label j such that Lj is present in the neighbourhood to satisfy captivity constraint;
meanwhile, transitions of type T2 just shift the libraries.

• At odd steps, the difference of labels between libraries and isolated states is wrong;
to come back to a legal configuration, transitions of type T3 leave isolated states
unchanged while transitions of type T4 shift the libraries.

To completely define ϕ(A), we fix some ordering on Q and specify that, when the set E
of neighbours doesn’t correspond to any of the 4 types above, the local rule of ϕ(A) simply
chooses the greatest state in E. With that definition, ϕ(A) always belong to KSet, because
it depends only on the set of states in the neighbourhood, and because each transition
produces a state already present in the neighbourhood (either the neighbourhood contains
Li for the right value of i, or the local rule simply chooses the greatest element).

Theorem 4.2. For any A, we have A 4 ϕ(A). Therefore families MS, KMS, Set and
KSet contain universal CA.

The construction above corresponds to the strongest symmetry constraint (captive set
CA), put aside totalistic CA. The existence of (intrinsically) universal totalistic CA is proven
in [5]. The case of outer-totalistic CA follows by inclusion.

5. Universality Everywhere

Gathering the density results of section 3 and the existential results for universality in
section 4, we obtain an asymptotic density 1 for universality in the following classes.

Family F Condition on the path ρ Comments

Captive CA ∃k0 s.t. ρ(x) = (x, k0) Already in [9]
Multiset CA ∃n0 s.t. ρ(x) = (n0, x)
k′-outer-multiset ∃n0 s.t. ρ(x) = (n0, x) k′ = o(log(log k))
Totalistic CA ∃n0 s.t. ρ(x) = (n0, x)
k′-outer-totalistic ∃n0 s.t. ρ(x) = (n0, x) k′ = o(log(log k))
Set captive CA limx→∞ π1(ρ(x)) = +∞
Multiset captive CA limx→∞ π1(ρ(x)) = +∞

6. Open Problems and Future Work

As summarised in the previous section, our work establishes that universality has as-
ymptotic density 1 along path ρ in several families defined by local symmetries, provided ρ
verifies some hypothesis depending on the family considered.

Notably, we leave open the question of the density of universality in the following cases:

• increasing state set for families MS, Set, Tot (and outer-versions),
• increasing neighbourhood for family K.
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We have no result (and no intuition) concerning the case of the whole set of CA either.
A possible progress on that topic could be to reduce the density problem of a family F1 to
the density problem of a family F2, i.e. to show that the densities (if they exist) in the two
families are equal up to non-trivial multiplicative constants.

Another perspective, especially for multiset CA (or sub-families Set and Tot), is to
extend our result to higher dimensions or even to more general lattice of cells. Indeed, the
symmetry involved here implies isotropy which is an often required property in modelling.

Finally, it remains to study typical dynamics obtained in each family from random
initial configuration. Experiments suggest that self-organisation in those families is far
more frequent than in CA in general.
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1 Institut für Informatik, TU München, Boltzmannstr. 3, 85748 Munich, Germany.
E-mail address: brazdil@fi.muni.cz
URL: http://www7.in.tum.de/

2 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic.
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A. We consider a class of infinite-state stochastic games generated by stateless pushdown
automata (or, equivalently, 1-exit recursive state machines), where the winning objective is specified
by a regular set of target configurations and a qualitative probability constraint ‘>0’ or ‘=1’. The
goal of one player is to maximize the probability of reachingthe target set so that the constraint is
satisfied, while the other player aims at the opposite. We show that the winner in such games can be
determined inNP∩ co-NP. Further, we prove that the winning regions for both playersare regular,
and we design algorithms which compute the associated finite-state automata. Finally, we show that
winning strategies can be synthesized effectively.

1. Introduction

Stochastic games are a formal model for discrete systems where the behavior in each state is
either controllable, adversarial, or stochastic. Formally, a stochastic game is a directed graphG with
a denumerable set of verticesV which are split into three disjoint subsetsV�, V^, andV©. For every
v ∈ V©, there is a fixed probability distribution over the outgoingedges ofv. We also require that the
set of outgoing edges of every vertex is nonempty. The game isinitiated by putting a token on some
vertex. The token is then moved from vertex to vertex by two players,� and^, who choose the
next move in the vertices ofV� andV^, respectively. In the vertices ofV©, the outgoing edges are
chosen according to the associated fixed probability distribution. Aquantitative winning objective
is specified by some Borel setW of infinite paths inG and a probability constraint⊲̺, where
⊲ ∈ {>,≥} is a comparison and̺∈ [0, 1]. An important subclass of quantitative winning objectives
arequalitative winning objectiveswhere the constant̺must be either 0 or 1. The goal of player� is
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c© T. Brázdil, V. Brožek, A. Kučera, and J. Obdržálek
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to maximize the probability of all runs that stay inW so that it is⊲-related to̺ , while player̂ aims
at the opposite. Astrategyspecifies how a player should play. In general, a strategy mayor may
not depend on the history of a play (we say that a strategy ishistory-dependent (H)or memoryless
(M)), and the edges may be chosen deterministically or randomly(deterministic (D)andrandomized
(R) strategies). In the case of randomized strategies, a playerchooses a probability distribution on
the set of outgoing edges. Note that deterministic strategies can be seen as restricted randomized
strategies, where one of the outgoing edges has probability1. Each pair of strategies (σ, π) for
players� and^ determines aplay, i.e., a unique Markov chain obtained fromG by applying the
strategiesσ andπ in the natural way. Theoutcomeof a play initiated inv is the probability of all
runs initiated inv that are in the setW, denotedPσ,πv (W). We say that a play is (⊲̺)-won by player�
if its outcome is⊲-related to̺ ; otherwise, the play is (⊲̺)-won by player̂ . A strategy of player�
(or player^) is (⊲̺)-winning if for every strategy of the other player, the correspondingplay is
(⊲̺)-won by player� (or by player^, respectively). A natural question is whether one of the two
players always has a (⊲̺)-winning strategy, i.e., whether the game isdetermined. The answer is
somewhat subtle. A celebrated result of Martin [18] (see also [17]) implies that stochastic games
with Borel winning conditions areweakly determined, i.e., each vertexv has avaluegiven by

val(v) = sup
σ

inf
π
Pσ,πv (W) = inf

π
sup
σ

Pσ,πv (W) (1.1)

Hereσ andπ ranges over the set of all strategies for player� and player̂ , respectively. However,
the players do not necessarily haveoptimal strategies that would guarantee the outcomeval(v) or
better against every strategy of the opponent. On the other hand, it follows directly from the above
equation that each player has anε-optimal strategy (see Definition 2.3) for everyε > 0. This means
that if ̺ , val(v), then one of the two players has a (⊲̺)-winning strategy for the game initiated
in v. The situation when̺ = val(v) is more problematic, and to the best of our knowledge, the
literature does not yet offer a general answer. Let us also note that forfinite-statestochastic games
and the “usual” classes of quantitative/qualitative Borel objectives (such as Büchi, Rabin, Street,
etc.), the determinacy follows from the existence of optimal strategies (hence, the sup and inf in
Equation 1.1 can be safely replaced with max and min, respectively). For classes of infinite-state
stochastic games (such as stochastic BPA games considered in this paper), optimal strategies do not
necessarily exist and the associated determinacy results must be proven by other methods.

Algorithmic issues for stochastic games with quantitative/qualitative winning objectives have
been studied mainly for finite-state stochastic games. A lotof attention has been devoted to quanti-
tative reachability objectives, even in the special case when̺ = 1

2. The problem whether player�
has a (>1

2)-winning strategy is known to be inNP∩ co-NP, but its membership toP is one of the
long-standing open problems in algorithmic game theory [9,20]. Later, more complicated qualita-
tive/quantitativeω-regular winning objectives (such as Büchi, co-Büchi, Rabin, Street, Muller, etc.)
were considered, and the complexity of the corresponding decision problems was analysed. We
refer to [10, 6, 8, 7, 21, 19] for more details. As for infinite-state stochastic games, the attention has
so far been focused on stochastic games induced by lossy channel systems [1, 2] and by pushdown
automata (or, equivalently, recursive state machines) [14, 15, 13, 12, 4]. In the next paragraphs,
we discuss the latter model in greater detail because these results are closely related to the results
presented in this paper.

A pushdown automaton (PDA)(see, e.g., [16]) is equipped with a finite control unit and an
unbounded stack. The dynamics is specified by a finite set of rules of the formpX ֒→ qα, where
p, q are control states,X is a stack symbol, andα is a (possibly empty) sequence of stack symbols.
A rule of the form pX ֒→ qα is applicable to every configuration of the formpXβ and produces
the configurationqαβ. If there are several rules with the same left-hand side, oneof them must be
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chosen, and the choice is appointed to player�, player^, or it is randomized. Technically, the set
of all left-hand sides (i.e., pairs of the formpX) is split into three disjoint subsetsH�, H^, andH©,
and for all pX ∈ H© there is a fixed probability distribution over the set of all rules of the form
pX ֒→ qα. Thus, each PDA induces the associated infinite-state stochastic game where the vertices
are PDA configurations and the edges are determined in the natural way. An important subclass
of PDA is obtained by restricting the number of control states to 1. Such PDA are also known as
statelessPDA or (mainly in concurrency theory) as BPA. PDA and BPA correspond torecursive
state machines (RSM)and1-exit RSMrespectively, in the sense that their descriptive powers are
equivalent, and there are effective linear-time translations between the corresponding models.

In [13], the quantitative and qualitativetermination objectivefor PDA and BPA stochastic
games is examined (a terminating run is a run which hits a configuration with the empty stack;
hence, termination is a special form of reachability). For BPA, it is shown that the vector of optimal
values (val(X),X ∈ Γ), whereΓ is the stack alphabet, forms the least solution of an effectively con-
structible system of min-max equations. Moreover, both players have optimal MD strategies which
depend only on the top-of-the-stack symbol of a given configuration (such strategies are called
SMD, meaning Stackless MD). Hence, stochastic BPA games with quantitative/qualitative termina-
tion objectives are determined. Since the least solution ofthe constructed equational system can be
encoded in first order theory of the reals, the existence of a (⊲̺)-winning strategy for player� and
player^ can be decided in polynomial space. In the same paper [13], theΣP

2 ∩Π
P
2 upper complexity

bound for the subclass of qualitative termination objectives is established. As for PDA games, it
is shown that for every fixedε > 0, the problem to distinguish whether the optimal valueval(pX)
is equal to 1 or less thanε, is undecidable. TheΣP

2 ∩ Π
P
2 upper bound for stochastic BPA games

with qualitative termination objectives was improved toNP∩ co-NP in [15]. In the same paper, it
is also shown that the quantitative reachability problem for finite-state stochastic games (see above)
is efficiently reducible to the qualitative termination problem for stochastic BPA games. Hence, the
NP ∩ co-NPupper bound cannot be improved without a major breakthroughin algorithmic game
theory. In the special case of stochastic BPA games whereH^ = ∅ or H� = ∅, the qualitative
termination problem is shown to be inP (observe that ifH^ = ∅ or H� = ∅, then a given BPA
induces an infinite-state Markov decision process and the goal of the only player is to maximize
or minimize the termination probability, respectively). The results for Markov decision processes
induced by BPA are generalized to (arbitrary) qualitativereachability objectivesin [5], retaining the
P upper complexity bound. In the same paper, it is also noted that the properties of reachability
objectives are quite different from the ones of termination (in particular, there is no apparent way
how to express the vector of optimal values as a solution of some recursive equational system, and
the SMD determinacy result (see above) does not hold).

Our contribution: In this paper, we continue the study initiated in [14, 15, 13,12, 4] and
solve the qualitative reachability problem for unrestricted stochastic BPA games. Thus, we obtain a
substantial generalization of the previous results.

We start by resolving the determinacy issue in Section 3, andthis part of our work actually
applies to arbitraryfinitely branchingstochastic games, where each vertex has only finitely many
successors (BPA stochastic games are finitely branching). We show that finitely branching stochastic
games with quantitative/qualitative reachability objectives are determined, i.e., in every vertex, one
of the two players has a (⊲̺)-wining strategy. This is a consequence of several observations that are
specific for reachability objectives and perhaps interesting on their own.

The main results of our paper, presented in Section 4, concern stochastic BPA games with
qualitative reachability objectives. In the context of BPA, a reachability objective is specified by
a regular setT of target configurations. We show that the problem of determining the winner in
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stochastic BPA games with qualitative reachability objectives is in NP ∩ co-NP. Here we rely
on the previously discussed results about qualitative termination [15] and use the corresponding
algorithms as “black-box procedures” at appropriate places. We also rely on observations presented
in [5] which were used to solve the simpler case with only one player. However, the full (two-
player) case brings completely new complications that needto be tackled by new methods and
ideas. Many “natural” hypotheses turned out to be incorrect(some of the interesting cases are
documented by examples in Section 4). We also show that the sets of all configurations where
player� and player̂ have a (⊲̺)-winning strategy (where̺ ∈ {0, 1}) is effectively regular and
the corresponding finite-state automata are effectively constructible by a deterministic polynomial-
time algorithm withNP ∩ co-NP oracle. Finally, we also give an algorithm whichcomputesa
(⊲̺)-winning strategy if it exists. These strategies are randomized and memoryless, and they are
alsoeffectively regularin the sense that their functionality can effectively be encoded by finite-state
automata (see Definition 4.3). Hence, winning strategies instochastic BPA games with qualitative
reachability objectives can be effectively implemented.

Due to space constraints, most of the proofs had to be omittedand can be found in the full
version of this paper [3]. In the main body of the paper, we tryto sketch the key ideas and provide
some intuition behind the presented technical constructions.

2. Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational numbers, real num-
bers, and non-negative real numbers are denotedN,N0,Q,R, andR≥0, respectively. For every finite
or countably infinite setS, the symbolS∗ denotes the set of all finite words overS. The length of
a given wordu is denoted|u|, and the individual letters inu are denotedu(0), · · · , u(|u| − 1). The
empty word is denotedε, where|ε| = 0. We also useS+ to denote the setS∗ r {ε}. For every finite
or countably infinite setM, a binary relation→ ⊆ M × M is total if for every m ∈ M there is some
n ∈ M such thatm → n. A path in M = (M,→) is a finite or infinite sequencew = m0,m1, . . .

such thatmi → mi+1 for every i. The lengthof a finite pathw = m0, . . . ,mi, denotedlength(w), is
i + 1. We also usew(i) to denote the elementmi of w, andwi to denote the pathmi ,mi+1, . . . (by
writing w(i) = m or wi we implicitly impose the condition thatlength(w) ≥ i+1). A givenn ∈ M
is reachablefrom a givenm ∈ M, written m→∗ n, if there is a finite path fromm to n. A run is
an infinite path. The sets of all finite paths and all runs inM are denotedFPath(M) andRun(M),
respectively. Similarly, the sets of all finite paths and runs that start in a givenm ∈ M are denoted
FPath(M,m) andRun(M,m), respectively.

Now we recall basic notions of probability theory. LetA be a finite or countably infinite set. A
probability distributionon A is a function f : A→ R≥0 such that

∑
a∈A f (a) = 1. A distribution f is

rational if f (a) ∈ Q for everya ∈ A, positiveif f (a) > 0 for everya ∈ A, andDirac if f (a) = 1 for
somea ∈ A. The set of all distributions onA is denotedD(A).

A σ-field over a setX is a setF ⊆ 2X that includesX and is closed under complement and
countable union. Ameasurable spaceis a pair (X,F ) whereX is a set calledsample spaceandF is
aσ-field overX. A probability measureover a measurable space (X,F ) is a functionP : F → R≥0

such that, for each countable collection{Xi}i∈I of pairwise disjoint elements ofF , P(
⋃

i∈I Xi) =∑
i∈I P(Xi), and moreoverP(X) = 1. A probability spaceis a triple (X,F ,P) where (X,F ) is a

measurable space andP is a probability measure over (X,F ).

Definition 2.1. A Markov chainis a tripleM = (M, −→ ,Prob) whereM is a finite or countably
infinite set ofstates, −→ ⊆ M × M is a totaltransition relation, andProb is a function which to
eachs∈ M assigns a positive probability distribution over the set ofits outgoing transitions.
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In the rest of this paper, we writes x
−→ t whenevers−→ t and Prob((s, t)) = x. Eachw ∈

FPath(M) determines abasic cylinder Run(M,w) which consists of all runs that start withw. To
everys∈ M we associate the probability space (Run(M, s),F ,P) whereF is theσ-field generated
by all basic cylindersRun(M,w) wherew starts withs, andP : F → R≥0 is the unique probability
measure such thatP(Run(M,w)) = Πm−1

i=0 xi wherew = s0, · · · , sm andsi
xi−→ si+1 for every 0≤ i < m

(if m= 0, we putP(Run(M,w)) = 1).

Definition 2.2. A stochastic gameis a tupleG = (V, 7→ , (V�,V^,V©),Prob) whereV is a finite or
countably infinite set ofvertices, 7→ ⊆ V × V is a totaledge relation, (V�,V^,V©) is a partition
of V, andProb is a probability assignmentwhich to eachv ∈ V© assigns a positive probability
distribution on the set of its outgoing transitions. We say that G is finitely branchingif for each
v ∈ V there are only finitely manyu ∈ V such thatv 7→ u.

A stochastic game is played by two players,� and^, who select the moves in the vertices ofV�
andV^, respectively. Let⊙ ∈ {�,^}. A strategyfor player⊙ is a function which to eachwv∈ V∗V⊙
assigns a probability distribution on the set of outgoing edges ofv. The set of all strategies for
player� and player̂ is denotedΣ andΠ, respectively. We say that a strategyτ is memoryless (M)
if τ(wv) depends just on the last vertexv, anddeterministic (D)if τ(wv) is a Dirac distribution for all
wv. Strategies that are not necessarily memoryless are calledhistory-dependent (H), and strategies
that are not necessarily deterministic are calledrandomized (R). Hence, we can define the following
four classes of strategies: MD, MR, HD, and HR, where MD⊆ HD ⊆ HR and MD⊆ MR ⊆ HR,
but MR and HD are incomparable.

Each pair of strategies (σ, π) ∈ Σ × Π determines a uniqueplay of the gameG, which is a
Markov chainG(σ, π) whereV+ is the set of states, andwu x

−→wuu′ iff u 7→ u′ and one of the
following conditions holds:

• u ∈ V� andσ(wu) assignsx to u 7→ u′, wherex > 0;
• u ∈ V^ andπ(wu) assignsx to u 7→ u′, wherex > 0;
• u ∈ V© andu x

7→u′.
Let T ⊆ V be a set oftarget vertices. For each pair of strategies (σ, π) ∈ Σ × Π and everyv ∈ V,
let Pσ,πv (Reach(T)) be the probability of allw ∈ Run(G(σ, π), v) such thatw visits someu ∈ T
(technically, this means thatw(i) ∈ V∗T for somei ∈ N0). We say that a givenv ∈ V has a valueif
supσ∈Σ infπ∈ΠP

σ,π
v (Reach(T)) = inf π∈Π supσ∈ΣP

σ,π
v (Reach(T)). If v has a value, thenval(v) denotes

thevalue of vdefined by this equality. Since the set of all runs that visit avertex ofT is obviously
Borel, we can apply the powerful result of Martin [18] (see also Theorem 3.3) and conclude that
every v∈ V has a value.

Definition 2.3. Let ε ≥ 0. We say that

• σ ∈ Σ is ε-optimal(or ε-optimal maximizing) if Pσ,πv (Reach(T)) ≥ val(v) − ε for all π ∈ Π;
• π ∈ Π is ε-optimal (or ε-optimal minimizing) if Pσ,πv (Reach(T)) ≤ val(v) + ε for all σ ∈ Σ.

A 0-optimal strategy is calledoptimal. A (quantitative) reachability objectiveis a pair (T,⊲̺)
whereT ⊆ V and⊲̺ is a probability constraint, i.e.,⊲ ∈ {>,≥} and̺ ∈ [0, 1]. If ̺ ∈ {0, 1}, then the
objective isqualitative. We say that

• σ ∈ Σ is (⊲̺)-winning if Pσ,πv (Reach(T)) ⊲ ̺ for all π ∈ Π;
• π ∈ Π is (⊲̺)-winning if Pσ,πv (Reach(T)) 6⊲ ̺ for all σ ∈ Σ.
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3. The Determinacy of Stochastic Games with Reachability Objectives

In this section we show that finitely-branching stochastic games with quantitative/qualitative
reachability objectives aredeterminedin the sense that for every quantitative reachability objective
(T,⊲̺) and every vertexv of a finitely branching stochastic game, one of the two players has a
(⊲̺)-winning strategy.

For the rest of this section, let us fix a finitely branching gameG = (V, 7→ , (V�,V^,V©),Prob)
and a set of target verticesT. Also, for everyn ∈ N0 and a pair of strategies (σ, π) ∈ Σ × Π, let
P
σ,π
v (Reachn(T)) be the probability of all runsw ∈ Run(G(σ, π), v) such thatw visits someu ∈ T in

at mostn transitions (clearly,Pσ,πv (Reach(T)) = limn→∞ P
σ,π
v (Reachn(T))).

To keep this paper self-contained, we start by giving a simple proof of Martin’s weak de-
terminacy result (Equation 1.1) for the special case of finitely-branching games with reachability
objectives. For everyv ∈ V and i ∈ N0, we defineVi(v) ∈ N0 inductively as follows:V0(v) is
equal either to 1 or 0, depending on whetherv ∈ T or not, respectively.Vi+1(v) (for v < T) is equal
either to max{Vi(u) | v 7→ u}, min{Vi(u) | v 7→ u}, or

∑

v
x
7→u

x · Vi(u), depending on whetherv ∈ V�,
v ∈ V^, or v ∈ V©, respectively. (Forv ∈ T we putVi+1(v) = 1.) Further, putV(v) = lim i→∞Vi(v)
(note that the limit exists because the sequenceV0(v),V1(v), . . . is non-decreasing and bounded).
A straightforward induction oni reveals that

Vi(v) = max
σ∈Σ

min
π∈Π
Pσ,πv (Reachi(T)) = min

π∈Π
max
σ∈Σ
Pσ,πv (Reachi(T))

Also observe that, for everyi ∈ N0, there are fixed HD strategiesσi ∈ Σ andπi ∈ Π such that for
everyπ ∈ Π andσ ∈ Σ we have thatPσ,πi

v (Reachi(T)) ≤ Vi(v) ≤ Pσi ,π
v (Reachi(T)).

Theorem 3.1. Every v∈ V has a value and val(v) = V(v).

Proof. One can easily verify that

V(v) ≤ sup
σ∈Σ

inf
π∈Π
Pσ,πv (Reach(T)) ≤ inf

π∈Π
sup
σ∈Σ

Pσ,πv (Reach(T)) (3.1)

Hence, it suffices to show that, for everyv ∈ V, player^ has a (>V(v))-winning HD strategy ¯π in v.
For everyi ∈ N, let Wi be the set of allw ∈ V∗V^ such thatw(0) = v, length(w) = i, and

w(i) 7→w(i+1) for every 0≤ i < length(w). The strategy ¯π is defined inductively, together with an
auxiliary setΠi ⊆ Π. We start by puttingΠ1 = {πi | i ∈ N0}. Now assume thatΠi has already been
defined. For everywu ∈ Wi , let us fix an edgeu 7→ u′ such thatπ(wu)(u 7→ u′) = 1 for infinitely
manyπ ∈ Πi (observe that there must be such an edge becauseG is finitely branching). We put
π̄(wu)(u 7→ u′) = 1 andΠi+1 = {π ∈ Πi | π(wu)(u 7→ u′) = 1}.

We claim that for everyσ ∈ Σ we have thatPσ,π̄v (Reach(T)) ≤ V(v). Assume the opposite.
Then there is ¯σ ∈ Σ such thatPσ̄,π̄v (Reach(T)) = ̺ > V(v). Further, there is somek ∈ N such
that Pσ̄,π̄v (Reachk(T)) > V(v) + (̺ − V(v))/2. It follows directly from the definition of ¯π that
there is somem ∈ N,m > k such thatπm ∈ Πm and π̄(w) = πm(w) for every w ∈ Wm. Hence,
P
σ̄,πm
v (Reachm(T)) > V(v) + (̺ −V(v))/2 > V(v), which contradicts the definition ofV.

The characterization ofval(v) as a limit ofVi(v) has the following important consequence:

Lemma 3.2. For every fixed vertex v∈ V, we have that

∀ε>0 ∃σ ∈ Σ ∃n ∈ N ∀π ∈ Π : Pσ,πv (Reachn(T)) > val(v) − ε

Proof. It suffices to choose a sufficiently largen ∈ N and putσ = σn.
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Note that from the proof of Theorem 3.1 we obtain a HD strategyπ̄ ∈ Π such that∀v ∈ V and
∀σ ∈ Σ we have thatPσ,π̄v (Reach(T)) ≤ val(v). This result can be strengthened to MD strategies.

Theorem 3.3. There is a MD strategyπ ∈ Π such that for every v∈ V and everyσ ∈ Σ we have
thatPσ,πv (Reach(T)) ≤ val(v). That is,π is an optimal minimizing strategy in every vertex.

Theorem 3.4(Determinacy). Let v ∈ V and let(T,⊲̺) be a (quantitative) reachability objective.
Then one of the two players has a(⊲̺)-winning strategy in v.

Proof outline. We prove that if player̂ does not have a⊲̺-winning strategy, then player� has a
⊲̺-winning strategy. That is, we prove the implication

∀π ∈ Π ∃σ ∈ Σ : Pσ,πv (Reach(T)) ⊲ ̺ ⇒ ∃σ ∈ Σ ∀π ∈ Π : Pσ,πv (Reach(T)) ⊲ ̺ (3.2)

If ⊲ is > or val(v) , ̺, then this follows easily by Theorem 3.3. For the constraint≥0 the statement
is trivial. Now suppose that⊲ is ≥ and̺ = val(v) > 0, and assume that the left-hand side in (3.2)
holds. Observe that we can safely restrict the set of edges available to player� to thoseu 7→ u′ where
val(u′) = val(u). Using the left-hand side of (3.2), one can show that for every s ∈ V, the value
val(s) stays unchanged in the new game obtained by applying this restriction. Due to Lemma 3.2, to
everys ∈ V in the new game we can associate a strategyσs ∈ Σ andns ∈ N such that for everyπ ∈ Π
we have thatPσs,π

s (Reachns(T)) > val(s)/2. The≥̺-winning strategyσ for player� is obtained by
“iterating” the strategiesσs in the following sense: we start withσv, and after performing a pathw
of lengthnv, we change the strategy toσs wheres is the last vertex visited byw. The strategyσs is
used for the nextns transition, and then we perform another “iteration”. Observe that each round of
this “iteration” decreases the probability thatT is not reached by a factor of 1/2, independently of
the strategy of player̂ .

4. Qualitative Reachability in Stochastic BPA Games

Stochastic BPA games correspond to stochastic games induced by stateless pushdown automata
or 1-exit recursive state machines (see Section 1). A formaldefinition follows.

Definition 4.1. A stochastic BPAgame is a tuple∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) whereΓ is a finite
stack alphabet, ֒→ ⊆ Γ × Γ≤2 is a finite set ofrules (whereΓ≤2 = {w ∈ Γ∗ : |w| ≤ 2}) such that
for eachX ∈ Γ there is some ruleX ֒→α, (Γ�, Γ^, Γ©) is a partition ofΓ, andProb is aprobability
assignmentwhich to eachX ∈ Γ© assigns a rational positive probability distribution on the set of
all rules of the formX ֒→α.

A configuration of ∆ is a word α ∈ Γ∗, which can intuitively be interpreted as the
current stack content where the leftmost symbol ofα is on top of the stack. Each sto-
chastic BPA game∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) determines a unique stochastic game
G∆ = (Γ∗, 7→ , (Γ�Γ∗, Γ^Γ∗, Γ©Γ∗ ∪ {ε}),Prob∆) where the transitions of7→ are determined as fol-
lows: ε 7→ ε, andXβ 7→αβ iff X ֒→α. The probability assignmentProb∆ is the natural extension of
Prob, i.e.,ε 1

7→ ε and for allX ∈ Γ© we have thatXβ x
7→αβ iff X x

֒→α.
In this section we consider stochastic BPA games with qualitative termination objectives (T,⊲̺)

whereT ⊆ Γ∗ is aregular set of configurations. For technical convenience, we define the size ofT
as the size of the minimal deterministic finite-state automaton AT = (Q, q0, δ, F) which recognizes
thereverseof T (if we view configurations as stacks, this corresponds to bottom-up direction). Note
that the automatonAT can be simulated on-the-fly in∆ by employing standard techniques (see, e.g.,
[11]). That is, the stack alphabet is extended toΓ × Q and the rules are adjusted accordingly (for
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example, ifX ֒→YZ, then for everyq ∈ Q the extended BPA game has a rule (X, q) ֒→ (Y, r)(Z, q)
whereδ(q,Z) = r). Note that the on-the-fly simulation ofAT in ∆ does not affect the way how
the game is played, and the size of the extended game in polynomial in |∆| and |AT |. The main
advantage of this simulation is that the information whether a current configuration belongs toT or
not can now be deduced just by looking at the symbol on top of the stack. This leads to an important
technical simplification in the definition ofT:

Definition 4.2. We say thatT ⊆ Γ∗ is simple if ε < T and there isΓT ⊆ Γ such that for every
Xα ∈ Γ+ we have thatXα ∈ T iff X ∈ ΓT .

Note that the requirementε < T in the previous definition is not truly restrictive, becauseeach
BPA can be equipped with a fresh bottom-of-the-stack symbolwhich cannot be removed. Hence,
we can safely restrict ourselves just to simple sets of target configurations. All of the obtained
results (including the complexity bounds) are valid also for regular sets of target configurations.

Since stochastic BPA games have infinitely many vertices, even memoryless strategies are not
necessarily finitely representable. It turns out that the winning strategies for both players in sto-
chastic BPA games with qualitative reachability objectives are (effectively)regular in the following
sense:

Definition 4.3. Let ∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) be a stochastic BPA game, and let⊙ ∈ {�,^}.
We say that a strategyτ for player⊙ is regular if there is a deterministic finite-state automaton
A over the alphabetΓ such that, for everyXα ∈ Γ⊙Γ∗, the value ofτ(Xα) depends just on the
control state entered byA after reading the reverse ofXα (i.e., the automatonA reads the stack
bottom-up).

For the rest of this section, we fix a stochastic BPA game∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) and a
simple setT of target configurations. Since we are interested just in reachability objectives, we can
safely assume that for everyR ∈ ΓT , the only rule whereR appears on the left-hand side isR֒→R
(this assumption simplifies the formulation of some claims). We useTε to denote the setT ∪ {ε},
and we also slightly abuse the notation by writingε instead of{ε} at some places (particularly in
expressions such asReach(ε)).

For a given setC ⊆ Γ∗ and a given qualitative probability constraint⊲̺, we use [C]⊲̺
�

and [C]⊲̺
^

to denote the set of allα ∈ Γ∗ from which player� and player̂ has a (⊲̺)-winning strategy in the
game∆ with the reachability objective (C,⊲̺), respectively. Observe that [C]⊲̺

�
= Γ∗ r [C]⊲̺

^
due

to the determinacy results presented in Section 3.
In the forthcoming subsections we examine the sets [T]⊲̺

�
for the two meaningful qualitative

probability constraints>0 and=1 (observe that [T]≥0
�
= Γ∗ and [T]>1

�
= ∅). We show that the

membership to [T]>0
�

and [T]=1
�

is in P and NP ∩ co-NP, respectively. The same holds for the
sets [T]>0

^
and [T]=1

^
, respectively. Further, we show that all of these sets are effectively regular,

and that (⊲̺)-winning strategies for both players are effectively computable. The associated upper
complexity bounds are essentially the same as above.

4.1. The Set[T]>0
�

We start by observing that the sets [T]>0
�

and [T]>0
^

are regular, and the associated finite-state
automata have a fixed number of control states. A proof of thisobservation is actually straightfor-
ward.

Proposition 4.4. Let A = [T]>0
�
∩ Γ and B = [Tε]>0

�
∩ Γ. Then[T]>0

�
= B∗A Γ∗ and [Tε]>0

�
=

B∗A Γ∗ ∪B∗. Consequently,[T]>0
^
= Γ∗ r [T]>0

�
= (B rA )∗ ∪ (B rA )∗(ΓrB)Γ∗.
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Our next proposition says how to compute the setsA andB.

Proposition 4.5. The pair(A ,B) is the least fixed-point of the function F: (2Γ × 2Γ)→ (2Γ × 2Γ),
where F(A, B) = (Â, B̂) is defined as follows:

Â = ΓT ∪ A∪ {X ∈ Γ� ∪ Γ© | there is X֒→ β such thatβ ∈ B∗AΓ∗}

∪ {X ∈ Γ^ | for all X ֒→ β we have thatβ ∈ B∗AΓ∗}

B̂ = ΓT ∪ B∪ {X ∈ Γ� ∪ Γ© | there is X֒→ β such thatβ ∈ B∗AΓ∗ ∪ B∗}

∪ {X ∈ Γ^ | for all X ֒→ β we have thatβ ∈ B∗AΓ∗ ∪ B∗}

Since the least fixed-point of the functionF defined in Proposition 4.5 is computable in poly-
nomial time, the finite-state automata recognizing the sets[T]>0

�
and [T]>0

^
are computable in poly-

nomial time. Thus, we obtain the following theorem:

Theorem 4.6. The membership to[T]>0
�

and [T]>0
^

is decidable in polynomial time. Both sets are
effectively regular, and the associated finite-state automataare constructible in polynomial time.
Further, there are regular strategiesσ ∈ Σ and π ∈ Π constructible in polynomial time that are
(>0)-winning in every configuration of[T]>0

�
and [T]>0

^
, respectively.

4.2. The Set[T]=1
�

The results presented in this subsection constitute the very core of this paper. The problems
are more complicated than in the case of [T]>0

�
, and several deep observations are needed to tackle

them. We start by showing that the sets [T]=1
�

and [T]=1
^

are regular.

Proposition 4.7. LetA = [Tε]=1
^
∩Γ, B = [Tε]=1

�
∩[T]=1

^
∩Γ, C = [T]=1

�
∩Γ. Then[T]=1

�
= B∗C Γ∗

and [T]=1
^
= B∗A Γ∗ ∪B∗.

Proposition 4.7 can be proven by a straightforward induction on the length of configurations.
Observe that if there is an algorithm which computes the setA = [Tε]=1

^
∩ Γ for an arbitrary

stochastic BPA game, then this algorithm can also be used to compute the set [T]=1
^
∩ Γ (this is

becauseX ∈ [T]=1
^

iff X̂ ∈ [T̂ε]=1
^

, where [T̂ε]=1
^

is considered in a stochastic BPA game∆̂ obtained
from ∆ by adding two fresh stochastic symbolsX̂,Z together with the ruleŝX 1

֒→XZ, Z 1
֒→Z, and

settingT̂ = T). Due to Theorem 3.4, we have thatC = Γ r ([T]=1
^
∩ Γ), and thus we can compute

also the setC . SinceB = Γ r (A ∪ C ) (again by Theorem 3.4), we can also compute the setB.
Hence, the core of the problem is to design an algorithm whichcomputes the setA .

In the next definition we introduce the crucial notion of aterminalset of stack symbols, which
plays a key role in our considerations.

Definition 4.8. A set M ⊆ Γ is terminal if the following conditions are satisfied:

• ΓT ∩ M = ∅;
• for everyZ ∈ M ∩ (Γ� ∪ Γ©) and every rule of the formZ ֒→ α we have thatα ∈ M∗;
• for everyZ ∈ M ∩ Γ^ there is a ruleZ ֒→α such thatα ∈ M∗.

Since∅ is terminal and the union of two terminal sets is terminal, there is the greatest terminal
set that will be denotedC in the rest of this section. Also note thatC determines a unique stochastic
BPA game∆C obtained from∆ by restricting the set of stack symbols toC and including all rules
X ֒→α whereX, α ∈ C∗. The set of rules of∆C is denoted֒→C. The probability of stochastic rules
in ∆C is the same as in∆.
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Definition 4.9. A stack symbolY ∈ Γ is awitnessif one of the following conditions is satisfied:
(1) Y ∈ [Tε]>0

^
;

(2) Y ∈ C andY ∈ [ε]=1
^

, where the set [ε]=1
^

is computed in∆C.

The set of all witnesses is denotedW.

Observe that the problem whetherY ∈W for a givenY ∈ Γ is decidable inNP∩co-NP, because
Condition (1) is decidable inP due to Theorem 4.6, the setC is computable in polynomial time,
and the membership to [ε]=1

^
is in NP∩ co-NPdue to [15] (this is the only place where we use the

decision algorithm for qualitative termination designed in [15]).
Obviously,W ⊆ A . One may be tempted to think that the setA is just theattractor of W,

denotedAtt(W), which consists of allV ∈ Γ from which player̂ can enforce visiting a witness with
a positive probability (i.e.,V ∈ Att(W) iff ∃π ∈ Π ∀σ ∈ Σ : Pσ,πV (Reach(WΓ∗)) > 0). However,
this is not true, as it is demonstrated in the following example:

Example 4.10. Consider a stochastic BPA gamê∆ = ({X,Y,Z,R}, ֒→ , ({X}, ∅, {Y,Z,R}),Prob),
where X ֒→ X, X ֒→Y, X ֒→Z, Y 1

֒→Y, Z 1/2
֒→Y, Z 1/2

֒→R, R 1
֒→R, and the setTΓ contains justR.

The game is initiated inX, and the relevant part ofG∆̂ (reachable fromX) is shown in the following
figure:

Y X Z R1

1
2

1
1
2

Observe thatA = {X,Y,Z}, C =W = {Y}, butAtt({Y}) = {Z,Y}.

In Example 4.10, the problem is that player� can use a strategy which always selects the rule
X ֒→X with probability one, and player̂ has no way to influence this. Nevertheless, observe
that player� has essentially two options: he either enters a symbol ofAtt({Y}), or he performs the
loop X ֒→X forever. The second possibility can be analyzed by “cuttingoff” the setAtt({Y}) and
recomputing the set of all witnesses together with its attractor in the resulting stochastic BPA game,
which contains onlyX and the ruleX ֒→X. Observe thatX is a witness in this game, and hence it
can be safely added to the setA . Thus, the computation of the setA for the stochastic BPA game
∆̄ is completed.

For general stochastic BPA games, the algorithm for computing the setA proceeds by initiating
A to ∅ and then repeatedly computing the setAtt(W), settingA := A ∪ Att(W), and “cutting off”
the setAtt(W) from the game. This goes on until the game or the setAtt(W) becomes empty. The
way how Att(W) is “cut off” from the current game is described below. First, let us present an
important (and highly non-trivial) result which states thefollowing:

Proposition 4.11. If A , ∅, then W, ∅.

Proof outline. We show that ifW = ∅, then there is a MR strategyσ ∈ Σ such that for everyX ∈ Γ
and everyπ ∈ Π we have thatPσ,πX (Reach(Tε)) = 1. In particular, this means thatA = ∅.

SinceW = ∅, the condition of Definition 4.9 does not hold for anyY ∈ Γ, which in particular
means that for allY ∈ C we have thatY < [ε]=1

^
, i.e., Y ∈ [ε]=1

�
by Theorem 3.4 (here, the sets

[ε]=1
^

and [ε]=1
�

are considered in the game∆C). Due to [13], there exists a SMD strategyσT for
player� in ∆C such that for everyY ∈ C and every strategyπ of player^ in ∆C we have that
PσT ,π(Reach(ε)) = 1. Now we define the promised MR strategyσ ∈ Σ as follows: for a given
Xα ∈ Γ�Γ∗, we putσ(Xα) = σT(Xα) if Xα starts with someβ ∈ C∗ where|β| > |∆|. Otherwise,
σ(Xα) returns the uniform probability distribution over the outgoing transitions ofXα.
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Now, let us fix some strategyπ ∈ Π. Our goal is to show thatPσ,πX (Reach(Tε)) = 1. By
analyzing the playG∆(σ, π), one can show that there is a set of runsV ⊆ Run(G∆(σ, π),X) and a set
of rules ֒→ V ⊆ ֒→ such that

(A) P(V) > 0, ֒→ V ⊆ ֒→C, and for everyw ∈ V we have thatw does not visitTε and the set of
rules that are used infinitely often inw is exactly ֒→ V.

Observe that eachw ∈ V has a finite prefixvw such that the rules of֒→r ֒→C are used only invw.
Further, we can partition the runs ofV into countably many sets according to this prefix. One of
these sets must have a positive probability, and hence we canconclude that there isU ⊆ V and a
finite pathv ∈ FPath(X) such that

(B) P(U) > 0, and eachw ∈ U satisfies the following:w starts withv, the rules of֒→r ֒→C

are used only in the prefixv of w, and the length of every configuration ofw visited after
the prefixv is at least as large as the length of the last configuration in the prefixv (the last
condition still requires a justification which is omitted inhere).

We show thatP(U) = 0, which is a contradiction. Roughly speaking, this is achieved by observing
that, after performing the prefixv, the strategiesσ andπ can be “simulated” by strategiesσ′ and
π′ in the gameG∆C so that the set of runsU is “projected” onto the set of runsU′ in the play
G∆C(σ′, π′) whereP(U) = P(U′). Then, it is shown thatP(U′) = 0. This is because the strategy
σ′ is “sufficiently similar” to the strategyσT (see above), and hence the probability of visitingε
in G∆C(σ′, π′) is 1. From this we getP(U′) = 0, becauseU′ consists only of infinite runs, which
cannot visitε. The arguments are subtle and rely on several auxiliary technical observations.

In other words, the non-emptiness ofA is always certified by at least one witness ofW, and
hence each stochastic BPA game with a non-emptyA can be made smaller by “cutting off” Att(W).

The procedure which “cuts off” the symbolsAtt(W) is not completely trivial. A naive idea of
removing the symbols ofAtt(W) together with the rules where they appear (this was used forthe
stochastic BPA game of Example 4.10) does not always work. This is illustrated in the following
example:

Example 4.12. Consider a stochastic BPA gamê∆ = ({X,Y,Z,R}, ֒→ , ({X}, ∅, {Y,Z,R}),Prob),
where X ֒→X, X ֒→Y, X ֒→ZY, Y 1

֒→Y, Z 1/2
֒→X, Z 1/2

֒→R, R 1
֒→R, and TΓ̂ = {R}. The game is

initiated in X. We have thatA = {Y} (observe thatX,Z,R ∈ [Tε]=1
�

, because the strategyσ
of player� which always selects the ruleX ֒→ZY is (=1)-winning). We have thatC = W =

Att(W) = {Y}. If we removeY together with all rules whereY appears, we obtain the game
∆′ = ({X,Z,R}, ֒→ , ({X}, ∅, {Z,R}),Prob), whereX ֒→ X, Z 1/2

֒→ X, Z 1/2
֒→R, R 1

֒→R. In the game∆′, X
becomes a witness and hence the algorithm would incorrectlyput X into A .

Hence, the “cutting” procedure must be designed more carefully. Intuitively, we do not remove
rules of the formX ֒→ZY whereY ∈ Att(W), but change them intoX ֒→Z′Y, where the symbolZ′

behaves likeZ but it cannot reachε. Thus, we obtain the following theorem:

Theorem 4.13. The membership to[T]=1
�

and [T]=1
^

is decidable inNP ∩ co-NP. Both sets are
effectively regular, and the associated finite-state automataare constructible by a deterministic
polynomial-time algorithm withNP ∩ co-NP oracle. Further, there is a regular strategyσ ∈ Σ
that is (=1)-winning in every configuration of[T]=1

�
. Moreover, the strategyσ is constructible by a

deterministic polynomial-time algorithm withNP ∩ co-NP oracle.

Note that in Theorem 4.13, we do not claim the existence (and constructability) of a regular
(=1)-winning strategyπ for player^. Actually, such a strategydoeseffectively exist, but we only
managed to find a relatively complicated and technical proofwhich, in our opinion, is of little
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practical interest (we do not see any natural reason for implementing a strategy which guarantees
that the probability of visitingT is strictly less than 1). Hence, this proof is not included inthe paper.

5. Conclusions

We have solved the qualitative reachability problem for stochastic BPA games, retaining the
same upper complexity bounds that have previously been established for termination [15]. One
interesting question which remains unsolved is the decidability of the problem whetherval(α) = 1
for a given BPA configurationα (we can only decide whether player� has a (=1)-winning strat-
egy, which is sufficient but not necessary forval(α) = 1). Another open problem is quantitative
reachability for stochastic BPA games, where the methods presented in this paper seem insufficient.
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Abstract. We study a quantum analogue of locally decodable error-correcting codes. A
q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such
a way that each of the encoded bits can be recovered with high probability by a measure-
ment on at most q qubits of the quantum code, even if a constant fraction of its qubits have
been corrupted adversarially. We show that such a quantum code can be transformed into
a classical q-query locally decodable code of the same length that can be decoded well on
average (albeit with smaller success probability and noise-tolerance). This shows, roughly
speaking, that q-query quantum codes are not significantly better than q-query classical
codes, at least for constant or small q.

1. Introduction

Locally decodable codes (LDCs) have received much attention in the last decade. They
are error-correcting codes that encode n bits into m bits, with the usual error-correcting
properties, and the additional feature that any one of the n encoded bits can be recovered
(with high probability) by a randomized decoder that queries at most q bits in the codeword,
for some small q. In other words, to decode small parts of the encoded data, we only need
to look at a small part of the codeword instead of “unpacking” the whole thing. Precise
definitions will be given in the next sections. Such codes are potentially useful in their own
right (think of decoding small pieces from a large encoded library), and also have a variety
of applications in complexity theory and cryptography. For instance, it is well known that
they can be turned into private information retrieval schemes and vice versa. For further
details about such connections, we refer to Trevisan’s survey [Tre04] and the references
therein.

The most interesting question about LDCs is the tradeoff between their length m and
the number of queries q. The former measures the space efficiency of the code, while
the latter measures the efficiency of decoding. The larger we make q, the smaller we can
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220 J. BRIËT AND R. DE WOLF

make m. On one extreme, if we allow q = polylog(n) queries, the codelength m can be
made polynomial in n [BFLS91]. On the other extreme, for q = 1 and sufficiently large
n, LDCs do not exist at all [KT00]. For q = 2 they do exist but need exponential length,
m = exp(n) [KW04]. Between these two extremes, interesting but hard questions persist.
In particular, we know little about the length of LDCs with constant q > 2. The best upper
bounds are based on Yekhanin’s construction [Yek07]. Hhe gives 3-query LDCs with length

m = exp(n1/t) for every Mersenne prime p = 2t − 1. (The largest known Mersenne prime
has t = 32582657, but it has been conjectured that there are infinitely many.) Recently,
Efremenko [Efr08] used Yekhanin’s basic underlying combinatorial structure to obtain, for

integer r ≥ 2, 2r-query LDCs with m = exp(exp(O(log n log logr−1 n)1/r)), and 3-query
LDCs with m = exp(exp(O(

√
log n log log n))). On the lower bound side, the best we know

for q > 2 is m = Ω
(
(n/ log n)1+1/(⌈q/2⌉−1)

)
(for fixed success probability and noise rate)

[KT00, KW04, Woo06]. For q = 3 and q = 4, this is slightly less than n2.
Interestingly, the best known lower bounds were obtained using tools from quantum

information theory. It is thus a natural question to consider also the potential positive effects
of quantum: can we construct shorter q-query LDCs by somehow harnessing the power of
quantum states and quantum algorithms? There are two natural ways to generalize locally
decodable codes to the quantum world:

• We can keep the code classical, but allow q quantum queries. This means we can
query positions of the codeword in quantum superposition, and process the results
using quantum circuits. This approach was investigated in [KW04]. A q-query quan-
tum decoder can simulate a 2q-query classical decoder with high success probability,
and this simulation can be made exact if the classical decoder took the parity of its
2q bits. This implies for instance that Efremenko’s 3-query LDC can be decoded by
only 2 quantum queries. In contrast, we know that every 2-query LDC needs length
exp(n). Allowing quantum queries thus results in very large savings in m when we
consider a fixed number of queries q.

• We can also make the code itself quantum: instead of encoding an n-bit x into
an m-bit string C(x), we could encode it into an m-qubit state Q(x). A q-query
decoder for such a code would select up to q qubits of the state Q(x), and make a
2-outcome measurement on those qubits to determine its output. In this case our
notion of noise also needs to be generalized: instead of up to δm bitflip-errors, we
allow any set of up to δm qubits of Q(x) to be arbitrarily changed.1

1While a classical LDC can be reused as often as we want, a quantum code has the problem that a
measurement made to predict one bit changes the state, so predicting another bit based on the changed
state may give the wrong results. However, if the error probability is small then the changes incurred by
each measurement will be small as well, and we can reuse the code many times with reasonable confidence.
Another issue is that more general decoders could be allowed. For instance, we could consider allowing any
quantum measurement on the m-qubit state that can be written as a linear combination of m-qubit Pauli-
matrices that have support on at most q positions. This is potentially stronger than what we do now (it is
an interesting open question whether it is really stronger). However, we feel this is a somewhat unnatural
formalization of the idea that a measurement should be localized to at most q qubits. Our current set-up,
where we classically select up to q positions and then apply an arbitrary quantum measurement to those q

qubits, seems more natural. Similarly, more general noise operators can be defined, but we will not consider
these here.
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Our results. In this paper we investigate the second kind of code, which we call a “q-query
locally decodable quantum code”, or q-query LDQC. The question is whether the ability
to encode our n bits into a quantum state enables us to make codes much shorter. There
are some small examples where quantum encodings achieve things that are impossible for
classical encodings. Ambainis et al. [ANTV02] give an encoding of 2 classical bits into 1
qubit, such that each of the bits—though not both simultaneously—can be recovered from
the qubit with success probability 0.85. They even cite an example due to Chuang where 3
bits are encoded into 1 qubit, and each bit can be recovered with success probability 0.78.
However, they also show that asymptotically large savings are not possible in their setting
(explained in Section 3.4 below). Their setting, however, considers neither noise nor local
decodability, and hence does not answer our question about locally decodable codes: can
LDCs be made significantly shorter if we allow quantum encodings?

Our main result is a negative answer to this question: essentially it says that q-query
LDQCs can be turned into classical q-query LDCs of the same length, with some deteriora-
tion in their other parameters. The precise statement of this result (Corollaries 5.3 and 5.4)
is a little bit dirty. We obtain a cleaner statement for so-called “smooth (quantum) codes”,
which have the property that they query the codewords fairly uniformly. These smooth
(quantum) codes can be converted into LD(Q)Cs and vice versa. For these, the precise
statement is as follows (Theorem 5.1). Suppose we are given a smooth quantum code of
m qubits from which we can recover (with success probability at least 1/2 + ε) each bit
xi of the encoded n-bit string x, while only looking at q qubits of the state. Let µ be a
distribution on the n-bit inputs. Then we can construct a randomized classical code R of
the same length (for each x, the “codeword” R(x) is a distribution over m-bit strings) from
which we can recover each xi with µ-average success probability at least 1/2+ε/4q+1, while
only looking at q bits of the codeword. Thus a q-query quantum code is turned into a
q-query classical code of the same length, at the expense of reducing the advantage of the
algorithm (over random guessing) by a factor of roughly 4q.2

For those who do not like the idea of encoding x into a distribution R(x), we can turn
the randomized code R into a deterministic code C, where C(x) is a fixed m-bit codeword
instead of a distribution, at the expense of correctly decoding only a constant fraction of
all indices i instead of all n of them (Corollary 5.2). Since all known lower bounds on
LDCs also apply to randomized classical codes that work well under a uniform distribution
on the n-bit strings, those lower bounds carry over to LDQCs. In particular we obtain as
corollaries of our result:

• For sufficiently large n, 1-query LDQCs do not exist for any m (from [KT00]).3

• 2-query LDQCs need m = exp(n) (from [KW04]).

• For fixed q, q-query LDQCs need m = Ω
(
( n
log n)1+1/(⌈q/2⌉−1)

)
(from [KW04]).

Techniques. Our main technique is to apply to the m qubits of the quantum code a
randomly selected sequence of m Pauli measurements. The randomized “codeword” R(x)
will be the probability distribution on m-bit outcomes resulting from such a measurement
on the quantum state Q(x). The meat of our proof is to show that there is a choice of
measurements that roughly preserves correct decodability for all i.

2Oded Regev showed us how to improve this to 3q , but we won’t give the details of his improvement here.
3Actually, this result can more easily be shown directly, by combining Katz and Trevisan’s proof for

classical codes with the quantum random access code lower bound mentioned below in Section 3.4.
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2. Preliminaries

We write [n] for the set {1, . . . , n}. We use P(S) to denote the set of all probability
distributions (or random variables) on set S. If z is distributed according to the distribution
of a random variable Z, we write z ∼ Z. Probabilities and expectations with a subscript
‘i ∈ S’ should be read as taken over a uniformly random i ∈ S. We give a brief overview of
quantum mechanics here, see [NC00] for more.
Quantum states. In quantum mechanics, a physical system is mathematically represented
by a complex Hilbert space. A d-dimensional complex Hilbert space consists of all d-
dimensional vectors with complex entries, endowed with the standard inner product. The
state of a physical system is in turn represented by a density operator (a positive semidefinite
linear operator with trace 1) acting on a Hilbert space. We use B1

+(Hd) to denote the set of
all density operators on a d-dimensional complex Hilbert space. Two-dimensional Hilbert
spaces are called qubits. An n-qubit state is a density operator on the tensor product of n
qubits (a 2n-dimensional Hilbert space).
Measurements. The most general k-outcome measurement on a physical system is defined

as a set {A1, . . . , Ak} of k positive semidefinite matrices that satisfy
∑k

i=1 Ai = I. The
probability that the measurement of a system in a state ρ yields the i’th outcome is Tr(Aiρ).
Hence, the measurement yields a random variable A(ρ) with Pr[A(ρ) = i] = Tr(Aiρ). With
a measurement that has outcomes +1 and −1 (and corresponding operators A+ and A−)
we associate an operator A = A+−A−. The expected value of this measurement on a state
ρ is then Tr(Aρ). Note that this equals the difference between the probabilities of outcomes
+1 and −1, respectively.
Pauli matrices. The one-qubit Pauli operators are given by I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =
(

0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. For integer k ≥ 1, the set of k-qubit Pauli operators is

Pk := {I,X, Y, Z}⊗k. These 4k matrices form an orthonormal basis for the space of all
2k×2k complex matrices endowed with the inner product 〈A,B〉 = 1

2k Tr(A†B). Each Pauli

operator S ∈ Pk has a unique decomposition S = S+ − S−, with S+ and S− orthogonal
projectors that satisfy S+ + S− = I. For this reason we associate a unique two-outcome
measurement {S+, S−} with each such S. A Pauli measurement S ∈ Pk of a k-qubit state ρ
yields a ±1-valued random variable S(ρ) with expected value Tr(Sρ). However, we can also
view S ∈ Pk as k separate one-qubit Pauli measurements, to be applied to the k qubits of
the state, respectively. When viewed in this way, the result of measuring ρ is a k-bit random
variable, i.e., a probability distribution on {±1}k. The product of those k bits equals the
±1-valued random variable S(ρ) mentioned before.
Super-operators. A super-operator is a mathematical representation of the most general
transformation of a quantum state allowed by the laws of quantum mechanics. A super-
operator E can be defined by a finite set {E1, . . . , Ek} of linear operators (known as Kraus

operators) that satisfy
∑k

i=1 E†
i Ei = I. The corresponding operation on a state ρ yields

another density operator, E(ρ) =
∑k

i=1 EiρE†
i . This E(ρ) may act on a Hilbert space of

a possibly different dimension, though we will not need that here. We say that E “acts
trivially” on, say, the first qubit of the state if all its Kraus operators have the form Ei =
I ⊗ E′

i for some E′
i acting on all but the first qubit.
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3. Codes

3.1. Classical codes

For convenience, we write bits as ±1 instead of 0/1. This way, if random variable
A ∈ {±1} predicts bit xi, we can write the bias of this prediction as an expectation:
E[A · xi] = Pr[A = xi]− Pr[A 6= xi]. Note that Pr[A = xi] ≥ 1/2 + ε iff E[A · xi] ≥ 2ε.

We start with classical codes. The formal definition of a locally decodable code involves
a decoder A that receives input i ∈ [n] and oracle access to a string y ∈ {±1}m, usually
written as a superscript to A. This y will be a codeword C(x) ∈ {±1}m corrupted by some
“error string” E ∈ {±1}m, which negates some of the bits of C(x) (below, C(x)◦E denotes
the entry-wise product of the two m-bit vectors C(x) and E). The oracle “queries index
j ∈ [m]” if it reads the j’th bit of y.

Definition 3.1 (LDC). A function C : {±1}n → {±1}m is a (q, δ, ε)-LDC if there exists a
probabilistic oracle algorithm A such that

(1) For every x ∈ {±1}n, every i ∈ [n], and every E ∈ {±1}m with at most δm −1’s, we

have Pr[AC(x)◦E(i) = xi] ≥ 1/2 + ε, where the probability is taken over the internal
coin tosses of A.

(2) A queries at most q indices of y. Queries are made non-adaptively, meaning that
the indices to be queried are all selected before the querying starts.

An A satisfying the above is called a (q, δ, ε)-local decoder for C.

Since any δm indices can be corrupted, a local decoder must query the indices fairly
uniformly. Otherwise, an adversary could choose to corrupt the most queried part of the
code and ruin the decoder’s success probability. Motivated by this property, Katz and Tre-
visan [KT00] defined a variation of LDCs called a smooth codes, defined only for uncorrupted
codewords.

Definition 3.2 (Smooth code). A function C : {±1}n → {±1}m is a (q, c, ε)-smooth code
if there exists a probabilistic oracle algorithm A such that:

(1) For every x ∈ {±1}n and i ∈ [n], we have Pr[AC(x)(i) = xi] ≥ 1/2 + ε.

(2) For every i ∈ [n] and j ∈ [m], we have Pr[A(·)(i) queries index j] ≤ c/m.
(3) A queries at most q indices (non-adaptively).

An A satisfying the above is called a (q, c, ε)-smooth decoder for C.

Katz and Trevisan showed that LDCs and smooth codes are essentially equivalent, in
the sense that a decoder for one can be transformed into a decoder for the other. We prove
the same for quantum codes in Section 3.3, using essentially their proof.

3.2. Randomized codes

Here we define our first generalization, incorporating randomness into the definition of
the code. A randomized locally decodable code maps {±1}n to random variables over {±1}m

(rather than fixed codewords), such that any xi can be decoded well using a constant number
of queries, even if up to δm indices are corrupted.

Definition 3.3 (Randomized LDC). A function R : {±1}n → P({±1}m) is a (q, c, ε)-
randomized LDC if there exists a probabilistic oracle algorithm A such that:
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(1) For every x ∈ {±1}n, every i ∈ [n], and every E ∈ {±1}m with at most δm −1’s, we
have Pr[AR(x)◦E(i) = xi] ≥ 1/2 + ε, where the probability is taken over the internal
coin tosses of A as well as the distribution R(x).

(2) A queries at most q indices (non-adaptively).

Similarly, we define a randomized smooth code:

Definition 3.4 (Randomized smooth code). A function R : {±1}n → P({±1}m) is a
(q, c, ε)-randomized smooth code if there exists a probabilistic oracle algorithm A such that:

(1) For every x ∈ {±1}n and every i ∈ [n], Pr[AR(x)(i) = xi] ≥ 1/2 + ε.

(2) For every i ∈ [n], and every j ∈ [m], Pr[A(·)(i) queries index j] ≤ c/m.
(3) A queries at most q indices (non-adaptively).

It will be convenient to also have a version of these codes that are only required to work
well on average, instead of for all x:

Definition 3.5 (µ-average codes). Let µ be a distribution on {±1}n. A function C :
{±1}n → {±1}m is a µ-average (q, δ, ε)-LDC if Definition 3.1 holds with the first clause
replaced by:

(1) For every i ∈ [n] and E ∈ {±1}m with at most δm −1’s, Prx∼µ[AC(x)◦E(i) = xi] ≥
1
2 + ε.

Analogously, we define µ-average versions of smooth codes, randomized LDCs, and random-
ized smooth codes. For these codes, we assume without loss of generality that for each i
and queried set r ⊆ [m], the decoder A always uses the same function fi,r : {±1}q → {±1}
to determine its output.

A µ-average randomized smooth code can actually be “derandomized” to a µ-average
smooth code on a smaller number of bits:

Lemma 3.6. Let R : {±1}n → P({±1}m) be a µ-average (q, c, ε)-randomized smooth code.
Then there exists a µ-average (q, c, ε/2)-smooth code C : {±1}n → {±1}m for at least εn of
the indices i (that is, a smooth code with µ-success probability at least 1/2 + ε/2 for at least
εn of the n indices).

Proof. As a first step we will view R as a function to strings: there exists a random variable
W (over some possibly infinite set W) and a function R : {±1}n ×W → {±1}m such that
for every x ∈ {±1}n, the random variables R(x,W ) and R(x) are the same. A decoder

A for R also works for R(·,W ), so we have bias Ex∼µ,w∼W [AR(x,w)(i) · xi] ≥ 2ε for every
i ∈ [n]. For every i ∈ [n] and w ∈ W, define variables Xi,w ∈ {0, 1}, with

Xi,w = 1 ⇐⇒ Ex∼µ[AR(x,w)(i) · xi] ≥ ε,

and Xw :=
∑n

i=1 Xi,w. Using the definition of a µ-average randomized smooth code:

2εn ≤
n∑

i=1

Ex∼µ,w∼W [AR(x,w)(i) · xi] = Ew∼W

[
n∑

i=1

Ex∼µ[AR(x,w)(i) · xi]

]

< Ew∼W [Xw + (n−Xw)ε] = εn + (1− ε)Ew∼W [Xw].

Hence Ew∼W [Xw] ≥ εn. Thus there exists a w ∈ W such that for at least εn of the n indices

i, we have Ex∼µ[AR(x,w)(i) · xi] ≥ ε, equivalently, Ex∼µ[Pr[AR(x,w)(i) = xi]] ≥ 1/2 + ε/2.
Defining the code C(·) := R(·, w) gives the lemma.
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3.3. Quantum codes

Our second level of generalization brings quantum mechanics into the picture: now our
code maps classical n-bit strings to m-qubit quantum states. Below, a “quantum oracle
algorithm” is an algorithm A with oracle access to an m-qubit state ρ. This ρ could be
a corrupted version of an m-qubit “codeword” Q(x), obtained by applying some super-
operator E to Q(x). This E should only affect a δ-fraction of the m qubits. This error
model generalizes the classical case: a classical error pattern E ∈ {±1}m corresponds to a
super-operator E that applies an X to the qubits at positions where E has a −1, and I to
the positions where E has a +1. On input i ∈ [n], the algorithm probabilistically selects a
set r ⊆ [m] of at most q indices of qubits of ρ, and applies a two-outcome measurement to
the selected qubits with operators A+

i,r and A−
i,r. As before, we will use “Aρ(i)” to denote

the ±1-valued random variable that is the output. We say that “A queries r”, and “A
queries index j” if j is in r. Note that such algorithms are non-adaptive by definition: the
set of qubits r is selected before it is measured. We now define a locally decodable quantum
code (LDQC) as follows:

Definition 3.7 (LDQC). A function Q : {±1}n → B1
+(H2m) is a (q, δ, ε)-LDQC if there is

a quantum oracle algorithm A s.t.:

(1) For every x ∈ {±1}n, every i ∈ [n], and every super-operator E that acts non-

trivially on at most δm qubits, we have Pr[AE(Q(x))(i) = xi] ≥ 1/2 + ε, where the
probability is taken over the coin tosses and measurements in A.

(2) A queries at most q indices (non-adaptively).

An A satisfying the above is called a (q, δ, ε)-local quantum decoder for Q.

LDQCs generalize randomized LDCs, because probability distributions are diagonal
density operators. We can also establish a smoothness property for quantum codes:

Definition 3.8 (Smooth quantum code). A function Q : {±1}n → B1
+(H2m) is a (q, c, ε)-

smooth quantum code if there exists a quantum oracle algorithm A such that:

(1) For every x ∈ {±1}n and every i ∈ [n], we have Pr[AQ(x)(i) = xi] ≥ 1/2 + ε.

(2) For every i ∈ [n] and every j ∈ [m], we have Pr[A(·)(i) queries index j ] ≤ c/m.
(3) A queries at most q indices (non-adaptively).

An A satisfying the above is called a (q, c, ε)-smooth quantum decoder for Q.

As Katz and Trevisan [KT00] did for classical LDCs, we can establish a strong connec-
tion between LDQCs and smooth quantum codes. Either one can be used as the other, as
the next theorems show. Analogues of these theorems also hold between randomized LDCs
and randomized smooth codes, and between the µ-average versions of these codes.

Theorem 3.9. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then, as

long as δ ≤ ε/c, Q is also a (q, δ, ε − δc)-locally decodable quantum code.

Proof. Let A be a (q, c, ε)-smooth quantum decoder for Q. Suppose we run it on E(Q(x))
with at most δm corrupted qubits. The probability that A queries a specific qubit is at
most c/m. Then by the union bound, the probability that A queries any of the corrupted
qubits is at most δmc/m = δc. Hence A itself is also a (q, δ, ε − δc)-local quantum decoder
for Q.
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Theorem 3.10. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-locally decodable quantum code.

Then Q is also a (q, q/δ, ε)-smooth quantum code.

Proof. Let A be a (q, δ, ε)-local quantum decoder for Q. For each i ∈ [n], let pi(j) be
the probability that on input i, A queries qubit j. Let Hi = {j | pi(j) > q/(δm)}. Then
|Hi| ≤ δm, because A queries no more than q indices. Let B be the quantum decoder
that simulates A, except that on input i it does not query qubits in Hi, but instead acts
as if those qubits are in a completely mixed state. Then B does not measure any qubit j
with probability greater than q/(δm). Also, B’s behavior on input i and Q(x) is the same
as A’s behavior on input i and E(Q(x)) that is obtained by replacing all qubits in Hi by
completely mixed states. Since E acts non-trivially on at most |Hi| ≤ δm qubits, we have

Pr[BQ(x)(i) = xi] = Pr[AE(Q(x))(i) = xi] ≥ 1/2 + ε.

3.4. A weak lower bound from random access codes

We can immediately establish a weak lower bound on the length of LDQCs and smooth
quantum codes by considering a quantum random access code (QRAC), introduced by Am-
bainis et al. [ANTV02].

Definition 3.11 (QRAC). A function Q : {±1}n → B1
+(H2m) is an (n,m, ε)-QRAC if

there exists a quantum oracle algorithm A such that for every x ∈ {±1}n and i ∈ [n],

Pr[AQ(x)(i) = xi] ≥ 1/2 + ε.

LDQCs and smooth quantum codes are QRACs with some additional properties, such
as constraints on the way the qubits of the codeword are accessed. Hence the following
well-known lower bound on the length of QRACs also holds for them.

Theorem 3.12 ([ANTV02, Nay99]). Every (n,m, ε)-QRAC has m ≥ (1−H(1/2 + ε))n.

4. Pauli decoding from disjoint subsets

In this section we consider a (q, c, ε)-smooth quantum code Q. Fix a distribution µ on
{±1}n. We will show that there exists a sequence S∗ ∈ Pm such that if the m qubits of
Q(x) are measured by the m Pauli measurements in S∗, then each xi can be retrieved by
querying only q bits of the m-bit measurement outcome S∗(Q(x)), in a very structured way.
Specifically, we prove:

Theorem 4.1. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code and µ be a

distribution on {±1}n. Then, for sufficiently large n, there exists a sequence S∗ ∈ Pm, and
for every i ∈ [n] a set Mi of at least εm/(qc) disjoint sets r ⊆ [m] (each of size at most q)
with associated signs ai,r ∈ {±1}, such that

Ex∼µ


 1

|Mi|
∑

r∈Mi

Pr
[
ai,r

∏

j∈r

S∗
j (Q(x)) = xi

]

 ≥ 1

2
+

ε

4q+1
.

The proof consists of two parts. We start by constructing the sets Mi and then we
show that decoding Q can be done by using only Pauli measurements. Putting these two
observations together enables us to prove Theorem 4.1.
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4.1. Decoding from disjoint subsets

First we obtain the sets Mi of disjoint q-sets that allow reasonable prediction of xi.

Theorem 4.2 (modified from Lemma 4 in [KT00]). Let Q : {±1}n → B1
+(H2m) be a

(q, c, ε)-smooth quantum code with decoder A, and µ a distribution on {±1}n. Then for
every i ∈ [n] there exists a set Mi of at least εm/(qc) disjoint sets r ⊆ [m] (each of size at

most q) satisfying Prx∼µ[AQ(x)(i) = xi | A(·)(i) queries r] ≥ 1/2 + ε/2.

Proof. Call a set r ⊆ [m] “good for i” if it satisfies the above inequality. Define for every
i ∈ [n] a hypergraph Hi = (V,Ei) with vertex-set V = [m] and a set of hyperedges Ei :=
{e | e is good for i}. A smooth quantum decoder A for Q “queries Ei” if A queries an

e ∈ Ei. Let p(e) := Pr[A(·)(i) queries e]. Then the probability that this decoder queries Ei

is p(Ei) :=
∑

e∈Ei
p(e). For all e 6∈ Ei we have

Pr[AQ(x)(i) = xi | A(·)(i) queries e] <
1

2
+

ε

2
.

But since for every x and i, A decodes bit xi with probability at least 1/2 + ε, we have

1

2
+ ε ≤ Pr[AQ(x)(i) = xi] < p(Ei) + (1− p(Ei))(

1

2
+

ε

2
) =

1

2
+

ε

2
+ p(Ei)(

1

2
− ε

2
).

Hence p(Ei) > ε/(1 − ε) ≥ ε. Since Q is smooth, we know that the probability that A
queries an index j is

∑
e∈Ei|j∈e p(e) = Pr[A(·)(i) queries j] ≤ c/m.

Let Mi be a maximal set of disjoint hyperedges in Hi, and define the vertex set T =
∪e∈Mi

e. Note that T intersects each e ∈ Ei (since otherwise Mi would not be maximal),
and has at most q|Mi| elements. We can now lower bound |Mi| as follows:

ε < p(Ei) =
∑

e∈Ei

p(e)
(∗)

≤
∑

j∈T

∑

e∈Ei|j∈e

p(e) ≤ c|T |
m

≤ cq|Mi|
m

,

where (∗) holds because each e ∈ Ei is counted exactly once on the left-hand side, and at
least once on the right-hand side (since T intersects each e ∈ Ei).

4.2. Pauli decoding

In the second part of the proof of Theorem 4.1, we find the appropriate Pauli measure-
ments. Recall that to decode xi, a smooth quantum decoder first selects a set r ⊆ [m] of at
most q indices, and then applies some measurement with operators A+

i,r, A
−
i,r to determine

its output. Let Ai,r = A+
i,r − A−

i,r. Strictly speaking these operators act only on the qubits

indexed by r, but we can view them as acting on the m-qubit state Q(x) by tensoring them
with m− |r| identities. The difference between the probabilities of obtaining outcomes +1
and −1 is Tr(Ai,r ·Q(x)). For every i ∈ [n] and r ∈ Mi we define the following bias:

B(i, r) := Ex∼µ[Tr(Ai,r ·Q(x)) · xi].

This measures how well the measurement outcome is correlated with xi (with x weighted
according to µ). By Theorem 4.2 we have B(i, r) ≥ ε for every i ∈ [n] and each r ∈ Mi.

Since Pq is a basis for all 2q × 2q complex matrices we can write

Ai,r =
∑

S∈Pq

Âi,r(S)S,
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with Âi,r(S) := 〈Ai,r, S〉 = 1
2q Tr(Ai,r · S) ∈ [−1, 1]. We now have:

ε ≤ B(i, r) =
∑

S∈Pq

Âi,r(S)Ex∼µ[Tr(S ·Q(x)) · xi] ≤
∑

S∈Pq

|Ex∼µ[Tr(S ·Q(x)) · xi]| . (4.1)

Suppose we measure the r-qubits of Q(x) with some S ∈ Pq and get outcome b ∈ {±1}. The
quantity Ex∼µ[Tr(S · Q(x)) · xi] is the difference between Prx∼µ[b = xi] and Prx∼µ[b 6= xi].
If we output b if this difference is nonnegative, and −b otherwise, then we would predict xi

with bias
B′(i, S, r) := |Ex∼µ[Tr(S ·Q(x)) · xi]| .

From Equation (4.1) we know that this bias is at least ε/4q for at least one “good” S ∈
Pq. Hence, with some loss in success probability, we can decode Q by only using Pauli
measurements. We now use a probabilistic argument to prove that a good sequence S∗ of
Pauli measurements exists, which is simultaneously good, for every i ∈ [n], for most of the
elements r ∈ Mi.

Proof (of Theorem 4.1). Suppose we let S ∈ Pq be a random variable uniformly distributed
over Pq, and we use it to predict xi as above. Then B′(i,S, r) is a random variable in the
interval [0, 1], with expectation

ES∈Pq [B
′(i, S, r)] =

1

4q

∑

S∈Pq

|Ex∼µ[Tr(S ·Q(x)) · xi]| ≥
ε

4q
.

Now we consider m-qubit Pauli measurements and replace all elements not in r with I’s:
for S ∈ Pm and r ⊆ [m], let S(r) denote S with all its m−|r| elements outside of r replaced
by I. If we let S be uniform over Pm, we get biases B′(i,S(r), r) for each r ∈ Mi, each in
[0, 1] and with expectation at least ε/4q (over the choice of S(r)). But note that the random
variables B′(i,S(r), r) are independent for different r ∈ Mi, since the elements of Mi are
disjoint. Hence the average bias over all r ∈ Mi,

B′(S, i) :=
1

|Mi|
∑

r∈Mi

B′(i,S(r), r),

is the average of |Mi| independent random variables, each in [0, 1] and with expectation
at least ε/4q . By a Chernoff bound4 the probability that B′(S, i) is much smaller than its
expectation, is small:

PrS∈Pm

[
B′(S, i) <

1

2

ε

4q

]
≤ PrS∈Pm

[
B′(S, i) <

1

2
E[B′(S, i)]

]
≤ exp

(
−|Mi|ε

8 · 4q

)
.

By Theorems 3.12 and 4.2 we may assume |Mi| > 8 · 4q log(n)/ε. It follows that for each
i ∈ [n], the above probability is less than 1/n. Hence, the union bound gives

PrS∈Pm

[
∃i s.t. B′(S, i) <

1

2

ε

4q

]
≤

n∑

i=1

PrS∈Pm

[
B′(S, i) <

1

2

ε

4q

]
< 1.

We can thus conclude that there exists an S∗ ∈ Pm such that for every i ∈ [n] we have

1

|Mi|
∑

r∈Mi

B′(i, S∗
(r), r) ≥

1

2

ε

4q
.

4See Equation (7) in [HR90]. A small modification of their proof shows that this bound not only holds
for independent 0/1-variables, but also for independent variables in the interval [0, 1].
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This implies the statement of the theorem.

5. Classical codes from quantum codes

Theorem 4.1 implies that if we measure all m indices of a smooth quantum quantum
code Q with the elements of S∗, then we get distributions on {±1}m that can be massaged
to “codewords” R(x) of a randomized smooth code:

Theorem 5.1. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then,

for sufficiently large n, for every input distribution µ on {±1}n, there exists a µ-average
(q, qc/ε, ε/4q+1)-randomized smooth code R : {±1}n → P({±1}m).

Proof. We use Theorem 4.1. Let R(x) be the distribution on {±1}m obtained by measuring
Q(x) with S∗. We define a decoder A for R as follows: on input i ∈ [m] and oracle
y ∈ {±1}m, pick a set r from the set Mi uniformly at random, and return ai,r

∏
j∈r yj. It is

straightforward to check that A is a µ-average (q, qc/ε, ε/4q+1) decoder for R; in particular,
since A picks r uniformly from a set of at least εm/(qc) disjoint sets, each index j ∈ [m]
has probability at most qc/(εm) of being queried.

Together, Lemma 3.6 and Theorem 5.1, give the following “derandomization”:

Corollary 5.2. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then, for

sufficiently large n, for every distribution µ on {±1}n, there exists a C : {±1}n → {±1}m

which is a µ-average (q, qc/ε, ε/(2 · 4q+1))-smooth code for at least εn/4q+1 of the n indices.

Following the path through Theorems 3.10, 5.1, and the µ-average version of Theo-
rem 3.9, we can turn an LDQC into a µ-average randomized LDC:

Corollary 5.3. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-LDQC. Then, as long as δ′ ≤

δε2/(q24q+1) and n is sufficiently large, for every distribution µ over {±1}n, there exists an
R : {±1}n → P({±1}m) which is a µ-average (q, δ′, ε/4q+1 − δ′q2/(δε))-randomized LDC.

Going through Theorem 3.10, Corollary 5.2, and the µ-average version of Theorem 3.9
instead, we can also turn an LDQC into a µ-average LDC:

Corollary 5.4. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-LDQC. Then, as long as δ′ ≤

δε2/(2q24q+1) and n is sufficiently large, for every distribution µ over {±1}n, there exists
a C : {±1}n → {±1}m which is a µ-average (q, δ′, ε/(2 · 4q+1)− δ′q2/(δε))-LDC for at least
εn/4q+1 of the n indices.

6. Conclusion and open problems

We defined quantum generalizations of q-query LDCs in which q queries correspond to a
measurement on q qubits of the m-qubit codeword. By a reduction to (classical) randomized
smooth codes through a special sequence of Pauli measurements on an LDQC, we showed
that the use of quantum systems for this type of encoding cannot provide much advantage in
terms of length, at least for small q. An obvious open problem is reducing the gap between
upper and lower bound on the length m of LDCs for fixed small number of queries q. Our
results show that an upper bound for LDQCs would carry over to (µ-average) LDCs. This
might perhaps be a way to improve the best known classical upper bounds on m.
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ABSTRACT. The homomorphism problem for relational structures is an abstract way of formulating
constraint satisfaction problems (CSP) and various problems in database theory. The decision version
of the homomorphism problem received a lot of attention in literature; in particular, the way the
graph-theoretical structure of the variables and constraints influences the complexity of the problem
is intensively studied. Here we study the problem of enumerating all the solutions with polynomial
delay from a similar point of view. It turns out that the enumeration problem behaves very differently
from the decision version. We give evidence that it is unlikely that a characterization result similar to
the decision version can be obtained. Nevertheless, we shownontrivial cases where enumeration can
be done with polynomial delay.

1. Introduction

Constraint satisfaction problems (CSP) form a rich class ofalgorithmic problems with applica-
tions in many areas of computer science. We only mention database systems, where CSPs appear
in the guise of the conjunctive query containment problem and the closely related problem of eval-
uating conjunctive queries. It has been observed by Feder and Vardi [14] that as abstract problems,
CSPs are homomorphism problems for relational structures.Algorithms for and the complexity
of constraint satisfaction problems have been intensely studied (e.g. [20, 10, 4, 5]), not only for
the standard decision problems but also optimization versions (e.g. [3, 22, 23, 24]) and counting
versions (e.g. [6, 7, 8, 13]) of CSPs.

In this paper we study theCSP enumeration problem, that is, problem of computing all solutions
for a given CSP instance. More specifically, we are interested in the question which structural
restrictions on CSP instances guarantee tractable enumeration problems. “Structural restrictions”
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03, and the program José Castillejo. Research of the fourthauthor is supported by the Magyary Zoltán Felsőoktatási
Közalapı́tvány and the Hungarian National Research Fund(Grant Number OTKA 67651).
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are restrictions on the structure induced by the constraints on the variables. Example of structural
restrictions is “every variable occurs in at most 5 constraints” or “the constraints form an acyclic
hypergraph.1” This can most easily be made precise if we view CSPs as homomorphism problems:
Given two relational structuresA,B, decide if there is a homomorphism fromA to B. Here the
elements of the structureA correspond to the variables of the CSP and the elements of thestructure
B correspond to the possible values. Structural restrictions are restrictions on the structureA. If A is
a class of structures, thenCSP(A,−) denotes the restriction of the general CSP (or homomorphism
problem) where the “left hand side” input structureA is taken from the classA. ECSP(A,−)
denotes the corresponding enumeration problem: Given two relational structuresA ∈ A andB,
compute the set of all homomorphisms fromA to B. The enumeration problem is of particular
interest in the database context, where we are usually not only interested in the question of whether
the answer to a query is nonempty, but want to compute all tuples in the answer. We will also briefly
discuss the correspondingsearchproblem: Find a solution if one exists, denotedSCSP(A,−).

It has been shown in [2] thatECSP(A,−) can be solved in polynomial time if and only if the
number of solutions (that is, homomorphisms) for all instances is polynomially bounded in terms
of the input size and that this is the case if and only if the structures in the classA have bounded
fractional edge cover number. However, usually we cannot expect the number of solutions to be
polynomial. In this case, we may ask which conditions onA guarantee thatECSP(A,−) has a
polynomial delay algorithm. Apolynomial delay algorithmfor an enumeration problem is required
to produce the first solution in polynomial time and then iteratively compute all solutions (each
solution only once), leaving only polynomial time between two successive solutions. In particular,
this guarantees that the algorithms computes all solutionsin polynomial total time, that is, in time
polynomial in the input size plus output size.

It is easy to see thatECSP(A,−) has a polynomial delay algorithm if the classA has bounded
tree width. It is also easy to see that there are classesA of unbounded tree width such that
ECSP(A,−) has a polynomial delay algorithm. It follows from our results that examples of such
classes are the class of all grids or the class of all completegraphs with a loop on every vertex. It
is known that the decision problemCSP(A,−) is in polynomial time if and only if the cores of the
structures inA have bounded tree width [17] (provided the arity of the constraints is bounded, and
under some reasonable complexity theoretic assumptions).A core of a relational structureA is a
minimal substructureA′ ⊆ A such that there is a homomorphism fromA toA′; minimality is with
respect to inclusion. It is easy to see that all cores of a structure are isomorphic. Hence we usually
speak of “the” core of a structure. Note that the core of a grid(and of any other bipartite graph with
at least one edge) is a single edge, and the core of a complete graph with all loops present (and of
any other graph with a loop) is a single vertex with a loop on it. The core of a complete graph with
no loops is the graph itself. As a polynomial delay algorithmfor an enumeration algorithms yields
a polynomial time algorithm for the corresponding decisionproblem, it follows thatECSP(A,−)
can only have a polynomial delay algorithm if the cores of thestructures inA have bounded tree
width. Unfortunately, there are examples of classesA that have cores of bounded tree width, but
for which ECSP(A,−) has no polynomial delay algorithm unless P= NP (see Example 3.2).

Our main algorithmic results show thatECSP(A,−) has a polynomial delay algorithm if the
cores of the structures inA have bounded tree width and if, in addition, they can be reached in a
sequence of “small steps.” Anendomorphismof a structure is a homomorphism of a structure to
itself. A retraction is an endomorphism that is the identity mapping on its image.Every structure

1The other type of restrictions studied in the literature on CSP are “constraint language restrictions”, that is, restrictions
on the structure imposed by the constraint relations on the values. An example of a constraint language restriction is “all
clauses of a SAT instance, viewed as a Boolean CSP, are Horn clauses”.
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has a retraction to its core. However, in general, the only way to map a structure to its core may
be by collapsing the whole structure at once. As an example, consider a path with a loop on both
endpoints. The core consists of a single vertex with a loop. (More precisely, the two cores are the
two endpoints with their loops.) The only endomorphism of this structure to a proper substructure
maps the whole structure to its core. Compare this with a paththat only has a loop on one endpoint.
Again, the core is a single vertex with a loop, but now we can reach the core by a sequence of
retractions, mapping a path of lengthn to a subpath of lengthn− 1 and then to a subpath of length
n − 2 et cetera. We prove that ifA is a class of structures whose cores have bounded tree width
and can be reached by a sequence of retractions each of which only moves a bounded number of
vertices, thenECSP(A,−) has a polynomial delay algorithm.

We also consider more general sequences of retractions or endomorphism from a structure to
its core. We say that a sequence of endomorphisms from a structureA0 to a substructureA1 ⊂ A0,
from A1 to a substructureA2, . . . , to a structureAn hasbounded widthif An and, for eachi ≤ n, the
“difference betweenAi andAi−1” has bounded tree width. We prove that if we are given a sequence
of endomorphisms of bounded width together with the input structureA, then we can compute all
solutions by a polynomial delay algorithm. Unfortunately,in general we cannot compute such a
sequence of endomorphisms efficiently. We prove that even for width 1 it is NP-complete to decide
whether such a sequence exists.

Finally, we remark that our results are far from giving a complete classification of the classesA
for which ECSP(A,−) has a polynomial delay algorithm and those classes for whichit does not.
Indeed, we show that it will be difficult to obtain such a classification, because such a classification
would imply a solution to the notoriously openCSP dichotomy conjectureof Feder and Vardi [14]
(see Section 3 for details).

Due to space restrictions several proofs are omitted.

2. Preliminaries

Relational structures. A vocabularyτ is a finite set ofrelation symbolsof specified arities. A
relational structureA overτ consists of a finite setA called theuniverseof A and for each relation
symbolR ∈ τ , say, of arityr, anr-ary relationRA ⊆ Ar. Note that we require vocabularies and
structures to be finite. A structureA is asubstructureof a structureB if A ⊆ B andRA ⊆ RB for
all R ∈ τ . We writeA ⊆ B to denote thatA is a substructure ofB andA ⊂ B to denote thatA is
a proper substructure ofB, that is,A ⊆ B andA 6= B. A substructureA ⊆ B is inducedif for all
R ∈ τ , say, of arityr, we haveRA = RB ∩ Ar. For a subsetA ⊆ B, we writeB[A] to denote the
induced substructure ofB with universeA.

Homomorphisms. We often abbreviate tuples(a1, . . . , ak) by a. If f is a mapping whose domain
containsa1, . . . , ak we write f(a) to abbreviate(f(a1), . . . , f(ak)). A homomorphismfrom a
relational structureA to a relational structureB is a mappingϕ : A → B such that for allR ∈ τ

and all tuplesa ∈ RA we haveϕ(a) ∈ RB. A partial homomorphismon C ⊆ A to B is a
homomorphism ofA[C] to B. It is sometimes useful when designing examples to exclude certain
homomorphisms or endomorphisms. The simplest way to do thatis to use unary relations. For
example, ifR is a unary relation and(a) ∈ RA we say thata has colorR. Now if b ∈ B does not
have colorR then no homomorphism fromA to B mapsa to b.

Two structuresA andB arehomomorphically equivalentif there is a homomorphism fromA
to B and also a homomorphism fromB to A. Note that if structuresA andA

′ are homomorphically
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equivalent, then for every structureB there is a homomorphism fromA to B if and only if there is a
homomorphism fromA

′ to B; in other words: the instances(A,B) and(A′,B) of the decision CSP
are equivalent. However, the two instances may have vastly different sizes, and the complexity of
solving the search and enumeration problems for them can also be quite different. Homomorphic
equivalence is closely related to the concept of the core of astructure: A structureA is acoreif there
is no homomorphism fromA to a proper substructure ofA. A core of a structureA is a substructure
A

′ ⊆ A such that there is a homomorphism fromA to A
′ andA

′ is a core. Obviously, every core
of a structure is homomorphically equivalent to the structure. We observe another basic fact about
cores:

Observation 2.1. Let A andB be homomorphically equivalent structures, and letA
′ andB

′ be cores
of A andB, respectively. ThenA′ andB

′ are isomorphic. In particular, all cores of a structureA are
isomorphic. Therefore, we often speak ofthecore ofA.

Observation 2.2. It is easy to see that it is NP-hard to decide, given structures A ⊆ B, whetherA is
isomorphic to the core ofB. (For an arbitrary graphG, let A be a triangle andB the disjoint union
of G with A. ThenA is a core ofB if and only ifG is 3-colorable.) Hell and Nešetřil [19] proved
that it is co-NP-complete to decide whether a graph is a core.

Tree decompositions. A tree decompositionof a graphG is a pair(T,B), whereT is a tree andB
is a mapping that associates with every nodet ∈ V (T ) a setBt ⊆ V (G) such that (1) for every
v ∈ V (G) the set{t ∈ V (T )|v ∈ Bt} is connected inT , and (2) for everye ∈ E(G) there is a
t ∈ V (T ) such thate ⊆ Bt. The setsBt, for t ∈ V (T ), are called thebagsof the decomposition. It
is sometimes convenient to have the treeT in a tree decomposition rooted; we always assume it is.
Thewidth of a tree decomposition(T,B) is max{|Bt| | t ∈ V (T )} − 1. Thetree widthof a graph
G, denoted by tw(G), is the minimum of the widths of all tree decompositions ofG.

We need to transfer some of the notions of graph theory to arbitrary relational structures. The
Gaifman graph(also known asprimal graph) of a relational structureA with vocabularyτ is the
graphG(A) with vertex setA and an edge betweena andb if a 6= b and there is a relation symbol
R ∈ τ , say, of arityr, and a tuple(a1, . . . , ar) ∈ RA such thata, b ∈ {a1, . . . , ar}. We can now
transfer graph-theoretic notions to relational structures. In particular, a subsetB ⊆ A is connected
in a structureA if it is connected inG(A). A tree decompositionof a structureA can simply be
defined to be a tree-decomposition ofG(A). Equivalently, a tree decomposition ofA can be defined
directly by replacing the second condition in the definitionof tree decompositions of graphs by (2’)
for everyR ∈ τ and(a1, . . . , ar) ∈ R

A there is at ∈ V (T ) such that{a1, . . . , ar} ⊆ Bt. A classC
of structures hasbounded tree widthif there is aw ∈ N such that tw(A) ≤ w for all A ∈ C. A class
C of structures hasbounded tree width modulo homomorphic equivalenceif there is aw ∈ N such
that everyA ∈ C is homomorphically equivalent to a structure of tree width at most w.

Observation 2.3. A structureA is homomorphically equivalent to a structure of tree width at most
w if and only if the core ofA has tree width at mostw.

The Constraint Satisfaction Problem. For two classesA andB of structures, theConstraint Sat-
isfaction Problem, CSP(A,B), is the following problem:

CSP(A,B)
Instance: A ∈ A, B ∈ B
Problem: Decide if there is a homomorphism fromA to B.
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The CSP is a decision problem. The variation of it we study in this paper is the following
enumeration problem:

ECSP(A,B)
Instance: A ∈ A, B ∈ B
Problem: Output all the homomorphisms fromA to B.

We shall also refer to the search problem,SCSP(A,B), in which the goal is to find one solution
to a CSP-instance or output ‘no’ if a solution does not exists.

If one of the classesA, B is the class of all finite structures, then we denote the correspond-
ing CSPs byCSP(A,−), CSP(−,B) (respectively,ECSP(A,−), ECSP(−,B), SCSP(A,−),
SCSP(−,B)).

The decision CSP has been intensely studied. If a classC of structures has bounded arity
thenCSP(C,−) is solvable in polynomial time if and only ifC has bounded tree width modulo
homomorphic equivalence [17]. If the arity ofC is not bounded, several quite general conditions on
a class of structures have been identified that guarantee polynomial time solvability ofCSP(C,−),
see, e.g.[16, 12, 18]. Problems of the formCSP(−, C) have been studied mostly in the case when
C is 1-element. Problems of this type are sometimes referred to asnon-uniform. It is conjectured
that every non-uniform problem is either solvable in polynomial time or NP-complete (the so-called
Dichotomy Conjecture) [14]. Although this conjecture is proved in several particular cases [20, 9,
10, 4], in its general form it is believed to be very difficult.

A search CSP is clearly no easier than the corresponding decision problem. While any non-
uniform search problemSCSP(−, C) is polynomial time reducible to its decision versionCSP(−, C)
[11], nothing is known about the complexity of search problemsSCSP(C,−) except the result we
state in Section 3. Paper [25] provides some initial resultson the complexity of non-uniform enu-
merating problems.

3. Tractable structures for enumeration

Since even an easy CSP may have exponentially many solutions, the model of choice for ‘easy’
enumeration problems is algorithms with polynomial delay [21]. An algorithm Alg is said to solve
a CSPwith polynomial delay(WPD for short) if there is a polynomialp(n) such that, for every
instance of sizen, Alg outputs ‘no’ in a time bounded byp(n) if there is no solution, otherwise it
generates all solutions to the instance such that no solution is output twice, the first solution is output
after at mostp(n) steps after the computation starts, and time between outputting two consequent
solutions does not exceedp(n).

If a class of relational structuresC has bounded arity, the aforementioned result of Grohe [17]
imposes strong restrictions on enumeration problems solvable WPD.

Observation 3.1. If a class of relational structuresC with bounded arity does not have bounded tree
width modulo homomorphic equivalence, thenECSP(C,−) is not WPD, unless P=NP.

Unlike for the decision version, the converse is not true: bounded tree width modulo homomor-
phic equivalence does not imply enumerability WPD.

Example 3.2. Let Ak be the disjoint union of ak-clique and a loop and letA = {Ak | k ≥
1}. Clearly, the core of each graph inA has bounded tree width (in fact, it is a single element),
henceCSP(A,−) is polynomial-time solvable. For an arbitrary graphB without loops, letB′

be the disjoint union ofB and a loop. It is clear that there is always a trivial homomorphism
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from Ak (for any k ≥ 1) to B
′ that maps everything into the loop. There exist homomorphisms

different from the trivial one if and only ifB contains ak-clique. Thus if we are able to check
in polynomial time whether there is a second homomorphism, then we are able to test ifB has a
k-clique. Therefore, althoughCSP(A,−) andSCSP(A,−) are polynomial-time solvable, a WPD
enumeration algorithm forECSP(A,−) would imply P= NP.

It is not difficult to show thatECSP(C,−) is enumerable WPD ifC has bounded tree width.
For space restrictions we do not include a direct proof and instead we derive it from a more general
result in Section 4. Thus enumerability WPD has a different tractability criterion than the decision
version, and this criterion lies somewhere between boundedtree width and bounded tree width
modulo homomorphic equivalence. Thus in order to ensure that the solutions can be enumerated
WPD, we have to make further restrictions on the way the structure can be mapped to its bounded
tree width core. The main new definition of the paper requiresthat the core is reached by “small
steps”:

LetA be a relational structure with universeA. We say thatA has a sequence of endomorphisms
of widthk if there are subsetsA = A0 ⊃ A1 ⊃ . . . ⊃ An 6= ∅ and homomorphismsϕ1, . . . , ϕn

such that

(1) ϕi is a homomorphism fromA[Ai−1] to A[Ai],
(2) ϕi(Ai−1) = Ai for 1 ≤ i ≤ n;
(3) if G is the primal graph ofA, then the tree width ofG[Ai \ Ai+1] is at mostk for every

0 ≤ i < n;
(4) the structure induced byAn has tree width at mostk.

In Section 4, we show that enumeration for(A,B) can be done WPD if a sequence of bounded
width endomorphisms forA is given in the input. Unfortunately, we cannot claim thatECSP(A,−)
can be done WPD if every structure inA has such a sequence, since we do not know how to find
such sequences efficiently. In fact, as we show in Section 5, it is hard to check if a width-1 sequence
exists for a given structure. Furthermore, we show a classA where every structure has a width-2
sequence, butECSP(A,−) cannot be done WPD, unless P= NP. This means that it is not possible
to get around the problem of not being able to find the sequences (for example, by finding sequences
with somewhat larger width or by constructing the sequence during the enumeration).

Thus having a bounded width sequence of endomorphisms is notthe right tractability crite-
rion. We then investigate a more restrictive notion, where the bound is not on the tree width of the
difference of the layers but on the number of elements in the differences. However, in the rest of
the section, we give evidence that enumeration problems solvable WPD cannot be characterized in
simple terms relying on tree width. For instance, a description of search problems solvable in poly-
nomial time would imply a description of non-uniform decision problems solvable in polynomial
time. This is shown via an analogous result for the search version of the problem, which might be
of independent interest. ByA⊕ B we denote the disjoint union of relational structuresA andB.

Lemma 3.3. LetB be a relational structure, which is a core, and letCB be{A⊕B | A → B}. Then
CSP(−,B) is solvable in polynomial time if and only if so is the problemSCSP(CB,−).

Proof. If the decision problemCSP(−,B) is solvable in polynomial time we can construct an algo-
rithm that given an instance(A,C) of CSP(CB,−) computes a solution in polynomial time. Indeed,
asCSP(−,B) is solvable in polynomial time by the aforementioned resultof [11] it is also polyno-
mial time to find a homomorphism from a given structure toB provided one exists. IfA ∈ CB such a
homomorphismϕ exists by the definition ofCB. So our algorithms, first, finds some homomorphism
ϕ. Then it decides by brute force whether or not there exists a homomorphismϕ′ from B to C (note
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that this can be done in polynomial time for every fixedB). If such a homomorphism does not exist
then we can certainly guarantee that there is no homomorphism from A to C. Otherwise we obtain
a required homomorphismψ as follows: Letψ(a) = ϕ′(a) for a ∈ B, andψ(a) = ϕ′ ◦ ϕ(a) for
a ∈ A.

Conversely, assume that we have an algorithm Alg that finds a solution of any instance of
CSP(CB,−) in polynomial time, say,p(n). We construct from it an algorithm that solvesCSP(−,B).
Given an instance(A,B) of CSP(−,B) we call algorithm Alg with inputA⊕B andB. Additionally
we count the number of steps performed by Alg in such a way thatwe stop if Alg has not finished
in p(n) steps. If Alg produces a correct answer then we have to be ableto obtain from it a homo-
morphism fromA to B. If Alg’s answer is not correct or the clock reachesp(n) steps we know that
Alg failed. The only possible reason for that is thatA⊕B does not belong toCB, which implies that
A is not homomorphic toB.

In what follows we transfer this result to enumeration problems. LetA be a class of relational
structures. The classA′ consists of all structures built as follows: TakeA ∈ A and add to it|A|
independent vertices.

Lemma 3.4. LetA be a class of relational structures. ThenSCSP(A,−) is solvable in polynomial
time if and only ifECSP(A′,−) is solvable WPD.

Proof. If ECSP(A,−) is enumerable WPD, then for any structureA
′ ∈ A′ it takes time polynomial

in |A′| to find the first solution. SinceA′ is only twice of the size of the corresponding structureA,
it takes only polynomial time to solveSCSP(A,−).

Conversely, given a structureA′ = A ∪ I ∈ A′, whereA ∈ A andI is the set of independent
elements, and any structureB. The first homomorphism fromA′ to B can be found in polynomial
time, sinceSCSP(A,−) is polynomial time solvable and the independent vertices can be mapped
arbitrarily. Let the restriction of this homomorphism ontoA beϕ. Then while enumerating all
possible|B||A| extensions ofϕ we buy enough time to enumerate all homomorphisms fromA to B

using brute force.

4. Sequence of bounded width endomorphisms

In this section we show that for every fixedk, all the homomorphisms fromA to B can be
enumerated with polynomial delay if a sequence of widthk endomorphisms ofA is given in the
input. Given a sequenceA0, . . . , An andϕ1, . . . , ϕn as in the definition of a sequence of widthk
endomorphisms, we denoteA[Ai] by Ai.

We will enumerate the homomorphisms fromA to B by first enumerating the homomorphisms
from An, An−1, . . . to B and then transforming them to homomorphisms fromA to B using the
homomorphismsϕi. We obtain the homomorphisms fromAi by extending the homomorphism
from Ai+1 to the setAi \ Ai+1; Lemma 4.1 below will be useful for this purpose. In order to
avoid producing a homomorphism multiple times, we need a delicate classification (see definitions
of elementary homomorphisms and of the index of a homomorphism).

Lemma 4.1. LetA,B be relational structures andX1 ⊆ X2 ⊆ A subsets, and letg0 be a homomor-
phism fromA[X1] toB. For every fixedk, there is a polynomial-time algorithmHOMOMORPHISM-
EXT(A,B,X1,X2, g0) that decides whetherg0 can be extended to a homomorphism fromA[X2] to
B, if the tree width of induced subgraphG[X2 \X1] of the Gaifman graph ofA is at mostk.
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The index of a homomorphismϕ from A to B is the largestt such thatϕ can be written as
ϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1 for some homomorphismψ from At to B. In particular, ifϕ cannot be
written asϕ = ψ ◦ ϕ1, then the index ofϕ is 0. Observe that if the index ofϕ is at leastt, then
there is a uniqueψ such thatϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1: This follows from the fact thatϕt ◦ . . . ◦ ϕ1

is a surjective mapping fromA to At, thus ifψ′ andψ′′ differ onAt, thenψ′ ◦ ϕt ◦ . . . ◦ ϕ1 and
ψ′′ ◦ ϕt ◦ . . . ◦ ϕ1 differ on A. A homomorphismψ from At to B is elementary, if it cannot be
written asψ = ψ′ ◦ ϕt+1. A homomorphism isreducibleif it is not elementary.

Lemma 4.2. If a homomorphismψ from At to B is elementary, thenϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1 has
index exactlyt. Conversely, if homomorphismϕ from A to B has indext and can be written as
ϕ = ψ ◦ ϕt ◦ . . . ◦ ϕ1, then the homomorphismψ from At to B is elementary.

Lemma 4.2 suggests a way of enumerating all the homomorphisms from A to B: for t =
0, . . . , n, we enumerate all the elementary homomorphisms fromAt to B, and for each such homo-
morphismψ, we computeϕ = ψ ◦ϕt ◦ . . .◦ϕ1. To this end, we need the following characterization
of elementary homomorphisms:

Lemma 4.3. A homomorphismψ from At to B is reducible if and only if

(1) ψ(x) = ψ(y) for everyx, y ∈ At with ϕt+1(x) = ϕt+1(y), i.e., for everyz ∈ At+1, ψ(x)
has the same valuebz for everyx withϕt+1(x) = z, and

(2) the mapping defined byψ′(z) := bz is a homomorphism fromAt+1 to B.

Lemma 4.3 gives a way of testing in polynomial time whether a given homomorphismψ is
elementary: we have to test whether one of the two conditionsare violated. We state this in a more
general form: we can test in polynomial time whether a partial mappingg0 can be extended to an
elementary homomorphismψ, if the structure induced by the elements whereg0 is not defined has
bounded tree width. We fix values every possible way in which the conditions of Lemma 4.3 can
be violated and use HOMOMORPHISM-EXT to check whether there is an extension compatible with
this choice. In order to efficiently enumerate all the possible violations of the second condition, the
following definition is needed:

Given a relationRB of arity r, abad prefixis a tuple(b1, . . . , bs) ∈ Bs with s ≤ r such that

(1) there is no tuple(b1, . . . , bs, bs+1, . . . , br) ∈ R
B for anybs+1, . . . , br ∈ B, and

(2) there is a tuple(b1, . . . , bs−1, cs, cs+1, . . . , cr) ∈ R
B for somect, . . . , cr ∈ B.

If (b1, . . . , br) 6∈ RB, then there is a unique1 ≤ s ≤ r such that the tuple(b1, . . . , bs) is a
bad prefix: there has to be ans such that(b1, . . . , bs) cannot be extended to a tuple ofRB, but
(b1, . . . , bs−1) can.

Lemma 4.4. The relationRB has at most|RB| · (|B| − 1) · r bad prefixes, wherer is the arity of
the relation.

Lemma 4.5. LetX be a subset ofAt and letg0 be a mapping fromX to B. For every fixedk,
there is a polynomial-time algorithmELEMENTARY-EXT(t,X, g0 ) that decides whetherg0 can be
extended to an elementary homomorphism fromAt to B, if the tree width of the structure induced
byAt −X is at mostk.

We enumerate the elementary homomorphisms in a specific order defined by the following
precedence relation. Letϕ be an elementary homomorphism fromAi to B and letψ be an elemen-
tary homomorphism fromAj to B for somej > i. Homomorphismψ is theparentof ϕ (ϕ is a
child of ψ) if ϕ restricted toAi+1 can be written asψ ◦ ϕj ◦ . . . ◦ ϕi+2. Ancestoranddescendant
relations are defined as the reflexive transitive closure of the parent and child relations, respectively.
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Note that an elementary homomorphism fromAi to B has exactly one parent fori < n and a
homomorphism fromAn to B has no parent. Fix an arbitrary ordering of the elements ofA. For
0 ≤ i ≤ n and0 ≤ j ≤ |Ai \ Ai+1|, let Ai,j be the union ofAi+1 and the firstj elements of
Ai \Ai+1. Note thatAi,0 = Ai+1 andAi,|Ai\Ai+1| = Ai.

Lemma 4.6. Letψ be a mapping fromAi,j to B that can be extended to an elementary homomor-
phism fromAi to B. Assume that a sequence of widthk endomorphisms is given forA. For every
fixedk, there is a polynomial-delay, polynomial-space algorithmELEMENTARY-ENUM(i, j, ψ) that
enumerates all the elementary homomorphisms ofAi that extendsψ and all the descendants of these
homomorphisms.

By calling ELEMENTARY-ENUM(n, 0, g0) (whereg0 is a trivial mapping from∅ to B), we can
enumerate all the elementary homomorphisms. By the observation in Lemma 4.2, this means that
we can enumerate all the homomorphisms fromA to B.

Theorem 4.7. For every fixedk, there is a polynomial-delay, polynomial-space algorithmthat,
given structuresA, B, and a sequence of widthk endomorphisms ofA, enumerates all the homo-
morphisms fromA to B.

Theorem 4.7 does not provide a complete description of classes of structures solvable WPD.

Corollary 4.8. There is a classA of relational structures such that not all structures fromA have
a sequence of widthk endomorphisms andECSP(A,−) is solvable WPD.

Proof. LetA be the class of structures that are the disjoint union of a loop and a core. Obviously,
SCSP(A,−) is polynomial time solvable. Therefore, by Lemma 3.4,ECSP(A′,−) is solvable with
polynomial delay. However, it is not hard to see thatA′ does not have a sequence of endomorphisms
of bounded tree width.

Furthermore, as we will see in the next section it is hard, in general, to find a sequence of
bounded width endomorphims. Still, we can find a sequence of endomorphisms for a structureA if
we impose two more restrictions on such a sequence.

A retractionϕ of a structureA is called ak-retraction if at mostk nodes change their value
according toϕ. A structure is ak-core if the onlyk-retraction is the identity. Ak-core of a structure
is anyk-core obtained by a sequence ofk-retractions.

Lemma 4.9. All k-cores of a structureA are isomorphic.

Lemma 4.9 amounts to say that when searching for a sequence ofk-retractions converging to
a k-core we can use the greedy approach and include, as the next member of such a sequence, any
k-retraction with required properties. With this in hands wenow can apply Theorem 4.7.

Theorem 4.10. Let k > 0 be a positive integer and letC be a class of structures such that thek-
core of every structure inC has tree width at mostk. Then, the enumeration problemECSP(C,−)
is solvable WPD.

Corollary 4.11. If C is a class of structures of bounded tree width thenECSP(C,−) is solvable
WPD.
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5. Hardness results

The first result of this section shows that finding a sequence of endomorphisms of bounded
width can be difficult even in simplest cases.

Theorem 5.1. It is NP-complete to decide if a structure has a sequence of 1-width retractions to
the core.

The second result shows thatECSP(A,−) can be hard even if every structure inA has a se-
quence of width-2 endomorphisms. Note that this result is incomparable with Theorem 5.1, since
an enumeration algorithm (in theory) does not necessarily have to compute an sequence of endo-
morphisms. We need the following lemma:

Lemma 5.2. If G is a planar graph, then it is possible to find a partition(V1, V2) of its vertices in
polynomial time such thatG[V1] andG[V2] have tree width at most2.

Proposition 5.3. There is a classA of relational structures such that every structure fromA has
a sequence of width 2 endomorphisms to the core, and such thatthe problemECSP(A,−) is not
solvable WPD, unlessP = NP .

Proof. Let A be a class of graphs built in the following way. Take a 3-colorable planar graphG
and its partition(V1, V2) according to Lemma 5.2. Using colorings we can ensure thatG is a core.
Then we take a disjoint union of this graph with a triangleT having all the colors and a copyG1 of
G[V1]. Let A denote the resulting structure.

CLAIM 1. A has a sequence of width-2 endomorphisms.

Let ψ be a 3-coloring ofG that is a homomorphism into the triangle, andψ′ the bijective
mapping fromG1 to G[V1]. Thenϕ1 is defined to act asψ onG, asψ′ onG′

1 and identically on
T . Endomorphismϕ2 is just the 3-coloring ofG ∪G1 induced byψ. The images ofϕ1 andϕ2 are
T ∪G[V1] andT , respectively, so all the conditions on a sequence of width-2 homomorphisms are
easily checkable.

CLAIM 2. The PLANAR GRAPH 3-COLORING PROBLEMis Turing reducible toECSP(A,−).

Given a planar graphG we find its partition(V1, V2) and create a structureA, as described
above. Then we apply an algorithm that enumerates solutionsto ECSP(A,−) We may assume that
such an algorithm stops with some time bound regardless whetherG is 3-colorable or not. If the
algorithm succeeds we can now produce a 3-coloring ofG.

6. Conjunctive queries

When making a query to a database one usually needs to obtain values of only those variables
(attributes) (s)he is interested in. In terms of homomorphisms this can be translated as follows: For
relational structuresA, B, and a subsetY ⊆ A, we aim to list those mappings fromY toB which
can be extended to a full homomorphism fromA to B. In other words, we would like to enumerate
all the mappings fromY to B that arise as the restriction of some homomorphism fromA to B.
Clearly, this problem significantly differs from the regular enumeration problem. A mapping from
Y to B can be extendible to a homomorphism in many ways, possibly superpolynomially many,
and an enumeration algorithm would list all of them. In the worst case scenario it would list them
before turning to the next partial mapping. If this happens it may destroy polynomiality of the delay
between outputting consecutive solutions.

In this section we treat the CONJUNCTIVE QUERY EVALUATION PROBLEM as follows.
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CQE(A,B)
Instance: A ∈ A, B ∈ B, Y ⊆ A

Problem: Output all partial mappings fromY to B ex-
tendible to a homomorphism fromA to B.

We present two results, first one of them shows that the problem CQE(A,−) is WPD whenA
is a class of structures of bounded tree width, the second oneclaims that, modulo some complexity
assumptions, in contrast to enumeration problems this cannot be generalized to structures withk-
cores of bounded tree width fork ≥ 2.

Theorem 6.1. If A is a class of structures of bounded width thenCQE(A,−) is solvable WPD.

Proof. We use Lemma 4.1 to show that algorithm CQE-BOUNDED-WIDTH of Figure 1 does the
job. Indeed, this algorithms backtracks only if outputs a solution.

Theorem 6.1 does not generalize to classes of structures whosek-cores have bounded width.

Example 6.2. Recall that the MULTICOLORED CLIQUE problem (cf. [15]) is formulated as fol-
lows: Given a numberk and a vertexk-colored graph, decide if the graph contains ak-clique all
vertices of which are colored different colors. This problem is W [1]-complete, i.e., has no time
f(k)nc algorithm for any functionf and constantc, unless FPT= W [1]. We reduce this problem to
CQE(A,−) whereA is the class of structures whose 2-cores are 2-element described below.

Let us consider relational structures with two binary and two unary relations. This structure
can be thought of as a graph whose vertices and edges have one of the two colors, say, red and
blue, accordingly to which of the two binary/unary relations they belong to. LetAk be the relational
structure with universe{a1, . . . , ak, y1, . . . , yk}, wherea1, . . . , ak are red whiley1, . . . , yk are blue.
Then{a1, . . . , ak} induces a red clique, that is everyai, aj (i, j are not necessarily different) are
connected with a red edge, and eachyi is connected toai with a blue edge. It is not hard to see that
every pair of a red and blue vertices induces a 2-core of this structure. SetA = {Ak | k ∈ N}.

The reduction of the MULTICOLORED CLIQUE problem toCQE(A,−) goes as follows. Given
a k-colored graphG = (V,E) whose coloring induces a partition ofV into classesB1, . . . , Bk.
Then we define structuresA,B and a setY ⊆ A. We setA = Ak, Y = {y1, . . . , yk}. Then let
B = V ∪ {b1, . . . , bk}, the elements ofV are colored red and the induced substructureB[V ] is the

Figure 1: Algorithm CQE-BOUNDED-WIDTH

Input: Relational structuresA, B, andY = {Y1, . . . , Yℓ} ⊆ A

Output: A list of mappingsϕ : Y → B extendible to a homomorphism fromA to B

Step 1 set m = 0, ϕ = ∅, Si = B, i ∈ [m], complete:=false
Step 2 while not completedo
Step 2.1 if m < ℓ then do
Step 2.1.1 search Sm+1 until a b ∈ Sm+1 is found such that there exists a homomorphism extending

ϕ ∪ {ym+1 → b} andremove all members ofSm+1 precedingb inclusive
Step 2.1.2 if such ab existsthen set ϕ := ϕ ∪ {ym+1 → b},m := m+ 1
Step 2.1.3 else
Step 2.1.3.1 if m 6= 0 then set ϕ = ϕ|{y1,...,ym−1} andSm+1 := B,m := m− 1
Step 2.1.3.2 else set complete:=true
Step 2.2 else then do
Step 2.2.1 output ϕ
Step 2.2.2 set ϕ := ϕ|{y1,...,ym−1}},m := ℓ− 1

endwhile
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graphG (without coloring) whose edges are colored also red. Finally, b1, . . . , bk are made blue and
eachbi is connected with a blue edge with every vertex fromBi.

It is not hard to see that any homomorphism maps{a1, . . . , ak} to V andY to {b1, . . . , bk},
and that the number of homomorphisms that do not agree onY does not exceedkk. Moreover,G
contains ak-colored clique if and only if there is a homomorphism fromA to B that mapsY onto
{b1, . . . , bk}. If there existed an algorithm solvingCQE(A,−) WPD, say, time needed to compute
the first and every consequent solution is bounded by a polynomial p(n), then time needed to list all
solutions is at mostkkp(n). This means that MULTICOLORED CLIQUE is FPT, a contradiction.
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ABSTRACT. An edge-colored graphG is rainbow connectedif any two vertices are connected by a
path whose edges have distinct colors. Therainbow connectivityof a connected graphG, denoted
rc(G), is the smallest number of colors that are needed in order to makeG rainbow connected. In
addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated
by applications in cellular networks. In this paper we give the first proof that computingrc(G) is
NP-Hard. In fact, we prove that it is already NP-Complete to decide ifrc(G) = 2, and also that it is
NP-Complete to decide whether a given edge-colored (with anunbounded number of colors) graph
is rainbow connected. On the positive side, we prove that foreveryǫ > 0, a connected graph with
minimum degree at leastǫn has bounded rainbow connectivity, where the bound depends only on ǫ,
and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper
bounds, as well as open problems and conjectures are also presented.

1. Introduction

Connectivity is perhaps the most fundamental graph-theoretic property, both in the combinato-
rial sense and the algorithmic sense. There are many ways to strengthen the connectivity property,
such as requiring hamiltonicity,k-connectivity, imposing bounds on the diameter, requiringthe
existence of edge-disjoint spanning trees, and so on.

An interesting way to quantitavely strengthen the connectivity requirement was recently intro-
duced by Chartrand et al. in [5]. An edge-colored graphG is rainbow connectedif any two vertices
are connected by a path whose edges have distinct colors. Clearly, if a graph is rainbow connected,
then it is also connected. Conversely, any connected graph has a trivial edge coloring that makes
it rainbow connected; just color each edge with a distinct color. Thus, one can properly define the

The work was done when Sourav Chakraborty was a Phd student atUniversity of Chicago and Arie Matsliah was a
Phd student at Technion, Israel.
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rainbow connectivityof a connected graphG, denotedrc(G), as the smallest number of colors that
are needed in order to makeG rainbow connected. An easy observation is that ifG is connected
and hasn vertices thenrc(G) ≤ n− 1, since one may color the edges of a given spanning tree with
distinct colors. We note also the trivial fact thatrc(G) = 1 if and only if G is a clique, the (almost)
trivial fact thatrc(G) = n − 1 if and only if G is a tree, and the easy observation that a cycle with
k > 3 vertices has rainbow connectivity⌈k/2⌉. Also notice that, clearly,rc(G) ≥ diam(G) where
diam(G) denotes the diameter ofG.

Chartrand et al. computed the rainbow connectivity of several graph classes including complete
multipartite graphs [5]. Caro et al. [6] considered the extremal graph-theoretic aspects of rainbow
connectivity. They proved that ifG is a connected graph withn vertices and with minimum degree3
thenrc(G) < 5n/6, and if the minimum degree isδ thenrc(G) ≤ ln δ

δ n(1+f(δ)) wheref(δ) tends
to zero asδ increases. They also determine the threshold function for arandom graphG(n, p(n))

to haverc(G) = 2. In their paper, they conjecture that computingrc(G) is an NP-Hard problem,
as well as conjecture that even deciding whether a graph hasrc(G) = 2 in NP-Complete.

In this paper we address the computational aspects of rainbow connectivity. Our first set of
results solve, and extend, the complexity conjectures from[6]. Indeed, it turns out that deciding
whetherrc(G) = 2 is an NP-Complete problem. Our proof is by a series of reductions, where
on the way it is shown that2-rainbow-colorability is computationally equivalent to the seemingly
harder question of deciding the existence of a2-edge-coloring that is required to rainbow-connect
only vertex pairs from a prescribed set.

Theorem 1.1. Given a graphG, deciding ifrc(G) = 2 is NP-Complete. In particular, computing
rc(G) is NP-Hard.

Suppose we are given an edge coloring of the graph. Is it then easier to verify whether the
colored graph is rainbow connected? Clearly, if the number of colors in constant then this problem
becomes easy. However, if the coloring is arbitrary, the problem becomes NP-Complete:

Theorem 1.2. The following problem is NP-Complete: Given an edge-colored graph G, check
whether the given coloring makesG rainbow connected.

For the proof of Theorem 1.2, we first show that thes − t version of the problem is NP-
Complete. That is, given two verticess andt of an edge-colored graph, decide whether there is a
rainbow path connecting them.

We now turn to positive algorithmic results. Our main positive result is that connectedn-vertex
graphs with minimum degreeΘ(n) haveboundedrainbow connectivity. More formally, we prove:

Theorem 1.3.For everyǫ > 0 there is a constantC = C(ǫ) such that ifG is a connected graph with
n vertices and minimum degree at leastǫn, thenrc(G) ≤ C. Furthermore, there is a polynomial
time algorithm that constructs a corresponding coloring for a fixedǫ.

The proof of Theorem 1.3 is based upon a modified degree-form version of Szemerédi’s Regu-
larity Lemma that we prove and that may be useful in other applications. From our algorithm it is
also not hard to find a probabilistic polynomial time algorithm for finding this coloring with high
probability (using on the way the algorithmic version of theRegularity Lemma from [1] or [7]).

We note that connected graphs with minimum degreeǫn have bounded diameter, but the latter
property by itself doesnot guarantee bounded rainbow connectivity. As an extreme example, a star
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with n vertices has diameter2 but its rainbow connectivity isn− 1. The following theorem asserts
however that having diameter2 and only logarithmic minimum degree suffices to guarantee rainbow
connectivity3.

Theorem 1.4. If G is ann-vertex graph with diameter2 and minimum degree at least8 log n then
rc(G) ≤ 3. Furthermore, such a coloring is given with high probability by a uniformly random3-
edge-coloring of the graphG, and can also be found by a polynomial time deterministic algorithm.

Since a graph with minimum degreen/2 is connected and has diameter2, we have as an
immediate corollary:

Corollary 1.5. If G is ann-vertex graph with minimum degree at leastn/2 thenrc(G) ≤ 3.

The rest of this paper is organized as follows. The next section contains the hardness results,
including the proofs of Theorem 1.1 and Theorem 1.2. Section3 contains the proof of Theorem 1.3
and the proof of Theorem 1.4. At the end of the proof of each of the above theorems we explain how
the algorithm can be derived – this mostly consists of using the conditional expectation method to
derandomize the probabilistic parts of the proofs. The finalSection 4 contains some open problems
and conjectures. Due to space limitations, several proofs have been omitted from this write-up.

2. Hardness results

We first give an outline of our proof of Theorem 1.1. We begin byshowing the computational
equivalence of the problem of rainbow connectivity2, that asks for a red-blue edge coloring in which
all vertex pairs have a rainbow path connecting them, to the problem ofsubset rainbow connectivity
2, asking for a red-blue coloring in which every pair of vertices in agiven subsetof pairs has a
rainbow path connecting them. This is proved in Lemma 2.1 below.

In the second step, we reduce the problem ofextending to rainbow connectivity2, asking
whether a given partial red-blue coloring can be completed to a obtain a rainbow connected graph,
to the subset rainbow connectivity2 problem. This is proved in Lemma 2.2 below.

Finally, the proof of Theorem 1.1 is completed by reducing3-SAT to the problem ofextending
to rainbow connectivity2.

Lemma 2.1. The following problems are polynomially equivalent:

(1) Given a graphG decide whetherrc(G) = 2.
(2) Given a graphG and a set of pairsP ⊆ V (G) × V (G), decide whether there is an edge

coloring ofG with 2 colors such that all pairs(u, v) ∈ P are rainbow connected.

Lemma 2.2. The first problem defined below is polynomially reducible to the second one:

(1) Given a graphG = (V,E) and a partial2-edge-coloringχ̂ : Ê → {0, 1} for Ê ⊂ E,
decide whether̂χ can be extended to a complete2 edge-coloringχ : E → {0, 1} that
makesG rainbow connected.

(2) Given a graphG and a set of pairsP ⊆ V (G) × V (G) decide whether there is an edge
coloring ofG with 2 colors such that all pairs(u, v) ∈ P are rainbow connected.
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We are unable to present the proofs of Lemma 2.1 and Lemma 2.2 due to space limitations.

Proof of Theorem 1.1 We show that Problem 1 of Lemma 2.2 is NP-hard, and then deducethat
2-rainbow-colorability is NP-Complete by applying Lemma 2.1 and Lemma 2.2 while observing
that it clearly belongs to NP.

We reduce3-SAT to Problem 1 of Lemma 2.2. Given a 3CNF formulaφ =
∧m

i=1 ci over
variablesx1, x2, . . . , xn, we construct a graphGφ and a partial2-edge coloringχ′ : E(Gφ) →

{0, 1} such that there is an extensionχ of χ′ that makesGφ rainbow connected if and only ifφ is
satisfiable.

We defineGφ as follows:

V (Gφ) = {ci : i ∈ [m]} ∪ {xi : i ∈ [n]} ∪ {a}

E(Gφ) =
{

{ci, xj} : xj ∈ ci in φ
}

∪
{

{xi, a} : i∈ [n]
}

∪
{

{ci, cj} : i, j ∈ [m]
}

∪
{

{xi, xj} : i, j ∈ [n]
}

and we define the partial coloringχ′ as follows:

∀i,j∈[m]χ
′({ci, cj}) = 0

∀i,j∈[n]χ
′({xi, xj}) = 0

∀{xi,cj}∈E(Gφ)χ
′({xi, cj}) = 0 if xi is positive in cj , 1 otherwise

while all the edges in
{

{xi, a} : i ∈ [n]
}

(and only they) are left uncolored.

Assuming without loss of generality that all variables inφ appear both as positive and as neg-
ative, one can verify that a2-rainbow-coloring of the uncolored edges corresponds to a satisfying
assignment ofφ and vice versa.

The proof of Theorem 1.2 is based upon the proof of the following theorem.

Theorem 2.3. The following problem is NP-complete: Given an edge coloredgraph G and two
verticess, t of G, decide whether there is a rainbow path connectings andt.

Proof. Clearly the problem is in NP. We prove that it is NP-Complete by reducing 3-SAT to it.
Given a 3CNF formulaφ =

∧m
i=1 ci over variablesx1, x2, . . . , xn, we construct a graphGφ with

two special verticess, t and a coloringχ : E(Gφ) → [|E(Gφ)|] such that there is a rainbow path
connectings andt in Gφ if and only if φ is satisfiable.

We start by constructing an auxiliary graphG′ from φ. The graphG′ has3m + 2 vertices, that
are partitioned intom + 2 layersV0, V1, . . . , Vm, Vm+1, whereV0 = {s}, Vm+1 = {t} and for each
i ∈ [m], the layerVi contains the three vertices corresponding to the literals of ci (a clause inφ).
The edges ofG′ connect between all pairs of vertices residing in consecutive layers. Formally,

E(G′) =
{

{u, v} : ∃i ∈ [m + 1] s.t. u ∈ Vi−1 and v ∈ Vi

}

.

Intuitively, in our final colored graphGφ, every rainbow path froms to t will define a satisfying
assignment ofφ in a way that for everyi ∈ [m], if the rainbow path contains a vertexv ∈ Vi then
the literal ofci that corresponds tov is satisfied, and henceci is satisfied. Since any path froms
to t must contain at least one vertex from every layerVi, this will yield a satisfying assignment for
the whole formulaφ. But we need to make sure that there are no contradictions in this assignment,
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that is, no opposite literals are satisfied together. For this we modifyG′ by replacing each literal-
vertex with a gadget, and we define an edge coloring for which rainbow paths yield only consistent
assignments.

For every variablexj , j ∈ [n], let vj1, vj2 , . . . , vjk
be the vertices ofG′ corresponding to the

positive literalxj, and letvj1 , vj2 , . . . , vjℓ
be the vertices corresponding to the negative literalxj.

We can assume without loss of generality that bothk ≥ 1 andℓ ≥ 1, since otherwise the formulaφ
can be simplified. For every such variablexj we also introducek × ℓ distinct colorsαj

1,1, . . . , α
j
k,ℓ.

Next, we transform the auxiliary graphG′ into the final graphGφ.
For everya ∈ [k] we replace the vertexvja that resides in layer (say)Vi with ℓ+1 new vertices

v1, v2, . . . , vℓ+1 that form a path in that order. We also connect all vertices inVi−1 to v1 and connect
all vertices inVi+1 to vℓ+1. For everyb ∈ [ℓ], we color the edge{vb, vb+1} in the new path with the
colorαj

a,b. Similarly, for everyb ∈ [ℓ] we replace the vertexvjb
from layer (say)Vi′ with k + 1 new

verticesv1, v2, . . . , vk+1 that form a path, and connect all vertices inVi′−1 to v1 and all vertices in
Vi′+1 to vk+1. For everya ∈ [k], we color the edge{va, va+1} with αj

a,b. All other edges ofGφ

(which were the original edges ofG′) are colored with fresh distinct colors.
Clearly, any path froms to t in Gφ must contain at least one of the newly built paths in each

layer. On the other hand, it is not hard to verify that any two paths of opposite literals of the same
variable have edges sharing the same color.

Proof of Theorem 1.2. We reduce from the problem in Theorem 2.3. Given an edge colored
graphG = (V,E) with two special verticess andt, we construct a graphG′ = (V ′, E′) and define
a coloringχ′ : E′ → [|E′|] of its edges such thats andt are rainbow connected inG if and only if
the coloring ofG′ makesG′ rainbow connected.

Let V = {v1 = s, v2, . . . , vn = t} be the vertices of the original graphG. We set

V ′ = V ∪ {s′, t′, b} ∪ {s1, v1
2 , v

2
2 , . . . , v

1
n−1, v

2
n−1, t

2}

and
E′ = E ∪

{

{s′, s}, {t′, t}, {s, s1}, {t, t2}
}

∪
{

{b, vi} : i ∈ [n]
}

∪

∪
{

{vi, v
j
i } : i ∈ [n], j ∈ {1, 2}

}

∪
{

{va
i , vb

j : i, j ∈ [n], a, b ∈ {1, 2}
}

.

The coloringχ′ is defined as follows:

• all edgese ∈ E retain the original color, that isχ′(e) = χ(e);

• the edges{t, t′}, {s, b} and
{

{vi, v
1
i } : i ∈ [n− 1]

}

are colored with a special colorc1;

• the edges{s, s′}, {t, b} and
{

{vi, v
2
i } : i ∈ [2, n]

}

are colored with a special colorc2;

• the edges in
{

{vi, b} : i ∈ [2, n − 1]
}

are colored with a special colorc3;

• the edges in
{

{va
i , vb

j} : i, j ∈ [n], a, b ∈ {1, 2}
}

are colored with a special colorc4.

One can verify thatχ′ makesG′ rainbow connected if and only if there was a rainbow path froms

to t in G.
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3. Upper bounds and algorithms

The proof of our main Theorem 1.3 is based upon a modified degree-form version of Sze-
merédi’s Regularity Lemma, that we prove here and that may be useful in other applications. We
begin by introducing the Regularity Lemma and the already known degree-form version of it.

3.1. Regularity Lemma

The Regularity Lemma of Szemerédi [9] is one of the most important results in graph theory
and combinatorics, as it guarantees that every graph has anǫ-approximation of constant descriptive
size, namely a size that depends only onǫ and not on the size of the graph. This approximation
“breaks” the graph into a constant number of pseudo-random bipartite graphs. This is very useful in
many applications since dealing with random-like graphs ismuch easier than dealing with arbitrary
graphs. In particular, as we shall see, the Regularity Lemmaallows us to prove that graphs with
linear minimum degree have bounded rainbow connectivity.

We first state the lemma. For two nonempty disjoint vertex sets A andB of a graphG, we
defineE(A,B) to be the set of edges ofG betweenA andB. Theedge densityof the pair is defined
by d(A,B) = |E(A,B)|/(|A||B|).

Definition 3.1 (ǫ-regular pair). A pair (A,B) is ǫ-regular if for everyA′ ⊆ A andB′ ⊆ B satisfying
|A′| ≥ ǫ|A| and|B′| ≥ ǫ|B|, we have|d(A′, B′)− d(A,B)| ≤ ǫ.

An ǫ-regular pair can be thought of as a pseudo-random bipartitegraph in the sense that it
behaves almost as we would expect from a random bipartite graph of the same density. Intuitively,
in a random bipartite graph with edge densityd, all large enough sub-pairs should have similar
densities.

A partitionV1, . . . , Vk of the vertex set of a graph is called anequipartitionif |Vi| and|Vj| differ
by no more than1 for all 1 ≤ i < j ≤ k (so in particular everyVi has one of two possible sizes).
Theorder of an equipartition denotes the number of partition classes(k above). An equipartition
V1, . . . , Vk of the vertex set of a graph is calledǫ-regular if all but at mostǫ

(k
2

)

of the pairs(Vi, Vj)

areǫ-regular. Szemerédi’s Regularity Lemma can be formulatedas follows.

Lemma 3.2 (Regularity Lemma [9]). For everyǫ > 0 and positive integerK, there existsN =

N3.2(ǫ,K), such that any graph withn ≥ N vertices has anǫ-regular equipartition of orderk,
whereK ≤ k ≤ N .

As mentioned earlier, the following variation of the lemma comes useful in our context.

Lemma 3.3(Regularity Lemma - degree form [8]). For everyǫ > 0 and positive integerK there is
N = N3.3(ǫ,K) such that given any graphG = (V,E) with n > N vertices, there is a partition of
the vertex-setV into k + 1 setsV ′

0 , V
′
1 , . . . , V ′

k, and there is a subgraphG′ of G with the following
properties:

(1) K ≤ k ≤ N ,
(2) s , |V ′

0 | ≤ ǫ5n and all other componentsV ′
i , i ∈ [k] are of sizeℓ , n−s

k ,
(3) for all i ∈ [k], V ′

i induces an independent set inG′,
(4) for all i, j ∈ [k], the pair(V ′

i , V ′
j ) is ǫ5-regular inG′, with density either0 or at least ǫ

4 ,
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(5) for all v ∈ V , degG′(v) > degG(v) − ǫ
3n.

This form of the lemma (see e.g. [8]) can be obtained by applying the original Regularity
Lemma (with a smaller value ofǫ), and then “cleaning” the resulting partition. Namely, adding to
the exceptional setV ′

0 all componentsVi incident to many irregular pairs, deleting all edges between
any other pairs of clusters that either do not form anǫ-regular pair or they do but with density less
thanǫ, and finally adding toV0 also vertices whose degree decreased too much by this deletion of
edges.

3.2. A modified degree form version of the Regularity Lemma

In order to prove that graphs with linear minimum degree havebounded rainbow connectivity
number, we need a special version of the Regularity Lemma, which is stated next.

Lemma 3.4 (Regularity Lemma - new version). For everyǫ > 0 and positive integerK there is
N = N3.4(ǫ,K) so that the following holds: IfG = (V,E) is a graph withn > N vertices and
minimum degree at leastǫn then there is a subgraphG′′ of G, and a partition ofV into V ′′

1 , . . . , V ′′
k

with the following properties:

(1) K ≤ k ≤ N ,
(2) for all i ∈ [k], (1− ǫ)n

k ≤ |V ′′
i | ≤ (1 + ǫ3)n

k ,
(3) for all i ∈ [k], V ′′

i induces an independent set inG′′,
(4) for all i, j ∈ [k], (V ′′

i , V ′′
j ) is anǫ3-regular pair inG′′, with density either0 or at least ǫ

16 ,
(5) for all i ∈ [k] and everyv ∈ V ′′

i there is at least one other classV ′′
j so that the number of

neighbors ofv in G′′ belonging toV ′′
j is at leastǫ2 |V

′′
j |.

We also note that the above a partition as guaranteed by our modified version of the Regularity
Lemma can be found in polynomial time for a fixedǫ (with somewhat worse constants), by using
the exact same methods that were used in [1] for constructingan algorithmic version of the original
Regularity Lemma. We are unable to give the complete proof ofLemma 3.4 due to space limitations.

3.3. Proof of Theorem 1.3

In this section we use our version of the Regularity Lemma to prove Theorem 1.3. First we
need some definitions. Given a graphG = (V,E) and two subsetsV1, V2 ⊆ V , let E(V1, V2)

denote the set of edges having one endpoint inV1 and another endpoint inV2. Given a vertexv, let
Γ(v) denote the set ofv’s neighbors, and forW ⊆ V , let ΓW (v) denote the setW ∩ Γ(v).

For an edge coloringχ : E → C, let πχ denote the corresponding partition ofE into (at most)
|C| components. For two edge coloringsχ andχ′, we say thatχ′ is a refinementof χ if πχ′ is a
refinement ofπχ, which is equivalent to saying thatχ′(e1) = χ′(e2) always impliesχ(e1) = χ(e2).

Observation 3.5. Let χ andχ′ be two edge-colorings of a graphG, such thatχ′ is a refinement
of χ. For any pathP in G, if P is a rainbow path underχ, thenP is a rainbow path underχ′. In
particular, ifχ makesG rainbow connected, then so doesχ′.
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We define a set of eight distinct colorsC = {a1, a2, a3, a4, b1, b2, b3, b4}. Given a coloring
χ : E → C we say thatu, v ∈ V area-rainbow connectedif there is a rainbow path fromu to v

using only the colorsa1, a2, a3, a4. We similarly defineb-rainbow connectedpairs. The following
is a central lemma in the proof of Theorem 1.3. The proof of Lemma 3.6 is given in Section 3.4.

Lemma 3.6. For anyǫ > 0, there isN = N3.6(ǫ) such that any connected graphG = (V,E) with
n > N vertices and minimum degree at leastǫn satisfies the following. There is a partitionΠ of V
into k ≤ N componentsV1, V2, . . . , Vk, and a coloringχ : E → C such that for everyi ∈ [k] and
everyu, v ∈ Vi, the pairu, v is botha-rainbow connected andb-rainbow connected underχ.

Using Lemma 3.6 we derive the proof of Theorem 1.3. For a givenǫ > 0, setN = N3.6(ǫ)

and setC = 3
ǫ N + 8. Clearly, any connected graphG = (V,E) with n ≤ C vertices satisfies

rc(G) ≤ C. So we assume thatn > C ≥ N , and letΠ = V1, . . . , Vk be the partition ofV from
Lemma 3.6, while we know thatk ≤ N .

First observe that since the minimal degree ofG is ǫn, the diameter ofG is bounded by3/ǫ.
This can be verified by e.g. by taking an arbitrary vertexr ∈ V and executing aBFS algorithm
from it. Let L1, . . . , Lt be the layers of vertices in this execution, whereLi are all vertices at
distancei from r. Observe that since the minimal degree is at leastǫn, the total number of vertices
in every three consecutive layers must be at leastǫn, thust ≤ 3/ǫ. Since the same claim holds for
anyr ∈ V , this implies thatdiam(G) ≤ t ≤ 3/ǫ.

Now let T = (VT , ET ) be a connected subtree ofG on at mostk · diam(G) ≤ 3
ǫ N vertices

such that for everyi ∈ [k], VT ∩ Vi 6= ∅. Such a subtree must exist inG since as observed earlier,
diam(G) ≤ 3/ǫ. Letχ : E → C be the coloring from Lemma 3.6, and letH = {h1, h2, . . . , h|ET |}

be a set of|ET | ≤
3
ǫ N fresh colors. We refineχ by recoloring everyei ∈ E(T ) with colorhi ∈ H.

Let χ′ : E →
(

C ∪ H
)

be the resulting coloring ofG. The following lemma completes the proof

of Theorem 1.3.

Lemma 3.7. The coloringχ′ makesG rainbow connected. Consequently,rc(G) ≤ |ET |+ 8 ≤ C.

Proof. Let u, v ∈ V be any pair ofG’s vertices. Ifu andv reside in the same componentVi of the
partitionΠ, then (by Lemma 3.6) they are connected by a pathP of length at most four, which is a
rainbow path under the the original coloringχ. Sinceχ′ is a refinement ofχ, the pathP remains a
rainbow path underχ′ as well (see Observation 3.5).

Otherwise, letu ∈ Vi andv ∈ Vj for i 6= j. Let ti andtj be vertices of the subtreeT , residing
in Vi andVj respectively. By definition ofχ′, there is a rainbow path fromti to tj using colors from
H. Let Pt denote this path. In addition, by Lemma 3.6 we know that for the original coloringχ,
there is a rainbow pathPa from u to ti using colorsa1, . . . , a4 and there is a rainbow pathPb from
v to tj using colorsb1, . . . , b4. Based on the fact thatχ′ is a refinement ofχ, it is now easy to verify
thatPt, Pa andPb can be combined to form a rainbow path fromu to v underχ′.

This concludes the proof of Theorem 1.3, apart from the existence of a polynomial time al-
gorithm for finding this coloring. We note that all argumentsabove apart from Lemma 3.6 admit
polynomial algorithms for finding the corresponding structures. The algorithm for Lemma 3.6 will
be given with its proof.
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3.4. Proof of Lemma 3.6

First we state another auxiliary lemma, which is proved in the next section.

Lemma 3.8. For everyǫ > 0 there existsN = N3.8(ǫ) such that any graphG = (V,E) with
n > N vertices and minimum degree at leastǫn satisfies the following: There exists a partition
Π = V1, . . . , Vk of V such that for everyi ∈ [k] and everyu, v ∈ Vi, the number of edge disjoint
paths of length at most four fromu to v is larger than85 log n. Moreover, these sets can be found
using a polynomial time algorithm for a fixedǫ.

Proof. (of Lemma 3.6)First we apply Lemma 3.8 to get the partitionΠ. Now the proof follows
by a simple probabilistic argument. Namely, we color every edgee ∈ E by choosing one of the
colors inC = {a1, . . . , a4, b1, . . . , b4} uniformly and independently at random. Observe that a fixed
pathP of length at most four is ana-rainbow path with probability at least8−4. Similarly, P is
a b-rainbow path with probability at least8−4. So any fixed pairu, v ∈ Vi is not botha-rainbow-
connected andb-rainbow-connected with probability at most2(1−8−4)8

5 log n < n−2, and therefore
the probability that all such pairs are botha-rainbow connected andb-rainbow connected is strictly
positive. Hence the desired coloring must exist.

To find the coloring algorithmically, we note that for everypartial coloring of the edges of
the graph it is easy to calculate theconditionalprobability that the fixed pair of verticesu, v is not
both a-rainbow-connected andb-rainbow-connected. Therefore we can calculate the conditional
expectation of the number of pairs that are not so connected for any partial coloring. Now we
can derandomize the random selection of the coloring above by using the conditional expectation
method (cf. [2]): In every stage we color one of the remainingedges in a way that does not increase
the conditional expectation of the number of unconnected pairs. Since this expectation is smaller
than1 in the beginning, in the end we will have less than1 unconnected pair, and so all pairs will
be connected.

3.5. Proof of Lemma 3.8

Given ǫ > 0 let L = N3.4(ǫ, 1) and setN to be the smallest number that satisfiesǫ4 N
L >

85 log N . Now, given any graphG = (V,E) with n > N vertices and minimum degree at least
ǫn, we apply Lemma 3.4 with parametersǫ and1. Let Π = V1, V2, . . . , Vk be the partition ofV
obtained from Lemma 3.4, while as promised,k ≤ L = N3.4(ǫ).

Fix i ∈ [k] andu, v ∈ Vi. From Lemma 3.4 we know that there is a componentVa such that
u has at leastǫ3kn neighbors inVa. Similarly, there is a componentVb such thatv has at leastǫ3kn

neighbors inVb. Let Γu,a denote the set ofu’s neighbors inVa, and similarly, letΓv,b denotev’s
neighbors inVb. We assume in this proof thatVa 6= Vb, and at the end it will be clear that the case
Va = Vb can only benefit.

We say that a setWu = {w1, . . . , wt} ⊆ Vi is distinctly reachable fromu if there are distinct
verticesw′

1, . . . , w
′
t ∈ Γu,a such that for everyj ∈ [t], {wj , w

′
j} ∈ E. Notice that the collection of

pairs{wj , w
′
j} corresponds to a matching in the graphG, where all edges of the matching have one

endpoint inVi and the other endpoint inΓu,a. Similarly, we say thatWv ⊆ Vi is distinctly reachable
from v if there are distinct verticesw′

1, . . . , w
′
t ∈ Γv,b such that for everyj ∈ [t], {wj , w

′
j} ∈ E.
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Observe that it is enough to prove that there exists a setW ⊆ Vi of sizeǫ4 N
L > 85 log N which is

distinctly reachable from bothu andv. This will imply the existence of85 log N edge disjoint paths
of length four fromu to v.

Our first goal is to bound from below the size of the maximal setWu as above. Since (by
Lemma 3.4)Va and Vi are ǫ3-regular pairs with density≥ ǫ

16 and sinceǫ3 < ǫ/3, the number
of edges betweenΓu,a andVi is at least

(

ǫ
16 − ǫ3

)

|Γu,a| · |Vi|. Before proceeding, we make the
following useful observation.

Observation 3.9. Let H = (A,B) be a bipartite graph withγ|A||B| edges. ThenH contains a
matchingM of sizeγ |A||B|

|A|+|B| .

Proof. Consider the following process that createsM . Initially M0 = ∅. Then in stepi, we pick
an arbitrary edge{a, b} ∈ E(H), setMi+1 = Mi ∪ {a, b} and remove fromE(H) all the edges
incident with eithera or b. Clearly, in each step the number of removed edges is boundedby
|A|+ |B|, so the process continues for at leastE(H)

|A|+|B| = γ |A||B|
|A|+|B| steps. Hence|M | = |

⋃

i Mi| ≥

γ |A||B|
|A|+|B| .

Returning to the proof of Lemma 3.8, by Observation 3.9 the size of a maximal setWu as above
is at least

( ǫ

16
− ǫ3

) |Γu,a||Vi|

|Γu,a|+ |Vi|
≥

( ǫ

16
− ǫ3

)

(

ǫn/(3k)
)

(n/k)

ǫn/(3k) + n/k
≥

ǫ2

64k
n.

To prove thatW = Wu∩Wa is large, we similarly use the regularity condition, but nowon the
pair (Γv,b,Wu). We get,

|E(Γv,b,Wu)| ≥
( ǫ

16
− ǫ3

)

|Γv,b||Wu|.

Here too, by Observation 3.9 we can bound from below the size of a maximal matching in the pair
(Γv,b,Wu) with

( ǫ

16
− ǫ3

) |Γv,b||Wu|

|Γv,b|+ |Wu|
≥

( ǫ

16
− ǫ3

)

(

ǫ
3kn

)(

ǫ2

64kn
)

ǫ
3kn + ǫ2

64kn
≥ ǫ4 n

k
≥ ǫ4 n

L
> 85 log N,

where the last inequality follows from our choice ofN . Recall that the matching that we found
defines the desired setW , concluding the proof. An algorithmic version of this lemmacan be
derived by simply using an algorithmic version of Lemma 3.4 in the selection ofV1, . . . , Vk above.

3.6. Graphs with diameter2

Proof of Theorem 1.4. Consider a random3-coloring ofE, where every edge is colored with
one of three possible colors uniformly and independently atrandom. It is enough to prove that for
all pairsu, v ∈ V the probability that they are not rainbow connected is at most 1/n2. Then the
proof follows by the union bound (cf. [2]).
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Let us fix a pairu, v ∈ V , and bound from above the probability that this pair is not rainbow
connected. We know that bothΓ(u) andΓ(v) (the neighborhoods ofu andv) contain at least8 log n

vertices.

(1) If {u, v} ∈ E then we are done.
(2) If |Γ(u) ∩ Γ(v)| ≥ 2 log n then there are at least2 log n edge-disjoint paths of length two

from u to v. In this case, the probability that none of these paths is a rainbow path is
bounded by(1/3)2 log n < 1/n2, and we are done.

(3) Otherwise, letA = Γ(u) \ Γ(v) andB = Γ(v) \ Γ(u). We know that|A|, |B| ≥ 6 log n,
and in addition, since the first two cases do not hold and the diameter ofG is two, all the
(length two) shortest paths fromA’s vertices tov go through the vertices inB. This implies
that every vertexx ∈ A has a neighborb(x) ∈ B (b(x) need not be a one-one function).
Let us consider the set of at least6 log n edge-disjoint pathsP = {u, x, b(x) : x ∈ A}. For
eachx ∈ A, the probability thatu, x, b(x), v is a rainbow path (given the color of the edge
(b(x), v)) is 2/9. Moreover, this event is independent of the corresponding events for all
other members ofA, because this proabablity does not change even with full knowledge of
the colors of all edges incident withv. Therefore, the probability that none of the paths in
P extends to a rainbow path fromu to v is at most(7/9)6 log n ≤ 1/n2, as required.

The above proof immediately implies a probabilistic polynomial expected time randomized
algorithm with zero error probability (since we can also efficiently check if the coloring indeed
makesG 3-rainbow connected). The algorithm can be derandomized andconverted to a polynomial
time probabilistic algorithm using the method of conditional expectations (cf. [2]) similarly to the
proof of Lemma 3.6: For every partial coloring of the edges wecan efficiently bound the conditional
probability that a fixed pairu, v is not rainbow-connected, using the relevant one of the three cases
concerningu andv that were analyzed above. Now we can color the edges one by one, at each time
taking care not to increase the bound on the conditional expectation of unconnected pairs that results
from the above probability bound for everyu andv. Since the bound on the expectation was smaller
than1 before the beginning of the process, in the end we would get a valid 3-rainbow-coloring of
G.

4. Concluding remarks and open problems

• Theorem 1.3 asserts that a connected graph with minimum degree at leastǫn has bounded
rainbow connectivity. However, the bound obtained is huge as it follows from the Regularity
Lemma. It would be interesting to find the “correct” bound. Itis even possible thatrc(G) ≤

C/ǫ for some absolute constantC.
• The proof of Theorem 1.1 shows that deciding whetherrc(G) = 2 is NP-Complete. Al-

though this suffices to deduce that computingrc(G) is NP-Hard, we still do not have a
proof that deciding whetherrc(G) ≤ k is NP-Complete for every fixedk. We can easily
it for every evenk by the following reduction from the casek = 2. Given a graphG,
subdivide every edge intok/2 edges. Now, the new graphG′ hasrc(G′) = k if and only
if rc(G) = 2. Indeed, ifrc(G) = 2 then take a corresponding red-blue coloring ofG and
color G′ by coloring every subdivided red edge ofG with the colors1, . . . , k/2 and every
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subdivided blue edge with the colorsk/2+1, . . . , k. Conversely, ifG′ has an edge coloring
making it rainbow connected using the colors1, . . . , k, then color each edgee of G as fol-
lows. If the subdivision ofe contains the color1, color e red; otherwise, colore blue. This
red-blue coloring ofG makesG rainbow connected.

It is tempting to conjecture that for everyk it is NP-Hard even to distinguish between
2-rainbow-colorable graphs and graphs that are not evenk-rainbow-colorable.

• A parameter related to rainbow connectivity is therainbow diameter. In this case we ask
for an edge coloring so that for any two vertices, there is a rainbowshortestpath connecting
them. The rainbow diameter number, denotedrd(G) is the smallest number of colors used
in such a coloring. Clearly,rd(G) ≥ rc(G) and obviously every connected graph with
n vertices hasrd(G) <

(n
2

)

. Unlike rainbow connectivity, which is a monotone graph
property (adding edges never increases the rainbow connectivity number) this is not the case
for the rainbow diameter (although we note that constructing an example that proves non-
monotonicity is not straightforward). Clearly, computingrd(G) is NP-Hard sincerc(G) =

2 if and only if rd(G) = 2. It would be interesting to prove a version of Theorem 1.3 for
rainbow diameter. We conjecture that, indeed, ifG is a connected graph with minimum
degree at leastǫn then it has a bounded rainbow diameter.

• Suppose that we are given a graphG for which we aretold that rc(G) = 2. Can we
rainbow-color it in polynomial time witho(n) colors? For the usual coloring problem, this
version has been well studied. It is known that if a graph is3-colorable (in the usual sense),
then there is a polynomial time algorithm that colors it withÕ(n3/14) colors [3].
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Abstract. We study online nonclairvoyant speed scaling to minimize total flow time plus
energy. We first consider the traditional model where the power function is P (s) = s

α.
We give a nonclairvoyant algorithm that is shown to be O(α3)-competitive. We then show

an Ω(α1/3−ǫ) lower bound on the competitive ratio of any nonclairvoyant algorithm. We
also show that there are power functions for which no nonclairvoyant algorithm can be
O(1)-competitive.

1. Introduction

Energy consumption has become a key issue in the design of microprocessors. Major
chip manufacturers, such as Intel, AMD and IBM, now produce chips with dynamically
scalable speeds, and produce associated software, such as Intel’s SpeedStep and AMD’s
PowerNow, that enables an operating system to manage power by scaling processor speed.
Thus the operating system should have an speed scaling policy for setting the speed of the
processor, that ideally should work in tandem with a job selection policy for determining
which job to run. The operating system has dual competing objectives, as it both wants to
optimize some schedule quality of service objective, as well as some power related objective.
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In this paper, we will consider the objective of minimizing a linear combination of total
flow and total energy used. For a formal definitions of the problem that we consider, see
subsection 1.2. This objective of flow plus energy has a natural interpretation. Suppose
that the user specifies how much improvement in flow, call this amount ρ, is necessary to
justify spending one unit of energy. For example, the user might specify that he is willing to
spend 1 erg of energy from the battery for a decrease of 5 micro-seconds in flow. Then the
optimal schedule, from this user’s perspective, is the schedule that optimizes ρ = 5 times
the energy used plus the total flow. By changing the units of either energy or time, one
may assume without loss of generality that ρ = 1.

In order to be implementable in a real system, the speed scaling and job selection
policies must be online since the system will not in general know about jobs arriving in
the future. Further, to be implementable in a generic operating system, these policies must
be nonclairvoyant, since in general the operating system does not know the size/work of
each process when the process is released to the operating system. All of the previous
speed scaling literature on this objective has considered either offline or online clairvoyant
policies. In subsection 1.1, we survey the literature on nonclairvoyant scheduling policies
for flow objectives on fixed speed processors, and the speed scaling literature for flow plus
energy objectives.

Our goal in this paper is to study nonclairvoyant speed scaling assuming an off-line
adversary that dynamically chooses the speed of its own machine.

We first analyze the nonclairvoyant algorithm whose job selection policy is Latest Ar-
rival Processsor Sharing (LAPS) and whose speed scaling policy is to run at speed (1 + δ)
times the number of active jobs. LAPS shares the processor equally among the latest arriv-
ing constant fraction of the jobs. We adopt the traditional model that the power function,
which gives the power as a function of the speed of the processor, is P (s) = sα, where
α > 1 is some constant. Of particular interest is the case that α = 3 since according to the
well known cube-root rule, the dynamic power in CMOS based processors is approximately
the cube of the speed. Using an amortized local competitiveness argument, we show in
section 2 that this algorithm is O(α3)-competitive. The potential function that we use is
an amalgamation of the potential function used in [8] for the fixed speed analysis of LAPS,
and the potential functions used for analyzing clairvoyant speed scaling policies. This result
shows that it is possible for a nonclairvoyant policy to be O(1)-competitive if the cube-root
rule holds.

It is known that for essentially every power function, there is a 3-competitive clairvoy-

ant speed scaling policy [3]. In contrast, we show that the competitiveness achievable by
nonclairvoyant policies must depend on the power function. In the traditional model, we
show in section 3 an Ω(α1/3−ǫ) lower bound on the competitive ratio of any deterministic
nonclairvoyant algorithm. Further, we show in section 3 that there exists a particular power
function for which there is no O(1)-competitive deterministic nonclairvoyant speed scaling
algorithm. The adversarial strategies for these lower bounds are based on the adversarial
strategies in [13] for fixed speed processors. Perhaps these lower bound results are not so
surprising given the fact that it is known that without speed scaling, resource augmentation
is required to achieve O(1)-competitiveness for a nonclairvoyant policy [13, 10]. Still a priori
it wasn’t completely clear that the lower bounds in [13] would carry over. The reason is that
in these lower bound instances, the adversary forced the online algorithm into a situation in
which the online algorithm had a lot of jobs with a small amount of remaining work, while
the adversary had one job left with a lot of remaining work. In the fixed speed setting,
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the online algorithm, without resource augmentation, can never get a chance to get rid of
this backlog in the face of a steady stream of jobs. However, in a speed scaling setting,
one might imagine an online algorithm that speeds up enough to remove the backlog, but
not enough to make its energy usage more than a constant time optimal. Our lower bound
shows that it is not possible for the online algorithm to accomplish this.

1.1. Related results

We start with some results in the literature about scheduling with the objective of
total flow time on a fixed speed processor. It is well known that the online clairvoyant
algorithm Shortest Remaining Processing Time (SRPT) is optimal. The competitive ratio

of deterministic nonclairvoyant algorithm is Ω(n1/3), and the competitive ratio of every
randomized algorithm against an oblivious adversary is Ω(log n) [13]. A randomized version
of the Multi-Level Feedback Queue algorithm is O(log n)-competitive [11, 5]. The non-
clairvoyant algorithm Shortest Elapsed Time First (SETF) is scalable, that is, (1+ ǫ)-speed
O(1)-competitive [10]. SETF shares the processor equally among all jobs that have been run
the least. The algorithm Round Robin RR (also called Equipartition and Processor Sharing)
that shares the processor equally among all jobs is (2 + ǫ)-speed O(1)-competitive [7].

Let us first consider the traditional model where the power function is P = sα. Most
of the literature assumes the unbounded speed model, in which a processor can be run at
any real speed in the range [0,∞). So let us now consider the unbounded speed model.
[15] gave an efficient offline algorithm to find the schedule that minimizes average flow
subject to a constraint on the amount of energy used, in the case that jobs have unit
work. This algorithm can also be used to find optimal schedules when the objective is a
linear combination of total flow and energy used. [15] observed that in any locally-optimal
schedule, essentially each job i is run at a power proportional to the number of jobs that
would be delayed if job i was delayed. [1] proposed the natural online speed scaling algorithm
that always runs at a power equal to the number of unfinished jobs (which is lower bound to
the number of jobs that would be delayed if the selected job was delayed). [1] did not actually
analyze this natural algorithm, but rather analyzed a batched variation, in which jobs that
are released while the current batch is running are ignored until the current batch finishes.

[1] showed that for unit work jobs this batched algorithm is O
((

3+
√

5
2

)α)

-competitive by

reasoning directly about the optimal schedule. [1] also gave an efficient offline dynamic
programming algorithm. [4] considered the algorithm that runs at a power equal to the
unfinished work (which is in general a bit less than the number of unfinished jobs for unit
work jobs). [4] showed that for unit work jobs, this algorithm is 2-competitive with respect
to the objective of fractional flow plus energy using an amortized local competitiveness
argument. [4] then showed that the natural algorithm proposed in [1] is 4-competitive for
total flow plus energy for unit work jobs.

In [4] the more general setting where jobs have arbitrary sizes and arbitrary weights
and the objective is weighted flow plus energy has been considered. The authors analysed
the algorithm that uses Highest Density First (HDF) for job selection, and always runs at a
power equal to the fractional weight of the unfinished jobs. [4] showed that this algorithm
is O( α

log α)-competitive for fractional weighted flow plus energy using an amortized local

competitiveness argument. [4] then showed how to modify this algorithm to obtain an
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algorithm that is O( α2

log2 α
)-competitive for (integral) weighted flow plus energy using the

known resource augmentation analysis of HDF [6].
Recently, [12] improves on the obtainable competitive ratio for total flow plus energy

for arbitrary work and unit weight jobs by considering the job selection algorithm Shortest
Remaining Processing Time (SRPT) and the speed scaling algorithm of running at a power
proportional to the number of unfinished jobs. [12] proved that this algorithm is O( α

log α)-

competitive for arbitrary size and unit weight jobs.
In [2] the authors extended the results of [4] for the unbounded speed model to the

bounded speed model, where there is an upper bound on the processor speed. The speed
scaling algorithm was to run at the minimum of the speed recommended by the speed
scaling algorithm in the unbounded speed model and the maximum speed of the processor.
The results for the bounded speed model in [2] were improved in [12] proving competitive
ratios of the form O( α

log α ).

[3] consider a more general model. They assume that the allowable speeds are a count-
able collection of disjoint subintervals of [0,∞), and consider arbitrary power functions P
that are non-negative, and continuous and differentiable on all but countably many points.
They give two main results in this general model. The scheduling algorithm, that uses Short-
est Remaining Processing Time (SRPT) for job selection and power equal to one more than
the number of unfinished jobs for speed scaling, is (3 + ǫ)-competitive for the objective of
total flow plus energy on arbitrary-work unit-weight jobs. The scheduling algorithm, that
uses Highest Density First (HDF) for job selection and power equal to the fractional weight
of the unfinished jobs for speed scaling, is (2 + ǫ)-competitive for the objective of fractional
weighted flow plus energy on arbitrary-work arbitrary-weight jobs.

1.2. Formal Problem Definition and Notations

We study online scheduling on a single processor. Jobs arrive over time and we have no
information about a job until it arrives. For each job j, its release time and work require-
ment (or size) are denoted as r(j) and p(j), respectively. We consider the nonclairvoyant

model, i.e., when a job j arrives, p(j) is not given and it is known only when j is completed.
Preemption is allowed and has no cost; a preempted job can resume at the point of preemp-
tion. The processor can vary its speed dynamically to any value in [0,∞). When running
at speed s, the processor processes s units of work per unit time and consumes P (s) = sα

units of energy per unit time, where α > 1 is some fixed constant. We call P (s) the power

function.
Consider any job sequence I and a certain schedule A of I. For any job j in I, the

flow time of j, denoted FA(j), is the amount of time elapsed since it arrives until it is
completed. The total flow time of the schedule is FA =

∑

j∈I FA(j). We can also interpret

FA as follows. Let nA(t) be the number of jobs released by time t but not yet completed
by time t. Then FA =

∫∞
0 nA(t)dt. Let sA(t) be the speed of the processor at time t in the

schedule. Then the total energy usage of the schedule is EA =
∫∞
0 (s(t))αdt. The objective

is to minimize the sum of total flow time and energy usage, i.e., FA + EA.
For any job sequence I, a scheduling algorithm ALG needs to specify at any time the

speed of the processor and the jobs being processed. We denote ALG(I) as the schedule
produced for I by ALG. Let Opt be the optimal offline algorithm such that for any job
sequence I, FOpt(I) + EOpt(I) is minimized among all schedules of I. An algorithm ALG is
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said to be c-competitive, for any c ≥ 1, if for all job sequence I,

FALG(I) + EALG(I) ≤ c · (FOpt(I) + EOpt(I))

2. An O(α3)-competitive Algorithm

In this section, we give an online nonclairvoyant algorithm that is O(α3)-competitive
for total flow time plus energy. We say a job j is active at time t if j is released by time t
but not yet completed by time t. Our algorithm is defined as follows.

Algorithm LAPS(δ, β). Let 0 < δ, β ≤ 1 be any real. At any time t, the

processor speed is (1 + δ)(n(t))1/α , where n(t) is the number of active jobs
at time t. The processor processes the ⌈βn(t)⌉ active jobs with the latest
release times (ties are broken by job ids) by splitting the processing speed
equally among these jobs.

Our main result is the following.

Theorem 2.1. When δ = 3
α and β = 1

2α , LAPS(δ, β) is c-competitive for total flow time

plus energy, where c = 4α3(1 + (1 + 3
α )α) = O(α3).

The rest of this section is devoted to proving Theorem 2.1. We use an amortized
local competitiveness argument (see for example [14]). To show that an algorithm is c-
competitive it is sufficient to show a potential function such that at any time t the increase
in the objective cost of the algorithm plus the change of the potential is at most c times
the increase in the objective of the optimum.

For any time t, let Ga(t) and Go(t) be the total flow time plus energy incurred up to
time t by LAPS(δ, β) and the optimal algorithm Opt, respectively. To show that LAPS(δ, β)
is c-competitive, it suffices to give a potential function Φ(t) such that the following four
conditions hold.

• Boundary condition: Φ = 0 before any job is released and Φ ≥ 0 after all jobs are
completed.

• Job arrival: When a job is released, Φ does not increase.
• Job completion: When a job is completed by LAPS(δ, β) or OPT, Φ does not in-

crease.
• Running condition: At any other time, the rate of change of Ga plus that of Φ is

no more than c times the rate of change of Go. That is, dGa(t)
dt + dΦ(t)

dt ≤ c · dGo(t)
dt

during any period of time without job arrival or completion.
Let na(t) and sa(t) be the number of active jobs and the speed in LAPS(δ, β) at time t,
respectively. Define no(t) and so(t) similarly for that of Opt. Then

dGa(t)

dt
=

dFLAPS(t)

dt
+ ELAPS(t) = na(t) + (sa(t))

α

and, similarly, dGo(t)
dt = no(t) + (so(t))

α. We define our potential function as follows.

Potential function Φ(t). Consider any time t. For any job j, let qa(j, t)
and qo(j, t) be the remaining work of j at time t in LAPS(δ, β) and Opt,
respectively. Let {j1, . . . , jna(t)} be the set of active jobs in LAPS(δ, β),
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ordered by their release time such that r(j1) ≤ r(j2) ≤ · · · ≤ r(jna(t)).
Then,

Φ(t) = γ

na(t)
∑

i=1

(

i1−1/α ·max{0, qa(ji, t)− qo(ji, t)}
)

where γ = α(1 + (1 + 3
α )α). We call i1−1/α the coefficient of ji.

We first check the boundary, job arrival and job completion conditions. Before any job
is released or after all jobs are completed, there is no active job in both LAPS(δ, β) and
Opt, so Φ = 0 and the boundary condition holds. When a new job j arrives at time t,
qa(j, t) − qo(j, t) = 0 and the coefficients of all other jobs remain the same, so Φ does not
change. If LAPS(δ, β) completes a job j, the term for j in Φ is removed. The coefficient of
any other job either stays the same or decreases, so Φ does not increase. If Opt completes
a job, Φ does not change.

It remains to check the running condition. In the following, we focus on a certain time
t within a period of time without job arrival or completion. We omit the parameter t from
the notations as t refers only to this certain time. For example, we denote na(t) and qa(j, t)
as na and qa(j), respectively. For any job j, if LAPS(δ, β) has processed less than Opt on j
at time t, i.e., qa(j) − qo(j) > 0, then we say that j is a lagging job at time t. We start by
evaluating dΦ

dt .

Lemma 2.2. Assume δ = 3
α and β = 1

2α . At time t, if LAPS(δ, β) is processing less than

(1 − 1
2α)⌈βna⌉ lagging jobs, then dΦ

dt ≤ γ
αsα

o + γ(1 − 1
α)na. Else if LAPS(δ, β) is processing

at least (1− 1
2α)⌈βna⌉ lagging jobs, then dΦ

dt ≤
γ
αsα

o −
γ
αna.

Proof. We consider dΦ
dt as the combined effect due to the processing of LAPS(δ, β) and Opt.

Note that for any job j, qa(j) is decreasing at a rate of either 0 or −sa/⌈βna⌉. Thus the
rate of change of Φ due to LAPS(δ, β) is non-positive. Similarly, the rate of change of Φ
due to Opt is non-negative.

We first bound the rate of change of Φ due to Opt. The worst case is that Opt is

processing the job with the largest coefficient, i.e., n
1−1/α
a . Thus the rate of change of Φ

due to Opt is at most γn
1−1/α
a (−dqo(jna )

dt ) = γn
1−1/α
a so. We apply Young’s Inequality [9],

which is formally stated in Lemma 2.3, by setting f(x) = xα−1, f−1(x) = x1/(α−1), g = so

and h = n
1−1/α
a . Then, we have

son
1−1/α
a ≤

∫ so

0
xα−1dx +

∫ n
1−1/α
a

0
x1/(α−1)dx =

1

α
sα
o + (1−

1

α
)na

If LAPS(δ, β) is processing less than (1 − 1
2α)⌈βna⌉ lagging jobs, we just ignore the

effect due to LAPS(δ, β) and take the bound that dΦ
dt ≤

γ
αsα

o + γ(1− 1
α)na.

If LAPS(δ, β) is processing at least (1 − 1
2α )⌈βna⌉ lagging jobs, let ji be one of these

lagging jobs. We notice that ji is among the ⌈βna⌉ active jobs with the latest release times.
Thus, the coefficient of ji is at least (na − ⌈βna⌉ + 1)1−1/α. Also, ji is being processed
at a speed of sa/⌈βna⌉, so qa(ji, t) is decreasing at this rate. LAPS(δ, β) is processing at
least (1− 1

2α )⌈βna⌉ such lagging jobs, so the rate of change of Φ due to LAPS(δ, β) is more



NONCLAIRVOYANT SPEED SCALING FOR FLOW AND ENERGY 261

negative than

γ

(

(1−
1

2α
)⌈βna⌉

)

(na − ⌈βna⌉+ 1)1−1/α

(

−sa

⌈βna⌉

)

≤ −γ(1−
1

2α
)(na − βna)

1−1/α(sa) (since −⌈βna⌉+ 1 ≥ −βna)

≤ −γ(1−
1

2α
)(1− β)(1 + δ)na (since sa = (1 + δ)n

1/α
a )

When β = 1
2α and δ = 3

α , simple calculation shows that (1 − 1
2α)(1 − β)(1 + δ) ≥ 1 and

hence the last term above is at most −γna. It follows that dΦ
dt ≤

γ
αsα

o + γ(1− 1
α)na − γna =

γ
αsα

o −
γ
αna.

Below is the formal statement of Young’s Inequality, which is used in the proof of
Lemma 2.2.

Lemma 2.3 (Young’s Inequality [9]). Let f be any real-value, continuous and strictly in-

creasing function f such that f(0) = 0. Then, for all g, h ≥ 0,
∫ g
0 f(x)dx +

∫ h
0 f−1(x)dx ≥

gh, where f−1 is the inverse function of f .

We are now ready to show the following lemma about the running condition.

Lemma 2.4. Assume δ = 3
α and β = 1

2α . At time t, dGa
dt + dΦ

dt ≤ c · dGo
dt , where c =

4α3(1 + (1 + 3
α)α).

Proof. We consider two cases depending on the number of lagging jobs that LAPS(δ, β) is
processing at time t. If LAPS(δ, β) is processing at least (1− 1

α)⌈βna⌉ lagging jobs, then

dGa

dt
+

dΦ

dt
= na + sα

a +
dΦ

dt

≤ na + (1 + δ)αna +
γ

α
sα
o −

γ

α
na (by Lemma 2.2)

= (1 + (1 + δ)α −
γ

α
)na +

γ

α
sα
o

Since δ = 3
α and γ = α(1+(1+ 3

α )α), the coefficient of na becomes zero and dGa
dt + dΦ

dt ≤
γ
αso.

Note that γ
α = (1 + (1 + 3

α)α) ≤ c and dGo
dt = no + sα

o , so we have dGa
dt + dΦ

dt ≤ c · dGo
dt .

If LAPS(δ, β) is processing less than (1 − 1
2α )⌈βna⌉ lagging jobs, the number of jobs

remaining in Opt is no ≥ ⌈βna⌉ − (1− 1
2α )⌈βna⌉ = 1

2α⌈βna⌉ ≥
1
2αβna = 1

4α2 na. Therefore,

dGa

dt
+

dΦ

dt
= na + sα

a +
dΦ

dt

≤ na + (1 + δ)αna +
γ

α
sα
o + γ(1−

1

α
)na (by Lemma 2.2)

= (1 + (1 + δ)α + γ(1−
1

α
))na +

γ

α
sα
o

≤ 4α2(1 + (1 + δ)α + γ(1−
1

α
))no +

γ

α
sα
o

Since δ = 3
α and γ = α(1+(1+ 3

α)α), the coefficient of no becomes 4α3(1+(1+ 3
α )α) = c. The

coefficient of sα
o is (1+(1+ 3

α )α) ≤ c. Since dGo(t)
dt = no+sα

o , we obtain dGa(t)
dt + dΦ

dt ≤ c· dGo(t)
dt .

Note that this case is the bottleneck leading to the current competitive ratio.



262 H.L. CHAN, J.EDMONDS, T.W.LAM, L.K. LEE, A.MARCHETTI-SPACCAMELA, AND K.PRUHS

Combining Lemma 2.4 with the discussion on the boundary, job arrival and job com-
pletion conditions, Theorem 2.1 follows.

3. Lower Bounds

In this section, we show that every nonclairvoyant algorithm is Ω(α1/3−ǫ)-competitive
in the traditional model where the power function P (s) = sα. We further extend the lower
bound to other power functions P and show that for some power function, any algorithm
is ω(1)-competitive. We first prove the following lemma.

Lemma 3.1. Let P (s) be any non-negative, continuous and super-linear power function.

Let k, v ≥ 1 be any real such that P (v) ≥ 1. Then, any algorithm is Ω(min{k, P (v +
1

16(kP (v))3
)/P (v)})-competitive.

Proof. Let ALG be any algorithm and Opt be the offline adversary. Let n = ⌈kP (v)⌉. We
release n jobs j1, j2, . . . , jn at time 0. Let T be the first time that some job in ALG is
processed for at least n units of work. Let G(T ) be the total flow time plus energy incurred
by ALG up to T . We consider two cases depending on G(T ) ≥ kn3 or G(T ) < kn3. If
G(T ) ≥ kn3, Opt reveals that all jobs are of size n. By running at speed 1, Opt completes
all jobs by time n2. The total flow time plus energy of Opt is at most n3 + n2P (1) ≤ 2n3,
so ALG is Ω(k)-competitive.

The rest of the proof assumes G(T ) < kn3. Let q1, q2, . . . , qn be the amount of work
ALG has processed for each of the n jobs. Without loss of generality, we assume qn = n.
Opt reveals that the size of each job ji is pi = qi +1. Thus, at time T , ALG has n remaining
jobs, each of size 1. For Opt, it runs at the same speed as ALG during [0, T ] and processes
exactly the same job as ALG except on jn. By distributing the n units of work processed
on jn to all the n jobs, Opt can complete j1, . . . , jn−1 by time T and the remaining size of
jn is n. As Opt is simulating ALG on all jobs except jn, the total flow plus energy incurred
by Opt up to T is at most G(T ) < kn3.

During [T, T +n4], Opt releases a stream of small jobs. Specifically, let ǫ < 1
n5v2 be any

real. For i = 1, . . . , n4

ǫ , a small job j′i is released at T +(i− 1)ǫ with size ǫv. Opt can run at
speed v and complete each small job before the next one is released. Thus, Opt has at most
one small job and jn remaining at any time during [T, T + n4]. The flow time plus energy
incurred during this period is 2n4 + n4P (v). Opt can complete jn by running at speed 1
during [T+n4, T+n4+n], incurring a cost of n+nP (1). Thus, the total flow time plus energy
of Opt for the whole job sequence is at most kn3 +2n4 +n4P (v)+n+nP (1) = O(n4P (v)).

For ALG, we first show that its total work done on the small jobs during [T, T + n4] is
at least n4v−1. Otherwise, there are at least 1

ǫv > n5v small jobs not completed by T +n4.

The best case is when these jobs are released during [T + n4 − 1
v , T + n4] and their total

flow time incurred is Ω(n5). It means that ALG is Ω(k)-competitive as n = ⌈kP (v)⌉.
We call j1, . . . , jn big jobs and then consider the number of big jobs completed by ALG

by time T + n4. If ALG completes less that 1
2n + 1 big jobs by time T + n4, then ALG has

at least 1
2n − 1 big jobs remaining at any time during [T, T + n4]. The total flow time of

ALG is at least Ω(n5), meaning that ALG is Ω(k)-competitive. If ALG completes at least
1
2n + 1 big jobs by time T + n4, the total work done by ALG during [T, T + n4] is at least
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n4v − 1 + 1
2n + 1. The total energy used by ALG is at least

P (
n4v + 1

2n

n4
)× n4 = P (v +

1

2n3
)× n4 ≥ P (v +

1

16(kP (v))3
)× n4

The last inequality comes from the fact that n = ⌈kP (v)⌉ ≤ 2kP (v). Hence, ALG is at
least Ω(P (v + 1

16(kP (v))3
)/P (v))-competitive.

Then, we can apply Lemma 3.1 to obtain the lower bound for the power function
P (s) = sα.

Theorem 3.2. When the power function is P (s) = sα for some α > 1, any algorithm is

Ω(α1/3−ǫ)-competitive for any 0 < ǫ < 1/3.

Proof. We apply Lemma 3.1 by putting k = α1/3−ǫ and v = 1. Then, P (v) = 1 and

P (v +
1

16(kP (v))3
)/P (v) =

(

1 +
1

16(α1/3−ǫ)3

)α

=

(

1 +
1

16α1−3ǫ

)(α1−3ǫ)×α3ǫ

Since (1+ 1
16x)x is increasing with x and α1−3ǫ ≥ 1, the last term above is at least (1+ 1

16)α
3ǫ

.

Thus, min{k, P (v+ 1
16(kP (v))3

)/P (v)} ≥ min{α1/3−ǫ, (17
16 )α

3ǫ
} = Ω(α1/3−ǫ), and the theorem

follows.

We also show that for some power function, any algorithm is ω(1)-competitive.

Theorem 3.3. There exists some power function P such that any algorithm is ω(1)-
competitive.

Proof. We want to find a power function P such that for any k ≥ 1, there exists a speed
v such that P (v + 1

16(kP (v))3
)/P (v) ≥ k. Then by setting k and v correspondingly to

Lemma 3.1, any algorithm is at least k-competitive for any k ≥ 1. It implies that any
algorithm is ω(1)-competitive. For example, consider the power function

P (s) =
1

(4(2 − s))1/4
, 0 ≤ s < 2

Let P ′ be the derivative of P . We can verify that P ′(s) = (P (s))5 for all 0 ≤ s < 2. For
any k, let v ≥ 1 be a speed such that P (v) ≥ 16k4. Then,

P (v +
1

16(kP (v))3
) ≥ P (v) + P ′(v)

1

16(kP (v))3
≥ (P (v))5

1

16(kP (v))3
≥ kP (v)

Thus, P (v + 1
16(kP (v))3

)/P (v) ≥ k and the theorem follows.

4. Conclusion

We show that nonclairvoyant policies can be O(1)-competitive in the traditional power
model. However, we showed that in contrast to the case for clairvoyant algorithms, there
are power functions that are sufficiently quickly growing that nonclairvoyant algorithms can
not be O(1)-competitive.

One obvious open problem is to reduce the competitive ratio achievable by a nonclair-
voyant algorithm in the case that the cube-root rule holds to something significantly more
reasonable than the rather high bound achieved here.
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The standard/best nonclairvoyant job selection policy for a fixed speed processor is
Short Elapsed Time First (SETF). The most obvious candidate speed scaling policy would
be to use SETF for job selection, and to run at power somewhat higher than the number
of active jobs. The difficulty with analyzing this speed scaling algorithm is that it is hard
to find potential functions that interact well with SETF. It would be interesting to provide
an analysis of this algorithm.
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Abstract. In this paper, we present a factor 16 approximation algorithm for the following
NP-hard distance fitting problem: given a finite set X and a distance d on X, find a
Robinsonian distance dR on X minimizing the l∞-error ||d−dR||∞ = maxx,y∈X{|d(x, y)−
dR(x, y)|}. A distance dR on a finite set X is Robinsonian if its matrix can be symmetrically
permuted so that its elements do not decrease when moving away from the main diagonal
along any row or column. Robinsonian distances generalize ultrametrics, line distances
and occur in the seriation problems and in classification.

1. Introduction

1.1. Seriation problem. Many applied algorithmic problems involve ordering of a set of
objects so that closely coupled objects are placed near each other. These problems occur in
such diverse applications as data analysis, archeological dating, numerical ecology, matrix
visualization methods, DNA sequencing, overlapping clustering, graph linear arrangement,
and sparse matrix envelope reduction. For example, a major issue in classification and
data analysis is to visualize simple geometrical and relational structures between objects.
Necessary for such an analysis is a dissimilarity on a set of objects, which is measured directly
or computed from a data matrix. The classical seriation problem [16, 18] consists in finding
of a simultaneous permutation of the rows and the columns of the dissimilarity matrix
with the objective of revealing an underlying one-dimensional structure. The basic idea is
that small values should be concentrated around the main diagonal as closely as possible,
whereas large values should fall as far from it as possible. This goal is best achieved by
considering the so-called Robinson property [20]: a dissimilarity matrix has this property
if its values do not decrease when moving away from the main diagonal along any row or
column. Experimental data usually contain errors, whence the dissimilarity can be measured
only approximatively. As a consequence, any simultaneous permutation of the rows and
the columns of the dissimilarity matrix gives a matrix which fails to satisfy the Robinson
property, and we are led to the problem of finding a matrix reordering which is as close as
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possible to a Robinson matrix. As an error measure one can use the lp-distance between
two matrices. Several heuristics for seriation using Robinson matrices have been considered
in the literature (the package seriation [14] contains their implementation). However, these
methods either have exponential complexity or do not provide any optimality guarantee of
the obtained solutions. In this paper, we provide a factor 16 algorithm for the NP-hard
problem of optimally fitting a dissimilarity matrix by a Robinson matrix under the l∞-error.

1.2. Definitions and the problem. Let X be a set of n elements to sequence, endowed
with a dissimilarity function d : X2 → R

+∪{0} (i.e., d(x, y) = d(y, x) ≥ 0 and d(x, x) = 0).
A dissimilarity d and a total order ≺ on X are compatible if d(x, y) ≥ d(u, v) for any
four elements such that x ≺ u ≺ v ≺ y. Then d is Robinsonian if it admits a compatible
order. Basic examples of Robinson dissimilarities are the ultrametrics and the standard
line-distance between n points on the line. Denote by D and R the sets of all dissimilarities
and of all Robinson dissimilarities on X. For d, d′ ∈ D, define the l∞-error by ||d− d′||∞ =
maxx,y∈X{|d(x, y)−d′(x, y)|}. To formulate the corresponding fitting problem, we relax the
notions of compatible order and Robinson dissimilarity. Given ǫ ≥ 0, a total order ≺ on
X is called ǫ-compatible if x ≺ u ≺ v ≺ y implies d(x, y) + 2ǫ ≥ d(u, v). An ǫ-Robinsonian
dissimilarity is a dissimilarity admitting an ǫ-compatible order, i.e., for each pair x, y ∈ X
one can pick a value dR(x, y) ∈ [d(x, y)− ǫ, d(x, y)+ ǫ] so that the resulting dissimilarity dR

is Robinsonian. In this paper, we study the following NP-hard [8] optimization problem:

Problem l∞-FITTING-BY-ROBINSON: Given d ∈ D, find a Robinson dissimilarity dR ∈
R minimizing the l∞-error ||d− dR||∞, i.e., find a least ǫ such that d is ǫ-Robinsonian.

1.3. Related work. Fitting general distances by simpler distances (alias low-distortion
embeddings) is a classical problem in mathematics, data analysis, phylogeny, and, more
recently, in computer science. We review here only the results about l∞-fitting of distances
(this error measure is also known as the maximum additive distortion or the maximum
additive two-sided error [5]). Farach et al. [13] showed that l∞-fitting of a distance d by
an ultrametric is polynomial. This result has been used by Agarwala et al. [1] to design
a factor 3 approximation algorithm for l∞-fitting of distances by tree-distances, a problem
which has been shown to be strongly NP-hard [1]. A unified and simplified treatment of
these results of [1, 13] using sub-dominants was given in [7]. A factor 2 approximation
algorithm for the NP-hard problem of l∞-fitting of a dissimilarity by a line-distance was
given by Hstad et al. [15]. Bădoiu [4] proposed a constant-factor algorithm for l∞-fitting
of distances by l1-distances in the plane.

Seriation is important in archeological dating, clustering hypertext orderings, numerical
ecology, sparse matrix ordering, matrix visualization methods, and DNA sequencing [3, 6,
16, 18, 19, 20]. A package seriation implementing various seriation methods is described in
[14]. The most common methods for clustering provide a visual display of data in the form
of dendrograms. Dissimilarities in perfect agreement with dendrograms (i.e., ultrametrics)
are Robinsonian. Generalizing this correspondence, [11, 12] establish that the Robinson
dissimilarities can be visualized by hierarchical structures called pyramids.

1.4. Our result and techniques. The main result of the paper is a factor 16 approxima-
tion algorithm for the problem l∞-FITTING-BY-ROBINSON. The basic setting of our
algorithm goes as follows. First we show that the optimal error ǫ∗ belongs to a well-defined
list ∆ of size O(n4). As in some other minmax problems, our approximation algorithm tests
the entries of ∆, using a parameter ǫ, which is the “guess” for ǫ∗. For current ǫ ∈ ∆, the
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algorithm either finds that no ǫ-compatible order exist, in which case the input dissimilarity
d is not ǫ-Robinsonian, or it returns a 16ǫ-compatible order. Now, if ǫ is the least value
for which the algorithm does not return the negative answer, then ǫ∗ ≥ ǫ, and the returned
16ǫ-Robinsonian dissimilarity has l∞-error at most 16ǫ∗, establishing that we have a factor
16 approximation algorithm.

For ǫ ∈ ∆, a canonical binary relation 4 is computed so that any ǫ-compatible total
order refines 4 or its dual. If 4 is not a partial order, then the algorithm halts and returns
the negative answer. If 4 is a total order, then we are done. Otherwise, we select a
maximal chain P = (a1, a2, . . . , ap) of the partial order 4 and search to fit each element
of X◦ := X \ P between two consecutive elements of P. We say that ai, ai+1 ∈ P form
a hole Hi and that all elements x ∈ X◦ assigned between ai and ai+1 are located in Hi.
This distribution of the elements to holes is performed so that (a) all elements Xi of X◦

located in the same hole Hi must “fit” in this hole, i.e., for all x, y ∈ Xi one of the orders
ai ≺ x ≺ y ≺ ai+1 or ai ≺ y ≺ x ≺ ai+1 must be cǫ-compatible for some c ≤ 12. Partitioning
X◦ into sets Xi, i = 1, . . . , p − 1, is not obvious. Even if such a partition is available, we
cannot directly apply a recursive call to each Xi, because (b) the elements located outside
the hole Hi will impose a certain order on the elements of Xi and, since we tolerate some
errors, (c) we cannot ensure that Xi is exactly the set of elements which must be located in
Hi in some ǫ-compatible total order. To deal with (a), we give a classification of admissible
and pairwise admissible holes for elements of X◦. This allows to show that, if we tolerate a
12ǫ-error, then each element x ∈ X◦ can be located in the leftmost or rightmost admissible
hole for x (we call them bounding holes of x). Both locations are feasible unless several
elements have the same pair of bounding holes. For i < j, let Xij be the set of all elements
of X◦ having Hi and Hj−1 as bounding holes. To deal with (b) and (c), on each set Xij

we define a directed graph L→ij . The strongly connected components (which we call cells) of
L→ij have the property that in any ǫ-compatible order all elements of the same component

must be located in the same hole. In fact the cells (and not the sets Xi) are the units to
which we apply the recursive calls in the algorithm. To decide in which hole Hi or Hj−1

to locate each cell of L→ij and to define the relative order between the cells assigned to the
same hole, we define another directed graph Gij whose vertices are the cells of L→ij in such

a way that (i) if some Gij does not admit a partition into two acyclic subgraphs then no
ǫ-compatible order exist and (ii) if Gij has a partition into two acyclic subgraphs G−ij and

G+
ij , then all cells of G−ij will be located in Hi, all cells of G+

ij will be located in Hj−1, and
the topological ordering of each of these graphs defines the relative order between the cells.
To partition Gij into two acyclic subgraphs (this problem in general is NP-complete [17]),
we investigate the specific properties of graphs in question, allowing us to define a 2-SAT
formula Φij which is satisfiable if and only if the required bipartition of Gij exists. Finally,
to locate in each hole Hi the cells coming from different subgraphs G+

j′i,G
−

ij , and G−ij′′ with

j′ < i < j < j′′, we use the following separation rule: the cells of G+
j′i are located to the left

of the cells of G−ij and the cells of G−ij are located to the right of the cells of G−ij′′ . Due to

space constraints, all missing proofs are given in the full version [9].

2. Preliminary results

The ≺-restricted problem is obtained from l∞-FITTING-BY-ROBINSON by fixing
the total order ≺ on X. Let ď≺ be a dissimilarity defined by setting ď≺(x, y) = max{d(u, v) :
x ≺ u ≺ v ≺ y} for all x, y ∈ X with x ≺ y (we suppose here that a ≺ a for any a ∈ X).
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Let 2ǫ̃≺ = ||d − ď≺||∞ and let d̃≺ be the (Robinsonian) dissimilarity obtained from ď≺ by

setting d̃≺(x, y) = max{ď≺(x, y)− ǫ̃≺, 0} for all x, y ∈ X,x 6= y. Then, the following holds:

Proposition 2.1. For a total order ≺ on X and d ∈ D, d̃≺ minimizes ||d− d′||∞.

Proposition 2.1 establishes that an optimal solution of the problem l∞-FITTING-BY-

ROBINSON can be selected among n! Robinsonian dissimilarities of the form d̃≺. In the full
version, we show that the natural heuristic similar to the factor 3 approximation algorithms
of H̊astad et al. [15] and Agarwala et al. [1] (which instead of n! total orders considers
only n orders) does not provide a constant-factor approximation algorithm for our problem.
Proposition 2.1 also implies that the optimal error ǫ∗ in l∞-FITTING-BY-ROBINSON

belongs to a well-defined list ∆ = {1
2 |d(x, y) − d(x′, y′)| : x, y, x′, y′ ∈ X} of size O(n4).

Given d ∈ D and ǫ ∈ ∆, we define a partial order 4 such that every ǫ-compatible total
order ≺ refines either 4 or its dual. For this, we set p 4 q for two arbitrary elements
p, q ∈ X, and close 4 using the properties of partial orders and the following observation: if
d(x, y) > max{d(x, z), d(z, y)}+ 2ǫ, then in all ǫ-compatible with d orders z must be located
between x and y. In this case, if we know that two of the elements x, z, y are in relation 4
then we can extend this relation to the whole triplet. For example, if we know that x 4 z,
then we conclude that also z 4 y and x 4 z. If the resulting 4 is not a partial order, then
d does not admit an ǫ-compatible total order. So, further let 4 be a partial order. For
two disjoint subsets A,B of X, set A 4 B if a 4 b for any a ∈ A and b ∈ B. We write
x?y if neither x 4 y nor y 4 x hold. For two numbers α and β we will use the following
notations (i) α ≈c β if |α−β| ≤ cǫ, (ii) β &c α if β ≥ α− cǫ, and (iii) β ≫c α if β > α + cǫ.
We continue with basic properties of the canonical partial order 4: If w 4 {v, z}, v?z,
u 4 v, u?z, and w?u, then: (i) d(v,w) ≈2 d(z,w); (ii) d(v, z) .2 min{d(v,w), d(z,w)}; (iii)
d(w, z) ≈4 {d(u, v), d(u, z)}; (iv) d(w, u) .2 min{d(w, v), d(u, v)}.

3. Pairwise admissible holes

3.1. Admissible holes. Let P = (a1, a2, . . . , ap−1, ap) be a maximal chain of the partial
order 4. For notational convenience, we assume that all elements of X◦ must be located
between a1 and ap (a1 and ap can be artificially added); this way, every element of X◦ must
be located in a hole. Let Hij be the union of all holes comprised between ai, aj . For x ∈ X◦,
denote by H(x) the union of all holes Hi such that x?ai or x?ai+1. If H(x) = Hij, the holes
Hi and Hj−1 are called bounding holes; see Fig. 1 (note that ai = max{ak ∈ P : ak 4 x} and
aj = min{ak ∈ P : x 4 ak} for x ∈ X◦). All other holes of H(x) are called inner holes. Since
x /∈ P, H(x) contains at least two holes. The hole Hk of H(x) is x-admissible, if the total
order on P ∪{x} obtained from 4 by adding the relation ak 4 x 4 ak+1 is ǫ-compatible with
d. It can be easily shown that the bounding holes of H(x) must be x-admissible. Denote
by dx the mean value of min{d(x, ak) : i < k < j} and max{d(x, ak) : i < k < j}. We call
δk = d(ak, ak+1) the size of the hole Hk. Then the following holds:

Lemma 3.1. If an inner hole Hk of H(x) is x-admissible, then dx ≈1 {d(x, ak), d(x, ak+1)}
≈2 δk. In particular, δk ≈3 dx. More generally, for all k, k′ ∈]i, j[, we have dx &3 d(ak, ak′).

3.2. Pairwise admissible holes. A pair {Hk,Hk′} of holes is called (x, y, c)-admissible
if Hk is x-admissible, Hk′ is y-admissible, and the total order on P ∪ {x, y} obtained by
adding to 4 the relations ak 4 x 4 ak+1 and ak′ 4 y 4 ak′+1 is cǫ-compatible. Denote by
AH(x) the set of all x-admissible holes Hk so that for each y ∈ X◦, y 6= x, there exists an y-
admissible hole Hk′ such that {Hk,Hk′} is a (x, y, 1)-admissible pair. Further we can assume
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Figure 1: Bounding holes and the partition of Xij into X−

ij and X−

ij

that for any x ∈ X◦ the bounding holes of H(x) = Hij belong to AH(x). Otherwise, if say
Hi /∈ AH(x), then ai+1 ≺ x in any ǫ-compatible total order ≺ extending 4, thus we can
augment the canonical partial order 4 by setting ai+1 4 x and by reducing the segments
H(x) accordingly. Next we investigate the pairwise admissible locations of x and y in
function of the mutual geometric location of the segments H(x) and H(y) and of the values
d(x, y), dx, and dy. We distinguish the following cases: (H1) H(x) = H(y); (H2) H(x) and
H(y) are disjoint; (H3) H(x) and H(y) overlap in at least 2 holes (H(x) ◦ H(y)); (H4)
H(x) and H(y) overlap in a single hole (H(x) ∗H(y)); (H5) H(y) is a proper subinterval
of H(x) (H(y) ⋐ H(x)). This classification of pairs {x, y} of X◦ is used in the design of our
approximation algorithm. Also the proofs of several results employ a case analysis based
on (H1)-(H5). We continue with the following result. It specifies the constraints on pairs
of elements, each element of X◦ can be located in one of its bounding holes.

Proposition 3.2. For two elements x, y ∈ X◦, any location of x in a bounding hole of
H(x) = Hij and any location of y in a bounding hole of H(y) = Hi′j′ is (x, y, 12)-admissible,
unless H(x) = H(y) and d(x, y) ≪3 max{dx, dy} or d(x, y) ≫3 max{dx, dy}, subject to the
following three constraints: (i) if H(x) ⋐ H(y), x and y are located in a common bounding
hole, then x is between y and ai+1; (ii) if H(x) ∗ H(y), then i < i′ implies x ≺ y; (iii)
if H(x) = H(y), x and y are located in the same bounding hole, and dy ≪4 dx, then
y is between x and ai+1. If H(x) = H(y) and d(x, y) ≫3 max{dx, dy}, then the only
(x, y, 1)-admissible locations are the two locations of x and y in different bounding holes.
If H(x) = H(y) and d(x, y) ≪3 max{dx, dy}, then any (x, y, 1)-admissible location is in
common x- and y-admissible holes.

4. Distributing elements to holes

In this section, we describe how, for each hole Hi, to compute the set Xi of elements of
X◦ which will be located in Hi. This set consists of some x such that Hi is a bounding hole
of H(x). Additionally, each Xi will be partitioned into an ordered list of cells, to which we
perform recursive calls. Let Xij consist of all x ∈ X◦ such that H(x) = Hij. The sets Xij

form a partition of X◦. In the next subsections, we will show how to partition each Xij into
two subsets X−

ij and X+
ij , so that X−

ij will be located in Hi and X+
ij in Hj−1; see Fig. 1.

4.1. Blocks, cells, and clusters. Two elements x, y ∈ Xij are called linked (separated)
if in all (x, y, 1)-admissible locations x and y must be placed in the same hole (in distinct
bounding holes). Two subsets A and B of Xij must be separated if all x ∈ A and y ∈ B
are separated. Let Sij and Lij be the sets of all pairs x, y ∈ Xij such that d(x, y) ≫3

max{dx, dy}, resp., d(x, y) ≪3 max{dx, dy}. By Proposition 3.2, all pairs of Sij are separated
and all pairs of Lij are linked. Since “be linked” is an equivalence relation, all vertices of
the same connected component (called block) of the graph Lij = (Xij , Lij) are linked. We
continue by investigating in which cases two blocks of Lij are separated or linked. For
x, y ∈ Xij , set x  y iff (A1) dx ≪4 dy or (A2) dx &4 dy and there exists z ∈ Xij such
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that xz, yz /∈ Lij and d(x, z) ≪16 d(y, z). If x, y, z ∈ Xij satisfy (A2), then it can be shown
that y and z are strongly separated, i.e., d(y, z) ≫9 max{dy, dz}. Additionally, we show that
if x  y, then x ≺ y in all ǫ-compatible orders ≺ such that ai+1 ≺ {x, y} and y ≺ x in all
ǫ-compatible orders ≺ such that {x, y} ≺ aj−1.

On Xij we define a directed graph L→ij : we draw an arc x → y iff (L1) x  y and

x, y belong to a common block of Lij or (L2) d(x, y) ≪5 max{dx, dy}. If (L2) is satisfied,
then xy ∈ Lij and y → x hold. The strongly connected components of L→ij are called cells.
Every block is a disjoint union of cells. Indeed, if x, y belong to a common cell, let R be
a directed path of L→ij from x to y. Pick any arc u → v of R. If it has type (L2), then

uv ∈ Lij. Otherwise, if u → v has type (L1), then u and v belong to a common block.
Thus the ends of all arcs of any path between x, y belong to a common block.

Lemma 4.1. Let x, x′, y ∈ Xij . If x, x′ belong to a common cell, but {x, x′} and y belong
to distinct blocks, then there does not exist an ǫ-compatible order such that x ≺ y ≺ x′.

Lemma 4.2. For cells C ′, C ′′, if x, x′ ∈ C ′, y, y′ ∈ C ′′, and x  y, y′  x′, then C ′ and
C ′′ must be separated.

Proof. Let B′, B′′ be the blocks containing C ′, C ′′. If B′ = B′′, as x  y and y′  x′,
they are (L1)-arcs, hence x → y and y′ → x′. This is impossible since {x, x′} and {y, y′}
belong to distinct cells. Thus B′ 6= B′′. By Lemma 4.1, if we locate x, x′, y, y′ in the same
bounding hole Hj, either {x, x′} ≺ {y, y′} or {y, y′} ≺ {x, x′} holds. On the other hand,
x  y, y′  x′ imply that x ≺ y and y′ ≺ x′. Thus C ′ and C ′′ must be separated.

Now, let Sij be a graph having cells as vertices and an edge between two cells C ′, C ′′

iff (S1) there exist x, y ∈ Xij , x in the same block as C ′ and y in the same block as C ′′

such that xy ∈ Sij or (S2) there exist x, x′ in the same block as C ′ and y, y′ in the same
block as C ′′ such that each pair xx′ and yy′ belong to a common cell, and x  y, y′  x′.
By Proposition 3.2 and Lemma 4.2, in cases (S1) and (S2) the sets C ′ and C ′′ must be
separated. The graph Sij must be bipartite, otherwise no ǫ-compatible order exist. Now, for
each connected component of Sij consider its canonical bipartition {A′, A′′}, and draw an
edge between any two cells, one from A′ and another from A′′. Denote the obtained graph
also by Sij . Call the union of cells from A′ (or from A′′) a cluster. The clusters K′ and
K′′ of A′ and A′′ are called twins. From the construction, we immediately obtain that all
elements of a cluster are linked and two twin clusters are separated. A connected bipartite
component {K′,K′′} of Sij is called a principal component if there exists x ∈ K′ and y ∈ K′′

such that x and y are strongly separated.

4.2. Partitioning Xij into X−

ij and X+
ij . We describe how to partition Xij into the subsets

X−

ij and X+
ij . For this, we define a directed graph Gij having cells as vertices, and an arc

C ′  C with tail C ′ and head C exists iff one of the following conditions is satisfied: (G1)
C ′ and C belong to twin clusters of Sij ; (G2) C ′ and C are not connected by (G1)-arcs and
there exist x ∈ C and x′ ∈ C ′ such that dx′ ≪4 dx; (G3) C ′ and C are not connected by
(G1)- or (G2)-arcs and there exist x ∈ C, x′ ∈ C ′, and z ∈ Xij such that xz, x′z /∈ Lij and
d(x′, z) ≪16 d(x, z). A head of a (G3)-arc is called a (G3)-cell. A (Gi)-cycle is a directed
cycle of Gij with arcs of type (Gi), i = 1, 2, 3. The (G1)-cycles are exactly the cycles of
length 2. A mixed cycle is a directed cycle containing arcs of types (G2) and (G3). Finally,
an induced cycle is a directed cycle C such that for two cells C,C ′ ∈ C we have C ′  C if
and only if C is the successor of C ′ in C. Our next goal is to establish that either the set



l∞-FITTING ROBINSON STRUCTURES TO DISTANCES 271

of cells can be partitioned into two subsets such that the subgraphs of Gij induced by these
subsets do not contain directed cycles or no ǫ-compatible order exist. Deciding if a directed
graph can be partitioned into two acyclic subgraphs is NP-complete [17]. In our case, this
can be done in polynomial time by exploiting the structure of Gij .

Lemma 4.3. If C = (C1, C2, . . . , Ck, C1) is a directed cycle of Gij, then for any ǫ-compatible
order, C has a cell located in the hole Hi and a cell located in the hole Hj−1.

Proof. The assertion is obvious if C is a (G1)-cycle. So, suppose that all arcs of C have type
(G2) or (G3). The definition of cells implies that C contains two consecutive cells, say C1

and Ck, which belong to different blocks. Suppose that there exists an ǫ-compatible order
≺ such that no element of ∪k

l=1Cl is located in the hole Hi = [ai, ai+1], i.e., ai+1 ≺ ∪k
l=1Cl.

In each Cl pick two elements xl, yl such that xl  yl+1(modk). Then xl ≺ yl+1(modk) for
all l = 1, . . . , k. We divide the cells of C into groups: a group consists of all consecutive
cells of C belonging to one and the same block. The first group starts with C1, while
the last group ends with Ck. We assert that if {Cl−q, . . . , Cl} and {Cl+1, . . . , Cl+r} are
two consecutive groups of C, then Cl ≺ Cl+1 ∪ · · · ∪ Cl+r (all indices here are modulo
k). Indeed, pick u ∈ Cl and v ∈ Cl+1. Since {xl, u} and {yl+1, v} belong to different
blocks while each of these pairs belong to a common cell, applying Lemma 4.1 to each
of the triplets of the quadruplet xl, u, yl+1, v, we infer that in the total order ≺ none of
yl+1, v is located between xl and u and none of xl, u is located between yl+1 and v. Since
xl ≺ yl+1, we conclude that {xl, u} ≺ {yl+1, v}, yielding Cl ≺ Cl+1. Now, consider the
cell Cl+2. The element yl+2 must be located to the right of xl+1, therefore to the right of
Cl. Since Cl+2 and Cl belong to different blocks, we can show that Cl ≺ Cl+2 by using
exactly the same reasoning as for the cells Cl and Cl+1. Continuing this way, we obtain the
required relationship Cl ≺ Cl+1 ∪ · · · ∪ Cl+r. This establishes the assertion. Suppose that
[1, i1], [i1 + 1, i2], . . . , [ir + 1, k] are the indices of cells defining the beginning and the end of
each group. From our assertion we infer that Ck ≺ Ci1 ≺ Ci2 ≺ . . . ≺ Cir ≺ Ck, contrary
that ≺ is a total order.

Lemma 4.4. If C  C ′ is a (G3)-arc and C belongs to a principal component, then C
and C ′ belong to the same cluster. In particular, Gij does not contain (G3)-cycles or no
ǫ-compatible order exist. Moreover, Gij does not contain (G2)-cycles.

Proof. Let xy be a strongly separated pair with x ∈ C. Since C  C ′ is a (G3)-arc, there
exist y′ ∈ C and x′ ∈ C ′ such that y′  x′ is an (A2)-arc. Then there exists z′ such that
x′z′ is strongly separated. If xz and x′y′ belong to different principal components, then
there exists a (G2)-arc from C ′ to C or from C to C ′. In the first case, C and C ′ obey (S2),
thus we cannot have a (G3)-arc from C to C ′. Analogously, in the second case, we deduce
that we have at the same time a (G3)-arc and a (G2)-arc from C to C ′. This is impossible,
so C and C ′ belong to a common principal component. Now, if Gij contains a (G3)-cycle,
then the first assertion implies that all its cells belong to the same cluster, and Lemma 4.3
yields that no ǫ-compatible order exist. Finally, let C = (C1, C2, . . . , Ck, C1) be a (G2)-
cycle. In each Ci, pick xi, yi so that dxi

≪4 dyi+1(modk)
. Since there is no (G2) or (G3) arc

from Ci+1(modk) to Ci, we get dyi
.4 dxi+1(modk)

, yielding dxi
≪4 dyi+1(modk)

.4 dxi+2(modk)
.

Thus dxi
< dxi+2(modk)

for i = 1, . . . k. Then dx1 < dx3 < · · · < dxk−1
< dx1 for even k and

dx1 < dx3 < · · · < dxk
< dx2 < dx4 < · · · < dxk−1

< dx1 for odd k, a contradiction.

To complete the bipartition of cells into two acyclic subgraphs of Gij , it remains to deal
with induced mixed cycles. The following results precise their structure.
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Lemma 4.5. Any induced mixed cycle C of Gij contains one or two (G2)-arcs, and if C
contains two such arcs, then they are consecutive.

Lemma 4.6. Let C ′  C be a (G3)-arc, C  C ′′ be a (G2)-arc, and suppose that there
is no (G2)-arc from C ′ to C ′′. If C,C ′ do not belong to distinct twin clusters and C,C ′′ do
not belong to the same cluster, then C and C ′ must be separated.

Thus a mixed cycle C contains either one (G2)-arc (C is a 1-cycle) or two consecutive
(G2)-arcs (C is a 2-cycle), all other arcs of C being (G3)-arcs. By Lemma 4.4, the heads of all
(G3)-arcs of C are (G3)-cells of the same cluster K. Then we say that the cycle C intersects
the cluster K. For a (G2)-arc C0  C and a cluster K, we show how to detect if there exists
a 1- or 2-cycle C passing via C0  C and intersecting K. We consider the case of 1-cycles.
Then C0 must be a (G3)-cell of K. Note that an induced 1-cycle cannot contain cells C ′ such
that C0  C ′ is a (G2) or (G3)-arc. Hence, we can remove all such cells of K. Analogously,
we remove all cells C ′ so that C ′  C is an arc. In the subgraph induced by the remaining
cells of K we search for a shortest directed path Q = C  C1  · · ·  Ck  C0 so that
the first arc C  C1 and the last arc Ck  C0 of this path are (G3)-arcs. This can be done
in polynomial time by testing all possible choices for C1 and Ck and applying for each pair
a shortest path finding algorithm in an acyclic graph. If such a path Q does not exist, then
no required induced cycle C exist. Otherwise, the path Q together with the arc C0  C
define an induced cycle C having exactly one (G2)-arc. Indeed, if Ci  Cj is a (G2) or
(G3)-arc and |i − j| > 2, since the subgraph induced by K is acyclic, we must have i < j.
This contradicts the minimality of the path Q. So, the resulting cycle is indeed induced.
It remains to note that C does not contain other (G2)-arcs, because by Lemma 4.5 in an
induced cycle the (G2)-arcs are consecutive. Analogously, we can decide if there exists a
2-cycle passing via C0  C and intersecting K, and having a second (G2)-arc of the form
C  C ′

0 or C ′

0  C0. Therefore, we have the following result:

Lemma 4.7. For a (G2)-arc C0  C and a cluster K, one can decide in polynomial time
if there exists an induced 1- or 2-cycle C passing via C ′  C and intersecting K.

For a cell C, let Ω1(C) be the set of (G2)-arcs C0  C belonging to a 1-cycle intersecting
a cluster K not containing C. Let Ω2(C) be the set of (G2)-arcs C0  C belonging to a
2-cycle C intersecting a cluster K not containing C and passing via C0  C so that the arc
of C entering C0 is a (G3)-arc. In both cases C0 belongs to K: C0 is a head of a (G3)-arc
of C, and all such heads belong to K. Finally, let Ω3(C) be the set of (G2)-arcs C  C0

belonging to a 2-cycle C intersecting a cluster K, so that C belongs to K and the arc of
C entering C has type (G2). Fig. 2 illustrates this classification. For each cell C of Gij

we introduce a binary variable xC satisfying the following constraints: (F1) xC′ = xC′′ , if
C ′, C ′′ belongs to the same cluster; (F2) xC′ 6= xC′′ , if C ′, C ′′ belong to twin clusters; (F3)
xC 6= xC0 , if the arc C0  C belongs to Ω1(C)∪Ω2(C); (F4) xC 6= xC0 , if the arc C  C0

belongs to Ω3(C). Define a 2-SAT formula Φij by replacing every constraint a = b by two
clauses (a ∨ b̄) and (ā ∨ b) and every constraint a 6= b by two clauses (a ∨ b) and (ā ∨ b̄).

Proposition 4.8. If the 2-SAT formula Φij admits a satisfying assignment A, then the

sets X−

ij = {C : A(xC) = 0} and X+
ij = {C : A(xC) = 1} define a partition of Gij into

two acyclic subgraphs. Conversely, given an ǫ-compatible order on X, the assignment A
defined by setting A(xC) = 0 if C is located in Hi, A(xC) = 1 if C is located in Hj−1, and
A(xC′) = A(xC′′) if C ′ and C ′′ are located in a common inner hole, is a true assignment
for Φij. In particular, if Φij is not satisfiable, then no ǫ-compatible order exist.
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Figure 2: To the classification of the arcs incident to a cell C

Proof. Let A be a true assignment of Φij and the partition X−

ij ,X
+
ij of Xij be defined as

above. Denote by G−ij and G+
ij the subgraphs induced by X−

ij and X+
ij . (F1) forces every

cluster to be included in one set. (F2) implies that the twin clusters are separated. Hence
G−ij and G+

ij do not contain (G1)-cycles: if C and C ′ are the two cells of a (G1)-cycle,

then (xC ∨ xC′) ∧ (x̄C ∨ x̄C′) yields A(xC) 6= A(xC′). By Lemma 4.4, Gij does not contain
(G2)-cycles. Since the cells of a (G3)-cycle are contained in the same cluster and each
cluster induces an acyclic subgraph, G−ij and G+

ij do not contain (G3)-cycles as well. Now,

let G+
ij contain a mixed cycle. Then it also contains an induced mixed cycle C. From Lemma

4.5 we infer that C has either one (G2)-arc C0  C or exactly two consecutive (G2)-arcs
C0  C  C ′′. In the first case, we conclude that C0  C belongs to Ω1(C), thus (F3)
yields xC 6= xC0 , contrary to the fact that A(xC) = A(xC′) = 1. Analogously, in the second
case, we deduce that either xC 6= xC0 and the arc C0  C belongs to Ω2(C) or xC = xC0

and the arc C  C ′′ belongs to Ω3(C), whence xC 6= xC′′ . Then we obtain a contradiction
with the assumption that A(xC0) = A(xC) = A(xC′′) = 1. This shows that the subgraphs
G−ij and G+

ij obtained from the true assignment A of Φij are acyclic.
Conversely, let A be an assignment obtained from an ǫ-compatible order as defined

in the proposition. We assert that A is a true assignment for Φij , i.e., it satisfies the
constraints (F1)-(F4). This is obvious for constraints (F1) and (F2), because if two
cells C ′, C ′′ belong to the same cluster, then they will be located in the same hole and
we must have A(xC′) = A(xC′′). If C ′ and C ′′ belong to distinct twin clusters, then they
must be separated, therefore the unique ǫ-admissible location of C ′ and C ′′ will be in
different bounding holes, thus A(xC′) 6= A(xC′′). Now, pick an arc C0  C which belongs
to Ω1(C) ∪ Ω2(C). If C0  C belongs to Ω1(C), then there exists a 1-cycle C passing via
C0  C and intersecting a cluster K. Since all cells of C, except C, are heads of (G3)-arcs,
they all belong to K, i.e., they have the same value in the assignment. By Lemma 4.3, C
must be separated from C0 (namely C and C ′ must be located in different bounding holes),
showing that A(xC) 6= A(xC0). If C0  C belongs to Ω2(C), then let C be a 2-cycle passing
via C0  C and intersecting the cluster K not containing C. Additionally, we know that the
arc C ′  C0 of C entering C0 is a (G3)-arc, thus C0 belongs to K. Since C ′ cannot belong to
the twin cluster of K (this will contradicts that C ′  C0 is a (G3)-arc) and since C does not
belong to K, from Lemma 4.6 we infer that C0 and C are separated, thus A(xC) 6= A(xC0).
Finally, let C  C0 belong to Ω3(C). Then there exists a 2-cycle C passing via C  C0

and intersecting the cluster K, such that C belongs to K and the arc of C entering C has
type (G2). Since all cells of C except C and C0 are heads of (G3)-arcs, they all belong
to K. Since C also belongs to this cluster, by Lemma 4.3, C0 must be separated from the
remaining cells of C, yielding xC 6= xC0 . Hence A satisfies the constraints (F1)-(F4). This
shows, in particular, that if Φij is not satisfiable, then no ǫ-compatible order exist.
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X+
k(i+1)

Hi

X−ij

X−ij′

Figure 3: Relative location of the cells of X+
k(i+1),X

−

ij′ , and X−

ij (k < i, j′ < j) in Hi

4.3. Sorting the cells of X−

ij and X+
ij . Let G−ij and G+

ij be the subgraphs of Gij induced

by the sets X−

ij and X+
ij obtained from the true assignment of the 2-SAT formula Φij. We

will locate all cells of X−

ij in the hole Hi and all cells of X+
ij in the hole Hj−1 of Hij. The

elements from two cells C ′, C ′′ located in the same hole will not be mixed, i.e., C ′ will be
placed to the right of C ′′, or vice versa. To specify the total order among cells, we use that
G−ij and G+

ij are acyclic, therefore each of them admit a topological order. We compute a

topological order Cj1 ≺ Cj2 ≺ . . . ≺ Cjp on the cells of X+
ij and a dual topological order

Ciq ≺ Ciq−1 ≺ . . . ≺ Ci1 on the cells of X−

ij . We locate the cells of X+
ij in Hj−1 and the

cells of X−

ij in Hi according to these orders. The following two results relay the topological
orders on the cells with the order on the distances between elements from such cells.

Lemma 4.9. Let C ′, C ′′ be two cells of X+
ij . If C ′ ≺ C ′′ in the topological order, then for

any y ∈ C ′, z ∈ C ′′ and x ∈ X−

ij , we have dy .4 dz and d(x, y) .16 d(x, z).

Proof. Since C ′, C ′′ belong to X+
ij , they are not connected by (G1)-arcs. Since C ′ ≺ C ′′ in

the topological order, there is no arc from C ′′ to C ′. As C ′′  C ′ is not a (G2)-arc, we
must have dz &4 dy. As C ′′  C ′ is not a (G3)-arc, we obtain d(x, y) .16 d(x, z).

Lemma 4.10. Let C,C ′, C ′′ be three distinct cells of the graph Gij . If the algorithm returns
the total order ≺ and C ≺ C ′ ≺ C ′′, then for any x ∈ C, y ∈ C ′, z ∈ C ′′ or x, y, z ∈ C ∪ C ′

and x ≺ y ≺ z, we have d(x, z) &16 max{d(x, y), d(y, z)}.

After fixing the relative position of each cell C of Xij , we make a recursive call to C.
For this, we update the canonical order 4 in the following way: if C is located in X+

ij , we

set x 4+ y if x  y, otherwise, if C is located in X−

ij , we set x 4− y if y  x. Since 4+

and 4− are dual, if we apply to them the “closing” rules, we will obtain two dual partial
orders, denoted also by 4+ and 4− . The restriction on C of every ǫ-compatible order ≺
on X is an extension of 4+ or 4−: since all elements of C will be placed in the same hole,
either ai+1 ≺ C or C ≺ aj . If ai+1 ≺ C, then x ≺ y for all x, y ∈ C such that x  y. Hence
≺ is a linear extension of 4+. Therefore, if the recursive call to a cell C returns the answer
“not”, then no ǫ-compatible total order on X exist. Else, it returns a total order on C,
which is 16ǫ-compatible by induction hypothesis. Then, the total order between the cells
of Gij and the total orders on cells are concatenated to give a single total order ≺ on Xij .

4.4. Defining the total order on Xi. Recall that Xi is the set of all elements of X◦

located in the hole Hi. According to our algorithm, Xi is the disjoint union of all sets X−

ij

(j > i+1) and X+
k(i+1) (k < i). We just defined a total order between the cells of each of the

sets X−

ij ,X
+
k(i+1), and applying recursion we defined a total order on the elements of each

cell. To obtain a total order on the whole set Xi it remains to define a total order between
the sets X−

ij (j > i + 1) and X+
k(i+1) (k < i). For this, we locate each X+

k(i+1) (k < i) to the
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left of each X−

ij (j > i). Given two sets X+
k(i+1),X

+
k′(i+1) (k, k′ < i), we locate X+

k(i+1) to the

left of X+
k′(i+1) if and only if k < k′, i.e., iff Hk(i+1) ⋐ Hk′(i+1). Analogously, given X−

ij ,X
−

ij′

(j, j′ > i + 1), we locate X−

ij′ to the right of X−

ij if and only if j′ < j, i.e., iff Hij′ ⋐ Hij.

This location is justified by the Proposition 3.2 and is illustrated in Fig. 3.

5. The algorithm and its performance guarantee

We have collected all necessary tools to describe the algorithm. It consists of three
procedures l∞-Fitting by Robinson, Refine, and Partition and Sort. The main procedure
l∞-Fitting by Robinson constructs the sorted list ∆ of feasible values for the optimal error
ǫ∗. Its entries are considered in a binary search fashion and the algorithm returns the
smallest value ǫ ∈ ∆ occurring in this search for which the answer “not” is not returned
(i.e., the least ǫ for which a 16ǫ-compatible total order on X exists). To decide, if, for a
given ǫ, such an order exists, the procedure Refine(X,4, ǫ) constructs (and/or updates)
the canonical partial order 4 and computes a maximal chain P of (X,4). For each element
x ∈ X◦ := X \P, Refine computes the set AH(x) of all x-holes which participate in (x, y, 1)-
admissible locations for all y ∈ X◦ and defines the segment H(x). For each pair i < j − 1,
Refine constructs the set Xij and makes a call of the procedure Partition and Sort(Xij),

which returns the bipartition {X−

ij ,X
+
ij } of Xij and a total order on the cells of X−

ij and X+
ij .

Then Refine concatenates in a single total order on cells the total orders on cells coming
from different sets assigned to the same hole. After this, Refine is recursively applied to each
cell occurring in some graph Gij . The returned total orders on cells are concatenated into a
single total order ≺ on X according to the total orders between cells and between holes; then
≺ is returned by the algorithm l∞-Fitting by Robinson. The procedure Partition and Sort
constructs the graphs Lij and L→ij . Using these graphs, Xij is partitioned into blocks and
cells, then graph Sij and its clusters are constructed. Using the cells, the directed graph Gij

is constructed. If Sij is not bipartite or Gij contains (G3)-cycles, then Partition and Sort
returns the answer “not”. Otherwise, for each cell C and each cluster K, it tests if there
exists a 1-cycle and/or a 2-cycle passing via C and intersecting K. Consequently, for each
cell C, the lists Ω1(C),Ω2(C), and Ω3(C) of (G2)-arcs are computed. These lists are used
to construct the 2-SAT formula Φij, which is solved by the algorithm of [2]. If Φij admits

a true assignment A, then X−

ij = {C : A(xC) = 0} and X+
ij = {C : A(xC) = 1} define a

bipartition of Xij into two acyclic subgraphs G−ij ,G
+
ij of Gij . Then Partition and Sort locates

the cells from X+
ij in the hole Hj−1 according to the topological order of the acyclic graph

G+
ij and it locates the cells from X−

ij in the hole Hi according to the dual topological order

of G−ij . Note that if at some stage Refine or Partition and Sort returns the answer “not”,
then there does not exists any ǫ-compatible total order on X and the current value of ǫ
is too small. The total complexity of the algorithm is O(n6 log n). We formulate now the
main result of our paper:

Theorem 5.1. For ǫ ∈ ∆, if the algorithm returns the answer “not”, then the dissimilarity
d is not ǫ-Robinson, else, it returns a 16ǫ-compatible total order ≺ on X. In particular, the
algorithm is a factor 16 approximation algorithm for l∞-FITTING-BY-ROBINSON.

Proof. First, note that no ǫ-compatible order exist in all cases when the algorithm returns
the answer “not”. Indeed, Lemma 4.4, Propositions 3.2 and 4.10 cover all such cases except
the case when this answer is returned by a recursive call. In this case, the induction
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assumption implies that no ǫ-compatible total order on C extending 4+ (and therefore its
dual 4−) exist. Then we infer that no ǫ-compatible order on X exist as well.

Now, let the algorithm return a total order ≺ . Suppose by induction assumption that ≺
is 16ǫ-compatible on each cell to which a recursive call is applied. On the chain P, the total
order ≺ coincides with 4, therefore ≺ is ǫ-compatible on P. Moreover, ≺ is ǫ-compatible
on P ∪ {x} for any x ∈ X◦, because every element x is located in a bounding hole of
H(x) which is x-admissible. Finally notice that ≺ is 12ǫ-compatible on P ∪ {x, y} for any
x, y ∈ X◦ because by Proposition 3.2 the bounding hole of H(x) and the bounding hole of
H(y) into which x and y are located define a (x, y, 12)-admissible pair. To prove that ≺ is
16ǫ-compatible on the whole set X, it suffices to show that d(x, z) &16 max{d(x, y), d(y, z)}
for any three elements x, y, z ∈ X such that x ≺ y ≺ z. From previous discussion, we can
suppose that x, y, z ∈ X◦. For this, we distinguish the Cases (H1)-(H5) in function of
the mutual location of segments H(x) and H(z) and in each case we show the required
inequality. The respective case analysis is given in [9].
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Abstract. We consider the problem of uniform sampling of points on an algebraic variety.
Specifically, we develop a randomized algorithm that, given a small set of multivariate
polynomials over a sufficiently large finite field, produces a common zero of the polynomials
almost uniformly at random. The statistical distance between the output distribution of
the algorithm and the uniform distribution on the set of common zeros is polynomially
small in the field size, and the running time of the algorithm is polynomial in the description
of the polynomials and their degrees provided that the number of the polynomials is a
constant.

1. Introduction

A natural and important class of problems in computer science deals with random
generation of objects satisfying certain properties. More precisely, one is interested in an
efficient algorithm that, given a compact description of a set of objects, outputs an element
in the set uniformly at random, where the exact meaning of “compact” depends on the
specific problem in question.

Uniform sampling typically arises for problems in NP. Namely, given an instance be-
longing to a language in NP, one aims to produce a witness uniformly at random. Here,
the requirement is stronger than that of decision and search problems. In a seminal paper,
Jerrum, Valiant and Vazirani [8] gave a unified framework for this problem and showed
that, for polynomial-time verifiable relations xRy, uniform sampling of a witness y for a
given instance x is reducible to approximate counting of the witnesses, and hence, can be
efficiently accomplished using a ΣP

2 oracle. It is natural to ask whether the requirement
for an ΣP

2 oracle can be lifted. In fact, this is the case; a result of Bellare, Goldreich, and
Petrank [3] shows that an NP oracle is sufficient and also necessary for uniform sampling of
NP witnesses.

The NP sampling problem can be equivalently stated as follows: Given a boolean cir-
cuit of polynomially bounded size, sample an input that produces the output 1 (if possible),
uniformly at random among all possibilities. This problem can be naturally generalized to
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models of computation other than small boolean circuits, and an interesting question to
ask is the following: For what restricted models, the uniform (or almost-uniform) sampling
problem is efficiently solvable (e.g., by polynomial-time algorithms or polynomial-sized cir-
cuits) without the need for an additional oracle? Of course if the role of the NP oracle
in [3] can be replaced by a weaker oracle that can be efficiently implemented, that would
immediately imply an efficient uniform sampler. While for general NP relations the full
power of an NP oracle is necessary, this might not be the case for more restricted models.

In this work, we study the sampling problem for the restricted model of polynomial

functions. A polynomial function of degree d over a field F (that we assume to be finite)
is a mapping f : Fn → F

m such that every coordinate of the output can be computed by
an n-variate polynomial of total degree at most d over F. The corresponding sampling
problem (that we call variety sampling) is defined as follows: Given a polynomial function,
find a pre-image of a given output (that can be considered the zero vector without loss of
generality) uniformly at random. Hence, in this problem one seeks to sample a uniformly
random point on a given algebraic variety. It is not difficult to show that this problem is, in
general, NP-hard. Hence, it is inevitable to relax the generality of the problem if one hopes
to obtain an efficient solution without the need for an NP oracle. Accordingly, we restrict
ourselves to the case where

(1) The co-dimension of the variety (or, the number of the polynomials that define the
variety) is small,

(2) The underlying field is sufficiently large,
(3) The output distribution is only required to be statistically close to the uniform

distribution on the variety.

It is shown in [8] that almost uniform generation of NP witnesses (with respect to
the statistical distance) is possible without using an NP oracle for self-reducible relations
for which the size of the solution space can be efficiently approximated. The relation
underlying the variety sampling problem consists of a set of n-variate polynomials over F
and a point x ∈ Fn, and it holds if and only if x is a common zero of the polynomials.
Obviously, assuming that field operations can be implemented in polynomial time, this is
a polynomial-time verifiable relation. Moreover, the relation is self reducible, as any fixing
of one of the coordinates of the witness x leads to a smaller instance of the problem itself,
defined over n − 1 variables. Approximate counting of the witnesses amounts to giving a
sharp estimate on the number of common zeros of the set of polynomials. Several such
estimates are available. In particular, a result of Lang and Weil1 (Theorem 2.2) that we
will later use in the paper gives general lower and upper bounds on the number of rational
points on varieties. Moreover, there are algorithmic results (see [1, 2, 7, 12, 14] and the
references therein) that consider the problem of counting rational points on a given variety
that belongs to a certain restricted class of varieties over finite fields.

Thus, it appears that the result of [8] already covers the variety sampling problem.
However, this is not the case because of the following subtleties:

(1) Our relation is not necessarily self-reducible in the strong sense required by the con-
struction of [8]. What required by this result is that partial fixings of the witness can
be done in steps of at most logarithmic length (to allow for an efficient enumeration
of all possible fixings). Namely, in our case, a partial fixing of x amounts to choosing

1This result can be seen as a consequence of the Weil theorem (initially conjectured in [18]) which is an
analog of the Riemann hypothesis for curves over finite fields.
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a particular value for one of the n variables. The portion of x corresponding to the
variable being fixed would have length log q, and in general, this can be much larger
than O(log |x|).

(2) The general Lang-Weil estimate gives interesting bounds only when the underlying
field is fairly large.

(3) The algorithmic results mentioned above, being mostly motivated by cryptographic
or number-theoretic applications such as primality testing, focus on very restricted
classes of varieties, for instance, elliptic [14] or hyperelliptic [1] curves (or general
plane curves [7] that are only defined over a constant number of variables), or
low-dimensional Abelian varieties [2]. Moreover, they are efficient in terms of the
running time with respect to the logarithm of the field size and the dependence on
the number of variables or the degree (whenever they are not restricted to constants)
can be exponential.

Hence, over large fields, fine granularity of the self-reduction cannot be fulfilled and
over small fields, no reliable and efficient implementation of a counting oracle is available
for our problem, and we cannot directly apply the general sampler of [8]. In this work, we
construct an efficient sampler that directly utilizes the algebraic structure of the problem.
The main theorem that we prove is the following:

Theorem 1.1. (Main theorem) Let the integer k > 0 be any absolute constant, n > k and

d > 0 be positive integers, ǫ > 0 be an arbitrarily small parameter, and q be a large enough

prime power. Suppose that f1, . . . , fk ∈ Fq[x1, . . . , xn] are polynomials, each of total degree

at most d, whose set of common zeros defines an affine variety V ⊆ Fn
q of co-dimension k.

There is a randomized algorithm that, given the description of f1, . . . , fk and the parameter

ǫ, outputs a random point v ∈ Fn
q such that the distribution of v is (6/q1−ǫ)-close to the

uniform distribution on V . The worst case running time of the algorithm is polynomial in

n, d, log q, and the description length2 of f1, . . . , fk.

Though we present the above result for affine varieties, our techniques can be readily
applied to the same problem for projective varieties as well. At a high level, the algorithm is
simple and intuitive, and can be roughly described as follows: To sample a point on a variety
V of co-dimension k, we first sample a k-dimensional affine subspace A uniformly at random
and then a random point on V ∩A. To make the analysis clear, we show (in Section 3) that
the problem can be viewed as a sampling problem on almost regular bipartite graphs, where
one can sample a left vertex almost uniformly by picking the left neighbor of a random edge.
The main part of the analysis (Section 4) is to show why this reduction holds, and requires
basic tools from Algebraic Geometry, in particular the Lang-Weil estimate on the number
of points on varieties (Theorem 2.2), and details on how to deal with problems such as
varying dimension and size of the intersection V ∩ A. The reduction combined with the
graph sampling algorithm constitutes the sampling algorithm claimed in the main theorem.

Connection with Randomness Extractors

Trevisan and Vadhan [17] introduced the notion of samplable sources as probability
distributions that can be sampled using small, e.g., polynomial-sized, boolean circuits. An
extractor for samplable sources is a deterministic function whose output, when the input is

2We consider an explicit description of polynomials given by a list of their nonzero monomials.
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randomly chosen according to any samplable distribution, has a distribution that is statis-
tically close to uniform. Assuming the existence of certain hard functions, they constructed
such extractors.

As a natural class of samplable distributions, Dvir, Gabizon and Wigderson [6] consid-
ered the class of distributions that are samplable by low-degree multivariate polynomials.
They gave a construction of extractors for such sources over sufficiently large finite fields
that does not rely on any hardness assumption and achieves much better parameters. More-
over, they introduced the dual notion of algebraic sources that are defined as distributions
that are uniform on rational points of low-degree affine varieties, and asked whether effi-
cient extractors exist for such sources. Our main theorem shows that algebraic sources (for
a wide range of parameters) are close to samplable distributions, and hence, any extractor
for samplable distributions is also an extractor for such algebraic sources. Very recently,
Dvir [5] gave a direct and unconditional construction of an extractor for algebraic sources
when the field size is sufficiently large.

2. Preliminaries and Basic Facts

We will use a simple form of the well known Schwartz-Zippel lemma and a theorem by
Lang and Weil for bounding the number of the points on a variety:

Lemma 2.1. (Schwartz-Zippel) [15, 19] Let f be a nonzero n-variate polynomial of degree

d defined over a finite field Fq. Then the number of zeros of f is at most dqn−1.

Theorem 2.2. (Lang-Weil) [10] Let n, d, r be positive integers. There exists a constant

A(n, d, r) depending only on n, d, r such that for any irreducible r-dimensional variety V
of degree d defined in a projective space Pn over a finite field Fq, we have |N − qr| ≤
(d−1)(d−2)qr− 1

2 +A(n, d, r)qr−1, where N is the number of rational points of V over Fq.

This theorem can be generalized to the case of reducible varieties as follows:

Corollary 2.3. Let n, d, r be positive integers. There exists a constant A′(n, d, r) depending

only on n, d, r and a constant δ(d) depending only on d and integer s, 1 ≤ s ≤ d, such that

for any r-dimensional variety V of degree d defined in a projective space Pn over a finite

field Fq we have |N − sqr| ≤ δ(d)qr− 1

2 + A′(n, d, r)qr−1, where N is the number of rational

points of V over Fq.

Proof. Let V1∪V2∪. . .∪Vt, where 1 ≤ t ≤ d, be a decomposition of V into distinct irreducible
components and denote the set of r-dimensional components in this decomposition by S.
Let s := |S|. Note that each component Vi /∈ S has dimension at most r − 1 and by
Theorem 2.2, the number of points on the union of the components outside S is negligible,

namely, at most A′′qr− 3

2 where A′′ is a parameter depending only on n, d, r. Hence to prove
the corollary, it suffices to bound the number of points on the union of the components in
S.

For each component Vi ∈ S we can apply Theorem 2.2, which implies that the number
of points of Vi in Pn, assuming that its degree is di, is bounded from qr by at most (di −
1)(di − 2)qr− 1

2 + αiq
r−1, for some αi that depends only on n, di, r. This upper bounds the

number of points of V by
s

∑

i=1

|Vi| ≤ sqr + δ1q
r− 1

2 + A1q
r−1,
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where δ1
def
=

∑s
i=1(di− 1)(di− 2) ≤ d2 (from the fact that

∑s
i=1 di ≤ d) and A1

def
=

∑s
i=1 αi.

Note that A1 and δ1 can be upper bounded by quantities depending only on n, d, r and d,
respectively. This proves one side of the inequality.

For the lower bound on |V |, we note that the summation above counts the points
at the intersection of two irreducible components multiple times, and it will be sufficient
to discard all such points and lower bound the number of points that lie on exactly one
of the components. Take a distinct pair of the irreducible components, Vi and Vj . The
intersection of these varieties defines an (r − 1)-dimensional variety, which by the upper
bound we just obtained can have at most sijq

r−1 + δ2q
r−1.5 + A2q

r−2) points, for some
sij ≤ d2, and parameters δ2 depending only on d and A2 depending on n, k, r. Hence,
considering all the pairs, the number of points that lie on more than one of the irreducible
components is no more than

(

d
2

)

(d2qr−1 + δ2q
r−1.5 +A2q

r−2), which means that the number

of distinct points of V is at least
∑s

i=1 |Vi| − d4qr−1 − d2δ2q
r− 3

2 − d2A2q
r−2, which is itself

at least sqr− δ1q
r− 1

2 − (A1 +d4)qr−1−d2δ2q
r− 3

2 −d2A2q
r−2. Taking (crudely) A′(n, d, r)

def
=

A1 + d2A2 + d4 + d2δ2 + A′′ and δ
def
= δ1 proves the corollary.

Remark 2.4. Corollary 2.3 also holds for affine varieties. An affine variety V can be seen as
the restriction of a projective variety V̄ to the affine space, where no irreducible component
of V̄ is fully contained in the hyperplane at infinity. Then the affine dimension of V will be
the (top) dimension of V̄ , and the bound in Corollary 2.3 holds for V if the affine dimension
of the variety is taken as the parameter r in the bound. This is because each irreducible
component of V̄ intersects the hyperplane at infinity at a variety of dimension less than
r, and by Theorem 2.2, adding those points to the estimate will have a negligible effect of

order qr− 3

2 .

Finally, we review some basic notions that we use from probability theory. The sta-

tistical distance (or total variation distance) of two distributions X and Y defined on the
same finite space S is defined as 1

2

∑

s∈S |PrX (s)−PrY(s)|, where PrX and PrY denote the
probability measures on S defined by the distributions X and Y, respectively. Note that
this is half the ℓ1 distance of the two distributions when regarded as vectors of probabilities
over S. It can be shown that the statistical distance of the two distributions is at most ǫ if
and only if for every T ⊆ S, we have |PrX [T ]− PrY [T ]| ≤ ǫ. When the statistical distance
of X and Y is at most ǫ, we say that X and Y are ǫ-close. We will also use the notion of a
convex combination of distributions, defined as follows:

Definition 2.5. Let X1,X2, . . . ,Xk be probability distributions on a finite set S and
α1, α2, . . . , αk be nonnegative real values that sum up to 1. Then the convex combina-

tion α1X1 + α2X2 + · · · + αnXn is a distribution X on S given by the probability measure

PrX (x)
def
=

∑k
i=1 αi PrXi

(x), for x ∈ S.

There is a simple connection between convex combinations and distance of distributions:

Proposition 2.6. Let X ,Y, and E be probability distributions on a finite set S such that

for some 0 ≤ ǫ ≤ 1, X = (1− ǫ)Y + ǫE. Then X is ǫ-close to Y.
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3. A Vertex Sampling Problem

In this section we introduce a sampling problem on graphs, and develop an algorithm
to solve it. We will later use this algorithm as a basic component in our construction of
samplers for varieties. The problem is as follows:

Problem 3.1. Let G be a bipartite graph defined on a set L of left vertices and R of right
vertices. Suppose that the degree of every vertex on the right is between 1 and d, for some
d > 1, and the degree of every vertex on the left differs from an integer ℓ by at most δℓ. We
are given an oracle RSamp(G) that returns an element of R chosen uniformly at random
(and independently at each call), and an oracle RNei(v) that returns the neighbor list of
a given vertex v ∈ R. Construct an algorithm that outputs a random vertex in L almost
uniformly.

Intuitively, for a bipartite graph which is regular from left and right, sampling a vertex
on the left amounts to picking a random edge in the graph, which is in turn possible by
choosing a random edge connected to a random vertex on the right side. Here of course,
the graph is not regular, however the concentration of the left degrees around ℓ allows us to
treat the graph as if it were regular and get an almost uniform distribution on L by picking
a random edge. We will compensate the irregularity from right by using a “trial and error”
strategy. The pseudocode given in Algorithm 1 implements this idea. The algorithm in fact
handles a more general situation, in which a call to RSamp can fail (and return a special
failure symbol ⊥) with some probability upper bounded by a given parameter p.

Algorithm 1 BipartiteSample

Require: G,RSamp,RNei given as in Problem 3.1, and p denoting the failure probability
of RSamp.

1: Let δ, d be as in Problem 3.1.
2: t0 ← ⌈ d

1−p ln(1−δ
δ )⌉; t← t0

3: while t ≥ 0 do
4: t← t− 1; R← RSamp(G)
5: if R 6=⊥ then
6: V ← RNei(R)
7: With probability |V |/d, output an element of V uniformly at random and return.
8: end if
9: end while

10: Output an arbitrary element of L.

Lemma 3.2. The output distribution of Algorithm 1 is supported on L and is 3δ/(1 − δ)-
close to the uniform distribution on L.
Proof. First we focus on one iteration of the while loop in which the call to RSamp has
not failed, and analyze the output distribution of the algorithm conditioned on the event
that Line 7 returns a left vertex. In this case, one can see the algorithm as follows: Add
a special vertex v0 to the set of left vertices L. Bring the degree of each right vertex up
to d by connecting it to v0 as many times as necessary. Hence, the graph G now becomes
d-regular from right. Now the algorithm picks a random element R ∈ R and a random
neighbor of R and independently repeats the process if v0 is picked as a neighbor.
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Let T ⊆ L be a non-empty subset of the left vertices (excluding v0) in the graph. We
want to estimate the probability of the event T . We can write this probability as follows:

Pr[T ] =
∑

r∈R

Pr[T | R = r] Pr[R = r] =
1

|R|
∑

r∈R

Pr[T | R = r] =
1

d|R|
∑

r∈R

|T ∩ Γ(r)|,

where in the last equation Γ(r) is the set of neighbors of r in the graph. Hence the summation
can be simplified as the number of edges connected to T . This quantity is in the range
|T |ℓ(1 ± δ), because the left degrees are all concentrated around ℓ, ignoring v0 which is by
assumption not in T . That is,

Pr[T ] = Pr[T,¬v0] =
|T |ℓ
d|R| (1± δ), (3.1)

where we use the shorthand (1± δ) to denote a quantity in the range [1− δ, 1 + δ].
Hence the probabilities of all events that exclude v0 are close to one another, which im-

plies that the distribution of the outcome of a single iteration of the algorithm, conditioned
on a non-failure, is close to uniform. We will now make this statement more rigorous.

The degree of v0 can be estimated as

deg(v0) = d|R| − |L|ℓ(1 ± δ)

by equating the number of edges on the left and right side of the graph. Similar to what
we did for computing the probability of T we can compute the probability of picking v0 as

Pr(v0) =
1

d|R| deg(v0) = 1− |L|
d|R|ℓ(1± δ).

Combining this with (3.1) we get that

Pr[T | ¬v0] =
Pr[T,¬v0]

1− Pr(v0)
=
|T |
|L|

(

1± 2δ

1− δ

)

.

Hence, the output distribution of a single iteration of the while loop, conditioned on a
non-failure (i.e., the event that the iteration reaches Line 7 and outputs an element of L) is
2δ/(1− δ)-close to the uniform distribution on L. Now denote by ϕ the failure probability.
To obtain an upper bound on ϕ, note that the probability of sampling v0 at Line 7 of the
algorithm is at most (d − 1)/d since each vertex on the right has at least one neighbor
different from v0. Hence,

ϕ ≤ 1− (1− p)/d (3.2)

Now we get back to the whole algorithm, and notice that if the while loop iterates for up to
t0 times, the output distribution of the algorithm can be written as a convex combination

O = (1− ϕ)D + (1− ϕ)ϕD + · · ·+ (1− ϕ)ϕt0−1D + ϕt0E = (1− ϕt0)D + ϕt0E ,
where D is the output distribution of a single iteration conditioned on a non-failure and E
is an arbitrary error distribution corresponding to the event that the algorithm reaches the
last line. The coefficient of E , for t0 ≥ d

1−p ln(1−δ
δ ), can be upper bounded using (3.2) by

ϕt0 ≤
(

1− 1− p

d

)
d

1−p
ln( 1−δ

δ
)

≤ δ

1− δ
.

This combined with the fact that D is 2δ/(1 − δ)-close to uniform and Proposition 2.6
implies that O is 3δ/(1 − δ)-close to the uniform distribution on L.
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4. Sampling Rational Points on Varieties

Now we are ready to describe and analyze our algorithm for sampling rational points
on varieties. For the sake of brevity, we will present the results in this section for affine
varieties. However, they can also be shown to hold for projective varieties using similar
arguments.

We reduce the problem to the vertex sampling problem described in the preceding
section. The basic idea is to intersect the variety with randomly chosen affine spaces in Fn

q

and narrowing-down the problem to the points within the intersection. Accordingly, the
graph G in the bipartite sampling problem will be defined as the incidence graph of the
points on the variety with affine spaces. This is captured in the following definition:

Definition 4.1. Let V be an affine variety of co-dimension k in F
n
q . Then the affine

incidence graph of the variety is a bipartite graph G = (L ∪R,E) defined as follows:

• The left vertex set is V ,
• For a k-dimensional affine space A, we say that A properly intersects V if the

intersection V ∩A is non-empty and has dimension zero. Then the right vertex set
of G is defined as the set of k-dimensional affine spaces in Fn

q that properly intersect
V .
• There is an edge between u ∈ L and v ∈ R if and only if the affine space v contains

the point u.

Before utilizing the vertex sampling algorithm of the preceding section, we need to
develop the tools needed for showing that the affine incidence graph satisfies the properties
needed by the algorithm. We begin with an estimate on the number of linear and affine
subspaces of a given dimension. The estimate is straightforward to obtain, yet we include
a proof for completeness.

Proposition 4.2. Let F be a finite field of size q ≥
√

2k, and let N1 and N2 be the number

of distinct k-dimensional linear and affine subspaces of Fn, respectively. Then we have

(1) |N1/q
k(n−k) − 1| ≤ 2k/q2,

(2) |N2/q
(k+1)(n−k) − 1| ≤ 2k/q2.

Proof. If k = n, then N1 = N2 = 1, and the claim is obvious. Hence, assume that k < n.
Denote by Nk,n the number of ways to choose k linearly independent vectors in Fn. That

is, Nk,n = (qn−1)(qn− q) · · · (qn− qk−1). This quantity is upper bounded by qnk, and lower

bounded by (qn− qk−1)k ≥ qnk(1− kqk−1−n) ≥ qnk(1− k/q2). Hence, the reciprocal of Nk,n

can be upper bounded as follows:

1

Nk,n
≤ q−nk

1− k/q2
= q−nk

(

1 +
k

q2
· 1

1− k/q2

)

≤ q−nk

(

1 +
2k

q2

)

,

where the last inequality follows from the assumption that q2 ≥ 2k.
The number of k-dimensional subspaces of Fn is the number of ways one can choose k

linearly independent vectors in Fn, divided by the number of bases a k-dimensional vector
space can assume. That is, N1 = Nk,n/Nk,k. By the bounds above, we obtain

N1 ≤ qnk · q−k2

(1 + 2k/q2) and N1 ≥ qnk(1− k/q2) · q−k2

,

which implies |N1/q
k(n−k) − 1| ≤ 2k/q2. The second part of the claim follows from the

observation that two translations of a k-dimensional subspace A defined by vectors u and
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v coincide if and only if u− v ∈ A. Hence, the number of affine k-dimensional subspaces of
F

n is the number of k-dimensional subspaces of Fn multiplied by the number of cosets of
A, i.e., N2 = N1q

n−k.

The following two propositions show that a good fraction of all k-dimensional affine
spaces properly intersect any affine variety of co-dimension k.

Proposition 4.3. Let n, d, k be positive integers, and V ⊂ Fn
q be an affine variety of co-

dimension k defined by the zero-set of k polynomials f1, . . . , fk ∈ Fq[x1, . . . , xn], each of de-

gree at most d. Suppose that v ∈ V is a fixed point of V . Then the fraction of k-dimensional

affine spaces passing through v that properly intersect V is at least 1 − B(k, n, d)/q, where

B(n, d, k) is independent of q and polynomially large in n, d, k.

Proof. Without loss of generality, assume that v is the origin, and that q ≥
√

2k. Denote
by L the set of k-dimensional linear subspaces that can be parametrized as











xk+1

xk+2
...

xn











=











α11 . . . α1k

α21 . . . α2k
...

. . .
...

α(n−k)1 . . . α(n−k)k





















x1

x2
...

xk











,

where α
def
= {α11, . . . , α(n−k)k} is a set of indeterminates in Fq. Note that |L| = q|α| =

qk(n−k), and define the polynomial ring R def
= Fq[α11, . . . , α(n−k)k]. We first upper bound

the number of bad subspaces in L whose intersections with V have nonzero dimensions.
Substituting the linear forms defining xk+1, . . . , xn in f1, . . . , fk we see that the intersection
of V and the elements of L is defined by the common zero-set of polynomials g1, . . . , gk ∈
R[x1, . . . , xk], where for each i ∈ [k],

gi(x1, . . . , xk)
def
= fi(x1, . . . , xk, α11x1 + · · · + α1kxk, . . . , α(n−k)1x1 + · · · + α(n−k)kxk).

Each gi, as a polynomial in x1, . . . , xk, has total degree at most d and each of its coefficients
is a polynomial in α11, . . . , α(n−k)k of total degree at most d. Denote by I ⊆ R[x1, . . . , xk]
the ideal generated by g1, . . . gk. For every j ∈ [n], the ideal I ∩ R[xj ] is generated by a
polynomial hj . Each coefficient of hj can be written as a polynomial in R with total degree
at most D, where for a fixed k, D is polynomially large in d. This can be shown using an
elimination method, e.g., generalized resultants or Gröbner bases (cf. [4, 11, 9]). Take any
coefficient of hj which is a nonzero polynomial in R. The number of the choices of α which

makes this coefficient zero is, by Lemma 2.1, at most Dqk(n−k)−1. This also upper bounds
the number of the choices of α that make hj identically zero.

A union bound shows that for all but at most nDqk(n−k)−1 choices of α none of the
polynomial hj is identically zero, and hence the solution space of g1, . . . , gk is zero dimen-
sional (and obviously non-empty, as we already know that it contains v). This gives an
upper bound of nD/q on the fraction of bad subspaces in L.

By Proposition 4.2, the set L contains at least a 1− 2k/q2 fraction of all k-dimensional
subspaces of Fn

q . Hence, the fraction of k-dimensional subspaces of Fn
q that properly inter-

sect V is at least
(

1− 2k

q2

)(

1− nD

q

)

≥
(

1− 2k + nD

q

)

.

The claim follows by taking B
def
= 2k + nD.
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Proposition 4.4. Let k, n, d be positive integers, and V ⊂ Fn
q be an affine variety of co-

dimension k defined by the zero-set of k polynomials f1, . . . , fk ∈ Fq[x1, . . . , xn], each of

degree at most d. The fraction of k-dimensional affine subspaces that properly intersect V
is at least

d−k

(

1− δ(d)√
q
− A′(n, d, n− k) + B(n, d, k)

q

)

,

where δ(·), A′(·), B(·) are as in Corollary 2.3 and Proposition 4.3.

Proof. We use a counting argument to obtain the desired bound. Denote by N,N1, and N2

the number of points of V , the number of k-dimensional subspaces and k-dimensional affine
subspaces in Fn

q , respectively. Then Corollary 2.3 (followed by Remark 2.4) implies that

N ≥ sqn−k − δ(d)qn−k− 1

2 −A′(n, d, n− k)qn−k−1,

for some s ∈ [dk] (as the degree of V is at most dk).
By Proposition 4.3, for every v ∈ V , at least N1(1 − B(n, d, k)/q) affine subspace pass

through v and properly intersect V . Hence in total N · N1(1 − B(n, d, k)/q) affine spaces
properly intersect V , where we have counted every such affine space at most dk times (This
is because the intersection of V and an affine space A that properly intersects it is of size
at most dk, and A is counted once for each point at the intersection). Thus, the fraction of
distinct affine subspaces that properly intersect V is at least

NN1(1−B(n, d, k)/q)

dkN2
.

By the fact that N2 = N1q
n−k and the lower bound on N , we conclude that this fraction

is at least

d−k

(

s− δ(d)√
q
− A′(n, d, n − k)

q

)(

1− B(n, d, k)

q

)

.

As s ≥ 1, this proves the claim.

Now having the above tools available, we are ready to give the reduction from variety
sampling to the vertex sampling problem introduced in the preceding section and prove our
main theorem:

Proof of Theorem 1.1. Let G = (L ∪R,E) be the affine incidence graph of V . We will
use Algorithm 1 on G. To show that the algorithm works, first we need to implement the
oracles RSamp and RNei that are needed by the algorithm.

The function RSamp simply samples a k-dimensional affine space of Fn
q uniformly at

random, and checks whether the outcome A properly intersects V . To do so, one can param-
etrize the affine subspace as in the proof of Proposition 4.3 and substitute the parametriza-
tion in f1, . . . , fk to obtain a system of k polynomial equations in k unknowns, each of degree
at most D which is polynomially large in d. As k is an absolute constant, it is possible
to solve this system in polynomial time using multipolynomial resultants or the Gröbner
bases method combined with backward substitutions. If at any point, the elimination of
all but any of the variables gives the zero polynomial, it turns out that the system does
not define a zero-dimensional variety and hence, A does not properly intersect V . Also, if
the elimination results in a univariate polynomial that does not have a solution in Fq, the
intersection becomes empty, again implying that A does not properly intersect V . In both
cases RSamp fails, and otherwise, it outputs A. Furthermore, if the intersection is proper,
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the elimination method gives the list of up to Dk points at the intersection, which one can
use to construct the oracle RNei.

Now we need to show that the graph G satisfies the conditions required by Lemma 3.2.
By the argument above, the degree of every right vertex in G is at least 1 and at most Dk,
which is polynomially large in d. Let p denote the failure probability of RSamp. Then Propo-
sition 4.4 implies that p ≤ d−k/2 when q ≥ max{16δ2(d), 4(A′(n, d, n − k) + B(n, d, k))}.

To bound the left degrees of the graph, note that each left node, which is a point on V , is
connected to all k-dimensional affine subspaces that properly intersect V and pass through
the point. The number of such spaces is, by Proposition 4.2, at most qk(n−k)(1 + 2k/q2)

(assuming q ≥
√

2k), and by combination of Proposition 4.2 and Proposition 4.3, at least

qk(n−k)

(

1− 2k

q2

)(

1− B(k, n, d)

q

)

≥ qk(n−k)

(

1− 2k + B(k, n, d)

q

)

.

Now if we choose q ≥ (2k+B(k, n, d))1/ǫ, the left degrees become concentrated in the range

qk(n−k)(1± 1/q1−ǫ).
Putting everything together, now we can apply Lemma 3.2 to conclude that the output

distribution of the algorithm is (6/q1−ǫ)-close to the uniform distribution on V .
To show the efficiency of the algorithm, first note that Algorithm 1 calls each of the

oracles RSamp and RNei at most

Dk

1− p
ln

(

1− qǫ−1

qǫ−1

)

≤ 2Dk(1− ǫ) ln q

times, which is upper bounded by a polynomial in d, ln q. Hence it remains to show that
the implementation of the two oracles are efficient. The main computational cost of these
functions is related to the problem of deciding whether a system of k polynomial equations of
bounded degree in k unknowns has a zero dimensional solution space, and if so, computing
the list of at most Dk solutions of the system. As in our case k is a fixed constant,
elimination methods can be efficiently applied to reduce the problem to that of finding the
zero-set of a single uni-variate polynomial of bounded degree. A randomized algorithm is
given in [13] for this problem that runs in expected polynomial time. Thus, we can use this
algorithm as a sub-routine in RSamp and RNei to get a sampling algorithm that runs in
expected polynomial time. Then it is possible to get a worst-case polynomial time algorithm
by using a time-out trick, i.e., if the running time of the sampler exceeds a (polynomially
large) threshold, it is forced to terminate and output an arbitrary point in Fn

q . The error
caused by this can increase the distance between the output distribution of the sampler and
the uniform distribution on V by a negligible amount that can be made arbitrarily small
(and in particular, smaller than 1/q1−ǫ), and hence, is of little importance.

Finally, we need an efficient implementation of the field operations over Fq. This is
again possible using the algorithm given in [13]. Moreover, when the characteristic of the
field is small, deterministic polynomial time algorithms are known for this problem [16].

5. Concluding Remarks

We showed the correctness and the efficiency of our sampling algorithm for varieties
of constant co-dimension over large fields. Though our result covers important special
cases such as sampling random roots of multivariate polynomials, relaxing either of these
requirements is an interesting problem. In particular, it remains an interesting problem
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to design samplers that work for super-constant (and even more ambitiously, linear in n)
co-dimensions (in our result, the dependence of the running time on the co-dimension is
exponential and thus, we require constant co-dimensions). Moreover, in this work we did
not attempt to optimize or obtain concrete bounds on the required field size, which is
another interesting problem. Finally, the error of our sampler (i.e., the distance of the
output distribution from the uniform distribution on the variety) depends on the field size,
and it would be interesting to bring down the error to an arbitrary parameter that is given
to the algorithm.
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Abstract. The Prefix table of a string reports for each position the maximal length of
its prefixes starting here. The Prefix table and its dual Suffix table are basic tools used in
the design of the most efficient string-matching and pattern extraction algorithms. These
tables can be computed in linear time independently of the alphabet size.

We give an algorithmic characterisation of a Prefix table (it can be adapted to a Suffix
table). Namely, the algorithm tests if an integer table of size n is the Prefix table of some
word and, if successful, it constructs the lexicographically smallest string having it as a
Prefix table. We show that the alphabet of the string can be bounded to log

2
n letters.

The overall algorithm runs in O(n) time.

1. Introduction

The Prefix table of a string reports for each position on the string the maximal length
of its prefixes starting at that position. The table stores the same information as the Border
Table of the string, which memorises for each position the maximal length of prefixes ending
at that position. Both tables are useful in several algorithms on strings. They are used
to design efficient string-matching algorithms and are essential for this type of applications
(see for example [15] or [6]).

The dual notion of the Prefix table, the Suffix Table (not to be confused with the
Suffix Array that is related to the lexicographic order of the suffixes), simplifies the design
of the pattern preprocessing for Boyer-Moore string-matching algorithm ([4], see also [6]).
This preprocessing problem is notorious for its several unsuccessful attempts. Gusfield
makes it a fundamental element of string-matching methods he presents in [15]. His Z-
algorithm corresponds to the computation of the Suffix table. Along the same line, the
Suffix table is an essential element of the Apostolico-Giancarlo string-matching algorithm
[1], one of the ultimate improvements of the Boyer-Moore strategy: the maximal number
of symbol comparisons is no more than 3n/2 in the worst-case [9], which is half the number
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of the original searching algorithm, and this is linked to the total running time of the
algorithm. By the way, the technique is still the object of a conjecture about the polynomial
number of configurations encountered during a search (see [17, 2]). These techniques or some
reductions of them are the best choice for implementing search tools inside text editors or
analogue software.

The computation of the table of borders is a classical question. It is inspired by an
algorithm of Morris and Pratt (1970), which is at the origin of the first string-matching
algorithm running in linear time independently of the alphabet size [17]. Despite the fact
that Border Tables and Prefix tables contains the same information on the underlying string,
the efficient algorithms to compute them are quite different (see [6, Chapter 1]). The first
algorithm has a recursive expression while this is not so for the second one.

The technique used to compute the Prefix table works online on the string and takes
advantage on what has been done on shorter prefixes of the string. It needs only simple
combinatorial properties to be proved. A similar technique is used by Manacher [18] for
finding the shortest even palindrome prefix of a string, which extends to a linear-time
decomposition of a string into even palindromes ([14], see also [17]).

In this article we consider the reverse engineering problem: testing if a table of integers
is the Prefix table of some string, and if so, producing such a string.

The same question can be stated for other data structures storing information on strings.
Successful solutions then provide if-and-only-if conditions on the data structures and then
complete characterisations, which is of main theoretical interest. It is also of interest for
software testing problem related to the data structures when it comes to implementing
them. It helps also design methods for randomly generating the data structures in relation
to the previous problem.

As far as we know, reverse engineering has been first considered for Border Tables by
Franek et al. [12]. Their algorithm tests whether an integer array is the Border Table
of a string or not, and exhibits a corresponding string if it is. They solve the question
in linear time, according to the size of the input array, for an unbounded alphabet. A
refinement of the technique by Duval et al. [10, 11] solves the question for a bounded-size
alphabet. Bannai et al. [3] characterise three other data structures intensively used in
String Algorithmics: Directed Acyclic Subsequence Graph, Directed Acyclic Word Graph
or Minimal Suffix Automaton, and Suffix Array. Their three testing algorithms run in linear
time as well. Reconstructing a Suffix Array is obvious on a binary alphabet especially if
a special symbol is appended to the string. For general alphabets, another solution is by
Franek et al. [13]. In this situation, the algorithm accounts for descents in permutations
(see [5]).

The case of Prefix table (or Suffix table) seems more difficult. However we get, as for
previous questions, a linear-time test. The algorithm can provide the largest initial part of
the array that is compatible with a Prefix table. When the array is a Prefix table it infers
a string corresponding to it on the smallest possible alphabet. We show that indeed log2 n
letters are enough for a table of size n. In the algorithm we make use of a variable to store
a set of letters that are forbidden in a certain context. It is surprising and remarkable that,
due to combinatorial properties, the algorithm requires no sophisticated data structure to
implement this variable and still runs in linear time.

Reverse engineering for the Longest Previous Factor table, which is an important com-
ponent of Ziv-Lempel text compression method (see [7, 8]), is an open question. It is not
known if a linear-time solution exists.
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In next sections we first describe properties of Prefix tables, then design the testing
algorithm, and finally analyse it.

2. Properties of Prefix tables

After basic definitions we state the major properties of Prefix tables.

2.1. Preliminaries and definitions

Let A be an ordered alphabet, A = {a0, a1, . . .}. A word w of length |w| = n is a finite
sequence w[0]w[1] . . . w[n−1] = w[0 . . n−1] of letters of A. The language of all words is A∗,
and A+ is the set of nonempty words. For 0 ≤ i, j < n we say that the factor w[i . . j] occurs
at position i on w. By convention, w[i . . j] is the empty word ε if i > j. The prefix (resp.
suffix) of length ℓ, 0 ≤ ℓ ≤ n, of w is the word u = w[0 . . ℓ− 1] (resp. u = w[n− ℓ . . n− 1]).
A border u of w is a word that is both a prefix and a suffix of w distinct from w itself.

Definition 2.1 (Prefix table). The Prefix table Prefw of a word w ∈ A+ of length n, is the
array of size n defined, for 0 ≤ i < n, by

Prefw[i] = lcp(w,w[i . . n− 1]),

where lcp(u, v) denotes the length of the longest common prefix of two words u and v.

Definition 2.2 (Extent and Anchor). On a table t of size n we define, for 0 < i ≤ n:

• the (right) extent Extent(t, i) of position i (according to t) is the integer

Extent(t, i) = max{j + t[j] | 0 < j < i} ∪ {i},

• the anchor Anchor(t, i) of position i (according to t) is the set of positions on t
reaching the extent of i, i.e.,

Anchor(t, i) = {f | 0 < f < i and f + t[f ] = Extent(t, i)}.

Remark 2.3. Let us consider two positions i and j on the Prefix table t, i < j, that
satisfy Extent(t, i) 6= Extent(t, j). Then, Anchor(t, i)∩Anchor(t, j) = ∅. Indeed in this case
Extent(t, i) < Extent(t, j), and we have maxAnchor(t, i) < i while minAnchor(t, j) ≥ i.

In the description of the algorithm and its analysis we refer to the set of letters following
immediately the prefix occurrences of the borders of a word w. For 0 < i ≤ k ≤ n, we note

E(w, i, k) = {w[|u|] | u is a border of w[0 . . k − 1] and |u| > k − i},

and we simply write E(w, k) when considering E(w, k, k).

Example. Let w be the word ababaabababa. The following table shows its Prefix table
t, the values Extent(t, i), and the sets Anchor(t, i), for all values of i.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
w[i] a b a b a a b a b a b a –
t[i] 12 0 3 0 1 5 0 5 0 3 0 1 –

Extent(t, i) – 1 2 5 5 5 10 10 12 12 12 12 12
Anchor(t, i) – ∅ ∅ {2} {2} {2, 4} {5} {5} {7} {7} {7, 9} {7, 9} {7, 9, 11}

The whole word has three nonempty borders: ababa, aba, and a occurring at respective
positions 7, 9, and 11. We have E(w, 9, 12) = {a} because u = ababa is the only border
of w of length larger than 3 = 12 − 9 and w[|u|] = a. We have E(w, 12) = {a, b} because
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the three nonempty borders of w are ababa, aba, and a, and because w[5] = {a} and
w[3] = w[1] = {b}.

Definition 2.4 (Validity and compatibility). Let t be a table of size n. For 0 < i < n, we
say that:

• the table t is valid until i if there exists a word w for which t[1 . . i] = Prefw[1 . . i].
We also say that t is compatible with w until i.
• The table t is valid if there exists a word w such that t = Prefw (note that in

particular t[0] = n). We also say that t is compatible with w.

Example. Let t and t′ be the two tables defined by:

i 0 1 2 3 4 5
t[i] 6 0 0 2 0 1
t′[i] 6 0 0 2 1 1

The table t is valid since it is compatible with abcaba for example. But the table t′ is not
valid since it cannot be the Prefix table of any word. However, t′ is compatible with abcaba

until position 3.

2.2. Properties

In this subsection we state if-and-only-if conditions on values appearing in a Prefix
table. The algorithm of the next section is derived from them.

By definition, the values in the Prefix table of a word w of length n satisfy

0 ≤ Prefw[i] ≤ n− i and Prefw[0] = n .

There is another simple property coming from the definitions of Extent and E : when g =
Extent(Prefw, i) = i and i < n, w[i] 6∈ E(w, g).

The next statement gives less obvious conditions (some of them are in [6]).

Proposition 2.5 (Necessary and sufficient conditions on values in a prefix table). Let w be
a word of length n and Prefw its Prefix table. Let i ∈ {1, . . . , n−1} and g = Extent(Prefw, i),
and assume i < g. Then, for all f ∈ Anchor(Prefw, i), one has

(i) Prefw[i] < g − i if and only if Prefw[i− f ] < g − i and then both

Prefw[i] = Prefw[i− f ] and w[i− f + Prefw[i]] = w[i + Prefw[i]] 6= w[Prefw[i]] .

(ii) Prefw[i] = g − i if and only if

{

Prefw[i− f ] ≥ g − i and

g = n or w[g] 6= w[g − i] .

(iii) Prefw[i] = g − i + ℓ and ℓ > 0 if and only if










Prefw[i− f ] = g − i and

w[g . . g + ℓ− 1] = w[g − i . . g − i + ℓ− 1] and

g + ℓ = n or w[g + ℓ] 6= w[g − i + ℓ] .

Proof. Let f ∈ Anchor(Prefw, i). Let u = w[f . . g − 1] and v = w[i . . g − 1]. By definition
of f and g, the word u is the longest prefix of w beginning at position f . This ensures that
w[g] 6= w[g− f ] if g < n. The suffix v of u has another occurrence at position i− f and one
has |v| = g − i. With the notation, we get the following.
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(i)

u′ b u′ a u′ a

v v

u u

k i − f g − f f i g

(ii)

v b v c v a

u u

g − i i − f f i g

(iii)

v a v b v a

u′ u′

u u

g − i i − f g − f f i g

Figure 1: Illustration for the proof of Proposition 2.5. (i) Case Prefw[i] < g − i. In word w, the
letter following u′ at position i− f is the same as the letter following it at i, and different
from the letter at position k = Prefw[i] (a 6= b). (ii) Case Prefw[i] = g− i. In word w, we
have Prefw[i− f ] ≥ g − i. If w[g] is defined and equals a, we have both a 6= b and a 6= c.
If in addition b 6= c, then Prefw[i− f ] = g − i, otherwise, Prefw[i− f ] > g − i. (iii) Case
Prefw[i] > g − i. In word w, we have a 6= b and then Prefw[i− f ] = g − i.

(i) When Prefw[i] = k < g − i = |v|, one has Prefw[i − f ] = k (and the converse
is also true). Moreover, w[i . . i + k − 1] = w[i − f . . i − f + k − 1] = w[0 . . k − 1] and
w[i + k] = w[i− f + k] 6= w[k] (see Figure 1(i)).

(ii) Suppose Prefw[i] = g−i. Then w[g] 6= w[g−i], if g 6= n, by definition of Prefw. The
word v being a suffix of u also occurs at position i−f , which implies Prefw[i−f ] ≥ g− i as
expected. Conversely, if Prefw[i− f ] ≥ g − i then v is a prefix of w that occurs at position
i. Since w[g] 6= w[g − i] when g < n, one has Prefw[i] = |v| = g − i (see Figure 1(ii)). The
conclusion holds obviously if g = n.

(iii) Suppose Prefw[i] = g − i + ℓ with ℓ > 0. Let v′ = w[g . . g + ℓ − 1]. We have by
definition of Prefw, v = w[0 . . g−i−1], v′ = w[g−i . . g−i+ℓ−1], and w[g+ℓ] 6= w[g−i+ℓ]
(if g + ℓ < n). So one has w[g] = w[g − i] (first letter of v′) and since w[g] 6= w[g − f ],
we get Prefw[i − f ] = |v| = g − i. The converse is also true by definition of Prefw since
v = w[i . . g − 1] = w[i − f . . g − f − 1] = w[0 . . g − i− 1] (see Figure 1(iii)).

The next proposition ensures that Prefw[1 . . i] is only determined by the prefix of the
word of length Extent(Prefw, i + 1).

Proposition 2.6. Let w = w[0 . . n − 1] be a word of length n and Prefw its Prefix table.
Let i ∈ {1, . . . , n− 1} and g = Extent(Prefw, i). Let x be the prefix of w of length g. Then
Prefw[1 . . i− 1] = Prefx[1 . . i− 1].

Proof. By definition of g, we know that prefixes of w starting at j, 1 ≤ j < i, do not end
beyond position g−1. The letter at position g acts as a marker for all these prefixes, whence
the equality.

3. Testing an integer table

In this section, we describe the testing algorithm and prove its correctness.
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3.1. Algorithm

The algorithm TableToWord takes as input an integer array t of size n, and checks
whether t is a valid Prefix table. If so, the output is the smallest (according to the lexico-
graphic order) word w for which t = Prefw together with the number of distinct symbols
needed. If t is not valid, the algorithm exits with error. It can be modified to output the
longest initial part of the table that is valid.

TableToWord(t, n)

1 if t[0] 6= n then

2 return Error(“incompatible length”)
3 w[0]← first symbol of the alphabet
4 k ← 1
5 g ← 1
6 E ← ∅
7 for i← 1 to n− 1 do

8 if t[i] < 0 or t[i] > n− i then

9 return Error(“error at position”, i)
10 if i = g then

11 if t[i] = 0 then

12 w[g]← ChooseNotIn(E ∪ {w[0]})
13 if w[g] is a new letter then

14 k ← k + 1
15 E ← ∅
16 g ← g + 1
17 elseif w[0] ∈ E then

18 return Error(“error at position”, i)
19 else Copy(w, i, 0, t[i])
20 (f, g)← (i, i + t[i])
21 E ← {w[g − f ]}
22 elseif t[i] < g − i then ⊲ Case (i)
23 if t[i− f ] 6= t[i] then

24 return Error(“error at position”, i)
25 elseif t[i] = g − i then ⊲ Case (ii)
26 if t[i− f ] < g − i then

27 return Error(“error at position”, i)
28 E ← E ∪ {w[g − i]}
29 elseif t[i− f ] 6= g − i or w[g − i] ∈ E then ⊲ Case (iii)
30 return Error(“error at position”, i)
31 else Copy(w, g, g − i, t[i]− g + i)
32 (f, g)← (i, i + t[i])
33 E ← {w[g − f ]}
34 return (w, k)

The function Copy is defined as follows: Copy(w, i, j, ℓ) copies successively ℓ letters at
positions j, j + 1, . . . , j + ℓ− 1 to respective positions i, i + 1, . . . , i + ℓ− 1. Note that some
letters may be undefined when the process starts.

The algorithm is essentially built from the properties of Prefix tables stated in Propo-
sition 2.5 and before the statement. The variable E implements the set E and stores the
letters that should not appear at position g in a valid table. In the text of the algorithm,
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the function ChooseNotIn(S) is used to return the first symbol which is not in the set S.
Implementations of E and ChooseNotIn are discussed in Section 4.

The correctness of the algorithm is established in Propositions 3.2 and 3.3 below.

3.2. Correctness of the algorithm

Before proving that the algorithm TableToWord is correct in Propositions 3.2 and
3.3, we establish a lemma consisting in three parts. This lemma is closely related to Propo-
sition 2.5 on prefix tables. However, the next lemma is concerned with an integer table t
only known to be valid until i− 1 and gives conditions on the next value t[i].

Lemma 3.1. In the following three statements, t is an integer table of size n, index i ∈
{1, . . . , n − 1} is fixed, g = Extent(t, i), and A = Anchor(t, i). The table is assumed to
be valid until i − 1, compatible with the word w until i − 1. We also suppose i < g. The
following properties hold:

a) If t[i] < g − i and if there exists f ∈ A such that t[i− f ] = t[i], then for all f ′ ∈ A,
t[i− f ′] = t[i].

b) If t[i] = g − i and there exists f ∈ A such that t[i− f ] ≥ g − i, then for all f ′ ∈ A,
t[i− f ′] ≥ g − i.

c) If t[i] > g−i and there exists f ∈ A such that t[i−f ] = g−i and w[g−i] 6∈ E(w, i, g),
then for all f ′ ∈ A, t[i− f ′] = g − i.

Proof. The proofs for the three properties rely on the same kind of arguments, but for lack
of space we only detail the first one.

Let f ∈ A be such that t[i − f ] = t[i] and let any f ′ ∈ A. Since t is compatible with
w until i − 1, we have both t[f ] = Prefw[f ] = g − f and t[f ′] = Prefw[f ′] = g − f ′. Let
y = w[i . . i + t[i] − 1] and v = w[i . . g − 1]. By hypothesis, y is a proper prefix of v, and
the word v occurs at positions i− f and i− f ′. So, letters at positions i + t[i], i− f + t[i]
and i − f ′ + t[i] are the same. And this letter is different from letter at position t[i] since
Prefw[i− f ] = t[i]. Therefore t[i− f ′] = Prefw[i− f ′] = t[i].

Proposition 3.2 (Correctness of the algorithm). Suppose the algorithm terminates nor-
mally (i.e., without error). At the beginning of the ith iteration,, we have the following
relations for the set of variables {w, f, g,E} of the algorithm :

(1) g = Extent(t, i) ;
(2) The word w built is of length |w| = g ;
(3) f = min Anchor(t, i) if i < g ;
(4) E = E(w, i, g) ;
(5) t[1 . . i− 1] = Prefw[1 . . i− 1].

Proof. The proof is based upon recursion on the index i.
Properties 1–4 are easy to check. When i = g, the last property is a direct consequence

both of Pref and Extent definitions and of Proposition 2.6. When i < g, it is a direct
consequence of Lemma 3.1 as well as of propositions 2.5 and 2.6.

Proposition 3.3. If the algorithm exits with error at the ith iteration on input table t, then
t is valid until position i− 1 but not until i.

Proof. The table is trivially invalid if the algorithm stops on line 2 or line 9. So we now
suppose that t[0] = n and also that integers in the table are never out of bounds.
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Suppose we have an error during the ith iteration with i > 0. Let w be the word built
so far at the beginning of the ith iteration. Thanks to Proposition 3.2, t is compatible with
w until position i−1, so that t is also valid until position i−1, and we have g = Extent(t, i),
f ∈ Anchor(t, i) = A, E = E(w, i, g).

We examine several cases depending on which line of the algorithm the error is produced.
Line 18. One has i = g, t[i] > 0, E = E(w, i, g) = E(w, g) and w[0] ∈ E. There exists

f ′ ∈ A such that w[g − f ′] = w[0]. Thus, t[g − f ′] = Prefw[g − f ′] > 0. By contradiction,
suppose now that there exists a word z such that t[1 . . i] = Prefz[1 . . i]. We must have
Prefz[i] = t[i] > 0 and then for all f ∈ A, z[g − f ] 6= z[0]. Thus Prefz[g − f ] = 0, for all
f ∈ A and it is true in particular for f ′. So we have Prefz[g − f ′] = 0 6= t[g − f ′], against
the hypothesis.

Line 24 or 27. The entry t[i] does not satisfies one of the properties stated in Proposi-
tion 2.5.

Line 30. We have t[i] > g − i. If t[i − f ] 6= g − i, then t[i] is in contradiction with
Proposition 2.5 and is invalid. Suppose now that t[i − f ] = g − i and w[g − i] ∈ E. As
in the previous case (on Line 18), there exists f ′ ∈ A such that w[g − f ′] = w[g − i] and
Prefw[i− f ′] = t[i− f ′] > g − i. Again, by contradiction, suppose that there exists a word
z such that t[1 . . i] = Prefz[1 . . i]. We must have Prefz[i] = t[i] > g− i. By Proposition 2.5,
we get Prefz[i− f ] = g− i, for all f ∈ A, and in particular that Prefz[i− f ′] = g − i. Thus
Prefz[i− f ′] 6= t[i− f ′], which yields a contradiction.

As a conclusion, if the algorithm stops with error during the ith iteration, there is no
word z such that t[1 . . i] = Prefz[1 . . i], which means that the table is valid until i−1 only.

As an immediate consequence of the last two propositions we get the following statement.

Corollary 3.4. An integer table t is a valid Prefix table if and only if the algorithm
TableToWord terminates without error. Moreover the output word w it produces is the
lexicographically smallest word compatible with t.

4. Analysis of the algorithm

After the correctness of the algorithm TableToWord, the present section is devoted to
its complexity analysis in the worst case. We first consider its running time under some
assumption (proved later), show a remarkable property of contiguity of forbidden letters,
and then evaluate the number of letters required to built the smallest word associated with
a valid table.

4.1. Linear running time

We assume that the variable E of algorithm TableToWord is implemented with a
mere linear list (linked or not). Although the variable is associated with a set of letters, we
allow several copies of the same letter in the list. Therefore, adding a letter to the list or
initialising it to the empty set can be performed in constant time. Membership is done in
time O(|E|), denoting by |E| the length of the list.

In this subsection, we additionally assume that ChooseNotIn, the choice function,
executes in constant time. There is no problem to get this condition if we do not require
the algorithm produces the smallest word associated with a valid table. But even with
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this requirement we show how to satisfy the hypothesis in Section 4.2, using a contiguity
property of letters in E.

Proposition 4.1 (Time complexity). The algorithm TableToWord can be implemented
to run in time O(n) on an input integer table of size n.

Proof. Let t be the input table. The only non constant-time instructions inside the for loop
of the algorithm are copies of words (lines 19 and 31) and operations on the set of letters
via the variable E (lines 6, 12, 15, 17, 21, 28, 29, and 33).

Let w be the word built by the algorithm. We note that letters of w are assigned to
positions exactly once. Hence the total number of copies of letter is exactly n.

Initialisation and update operations can both be achieved in constant time with the
considered implementation of E. As for membership tests at lines 17 and 29, the number of
letters we have to test is at most the number of elements in Anchor(t, i). But we note that
the value of g = Extent(t, i) is strictly increased eventually after the test, which means that
Extent(t, i + 1) > Extent(t, i). Since by Remark 2.3 in this situation Anchor(t, i) is disjoint
from all the Anchor(t, j), j > i, the number of letter comparisons is less than n (number of
positions, excluding position 0).

It remains to consider the time to choose a letter at line 12 with function ChooseNotIn,
which we assume temporarily that it is constant. We can thus conclude to an overall linear
running time.

4.2. Contiguous letters

We show in this section that the set of letters stored in the variable E of the algorithm
TableToWord satisfies a contiguity condition. This property leads to a very simple
and efficient implementation of the function ChooseNotIn, which meets the requirement
stated before Proposition 4.1. We start with the extra definition of a choice position: it is
a position on the table t for which the algorithm has to choose a letter.

Definition 4.2 (Choice position). Let t be an integer table of size n. A position g on t is
called a choice position if Extent(t, g) = g (that is, if for all j < g, j + t[j] ≤ g) and t[g] = 0.

Remark. If g is a choice position, all borders of w[0 . . g − 1] (t compatible with w) are
strict borders (if the border has length k, w[k] 6= w[g]). It is known that the number of
strict borders of a word of length n is at most logϕ n where ϕ is the golden mean (see for
example [6, Page 91]). This suggests that the alphabet size of a word admitting t as Prefix
table is logarithmic in the length of t. The next section shows the logarithmic behaviour
more accurately with a different argument.

Proposition 4.4 below states that each time the function ChooseNotIn is called on
line 12 of the algorithm TableToWord the set E(w, g) ∪ {w[0]} is a set of contiguous
letters, that is, it contains all the letters between a0 and the largest one in E(w, g)∪{w[0]}.

We introduce convenient definitions and notation related to a prefix u of the word w:

• Next(u) = {w[|v|] | v ∈ A∗ border of u} (note that Next(ε) = ∅).
• For a ∈ Next(u), the special border of u with respect to letter a is the shortest

border v such that w[|v|] = a.

Lemma 4.3. Let g be a choice position on Prefw, and let v, v 6= ε, be the special border of
w[0 . . g − 1] with respect to some letter b. Then |v| is also a choice position.
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Proof. Since v 6= ε and v is a special border, we have b 6= w[0], and then Prefw[|v|] = 0. By
contradiction, suppose |v| is not a choice position. There exists a position j, 0 < j < |v|,
such that j +Prefw[j] > |v|. Let y = w[j . . |v|−1], which is a border of v, and also a border
of w[0 . . g− 1]. But we also have b = w[|y|] and |y| < |v|. So v cannot be the special border
with respect to b.

Proposition 4.4 (Contiguous). Let t be a valid Prefix table and w the word produced
by the algorithm TableToWord from t. For any choice position g on t, setting k =
cardNext(w[0 . . g − 1]), we have Next(w[0.. . . g − 1]) = {a0, . . . , ak−1}.

Proof. Note that choice positions are exactly positions where we must call the function
ChooseNotIn (line 12). In this case we always choose the smallest possible letter.

The proof is based upon a recursion on k. In the following g is always a choice position
and we set Sg = Next(w[0 . . g − 1]) and wg = w[0 . . g − 1] to shorten notation.

If k = 1, we have Sg = {w[0]} since ε is always a border of wg.
Suppose that for any choice position h with card(Sh) = k−1, we have Sh = {a0, a1, . . . , ak−2}.
Let g be a choice position such that card(Sg) = k with k > 1. Consider the longest special
border u of wg and let b = w[|u|] be its associated letter. We have u 6= ε since card(Sg) > 1.
The previous lemma entails that |u| is a choice position. But b cannot be in S|u| (otherwise
u would not be the special border with respect to b). Since Sg = S|u| ∪ {b}, we must have
card(S|u|) = k − 1. So by recurrence S|u| = {a0, a1, . . . , ak−2}. Therefore the letter chosen
at position |u| is b = ak−1.

This ends the recurrence and the proof.

Implementation of ChooseNotIn. Following Proposition 4.4, a simple way to implement
the function ChooseNotIn is to store the largest forbidden letter at position g. Choosing a
letter remains to take the next letter because of the contiguity property, which can obviously
be done in constant time.

4.3. Alphabet size

We evaluate the smallest number of letters needed to build a word associated with a
valid Prefix table. We first adapt some properties on borders of a word derived from results
by Hancart [16] (see also [6] or [19] for example). In the following, w is a word of length n
over the alphabet A.

For any prefix of u of w, we define

deg(u) = card(Next(u)),

and note that it is card(E(w, |u|) ∪ {w[0]}) when u 6= ε. We have

deg(u) =

{

0 if u = ε

card{v | v is a special border of u} otherwise.

Lemma 4.5. Let u be a nonempty prefix of w. Any special border v of u satisfies the
inequality |v| < |u|/2.

Proof. The word v is a special border with respect to a = w[|v|]. We prove the statement
by contradiction. Suppose |v| ≥ |u|/2, and let k = 2|v| − |u| and y = w[0 . . k − 1]. Then
y is a border of v (and also of u, see Figure 2) and |y| < |v|. But the equality w[|y|] and
w[|v|] contradicts the fact that v is a special border. Thus, the inequality holds.
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u y a a

a

v y

v y

|v|

Figure 2: The word y is a border of v and u. Letters at positions |y| and |v| are the same, which
prevents v to be a special border of u.

Denoting by s-Bord (u) the longest special border of u, we get the following corollary.

Corollary 4.6. Let w ∈ A+. The length of s-Bord (w) is smaller than |w|/2.

Lemma 4.7. Let w ∈ A+ and u a nonempty prefix of w. One has

deg(u) = deg(s-Bord (u)) + 1.

Proof. This is a direct consequence of the fact that a special border of u is either s-Bord (u)
or a special border of s-Bord(u).

Proposition 4.8. For any nonempty prefix u of w, we have

deg(u) ≤ ⌊log2(|u|+ 1)⌋.

Proof. The proof relies on a recursion on |u|. If |u| = 1, then deg(u) = 1 since ε is the
unique border of u. Thus the property is true. Suppose |u| > 1 and that the property holds
for any prefix of w of length less than |u|. Let us set v = s-Bord (u). We have

deg(u) = deg(v) + 1 ≤ ⌊log2(|v| + 1)⌋+ 1 = ⌊log2(2|v| + 2)⌋ ≤ ⌊log2(|u|+ 1)⌋.

The first equality comes from Lemma 4.7, and the last inequality is obtained via Corol-
lary 4.6.

The last lemma yields the following corollary.

Corollary 4.9. For any nonempty prefix u of w, one has

deg(u) ≤ min{card(Alpha(u)), ⌊log2(|u|+ 1)⌋},

where Alpha(u) is the set of letters occurring in u.

The following example shows that the bound stated in Corollary 4.9 is tight.
Example. We define a sequence of word (wi)i≥0 by

w0 = a0, and for i ≥ 1 wi = wi−1aiwi−1.

It is straightforward to check that, for i ≥ 0, we have both |wi| = 2i+1 − 1 and deg(wi) =
card(Alpha(wi)) = ⌊log2(|wi|+ 1)⌋ = i + 1.

Proposition 4.10. For the word w produced by the algorithm TableToWord from a table
of size n, the following (tight) inequality holds

card(Alpha(w)) ≤ ⌊log2(n + 1)⌋.

Proof. With the same notation as in Proposition 3.2, at the beginning of the ith iteration,
the word w of length g = Extent(t, i) has been built, and we have E = E(w, i, g). So if i = g
and t[i] = 0, we have E ∪ {w[0]} = Next(w). Hence, by Corollary 4.9, we get

card(E ∪ {w[0]}) = deg(w) ≤ min{card(Alpha(w)), ⌊log2(|w| + 1)⌋}.

This implies that a new letter must be introduced only if card(E∪{w[0]}) = card(Alpha(w)).
Considering i = n yields the result.
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Remark (Size of the maximal alphabet). It is worth noting that a slight modification of
the algorithm provides a word with the maximal number of letters and compatible with
the input valid table. Indeed we just have, at each call to the function ChooseNotIn, to
return a new letter each time it is called. This way we build the word compatible with t
with the highest number of letters.
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Abstract. We analyze the structure of equilibria and the price of anarchy in the family
of network creation games considered extensively in the past few years, which attempt to
unify the network design and network routing problems by modeling both creation and
usage costs. In general, the games are played on a host graph, where each node is a selfish
independent agent (player) and each edge has a fixed link creation cost α. Together the
agents create a network (a subgraph of the host graph) while selfishly minimizing the link
creation costs plus the sum of the distances to all other players (usage cost). In this paper,
we pursue two important facets of the network creation game.

First, we study extensively a natural version of the game, called the cooperative model,
where nodes can collaborate and share the cost of creating any edge in the host graph.
We prove the first nontrivial bounds in this model, establishing that the price of anarchy
is polylogarithmic in n for all values of α in complete host graphs. This bound is the first
result of this type for any version of the network creation game; most previous general
upper bounds are polynomial in n. Interestingly, we also show that equilibrium graphs
have polylogarithmic diameter for the most natural range of α (at most n polylg n).

Second, we study the impact of the natural assumption that the host graph is a general
graph, not necessarily complete. This model is a simple example of nonuniform creation
costs among the edges (effectively allowing weights of α and ∞). We prove the first
assemblage of upper and lower bounds for this context, establishing nontrivial tight bounds
for many ranges of α, for both the unilateral and cooperative versions of network creation.
In particular, we establish polynomial lower bounds for both versions and many ranges
of α, even for this simple nonuniform cost model, which sharply contrasts the conjectured
constant bounds for these games in complete (uniform) graphs.
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1. Introduction

A fundamental family of problems at the intersection between computer science and
operations research is network design. This area of research has become increasingly impor-
tant given the continued growth of computer networks such as the Internet. Traditionally,
we want to find a minimum-cost (sub)network that satisfies some specified property such
as k-connectivity or connectivity on terminals (as in the classic Steiner tree problem). This
goal captures the (possibly incremental) creation cost of the network, but does not incor-
porate the cost of actually using the network. In contrast, network routing has the goal of
optimizing the usage cost of the network, but assumes that the network has already been
created.

Network creation games attempt to unify the network design and network routing
problems by modeling both creation and usage costs. In general, the game is played on a
host graph, where each node is an independent agent (player), and the goal is to create a
network from a subgraph of the host graph. Collectively, the nodes decide which edges of
the host graph are worth creating as links in the network. Every link has the same creation
cost α. (Equivalently, links have creation costs of α and ∞, depending on whether they are
edges of the host graph.) In addition to these creation costs, each node incurs a usage cost
equal to the sum of distances to all other nodes in the network. Equivalently, if we divide
the cost (and thus α) by the number n of nodes, the usage cost for each node is its average
distance to all other nodes. (This natural cost model has been used in, e.g., contribution
games and network-formation games.)

There are several versions of the network creation game that vary how links are pur-
chased. In the unilateral model—introduced by Fabrikant, Luthra, Maneva, Papadimitriou,
and Shenker [15]—every node (player) can locally decide to purchase any edge incident to
the node in the host graph, at a cost of α. In the bilateral model—introduced by Corbo
and Parkes [9]—both endpoints of an edge must agree before they can create a link between
them, and the two nodes share the α creation cost equally. In the cooperative model—
introduced by Albers, Eilts, Even-Dar, Mansour, and Roditty [2]—any node can purchase
any amount of any edge in the host graph, and a link gets created when the total purchased
amount is at least α.

To model the dominant behavior of large-scale networking scenarios such as the Internet,
we consider the case where every node (player) selfishly tries to minimize its own creation
and usage cost [18, 15, 2, 9]. This game-theoretic setting naturally leads to the various
kinds of equilibria and the study of their structure. Two frequently considered notions are
Nash equilibrium [24, 25], where no player can change its strategy (which edges to buy)
to locally improve its cost, and strong Nash equilibrium [6, 3, 1], where no coalition of
players can change their collective strategy to locally improve the cost of each player in
the coalition. Nash equilibria capture the combined effect of both selfishness and lack of
coordination, while strong Nash equilibria separates these issues, enabling coordination and
capturing the specific effect of selfishness. However, the notion of strong Nash equilibrium
is extremely restrictive in our context, because all players can simultaneously change their
entire strategies, abusing the local optimality intended by original Nash equilibria, and
effectively forcing globally near-optimal solutions [3].

We consider weaker notions of equilibria, which broadens the scope of equilibria and
therefore strengthens our upper bounds, where players can change their strategy on only a
single edge at a time. In a collaborative equilibrium, even coalitions of players do not wish to
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change their collective strategy on any single edge; this concept is particularly important for
the cooperative network creation game, where multiple players must negotiate their relative
valuations of an edge. (This notion is the natural generalization of pairwise stability from
[9] to arbitrary cost sharing.) Collaborative equilibria are essentially a compromise between
Nash and strong Nash equilibria: they still enable coordination among players and thus
capture the specific effect of selfishness, like strong Nash, yet they consider more local
moves, in the spirit of Nash. In particular, any results about all collaborative equilibria
also apply to all strong Nash equilibria. Collaborative equilibria also make more sense
computationally: players can efficiently detect equilibrium using a simple bidding procedure
(whereas this problem is NP-hard for strong Nash), and the resulting dynamics converge to
such equilibria (see Section 2.2).

The structure of equilibria in network creation games is not very well understood. For
example, Fabrikant et al. [15] conjectured that equilibrium graphs in the unilateral model
were all trees, but this conjecture was disproved by Albers et al. [2]. One particularly
interesting structural feature is whether all equilibrium graphs have small diameter (say,
polylogarithmic), analogous to the small-world phenomenon [19, 14], In the original uni-
lateral version of the problem, the best general lower bound is just a constant and the
best general upper bound is polynomial. A closely related issue is the price of anarchy
[20, 26, 28], that is, the worst possible ratio of the total cost of an equilibrium (found by
independent selfish behavior) and the optimal total cost possible by a centralized solution
(maximizing social welfare). The price of anarchy is a well-studied concept in algorithmic
game theory for problems such as load balancing, routing, and network design; see, e.g.,
[26, 10, 27, 15, 5, 4, 8, 9, 2, 11]. Upper bounds on diameter of equilibrium graphs translate
to approximately equal upper bounds on the price of anarchy, but not necessarily vice versa.

In the unilateral version, for example, there is a general 2O(
√

lg n) upper bound on the price
of anarchy.

Previous work. Network creation games have been studied extensively in the literature
since their introduction in 2003.

For the unilateral version and a complete host graph, Fabrikant et al. [15] prove an upper
bound of O(

√
α) on the price of anarchy for all α. Lin [23] proves that the price of anarchy

is constant for two ranges of α: α = O(
√

n) and α ≥ c n3/2 for some c > 0. Independently,
Albers et al. [2] prove that the price of anarchy is constant for α = O(

√
n), as well as for

the larger range α ≥ 12n⌈lg n⌉. In addition, Albers et al. prove a general upper bound of

15
(

1 + (min{α2

n , n2

α })1/3
)

. The latter bound shows the first sublinear worst-case bound,

O(n1/3), for all α. Demaine et al. [11] prove the first o(nε) upper bound for general α,

namely, 2O(
√

lg n). They also prove a constant upper bound for α = O(n1−ε) for any fixed
ε > 0, and improve the constant upper bound by Albers et al. (with the lead constant of 15)

to 6 for α < (n/2)1/2 and to 4 for α < (n/2)1/3. Andelmen et al. [3] show that, among
strong Nash equilibria, the price of anarchy is at most 2.

For the bilateral version and a complete host graph, Corbo and Parkes [9] prove that
the price of anarchy is between Ω(lg α) and O(min{√α, n/

√
α). Demaine et al. [11] prove

that the upper bound is tight, establishing the price of anarchy to be Θ(min{√α, n/
√

α})
in this case.

For the cooperative version and a complete host graph, the only known result is an

upper bound of 15
(

1 + (min{α2

n , n2

α })1/3
)

, proved by Albers et al. [2].
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Other variations of network creation games allow nonuniform interests in connectivity
between nodes [17] and nodes with limited budgets for buying edges [21].

Our results. Our research pursues two important facets of the network creation game.
First, we make an extensive study of a natural version of the game—the cooperative

model—where the only previous results were simple extensions from unilateral analysis.
We substantially improve the bounds in this case, showing that the price of anarchy is
polylogarithmic in n for all values of α in complete graphs. This is the first result of this
type for any version of the network creation game. As mentioned above, this result applies
to both collaborative equilibria and strong Nash equilibria. Interestingly, we also show that
equilibrium graphs have polylogarithmic diameter for the most natural range of α (at most
n polylg n). Note that, because of the locally greedy nature of Nash equilibria, we cannot
use the classic probabilistic spanning (sub)tree embedding machinery of [7, 16, 13] to obtain
polylogarithmic bounds (although this machinery can be applied to approximate the global
social optimum).

Second, we study the impact of the natural assumption that the host graph is a general
graph, not necessarily complete, inspired by practical limitations in constructing network
links. This model is a simple example of nonuniform creation costs among the edges (ef-
fectively allowing weights of α and ∞). Surprisingly, no bounds on the diameter or the
price of anarchy have been proved before in this context. We prove several upper and lower
bounds, establishing nontrivial tight bounds for many ranges of α, for both the unilateral
and cooperative versions. In particular, we establish polynomial lower bounds for both
versions and many ranges of α, even for this simple nonuniform cost model. These results
are particularly interesting because, by contrast, no superconstant lower bound has been
shown for either game in complete (uniform) graphs. Thus, while we believe that the price
of anarchy is polylogarithmic (or even constant) for complete graphs, we show a significant
departure from this behavior in general graphs.

Our proof techniques are most closely related in spirit to “region growing” from ap-
proximation algorithms; see, e.g., [22]. Our general goal is to prove an upper bound on
diameter by way of an upper bound on the expansion of the graph. However, we have not
been able to get such an argument to work directly in general. The main difficulty is that, if
we imagine building a breadth-first-search tree from a node, then connecting that root node
to another node does not necessarily benefit the node much: it may only get closer to a
small fraction of nodes in the BFS subtree. Thus, no node is motivated selfishly to improve
the network, so several nodes must coordinate their changes to make improvements. The
cooperative version of the game gives us some leverage to address this difficulty. We hope
that this approach, particularly the structure we prove of equilibria, will shed some light on
the still-open unilateral version of the game, where the best bounds on the price of anarchy

are Ω(1) and 2O(
√

lg n).
Table 1 summarizes our results. Section 4 proves our polylogarithmic upper bounds

on the price of anarchy for all ranges of α in the cooperative network creation game in
complete graphs. Section 5 considers how the cooperative network creation game differs in
general graphs, and proves our upper bounds for this model. Section 6 extends these results
to apply to the unilateral network creation game in general graphs. Section 7 proves lower
bounds for both the unilateral and cooperative network creation games in general graphs,
which match our upper bounds for some ranges of α.
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α = 0 n n lg0.52
n n lg7.16

n n
3/2

n
5/3

n
2

n
2 lg n ∞

Cooperative, complete graph Θ(1) lg3.32
n O

`

lg n+
p

n
α

lg3.58
n

´

Θ(1)

Cooperative, general graph O(α1/3) O(n1/3), Ω(
p

α
n
) Θ(n2

α
) O

`

n2

α
lg n

´

Θ(1)

Unilateral, general graph O(α1/2) O(n1/2), Ω(α
n
) Θ(n2

α
) Θ(1)

Table 1: Summary of our bounds on equilibrium diameter and price of anarchy for cooper-
ative network creation in complete graphs, and unilateral and cooperative network
creation in general graphs. For all three of these models, our bounds are strict
improvements over the best previous bounds.

2. Models

In this section, we formally define the different models of the network creation game.

2.1. Unilateral Model

We start with the unilateral model, introduced in [15]. The game is played on a host
graph G = (V,E). Assume V = {1, 2, . . . , n}. We have n players, one per vertex. The
strategy of player i is specified by a subset si of {j : {i, j} ∈ E}, defining the set of neighbors
to which player i creates a link. Thus each player can only create links corresponding to
edges incident to node i in the host graph G Together, let s = 〈s1, s2, . . . , sn〉 denote the
joint strategy of all players.

To define the cost of strategies, we introduce a spanning subgraph Gs of the host
graph G. Namely, Gs has an edge {i, j} ∈ E(G) if either i ∈ sj or j ∈ si. Define dGs(i, j) to
be the distance between vertices i and j in graph Gs. Then the cost incurred by player i is
ci(s) = α |si|+

∑n
j=1 dGs(i, j). The total cost incurred by joint strategy s is c(s) =

∑n
i=1 ci(s).

A (pure) Nash equilibrium is a joint strategy s such that ci(s) ≤ ci(s
′) for all joint

strategies s′ that differ from s in only one player i. The price of anarchy is then the
maximum cost of a Nash equilibrium divided by the minimum cost of any joint strategy
(called the social optimum).

2.2. Cooperative Model

Next we turn to the cooperative model, introduced in [15, 2]. Again, the game is
played on a host graph G = (V,E), with one player per vertex. Assume V = {1, 2, . . . , n}
and E = {e1, e2, . . . , e|E|}. Now the strategy of player i is specified by a vector si =
〈s(i, e1), s(i, e2), . . . , s(i, e|E|)〉, where s(i, ej) corresponds to the value that player i is willing
to pay for link ej . Together, s = 〈s1, s2, . . . , sn〉 denotes the strategies of all players.

We define a spanning subgraph Gs = (V,Es) of the host graph G: ej is an edge
of Gs if

∑

i∈V (G) s(i, ej) ≥ α. To make the total cost for an edge ej exactly 0 or α in

all cases, if
∑

i∈V (G) s(i, ej) > α, we uniformly scale the costs to sum to α: s′(i, ej) =

αs(i, ej)/
∑

k∈V (G) s(k, ej) (Equilibria will always have s = s′.) Then the cost incurred by

player i is ci(s) =
∑

ej∈Es
s′(i, ej)+

∑n
j=1 dGs(i, j). The total cost incurred by joint strategy

s is c(s) = α |Es|+
∑n

i=1

∑n
j=1 dGs(i, j).

In this cooperative model, the notion of Nash equilibrium is less natural because it
allows only one player to change strategy, whereas a cooperative purchase in general requires
many players to change their strategy. Therefore we use a stronger notion of equilibrium
that allows coalition among players, inspired by the strong Nash equilibrium of Aumann



306 E. D. DEMAINE, M. HAJIAGHAYI, H. MAHINI, AND M. ZADIMOGHADDAM

[6], and modeled after the pairwise stability property introduced for the bilateral game
[9]. Namely, a joint strategy s is collaboratively equilibrium if, for any edge e of the host
graph G, for any coalition C ⊆ V , for any joint strategy s′ differing from s in only s′(i, e)
for i ∈ C, some player i ∈ C has ci(s

′) > ci(s). Note that any such joint strategy must have
every sum

∑

i∈V (G) s(i, ej) equal to either 0 or α, so we can measure the cost ci(s) in terms

of s(i, ej) instead of s′(i, ej). The price of anarchy is the maximum cost of a collaborative
equilibrium divided by the minimum cost of any joint strategy (the social optimum).

We can define a simple dynamics for the cooperative network creation game in which
we repeatedly pick a pair of vertices, have all players determine their valuation of an edge
between those vertices (change in ci(s) from addition or removal), and players thereby bid
on the edge and change their strategies. These dynamics always converge to a collaborative
equilibrium because each change decreases the total cost c(s), which is a discrete quantity
in the lattice Z + αZ. Indeed, the system therefore converges after a number of steps
polynomial in n and the smallest integer multiple of α (if one exists). More generally,
we can show an exponential upper bound in terms of just n by observing that the graph
uniquely determines c(s), so we can never repeat a graph by decreasing c(s).

3. Preliminaries

In this section, we define some helpful notation and prove some basic results. Call a
graph Gs corresponding to an equilibrium joint strategy s an equilibrium graph. In such
a graph, let dGs(u, v) be the length of the shortest path from u to v and DistGs(u) be
∑

v∈V (Gs)
dGs(u, v). Let Nk(u) denote the set of vertices with distance at most k from

vertex u, and let Nk = minv∈G |Nk(v)|. In both the unilateral and cooperative network
creation games, the total cost of a strategy consists of two parts. We refer to the cost of
buying edges as the creation cost and the cost

∑

v∈V (Gs) dGs(u, v) as the usage cost.

First we prove the existence of collaborative equilibria for complete host graphs. Similar
results are known in the unilateral case [15, 3].

Lemma 3.1. In the cooperative network creation game, any complete graph is a collabora-
tive equilibrium for α ≤ 2, and any star graph is a collaborative equilibrium for α ≥ 2.

Next we show that, in the unilateral version, a bound on the usage cost suffices to
bound the total cost of an equilibrium graph Gs, similar to [11, Lemma 1].

Lemma 3.2. The total cost of any equilibrium graph in the unilateral game is at most
α n + 2

∑

u,v∈V (Gs) dGs(u, v).

Next we prove a more specific bound for the cooperative version, using the following
bound on the number of edges in a graph of large girth:

Lemma 3.3. [12] The number of edges in an n-vertex graph of odd girth g is O(n1+2/(g−1)).

Lemma 3.4. For any integer g, the total cost of any equilibrium graph Gs is at most
α O(n1+2/g) + g

∑

u,v∈V (Gs)
dGs(u, v).
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4. Cooperative Version in Complete Graphs

In this section, we study the price of anarchy when any number of players can cooperate
to create any link, and the host graph is the complete graph.

We start with two lemmata that hold for both the unilateral and cooperative versions
of the problem. The first lemma bounds a kind of “doubling radius” of large neighborhoods
around any vertex, which the second lemma uses to bound the usage cost.

Lemma 4.1. [11, Lemma 4] For any vertex u in an equilibrium graph Gs, if |Nk(u)| > n/2,
then |N2k+2α/n(u)| ≥ n.

Lemma 4.2. If we have Nk(u) > n/2 for some vertex u in an equilibrium graph Gs, the
usage cost is at most O(n2k + αn).

Next we show how to improve the bound on “doubling radius” for large neighborhoods
in the cooperative game:

Lemma 4.3. For any vertex u in an equilibrium graph Gs, if |Nk(u)| > n/2, then
|N

2k+4
√

α/n
(u)| ≥ n.

Next we consider what happens with arbitrary neighborhoods, using techniques similar
to [11, Lemma 5].

Lemma 4.4. If |Nk(u)| ≥ Y for every vertex u in an equilibrium graph Gs, then either
|N4k+2(u)| > n/2 for some vertex u or |N5k+3(u)| ≥ Y 2n/α for every vertex u.

Proof. If there is a vertex u with |N4k+2(u)| > n/2, then the claim is obvious. Otherwise,
for every vertex u, |N4k+2(u)| ≤ n/2. Let u be an arbitrary vertex. Let S be the set of
vertices whose distance from u is 4k + 3. We select a subset of S, called center points, by
the following greedy algorithm. We repeatedly select an unmarked vertex z ∈ S as a center
point, mark all unmarked vertices in S whose distance from z is at most 2k, and assign
these vertices to z.

xi

y

S

Ci

xk

Ck

w

x

u

Figure 1: Center points.

Suppose that we select l vertices
x1, x2, . . . , xl as center points. We prove
that l ≥ |Nk(u)|n/α. Let Ci be the ver-
tices in S assigned to xi; see Figure 1. By

construction, S =
⋃l

i=1 Ci. We also assign
each vertex v at distance at least 4k+4 from
u to one of these center points, as follows.
Pick any one shortest path from v to u that
contains some vertex w ∈ S, and assign v
to the same center point as w. This vertex
w is unique in this path because this path
is a shortest path from v to u. Let Ti be
the set of vertices assigned to xi and whose
distance from u is more than 4k + 2. By

construction,
⋃l

i=1 Ti is the set of vertices
at distance more than 4k + 2 from u. The
shortest path from v ∈ Ti to u uses some
vertex w ∈ Ci. For any vertex x whose dis-
tance is at most k from u and for any y ∈ Ti, adding the edge {u, xi} decreases the distance
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between x and y at least 2, because the shortest path from y ∈ Ti to u uses some vertex
w ∈ Ci, as shown in Figure 1. By adding edge {u, xi}, the distance between u and w would
become at most 2k + 1 and the distance between x and w would become at most 3k + 1,
where x is any vertex whose distance from u is at most k. Because the current distance be-
tween x and w is at least 4k+3−k = 3k+3, adding the edge {u, xi} decreases this distance
by at least 2. Consequently the distance between x and any y ∈ Ti decreases by at least 2.
Note that the distance between x and y is at least dGs(u, y) − k, and after adding edge
(u, xi), this distance becomes at most 3k + 1+ dGs(w, y) = 3k + 1+ dGs(u, y)− dGs(u,w) =
3k + 1 + dGs(u, y)− (4k + 3) = dGs(u, y)− k − 2.

Thus any vertex y ∈ Ti has incentive to pay at least 2 |Nk(u)| for edge {u, xi}. Because
the edge {u, xi} is not in equilibrium, we conclude that α ≥ 2|Ti||Nk(u)|. On the other hand,

|N4k+2(u)| ≤ n/2, so
∑l

i=1 |Ti| ≥ n/2. Therefore, l α ≥ 2|Nk(u)|∑l
i=1 |Ti| ≥ n|Nk(u)| and

hence l ≥ n|Nk(u)|/α.
According to the greedy algorithm, the distance between any pair of center points is

more than 2k; hence, Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the lemma,

|Nk(xi)| ≥ Y for every vertex xi; hence |⋃l
i=1 Nk(xi)| =

∑l
i=1 |Nk(xi)| ≥ l Y . For every

i ≤ l, we have dGs(u, xi) = 4k + 3, so vertex u has a path of length at most 5k + 3 to every

vertex whose distance to xi is at most k. Therefore, |N5k+3(u)| ≥ |⋃l
i=1 Nk(xi)| ≥ l Y ≥

Y n|Nk(u)|/α ≥ Y 2n/α. 2

Now we are ready to prove bounds on the price of anarchy. We start with the case
when α is a bit smaller than n:

Theorem 4.5. For 1 ≤ α < n1−ε, the price of anarchy is at most O(1/ε1+lg 5).

Next we prove a polylogarithmic bound on the price of anarchy when α is close to n.

Theorem 4.6. For α = O(n), the price of anarchy is O(lg1+lg 5 n) and the diameter of any

equilibrium graph is O(lglg 5 n).

Proof. Consider an equilibrium graph Gs. The proof is similar to the proof of Theorem 4.5.
Define a1 = max{2, 2α/n} + 1 and ai = 5ai−1 + 3, or equivalently ai = 4a1+3

20 · 5i − 3
4 <

a15
i, for all i > 1. By Lemma 4.4, for each i ≥ 1, either N4ai+2(v) > n/2 for some

vertex v or Nai+1 ≥ (n/α)N2
ai

. Let j be the least number for which |N4aj+2(v)| > n/2

for some vertex v. By this definition, for each i < j, Nai+1 ≥ (n/α)N2
ai

. Because Na1 >

2max{1, α/n}, we obtain that Nai > 22i−1
max{1, α/n} for every i ≤ j. On the other

hand, 22j−1 ≤ 22j−1
max{1, α/n} < Naj ≤ n, so j < lg lg n + 1 and aj < a1 5lg lg n+1 <

(2 + 2α/n + 1 + 1)5 lglg 5 n = 10(2 + α/n) lglg 5 n. Therefore N4·[10(2+α/n) lglg 5 n]+2(v) >

n/2 for some vertex v and using Lemma 4.1, we conclude that the distance of v to all

other vertices is at most 2[40(2 + α/n) lglg 5 n + 2] + 2α/n. Thus the diameter of Gs is

at most O((1 + α/n) lglg 5 n). Setting g = lg n in Lemma 3.4, the cost of Gs is at most

α O(n) + (lg n)O(n2(1 + α/n) lglg 5 n) = O((αn + n2) lg1+lg 5 n). Therefore the price of

anarchy is at most O(lg1+lg 5 n). 2

When α is a bit larger than n, we can obtain a constant bound on the price of anarchy.
First we need a somewhat stronger result on the behavior of neighborhoods:

Lemma 4.7. If |Nk(u)| ≥ Y for every vertex u in an equilibrium graph Gs, then either
|N5k(u)| > n/2 for some vertex u or |N6k+1(u)| ≥ Y 2kn/2α for every vertex u.
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Theorem 4.8. For any α > n, the price of anarchy is O(
√

n/α lg1+lg 6 n) and the diameter

of any equilibrium graph is O(lglg 6 n ·
√

α/n).

By Theorem 4.8, we conclude the following:

Corollary 4.9. For α = Ω(n lg2+2 lg 6 n) ≈ Ω(n lg7.16 n), the price of anarchy is O(1).

5. Cooperative Version in General Graphs

In this section, we study the price of anarchy when only some links can be created,
e.g., because of physical limitations. In this case, the social optimum is no longer simply a
clique or a star.

We start by bounding the growth of distances from the host graph G to an arbitrary
equilibrium graph Gs:

Lemma 5.1. For any two vertices u and v in any equilibrium graph Gs, dGs(u, v) =

O(dG(u, v) + α1/3dG(u, v)2/3).

Proof. Let u = v0, v1, . . . , vk = v be a shortest path in G between u and v, so k = dG(u, v).
Suppose that the distance between v0 and vi in Gs is di, for 0 ≤ i ≤ k. We first prove
that di+1 ≤ di + 1 +

√

9α/di for 0 ≤ i < k. If edge {vi, vi+1} already exists in Gs, the
inequality clearly holds. Otherwise, adding this edge decreases the distance between x and

y by at least di+1−di

3 , where x is a vertex whose distance is at most di+1−di

3 − 1 from vi+1

and y is a vertex in a shortest path from vi to v0. Therefore any vertex x whose distance is

at most di+1−di

3 − 1 from vi+1 can pay di+1−di

3 di for this edge. Because this edge does not

exist in Gs and because there are at least di+1−di

3 vertices of distance at most di+1−di

3 − 1

from vi+1, we conclude that
(

di+1−di

3

)2
di ≤ α. Thus we have di+1 ≤ di + 1 +

√

9α/di for

0 ≤ i < k. Next we prove that di+1 ≤ di + 1 + 5α1/3. If edge {vi, vi+1} already exists
in Gs, the inequality clearly holds. Otherwise, adding this edge decreases the distance

between z and w by at least di+1−di

5 , where z and w are two vertices whose distances from

vi+1 and vi, respectively, are less than di+1−di

5 . There are at least at least
(

di+1−di

5

)2
pair

of vertices like (z,w). Because the edge {vi, vi+1} does not exist in Gs, we conclude that
(

di+1−di

5

)3
≤ α. Therefore di+1 ≤ di + 1 + 5α1/3. Combining these two inequalities, we

obtain di+1 ≤ di + 1 + min{
√

9α/di, 5α
1/3}.

Inductively we prove that dj ≤ 3j + 7α1/3 + 5α1/3j2/3. For j ≤ 2, the inequality is

clear. Now suppose by induction that dj ≤ 3j + 7α1/3 + 5α1/3j2/3. If dj ≤ 2α1/3, we reach

the desired inequality using the inequality dj+1 ≤ dj + 1 + 5α1/3. Otherwise, we know

that dj+1 ≤ dj + 1 +
√

9α/dj = f(dj) and to find the maximum of the function f(dj)

over the domain dj ∈ [2α1/3, j + 7α1/3 + 5α1/3j2/3], we should check f ’s critical points,
including the endpoints of the domain interval and where f ’s derivative is zero. We reach

three values for dj : 2α1/3, j +7α1/3 +5α1/3j2/3, and
(

9α
4

)1/3
. Because the third value is not

in the domain, we just need to check the first two values. The first value is also checked, so
just the second value remains. For the second value, we have dj+1 ≤ dj + 1 +

√

9α/dj ≤
j+7α1/3+5α1/3j2/3+1+

√

9α
j+7α1/3+5α1/3j2/3 ≤ j+1+7α1/3+5α1/3j2/3+

√

10α
5α1/3j2/3 ≤ j+1+
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7α1/3 +5α1/3j2/3 + α1/3
√

2
j1/3 . Because (j +1)2/3 − j2/3 = (j+1)2−j2

(j+1)4/3+(j+1)2/3j2/3+j4/3 ≥ 2j
3(j+1)4/3 ,

we have j+1+7α1/3 +5α1/3j2/3 + α1/3
√

2
j1/3 ≤ j+1+7α1/3 +5α1/3(j+1)2/3−5α1/3 2j

3(j+1)4/3 +

α1/3
√

2
j1/3 ≤ j +1+7α1/3 +5α1/3(j +1)2/3− 10α1/3j

3j4/3 + α1/3
√

2
j1/3 ≤ j +1+7α1/3 +5α1/3(j +1)2/3.

Note that j + 1 > 2 and dk = dGs(u, v). Therefore dGs(u, v) is at most O(dG(u, v) +

α1/3dG(u, v)2/3) and the desired inequality is proved. 2

Using this Lemma 5.1, we prove two different bounds relating the sum of all pairwise
distances in the two graphs:

Corollary 5.2. For any equilibrium graph Gs,
∑

u,v∈V (G) dGs(u, v) = O(α1/3) ·
∑

u,v∈V (G) dG(u, v).

Theorem 5.3. For any equilibrium graph Gs,
∑

u,v∈V (G) dGs(u, v) ≤ min{O(n1/3)(αn +
∑

u,v∈V (G) dG(u, v)), n3}.
Now we can bound the price of anarchy for the various ranges of α, combining Corol-

lary 5.2, Theorem 5.3, and Lemma 3.4, with different choices of g.

Theorem 5.4. In the cooperative network creation game in general graphs, the price of
anarchy is at most

(a) O(α1/3) for α < n [g = 6 in Lemma 3.4 and Corollary 5.2],
(b) O(n1/3) for n ≤ α ≤ n5/3 [g = 6 in Lemma 3.4 and Theorem 5.3],

(c) O(n2

α ) for n5/3 ≤ α < n2−ε [g = 2/ε in Lemma 3.4 and Theorem 5.3], and

(d) O(n2

α lg n) for n2 ≤ α [g = lg n in Lemma 3.4 and Theorem 5.3].

6. Unilateral Version in General Graphs

Next we consider how a general host graph affects the unilateral version of the problem.
Some proofs are similar to proofs for the cooperative version in Section 5 and hence omitted.

Lemma 6.1. For any two vertices u and v in any equilibrium graph Gs, dGs(u, v) =

O(dG(u, v) + α1/2dG(u, v)1/2).

Again we relate the sum of all pairwise distances in the two graphs:

Corollary 6.2. For any equilibrium graph Gs,
∑

u,v∈V (G) dGs(u, v) = O(α1/2) ·
∑

u,v∈V (G) DG(u, v).

Theorem 6.3. For any equilibrium graph Gs,
∑

u,v∈V (Gs)
dGs(u, v) ≤ min{O(n1/2)(αn +

∑

u,v∈V (G) DG(u, v)), n3}.
To conclude bounds on the price of anarchy, we now use Lemma 3.2 in place of

Lemma 3.4, combined with Corollary 6.2 and Theorem 6.3.

Theorem 6.4. For α ≥ n, the price of anarchy is at most min{O(n1/2), n2

α }.

Theorem 6.5. For α < n, the price of anarchy is at most O(α1/2).
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7. Lower Bounds in General Graphs

In this section, we prove polynomial lower bounds on the price of anarchy for general
host graphs, first for the cooperative version and second for the unilateral version.

Theorem 7.1. The price of anarchy in the cooperative game is Ω(min{
√

α
n , n2

α }).

Qi

P2
P1

P2l

v2i+1
v2i+2

P2i+1

P2i

v2i

v4

Ql

Q1v2

v2l
v3

v1

P3

Qi+1

P2i+2

v2i+3

Figure 2: Lower bound graph.

Proof. For α = O(n) or α = Ω(n2), the claim is clear.
Otherwise, let k =

√

α
12n ≥ 2. Thus k = O(

√
n). We

construct graph Gk,l as follows; see Figure 2. Start with
2l vertices v1, v2, . . . , v2l connected in a cycle. For any 1 ≤
i ≤ 2l, insert a path Pi of k edges between vi and vi+1

(where we define v2l+1 = v1). For any 1 ≤ i ≤ l, insert a
path Qi of k edges between v2i and v2i+2 (where we define
v2l+2 = v2). Therefore there are n = (3k − 1)l vertices and
(3k + 2)l edges in Gk,l, so l = n/(3k − 1).

For simplicity, let G denote Gk,l in the rest of the proof.
Let G1 be a spanning connected subgraph of G that con-
tains exactly one cycle, namely, (v1, v2, . . . , v2l, v1); in other
words, we remove from G exactly one edge from each path
Pi and Qi. Let G2 be a spanning connected subgraph of
G that contains exactly one cycle, formed by the concate-
nation of Q1, Q2, . . . , Ql, and contains none of the edges
{vi, vi+1}, for 1 ≤ i ≤ 2l; for example, we remove from G exactly one edge from every P2i

and every edge {vi, vi+1}.
Next we prove that G2 is an equilibrium. For any 1 ≤ i ≤ l, removing any edge of

path Qi increases the distance between its endpoints and at least n/6 vertices by at least
lk
3 ≥ n/6. Because α = o(n2), we have α < n

6
n
6 , so if we assign this edge to be bought solely

by one of its endpoints, then this owner will not delete the edge. Removing other edges
makes G2 disconnected. For any 1 ≤ i ≤ l, adding an edge of path P2i or path P2i+1 or edge
{v2i, v2i+1} or edge {v2i+1, v2i+2} to G2 decreases only the distances from some vertices of
paths P2i or P2i+1 to the other vertices. There are at most n(2k − 1) such pairs. Adding
such an edge can decrease each of these distance by at most 3k − 1. But we know that
α ≥ 12nk2 > 2n(2k − 1)(3k − 1), so the price of the edge is more than its total benefit
among all nodes, and thus the edge will not be created by any coalition.

The cost of G1 is equal to O(αn+n2(k + l)) = O(αn+n2(k + n
k )) and the cost of G2 is

Ω(αn+n2(k + lk)) = Ω(αn+n3). The cost of the social optimum is at most the cost of G1,

so the price of anarchy is at least Ω( n3

αn+n3/k+kn2 ) = Ω(min{n2

α , k, n
k }). Because k = O(

√
n),

the price of anarchy is at least Ω(min{n2

α , k}) = Ω(min{n2

α ,
√

α
n}). 2

Theorem 7.2. The price of anarchy in unilateral games is Ω(min{α
n , n2

α }).
The proof uses a construction similar to Theorem 7.1.
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Abstract. We study data structures in the presence of adversarial noise. We want to
encode a given object in a succinct data structure that enables us to efficiently answer spe-
cific queries about the object, even if the data structure has been corrupted by a constant
fraction of errors. This new model is the common generalization of (static) data struc-
tures and locally decodable error-correcting codes. The main issue is the tradeoff between
the space used by the data structure and the time (number of probes) needed to answer
a query about the encoded object. We prove a number of upper and lower bounds on
various natural error-correcting data structure problems. In particular, we show that the
optimal length of error-correcting data structures for the Membership problem (where we
want to store subsets of size s from a universe of size n) is closely related to the optimal
length of locally decodable codes for s-bit strings.

1. Introduction

Data structures deal with one of the most fundamental questions of computer science:
how can we store certain objects in a way that is both space-efficient and that enables us to
efficiently answer questions about the object? Thus, for instance, it makes sense to store a
set as an ordered list or as a heap-structure, because this is space-efficient and allows us to
determine quickly (in time logarithmic in the size of the set) whether a certain element is in
the set or not. ¿From a complexity-theoretic point of view, the aim is usually to study the
tradeoff between the two main resources of the data structure: the length/size of the data
structure (storage space) and the efficiency with which we can answer specific queries about
the stored object. To make this precise, we measure the length of the data structure in bits,
and measure the efficiency of query-answering in the number of probes, i.e., the number of
bit-positions in the data structure that we look at in order to answer a query. The following
is adapted from Miltersen’s survey [Mil99]:

Definition 1.1. Let D be a set of data items, Q be a set of queries, A be a set of answers,
and f : D × Q → A. A (p, ε)-data structure for f of length N is a map φ : D → {0, 1}N

for which there is a randomized algorithm A that makes at most p probes to its oracle and
satisfies Pr[Aφ(x)(q) = f(x, q)] ≥ 1− ε for every q ∈ Q and x ∈ D.

1998 ACM Subject Classification: E1, E4.
Key words and phrases: data structures, error-correcting codes, locally decodable codes, membership.
Partially supported by a Veni grant from the Netherlands Organization for Scientific Research (NWO),

and by the European Commission under Integrated Project QAP, IST 015848.

c© R. de Wolf
CC© Creative Commons Attribution-NoDerivs License



314 R. DE WOLF

Usually we will study the case D ⊆ {0, 1}n and A = {0, 1}. Most standard data
structures taught in undergraduate computer science are deterministic, and hence have
error probability ε = 0. As mentioned, the main complexity issue here is the tradeoff
between N and p. Some data structure problems that we will consider are the following:

• Equality. D = Q = {0, 1}n, and f(x, y) = 1 if x = y, f(x, y) = 0 if x 6= y. This is
not a terribly interesting data structure problem in itself, since for every x there is
only one query y for which the answer is ‘1’; we merely mention this data structure
problem here because it will be used to illustrate some definitions later on.

• Membership. D = {x ∈ {0, 1}n : Hamming weight |x| ≤ s}, Q = [n] := {1, . . . , n},
and f(x, i) = xi. In other words, x corresponds to a set of size at most s from a
universe of size n, and we want to store the set in a way that easily allows us to
make membership queries. This is probably the most basic and widely-studied data
structure problem of them all [FKS84, Yao81, BMRV00, RSV02]. Note that for
s = 1 this is Equality on log n bits, while for s = n it is the general Membership
problem without constraints on the set.

• Substring. D = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r}, f(x, y) = xy, where xy is the
|y|-bit substring of x indexed by the 1-bits of y (e.g., 10100110 = 01). For r = 1 it is
Membership.

• Inner product (IPn,r). D = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r} and f(x, y) =
x ·y mod 2. This problem is among the hardest Boolean problems where the answer
depends on at most r bits of x (again, for r = 1 it is Membership).

More complicated data structure problems such as Rank, Predecessor, Nearest neigh-
bor have also been studied a lot, but we will not consider them here.

One issue that the above definition ignores, is the issue of noise. Memory and storage
devices are not perfect: the world is full of cosmic rays, small earthquakes, random (quan-
tum) events, bypassing trams, etc., that can cause a few errors here and there. Another
potential source of noise is transmission of the data structure over some noisy channel.
Of course, better hardware can partly mitigate these effects, but in many situations it is
realistic to expect a small fraction of the bits in the storage space to become corrupted
over time. Our goal in this paper is to study error-correcting data structures. These still
enable efficient computation of f(x, q) from the stored data structure φ(x), even if the latter
has been corrupted by a constant fraction of errors. In analogy with the usual setting for
error-correcting codes [MS77, vL98], we will take a pessimistic, adversarial view of errors
here: we want to be able to deal with a constant fraction of errors no matter where they
are placed. Formally, we define error-correcting data structures as follows.

Definition 1.2. Let D be a set of data items, Q be a set of queries, A be a set of answers,
and f : D ×Q → A. A (p, δ, ε)-error-correcting data structure for f of length N is a map
φ : D → {0, 1}N for which there is a randomized algorithm A that makes at most p probes
to its oracle and satisfies Pr[Ay(q) = f(x, q)] ≥ 1 − ε for every q ∈ Q, every x ∈ D, and
every y ∈ {0, 1}N at distance ∆(y, φ(x)) ≤ δN .
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Definition 1.1 is the special case of Definition 1.2 where δ = 0.1 Note that if δ > 0
then the adversary can always set the errors in a way that gives the decoder A a non-zero
error probability. Hence the setting with bounded error probability is the natural one for
error-correcting data structures. This contrasts with the standard noiseless setting, where
one usually considers deterministic structures.

A simple example of an efficient error-correcting data structure is for Equality: encode
x with a good error-correcting code φ(x). Then N = O(n), and we can decode by one probe:
given y, probe φ(x)j for uniformly chosen j ∈ [N ], compare it with φ(y)j , and output 1 iff
these two bits are equal. If up to a δ-fraction of the bits in φ(x) are corrupted, then we will
give the correct answer with probability 1−δ in the case x = y. If the distance between any
two codewords is close to N/2 (which is true for instance for a random linear code), then
we will give the correct answer with probability about 1/2− δ in the case x 6= y. These two
probabilities can be balanced to 2-sided error ε = 1/3 + 2δ/3. The error can be reduced
further by allowing more than one probe.

We only deal with so-called static data structures here: we do not worry about updating
the x that we are encoding. What about dynamic data structures, which allow efficient
updates as well as efficient queries to the encoded object? Note that if data-items x and x′

are distinguishable in the sense that f(x, q) 6= f(x′, q) for at least one query q ∈ Q, then
their respective error-correcting encodings φ(x) and φ(x′) will have distance Ω(N).2 Hence
updating the encoded data from x to x′ will require Ω(N) changes in the data structure,
which shows that a dynamical version of our model of error-correcting data structures with
efficient updates is not possible.

Error-correcting data structures not only generalize the standard (static) data struc-
tures (Definition 1.1), but they also generalize locally decodable codes, defined as:

Definition 1.3. A (p, δ, ε)-locally decodable code (LDC) of length N is a map φ : {0, 1}n →
{0, 1}N for which there is a randomized algorithm A that makes at most p probes to its
oracle and satisfies Pr[Ay(i) = xi] ≥ 1 − ε for every i ∈ [n], every x ∈ {0, 1}n, and every
y ∈ {0, 1}N at distance ∆(y, φ(x)) ≤ δN .

Note that a (p, δ, ε)-error-correcting data structure for Membership (with s = n) is
exactly a (p, δ, ε)-locally decodable code. Much work has been done on LDCs, but their
length-vs-probes tradeoff is still largely unknown for p ≥ 3. We refer to [Tre04] and the
references therein.

LDCs address only a very simple type of data structure problem: we have an n-bit
“database” and want to be able to retrieve individual bits from it. In practice, databases
have more structure and complexity, and one usually asks more complicated queries, such
as retrieving all records within a certain range. Our more general notion of error-correcting
data structures enables a study of such more practical data structure problems in the
presence of adversarial noise.

1As [BMRV00, end of Section 1.1] notes, a data structure can be viewed as locally decodable source code.
With this information-theoretic point of view, an error-correcting data structure is a locally decodable
combined source-channel code, and our results for Membership show that one can sometimes do better
than combining the best source code with the best channel code. We thank one of the anonymous referees
for pointing this out.

2Hence if all pairs x, x′ ∈ D are distinguishable (which is usually the case), φ is an error-correcting code.
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Comment on terminology. The terminologies used in the data-structure and LDC-
literature conflict at various points, and we needed to reconcile them somehow. To avoid
confusion, let us repeat here the choices we made. We reserve the term “query” for the
question q one asks about the encoded data x, while accesses to bits of the data structure
are called “probes” (in contrast, these are usually called “queries” in the LDC-literature).
The number of probes is denoted by p. We use n for the number of bits of the data item x
(in contrast with the literature about Membership, which mostly uses m for the size of
the universe and n for the size of the set). We use N for the length of the data structure
(while the LDC-literature mostly uses m, except for Yekhanin [Yek07] who uses N as we
do). We use the term “decoder” for the algorithm A. Another issue is that ε is sometimes
used as the error probability (in which case one wants ε ≈ 0), and sometimes as the bias
away from 1/2 (in which case one wants ε ≈ 1/2). We use the former.

1.1. Our results

If one subscribes to the approach to errors taken in the area of error-correcting codes,
then our definition of error-correcting data structures seems a very natural one. Yet, to our
knowledge, it is new and has not been studied before (see Section 1.2 for other approaches).

1.1.1. Membership. The most basic data structure problem is probably Membership.
Fortunately, our main positive result for error-correcting data structures applies to this.

Fix some number of probes p, noise level δ, and allowed error probability ε, and consider
the minimal length of p-probe error-correcting data structures for s-out-of-n Membership.
Let us call this minimal length MEM(p, s, n). A first observation is that such a data
structure is actually a locally decodable code for s bits: just restrict attention to n-bit
strings whose last n− s bits are all 0. Hence, with LDC(p, s) denoting the minimal length
among all p-probe LDCs that encode s bits (for our fixed ε, δ), we immediately get the
obvious lower bound

LDC(p, s) ≤ MEM(p, s, n).

This bound is close to optimal if s ≈ n. Another trivial lower bound comes from the
observation that our data structure for Membership is a map with domain of size B(n, s) :=
∑s

i=0

(

n
i

)

and range of size 2N that has to be injective. Hence we get another obvious bound

Ω(s log(n/s)) ≤ log B(n, s) ≤ MEM(p, s, n).

What about upper bounds? Something that one can always do to construct error-correcting
data structures for any problem, is to take the optimal non-error-correcting p1-probe con-
struction and encode it with a p2-probe LDC. If the error probability of the LDC is much
smaller than 1/p1, then we can just run the decoder for the non-error-correcting structure,
replacing each of its p1 probes by p2 probes to the LDC. This gives an error-correcting
data structure with p = p1p2 probes. In the case of Membership, the optimal non-error-
correcting data structure of Buhrman et al. [BMRV00] uses only 1 probe and O(s log n)
bits. Encoding this with the best possible p-probe LDC gives error-correcting data struc-
tures for Membership of length LDC(p,O(s log n)). For instance for p = 2 we can use the
Hadamard code3 for s bits, giving upper bound MEM(2, s, n) ≤ exp(O(s log n)).

3The Hadamard code of x ∈ {0, 1}s is the codeword of length 2s obtained by concatenating the bits
x · y (mod 2) for all y ∈ {0, 1}s. It can be decoded by two probes, since for every y ∈ {0, 1}s we have
(x · y)⊕ (x · (y⊕ ei)) = xi. Picking y at random, decoding from a δ-corrupted codeword will be correct with
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Our main positive result in Section 2 says that something much better is possible—the
max of the above two lower bounds is not far from optimal. Slightly simplifying4, we prove

MEM(p, s, n) ≤ O(LDC(p, 1000s) log n).

In other words, if we have a decent p-probe LDC for encoding O(s)-bit strings, then we
can use this to encode sets of size s from a much larger universe [n], at the expense of
blowing up our data structure by only a factor of log n. For instance, for p = 2 probes we
get MEM(2, s, n) ≤ exp(O(s)) log n from the Hadamard code, which is much better than
the earlier exp(O(s log n)). For p = 3 probes, we get MEM(3, s, n) ≤ exp(exp(

√
log s)) log n

from Efremenko’s recent 3-probe LDC [Efr08] (which improved Yekhanin’s breakthrough
construction [Yek07]). Our construction relies heavily on the Membership construction
of [BMRV00]. Note that the near-tightness of the above upper and lower bounds implies
that progress (meaning better upper and/or lower bounds) on locally decodable codes for
any number of probes is equivalent to progress on error-correcting data structures for s-out-
of-n Membership.

1.1.2. Inner product. In Section 3 we analyze the inner product problem, where we are
encoding x ∈ {0, 1}n and want to be able to compute the dot product x · y (mod 2), for any
y ∈ {0, 1}n of weight at most r. We first study the non-error-correcting setting, where we
can prove nearly matching upper and lower bounds (this is not the error-correcting setting,
but provides something to compare it with). Clearly, a trivial 1-probe data structure is
to store the answers to all B(n, r) possible queries separately. In Section 3.1 we use a
discrepancy argument from communication complexity to prove a lower bound of about
B(n, r)1/p on the length of p-probe data structures. This shows that the trivial solution
is essentially optimal if p = 1. We also construct various p-probe error-correcting data
structures for inner product. For small p and large r, their length is not much worse than
the best non-error-correcting structures. The upshot is that inner product is a problem
where data structures can sometimes be made error-correcting at little extra cost compared
to the non-error-correcting case—admittedly, this is mostly because the non-error-correcting
solutions for IPn,r are already very expensive in terms of length.

1.2. Related work

Much work has of course been done on locally decodable codes, a.k.a. error-correcting
data structures for the Membership problem without constraints on the set size [Tre04].
However, the error-correcting version of s-out-of-n Membership (“storing sparse tables”)
or of other possible data structure problems has not been studied before.5 Here we briefly
describe some other approaches to data structures in the presence of memory errors. There
is also much work on data structures with faulty processors, but we won’t discuss that.

probability at least 1 − 2δ, because both probes y and y ⊕ ei are individually random and hence probe a
corrupted entry with probability at most δ. This exponential length is optimal for 2-probe LDCs [KW04].

4Our actual result, Theorem 2.2, is a bit dirtier, with some deterioration in the error and noise parameters.
5Using the connection between information-theoretical private information retrieval and locally decodable

codes, one may derive some error-correcting data structures from the PIR results of [CIK+01]. However,
the resulting structures seem fairly weak.
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Fault-tolerant pointer-based data structures. Aumann and Bender [AB96] study
fault-tolerant versions of pointer-based data structures. They define a pointer-based data
structure as a directed graph where the edges are pointers, and the nodes come in two types:
information nodes carry real data, while auxiliary nodes carry auxiliary or structural data.
An error is the destruction of a node and its outgoing edges. They assume such an error is
detected when accessing the node. Even a few errors may be very harmful to pointer-based
data structures: for instance, losing one pointer halfway a standard linked list means we
lose the second half of the list. They call a data structure (d, g)-fault-tolerant (where d is
an integer that upper bounds the number of errors, and g is a function) if f ≤ d errors
cause at most g(f) information nodes to be lost.

Aumann and Bender present fault-tolerant stacks with g(f) = O(f), and fault-tolerant
linked lists and binary search trees with g(f) = O(f log d), with only a constant-factor
overhead in the size of the data structure, and small computational overhead. Note, however,
that their error-correcting demands are weaker than ours: we require that no part of the
data is lost (every query should be answered with high success probability), even in the
presence of a constant fraction of errors. Of course, we pay for that in terms of length.

Faulty-memory RAM model. An alternative model of error-correcting data structures
is the “faulty-memory RAM model”, introduced by Finocchi and Italiano [FI04]. In this
model, one assumes there are O(1) incorruptible memory cells available. This is justified
by the fact that CPU registers are much more robust than other kinds of memory. On the
other hand, all other memory cells can be faulty—including the ones used by the algorithm
that is answering queries (something our model does not consider). The model assumes an
upper bound ∆ on the number of errors.

Finocchi, Grandoni, and Italiano described essentially optimal resilient algorithms for
sorting that work in O(n log n + ∆2) time with ∆ up to about

√
n; and for searching in

Θ(log n + ∆) time. There is a lot of recent work in this model: Jørgenson et al. [JMM07]
study resilient priority queues, Finocchi et al. [FGI07] study resilient search trees, and
Brodal et al. [BFF+07] study resilient dictionaries. This interesting model allows for more
efficient data structures than our model, but its disadvantages are also clear: it assumes a
small number of incorruptible cells, which may not be available in many practical situations
(for instance when the whole data structure is stored on a hard disk), and the constructions
mentioned above cannot deal well with a constant noise rate.

2. The Membership problem

2.1. Noiseless case: the BMRV data structure for Membership

Our error-correcting data structures for Membership rely heavily on the construction
of Buhrman et al. [BMRV00], whose relevant properties we sketch here. Their structure is
obtained using the probabilistic method. Explicit but slightly less efficient structures were
subsequently given by Ta-Shma [TS02].

The BMRV-structure maps x ∈ {0, 1}n (of weight ≤ s) to a string y := y(x) ∈ {0, 1}n′

of length n′ = 100
ε2 s log n that can be decoded with one probe if δ = 0. More precisely, for

every i ∈ [n] there is a set Pi ⊆ [n′] of size log(n)/ε, such that for every x of weight ≤ s:

Pr
j∈Pi

[yj = xi] ≥ 1− ε, (2.1)
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where the probability is over a uniform index j ∈ Pi. For fixed ε, the length n′ = O(s log n)
is optimal up to a constant factor, because clearly log

(

n
s

)

is a lower bound.

2.2. Noisy case: 1 probe

For the noiseless case, the BMRV data structure has information-theoretically optimal
length O(s log n) and decodes with the minimal number of probes (one). This can also be
achieved in the error-correcting case if s = 1: then we just have the Equality problem,
for which see the remark following Definition 1.2. For larger s, one can observe that the
BMRV-structure still works with high probability if δ ≪ 1/s: in that case the total number
of errors is δn′ ≪ log n, so for each i, most bits in the Θ(log n)-set Pi are uncorrupted.

Theorem 2.1 (BMRV). There exist (1,Ω(1/s), 1/4)-error-correcting data structures for
Membership of length N = O(s log n).

This only works if δ ≪ 1/s, which is actually close to optimal, as follows. An s-bit LDC
can be embedded in an error-correcting data structure for Membership, hence it follows
from Katz-Trevisan’s [KT00, Theorem 3] that there are no 1-probe error-correcting data
structures for Membership if s > 1/(δ(1 − H(ε))) (where H(·) denotes binary entropy).
In sum, there are 1-probe error-correcting data structures for Membership of information-
theoretically optimal length if δ ≪ 1/s. In contrast, if δ ≫ 1/s then there are no 1-probe
error-correcting data structures at all, not even of exponential length.

2.3. Noisy case: p > 1 probes

As we argued in the introduction, for fixed ε and δ there is an easy lower bound on the
length N of p-probe error-correcting data structures for s-out-of-n Membership:

N ≥ max

(

LDC(p, s), log
s
∑

i=0

(

n

i

)

)

.

Our nearly matching upper bound, below, uses the ε-error data structure of [BMRV00] for
some small fixed ε. A simple way to obtain a p-probe error-correcting data structure is just
to encode their O(s log n)-bit string y with the optimal p-probe LDC (with error ε′, say),
which gives length LDC(p,O(s log n)). The one probe to y is replaced by p probes to the
LDC. By the union bound, the error probability of the overall construction is at most ε+ε′.
This, however, achieves more than we need: this structure enables us to recover yj for every
j, whereas it would suffice to recover yj for most j ∈ Pi (for each i ∈ [n]).

Definition of the data structure and decoder. To construct a shorter error-correcting
data structure, we proceed as follows. Let δ be a small constant (e.g. 1/10000); this is the
noise level we want our final data structure for Membership to protect against. Consider
the BMRV-structure for s-out-of-n Membership, with error probability at most 1/10. Then
n′ = 10000s log n is its length, and b = 10 log n is the size of each of the sets Pi. Apply now
a random permutation π to y (we show below that π can be fixed to a specific permutation).
View the resulting n′-bit string as made up of b = 10 log n consecutive blocks of 1000s bits
each. We encode each block with the optimal (p, 100δ, 1/100)-LDC that encodes 1000s bits.
Let ℓ be the length of this LDC. This gives overall length N = 10ℓ log n. The decoding
procedure is as follows. Randomly choose a k ∈ [b]. This picks out one of the blocks. If this
kth block contains exactly one j ∈ Pi then recover yj from the (possibly corrupted) LDC
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for that block, using the p-probe LDC-decoder, and output yj. If the kth block contains 0
or more than 1 elements from Pi, then output a uniformly random bit.

Analysis. Our goal below is to show that we can fix the permutation π such that for at
least n/20 of the indices i ∈ [n], this procedure has good probability of correctly decoding
xi (for all x of weight ≤ s). The intuition is as follows. Thanks to the random permutation
and the fact that |Pi| equals the number of blocks, the expected intersection between Pi

and a block is exactly 1. Hence for many i ∈ [n], many blocks will contain exactly one
index j ∈ Pi. Moreover, for most blocks, their LDC-encoding won’t have too many errors,
hence we can recover yj using the LDC-decoder for that block. Since yj = xi for 90% of
the j ∈ Pi, we usually recover xi.

To make this precise, call k ∈ [b] “good for i” if block k contains exactly one j ∈ Pi,
and let Xik be the indicator random variable for this event. Call i ∈ [n] “good” if at least
b/4 of the blocks are good for i (i.e.,

∑

k∈[b] Xik ≥ b/4), and let Xi be the indicator random

variable for this event. The expected value (over uniformly random π) of each Xik is the
probability that if we randomly place b balls into ab positions (a is the block-size 1000s),
then there is exactly one ball among the a positions of the first block, and the other b− 1
balls are in the last ab− a positions. This is

a
(ab−a

b−1

)

(ab
b

) =
(ab− b)(ab− b− 1) · · · (ab− b− a + 2)

(ab− 1)(ab− 2) · · · (ab− a + 1)
≥
(

ab− b− a + 2

ab− a + 1

)a−1

≥
(

1− 1

a− 1

)a−1

The righthand side goes to 1/e ≈ 0.37 with large a, so we can safely lower bound it by 3/10.
Then, using linearity of expectation:

3bn

10
≤ Exp





∑

i∈[n],k∈[b]

Xik



 ≤ b · Exp





∑

i∈[n]

Xi



+
b

4



n− Exp





∑

i∈[n]

Xi







 ,

which implies Exp
[

∑

i∈[n] Xi

]

≥ n
20 . Hence we can fix one permutation π such that at least

n/20 of the indices i are good.
For every index i, at least 90% of all j ∈ Pi satisfy yj = xi. Hence for a good index i,

with probability at least 1/4 − 1/10 we pick a k such that the kth block is good for i and
the unique j ∈ Pi in the kth block satisfies yj = xi. By Markov’s inequality, the probability
that the picked block has more than a 100δ-fraction of errors, is less than 1/100. If the
fraction of errors is at most 100δ, then our LDC-decoder recovers the relevant bit yj with
probability 99/100. Hence the overall probability of outputting the correct xi is at least

3

4
· 1

2
+

(

1

4
− 1

10
− 1

100

)

· 99

100
>

51

100
.

We end up with an error-correcting data structure for Membership for a universe of size
n/20 instead of n elements, but we can fix this by starting with the BMRV-structure for
20n bits.

We summarize this construction in a theorem:

Theorem 2.2. If there exists a (p, 100δ, 1/100)-LDC of length ℓ that encodes 1000s bits,
then there exists a (p, δ, 49/100)-error-correcting data structure of length O(ℓ log n) for the
s-out-of-n Membership problem.
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The error and noise parameters of this new structure are not great, but they can be
improved by more careful analysis. We here sketch a better solution without giving all
technical details. Suppose we change the decoding procedure for xi as follows: pick j ∈ Pi

uniformly at random, decode yj from the LDC of the block where yj sits, and output the
result. There are three sources of error here: (1) the BMRV-structure makes a mistake (i.e.,
j happens to be such that yj 6= xi), (2) the LDC-decoder fails because there is too much
noise on the LDC that we are decoding from, (3) the LDC-decoder fails even though there
is not too much noise on it. The 2nd kind is hardest to analyze. The adversary will do
best if he puts just a bit more than the tolerable noise-level on the encodings of blocks that
contain the most j ∈ Pi, thereby “destroying” those encodings.

For a random permutation, we expect that about b/(e · m!) of the b blocks contain
m elements of Pi. Hence about 1/65 of all blocks have 4 or more elements of Pi. If the
LDC is designed to protect against a 65δ-fraction of errors within one encoded block, then
with overall error-fraction δ, the adversary has exactly enough noise to “destroy” all blocks
containing 4 or more elements of Pi. The probability that our uniformly random j sits in
such a “destroyed” block is about

∑

m≥4

m

b

b

e ·m!
=

1

e

(

1

3!
+

1

4!
+ · · ·

)

≈ 0.08.

Hence if we set the error of the BMRV-structure to 1/10 and the error of the LDC to 1/100
(as above), then the total error probability for decoding xi is less than 0.2 (of course we
need to show that we can fix a π such that good decoding occurs for a good fraction of all
i ∈ [n]). Another parameter that may be adjusted is the block size, which we here took to
be 1000s. Clearly, different tradeoffs between codelength, tolerable noise-level, and error
probability are possible.

3. The Inner product problem

3.1. Noiseless case

Here we show bounds for Inner product, first for the noiseless case (δ = 0).

Upper bound. Consider all strings z of weight at most ⌈r/p⌉. The number of such z is

B(n, ⌈r/p⌉) =
∑⌈r/p⌉

i=0

(n
i

)

≤ (epn/r)r/p. We define our codeword by writing down, for all
z in lexicographic order, the inner product x · z mod 2. If we want to recover the inner
product x · y for some y of weight at most r, we write y = z1 + · · · + zp for zj ’s of weight
at most ⌈r/p⌉ and recover x · zj for each j ∈ [p], using one probe for each. Summing the
results of the p probes gives x · y (mod 2). For p = 1 probes, the length is B(n, r).

Lower bound. To prove a nearly-matching lower bound, we use Miltersen’s technique of
relating a data structure to a two-party communication game [Mil94]. We refer to [KN97]
for a general introduction to communication complexity. Suppose Alice gets string x ∈
{0, 1}n, Bob gets string y ∈ {0, 1}n of weight ≤ r, and they need to compute x · y (mod
2) with bounded error probability and minimal communication between them. Call this
communication problem IPn,r. Let B(n, r) =

∑r
i=0

(

n
i

)

be the size of Q, i.e., the number of
possible queries y. For reasons of space we skip the proof of the following communication
complexity lower bound, which may be found in the full version of this paper.
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Theorem 3.1. Every communication protocol for IPn,r with worst-case (or even average-
case) success probability ≥ 1/2 + β needs at least log(B(n, r))− 2 log(1/2β) bits of commu-
nication.

Armed with this communication bound we lower bound data structure length:

Theorem 3.2. Every (p, ε)-data structure for IPn,r needs N≥1

2
2(log(B(n,r))−2 log(1/(1−2ε))−1)/p.

Proof. We will use the data structure to obtain a communication protocol for IPn,r that
uses p(log(N) + 1) + 1 bits of communication, and then invoke Theorem 3.1 to obtain the
lower bound. Alice holds x, and hence φ(x), while Bob simulates the decoder. Bob starts
the communication. He picks his first probe to the data structure and sends it over in
log N bits. Alice sends back the 1-bit answer. After p rounds of communication, all p
probes have been simulated and Bob can give the same output as the decoder would have
given. Bob’s output will be the last bit of the communication. Theorem 3.1 now implies
p(log(N) + 1) + 1 ≥ log(B(n, r))− 2 log(1/(1 − 2ε)). Rearranging gives the bound on N .

For fixed ε, the lower bound is N = Ω
(

B(n, r)1/p
)

. This is Ω((n/r)r/p), which (at least

for small p) is not too far from the upper bound of approximately (epn/r)r/p mentioned
above. Note that in general our bound on N is superpolynomial in n whenever p = o(r).

For instance, when r = αn for some constant α ∈ (0, 1/2) then N = Ω(2nH(α)/p), which is
non-trivial whenever p = o(n). Finally, note that the proof technique also works if Alice’s
messages are longer than 1 bit (i.e., if the code is over a larger-than-binary alphabet).

3.2. Noisy case

3.2.1. Constructions for Substring. One can easily construct error-correcting data struc-
tures for Substring, which also suffice for Inner product. Note that since we are recov-
ering r bits, and each probe gives at most one bit of information, by information theory we
need at least about r probes to the data structure. Our solutions below will use O(r log r)

probes. View x as a concatenation x = x(1) . . . x(r) of r strings of n/r bits each (we ignore
rounding for simplicity), and define φ(x) as the concatenation of the Hadamard codes of

these r pieces. Then φ(x) has length N = r · 2n/r.
If δ ≥ 1/4r then the adversary could corrupt one of the r Hadamard codes by 25%

noise, ensuring that some of the bits of x are irrevocably lost even when we allow the full
N probes. However, if δ ≪ 1/r then we can recover each bit xi with small constant error
probability by 2 probes in the Hadamard codeword where i sits, and with error probability
≪ 1/r using O(log r) probes. Hence we can compute f(x, y) = xy with error close to 0
using p = O(r log r) probes (or with 2r probes if δ ≪ 1/r2). This also implies that any
data structure problem where f(x, q) depends on at most some fixed constant r bits of

x, has an error-correcting data structure of length N = r · 2n/r, p = O(r log r), and that
works if δ ≪ 1/r. Alternatively, we can take Efremenko’s [Efr08] or Yekhanin’s 3-probe
LDC [Yek07], and just decode each of the r bits separately. Using O(log r) probes to recover
a bit with error probability ≪ 1/r, we recover the r-bit string xy using p = O(r log r) probes
even if δ is a constant independent of r.
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3.2.2. Constructions for Inner product. Going through the proof of [Yek07], it is easy
to see that it allows us to compute the parity of any set of r bits from x using at most 3r
probes with error ε, if the noise rate δ is at most ε/(3r) (just add the results of the 3 probes
one would make for each bit in the parity). To get error-correcting data structures even for
small constant p (independent of r), we can adapt the polynomial schemes from [BIK05] to
get the following theorem. The details are given in the full version of this paper.

Theorem 3.3. For every p ≥ 2, there exists a (p, δ, pδ)-error-correcting data structure for

IPn,r of length N ≤ p · 2r(p−1)2n1/(p−1)
.

For the p = 2 case, we get something simpler and better from the Hadamard code. This
code, of length 2n, actually allows us to compute x · y (mod 2) for any y ∈ {0, 1}n of our
choice, with 2 probes and error probability at most 2δ (just probe z and y⊕ z for uniformly
random z ∈ {0, 1}n and observe that (x · z)⊕ (x · (y ⊕ z)) = x · y). Note that for r = Θ(n)
and p = O(1), even non-error-correcting data structures need length 2Θ(n) (Theorem 3.2).
This is an example where error-correcting data structures are not significantly longer than
the non-error-correcting kind.

4. Future work

Many questions are opened up by our model of error-correcting data structures, e.g.:

• There are plenty of other natural data structure problems, such as Rank, Pre-
decessor, versions of Nearest neighbor etc. [Mil99]. What about the length-
vs-probes tradeoffs for their error-correcting versions? The obvious approach is to
put the best known LDC on top of the best known non-error-correcting data struc-
tures. This is not always optimal, though—for instance in the case of s-out-of-n
Membership one can do significantly better, as we showed.

• It is often natural to assume that a memory cell contains not a bit, but some number
from, say, a polynomial-size universe. This is called the cell-probe model [Yao81],
in contrast to the bit-probe model we considered here. Probing a cell gives O(log n)
bits at the same time, which can significantly improve the length-vs-probes trade-
off and is worth studying. Still, we view the bit-probe approach taken here as
more fundamental than the cell-probe model. A p-probe cell-probe structure is a
O(p log n)-probe bit-probe structure, but not vice versa. Also, the way memory is
addressed in actual computers in constant chunks of, say, 8 or 16 bits at a time, is
closer in spirit to the bit-probe model than to the cell-probe model.

• Zvi Lotker suggested to me the following connection with distributed computing.
Suppose the data structure is distributed over N processors, each holding one bit.
Interpreted in this setting, an error-correcting data structure allows an honest party
to answer queries about the encoded object while communicating with at most p
processors. The answer will be correct with probability 1 − ε, even if up to a δ-
fraction of the N processors are faulty or even malicious (the querier need not know
where the faulty/malicious sites are).
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Abstract. We give topological and algebraic characterizations as well as language the-
oretic descriptions of the following subclasses of first-order logic FO[<] for ω-languages:
Σ2, ∆2, FO2

∩ Σ2 (and by duality FO2
∩ Π2), and FO2. These descriptions extend the

respective results for finite words. In particular, we relate the above fragments to language
classes of certain (unambiguous) polynomials. An immediate consequence is the decidabil-
ity of the membership problem of these classes, but this was shown before by Wilke [20]
and Bojańczyk [2] and is therefore not our main focus. The paper is about the interplay
of algebraic, topological, and language theoretic properties.

1. Introduction

The algebraic approach for fragments of first-order logic over finite words has been very
fruitful. For example, a result of Wilke and Thérien is that FO2 and ∆2 have the same
expressive power [14], where the latter class by definition denotes Σ2 ∩Π2. Further results
are language theoretic and (very often decidable) algebraic characterizations of logical frag-
ments, see e.g. [13] or [4] for surveys. Several results for finite words have been extended
to other structures such as trees and other graphs, see [18] for a survey. For some charac-
terizations over finite words, it has been shown that they cannot be generalized; e.g. over
unranked trees, it turned out that FO2 and ∆2 are incomparable [1]. For infinite words,
it is clear that the expressive power of FO2 is not equal to ∆2, since saying that letters a
and b appear infinitely often, but c only finitely many times is FO2-definable, but there is
neither a Σ2-formula nor a Π2-formula specifying this language.

Our results deepen the understanding of first-order fragments over infinite words. A
decidable characterization of the membership problem for FO2 over infinite words has been
given in the habilitation thesis of Wilke [20]. Recently, decidability for Σ2 has been shown
independently by Bojańczyk [2]. Language theoretic and decidable algebraic characteriza-
tions of the fragment Σ1 and of its Boolean closure can be found in [8, 9].

We introduce two generalizations of the usual Cantor topology for infinite words. One
of our first results is a characterization of languages L ⊆ Γ∞ being Σ2-definable in terms
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of a property of its syntactic monoid and by requiring that L is open in some alphabetic
topology. Both properties are decidable.

Our second result is that a language is FO2-definable if and only if its syntactic monoid
is in the variety DA. (The result is surprising in the sense that it contradicts an explicit
statement in [20]). Moreover, we show that FO2-definability can be characterized by being
closed in some further refined alphabetic topology and in terms of weak recognition by some
monoid in DA. In particular, weak recognition and strong recognition do not coincide for
the variety DA. This seems to be a new result as well. We also contribute a language
theoretic characterization of FO2 in terms of unambiguous polynomials with additional
constraints on the letters which occur infinitely often.

Further main results of our paper are the characterization of FO2 ∩ Σ2 as the class of
unambiguous polynomials and of ∆2 in terms of unambiguous polynomials in some special
form. In particular, it follows already from this description that ∆2 is a strict subset of
FO2. Furthermore, we show that the equality of FO2 and ∆2 holds relativized to some
fixed set of letters which occur infinitely often. If this set of letters is empty, we obtain the
situation for finite words as a special case. Finally, we relate topological constructions such
as interior and closure with membership in the fragments under consideration. Among
other results, we are going to explain the following relations between the fragments FO2,
Σ2, Π2, and ∆2 = Σ2 ∩Π2:

Σ2 Π2∆2

FO2

•
L1

•
L2

•
L3

•
L4

•
L5

Here Γ = {a, b, c} and

L1 = “there exists a factor ab”
= Γ∗abΓ∞

L2 = “finitely many a’s”
L3 = “finitely many a’s and infinitely

many b’s” = L2 ∩ L4

L4 = “infinitely many b’s”
L5 = “there is no factor ab” = Γ∞ \ L1

It will turn out that L4 is the closure of L3 within some alphabetic topology, whereas L2 is
not the interior of L3 since L3 ( L2. In fact, the interior of L3 with respect to our topology
is empty.

For basic notions on languages of infinite words we refer to standard references such as
[8, 16].

2. Preliminaries

Words. Throughout, Γ is a finite alphabet, A ⊆ Γ is a subset of the alphabet, u, v,w are
finite words, and α, β, γ are finite or infinite words. If not specified otherwise, then in all
examples we assume that Γ has three different letters a, b, c. By u ≤ α we mean that u is
a (finite) prefix of α. By alph(α) we denote the alphabet of α, i.e., the letters occurring in
the sequence α. As usual, Γ∗ is the free monoid of finite words over Γ. The neutral element
is the empty word 1. If L is a subset of a monoid, then L∗ is the submonoid generated by
L. For L ⊆ Γ∗ we let Lω = {u1u2 · · · | ui ∈ L for all i ≥ 1} be the set of infinite products.
We also let L∞ = L∗ ∪ Lω. A natural convention is 1ω = 1. Thus, L∞ = Lω if and only if
1 ∈ L.
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We write im(α) for those letters in alph(α) which have infinitely many different oc-
currences in α. The notation has been introduced in the framework of so called complex
traces, see e.g. [6] for a detailed discussion of this concept. The notation im(α) refers to the
imaginary part and we adopt it here. A crucial role for us are sets of the form Aim, where,
by definition, Aim is the set of words α such that im(α) = A. Note that Γ∗ = ∅im. The set
Γ∞ is the disjoint union over all Aim.

Logic and regular sets. We assume that the reader is familiar with basic concepts in
formal language theory. All languages L here can be assumed to be regular. The finite part
L∩Γ∗ can be assumed to be specified by some NFA and infinite part L∩Γω can be assumed
to be specified by some Bchi automaton. We focus on regular languages which are given by
first-order sentences in FO[<]. Thus, atomic predicates are λ(x) = a and x < y saying that
position x in a word α is labeled with a ∈ Γ and position x is less than y, respectively. By
FO2 we mean FO[<]-sentences which use at most two names x and y as variables or the class
of languages specified by such formulas. Similarly, Σ2 means FO[<]-sentences which are in
prenex normal form and which start with a block of existential quantifiers, followed by a
block of universal quantifiers and a Boolean combination of atomic formulas. A Π2-formula
means a negation of a Σ2-formula. The notations Σ2 and Π2 refer also to the corresponding
language classes. The class ∆2 means the class of Σ2-formulas which have an equivalent Π2-
formula. But the notion of equivalence depends on the set of models we use. If the models
are finite words, then a result of Thérien and Wilke [14] states FO2 = ∆2. Moreover, FO2

is the class of regular languages in Γ∗ which are recognized by some finite monoid in the
variety DA and a classical result of Schützenberger shows that DA also coincides with
unambiguous polynomials [10]. We refer to [12, 4] for more background on the class DA. It
is a class of finite monoids defined e.g. by equations of type (xy)ω = (xy)ωy(xy)ω. We recall
that the class DA can also be defined by equations of the form e = ese for all idempotents
e (i.e., e2 = e) and for all s generated by factors of e, see e.g. [17].

Saying that formulas are equivalent if they agree on all finite and infinite words changes
the picture. This is actually the starting point of this work. So, in this paper models are
finite and infinite words. We are mainly interested in infinite words, but it does no harm
to include finite words, and this makes the situation more uniform and the results on finite
words reappear as special cases. See e.g. Theorem 8.1 which means FO2 = ∆2 for finite
words by choosing A = ∅. An important concept in this paper is topology.

3. The alphabetic topology and polynomials

We equip Γ∞ with a refinement of the usual Cantor topology. The languages uΓ∞ form
a basis of the Cantor topology. As we will see, topological information is crucial in our
characterization results. We define the alphabetic topology by its basis, which is given by
all sets of the form uA∞. Thus, a set L is open if and only if for each A ⊆ Γ there is a
set of finite words WA ⊆ Γ∗ such that L =

⋃

WA A∞. By definition, a set is closed, if its
complement is open; and it is clopen, if it is both open and closed. All sets A∞ are clopen.
A set Aim is not open unless A = ∅, it is not closed unless A = Γ.

Remark 3.1. The space Γ∞ with the alphabetic topology is Hausdorff, but not compact,
in general (in contrast to the Cantor topology). To see that it is not compact for Γ = {a, b}
note that Γ∞ = aω ∪Γ∗bΓ∞. The singleton set aω is clopen, but for no finite subset F ⊆ Γ∗

we have Γ∞ = aω ∪ FbΓ∞.
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For a language L, its closure L is the intersection of all closed sets containing L.
A word α ∈ Γ∞ belongs to L if for all open subsets U ⊆ Γ∞ with α ∈ U we have
U ∩ L 6= ∅. The interior of L is the complement of the closure of its complement.
For languages L and K we define the right quotient as a language of finite words by
L/K = {u ∈ Γ∗ | uα ∈ L for some α ∈ K}. For L ⊆ Γ∗ we define

−→
L = {α ∈ Γ∞ | for every prefix u ≤ α there exists uv ≤ α with uv ∈ L} .

Proposition 3.2. In the alphabetic topology we have Aim =
⋃

A⊆B Bim and

L =
⋃

A⊆Γ

(−−−−→
L/A∞ ∩Aim

)

=
⋃

A⊆Γ

(−−−−→
L/A∞ ∩Aim

)

.

Corollary 3.3. Given a regular language L ⊆ Γ∞, we can decide whether L is closed (open
resp., clopen resp.).

Actually, we have a more precise statement than pure decidability.

Theorem 3.4. The following problem is PSPACE-complete:
Input: A Bchi automaton A with L(A) ⊆ Γω.
Question: Is the regular language L(A) closed?

Remark 3.5. Neither languages of the form
−−−−→
L/A∞ nor

−−−−→
L/A∞ ∩Aim as in Proposition 3.2

need to be closed. Indeed, let A = {a}, B = {a, b}, and L = a∗(ab)∗baω. Then L/A∞ =

a∗(ab)∗ba∗ and L/B∞ is the set of all finite prefixes of words in L. We have
−−−−→
L/A∞ =

a∗(ab)∗ba∞ and
−−−−→
L/A∞ ∩ Aim = a∗(ab)∗baω = L. The language

−−−−→
L/A∞ is open but neither

−−−−→
L/A∞ nor

−−−−→
L/A∞ ∩Aim is closed in the alphabetic topology, because (ab)ω belongs to both

closures. We have
−−−−→
L/B∞ = a∗(ab)∗ba∞ ∪ a∗(ab)ω and

−−−−→
L/B∞ ∩ Bim = a∗(ab)ω. Both sets

are closed. Actually, L = L∪ a∗(ab)ω in the alphabetic topology. Finally note that L is not
closed in the Cantor topology since aω 6∈ L. Remember that a basis of the Cantor topology
are the sets of the form uΓ∞.

Frequently we apply the closure operator to polynomials. A polynomial is a finite union
of monomials. A monomial (of degree k) is a language of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1

with
ai ∈ Γ and Ai ⊆ Γ. In particular, A∗

1a1 · · ·A
∗
kak is a monomial with Ak+1 = ∅. The set

A∗ is a polynomial since A∗ = ∅∞ ∪
⋃

a∈A A∗a. It is not hard to see that polynomials are
closed under intersection. Thus, A∗

1a1 · · ·A
∗
kakA

∗
k+1

is in our language a polynomial, but
not a monomial unless Ak+1 = ∅. A monomial P = A∗

1a1 · · ·A
∗
kakA

∞
k+1

is unambiguous if
for every α ∈ P there exists a unique factorization α = u1a1 · · · ukakβ such that ui ∈ A∗

i and
β ∈ A∞

k+1
. A polynomial is unambiguous if it is a finite union of unambiguous monomials.

It follows from the definition of the alphabetic topology that polynomials are open.
Actually, it is the coarsest topology with this property. The crucial observation is that
we have a syntactic description of the closure of a polynomial as a finite union of other
polynomials. For later use we make a more precise statement.

Lemma 3.6. Let P = A∗
1a1 · · ·A

∗
kakA

∞
k+1 be a monomial and L = P ∩ Bim for some

B ⊆ Ak+1. Then the closure of L is given by
⋃

{ai,...,ak}∪B⊆A⊆Ai

A∗
1a1 · · ·A

∗
i−1ai−1A

∞
i ∩Aim.
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Proof. First consider an index i with 1 ≤ i ≤ k + 1 such that {ai, . . . , ak} ∪ B ⊆ A ⊆ Ai.
Let α ∈ A∗

1a1 · · ·A
∗
i−1ai−1A

∞
i ∩ Aim. We have to show that α is in the closure of L. Let

α = uβ with u ∈ A∗
1a1 · · ·A

∗
i−1ai−1A

∗
i and β ∈ A∞ ∩ Aim. We show that uA∞ ∩ L 6= ∅.

Choose some γ ∈ B∞∩Bim. As B ⊆ Ak+1 holds by hypothesis, we see that uai · · · akγ ∈ P ,
and hence uai · · · akγ ∈ uA∞ ∩ L.

Let now α ∈ L and write α ∈ uv1 · · · vk+1A
∞ ∩ Aim with alph(vj) = A. There exists

γ ∈ A∞ such that uv1 · · · vk+1γ ∈ P ∩ Bim. This implies B ⊆ A. Since uv1 · · · vk+1γ ∈
A∗

1a1 · · ·A
∗
kakA

∞
k+1 there are some 1 ≤ i, j ≤ k + 1 such that uv1 · · · vj−1 belongs to

A∗
1a1 · · ·A

∗
i−1ai−1A

∗
i ∩ Aim, vj ∈ A∗

i , and vj+1 · · · vk+1γ ∈ A∗
i ai · · ·A

∗
kakA

∞
k+1

∩ A∞. There-

fore {ai, . . . , ak} ⊆ A ⊆ Ai, too. It follows that α ∈ A∗
1a1 · · ·A

∗
i−1ai−1A

∞
i ∩Aim.

4. Recognizability by finite monoids

By M we denote a finite monoid. We always assume that M is equipped with a partial
order ≤ being compatible with the multiplication, i.e., u ≤ v implies sut ≤ svt for all
s, t, u, v ∈ M . If not specified otherwise, we may choose ≤ to be the identity relation.

For an idempotent element e ∈ M we define Me = {s ∈ M | e ∈ MsM}∗. By def-
inition, Me is a submonoid of M . If M is generated by Γ, then Me is generated by
{a ∈ Γ | e ∈ MaM}. We can think of this set as the maximal alphabet of the idempo-
tent e. We say that an idempotent e is locally top (locally bottom, resp.) if ese ≤ e (ese ≥ e,
resp.) for all s ∈ Me. By DA we denote the class of finite monoids such that ese = e for
all idempotents e ∈ M and all s ∈ Me. More information about this variant to define DA

can be found in [17].
Let L ⊆ Γ∞ be a language. The syntactic preorder ≤L over Γ∗ is defined as follows.

We let u ≤L v if for all x, y, z ∈ Γ∗ we have both implications:

xvyzω ∈ L ⇒ xuyzω ∈ L and x(vy)ω ∈ L ⇒ x(uy)ω ∈ L.

Let us recall that 1ω = 1. Two words u, v ∈ Γ∗ are syntactically equivalent, written as
u ≡L v, if both u ≤L v and v ≤L u. This is a congruence and the congruence classes
[u]L = {v ∈ Γ∗ | u ≡L v} form the syntactic monoid Synt(L) of L. The preorder ≤L on
words induces a partial order ≤L on congruence classes, and (Synt(L),≤L) becomes an
ordered monoid. It is a well-known classical result that the syntactic monoid of a regular
language L ⊆ Γ∞ is finite, see e.g. [8, 16]. Moreover, in this case L can be written as a
finite union of languages of type [u]L [v]ωL where u, v ∈ Γ∗ with uv ≡L u and v2 ≡L v.

Now, let h : Γ∗ → M be any surjective homomorphism onto a finite ordered monoid M
and let L ⊆ Γ∞. If the reference to h is clear, then we denote by [s] the set of finite words
h−1(s) for s ∈ M . The following notations are used:

• (s, e) ∈ M ×M is a linked pair, if se = s and e2 = e.
• h weakly recognizes L, if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ⊆ L}

• h strongly recognizes L (or simply recognizes L), if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ∩ L 6= ∅}

• L is downward closed (on finite prefixes) for h, if [s][e]ω ⊆ L implies [t][e]ω ⊆ L for
all s, t, e ∈ M where t ≤ s.
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Lemma 4.1. Let L ⊆ Γ∞ be a regular language and let hL : Γ∗ → Synt(L) be its syntactic
homomorphism. Then for all s, t, e, f ∈ M such that t ≤ s, f ≤ e, and [s][e]ω ⊆ L we have
[t][f ]ω ⊆ L. In particular, L is downward closed (on finite prefixes) for hL.

Proof. Let u ∈ [s], x ∈ [e] and let v ∈ [t], y ∈ [f ]. Now, uxω ∈ L implies vxω ∈ L, which in
turn implies vyω ∈ L. Since L is regular, hL strongly recognizes L, and we obtain [t][f ]ω ⊆ L
because vyω ∈ [t][f ]ω ∩ L.

For lack of space and in order to avoid too much machinery we do not treat ω-semigroups
[9, 19] in this extended abstract. However, let us define tfω ≤L seω for linked pairs by the
implication:

[s][e]ω ⊆ L ⇒ [t][f ]ω ⊆ L.

With this notation we can give an algebraic characterization of being open.

Lemma 4.2. A regular language L ⊆ Γ∞ is open in the alphabetic topology if and only if
for all linked pairs (s, e), (t, f) of M = Synt(L) with t, f ∈ Me we have stfω ≤L seω.

5. The fragment Σ2

By a (slight extension of a) result of Thomas [15] on ω-languages we know that a
language L ⊆ Γ∞ is definable in Σ2 if and only if L is a polynomial. However, this statement
alone does not yield decidability. It turns out that we obtain decidability by a combination
of an algebraic and a topological criterion. This decidability result has also been shown by
Bojańczyk [2] using different techniques. We know that polynomials are open. Therefore,
we concentrate on algebra.

Lemma 5.1. If L ⊆ Γ∞ is a polynomial, then all idempotents of Synt(L) are locally top.

Theorem 5.2. Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent:

(1) L is Σ2-definable.
(2) L is a polynomial.
(3) L is open in the alphabetic topology and all idempotents of Synt(L) are locally top.
(4) The syntactic monoid M = Synt(L) and the syntactic order ≤L satisfy:

(a) For all linked pairs (s, e), (t, f) with t, f ∈ Me we have stfω ≤L seω.
(b) e = e2 and s ∈ Me implies ese ≤L e.

(5) The following three conditions hold for some homomorphism h : Γ∗ → M which
weakly recognizes L:
(a) L is open in the alphabetic topology.
(b) All idempotents of M are locally top.
(c) L is downward closed (on finite prefixes) for h.

Proof. “1 ⇔ 2”: This is a slight modification of a result by Thomas [15].
“2 ⇒ 3”: By definition, polynomials are open in the alphabetic topology. In Lemma 5.1 it
has been shown that all idempotent elements are locally top.
“3 ⇔ 4”: The equivalence of L being open and “4a” is Lemma 4.2. Property “4b” is the
definition of all elements being locally top.
“4 ⇒ 5”: Let h = hL be the syntactic homomorphism onto the syntactic monoid M =
Synt(L). Applying Lemma 4.2, property “5a” follows from “4a” and “5b” trivially follows
from “4b”. The condition “5c” holds for Synt(L) by Lemma 4.1.
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“5 ⇒ 2”: Consider α ∈ L with im(α) = A. By “5a” the language L is open. Hence, there
exists a prefix u of α such that α ∈ uA∞ ⊆ L. From the case of finite words and the
hypothesis “5b” on M , we know that P = {v ∈ Γ∗ | h(v) ≤ h(u)} is a polynomial. We can
assume that all monomials in P end with a letter. We define the polynomial Pα = PA∞.
Clearly, L ⊆

⋃

{Pα | α ∈ L} and this union is finite since M is finite. It remains to show
that Pα ⊆ L for α ∈ L. Let v ∈ P and β ∈ A∞. We know uβ ∈ L and there exists a linked
pair (s, e) such that uβ ∈ [s][e]ω ⊆ L. Now, there exists wγ = β such that uw ∈ [s] and
γ ∈ [e]ω. By definition of P , we have h(v) ≤ h(u) and therefore t = h(vw) ≤ h(uw) = s. It
follows vβ = vwγ ∈ [t][e]ω ⊆ L by “5c”. This shows Pα ⊆ L and thus L =

⋃

{Pα | α ∈ L}.

Corollary 5.3. It is decidable whether a regular language is Σ2-definable.

Remark 5.4. An ω-language L ⊆ Γω is Σ2-definable, if L = {α ∈ Γω | α |= ϕ} for some
ϕ ∈ Σ2. This is equivalent with L ∪ Γ∗ being Σ2-definable as a subset of Γ∞. Thus, the
decidability of Corollary 5.3 transfers to ω-regular languages.

6. Two variable first-order logic

Etessami, Vardi, and Wilke have given a characterization of FO2 in terms of unary
temporal logic [5]. In the same paper, they considered the satisfiability problem for FO2.
In this section, we continue the study of FO2 over infinite words.

The following lemma can be proved essentially in the same way as for finite words. The
result is also (implicitly) stated in the habilitation thesis of Wilke [20].

Lemma 6.1. Let L ⊆ Γ∞ be FO2-definable. Then the syntactic monoid Synt(L) is in DA.

A set like Aim is FO2-definable, but it is neither open nor closed in the alphabetic
topology, in general. Therefore, we need a refinement of the alphabetic topology. As a basis
for the strict alphabetic topology we take all sets of the form uA∞ ∩ Aim. Thus, more sets
are open (and closed) than in the alphabetic topology. Another way to define the strict
alphabetic topology is to say that it is the coarsest topology on Γ∞ where all sets of the
form A∗

1a1 · · ·A
∗
kakA

∞
k+1

∩Bim are open. The strict alphabetic topology is not used outside
this section, but it is essential here in order to prove the converse of Lemma 6.1.

Lemma 6.2. If L ⊆ Γ∞ is strongly recognized by some homomorphism h : Γ∗ → M ∈ DA,
then L is clopen in the strict alphabetic topology.

Proof. Since h also strongly recognizes Γ∞ \L as well, it is enough to show that L is open.
Let α ∈ L with α ∈ [s][e]ω for some linked pair (s, e) and let A = im(α). We show that
[s]A∞ ∩ Aim ⊆ L. Indeed, let β ∈ [s]A∞ ∩ Aim. Then we have β = uvγ with h(u) = s,
h(v) = r, γ ∈ [f ]ω where v ∈ A∗, alph(γ) = im(γ) = A, and (r, f) is a linked pair. Since
M ∈ DA, we obtain s = se = serfe = srfe and efe = e and fef = f . Since h strongly
recognizes L, we can compute as follows:

β ∈ [sr][f ]ω = [sr][fef ]ω = [srfe][efe]ω = [s][e]ω ⊆ L

In particular, β ∈ L.
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Lemma 6.3. If L is closed in the strict alphabetic topology and if L is weakly recog-
nized by some homomorphism h : Γ∗ → M ∈ DA, then L is a finite union of languages
A∗

1a1 · · ·A
∗
kakA

∞
k+1

∩Aim
k+1

, where each A∗
1a1 · · ·A

∗
kakA

∞
k+1

is an unambiguous monomial.

Proof. Let α ∈ L. Write α = uβ with β ∈ A∞ ∩ Aim for some A ⊆ Γ. There is a linked
pair (s, e) with α ∈ [s][e]ω ⊆ L and we may assume h(u) = s and β ∈ [e]ω. For A = ∅ we
have [s] ⊆ L and, using our knowledge about the finite case, we may include [s] in our finite
union of unambiguous polynomials. Therefore, let A 6= ∅. We may choose an unambiguous
monomial P = A∗

1a1 · · ·A
∗
kak ⊆ [s] such that u ∈ P and each last position of every letter

a ∈ {a1, . . . , ak} ∪ A1 ∪ · · · ∪ Ak occurs explicitly as some aj in the expression P . Note
that [s] is a finite union of such monomials. Moreover, we may assume that uv ∈ P for
infinitely many prefixes v ≤ β. Each such uv can uniquely be written as uv = v1a1 · · · vkak

with vi ∈ A∗
i . This yields a vector in Nk by (|v1a1| , |v1a1v2a2| , . . . , |v1a1 · · · vkak|) for every

uv ∈ P . By Dickson’s Lemma [3], we may assume that this vector is in no component
decreasing when v gets longer. Hence (after removing finitely many v’s) we may assume
there is some i such that |v1a1 · · · viai| is constant and |v1a1 · · · viaivi+1ai+1| is strictly
increasing. It follows that we may assume {ai+1, . . . , ak} ⊆ alph(vi+1) = A ⊆ Ai+1. In
particular, α ∈ A∗

1a1 · · ·A
∗
i aiA

∞ ∩Aim. It is clear that this expression is unambiguous.
It remains to show A∗

1a1 · · ·A
∗
i aiA

∞ ∩ Aim ⊆ L. Consider u′γ with u′ ∈ A∗
1a1 · · ·A

∗
i ai

and γ ∈ A∞ ∩ Aim. Since L is closed, it is enough to show that u′γ belongs to the closure
of L in the strict alphabetic topology. Choose any prefix w ≤ γ. It is enough to show that
u′wA∞ ∩ Aim ∩ L 6= ∅. Let z ∈ Γ∗ with alph(z) = A and h(z) = e. Since w ∈ A∗ ⊆ A∗

i+1,
we have u′wai+1 · · · ak ∈ P ⊆ [s]. Hence u′wai+1 · · · akz

ω ∈ [s][e]ω ⊆ L.

Lemma 6.4. Every language Aim and every unambiguous monomial A∗
1a1 · · ·A

∗
kakA

∞
k+1

is

FO2-definable.

Theorem 6.5. Let L ⊆ Γ∞. The following assertions are equivalent:

(1) L is FO2-definable.
(2) L is regular and Synt(L) ∈ DA.
(3) L is strongly recognized by some homomorphism h : Γ∗ → M ∈ DA.
(4) L is closed in the strict alphabetic topology and L is weakly recognized by some

homomorphism h : Γ∗ → M ∈ DA.
(5) L is a finite union of sets of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1∩Aim

k+1, where each language
A∗

1a1 · · ·A
∗
kakA

∞
k+1 is an unambiguous monomial.

Proof. “1 ⇒ 2”: First-order definable languages are regular; Synt(L) ∈ DA by Lemma 6.1.
“2 ⇒ 3”: Trivial, since Synt(L) strongly recognizes L. “3 ⇒ 4”: Strong recognition implies
weak recognition; closure in the strict alphabetic topology follows by Lemma 6.2. “4 ⇒ 5”:
Lemma 6.3. “5 ⇒ 1”: Lemma 6.4.

Recall that if a language L ⊆ Γ∞ is weakly recognizable by a finite monoid, then it is
also strongly recognizable by a finite monoid. The same holds for aperiodic monoids, but
Theorem 6.5 suggests that this fails for DA. Indeed, we have the following example.

Example 6.6. Let Γ = {a, b, c}. Consider the congruence of finite index such that each
class [u] is defined by the set of words v where u and v agree on all suffixes of length at most
2. The quotient monoid of Γ∗ by this congruence is in DA. Let L = [ab]ω = (Γ∗ab)ω. Then,
by definition, L is weakly recognizable in DA. But L is the language of all α which contain
infinitely many factors of the form ab. This is however not closed for the strict alphabetic
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topology since (acb)ω /∈ L, but (acb)ω belongs to the strict alphabetic closure of L since
every open set U with (acb)ω ∈ U contains some (acb)m(cab)ω and [(acb)m(cab)] = [ab] for
all m ≥ 0.

7. Unambiguous polynomials and the fragments FO2 ∩Σ2 and FO2 ∩Π2

Theorem 7.1. Let L ⊆ Γ∞. The following assertions are equivalent:

(1) L is both FO2-definable and Σ2-definable.
(2) L is FO2-definable and open in the alphabetic topology.
(3) L is a finite union of unambiguous monomials of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1

.

(4) L is the interior of some FO2-definable language.

Theorem 7.2. Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent:

(1) L is both FO2-definable and Π2-definable.
(2) L is FO2-definable and closed in the alphabetic topology.
(3) L is the closure of some FO2-definable language.

Theorem 7.2 is not fully satisfactory since we do not have any direct characterization
in terms of polynomials. We might wish that if L is closed (and L ∈ Π2 ∩FO2), then it is a
finite union of languages K ∩Bim where each K ∩Bim is closed. But this is not true: Let
L = Γ∗a∪Γω, then L is closed and in Π2∩FO2, but cannot be written in this form because
L = Γ∗a is not closed. We also note that the closure of a language L in FO2 ∩Σ2 needs not
to be in ∆2. A counter-example is the language L = Γ∗abc. By Lemma 3.6, the closure of
L is L = L ∪ Γim which is not Σ2-definable.

8. The fragment ∆2 = Σ2 ∩Π2

For finite words we have the well-known theorem that FO2-definability is equivalent
to ∆2-definability. However, this does not transfer to ω-words where ∆2 forms a proper
subclass of FO2. Consider L = {a, b}im, then L is neither open nor closed, in general. Hence
L ∈ FO2 \ (Σ2 ∪ Π2). The result for finite words is therefore somewhat misleading. The
correct translation for the general case is:

Theorem 8.1. For all A ⊆ Γ the following assertions are equivalent:

(1) L ∩Aim is FO2-definable.
(2) There are languages Lσ ∈ FO2 ∩ Σ2 and Lπ ∈ FO2 ∩Π2 such that

L ∩Aim = Lσ ∩Aim = Lπ ∩Aim.

(3) There are languages Lσ ∈ Σ2 and Lπ ∈ Π2 such that

L ∩Aim = Lσ ∩Aim = Lπ ∩Aim.

Note that we cannot expect that Lσ = Lπ in the statement above, because Lσ is open
and Lπ is closed. Hence, a language in ∆2 must be clopen. The first step for a convenient
characterization on ∆2 is therefore a description of clopen unambiguous monomials.
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Lemma 8.2. Let P = A∗
1a1 · · ·A

∗
kakA

∞ be an unambiguous monomial. The following
assertions are equivalent:

(1) There is no 1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.
(2) P is closed in the alphabetic topology.
(3) P is clopen in the alphabetic topology.

Proof. “1 ⇒ 2”: For a moment let Ak+1 = A. By Lemma 3.6 we know that the closure of
P is:

⋃

{ai,...,ak}⊆B⊆Ai

A∗
1a1 · · ·A

∗
i−1ai−1(A

∞
i ∩Bim).

Since there is no {ai, . . . , ak} ⊆ Ai for 1 ≤ i ≤ k, we see that this union is just P itself.
Therefore, P is closed. “2 ⇒ 3”: is clear, because P is open. “3 ⇒ 1”: Assume by
contradiction that {ai, . . . , ak} ⊆ Ai for some 1 ≤ i ≤ k. We have a1 · · · ai−1(ai · · · ak)

m ∈ P
for all m ≥ 1. As P is closed we see a1 · · · ai−1(ai · · · ak)

ω ∈ P and hence {ai, . . . , ak} ⊆ A.
But this is a contradiction to the fact that P is unambiguous since {ai, . . . , ak} ⊆ Ai ∩ A
implies that a1 · · · ai−1(ai · · · ak)

2 ∈ P has two different factorizations.

Lemma 8.3. Let L ⊆ Γ∞ be a closed polynomial. For every unambiguous monomial
P = A∗

1a1 · · ·A
∗
kakA

∞ ⊆ L there exist closed unambiguous monomials Q1, . . . , Qℓ such that
P ⊆ Q1 ∪ · · · ∪ Qℓ ⊆ L, i.e., there exists a finite covering of P with closed unambiguous
monomials in L.

Theorem 8.4. Let L ⊆ Γ∞. The following assertions are equivalent.

(1) L is ∆2-definable.
(2) L is FO2-definable and L is clopen in the alphabetic topology.
(3) L is a finite union of unambiguous closed monomials A∗

1a1 · · ·A
∗
kakA

∞, i.e., there
is no 1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.

(4) L is regular, Synt(L) ∈ DA, and for all linked pairs (s, e), (t, f) with s R t (i.e.,
there exist x, y ∈ Synt(L) such that s = tx and t = sy) we have

[s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

Proof. “1 ⇒ 2”: By Theorem 5.2 and its dual version for Π2, we see that Synt(L) ∈ DA

and that L is clopen in the alphabetic topology. From Theorem 6.5 it follows that L is
FO2-definable. “2 ⇒ 3”: By Theorem 7.1, L is a finite union of unambiguous monomials.
Property “3” now follows by Lemma 8.3 and Lemma 8.2. “3 ⇒ 1”: Theorem 7.1 and
Theorem 7.2.
“2 ⇒ 4”: By Theorem 6.5, we see that Synt(L) ∈ DA. Suppose [s][e]ω ⊆ L and let s = tx
and t = sy. Since L is closed we see that [s][eyfx]ω ⊆ L and by strong recognition we
conclude [t][fxey]ω ⊆ L. Let A =

⋃

{alph(v) | v ∈ [f ]}. Since L is open and by strong
recognition, there exists r ∈ N such that [t][fxey]rA∞ ⊆ L. Moreover, t = tfxey and thus,
[t]A∞ ⊆ L. In particular, [t][f ]ω ⊆ L because [f ] ⊆ A∗.
“4 ⇒ 2”: Definability in FO2 follows by Theorem 6.5. By symmetry, it suffices to show
that L is open. Let α ∈ [s][e]ω ⊆ L for some linked pair (s, e) and write α = uβ with
u ∈ [s] and β ∈ [e]ω ∩ A∞ ∩ Aim for some A ⊆ Γ. Let v ≤ β be a prefix such that v ∈ [e]
and alph(v) = alph(β). We want to show uvA∞ ⊆ L. Consider uvγ ∈ Γ∞ where γ ∈ A∞.
We have uvγ ∈ [t][f ]ω for some linked pair (t, f). Let v′ ≤ γ such that uvv′ ∈ [t]. Since
Synt(L) ∈ DA we have vv′v ∈ [e] and s = t · h(v). Together with t = s · h(v′) it follows
sR t and by “4” we obtain uvγ ∈ [t][f ]ω ⊆ L.
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9. Summary

We gave language-theoretic, algebraic and topological characterizations for several first-
order fragments over infinite words. Since FO2 and ∆2 have the same expressive power
only when restricted to some fixed set of letters occurring infinitely often (Thm. 8.1), the
picture becomes more complex. By Pol we denote the language class of polynomials, UPol
are unambiguous polynomials, and restricted UPol is a proper subclass of UPol. All of
the below-mentioned algebraic properties are decidable, since the syntactic monoid of a
regular language is effectively computable [8, 16]. Together with the PSPACE-completeness
of the problem whether a language is closed in the alphabetic topology (Thm. 3.4), this
yields decidability of the membership problem for the respective first-order fragments as a
corollary. Decidability was shown before by Wilke [20] for FO2 and by Bojańczyk [2] for
Σ2. Characterizations for the fragment Σ1 and its Boolean closure over infinite words (using
topological notions based on the Cantor topology) are due to Pin [9]; see also [8].

Logic Languages Algebra Topology

Σ2 Pol eMee ≤ e +
open
(alphabetic) Thm. 5.2

FO2 UPol + Aim strong DA Thm. 6.5

weak DA +
closed
(strict alphabetic)

FO2 ∩ Σ2 UPol DA +
open
(alphabetic) Thm. 7.1

FO2 ∩Π2 DA +
closed
(alphabetic)

Thm. 7.2

∆2 restricted UPol DA +
clopen
(alphabetic)

Thm. 8.4

10. Outlook and open problems

By definition, Σ1-definable languages are open in the Cantor topology. We introduced
an alphabetic topology such that Σ2-definable languages are open in this topology. There-
fore, an interesting question is whether it is possible to extend this topological approach
to higher levels of the first-order alternation hierarchy. To date, even over finite words no
decidable characterization of the Boolean closure of Σ2 is known. In case that a decid-
able criterion is found, it might lead to a decidable criterion for infinite words simply by
adding a condition of the form “clopen in some appropriate topology”. Another possible
way to generalize our approach might be combinations of algebraic and topological char-
acterizations for fragments with successor predicate suc such as FO2[<, suc] or Σ2[<, suc].
A characterization of those languages which are weakly recognizable by monoids in DA is
also open.
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applications to temporal logic. Theoretical Computer Science, 49(2-3):217–237, 1987.
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Abstract. Cellular Automata (CA) are discrete dynamical systems and an abstract
model of parallel computation. The limit set of a cellular automaton is its maximal topo-
logical attractor. A well know result, due to Kari, says that all nontrivial properties of
limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e.
properties of the dynamics of Cellular Automata restricted to their limit sets. There can
be no equivalent of Kari’s Theorem for limit set dynamics. Anyway we show that there is
a large class of undecidable properties of limit set dynamics, namely all properties of limit
set dynamics which imply stability or the existence of a unique subshift attractor. As a
consequence we have that it is undecidable whether the cellular automaton map restricted
to the limit set is the identity, closing, injective, expansive, positively expansive, transitive.

Introduction

Cellular Automata (CA) are discrete dynamical systems and, at the same time, an
abstract model of parallel computation. Every cellular automaton has a finite description
in terms of a finite block mapping called local rule. A general problem for CA is to determine
what are the properties which are algorithmically decidable/undecidable given the local rule.

The limit set ΩF of a cellular automaton (AZ, F ) is the set of all configurations which
occur after arbitrarily long iterates of the CA map, i.e. x ∈ ΩF if and only if ∀n ∈
N, F−n(x) 6= ∅. The limit set is the maximal topological attractor of a cellular automaton
(then it is always nonempty and closed) and it is fundamental to understand the long-term
behavior of such systems. Kari’s Theorem [Kari94] says that all nontrivial properties of limit
sets are undecidable. This implies, for example, that we cannot decide algorithmically if
some given configuration is in the limit set or not and we cannot even decide if some given
word is contained in some configuration of the limit set. Kari’s undecidability theorem
uniquely regards properties of the configurations contained in the limit set, but it does not
include properties of the dynamics of Cellular Automata restricted to their limit set. The
motivation of this work is to try to understand what are the undecidable properties of the
limit set dynamics, i.e. properties of the dynamical systems (ΩF , F ). It is easy to find
simple examples of nontrivial decidable properties of F : ΩF → ΩF which imply that Kari’s

1998 ACM Subject Classification: Theory of Computation, Computation by Abstract Devices.
Key words and phrases: Cellular Automata, Undecidability, Symbolic Dynamics.
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Theorem cannot be extended to whole limit set dynamics. Anyway, we can show that there
is a large and interesting class of properties of F : ΩF → ΩF which are undecidable. For
instance, we show that any property of limit set dynamics which implies stability or the
existence of a unique subshift attractor is undecidable. Stated in another way, we obtain
that any decidable property of limit set dynamics must be a property of some unstable
cellular automaton with at least two subshift attractors. As a consequence we show that it
is not possible to decide algorithmically whether the cellular automaton map restricted to
the limit set is the identity, closing, injective, expansive, positively expansive and transitive.

The paper is organized as follows. In Section 1 we provide the basic background in
Symbolic Dynamics and Cellular Automata needed to understand the rest of the paper. In
Section 2 we formally define what properties of limit sets are and we show some preliminary
results. In Section 3 we discuss our main results. Section 4 is devoted to concluding remarks.

1. Preliminaries

1.1. Symbolic Dynamics

In this section we review only those notions which are strictly necessary to understand
our proofs. See [LM95] for a complete introduction to Symbolic Dynamics.

Let A be a finite alphabet with at least two elements. We denote by An the set of words
of length n over A, by A∗ = ∪n∈NAn the set of words over A and by AZ the set of doubly
infinite sequences (xi)i∈Z of symbols xi ∈ A. We denote by x[i,j] ∈ Aj−i+1 the subword

xixi+1...xj . We use the shortcut w < x to say that w ∈ A+ is a subword of x ∈ AZ.

Define a metric d on AZ by d(x, y) = 2−n where n = min{|i| | xi 6= yi}. The set
AZ endowed with metric d is a compact metric space. For u ∈ A∗ and i ∈ Z, denote by
[u]i = {x ∈ AZ | x[i,i+|u|−1] = u} a cylinder set. For a lighter notation, we will refer to the

cylinder set [u]i simply by [u]. A cylinder set is a clopen (closed and open) set in AZ. Every
clopen set in AZ is a finite union of cylinder sets.

The shift map σ : AZ → AZ is defined by σ(x)i = xi+1. The shift map is continuous and
biiective on AZ. The dynamical system (AZ, σ) is called full shift. A shift space or subshift

is a non-empty closed subset Σ ⊆ AZ which is strongly shift invariant, i.e. σ(Σ) = Σ.
We will usually denote the shift dynamical system (Σ, σ) simply with Σ. A subshift Σ is
a zero-dimensional space, i.e. for every two different points x, y ∈ Σ there exists disjoint
clopen sets U, V ⊂ Σ such that x ∈ U, y ∈ V .

We denote by Ln(Σ) = {w ∈ An | ∃x ∈ Σ, w < x} the set of words of length n of
the subshift Σ. The language of Σ is defined by L(Σ) = ∪n∈NLn(Σ). Any subshift Σ is
completely determined by the set of its forbidden words A∗ \ L(Σ). A shift of finite type

(SFT) is a subshift which can be defined by a finite set of forbidden words. Let Σ be a
subshift on alphabet A. We denote by Σk = {x ∈ AZ | ∀i ∈ Z, x[i,i+k) ∈ Lk(Σ)} the SFT

approximation of order k > 0 of Σ. Note that ∀k > 0,Σ ⊆ Σk and that Σk is a SFT since
it is defined by the finite set of forbidden words Ak \Lk(Σ). If Σ is a SFT then there exists
some k > 0 such that ∀k′ ≥ k,Σ = Σk′. We say that the least such k > 0 is the order of
Σ. A generalization of SFTs are sofic shifts. A subshift S is sofic if and only if its language
L(S) is regular. A subshift Σ is mixing if there exists n > 0 such that for all clopen sets
U, V ⊆ Σ, σn(U) ∩ V 6= ∅.
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Let Σ1,Σ2 be subshifts. A factor map F : Σ1 → Σ2 is a continuous, onto, σ-commuting
mapping. A factor map is actually a block code, i.e. F is induced by some k-block mapping

f : Lk
1(Σ1) → L1(Σ2) where k > 0. The mixing and sofic properties are preserved under

factor maps.
A factor map F is right-closing if x, y ∈ Σ, x(−∞,i] = y(−∞,i] and F (x) = F (y) imply

x = y. The definition of left-closing is equivalent. By using a simple compactness argument
it is possible to prove that closing is equivalent to the following condition: ∃n > 0 such that
∀x, y ∈ Σ,∀i ∈ Z if x[i,i+n) = y[i,i+n) and F (x)[i,i+2n] = F (y)[i,i+2n] then xi+n = yi+n. The
closing property imposes strong constraint on the mapping. For example, it is possible to
prove that if Σ is a mixing SFT and F : Σ → Σ is continuous, σ-commuting and closing
then F is onto, i.e. F (Σ) = Σ.

An endomorphism F : Σ → Σ is positively expansive if there exists ǫ > 0 such that for
all distinct x, y ∈ Σ there exists n ∈ N such that d(Fn(x), Fn(y)) > ǫ. If F is invertible
then it is expansive if there exists ǫ > 0 such that for all distinct x, y ∈ Σ there exists n ∈ Z

such that d(Fn(x), Fn(y)) > ǫ. Both expansive and positively expansive endomorphisms of
subshifts must be closing. The map F is transitive, if for any nonempty open sets U, V ⊆ Σ
there exists n ∈ N such that F−n(U) ∩ V 6= ∅. Both expansive and positively expansive
endomorphisms of mixing SFT are transitive.

1.2. Cellular Automata

One-dimensional Cellular Automata (CA) are endomorphisms of full shifts. We denote
CA by pairs (AZ, F ) where F : AZ → AZ is some continuous and σ-commuting function.
The global rule F is a (2r + 1)-block map, i.e. there exists some local rule f : A2r+1 → A
of radius r ≥ 0 such that

∀x ∈ AZ, F (x)i = f(xi−r, ..., xi+r).

It is sometimes useful to extend the local rule to the finite-block mapping

f∗ : Ak → Ak−2r for every k ≥ 2r + 1,

such that

f∗(x1, ..., xk) = f(x1, ..., x2r+1)f(x2, ..., x2r+2)..f(xk−2r, ..., xk).

Our investigation regards properties of the limit behavior of Cellular Automata. To
understand the limit behavior the concept of attractor is fundamental. An attractor is a
nonempty closed set which attracts the orbits of its neighboring points.

Definition 1.1. Let (AZ, F ) be a cellular automaton. The ω-limit of a set U ⊆ AZ with

respect to F is defined by ωF (U) = ∩n>0∪m>nFm(U).

When it is clear from the context, we will denote the ω-limit simply with ω. In zero-
dimensional spaces the following two definitions of attractors are equivalent.

Definition 1.2. Let (AZ, F ) be a cellular automaton. A nonempty closed set Y ⊆ AZ such
that F (Y ) = Y is an attractor of (AZ, F )

1. if ∀ǫ > 0,∃δ > 0 such that ∀x ∈ AZ

d(x, Y ) < δ =⇒ ∀n ∈ N, d(Fn(x), Y ) < ǫ and lim
n→∞

d(Fn(x), Y ) = 0.

2. if and only if Y = ω(U) where U is a clopen F -invariant set, i.e. F (U) ⊆ U .
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A useful property of attractors is that every neighborhood of an attractor contains a
clopen F -invariant set whose ω-limit is the attractor itself. We show the proof for com-
pleteness. We first need a general lemma.

Lemma 1.3. Let (AZ, F ) be a cellular automaton and let U, V ⊆ AZ be clopen sets. Assume

that ∀x ∈ U,∃nx ∈ N such that Fnx(x) ∈ V . Then there exists n ∈ N such that ∀x ∈
U,∃nx ≤ n,Fnx(x) ∈ V .

Proof. For i ∈ N define Xi = {x ∈ U | ∀j ≤ i, F j(x) /∈ V }. Since U, V are clopen it follows
that for every i ∈ N,Xi is clopen and Xi ⊇ Xi+1. Assume that for every i ∈ N,Xi 6= ∅
then, by compactness, X = ∩i∈NXi is nonempty which implies that there exists x ∈ U such
that ∀i ∈ N, F i(x) /∈ V contradicting the hypothesis.

Proposition 1.4. Let (AZ, F ) be a cellular automaton and let Y ⊆ AZ be an attractor.

Then for every ǫ > 0 there is an F -invariant clopen set U ⊆ Bǫ(Y ) such that ω(U) = Y .

Proof. For ǫ > 0, denote Yǫ = Bǫ(Y ). Note that for every ǫ > 0, Yǫ is a clopen set. Choose
some ǫ > 0. By definition, there is some 0 < δ < ǫ such that

x ∈ Yδ =⇒ ∀n,Fn(x) ∈ Yǫ and lim
n→∞

d(Fn(x), Y ) = 0.

Choose some 0 < ǫ0 < δ then there is some 0 < δ0 < ǫ0 such that

x ∈ Yδ0 =⇒ ∀n,Fn(x) ∈ Yǫ0 and lim
n→∞

d(Fn(x), Y ) = 0.

If x ∈ Yδ then lim
n→∞

d(Fn(x), Y ) = 0 so there is some nx ∈ N such that Fnx(x) ∈ Yδ0 .

By Lemma 1.3, there is some n ∈ N such that for every x ∈ Yδ,∃nx ≤ n,Fnx(x) ∈ Yδ0 then
∀x ∈ Yδ, F

n(x) ∈ Yǫ0 ⊆ Yδ. We obtained that there is some n ∈ N such that Fn(Yδ) ⊆ Yδ

then Yδ is Fn-invariant. We now define a clopen set U ⊆ Yǫ which is F -invariant.
Let x ∈ Yδ, since Fn(Yδ) ⊆ Yδ and Yδ is clopen, there is a word w < x such that [w] ⊆ Yδ

and [(f∗)n(w)] ⊆ Yδ (where the length of (f∗)n(w) is greater than 0). In particular, since Yδ

is the union of a finite collection of cylinders, there is a finite set of words w0
1, ..., w

0
k0

such that

Yδ = [w0
1] ∪ ... ∪ [w0

k0
] and [(f∗)n(w0

i )] ⊆ Yδ for 1 ≤ i ≤ k0. By considering iterates of f∗ on

such words we can obtain a sequence of clopen sets U0, U1, .., Un such that F (Uj) ⊆ Uj+1.

Set U0 = Yδ = [w0
1 ] ∪ ... ∪ [w0

k0
] and define the clopen set U1 = ∪k0

i=1([f
∗(w0

i )] ∩ Yǫ) =

[w1
1] ∪ ... ∪ [w1

k1
]. Note that for every i ∈ [0, k0] we have F ([w0

i ]) ⊆ [f∗(w0
i )], F ([w0

i ]) ⊆ Yǫ

and [f∗(w0
i )] ∩ Yǫ is clopen. Then F (U0) ⊆ U1 ⊆ Yǫ. Iterating for j ∈ [1, n] we obtain

the sequence of clopen sets Uj = ∪
kj−1

i=1 ([f∗(wj−1
i )] ∩ Yǫ) = [wj

1] ∪ ... ∪ [wj
kj

] such that

F (Uj−1) ⊆ Uj ⊆ Yǫ. Now define U = ∪n
j=0Uj. We have that U ⊆ Yǫ is clopen, F (U) ⊆ U

and ω(U) = Y .

In the context of Cellular Automata, a particular class of attractors are those attractors
which are also subshifts.

Definition 1.5. Let (AZ, F ) be a cellular automaton. A nonempty closed set Y ⊆ AZ is a
subshift attractor if it is an attractor and if σ(Y ) = Y .

The following two propositions characterize subshift attractors of CA.

Definition 1.6. Let (AZ, F ) be a cellular automaton. We say that a clopen and F -invariant
set U ⊆ AZ is spreading if there exists some k > 0 such that F k(U) ⊆ σ−1(U) ∩ U ∩ σ(U).
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Proposition 1.7. [FK07] Let (AZ, F ) be a cellular automaton and let U ⊆ AZ be a clopen

and F -invariant set. Then ω(U) is a subshift attractor if and only if U is spreading.

Proposition 1.8. [FK07] Let (AZ, F ) be a cellular automaton and let U ⊆ AZ be a clopen

F -invariant spreading set. Then there exists a mixing SFT Σ ⊆ U with the following

properties:

• F (Σ) ⊆ Σ
• W = {[w] | w ∈ Lk(Σ), k is the order of Σ} is clopen and F -invariant

• ω(Σ) = ω(W ) = ω(U).

A cellular automaton has at least one attractor which is called limit set.

Definition 1.9. Let (AZ, F ) be a cellular automaton. The limit set of (AZ, F ) is defined
by ΩF = ∩∞i=0F

i(AZ) = ωF (AZ).

Note that a configuration x ∈ AZ is in the limit set if and only if for every n ∈ N,
F−n(x) 6= ∅. The limit set is a subshift attractor and it is also the maximal attractor, i.e.
every other attractor is contained in the limit set. The limit set can be the unique attractor.
In particular, if the map is transitive on the limit set then it is the unique attractor (the
converse is not true). An attractor is a minimal attractor if it does not contain any proper
subset which is an attractor. A unique attractor is both maximal and minimal. There is a
very simple class of minimal attractors. We say that a state s ∈ A is spreading if the local
rule has the property f(x1, ..., x2r+1) = s if ∃xi = s. If a cellular automaton has a spreading

state s then the clopen set [s] is F -invariant and spreading and ω([s]) = {...sss....} is a
minimal subshift attractor.

Cellular Automata limit sets received great attention. Here we review just some ba-
sic facts. One question which is still not well understood concerns the class of subshifts
which can be limit sets of CA (see, for example, [Hurd90, Maass95]). The most immediate
distiction is between limit sets of stable and unstable CA. A cellular automaton (AZ, F )
is called stable if there exists some n ∈ N such that Fn(AZ) = ΩF . It is called unstable

otherwise. The limit sets of stable CA are mixing sofic shifts since they are factors of full
shifts. There are sofic subshifts which are limit sets of unstable CA but no limit set of
unstable CA can be a SFT [Hurd90]. It is actually unknown whether a subshift can be the
limit set of both a stable and of an unstable CA. The simplest example of limit set subshift
is the subshift consisting of just one configuration. A cellular automaton whose limit set
is a single configuration is called nilpotent. If a cellular automaton is nilpotent then the
unique configuration in the limit set must be fixed by both σ and F then the automaton
must be stable.

2. Properties of limit sets

An important aspect of CA is that they can be enumerated. Every cellular automaton
is described by its local rule. Local rules are defined by a finite amount of information and,
in particular, for any fixed radius and cardinality of the alphabet there are only finitely
many possible CA local rules.

Choose some enumeration function for CA local rules. We denote by #(AZ, F ) ∈ N the
rule number associated to (AZ, F ). A property P of CA is a collection of CA rule numbers.
A property is called trivial if either all CA have such property or none has. A property P
is decidable whether there exists some algorithm such that, for any given (AZ, F ), it always
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computes if either #(AZ, F ) ∈ P or #(AZ, F ) /∈ P. A subclass of CA properties are, in
particular, properties of the limit sets.

Definition 2.1. A property P is a property of limit sets if and only if the following condition
holds: if #(AZ, F ) ∈ P and (BZ, G) is a cellular automaton such that ΩF = ΩG then
#(BZ, G) ∈ P.

Nilpotency is a property of limit sets. While a property of limit sets is always a property
of CA, the converse is not always true. For example, surjectivity is not a property of the
limit sets since it is easy to construct a surjective CA and a not surjective CA which have
the same limit set. For example, let (AZ, F ) be a surjective CA and let (BZ, G) be such that
B = A ∪ {b} (with b /∈ A) and ∀x ∈ BZ, G(x) = F (x′) where x′ is obtained by substituting
every occurrence of b in x with the symbol a ∈ A. Then G is not surjective and G(BZ) = AZ.

Decidability questions about properties of the limit sets received great attention. One
of the most important undecidability results, due to Kari, is the following one.

Theorem 2.2. [Kari92] Nilpotency is undecidable for CA.

Nilpotency remains undecidable also under the additional condition of a spreading state.
Nilpotency is the basis to prove the undecidability of most of the undecidable properties
of CA. In particular, Kari showed that (the problem to decide) nilpotency is the easiest
problem among all decision problems on the limit sets.

Theorem 2.3. [Kari94] Every nontrivial property of CA limit sets is undecidable.

For example, by Theorem 2.3, every nontrivial property which regards the language
L(ΩF ) is undecidable. Kari’s Theorem does not concern properties of the dynamics of CA
on the limit set. Here we investigate decidability questions about properties of limit set

dynamical systems or properties of limit set dynamics.

Definition 2.4. A property P is a property of limit set dynamics if and only if the following
condition holds: if #(AZ, F ) ∈ P and (BZ, G) is a cellular automaton such that ΩF = ΩG

and F |ΩF
= G|ΩG

then #(BZ, G) ∈ P.

Note that, by definition, properties of limit sets are properties of limit set dynamics
while the converse is not true. It is evident that we cannot have the equivalent of Theorem
2.3 for limit set dynamics. In fact, it is easy to find nontrivial properties of the limit
set dynamical systems which are decidable. Consider, for example, the set of decidable
properties Pn = {#(AZ, F ) | ∃x ∈ AZ, Fn(x) = x}. Since every F -periodic point is
contained in the limit set, all Pn are properties of the limit set dynamics.

In the following section we will show that there is a large class of undecidable properties
of the limit set dynamics. In particular, our main result concerns properties of stable CA
and properties of CA which have a unique subshift attractor. To conclude this section we
show some results related to these properties.

Proposition 2.5. It is undecidable whether a cellular automaton has a unique subshift

attractor.

Proof. Let (AZ, F ) be a cellular automaton with a spreading state s ∈ A. The clopen
set [s] is F -invariant, spreading and ω([s]) = {...ssss...}. If we could decide whether a
cellular automaton has a unique subshift attractor the we could decide if ω([s]) is the
unique attractor of (AZ, F ) and then we could decide if (AZ, F ) is nilpotent or not.
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Proposition 2.6. [Kari94] It is undecidable whether a cellular automaton is stable.

Proof. Assume that we can decide if some cellular automaton is stable or not. We show
that it is possible to decide nilpotency. Let (AZ, F ) be cellular automaton. If (AZ, F ) is
not stable then it is not nilpotent. If it is stable then there exist some n ∈ N such that
Fn(AZ) = ΩF . Then is sufficient to compute all forward images of AZ until we reach the
limit set ΩF and then check if it is a singleton.

It is open the question whether stability is a property of limit sets (i.e. it is unknown
whether there is a subshift which can be limit set both of a stable and of an unstable cellular
automaton). We can show that stability is a property of limit set dynamics. This implies
that, even if there exists a subshift which is both the limit set of some stable and of some
unstable CA, then the dynamics of such automata on their limit sets must be distinct.

Proposition 2.7. Let (AZ, F ) be a cellular automaton. Assume that there is a cellular

automaton (BZ, G) such that ΩF = ΩG and F |ΩF
= G|ΩF

. Then (BZ, G) is stable if and

only if (AZ, F ) is stable.

Proof. Let r be the maximum between the radius of (AZ, F ) and the radius of (BZ, G).
By Proposition 1.4 and Proposition 1.7, there is a clopen, F -invariant spreading set U ⊆
B2−r(ΩF ) such that ωF (U) = ΩF . By Proposition 1.8, there is a mixing SFT Σ ⊂ U ⊆
B2−r(ΩF ) such that F (Σ) ⊆ Σ and ωF (Σ) = ΩF . We show that L2r+1(Σ) = L2r+1(ΩF ).
Since ΩF ⊆ Σ it is clear that L2r+1(Σ) ⊇ L2r+1(ΩF ). Assume that L2r+1(Σ) 6⊆ L2r+1(ΩF ).
Then there must be a configuration x ∈ Σ such that x[−r,r] /∈ L2r+1(ΩF ) but this would
imply that x /∈ B2−r(ΩF ) which is a contradiction. Then we have L2r+1(Σ) = L2r+1(ΩF ) =
L2r+1(ΩG) which implies that F |Σ = G|Σ and Σ ⊆ BZ. To conclude the proof it is sufficient
to show that there exist n,m ∈ N such that Fn(AZ) ⊆ Σ and Gm(AZ) ⊆ Σ which would
imply that (AZ, F ) and (BZ, G) are both stable if and only if (Σ, F ) is stable and are both
unstable otherwise.

Let W be the clopen set as defined in Proposition 1.8. Since ωF (AZ) = ΩF , by com-
pactness, we have that for every x ∈ AZ there exists nx ∈ N such that Fnx(x) ∈ W . Then,
since W is F -invariant, by Lemma 1.4, there exists n ∈ N such that Fn(AZ) ⊆ W . Then,
for every i ∈ Z, it must be Fn(σi(x)) ∈ W which implies that Fn(x) ∈ Σ. We obtained
that there exists n ∈ N such that Fn(AZ) ⊆ Σ.

Let t be the order of Σ and let k ∈ N be such that 2k + 1 ≥ t. By using the same
argument above, we can show that there exists a mixing SFT Σ′ ⊂ B2−k(ΩG) such that
ωG(Σ′) = ΩG and such that Fm(BZ) ⊆ Σ′ for some m ∈ N. We just need to show that
Σ′ ⊆ Σ to obtain that there exists m ∈ N such that Fm(BZ) ⊆ Σ. Denote with Ω2k+1 the
SFT approximation of order 2k + 1 of ΩG. By using the same argument above, we have
L2k+1(Σ

′) = L2k+1(ΩG) = L2k+1(Ω2k+1) so Σ′ is of order t′ ≥ 2k + 1. Since Σ is of order
t ≤ 2k + 1 and Lt(Σ) ⊇ Lt(ΩG) it follows that Σ′ ⊆ Ω2k+1 ⊆ Σ.

3. Undecidable properties of limit set dynamics

In this section we show that there is a large class of properties of the dynamics on the
limit set which are not decidable. In particular we show that are undecidable all properties
of the limit set dynamics which are properties of stable CA or properties of CA with a
unique subshift attractor.
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Definition 3.1. Let P be a property of CA. We say that P is a stable property if ∀#(AZ, F ) ∈
P, (AZ, F ) is stable.

Definition 3.2. Let P be a property of CA. We say that P is a unique subshift attractor

property if ∀#(AZ, F ) ∈ P, ΩF is the unique subshift attractor of (AZ, F ).

To prove the undecidability of stable properties of limit set dynamics we need a prelim-
inary result. We don’t know if a not nilpotent cellular automaton with a spreading state
must be unstable. Anyway, by a simple construction, given a cellular automaton with a
spreading state, we can build a new cellular automaton with a spreading state which is
nilpotent (then stable) if and only if the old one is nilpotent and it is unstable otherwise.

Lemma 3.3. Let (AZ, F ) be a CA with a spreading state. Then it is possible to construct

a CA (BZ, G) with a spreading state such that (BZ, G) is nilpotent if and only if (AZ, F ) is

nilpotent and (BZ, G) is unstable otherwise.

Proof. Let s ∈ A and r ∈ N be the spreading state and the radius of (AZ, F ), respectively.
Define B = A ∪ {s′} where s′ /∈ A. We define the local rule of (BZ, G) in the following way

g(x1, ..., x2r+1) =

{

f(x1, ..., x2r+1) if ∀i, xi ∈ A and ∃xi 6= s
s′ otherwise

Note that the new state s′ is spreading for (BZ, G) and that the only block in A2r+1 which
is mapped to s′ is s2r+1. Now, it is clear that (AZ, F ) is nilpotent if and only if (BZ, G) is
nilpotent. Assume that (AZ, F ) is not nilpotent. By compactness, it is possible to prove
that there exists a configuration x ∈ AZ such that ∀i ∈ N,∀j ∈ Z, F i(x)j 6= s. Define the
configuration y ∈ BZ in the following way: y(−∞,−1] = x(−∞,−1], y[1,∞) = x[1,∞) and y0 = s′.

We have that F−1(y) = ∅, ω(y) = {...s′s′s′...} and ∀i ∈ N,∀j ∈ Z, F i(y)j 6= s. For n ∈ N

consider z ∈ F−n(Fn(y)). Since s is spreading in AZ and since s2r+1 is the unique block
in A2r+1 which is mapped to s′, the only possibility is that z0 = s′. Moreover it is easy to
check that ∀j ∈ Z \ {0}, s′ 6= zj 6= s and F−1(z) = ∅. Then ∀n ∈ N, Fn(y) /∈ ΩG which

implies that (BZ, G) is unstable.

Note that, by Proposition 2.6 and Proposition 2.7, if a property P is a property of all
stable CA then P is undecidable.

Theorem 3.4. Every nonempty stable property of limit set dynamics is undecidable.

Proof. The proof is by reduction from nilpotency. Assume that P is some nonempty stable
property of limit set dynamics. Let #(AZ, F ) ∈ P and let (BZ, G) be a cellular automaton
with a spreading state s ∈ B. By Lemma 3.3, we can assume that (BZ, G) is stable if and
only if it is nilpotent.

We show how to build a new cellular automaton (CZ,H) such that #(CZ,H) ∈ P if
and only if (BZ, G) is nilpotent. We can build (CZ,H) by simply taking the product of
(AZ, F ) with (BZ, G). In detail, consider the product cellular automaton (AZ×BZ, F ×G).
To obtain (CZ,H) it is sufficient to recode the alphabet of AZ ×BZ in the following way

∀a ∈ A,∀b ∈ B, (a, b) =

{

a if b = s
ab otherwise

Since there is a 1-to-1 mapping between CZ and AZ × BZ, the local rule of H on CZ is
naturally induced by the local rule of F ×G on AZ ×BZ.
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Now, it is not difficult to see that ΩF = ΩH , F |ΩF
= H|ΩH

if and only if (BZ, G) is

nilpotent and in this case #(CZ,H) ∈ P. On the contrary (BZ, G) is unstable then (CZ,H)
is also unstable and #(CZ,H) /∈ P.

The construction of Theorem 3.4 can be used also for the unique subshift attractor
case. Also in this case note that, by Proposition 2.5, if a property P is a property of all CA
with a unique subshift attractor then P is undecidable.

Theorem 3.5. Every nonempty unique subshift attractor property of limit set dynamics is

undecidable.

Proof. The proof is by reduction from nilpotency. Let P be some nonempty unique subshift
attractor property of limit set dynamics. Let #(AZ, F ) ∈ P and let (BZ, G) be a cellular
automaton with a spreading state s ∈ B. By using the construction of Theorem 3.4, we
can build a cellular automaton (CZ,H) by taking the product of (AZ, F ) with (BZ, G). We
show that #(CZ,H) ∈ P if and only if (BZ, G) is nilpotent. As shown in Theorem 3.4,
we have that ΩF = ΩH and F |ΩF

= H|ΩH
if and only if (BZ, G) is nilpotent. Moreover,

by construction, A ⊂ C and the clopen set U = {[a] | a ∈ A} is H-invariant, spreading
and ωH(U) = ΩF . Then if (BZ, G) is nilpotent we have that ωH(U) = ΩF = ΩH and
#(CZ,H) ∈ P. Otherwise ωH(U) = ΩF 6= ΩH and (CZ,H) has two distinct subshift
attractors, ΩF and ΩH , then #(CZ,H) /∈ P.

To conclude we show some properties of limit set dynamics which are undecidable. We
need the following proposition.

Theorem 3.6. Let (AZ, F ) be a cellular automaton. If F : ΩF → ΩF is closing then ΩF is

a mixing SFT.

Proof. Since F is closing on ΩF , ∃n > 0 such that ∀x, y ∈ ΩF ,∀i ∈ Z if x[i,i+n) = y[i,i+n)

and F (x)[i,i+2n] = F (y)[i,i+2n] then xi+n = yi+n. Consider the subshift S = {(x, y) | F (x) =

y} ⊆ ΩF ×ΩF . Let m = max{n, r} where r is the radius of (AZ, F ). Let S2m+1 be the SFT
approximation of order 2m + 1 of S. Consider the two projections of S2m+1:

• S′2m+1 = {x | ∃(x, y) ∈ S2m+1}
• S′′2m+1 = {y | ∃(x, y) ∈ S2m+1}

Since m ≥ r, we have F (S′2m+1) = S′′2m+1 and ΩF ⊆ S′2m+1. We show that S′2m+1 is a
SFT and that F restricted to S′2m+1 is closing. Since F (S′2m+1) = S′′2m+1, it follows that
(S′2m+1, σ) is conjugated to (S2m+1, σ) then S′2m+1 is a SFT. Assume for absurd that there
are two sequences x, y ∈ S′2m+1 such that xn 6= yn, x(−∞,n) = y(−∞,n) and F (x) = F (y).
Then, since m ≥ n and F is closing on ΩF it follows that must be xn = yn contradicting
the assumption.

Let k be the order of S′2m+1 and let t ∈ N such that 2t + 1 ≥ k. By Proposition 1.4,
there exists an F -invariant clopen set U ⊆ B2−t(ΩF ) such that ω(U) = ΩF . Moreover,
by Proposition 1.8, U contains a mixing SFT Σ such that F (Σ) ⊆ Σ and ω(Σ) = ΩF .
Moreover, since 2t + 1 is larger than the order of S′2m+1, we have also ΩF ⊆ Σ ⊆ S′2m+1.
Now, since F is closing on S′2n+1, it follows that F must be closing on Σ. Then since Σ
is mixing, F (Σ) ⊆ Σ and F is closing on Σ it follows that F (Σ) = Σ which implies that
Σ ⊆ ΩF and then ΩF = Σ.

From Theorem 3.4 and Theorem 3.5 we can easily derive the following corollary.
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Corollary 3.7. There is no algorithm that, given (AZ, F ), can decide if

1. F : ΩF → ΩF is transitive.

2. F : ΩF → ΩF is closing,

3. F : ΩF → ΩF is injective,

4. F : ΩF → ΩF is the identity map,

5. F : ΩF → ΩF is expansive,

6. F : ΩF → ΩF is positively expansive,

Proof. By Theorem 3.4 and Theorem 3.5 it is sufficient to show that properties 1, .., 6 imply
that (AZ, F ) is stable or that it has a unique subshift attractor.

1. If F : ΩF → ΩF is transitive then ΩF is the unique attractor of (AZ, F ) and, in
particular, it is the unique subshift attractor.

2. If F : ΩF → ΩF is closing then, by Theorem 3.6, ΩF is a mixing SFT then (AZ, F )
must be stable.

3. If F : ΩF → ΩF is injective then, since F is surjective on ΩF , it must be invertible
and then closing.

4. If F : ΩF → ΩF is the identity map then F must be injective on ΩF .
5. If F : ΩF → ΩF is expansive then F must be injective on ΩF and then closing and

transitive.
6. If F : ΩF → ΩF is positively expansive then F must be closing on ΩF and transitive.

4. Concluding remarks

In this paper we proved that any property of limit set dynamics is undecidable, if it
implies stability or the existence of a unique subshift attractor. As examples of properties
which imply stability we have closing (which implies that the limit set is a mixing SFT),
injectivity, expansivity, positively expansiveness and identity (all of which imply closing).
As examples of properties which imply the existence of a unique subshift attractor we have
transitivity, expansivity and positively expansiveness (expansive and positively expansive
endomorphisms of mixing SFTs are transitive). From Theorem 3.4 and 3.5 we can conclude
that all such properties are undecidable. We remark that, since surjectivity is not a property
of limit set dynamics (and it is decidable), if we restrict to only surjective CA then we cannot
derive any conclusion from our theorems. In particular we cannot conclude anything about
the decidability of transitivity, expansivity and positively expansiveness (it is already known
that closing, injectivity and identity are decidable for surjective CA).

Our main undecidability proofs are by reduction from nilpotency. Note that a nilpotent
CA is stable and it has a unique subshift attractor. Then (the problem to decide) nilpotency
is the easiest problem among all decision problems on the limit set dynamics of stable CA
and of CA with a unique subshift attractor.

We conclude the paper by raising a question. It is not clear how stability is related to
the existence of a unique subshift attractor. To our knowledge there are no examples of
stable CA with two distinct subshift attractors. For a wide class of stable CA it is possible
to prove that they have a unique subshift attractor (in particular surjective CA, see [FK07])
but the general question is open. If stable CA have a unique subshift attractor then Lemma
3.3 would be useless and we could derive Theorem 3.4 as a corollary of Theorem 3.5.

Question 4.1. Is there any stable CA with two distinct subshift attractors?
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Abstract. We present a unified optimal semi-online algorithm for preemptive schedul-
ing on uniformly related machines with the objective to minimize the makespan. This
algorithm works for all types of semi-online restrictions, including the ones studied before,
like sorted (decreasing) jobs, known sum of processing times, known maximal processing
time, their combinations, and so on. Based on the analysis of this algorithm, we derive
some global relations between various semi-online restrictions and tight bounds on the
approximation ratios for a small number of machines.

1. Introduction

We study online scheduling on uniformly related machines, which means that the time
needed to process a job with processing time p on a machine with speed s is p/s. Preemption
is allowed, i.e., each job may be divided into several pieces, which can be assigned to different
machines in disjoint time slots. The objective is to minimize the makespan, i.e., the length
of a schedule. In the online problem, jobs arrive one-by-one and we need to assign each
incoming job without any knowledge of the jobs that arrive later. When a job arrives, its
assignment at all times must be given and we are not allowed to change this assignment
later. In other words, the online nature of the problem is given by the ordering of the input
sequence and it is not related to possible preemptions and the time in the schedule.

We focus on semi-online algorithms. This term encompasses algorithms that are es-
sentially online, but some partial information about the input is given to the scheduler in
advance. The main motivation behind this approach is the observation that the classical
competitive analysis is too pessimistic compared to practical results, or, in other words, the
adversary who may arbitrarily determine the input sequence is too powerful. In practice,
the inputs are not completely arbitrary, and it may be reasonable to restrict the set of
inputs. In scheduling, numerous semi-online models have been studied; typical examples
include (sequences of) jobs with decreasing processing times, jobs with bounded processing
times, sequences with known total processing time of jobs and so on. Most of these models
can be viewed as online algorithms on a restricted set of input sequences. Restrictions of

Key words and phrases: On-line algorithms, scheduling.
Partially supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci.,
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this type have been studied also for other online problems; the most prominent example is
paging with locality of reference [1].

Our results

We give a semi-online algorithm for preemptive scheduling on uniformly related ma-
chines which is optimal for any chosen semi-online restriction, see Section 2. This means
not only the cases listed above—the restriction can be given as an arbitrary set of sequences
that are allowed as inputs. For any semi-online restriction, the algorithm achieves the best
possible approximation ratio for any number of machines and any particular combination
of machine speeds; it is deterministic, but its approximation ratio matches the best possible
approximation ratio of any randomized algorithm. This generalizes and unifies previous
results for various special cases of semi-online preemptive scheduling. We find such a gen-
eral result providing a provably optimal algorithm for many problems quite exceptional not
only in the area of scheduling but also in the whole area of online algorithms. Our result
also provides a clear separation between the design of the algorithm and the analysis of the
optimal approximation ratio. While the algorithm is always the same, analysis of the opti-
mal ratio depends on the studied restrictions. Nevertheless, the general result also provides
crucial new insights and methods and thus we can analyze the optimal ratio in cases that
have been out of reach with previously known techniques.

For typical semi-online restrictions, we show that the optimal ratio can be computed
by linear programs (with machine speeds as parameters). Studying these linear programs
allows us to progress in two directions. First, we are able to completely analyze the optimal
ratio for particular cases with a small number of machines. Second, we are able to study
the relations between the optimal approximation ratios for different semi-online restrictions
and give some bounds for a large number of machines.

The exact analysis of special cases for a small number of machines was given in [6, 3, 11]
for various restrictions, and in many more cases for non-preemptive scheduling. Typically,
these results involve similar but ad hoc algorithms and an extensive case analysis which is
tedious to verify, and can be done for two uniformly related machines or for more identical
machines (i.e., all speeds are equal). Using our linear programs we can calculate the ratio
as a formula in terms of speeds. This is a fairly routine task which can be simplified (but
not completely automated) using standard mathematical software. Once the solution is
known, verification amounts to checking the given primal and dual solutions for the linear
program. We give a few examples of such results in Section 3; typically the verification is
quite simple for m = 3 or m = 4.

Another research direction is to compute, for a given semi-online restriction, the optimal
approximation ratio which works for any number of machines and combination of speeds.
This task appears to be much harder, and even in the online case we only know that the
ratio is between 2.054 and e ≈ 2.718; the lower bound is shown by a computer-generated
hard instance with no clear structure [4]. Only for identical machines, the exact ratio for any
number of machines is known (i) for the online case, where it tends to e/(e− 1) ≈ 1.58 [2],

and (ii) for non-increasing processing times, where it tends to (1 +
√

3)/2 ≈ 1.366 [13].
We are able to prove certain relations between the approximation ratios for different

restrictions. Some basic restrictions form an inclusion chain: The inputs where the first
job has the maximal size (which is equivalent to known maximal size) include the inputs
with non-increasing processing times, which in turn include the inputs with all jobs of
equal size. Typically, the hard instances have non-decreasing processing times. Thus, one
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expected result is that the restriction to non-increasing processing times gives the same
approximation ratio as when all jobs have equal size, even for any particular combination
of speeds. The overall approximation ratio is at most 1.52, see Section 3.3. On the other
hand, for known maximal size of a job we have a computer-generated hard instance with
approximation ratio 1.88 with m = 120.1 Thus restricting the jobs to be non-increasing
helps the algorithm much more than just knowing the maximal size of a job. This is very
different from identical machines, where knowing the maximal size is equally powerful as
knowing that all the jobs are equal, see [13].

More interestingly, the overall approximation ratio with known sum of processing times
is the same as in the online case—even though for a small fixed number of machines know-
ing the sum provides a significant advantage. This is shown by a padding argument, see
Section 3.1. In fact this is true also in presence of any additional restriction that allows
scaling input sequences, taking a prefix, and extending the input by small jobs at the end.
Thus, for example, the overall approximation ratio with non-increasing jobs and known sum
of processing times is at least 1.366, using the bound for identical machines from [13].

Due to the space limit, some technical parts are available only in the extended version
at http://www.math.cas.cz/~sgall/ps/semirel.pdf

Preliminaries

Let Mi, i = 1, 2, . . . ,m, denote the m machines, and let si be the speed of Mi. The
machines are sorted by decreasing speeds, i.e., s1 ≥ s2 ≥ · · · ≥ sm. We assume that s1 > 0.

The vector of speeds is denoted s, the sum of the speeds is S =
∑m

i=1 si and Sk =
∑k

i=1 si

is the sum of the k largest speeds. W.l.o.g., we add infinitely many machines of speed zero,
i.e., we put si = 0 for any i > m. (Scheduling a job on one of these zero-speed machines
means that we do not process the job at the given time at all.) Let J = (pj)

n
j=1 denote the

input sequence of jobs, where n is the number of jobs and pj ≥ 0 is the size, or the processing
time, of the jth job. The sum of processing times is denoted P = P (J ) =

∑n
j=1 pj. Given

J and i ≤ n, let J[i] be the prefix of J obtained by taking the first i jobs.
The time needed to process a job pj on machine Mi is pj/si; each machine can process at

most one job at any time. Preemption is allowed, which means that each job may be divided
into several pieces, which can be assigned to different machines, but any two time slots to
which a single job is assigned must be disjoint (no parallel processing of a job); there is no
additional cost for preemptions. Formally, if ti denotes the total length of the time intervals
when the job pj is assigned to machine Mi, it is required that t1s1 + t2s3 + · · ·+ tmsm = pj .
(A job may be scheduled in several time slots on the same machine, and there may be
times when a partially processed job is not running at all.) In the (semi-)online version of
this problem, jobs arrive one-by-one and at that time the algorithm has to give a complete
assignment of this job at all times, without the knowledge of the jobs that arrive later.
The objective is to find a schedule of all jobs in which the maximal completion time (the
makespan) is minimized.

For an algorithm A, let CA
max[J ] be the makespan of the schedule of J produced by A.

By C∗
max[J ] we denote the makespan of the optimal offline schedule of J . A (randomized)

algorithm A is an R-approximation if for every input J , the (expected) makespan is at most
R times the optimal makespan, i.e., E[CA

max[J ]] ≤ R · C∗
max[J ].

The optimal makespan can be computed as C∗
max[J ] = max{P/S,maxm−1

k=1 {Pk/Sk}},
where Pk denotes the sum of the k largest processing times in J and Sk is the sum of the k

1See the Maple output at http://www.math.cas.cz/~sgall/ps/semirel-pmax.mpl
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largest speeds. This is a lower bound on the makespan, as the first term gives the minimal
time when all the work can be completed using all the machines fully, and similarly the
term for k is the minimal time when the work of the k largest jobs can be completed using
the k fastest machines fully. The tightness of this bound follows from [10, 8, 5].

Semi-online restrictions and previous work

We define a general semi-online input restriction to be simply a set Ψ of allowed inputs,
also called input sequences. We call a sequence a partial input if it is a prefix of some
input sequence; the set of all partial inputs is denoted pref(Ψ). Thus the partial inputs are
exactly the sequences that the algorithm can see at some point. A (randomized) semi-online
algorithm A with restriction Ψ is an R-approximation algorithm if E[CA

max[J ]] ≤ R·C∗
max[J ]

for any J ∈ Ψ. Note that this implies that for any prefix J ′ of J , E[CA
max[J ′]] ≤ R·C∗

max[J ].
Below we list some of the restrictions that are studied in the literature, together with

the notation that we are going to use, the previous work, and our results.

Known sum of processing times,
∑

pj = P . For a given value P̄ , Ψ contains all
sequences with P = P̄ . We prove that the overall ratio is surprisingly the same as in the
general online case, on the other hand we note that for m = 2, 1-approximation is possible
and we analyze the cases of m = 3, 4.

Non-increasing processing times, denoted decr. Here Ψ contains all sequences with
p1 ≥ p2 ≥ · · · ≥ pn. For m = 2, the optimal algorithm for all s was analyzed in [6] and for
identical machines in [13]. We prove that for any s this case is the same as the case with
all jobs equal. We analyze the cases for m = 2, 3, and prove some bounds for larger m.

Known optimal makespan, C∗
max = T . For a given value T̄ , Ψ contains all sequences

with C∗
max[J ] = T̄ . A 1-approximation semi-online algorithm is known for any s, see [5].

Known maximal job size, pmax = p. For a given value p̄, Ψ contains all sequences with
max pj = p̄. This is equivalent to the case when the first job is maximal, as any algorithm
for that special case can be used also for the case when the maximal job arrives later.
Thus this restriction also includes non-increasing jobs. In [13] it is shown that for identical
machines, the approximation ratio is the same as when the jobs are non-increasing. We
show that this is not the case for general speeds. This restriction was introduced in [9] for
non-preemptive scheduling on 2 identical machines.

Tightly grouped processing times. For given values p̄ and α, Ψ contains all sequences
with pj ∈ [p̄, αp̄] for each j. This restriction was introduced in [9] for non-preemptive
scheduling on 2 identical machines. Tight bounds for preemptive scheduling on 2 uniformly
related machines were given in [3].

Inexact partial information. In this case, some of the previously considered values
(optimal makespan, sum of job sizes, maximal job size) is not known exactly but only up
to a certain factor. These variants were studied first in [15] without preemption and then
in [11] for preemptive scheduling; both on identical machines.

Online scheduling. Here Ψ contains all sequences. In our (i.e., the authors and Wojtek
Jawor) previous work [4], we have designed an optimal online algorithm for all speed vectors.
The algorithm and the proof of the main result in this paper generalize that result, using
the same techniques, however, some technical issues have to be handled carefully to achieve
the full generality of our new result. Online preemptive scheduling was studied first in [2].

The paper [12] is probably the first paper which studied and compared several notions
of semi-online algorithms, including known sum of processing times. Some combination
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of the previous restrictions were studied in [14] for non-preemptive scheduling on identical
machines. We should note that there are also semi-online models that do not fit into our
framework at all. For example, the algorithm may get a hint which job is the last one, or
it is allowed to store some job(s) in a buffer.

2. The optimal algorithm

The new algorithm is based on the algorithm for online scheduling from [4]. In this
section we present the key ideas with emphasis on the issues that need to be handled
differently in the more general semi-online setting.

Suppose that we are given a parameter r and we try to develop an r-approximation
algorithm. In the online case, we simply make sure that the current job completes by time r
times the current optimal makespan. In the semi-online case, if the restriction is not closed
under taking a prefix, this would be too pessimistic. It may happen that the current partial
input is not in Ψ and we know that any extension in Ψ has much larger optimal makespan
(e.g., if the restriction forces that some large jobs will arrive later). In this case we can
schedule the current job so that it complete much later than at time r times the current
optimal makespan. For this purpose, we define the appropriate quantity to be used instead
of the current optimal makespan.

Definition 2.1. For an input restriction Ψ and a partial input I ∈ pref(Ψ), we define the
optimal makespan as the infimum over all possible end extensions of J that satisfy Ψ:

C∗,Ψ
max[I] = inf{C∗

max[J ] | J ∈ Ψ & I is a prefix of J }

Note that for any input sequence J ∈ Ψ we have C∗
max[J ] = C∗,Ψ

max[J ].

Algorithm RatioStretch
Our algorithm takes as a parameter a number r which is the desired approximation

ratio. Later we show that, for the right choice of r, our algorithm is optimal. Given r,

we want to schedule each incoming job so that it completes at time r · C∗,Ψ
max[J[j]]. By the

definition of C∗,Ψ
max[J[j]], any schedule for any possible extension of the current partial input

will have makespan at least C∗,Ψ
max[J[j]], in particular C∗,Ψ

max[J[j]] ≤ C∗
max[J ]. Thus, if each

job j completes by time r ·C∗,Ψ
max[J[j]] ≤ r ·C∗

max[J ], we have an r-approximation algorithm.
Even when we decide the completion time of a job, there are many ways to schedule it

given the flexibility of preemptions. We choose a particular one based on the notion of a
virtual machine from [5, 4]. We define the ith virtual machine, denoted Vi, so that at each
time τ it contains the ith fastest machine among those real machines M1, M2, . . . , Mm

that are idle at time τ . Due to preemptions, a virtual machine can be thought and used
as a single machine with changing speed. When we schedule (a part of) a job on a virtual
machine during some interval, we actually schedule it on the corresponding real machines
that are uniquely defined at each time.

Upon arrival of a job j we compute a value Tj defined as r · C∗,Ψ
max[J[j]]. Then we find

two adjacent virtual machines Vk and Vk+1, and time tj, such that if we schedule j on Vk+1

in the time interval (0, tj ] and on Vk from tj on, then j finishes exactly at time Tj .
We need to show that we can always find such machines Vk and Vk+1. Since we have

added the machines of speed 0, it only remains to prove that each job can fit on V1. This
is true for the appropriate value of r.
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Before we sketch the proof, we make a few remarks concerning efficiency and uniformity
of the algorithm. The only parts of the algorithm that depend on the semi-online restric-
tion are (i) the computation of the optimal approximation ratio and (ii) the computation

of C∗,Ψ
max[J ]. The rest of the algorithm is independent of the restriction and very efficient.

Similarly to the online algorithms, for semi-online algorithms we generally do not require
the computation to be polynomial time. For a general restriction the optimal algorithm
cannot be efficient. (If the set of input sequences is, e.g., not recursive, then it may be algo-
rithmically undecidable how much time we have even for scheduling the first job. Besides,
there are more possible restrictions than algorithms.) Nevertheless, the algorithm is efficient

for many natural restrictions. Computing C∗,Ψ
max[J ] is usually simple. If the restriction is

closed under taking prefixes, then it is equal to C∗
max[J ]. In other cases it is easy to see

which extension has the smallest makespan. Computing the optimal approximation ratio is
more difficult, but in Section 3 it is shown that in many natural cases it reduces to linear
programming. Alternatively, we can use any upper bound on the approximation ratio and
give to the algorithm as a parameter.

Optimality of Algorithm RatioStretch
Our goal is to show that Algorithm RatioStretch works whenever the parameter r is

at least the optimal approximation ratio for the given Ψ and s. We actually prove the
converse: Whenever for some input J Algorithm RatioStretch with the parameter r fails,
we prove that there is no r-approximation algorithm.

This is based on a generalization of a lemma from [7] which provides the optimal lower
bounds for online algorithms, as shown in [4]. The key observation in its proof is this: On
an input J , if the adversary stops the input sequence at the ith job from the end, any r-
competitive online algorithm must complete by time r times the current optimal makespan,
and after this time, in the schedule of J , only i − 1 machines can be used. This bounds
the total work of all the jobs in terms of r and optimal makespans of the prefixes, and thus
gives a lower bound on r. To generalize to an arbitrary restriction Ψ, we need to deal with
two issues.

First, the adversary cannot stop the input if the current partial input is not in Ψ.

Instead, the sequence then must continue so that its optimal makespan is the current C∗,Ψ
max

(or its approximation). Consequently, the bound obtained uses C∗,Ψ
max in place of previous

C∗
max, which possibly decreases the obtained bound.

Second, for a general semi-online restriction, using the last m prefixes of J may not
give the best possible lower bound. E.g., the restriction may force that some job is tiny, and
thus using the prefix ending at this job is useless; in general, we also cannot remove such
a job from the input sequence. To get a stronger lower bound, we choose a subsequence of

important jobs from J and bound their total work in terms of values C∗,Ψ
max of the prefixes

of the original sequence J .

Lemma 2.2. Let A be any randomized R-approximation semi-online algorithm for preemp-
tive scheduling on m machines with an input restriction Ψ. Then for any partial input
J ∈ pref(Ψ), for any k, and for any subsequence of jobs 1 ≤ j1 < j2 < · · · < jk ≤ n we
have

k
∑

i=1

pji
≤ R ·

k
∑

i=1

sk+1−iC
∗,Ψ
max[J[ji]].
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Let rΨ be the largest lower bound on the approximation ratio obtained by Lemma 2.2:

Definition 2.3. For any vector of speeds s and any partial input J ∈ pref(Ψ),

rΨ(s,J ) = sup
1≤j1<j2<···<jk≤n

∑k
i=1 pji

∑k
i=1 sk+1−i · C∗,Ψ

max[J[ji]]
.

For any s, let rΨ(s) = supJ∈pref(Ψ) rΨ(s,J ). Finally, let rΨ = sup
s
rΨ(s).

With these definitions and Lemma 2.2, we can prove the following main theorem. If
Algorithm RatioStretch cannot schedule the incoming job, we choose a subsequence includ-
ing the jobs scheduled so far on the first virtual machine and the incoming job. We use
Lemma 2.2 with this subsequence to argue that that no (randomized) algorithm can have
the same approximation ratio.

Theorem 2.4. For any restriction Ψ and vector of speeds s, Algorithm RatioStretch with a
parameter r ≥ rΨ(s) is an r-approximation algorithm for semi-online preemptive scheduling
on m uniformly related machines. In particular, rΨ(s) (resp. rΨ) is the optimal approxi-
mation ratio for semi-online algorithms for Ψ with speeds s (resp. with arbitrary speeds).

3. Reductions and linear programs

We have a formula for rΨ(s) which gives the desired approximation ratio for any speeds
and Ψ as a supremum over a bound for all partial inputs and all their subsequences. It is not
obvious how to turn this into an efficient algorithm. Now we develop a general methodology
how to compute the ratio using linear programs and apply it to a few cases.

We observed that for a general restriction it may be necessary to use an arbitrary
subsequence in Definition 2.3. However, for many restrictions it is sufficient to use the
whole sequence, similarly as for online scheduling. Usual restrictions are essentially of two
kinds. The first type are the restrictions that put conditions on individual jobs or their
order. These restrictions are closed under taking subsequences (not only prefixes), i.e., any
subsequence of an input sequence is also in Ψ. The second type are the restrictions where
some global information is given in advance, like

∑

pj = P or C∗
max = T . These are not

closed under taking subsequences, but are closed under permuting the input sequence.
We define a large class of restrictions that includes both types of restrictions discussed

above as well as their combinations; in particular it includes all the restrictions listed and
studied here. The definition below implies that any subsequence of any input sequence is
a prefix of another input. Thus, the sets of all the subsequences and all the prefixes of Ψ
coincide, and Definition 2.3 simplifies using the monotonicity condition in the definition.

Definition 3.1. An input restriction Ψ is proper if for any J ∈ Ψ and any subsequence I
of J , we have I ∈ pref(Ψ) and furthermore C∗,Ψ

max[I] ≤ C∗,Ψ
max[J ].

Definition 3.2. Let Ψ be a proper semi-online restriction and J ∈ pref(Ψ) a partial input.
We define

r̄Ψ(s,J ) =

∑n
j=1 pj

∑n
j=1 sn+1−j · C∗,Ψ

max[J[j]]
.
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From now on, we focus on proper restrictions. It may happen that rΨ(s,J ) > r̄Ψ(s,J ).
By Definitions 2.3 and 2.3 we may take a subsequence of jobs I = (pji

)ki=1 that achieves
the value of r̄Ψ(s,I) ≥ rΨ(s,J )− ε for any ε > 0. By the definition of a proper restriction,
I ∈ pref(Ψ). Taking the supremum over all partial inputs, we obtain the following simpler
formula for the optimal approximation ratio.

Observation 3.3. For any proper restriction Ψ, rΨ(s) = supJ∈pref(Ψ) r̄Ψ(s,J ) .

Our strategy is to reduce the number of sequences J that need to be taken into account.
Typically, we show that the sequences must be sorted. Then we know which jobs are the
biggest ones and we can express the optimal makespans for prefixes by linear constraints
in job sizes. Maximizing the expression for r̄Ψ(s), which gives the desired bound, is then
reduced to solving one or several linear programs. The following observation helps us to
limit the set of relevant sequences.

Observation 3.4. Let Ψ be arbitrary proper restriction, let s be arbitrary speed vector,
and let J ,J ′ ∈ pref(Ψ),. be two partial inputs with n jobs. Suppose that for some b > 0:

n
∑

j=1

p′j = b ·
n
∑

j=1

pj , and

(∀i = 1, . . . , n) C∗,Ψ
max[J ′

[i]] ≤ b · C∗,Ψ
max[J[i]].

Then r̄(s,J ′) ≥ r̄(s,J ).

The observation follows immediately from the definition of r̄Ψ(s,J ).
Whenever (i) Ψ is closed under permutations of the sequence and (ii) increasing the

size of the last job of a partial input cannot decrease C∗,Ψ
max, the observation implies that

it is sufficient to consider sequences of non-decreasing jobs: If J contains two jobs with

pk < pk+1, swapping them can only increase C∗,Ψ
max[J[k]] and any other C∗,Ψ

max[J[i]] remains
unchanged; thus the observation applies with b = 1.

3.1. Known sum of processing times,
∑

pj = P

Here we are given a value P̄ and Ψ contains all J with P = P̄ . It can be easily verified

that C∗,Ψ
max[J ] = max{C∗

max[J ], P̄ /S} for any J with P ≤ P̄ .
Since we can permute the jobs and increasing the size of the last job does not decrease

C∗,Ψ
max, Observation 3.4 implies that we can restrict ourselves to non-decreasing sequences

J . Furthermore, we may assume that P = P̄ : We know that P ≤ P̄ , as otherwise J is not
a partial input. If P < P̄ , we scale up J to J ′ by multiplying all the sizes by b = P ′/P .

Observation 3.4 then applies, as each C∗,Ψ
max[J ′

[i]] = max{C∗
max[J ′

[i]], P̄ /S} increases by at

most the scaling factor b. Finally, we observe that we can restrict ourselves to sequences J
with less than m jobs. If n ≥ m, we use the fact that C∗,Ψ

max[J[i]] ≥ P̄ /S for any i and obtain

r̄Ψ(s,J ) = P/(
∑n

i=1 sn+1−i · C∗,Ψ
max[J[i]]) ≤ P/(

∑n
i=1 sn+1−i · P̄ /S) = 1, using n ≥ m in the

last step.
Summarizing, we can assume that J is a non-decreasing sequence of n < m jobs with

P = P̄ . (Note that this does not mean that the adversary uses fewer jobs than machines,
as he may need to release some small jobs at the end of the prefix sequence, to extend it
to a sequence in Ψ.) To obtain the worst case bound, we compute m− 1 linear programs,
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one for each value of n, and take the maximum of their solutions. The linear program for a
given P , s, and n has variables qi for job sizes and Oi for optimal makespans of the prefixes:

minimize r−1 =
s1On + s2On−1 + · · · + snO1

P̄
subject to

q1 + · · ·+ qn = P̄
P̄ ≤ (s1 + s2 + · · · + sm)Ok for k = 1, . . . , n

qj + qj+1 + · · ·+ qk ≤ (s1 + s2 + · · · + sk−j+1)Ok for 1 ≤ j ≤ k ≤ n
0 ≤ qj ≤ qj+1 for j = 1, · · · , n− 1

If we fix the input sequence, i.e., the values of qi, then the smallest objective is achieved
for Ok as small as possible which is exactly the value of the optimal makespan, by the con-
straints involving Ok. Thus the linear program computes correctly the value 1/r

P

pj=P (s).
We can also see that the linear program scales and the optimum does not depend on P̄ .

We now examine the special cases of m = 2, 3. The linear program is trivial for n = 1,
and we conclude that for m = 2 the approximation ratio is equal to 1, i.e., RatioStretch
always produces an optimal schedule. We can see this also intuitively: The algorithm
starts scheduling the incoming jobs in the interval [0, T1) where T1 ≥ P̄ /S. Consider the
first time when a job is scheduled at the first real machine M1. It is always possible to
schedule this job at the empty machine M1 so that it completes before the current optimal
makespan. Furthermore, after M1 is used the first time, the algorithm guarantees that in
the interval [0, T1) there is only one real machine idle at any time. This in turn implies that
the remaining jobs can be completed by time T1, as the total size of all jobs is P̄ ≤ S · T1.

For m = 3, it remains to solve the linear program for n = 2. The resulting ratio is:

r
P

pj=P (s1, s2, s3) =







s1(s1 + s2)

s2
1 + s2

2

for s2
1 ≤ s2(s2 + s3)

1 + s2s3

s1(s1+s2+s3)+s2(s1+s2)
for s2

1 ≥ s2(s2 + s3)

The overall worst case ratio for three machines is 2+
√

2
3 ≈ 1.138 for s1 =

√
2, s2 = s3 = 1.

Padding. We prove a theorem that shows that knowing the total size of jobs does not
improve the overall approximation ratio. This may sound surprising, as for two machines,
knowing the sum allows to generate an optimal schedule, and also for three machines the im-
provement is significant. The same result holds also in presence of an additional restriction
with suitable properties. Among the restrictions that we consider, the requirements are sat-
isfied for non-increasing jobs, known maximal job size, or the online case. By “Ψ,

∑

pj = P”
we denote the intersection of the two restrictions, i.e., the set of all sequences (pj)

n
j=1 ∈ Ψ

such that
∑n

i=1 pj = P̄ for a given value of P̄
We say that Ψ allows scaling if for any J ∈ Ψ and b > 0, the modified sequence

J ′ = (bpj)
n
j=1 satisfies J ′ ∈ Ψ. We say that Ψ allows padding if for any J ∈ Ψ, there exists

ε0 > 0 such that any sequence J ′ created by extending J by an arbitrary number of equal
jobs of size ε < ε0 at the end satisfies J ′ ∈ Ψ.

Theorem 3.5. Suppose that Ψ is proper, allows scaling, padding, and is closed under taking
prefixes. Let J ∈ Ψ and let s be arbitrary. Then for any δ > 0 there exists J ′ and s′ such
that r̄Ψ,

P

pj=P (s′,J ′) ≥ r̄Ψ(s,J )/(1 + δ). Consequently, rΨ,
P

pj=P = rΨ.

Proof. We fix s, J , and P̄ given to the algorithm with the restriction
∑

pj = P . We proceed
towards constructing the appropriate s′ and J ′.
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Since Ψ allows scaling, the value C∗,Ψ
max[J ] is multiplied by b when J is scaled by b.

Consequently, the value of r̄Ψ(s,J ) does not change when J is scaled. Let J ′ = (p′j)
n
j=1 be

the sequence J scaled so that
∑n

j=1 p′j = P̄ . Then r̄Ψ(s,J ′) = r̄Ψ(s,J ).

Choose a small σ > 0 so that σ < sm and σ < δS/n. Let O1 = p′1/s1, i.e., the
optimal makespan after the first job. Let s′ be the sequence of speeds starting with s and
continuing with n + P̄ /(O1σ) of values σ. The first condition on σ guarantees that s′ is
monotone and thus a valid sequence of speeds. The second condition guarantees that the
added machines are sufficiently slow, so that for any sequence of at most n jobs, in particular
for the prefixes of J ′, the makespan decreases by at most the factor of (1 + δ). Since Ψ is

closed under taking prefixes, C∗,Ψ
max equals C∗

max for any sequence. Thus we conclude that
r̄Ψ(s′,J ′) ≥ r̄Ψ(s,J ′)/(1 + δ).

Finally, we have added sufficiently many new machines so that for any sequence of at
most n jobs, the empty new machines can accommodate total work of P̄ without exceeding

makespan O1. This implies that for all prefixes of J ′, C
∗,Ψ,

P

pj=P
max [J ′

[i]] = C∗,Ψ
max[J ′

[i]]; thus

r̄Ψ,
P

pj=P (s′,J ′) = r̄Ψ(s′,J ′) ≥ r̄Ψ(s,J ′)/(1 + δ) ≥ r̄Ψ(s,J )/(1 + δ).

3.2. Known maximal processing time, pmax = p

Here we are given p̄, the maximal size of a job. As noted before, any algorithm that
works with the first job being the maximal one can be easily changed to a general algorithm
for this restriction. First it virtually schedules the maximal job and then it compares the
size of each job to p̄. If it is equal for the first time, it schedules the job to the time slot(s)
it reserved by virtual scheduling at the beginning. Other jobs are scheduled in the same
way in both algorithms. Thus we can work with the equivalent restriction containing all the

sequences where the first job is maximal. Then C∗,Ψ
max[J ] = C∗

max[J ] for any partial input.
By Observation 3.4, the other jobs can be reordered as in the previous case, and we can
maximize only over sequences with non-decreasing job sizes from the second job on.

In this case we are able to use a single linear program to cover input sequences of an
arbitrary length. The variables are: p for the length of the first job, q1 for the total length
of jobs p2, . . . , pn−m+1, and q2, . . . ,qm for the jobs pn−m+2, . . . ,pn. For sequences with
n < m, we set q1 = q2 = · · · qn−m = 0. Consider the following non-linear program:

maximize r =
P

s1Om + s2Om−1 + · · ·+ smO1
subject to

p + q1 + · · ·+ qm = P
p + q1 + · · ·+ qk ≤ (s1 + s2 + · · · + sm)Ok for k = 1, . . . ,m

p + qj+1 + qj+2 + · · ·+ qk ≤ (s1 + s2 + · · · + sk−j+1)Ok for 1 ≤ j ≤ k ≤ m
0 ≤ qj ≤ qj+1 ≤ p for j = 2, · · · ,m− 1

0 ≤ q1

If we fix the values of qi, then the largest objective is achieved for Ok as small as possible.
By the constraints involving Ok, this is exactly the value of the optimal makespan for a
sequence where q1 represents a prefix of a sequence of jobs smaller than q2. Thus the program
computes correctly the value r

P

pj=P (s). The program scales, thus we can scale any feasible
solution so that the denominator of the objective function is a given constant. Thus we get
an equivalent linear program after adding the constraint 1 = s1Om + s2Om−1 + · · ·+ smO1.
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Small number of machines. For two machines we get the approximation ratio

rpmax=p(s1, s2) = 1 +
s1s2

(s1 + s2)2 + s2
1

The maximum is 1.2 for s1 = s2. For three machines we get

rpmax=p(s1, s2, s3) =















1 +
s1(s2 + s3)

S2 + s2
1

for s1s2 ≥ s3S

1 +
s1s2 + 2s1s3

S2 + 2s2
1 + s1s2

for s1s2 ≤ s3S

This is maximized at s1 = 2, s2 = s3 =
√

3 which gives the ratio (8 + 12
√

3)/23 ≈ 1.252.

3.3. Non-increasing processing times, decr

We are also interested in sequences of non-increasing jobs, as this is one of the most
studied restrictions. Now Ψ contains sequences which have pj ≥ pj+1 for all j. We cannot
swap jobs, however, we can take two adjacent jobs j and j + 1 and replace both of them
by jobs of the average size (pj + pj+1)/2. By Observation 3.4, the approximation ratio does
not decrease. Similarly, we can replace longer segment of jobs with only two distinct sizes
by the same number of jobs of the average size. Repeating this process, we can conclude
that for the worst case for a given set of speeds it is sufficient to consider sequences where
all jobs have equal size. By scaling, the actual size of jobs does not matter, we only need
to determine the length of the sequence which gives the highest ratio.

Let us denote r̂n(s) = r̄decr(s,J ) for a sequence J with n jobs with pj = 1. For this

sequence, C∗,Ψ
max[J ] = C∗

max[J ] = n/Sn. (Recall that si = 0 for i > m and Sk =
∑k

i=1 si.)
Using this for the prefixes, we obtain from Observation 3.3 that

r̂n(s) = n ·
(

n
∑

k=1

ksn−k+1

Sk

)−1

.

It can be seen that for any speed vector, the sequence r̂n(s) decreases with n for n ≥ 2m.
Thus computing the approximation ratio for any given speeds is efficient.

A natural approach to estimate the overall ratio is to find for each n the worst speed
vector and the corresponding ratio r̂n = sup

s
r̂n(s). Based on numerical experiments, we

conjecture that for each n, r̂n is attained for some s with s1 = s2 = · · · = sm−1. I.e., almost
all the speeds are equal. This conjecture would imply that with non-increasing jobs, the
optimal overall approximation ratio is the same for the uniformly related machines and for
the identical machines, and this is equal to (1 +

√
3)/2 ≈ 1.366 by [13].

This is related to an intriguing geometric question. Suppose we have numbers xi, yi, i =
1, . . . , n such that xiyi = i for all i and both sequences (xi)

n
i=1 and (yi)

n
i=1 are non-decreasing.

Consider the union of rectangles [0, xi] × [0, yn+1−i] over all i; this is a staircase-like part
of the positive quadrant of the plane. What is the smallest possible area of this union of
rectangles? We conjecture that the minimum is attained for some y1 = y2 = . . . = yk and
xk+1 = xk+2 = . . . = xn for some k. This would imply the previous conjecture.

We are not able to determine exactly the values of r̂n, but we can prove certain relations
between these values. In particular, for any integers a, n, and n′, ran ≥ rn and rn′ ≤ n+1

n
rn.

For the first proof, we replace a sequence of speeds from the bound for rn by a sequence
where each speed is repeated a times, and the bound follows by manipulating the formula
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for rn. The second inequality is shown by replacing the speeds for rn′ by a shorter sequence
where each new speed is a sum of a segment of a speeds in the original sequence, for a
suitable a. These relations show that whenever we are able to evaluate some rn for a fixed
n, the optimal overall ratio is at most n+1

n
rn.

For n = 3, maximizing the function r̂n(s) can be done by hand and the maximum is
r3 = 1.2 for s1 = s2 = 1, s3 = 0. This yields an overall upper bound of r̂n ≤ 4

3 · 6
5 = 1.6. By

a computer-assisted proof we have shown that r̂4 = (
√

7 + 1)/3 ≈ 1.215, yielding an overall

upper bound of r̂n ≤ 5
4 r̂4 = 5

12 (
√

7 + 1) ≈ 1.52.

Conclusions. Similar methods can be used to analyze other semi-online restrictions, their
combinations and inexact versions, or give formulas for the approximation ratios for more
machines. This becomes a somewhat mechanical exercise; we have not found any surprising
phenomenon in the cases we have examined so far.

It would be interesting, and it seems hard to us but not impossible, to determine the
exact overall approximation ratios for the basic restrictions.
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Abstract. We present a 4-approximation algorithm for the problem of placing the fewest
guards on a 1.5D terrain so that every point of the terrain is seen by at least one guard.
This improves on the currently best approximation factor of 5 (see [14]). Unlike most of the
previous techniques, our method is based on rounding the linear programming relaxation
of the corresponding covering problem. Besides the simplicity of the analysis, which mainly
relies on decomposing the constraint matrix of the LP into totally balanced matrices, our
algorithm, unlike previous work, generalizes to the weighted and partial versions of the
basic problem.

1. Introduction

In the 1.5D terrain guarding problem we are given a polygonal region in the plane
determined by an x-monotone polygonal chain, and the objective is to find the minimum
number of guards to place on the chain such that every point in the polygonal region
is guarded. This kind of guarding problems and its generalizations to 3-dimensions are
motivated by optimal placement of antennas for communication networks; for more details
see [4, 1] and the references therein.
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This paper combines the results of [7] and [19], which were obtained independently: the first gave a

4-approximation for the weighted version of the guarding problem and an extension to partial covering, and
the second gave a 4-approximation for the unweighted version.
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One can easily see that one point is enough to guard the polygonal region if we are
allowed to select guards anywhere in the plane. However, the problem becomes interesting
if guards can only be placed on the boundary chain. Under this restriction, two natural
versions of the problem arise: in the continuous version the guards can be placed anywhere
along the chain and all points in the terrain must be guarded, while in the discrete version
the guards and points to be guarded are arbitrary subsets of the chain.

1.1. Previous Work

Chen et al. [4] claimed that the 1.5D-terrain guarding problem is NP-hard, but a com-
plete proof of the claim was never published [6, 14, 1]. They also gave a linear time algorithm
for the left-guarding problem, that is, the problem of placing the minimum number of guards
on the chain such that each point of the chain is guarded from its left. Based on purely
geometric arguments, Ben-Moshe et al. [1] gave the first constant-factor approximation al-
gorithm for the 1.5D-terrain guarding problem. Although they did not state the value of
the approximation ratio explicitly, it was claimed to be at least 6 in [14]. Clarkson et al. [5]
gave constant factor approximation algorithms for a more general class of problems using
ǫ-nets and showed that their technique can be used to get a constant approximation for the
1.5D-terrain guarding problem. Most recently, King [14] claimed that the problem can be
approximated with a factor of 4, but the analysis turned out to have an error that increases
the approximation factor to 5 [13].

1.2. Our results and outline of the paper

The main building block of our algorithms is an LP-rounding algorithm for one-sided
guarding: A version of the problem where a guard can see either to the left or to the right.
Guided by an optimal fractional solution, we can partition the points into those that should
be guarded from the left, and those that should be guarded from right. This turns out to
be a very useful information since we can show that the LPs for the left-guarding and right-
guarding problems are integral. We prove this by establishing a connection between the
guarding problem and totally balanced covering problems that is of independent interest.
Altogether, this leads to a factor 2 approximation for one-sided guarding. Then we show
how to reduce other variants of the problem to the one-sided case by incurring an extra
multiplicative factor of 2 in the approximation ratio.

A nice feature of this framework is that the algorithms emanating from it, are very
simple applications of linear programming and are very simple to analyze. This comes
in contrast with the relatively complicated algorithms of [1, 14] whose description/analysis
involves a fairly long list of cases. In addition, our framework allows us to tackle more general
versions of the problem than those considered in the literature thus far; for example, guards
can have weights and we want to minimize the weight of the chosen guards, or where we
are not required to cover all the terrain, but only a prescribed fraction of it. It seems that
such variants are very difficult to deal with, if one tries to use only geometric techniques
as the ones used in [1, 14] for the basic problem. We remark also that, for many geometric
set covering problems for which constant factor approximations exist (e.g., covering points
in the plane by arbitrary radii disks [3]), it is not clear how to extend these results to the
weighted case. So this paper gives one example where such an extension is possible.
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It is worth noting that the idea of using the fractional solution to the LP-covering
problem to partition the problem into several integral subproblems has been used before
[11, 20, 9].

In the next section, we define the basic guarding problem and its variants more formally.
In Section 3 we focus on the left guarding problem and show that this is a totally balanced
covering problem. Section 4 shows how to get a 2-approximation for one-sided guarding. Fi-
nally, in Section 5 we apply these results to obtain constant-factor approximation algorithms
for more general variants of the guarding problem.

2. Preliminaries

A terrain T is an x-monotone polygonal chain with n vertices, i.e., a piecewise linear
curve intersecting any vertical line in at most one point. Denote by V the vertices of T and
by n = |V | the complexity of the chain. The terrain polygon PT determined by T is the
closed region in the plane bounded from below by T .

For two points p and q in PT , we say that p sees q and write p ∼ q, if the line segment
connecting p and q is contained in PT , or equivalently, if it never goes strictly below T . We
will also write p < q if p lies to the left of q.

The 1.5D-terrain guarding problem for T is to place guards on T such that every point
p ∈ PT is seen by some guard. One can easily see, by the monotonicity of T , that any set
of guards that guards T is also enough to guard PT . Henceforth we restrict our attention
to the case when the requirement is to guard all points of T .

The continuous 1.5D-terrain guarding problem is to select a smallest set of guards
A ⊆ T that sees every point in T ; in other words, for every p ∈ T there exists g ∈ A such
that g ∼ p. We also consider the following variants of this basic problem:

(1) In the discrete version we are given a set of possible guards G ⊆ T with weights
w : G→ R+ and a set of points N ⊆ T . The goal is to select a minimum weight set
of guards A ⊆ G to guard N .

(2) In the partial version we are given a profit function p : N → R
+ and a budget b.

The goal is to find a minimum weight set of guards such that the profit of unguarded
points is at most b. In the continuous variant, b is the length of T that can be left
unguarded.

(3) In the one-sided guarding version the guards can see in only one of two directions:
left or right. Specifically, given 3 sets of points N , GL and GR, we want to find sets
AL ⊆ GL and AR ⊆ GR of guards such that for all p ∈ N there is g ∈ AL such
that g < p and g ∼ p, or g ∈ AR such that g > p and g ∼ p. The sets GL and
GR, and hence AL and AR need not be disjoint. The overall cost of the solution is
w(AL) + w(AR).

This includes both the left- and right-guarding versions where guards in the given
set G can see only from the left, respectively, right (setting GL = G and GR = ∅
we get the left-guarding problem, while setting GR = G and GL = ∅ gives the
right-guarding problem).

Using a unified framework we get 4-approximations for nearly all1 of these variants.
Our approach is based on linear programming, totally balanced matrices, and the paradigm
of rounding to an integral problem [9, 11]. We progressively build our approximations

1The only exception is instances of the discrete variant when G∩N 6= ∅. Here we get a 5-approximation.
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by reducing each variant to a simpler problem. First, we start establishing a connection
between the left-guarding problem and totally balanced matrices. Then, we show how to
use this to get a 2-approximation for the one-sided guarding. Finally, we show how the
latter implies a 4-approximation for other variants.

Throughout the paper we will make frequent use of the following easy-to-prove claim.

Lemma 2.1 ([1]). Let a < b < c < d be four points on T . If a ∼ c and b ∼ d, then a ∼ d.

Let S(p) = {g ∈ G | g ∼ p} be the set of guards that see point p ∈ N . Denote by
SL(p) = {g ∈ G | g < p and g ∼ p} the set of guards that see p strictly from the left, and
analogously by SR(p) the set of guards that see p strictly from the right.

3. Left-guarding and totally balanced matrices

Even though this section deals exclusively with the left-guarding version, it should be
noted that everything said applies, by symmetry, to the right-guarding version. Recall in
this case that we are given two sets of points N,G, where each point in N has to be guarded
using only guards from G that lie strictly to its left.

Consider the following integer linear programming formulation.

minimize
∑

g∈G

wg xg (LP1)

subject to
∑

g∈SL(p)

xg ≥ 1 ∀p ∈ N (3.1)

xg ∈ {0, 1} ∀g ∈ G

Variable xg indicates whether g is chosen as a guard. Constraint (3.1) asks that every
point is seen by some guard from the left. In the following we will show that the solution
of the relaxation of (LP1) will always be integral.

Let A ∈ {0, 1}|N |×|G| be a binary matrix. Call A a left-visibility matrix if it corresponds
to the guard-point incidence matrix of the coverage problem defined by (LP1) for some
instance of the left-guarding problem. Also, A is said to be totally balanced [2] if it does
not contain a square submatrix with all row and column sums equal to 2 and no identical
columns. Finally, A is in standard greedy form if it does not contain as an induced submatrix

[

1 1
1 0

]

. (3.2)

An equivalent characterization [12] is that A is totally balanced if and only if A can be
put into greedy standard form by permuting its rows and columns.

Lemma 3.1. Any left-visibility matrix is totally balanced.

Proof. Let A be a left-visibility matrix. We show how to put A into standard greedy form.
Permute the rows and columns of A such that the rows from top to bottom correspond to
the points ordered from left to right, and the columns from left to right correspond to the
guards ordered from right to left. Suppose that there exists an induced 2× 2 sub-matrix of
the form (3.2), whose rows are indexed by p1, p2 ∈ N , and whose columns are indexed by
g1, g2 ∈ G. Then we have the following order: g2 < g1 < p1 < p2. Now we apply Lemma 2.1
with a = g2, b = g1, c = p1 and d = p2 to arrive at the contradiction p2 ∼ g2.
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g2

g3

g1 = p1 ×
p2

×
p3

g1 g2 g3

A =





1 1 0
1 0 1
0 1 1





p1

p2

p3

Figure 1: Consider the set G = {g1, g2, g3} of guards and the set N = {p1, p2, p3} of points
as above. Visibility matrix A is shown to the right of the example. Note that
the guard g1 guards the point on which it lies, i.e. g1 guards p1. Vertices of the
polyhedron {x ≥ 0 : Ax ≥ 1} are (0, 1, 1), (1, 1, 0), (1, 0, 1) and (1/2, 1/2, 1/2).

It is known that for a totally balanced matrix A, the polyhedron {x ≥ 0 : Ax ≥ 1}
is integral. Furthermore, there is an efficient purely combinatorial algorithm for finding an
optimal integral solution to (LP1) due to Kolen [16]. Indeed, in the next subsection we show
that this algorithm translates into an extremely simple procedure for the uniform weight
case, i.e., when wg = 1 for all g ∈ G.

3.1. Uniform left-guarding

For each point p ∈ N let L(p) denote the left-most guard that sees p. Consider the
simple greedy algorithm on the set of points N shown below: points in N are scanned from
left to right and when we find an unguarded point p, we select L(p) as a guard.

left-guarding (T,N,G)
A← ∅
for p ∈ N processed from left to right

if p is not yet seen by A then

A← A ∪ {L(p)}
return A

The algorithm can be implemented in O(|N | log |G|) time using a procedure similar to
Graham’s scan [10] for convex-hull computation. To see that it returns an optimal solution,
let X ⊆ N be those points that force the algorithm to add a guard. Suppose, for the sake of
contradiction, that there exist two points p′ and p′′ in X that are seen from the left by the
same guard g ∈ G, in other words, g < p′ < p′′ and g ∼ p′ and g ∼ p′′. Let g′ = L(p′), and
note that g′ ≤ g. If g′ = g then g′ ∼ p′′ and therefore p′′ would have not been unguarded
when it was processed. Hence g′ < g, but Lemma 2.1 tells us that g′ ∼ p′′ and we get a
contradiction. Therefore, each guard in G can see at most one point in X, which means
|X| is a lower bound on the optimal solution. Since the cardinality of A equals that of X,
it follows that A is optimum, and hence by, Lemma 3.1, it returns an optimal solution of
(LP1).
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Remark: Note that in our definition of left-guarding or right-guarding the guard does not
see the point on which it lies. With the following example (see Figure 1) we demonstrate
that without that condition the polyhedron is not necessarily integral any more.

4. A 2-approximation for one-sided guarding

In this section we study discrete weighted one-sided guarding. Recall that in this
variant, we are given a set of points N and two sets of guards GL and GR, where each guard
in GL (respectively, GR) can only guard points from N strictly to its right (respectively,
strictly to its left). We assume without loss of generality that each point in N can be seen
by a guard on its left or by a guard on its right. Otherwise it must be guarded by itself and
the system is infeasible, a situation which can be discovered in a preprocessing step.

We state our main result and then describe the algorithm.

Theorem 4.1. There is a 2-approximation algorithm for discrete one-sided guarding.

Consider the following LP for finding the optimal set of left and right guards:

minimize
∑

g∈GL

wg xg,L +
∑

g∈GR

wg xg,R (LP2)

subject to
∑

g∈SL(p)∩GL

xg,L +
∑

g∈SR(p)∩GR

xg,R ≥ 1 ∀p ∈ N (4.1)

xg,L ≥ 0 ∀g ∈ GL

xg,R ≥ 0 ∀g ∈ GR

Variable xg,L indicates whether g is chosen in AL and xg,R indicates whether g is chosen
in AR. Constraint (4.1) asks that every point is seen by some guard, either from the left or
from the right.

The algorithm first finds an optimal fractional solution x∗ to (LP2). Guided by x∗, we
divide the points into two sets

NL =
{

p ∈ N |
∑

g∈SL(p)∩GL
x∗g,L ≥

1
2

}

, and

NR =
{

p ∈ N |
∑

g∈SR(p)∩GR
x∗g,R ≥

1
2

}

.

Using the results from Section 3, we solve optimally the left-guarding problem for the
pair (NL, GL) and the right-guarding problem for the pair (NR, GR). This gives us two sets
of guards A∗

L and A∗
R. The final solution is a combination of these two.

It is easy to construct examples where solving separately the left-guarding and right-
guarding problems and then taking the minimum of these two solutions is arbitrarily far
from the optimal value. The intuition behind the algorithm is to use the LP solution to
determine which points should be guarded from the left and which should be guarded from
the right. The fractional solution also allows us to bound the cost of A∗

L and A∗
R.

Lemma 4.2. Let A∗
L and A∗

R be optimal solutions for the pairs (NL, GL) and (NR, GR)
respectively. Then w(A∗

L) ≤ 2
∑

g∈GL
wg x∗g and w(A∗

R) ≤ 2
∑

g∈GR
wg x∗g.
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Proof. We only prove the first inequality as the second is symmetrical. Setting xg,L = 2x∗g
we get a fractional solution for (LP1) for guarding NL. The solution x is feasible, by
definition of NL, and its cost is 2

∑

g∈GL
wg x∗g. Therefore, the optimal fractional solution

can only be smaller than that. Lemma 3.1 tells us that the cost of an optimal fractional
solution is the same as the cost of an optimal integral solution, namely, w(A∗

L).

Since
∑

g∈GL
wg x∗g,L+

∑

g∈GR
wg x∗g,R is a lower bound on the cost of an optimal solution

for guarding N , it follows that the cost of (A∗
L, A∗

R) is at most twice the optimum. To see
that this is feasible, consider some point p ∈ N . Because of (4.1) and our assumption that
each point is seen by some guard on its left or on its right, it must be the case that p ∈ NL

or p ∈ NR. Therefore p must be covered, either from the left by A∗
L or from the right by

A∗
R.

To compute A∗
L and A∗

R we can take the fractional solution to (LP1) and turn it into
a basic, and therefore integral, solution without increasing its cost. Alternatively, we can
run Kolen’s algorithm [16] for matrices in greedy standard form. This finishes the proof of
Theorem 4.1.

4.1. Partial covering

In this section we focus on the partial version of the one-sided guarding problem.

Theorem 4.3. There is a polynomial (2 + ǫ)-approximation and a quasi-polynomial time

2-approximation for partial discrete one-sided guarding.

Our approach is based on the framework of Mestre [20]. We say A is a one-sided-

visibility matrix if it is the guard-point incidence matrix of the covering problem defined by
(LP2) for some instance of the one-sided guarding problem. Also, A is said to be 2-separable

if there exist binary matrices A1 and A2 such that A = A1 +A2 and every matrix B formed
by taking rows from A1 or A2 is totally balanced (the ith row of B is the ith row of A1 or
the ith row of A2, for all i).

Proposition 4.4 ([20]). Let A be a 2-separable matrix. Then there is a (2+ǫ)-approximation

and a quasi-polynomial time 2-approximation for the partial problem defined by A.

Therefore, all we need to do to prove Theorem 4.3 is to argue that every one-sided
visibility matrix is 2-separable.

Lemma 4.5. Any one-sided visibility matrix is 2-separable.

Proof. Let A be a one-sided visibility matrix and assume, without loss of generality, that
A has the form [C1 C2] where the columns of C1 correspond to left guards GL and the
columns of C2 correspond to the right guards GR.

Our decomposition of A uses A1 = [C1 0] and A2 = [0 C2]. Suppose that a matrix B
is formed by taking rows from A1 and A2. Let NL be the set of rows originating from A1

and NR the set of rows originating from A2 (note that NL and NR constitute a partition of
N). Permute the rows of B so that rows in NL appear before rows in NR. This gives rise
to the following block matrix

B′ =

[

D1 0
0 D2

]

where the rows of D1 correspond to points in NL and its columns to left guards, and the
rows of D2 correspond to points in NR and its columns to right guards. By Lemma 3.1
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a p b
Figure 2: Example of additional set of points/guards for a vertex v of T . Point p is the

point selected from the essential segment ab.

both D1 and D2 are totally balanced. Therefore we can permute the rows and columns of
B′ to get a new matrix

B′′ =

[

D′
1 0

0 D2

]

where D′
1 and D′

2 are in standard greedy form, which in turn implies that B′′ is also in
standard greedy form. It follows that B′′, B′, and B are totally balanced.

This finishes the proof of Theorem 4.3.

5. Applications

In this section we show how to use the 2-approximations for one-sided guarding to
design good approximation algorithms for more general variants.

5.1. The continuous case

We assume that the weights are uniform2. Recall that in this variant guards can be
placed anywhere on the terrain and we are to guard all the points. We will reduce the
problem to to the discrete case, where G ∩ N = ∅. Our reduction follows the approach of
Ben-Moshe et al. [1].

Theorem 5.1. There is a 4-approximation algorithm for the continuous case and and a

(4 + ǫ)-approximation for its partial version.

Let A∗ be an optimum set of guards for a given instance T of the continuous problem.
Consider a guard g in A∗. If g is not a vertex of T then it must lie on a segment pq of T .
Suppose without loss of generality that p < q, then a left guard at p and a right guard at q
can see at least as much as g does. If g is a vertex of T then a left guard and a right guard
at g together can see the same as g does minus g itself. Therefore there exists a solution
A′ that uses only left and right guards on the vertices of T that covers T \ V such that
|A′| = 2|A∗|.

2This assumption can be removed using standard discretization techniques at the expense of a small
increase in the approximation factor



IMPROVED APPROXIMATIONS FOR GUARDING 1.5-DIMENSIONAL TERRAINS 369

To deal with the fact that every point must be guarded, consider the line through each
pair of vertices v1, v2 ∈ V such that v1see alsov2 and introduce at most two new points that
see v1 and v2 at the place where the line intersects the terrain. These points partition T
into O(n2) essential segments. In the strict interior of each segment introduce an additional
point p that is responsible for the segment. Let M be the set of all such points. (See
Figure 2 for an illustration.) The key realization is that for every guard g ∈ V and essential
segment ab, either g can see the whole segment or nothing of it.

Hence, a feasible solution to the one-sided discrete version with GL = GR = V and
N = M also constitutes a feasible solution to the continuous case. Let A′′ be an optimal
solution for this discrete problem, and A′′′ be the solution returned by Theorem 4.1. Since
A′ is feasible for the discrete instance, we get |A′′′| ≤ 2|A′′| ≤ 2|A′| = 4|A∗| and we get an
overall approximation factor of 4.

For the partial version where we want at most a fraction of the length to be left un-
guarded we give to each point in p ∈M a profit equal to the length of the essential segment
it is responsible for.

5.2. The discrete case

We consider the discrete version where we are given a set of guards G and set of points
N to guard. In this case, guards can see in both directions.

Theorem 5.2. There is a 4-approximation for the weighted discrete case and (4 + ǫ)-
approximation for its partial version when G ∩ N = ∅. Otherwise, we get 5 and (5 + ǫ)-
approximations respectively.

The case where G ∩N = ∅ is easily handled by replacing a guard that can see in both
directions with a left guard and a right guard. Thus we pay a factor 2 to reduce the general
problem to one-sided guarding. This also holds for the partial version.

Notice that if G∩N 6= ∅ then the reduction above must pay a factor of 3 since a point
guarding itself must be guarded by some other point strictly from the left or the right, and
thus it only leads to a 6-approximation. To get the ratio of 5 we need to use yet another
linear program.

minimize
∑

g∈G

wg xg (LP3)

subject to
∑

g∈S(p)

xg ≥ 1 ∀p ∈ N

xg ≥ 0 ∀g ∈ G

Let x∗ be an optimal fractional solution to (LP3). As in the one-sided case we will let
the solution x dictate which points should be self-guarded and which should be guarded by
others. Define

A0 =
{

g ∈ N ∩G | x∗g ≥
1
5

}

.

We place guards at A0 at a cost of most

w(A0) ≤ 5
∑

g∈A0

wgx
∗
g. (5.1)
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Let N ′ be the set of points in N not seen by A0 and let G′ = G \ A0. We will
construct a fractional solution for the one-sided guarding problem for N ′ and GL = GR =
G′. For each g ∈ G′ let xg,L = xg,R = 5

4x∗g. The fractional solution x is feasible for (LP2)

since for all p ∈ N ′

∑

g∈SL(p)∩GL

xg,L +
∑

g∈SR(p)∩GR

xg,R =
5

4

∑

g∈S(p)\{p}

x∗g ≥
5

4

(

1−
1

5

)

= 1,

Let (A∗
L, A∗

R) be the solution found for the one-sided problem. The cost of these sets of

guards is guaranteed to be at most twice that of x, which in turn is 5
2

∑

g∈G\A0
wgx

∗
g. Thus

the overall cost is
w(A∗

L) + w(A∗
R) ≤ 5

∑

g∈G\A0

wgx
∗
g. (5.2)

Hence, the second part of Theorem 5.2 follows from (5.1) and (5.2). Finally, for the
partial version we note the proof of Proposition 4.4 uses as a lower bound the cost of the
optimal fractional solution, so the cost of the solution returned can still be related to the
cost of x, which is necessary to get the stated approximation guarantee.

6. Concluding remarks

We gave a 4-approximation for the continuous 1.5D terrain guarding problem as well
as several variations of the basic problem. Our results rely, either explicitly or implicitly,
on the LP formulation (LP3) for the discrete case. For the unweighted version of the
problem, there is a very simple O(|N | log |G|)-algorithm for solving the left-guarding LP
(LP1). Furthermore, at the loss of factor (1 + ǫ) in the approximation ratios, one can
use fast techniques for covering LPs (see e.g. [8, 21]) to solve (LP2). In particular, using
the recent results of [17, 18], a (1 + ǫ)-approximation for (LP2) can be found in time
O(|N ||G| log(|N | + |G|)/ǫ2), which is only a polylogarithmic factor slower than the purely
combinatorial algorithms for the uniform weight case (see e.g. [14]).

Very recently, King [15] showed that the VC dimension of the discrete case is exactly
4. More precisely, he showed a terrain with 4 guards and 16 points (these sets are disjoint)
such that each point is seen by a different subset of the guards. If we have to cover the
points that are seen by pairs of guards, we get precisely a vertex cover problem on the
complete graph with 4 vertices. An integral solution must pick 3 vertices, while a fractional
solution can pick a half of all vertices. It follows that the integrality gap of (LP3) is at least
3/2, even when G ∩N = ∅. On the other hand, our analysis shows that the gap is at most
4. We leave as an open problem to determine the exact integrality gap of (LP3).
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[7] K. Elbassioni, D. Matijević, J. Mestre, and D. Ševerdija. Improved approximations for guarding 1.5-

dimensional terrains. CoRR, abs/0809.0159v1, 2008.
[8] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional

packing problems. In 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 300–309, 1998.

[9] D. R. Gaur, T. Ibaraki, and R. Krishnamurti. Constant ratio approximation algorithms for the rectangle
stabbing problem and the rectilinear partitioning problem. Journal of Algorithms, 43(1):138–152, 2002.

[10] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information
Processing Letters, 1(4):132–133, 1972.

[11] R. Hassin and D. Segev. Rounding to an integral program. Operations Research Letters, 36(3):321–326,
2008.

[12] A. J. Hoffman, A. Kolen, and M. Sakarovitch. Totally-balanced and greedy matrices. SIAM Journal on
Algebraic and Discrete Methods, 6:721–730, 1985.

[13] J. King. Errata on “A 4-Approximation Algorithm for Guarding 1.5-Dimensional Terrains”. http:

//www.cs.mcgill.ca/∼jking/papers/4apx latin.pdf.
[14] J. King. A 4-approximation algorithm for guarding 1.5-dimensional terrains. In Proceedings of the 13th

Latin American Symposium on Theoretical Informatics, pages 629–640, 2006.
[15] J. King. VC-dimension of visibility on terrains. In Proceedings of the 20th Canadian Conference on

Computational Geometry, pages 27–30, 2008.
[16] A. Kolen. Location problems on trees and in the rectilinear plane. PhD thesis, Matematisch Centrum,

Amsterdam, 1982.
[17] C. Koufogiannakis and N. E. Young. Beating simplex for fractional packing and covering linear pro-

grams. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 494–504,
2007.

[18] C. Koufogiannakis and N. E. Young. Beating simplex for fractional packing and covering linear pro-
grams. CoRR, abs/0801.1987, 2008.

[19] E. Krohn. Survey of terrain guarding and art gallery problems. Unpublished manuscript. November
2007.

[20] J. Mestre. Lagrangian relaxation and partial cover (extended abstract). In Proceedings of the 25th
Annual Symposium on Theoretical Aspects of Computer Science, pages 539–550, 2008.
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Abstract. We introduce a new technique for bounding the cover time of random walks
by relating it to the runtime of randomized broadcast. In particular, we strongly confirm
for dense graphs the intuition of Chandra et al. [8] that “the cover time of the graph
is an appropriate metric for the performance of certain kinds of randomized broadcast
algorithms”. In more detail, our results are as follows:

• For any graph G = (V, E) of size n and minimum degree δ, we have R(G) = O( |E|
δ
·

log n), where R(G) denotes the quotient of the cover time and broadcast time. This
bound is tight for binary trees and tight up to logarithmic factors for many graphs
including hypercubes, expanders and lollipop graphs.

• For any δ-regular (or almost δ-regular) graph G it holds that R(G) = Ω( δ2

n
· 1

log n
).

Together with our upper bound on R(G), this lower bound strongly confirms the
intuition of Chandra et al. for graphs with minimum degree Θ(n), since then the
cover time equals the broadcast time multiplied by n (neglecting logarithmic factors).

• Conversely, for any δ we construct almost δ-regular graphs that satisfy R(G) =
O(max{√n, δ} · log2 n). Since any regular expander satisfies R(G) = Θ(n), the
strong relationship given above does not hold if δ is polynomially smaller than n.

Our bounds also demonstrate that the relationship between cover time and broadcast
time is much stronger than the known relationships between any of them and the mixing
time (or the closely related spectral gap).

1. Introduction

Motivation. A random walk on a graph is the following process. Starting from a
specified vertex, the walk proceeds at each step from its current position to an adjacent
vertex chosen uniformly at random. The study of random walks has numerous applications
in the design and analysis of algorithms (cf. [24] for a survey). Two of the most important
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parameters of random walks are its mixing time which is the time until the walk becomes
close to the stationary distribution, and its cover time which is the expected time required
for the random walk to visit all vertices.

Famous combinatorial problems solved by rapidly mixing random walks are, e.g., ap-
proximating the permanent and approximating the volume of convex bodies (cf. [24] for
more details). The cover time comes naturally into play when the task is to explore a net-
work, or to estimate the stationary distribution of a graph [31]. Moreover, the cover time
is intimately related to combinatorial and algebraic properties such as the conductance and
the spectral gap of the underlying graph [6] and thus, bounding the cover time may also
lead to interesting combinatorial results.

In this paper, we are particularly interested in the relationship between the cover time
of random walks and the runtime of randomized broadcast [16]. Broadcasting in large
networks has various fields of application in distributed computing such as the maintenance
of replicated databases or the spreading of information in networks [16, 21]. Furthermore it
is closely related to certain mathematical models of epidemic diseases where infections are
spread to some neighbours chosen uniformly at random with some probability. However, in
most papers, spreaders are only active in a given time frame, and the question of interest
is, whether on certain networks an epidemic outbreak occurs [22, 27]. Several threshold
theorems involving the basic reproduction number, contact number, and the replacement
number have been stated (see [19] for a collection of results).

Here, we consider the so-called randomized broadcast algorithm [16] (also known as push
algorithm): at the beginning, a vertex s in a graph G knows of some rumor which has to
be disseminated to all other vertices. Then, at each time-step every vertex that knows of
the rumor chooses one of its neighbors uniformly at random and informs it of the rumor.
The advantage of randomized broadcast is in its inherent robustness against several kinds
of failures (e.g., [16]) and dynamical changes compared to deterministic schemes that either
need substantially more time or can tolerate only a relatively small number of faults [21].

Related Work. There is a vast body of literature devoted to the cover time of random
walks and we can only point to some results directly related to this paper. Aleliunas et
al. [3] initiated the study of the cover time. Amongst other results, they proved that the
cover time of any graph G = (V,E) with n vertices is at most O(n · |E|). To obtain this
result they proved that the cover time is bounded by the weight of a spanning tree whose
edges are weighted according to the commute times between the corresponding vertices.
This approach was later refined by Feige [15] to obtain an upper bound of less than 2n2

for regular graphs. While the spanning tree technique is particularly useful for graphs that
have a high cover time [15], it vastly overestimates the cover time of e.g., complete graphs.

The seminal work of Chandra et al. [8] established a close connection between the elec-
trical resistance of a graph and its cover time. This correspondence allows the application
of elegant methods from electrical network theory, e.g., the use of short-cut-principles or
certain flow-based arguments. Nevertheless, for the computation of the resistance of a given
graph other graph-theoretical parameters are often required, e.g., vertex-expansion, number
of vertex-disjoint paths or the number of vertices within a certain distance [8].

A wide range of techniques to upper bound the cover time is based on the mixing time of
a random walk or the closely related spectral gap. The technique of reducing the cover time
to the coupon collector’s problem on graphs with low mixing time traces back to Aldous [1]
who derived tight bounds on the cover time of certain Cayley graphs. Later, Cooper and
Frieze extended this technique to bound the cover time of several classes of random graphs,
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e.g., [10]. The basic idea of this method is that after each mixing time steps, the random
walk visits an (almost) randomly chosen vertex. The crux is to deal with the dependencies
among the intermediate vertices. Hence, in addition to an upper bound on the mixing time
of logarithmic [10] or at least sub-polynomial order [1], one has to bound the number of
returns to the starting vertex within mixing time steps.

A related result was derived by Broder and Karlin [6] who bounded the cover time in
terms of the spectral gap 1− λ2, where λ2 is the second largest eigenvalue of the transition
matrix of the random walk.

Winkler and Zuckerman [31] introduced an interesting parameter called blanket time
which is closely related to the cover time. Here, one asks for the first time-step at which
the observed distribution of the visited vertices approximates the stationary distribution
up to a constant factor. Winkler and Zuckerman conjectured that the blanket time is
asymptotically the same as the cover time. In [20] Kahn et al. showed that the blanket time
is upper bounded by the cover time multiplied by O((ln lnn)2) for any graph.

Most papers dealing with randomized broadcast analyze the runtime on different graph
classes. Pittel [28] proved that the runtime on complete graphs is log2 n+lnn±O(1). Feige
et al. [16] derived several upper bounds, in particular a bound of O(log n) for hypercubes
and random graphs. We extended the bound of O(log n) to a certain class of Cayley graphs
in [12]. Additionally, we proved that the broadcast time is upper bounded by the sum of
the mixing time and an additional logarithmic factor [29] (a similar result for a related
broadcast algorithm was derived by Boyd et al. [5]). However, the mixing time cannot be
used for an appropriate lower bound on the broadcast time, as it may overestimate the
broadcast time up to a factor of n on certain graphs (cf. Section 3.2).

Our Results. We present the first formal
maxG∈Gδ

R(G)
f(δ)

n1/4 n1/2 n3/4 n

n1/4

n3/4

n

O(1)

n1/2

δ

minG∈Gδ
R(G)

Figure 1: All bounds on R(G) at a
glance. Gδ denotes the
class of graphs with ∆ =
O(δ). The blue and red
polygons indicate the gap be-
tween our lower and upper
bounds on maxG∈Gδ

R(G) and
minG∈Gδ

R(G), resp.

results relating the cover time to the broadcast
time. In most of them, we will assume that the
broadcast and the random walk both start from
its respective worst-case initial vertex. Note that
at a first look these processes seem not to be too
closely related, since randomized broadcast is a
parallel process where propagation occurs at ev-
ery informed vertex simultaneously, while a ran-
dom walk moves ”only” from one vertex to an-
other [16]. Nevertheless, Chandra et al. [8] men-
tioned that “The cover time of the graph is an
appropriate metric for the performance of cer-
tain kinds of randomized broadcast algorithms”.
As a consequence of our main results, we obtain
a fairly tight characterization of graph classes for
which the cover time and broadcast time cap-
ture each other. On the positive side, for ev-
ery graph with minimum degree Θ(n), the cover
time equals the broadcast time multiplied by n,
up to logarithmic factors (this kind of tightness
(up to logarithmic factors) has been frequently
considered in the study of random walks, e.g., when studying rapidly mixing Markov
chains [30], or when bounding the cover time [8],[24, Theorem 2.7].). On the negative



376 R. ELSÄSSER AND T. SAUERWALD

side, this strong correspondence does not hold on almost regular graphs, when the degree
is substantially smaller than n.

In more detail, our results illustrated in Figure 1 are as follows. First, we prove that

the cover time of any graph with minimum degree δ is at most O( |E|δ log n) multiplied by
the (expected) broadcast time, that is, the quotient R(G) of the cover time and broadcast

time is O( |E|δ log n). This bound is tight up to a constant factor for binary trees and tight
up to a logarithmic factor for various graphs including, e.g., expanders, hypercubes and
lollipop-graphs. As an application, we use this result to upper bound the cover time of
generalized random graphs that are used as a model for real world networks [9].

Conversely, we consider the question of lower bounding R(G). By showing that the
commute time between two vertices u, v is at least 2 · dist(u, v)2, we obtain that R(G) =

Ω(
√

n log n
∆ ) for any graph with maximum degree ∆. For constant ∆, this bound is tight

for the two-dimensional
√

n×√
n-torus up to logarithmic factors. We move on to improve

this bound for denser graphs with ∆ = O(δ) to R(G) = Ω(
√

n√
δ log n

). More importantly, for

any graph with ∆ = O(δ) we establish that R(G) = Ω( δ2

n · 1
log n). Together with our upper

bound on R(G), this implies that on any graph with δ = Θ(n), cover time and broadcast
time (multiplied by n) capture each other up to logarithmic factors.

We complement these positive results by the construction of (almost) d-regular graphs
for which R(G) = O(max{√n, d} · log n). Since for any d-regular expander (graphs for
which the spectral gap satisfies (1− λ2)

−1 = O(1)), R(G) = Θ(n), the cover time does not
always capture the performance of randomized broadcast for the class of almost d-regular
graphs when d is polynomially smaller than n.

All of our lower and upper bounds reveal a surprisingly close relationship between the
cover time and broadcast time. In particular, upper bounding the cover time in terms of the
broadcast time turns out to be as good as (and in some cases much better than) bounding
it in terms of the spectral-gap (cf. Section 3.2). From another perspective, we derive a
lower bound on the broadcast time in terms of the cover time that nicely complements the
existing upper bounds on the broadcast time based on the mixing time [12, 29]. A further
novel feature of this work is the use of techniques from electrical network theory to bound
the broadcast time. We should note that certain difficulties in applying such methods for
the study of randomized broadcast have been mentioned by Feige et al. [16].

2. Notations, Definitions and Preliminaries

Throughout this paper, let G = (V,E) be an undirected, simple and connected graph of
size n = |V |. By δ and ∆ we denote the minimum and maximum degree of G, respectively.
For some set X ⊆ V , N(X) denotes the set of all neighbors of x ∈ X, and degX(u) is the
number of edges between u and the vertices of X.
Random Walk. A random walk [24] on a graph G starts at a specified vertex s ∈ V
and moves in each step to a neighboring vertex chosen uniformly at random. This can be
described by a transition matrix P, where pij = 1/deg(i) if {i, j} ∈ E(G), and pij = 0
otherwise. Then, the random walk is an infinite sequence of vertices X0,X1, . . ., where
X0 := s is the starting point of this random walk, and Xt denotes the vertex visited by
the random walk at step t. Note that Xt is a random variable with a distribution ps(t)
on V (G). Denoting by ps(0) the unit-vector (regarded as column vector) with 1 at the
component corresponding to s and 0 otherwise, we obtain the iteration ps(t+1) = ps(t) ·P
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for every step t ∈ N. It is well-known that on non-bipartite graphs, ps(t) converges for
t → ∞ towards the stationary distribution vector π given by π(v) = deg(v)/(2|E|). For
simplicity, we confine ourselves to non-bipartite graphs in the following. This causes no loss
of generality as for general graphs (including bipartite ones) convergence can be ensured
easily by using the transition matrix 1

2I + 1
2P (with I being the identity matrix) instead of

P. This change of the transition matrix slows down the mixing time (and the cover time)
only by some constant factor [24, 30].
Mixing Time and Spectral Gap. The mixing time of a random walk on G is MIXε(G) :=
maxs∈V min{t ∈ N : ‖ps(t) − π‖1 6 ε,X0 = s}. Since G is connected and non-bipartite,
the eigenvalues of P satisfy λ1 = 1 > λ2 > · · · > λn > −1. The following result by Sinclair
shows that the spectral gap 1− λ2 captures the mixing time up to logarithmic factors.

Theorem 2.1 ([30]). For any graph G = (V,E) and ε > 0,

Ω

(
λ2

1− λ2
· log

(1

ε

))
= MIXε(G) = O

(
1

1− λ2
·
(

log n + log
(1

ε

)))
.

Commute Time, Resistance and Cover Time. For two vertices u, v ∈ V (G), the
hitting time from u to v is defined as H(u, v) := E [min{t ∈ N\{0} : Xt = v,X0 = u} ], i. e.,
the expected number of steps to reach v from u. The commute time C(u, v) is defined as
the expected number of steps to reach v when starting from u and then returning back
to u, so, C(u, v) := H(u, v) + H(v, u). Consider now the graph G as an electrical network
where each edge represents a unit resistance. Let u and v be two vertices. Assume that one
ampere were injected into vertex u and removed from vertex v. Then R(u, v) is the voltage
difference between u and v (for more details on electrical networks we refer the reader to
[8, 24]), and is related to C(u, v) as follows.

Theorem 2.2 ([8]). For any pair of vertices u, v ∈ V , C(u, v) = 2|E| · R(u, v).

We will mainly be concerned with the cover time, which is the expected number of
steps a random walk takes to visit all vertices of G. Denote by COV(s) this time for a
random walk which starts from s, and let COV(G) := maxs∈V COV(s). The cover time
is related to the maximum commute time by means of 1

2 · maxu,v∈V C(u, v) 6 COV(G) 6

e3 ·maxu,v∈V C(u, v) ln n + n [8]. We restate the following bounds by Feige.

Theorem 2.3 ([13, 14]). For any graph, (1− o(1)) · n ln n 6 COV(G) 6 ( 4
27 + o(1)) · n3.

A corresponding result to Theorem 2.1 for COV(G) was given by Broder and Karlin.

Theorem 2.4 ([6]). For any regular graph G = (V,E), COV(G) = O( 1
1−λ2

· n log n).

Randomized Broadcast. We will consider the relationship between the cover time of
random walks and the following randomized broadcast algorithm RBA (also known as push
algorithm). Assume that at time t = 0 a vertex s knows of a rumor which has to be spread
to all other vertices. Then, at each time-step t = 1, 2, . . . every vertex that knows of the
rumor chooses a neighbor uniformly at random and informs it of the rumor. Let It be
the set of informed vertices at time t, so I0 = {s}. The runtime of RBA is denoted by
RBAp(G) := maxs∈V min{t ∈ N : Pr [ It = V | I0 = {s} ] > 1− p} for some given 0 < p < 1.
The expected runtime is E [ RBA(G) ] := maxs∈V {E [ min{t ∈ N : It = V, I0 = {s}} ]}. By
standard arguments, we have E [RBA(G) ] = O(RBAn−1(G)) = O(E [ RBA(G) ] · log n). We
remark that RBA(G) is at least max{log2 n,diam(G)} on any graph G, and RBAn−1(G) may
range from Θ(log n) (which is the case for many ”nice” graphs) to Θ(n log n) (which is the
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case for the star) [16]. Sometimes we also use RBA(s, v) := min{t ∈ N : v ∈ I(t) | I(0) =
{s}} and RBAp(s, v) := min{t ∈ N : Pr [ v ∈ I(t) | I0 = {s} ] > 1 − p} for some specified
0 < p < 1. We will frequently make use of following upper bound of Feige et al. [16].

Theorem 2.5 ([16]). For any graph G = (V,E), RBAn−1(G) = O(∆ · (log n + diam(G)).

To compare the cover time with the broadcast time, we define R(G) := COV(G)
E[ RBA(G) ] .

3. Upper Bound on R(G) and Applications

3.1. Upper Bound on R(G)

To prove an upper bound on R(G), we first prove a general inequality between first-
passage-percolation times and broadcast times and apply then a result of Lyons et al. [25]
relating first-passage-percolation to the cover time.

Definition 3.1 ([17, 25]). The undirected first-passage-percolation UFPP is defined as fol-
lows. All (undirected) edges e ∈ E(G) are assigned weights w(e) that are independent
exponential random variable with parameter 1. Specify a vertex s. Then the first-passage-
percolation time from s to v is defined by UFPP(s, v) := infP=(s,...,v)

∑
e∈P w(e), where the

inf is over all possible paths from s to v in G. Note that UFPP(s, s) = 0.

Theorem 3.2. For any graph G = (V,E) and s, v ∈ V , E [UFPP(s, v) ] 6
2
δ ·E [RBA(s, v) ] .

Proof. In the proof we derive several (in-)equalities between different percolation and broad-
cast models. First we introduce a directed version of UFPP, denoted by DFPP. In this model
each undirected edge {u, u′} ∈ E(G) is replaced by two directed edges (u, u′) and (u′, u), and
all directed edges e are assigned weights w(e) that are independent exponential random vari-
able with parameter 1. Denote by DFPP(s, v) the corresponding first-passage-percolation
time of this directed version.

Lemma 3.3. For any graph G = (V,E) and s, v ∈ V , E [UFPP(s, v) ] 6 2 ·E [ DFPP(s, v) ] .

Next consider another broadcast model denoted by SEQ. At the beginning, a vertex
s knows of a rumor which has to be spread to all other vertices. Once a vertex u receives
the rumor at time t ∈ R, it sends the rumor at each time t + X1,u, t + X1,u + X2,u, . . . to a
randomly chosen neighbor, where the Xi,u with i ∈ N are independent exponential variables

with parameter deg(u). Let SEQ(s, u) be the first time when u is informed.

Lemma 3.4. For any s, v ∈ V , SEQ(s, v) and DFPP(s, v) have the same distribution.

Finally, our aim is to relate SEQ and RBA.

Observation 3.5. In any execution of RBA, there is for each v ∈ V at least one minimal

path Pmin(s, v) = (s = v0
D1→ v1

D2→ . . .
Dl−1→ vl = v), such that for each i, vi sends the rumor

vi+1 at time RBA(s, vi) + Di+1, and at this time vi+1 becomes informed for the first time.

Using this observation and a coupling argument, we can prove the following lemma.

Lemma 3.6. For any pair of vertices s, v ∈ V we have E
[
SEQ(s, v)

]
6

E[ RBA(s,v) ]
δ .

We are now ready to finish the proof of Theorem 3.2. For every pair of vertices s, v ∈ V,

E [ UFPP(s, v) ] 6 2 · E [DFPP(s, v) ] = 2 ·E
[
SEQ(s, v)

]
6

2

δ
·E [ RBA(s, v) ] .



COVER TIME AND BROADCAST TIME 379

Theorem 3.7 ([25]). Let s, v ∈ V (G) with s 6= v. Then, R(s, v) 6 E [UFPP(s, v) ] .

Combining the two theorems above we arrive at the main result of this section.

Theorem 3.8. For any graph G = (V,E) we have for every pair of vertices s 6= v,

C(s, v) 6 4 · |E|
δ
· E [RBA(s, v) ] ,

and hence COV(G) = O
(
|E|
δ · log n ·E [RBA(G) ]

)
or equivalently, R(G) = O

(
|E|
δ · log n

)
.

3.2. Applications

We start by giving examples for which the first inequality of Theorem 3.8 is asymp-
totically tight. For paths and cycles with n vertices, it is well-known that maxs,v C(s, v) =
Θ(n2) (e.g., [24]) and Theorem 2.5 gives maxs,v E [RBA(s, v) ] 6 E [RBA(G) ] = O(n). Sim-
ilarly, for lollipop graphs (a complete graph with 2n/3 vertices attached by a path of length
n/3), maxs,v C(s, v) = Θ(n2) (e.g., [24]) and E [RBA(G) ] = O(n), and therefore the first
inequality of Theorem 3.8 is also asymptotically tight for this highly non-regular graph.

The following overview in Figure 3.2 is based on [2, Chapter 5, p. 11], where we have
added the corresponding broadcast times. It can be seen in Figure 3.2 that the second
inequality of Theorem 3.8 is matched by complete k-ary trees with k = O(1). For complete
graphs, expanders and hypercubes, the second inequality is tight up to a factor of O(log n).

Graph COV(G) E [RBA(G) ] (1− λ2)
−1

path/cycle n2 [24] n (Thm. 2.5) n2 [2, Ch. 5, p. 11]
complete O(1)-ary tree n log2 n [32, Cor. 9] log n (Thm. 2.5) n [2, Ch. 5, p. 11]
complete graph n log n [24] log n [28] 1
expander n log n [6] log n [29] 1
hypercube n log n [1] log n [16] log n [24]√

n×√
n-torus n log2 n [32, Thm. 4]

√
n (Thm. 2.5) n [24]

Kn/2 ×K2 n log n log n [29] n
lollipop n3 [24] n n2 [2, Ch. 5, p. 22]

Figure 2: Comparison of the asymptotic order of the cover time, broadcast time and spectral
gap of various graph classes. Recall that by Theorem 2.1, (1−λ2)

−1 captures the
mixing time up to logarithmic factors.

Let us consider the graph Kn/2×K2. One can easily verify that COV(G) = O(n log n),

E [RBA(G) ] = O(log n), but (1 − λ2)
−1 = Ω(n) (and consequently MIXe−1(G) = Ω(n)).

Comparing these values with the ones of the complete graph, we see that there are graphs
with an optimal cover time and optimal broadcast time, but (1− λ2)

−1 may vary between
Θ(1) and Ω(n). Hence the upper bound on the cover time based on the broadcast time
can be a polynomial factor smaller than the corresponding bound (Theorem 2.4) based on
the spectral gap 1− λ2. On the other hand, the following remark shows that by using the
broadcast time instead of the spectral gap, we never lose more than a log2 n factor:
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Remark 3.9. For any regular graph G, the second bound of Theorem 3.8 implies

COV(G) = O
(

1

1− λ2
· n log3 n

)
.

In addition, Theorem 3.8 implies directly the following well-known bounds.

(1) Since E [RBA(G) ] = O(n) for regular graphs [12, Prop. 1], we obtain maxu,v C(u, v) =
O(n2) for regular graphs [2, Ch. 6, Cor. 9].

(2) For bounded degree graphs, E [ RBA(G) ] = O(diam(G)) (by Theorem 2.5) implies
maxu,v C(u, v) = O(n diam(G)) [2, Ch. 6, Cor. 8].

(3) Since maxu,v E [ RBA(u, v) ] = O(n) [16], we obtain maxu,v C(u, v) = O(n3) [2, Ch. 6,
Thm. 1].

Finally, we give an application of Theorem 3.8 to certain power law random graphs
(such networks are used to model real world networks [9]).

Definition 3.10. Given an n-dimensional vector d = (d1, d2, . . . , dn), the generalized ran-
dom graph G(d) is constructed as follows. Each edge {i, j}, 1 6 i, j 6 n exists with

prob.
di·djPn
k=1 dk

, independently of all other edges.

Theorem 3.11 ([11]). Let d be a vector such that for all i, di > logc n, where c > 2 is some
constant, and the number of vertices with expected degree d is proportional to (d− logc n)−1.
Then, G(d) satisfies RBAn−1(G(d)) = O(log n) with probability 1− o(1).

Since the number of edges satisfies |E(G(d))| = O(n logc n) with probability 1−o(1) [9],
we obtain by combining the theorem above with Theorem 3.8:

Corollary 3.12. For G(d) as in Theorem 3.11 we have COV(G(d)) = O(n log2 n) with
probability 1− o(1).

4. Lower Bounds on R(G)

4.1. Sparse Graphs

Definition 4.1. Given a graph G = (V,E), a set Π ⊆ E(G) is called a cutset separating
u ∈ V from v ∈ V if every path from u to v includes an edge of Π.

Proposition 4.2 ([23, p. 59],[26]). For {Πi}k
i=1, k ∈ N, being disjoint cutsets separating u

from v, R(u, v) >
∑k

i=1 |Πi|−1.

Zuckerman [32] proved that for any two vertices u, v on a tree, H(u, v) > dist(u, v)2.
Using Proposition 4.2, we obtain the following generalization (a similar, but less tight bound
follows from a result of [7]).

Corollary 4.3. For any u, v ∈ V of any graph G, C(u, v) > 2 · dist(u, v)2. On the other
hand, there are graphs G and u, v ∈ V such that H(u, v) = Θ(dist(u, v)) = o(dist(u, v)2).

We remark that Corollary 4.3 is exact for paths (cf. [24]). Combining Corollary 4.3
with the known bounds from Theorem 2.3 and Theorem 2.5 yields:

Proposition 4.4. For any graph G with maximum degree δ, R(G) = Ω(
√

n
∆ ·

√
log n).
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As demonstrated by the
√

n×√n-torus where RBAn−1(G) = Θ(
√

n) (by Theorem 2.5)

and COV(G) = Θ(n log2 n) [32], this bound is tight up to a factor of log3/2 n for bounded
degree graphs. The next result improves over Proposition 4.4 for dense graphs.

Theorem 4.5. For any graph G with ∆ = O(δ), R(G) = Ω(
√

n√
δ
· 1

log n).

4.2. Dense Graphs

In this section we present results that are tailored for dense graphs, e.g., graphs with
minimum degree Θ(n). Consider a random walk X0 = s,X1, . . . on G starting from s.
Denote the number of visits to u until time t as Wt(s, u) := |{0 6 t′ 6 t : Xt′ = u}|.
Definition 4.6 ([20, 31]). Consider a graph G = (V,E) and a random walk starting from
s ∈ V . Let

BLA(s) := E

[
min

{
t ∈ N | ∀u ∈ V :

1

2
· tπ(u) 6 Wt(s, u) 6 2 · tπ(u)

} ]
.

Then, the blanket time of G is defined as BLA(G) := maxs∈V BLA(s).

Theorem 4.7 ([20]). For any graph G = (V,E), BLA(G) = O(COV(G) · (log log n)2).

We also require the following simple graph-theoretical lemma.

Lemma 4.8. For every graph G, there is a 2-cover X of G with |X| 6 ⌈n
δ ⌉, i. e., there is

a set X ⊆ V such that for all v ∈ V there is an x ∈ X with dist(x, v) 6 2.

Interestingly, it is known that there are graphs with minimum degree n
2 for which every

1-cover (i. e., dominating set) is of size Θ(log n) [4], while the lemma above shows that every
such graph has a 2-cover of constant size. We now prove the main result of Section 4.

Theorem 4.9. For any graph with ∆ = O(δ), E [ RBA(G) ] = O(1
δ · BLA(G) + n2

δ2 · log2 n).

The following corollary follows immediately from Theorem 4.9 and Theorem 4.7.

Corollary 4.10. For any graph G = (V,E) with ∆ = O(δ) we have R(G) = Ω( δ2

n · 1
log n).

Combining Corollary 4.10 with Theorem 3.8 for graphs with minimum degree Θ(n), we
see that the cover time equals the broadcast time multiplied by n up to logarithmic factors.
It is worth mentioning that for graphs with δ > ⌊n

2 ⌋, Chandra et al. [8, Theorem 3.3] proved
that COV(G) = Θ(n log n). As pointed out by the same authors, COV(G) may be between
n log n and Θ(n2) if δ < ⌊n

2 ⌋. Now, Corollary 4.10 provides a parameter (the broadcast
time) that captures the cover time not only for δ > ⌊n

2 ⌋, but also for δ = Ω(n).

Proof of Theorem 4.9. Let us briefly describe the main idea of the proof. We first show
that for every vertex u there is a fixed (independent of a concrete execution of RBA) set
of vertices Y (u) ⊆ V of size at least δ/12 such that u informs each vertex in Y (u) within
O((n/δ)·log2 n) steps with high probability. We then establish that if a vertex u informs v in
O((n/δ) · log2 n) steps with high probability, then also v informs u in O((n/δ) · log2 n) steps
with high probability. Using this fact and Lemma 4.8 we find that there is a partitioning of
V into a constant number of partitions with the following property: once a vertex in such a
partition becomes informed, the whole partition becomes informed within O((n/δ) · log2 n)
steps. Finally, we use a coupling between the random walk and the broadcast algorithm to
show that if the random walk covers the whole graph quickly, then the rumor will also be
quickly propagated from one partition to the other partitions. The formal proof follows.
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Lemma 4.11. For each u ∈ V there is a set Y (u) ⊆ V (independent of the execution of
RBA) of size at least δ/12 such that for every v ∈ Y (u), RBAn−4(u, v) 6 16C1

n
δ log2 n,

where C1 > 0 is some constant.

Lemma 4.12. For any two vertices u, v in a graph G with ∆ = O(δ), RBAn−4(v, u) 6

C2 · (RBAn−4(u, v) + log n), where C2 > 0 is some constant.

Consider the undirected auxiliary graph Ĝ = (V̂ , Ê) defined as follows: V̂ := V and

{u, v} ∈ Ê iff

max{RBAn−4(u, v),RBAn−4(v, u)} 6 C2 ·
(
16C1

n

δ
log2 n + log n

)
.

By the two lemmas above, δ(Ĝ) > δ/12. Hence Lemma 4.8 implies the existence of a 2-

cover {u1, u2, . . . , uk}, k 6 ⌈n/δ⌉, of Ĝ. Therefore, the sets Ui := {v ∈ V̂ | dist bG(v, ui) 6

2}, 1 6 i 6 k form a (possibly non-disjoint) partitioning of V̂ . Take a disjoint partitioning
V1, V2, . . . , Vk such that for every 1 6 i 6 k, Vi ⊆ Ui. Consider now the directed graph
G′ := (V ′, E′) with V ′ := {V1, V2, . . . , Vk} and

E′ :=

{
(Vi, Vj) | ∃u ∈ Vi, 1 6 t 6 4 · deg(u)

2|E| · BLA(G) : Nt,u ∈ Vj

}
,

where Nt,u ∈ N(u) is the vertex to which the random walk moves after the t-th visit of u.

Claim 4.13. Let s ∈ Vi. With prob. 1/2, there is a path from Vi to every Vj in G′.

Reconsider now the partitioning V1, V2, . . . , Vk, k 6 ⌈n/δ⌉, of V̂ = V . Let part(u) be
the function which assigns a vertex u the index of its partition. Let B be the event that
∀u ∈ V : Vpart(u) ⊆ I

RBA(s,u)+O(n
δ

log2 n) holds, i. e., for all u ∈ V it holds that once u is

informed, the partition Vpart(u) becomes completely informed within further O
(

n
δ log2 n

)

steps. Fix some arbitrary vertex u ∈ V and consider another vertex w ∈ Vpart(u). By

definition of Ĝ and Lemma 4.12, there is path of length at most 4 from u to w in Ĝ. Hence
once u is informed, w becomes informed within the next O(n

δ log2 n) steps with probability

1−4n−4. Applying the union bound over u ∈ V and w ∈ Vpart(u), we get Pr [B ] > 1−4n−2.

Claim 4.14. Conditioned on the events A and B, all vertices of G become informed after

O
(

1
δ · BLA(G) + n2

δ2 · log2 n
)

steps.

To finish the proof of the Theorem, we apply the union bound to get Pr [A∧ B ] >

1 − 1
2 − 4n−2. So, with probability larger than 1/3, all vertices of G become informed

after at most O(1
δ · BLA(G) + n2

δ2 · log2 n) steps. Thus for every k ∈ N, we succeed after

O(k · (1
δ · BLA(G) + n2

δ2 · log2 n)) steps with probability 1 − (2/3)k and hence the expected

broadcast time is O(1
δ · BLA(G) + n2

δ2 · log2 n).

4.3. Discussion

We first complement the lower bounds on R(G) by some concrete graphs. By a con-
struction based on Harary graphs [18] and the two-dim. torus we obtain the following.
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Theorem 4.15. For any
√

n 6 d 6 n − 1, there is a d-regular graph G with R(G) =
O(d · log n). Moreover, for any 1 6 d 6

√
n there is a graph with minimum degree d and

maximum degree d + 1 such that R(G) = O(
√

n · log2 n).

While for certain degrees, a small polynomial gap remains between the examples of
Theorem 4.15 and the bounds of Theorem 4.5 and Theorem 4.9 (cf. Figure 1), the quotient
between cover time and diameter is minimized up to logarithmic factors by these examples.

Proposition 4.16. For any graph G with ∆ = O(δ), COV(G)
diam(G) = Ω(max{√n, δ} ·

√
log n).

So far, in all considered graphs with a (nearly) optimal cover times and high broadcast
time, the latter was caused by a large diameter. Therefore, one could try to throw in the
lower bounds on diam(G) and ask the following question: Does COV(G) = O(polylog(n) ·
max{n log n,diam(G)2}) ⇔ E [RBA(G) ] = O(polylog(n) ·max{diam(G), log n}) hold? The
answer is that both directions can be refuted by counter-examples, even for graphs where
minimum and maximum degree coincide (up to constant factors).

5. Conclusion

Inspired by the intuition of Chandra et al. [8] about the relationship between cover
time of random walks and the runtime of randomized broadcast, we devised the first formal
results relating both times. As our main result in Section 3, we proved that the cover time
of any graph G is upper bounded by O(E

δ log n) times the broadcast time. This result is
tight for many graphs (at least up to a factor of log n) and gives an upper bound on the
cover time that is at least as good (and in certain cases much tighter than) the previous
bound based on the spectral gap [6]. Moreover, this result implies several classic bounds
on the cover time and an almost optimal upper bound on the cover time of certain random
graphs that are used to model real world networks. In Section 4 we derived lower bounds
on the ratio between the cover time and broadcast time. Together with our upper bound of
Section 3, we established a surprisingly strong correspondence between the cover time and
broadcast time on dense graphs. This positive result was complemented by the construc-
tion of certain graphs to demonstrate that this strong correspondence cannot be extended
to sparser graphs. Nevertheless, our lower and upper bounds show that the relationship
between cover time and broadcast time is substantially stronger than the relationship be-
tween any of these parameters and the mixing time (or the closely related spectral gap). In
particular, our findings provide evidence for the following hierarchy for regular graphs:

low mixing time ⇒ low broadcast time ⇒ low cover time,

which extends the following known relations: low mixing time ⇒ low cover time ([1, 6, 10])
and low mixing time ⇒ low broadcast time ([5, 12, 29]).
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Abstract. We study the management of buffers and storages in environments with un-
predictably varying prices in a competitive analysis. In the economical caching problem,
there is a storage with a certain capacity. For each time step, an online algorithm is given
a price from the interval [1, α], a consumption, and possibly a buying limit. The online
algorithm has to decide the amount to purchase from some commodity, knowing the pa-
rameter α but without knowing how the price evolves in the future. The algorithm can
purchase at most the buying limit. If it purchases more than the current consumption,
then the excess is stored in the storage; otherwise, the gap between consumption and pur-
chase must be taken from the storage. The goal is to minimize the total cost. Interesting
applications are, for example, stream caching on mobile devices with different classes of
service, battery management in micro hybrid cars, and the efficient purchase of resources.

First we consider the simple but natural class of algorithms that can informally be
described as memoryless. We show that these algorithms cannot achieve a competitive
ratio below

√
α. Then we present a more sophisticated deterministic algorithm achieving

a competitive ratio of
1

W( 1−α

eα
)+1

∈
h√

α√
2
,
√

α+1√
2

i

,

where W denotes the Lambert W function. We prove that this algorithm is optimal and
that not even randomized online algorithms can achieve a better competitive ratio. On the
other hand, we show how to achieve a constant competitive ratio if the storage capacity
of the online algorithm exceeds the storage capacity of an optimal offline algorithm by a
factor of log α.
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1. Introduction

In many environments in which resources with unpredictably varying prices are con-
sumed over time, the effective utilization of a storage can decrease the cost significantly.
Since decisions have to be made without knowing how the price evolves in the future, storage
management can naturally be formulated as an online problem in such environments. In
the economical caching problem each time step is characterized by a price, a consumption,
and a buying limit. In every such time step, an online algorithm has to decide the amount
to purchase from some commodity. The algorithm can purchase at most the buying limit. If
it purchases more than the current consumption, the excess is stored in a storage of limited
capacity; otherwise, the gap between consumption and purchase must be taken from the
storage.

This kind of problem does not only arise when purchasing resources like oil or natural
gas, but also in other interesting application contexts. Let us illustrate this by two examples,
one from the area of mobile communication and one dealing with the energy management
in cars. The first example is stream caching on mobile devices with different communication
standards like GSM, UMTS, WLAN. Since the price for transmitting data varies between
the different standards and since for moving devices it is often unclear which standard will
be available in the near future, the problem of cheaply caching a stream can be formulated
in our framework. The second example is battery management in micro hybrid cars. In
addition to a conventional engine, these cars have an electric motor without driving power
that allows the engine to be restarted quickly after it had been turned off during coasting,
breaking, or waiting. The power for the electric motor is taken from a battery that must
be recharged by the alternator during drive. Since the effectiveness of the conventional
engine depends on the current driving situation, the question of when and by how much to
recharge the battery can be formulated as an economical caching problem.

Let α denote an upper bound on the price in any step that is known to the online
algorithm. Formally, an instance of the economical caching problem is a sequence σ1σ2 . . .
in which every step σi consists of a price βi ∈ [1, α], a consumption vi ≥ 0, and a buying
limit ℓi ≥ vi. During step σi, the algorithm has to decide the amount Bi ∈ [0, ℓi] to
purchase. This amount has to be chosen such that neither the storage load drops below
zero nor the storage load exceeds the capacity of the storage, which we can assume to be 1
without loss of generality. Formally, if Li−1 denotes the storage load after step σi−1, then
Bi must be chosen such that Li−1 + Bi − vi ∈ [0, 1]. The restriction ℓi ≥ vi is necessary
because otherwise covering the consumption might not be possible at all. The economical

caching problem without buying limits is the special case in which all buying limits are set
to infinity.

1.1. Our Results

First we observe that the following simple algorithm achieves a competitive ratio of
√

α
(this also follows as a special case from Theorem 2.7): In every step σi with price βi ≤

√
α

buy as much as possible while adhering to the buying limit and the storage capacity. In all
other steps buy only as much as necessary to maintain a non-negative storage load.

This algorithm belongs to a more general natural class of algorithms, namely algorithms
with fixed buying functions. Given an arbitrary buying function f : [1, α] → [0, 1], we can
define the following algorithm: For every σi the amount to purchase is chosen such that the
storage load after the step is as close as possible to f(βi) taking into account the buying
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limit. For example, the buying function f of the simple algorithm satisfies f(x) = 1 for
x ≤ √

α and f(x) = 0 for x >
√

α. Informally, algorithms with fixed buying functions
can be seen as memoryless and vice versa, in the sense that the action in each step does
only depend on the characteristics of that step and the current storage load. However,
formally this intuitive view is incorrect since, due to the continuous nature of the problem,
an algorithm can encode arbitrary additional information into the storage load. One of
our results is a lower bound showing that there is no buying function that gives a better
competitive factor than

√
α.

Our main result, however, shows that this is not the best possible competitive factor.
We present a more sophisticated deterministic algorithm that achieves a competitive ratio
of

r := 1
W( 1−α

eα
)+1

∈
[√

α√
2
,
√

α+1√
2

]

,

where W denotes the Lambert W function (i.e., the inverse of f(x) = x · ex). We comple-
ment this result by a matching lower bound for randomized algorithms, showing that our
algorithm is optimal and that randomization does not help. Our lower bounds hold even
for the problem without buying limits.

Finally, we consider resource augmentation for the economical caching problem. We
show that, for every z ∈ N\{1}, there is a buying function algorithm achieving a competitive
ratio of z

√
α against an optimal offline algorithm whose storage capacity is by a factor of

z − 1 smaller than the storage capacity of the online algorithm. In particular, this implies
that we obtain a buying function algorithm that is e-competitive against an optimal offline
algorithm whose storage capacity is by a factor of max{⌈ln(α)⌉ − 1, 1} smaller than the
storage capacity of the online algorithm.

1.2. Previous Work

Although the economical caching problem is, in our opinion, a very natural problem with
applications from various areas, it seems to have not been studied before in a competitive
analysis. However, the problem bears some similarities to the one-way-trading problem
introduced by El-Yaniv et al. [4]. In this problem, a trader needs to exchange some initial
amount of money in some currency (say, dollars) to some other currency (say, euros). In
each step, the trader obtains the current exchange rate and has to decide how much dollars
to exchange. However, she cannot exchange euros back to dollars. El-Yaniv et al. present a
tight bound of Θ(log φ) on the competitive ratio achievable for the one-way-trading problem,
where φ denotes the ratio of the worst possible exchange rate and the best possible exchange
rate. Results on variations of one- and two-way-trading can also be found in the book by
Borodin and El-Yaniv [1] and in a survey by El-Yaniv [3]. In the two-way-trading problem,
the trader can buy and sell in both directions. A related problem is portfolio management,
which has been extensively studied (see, e.g., [2, 5, 6]).

The special case of the economical caching problem in which consumption occurs only
in the last step can be viewed as a one-way-trading problem in which the trader does not
start with a fixed amount of dollars but has a fixed target amount of euros. From our
proof it is easy to see that our algorithm for the economical caching problem is strictly
r-competitive on sequences that are terminated by a step with consumption 1 and price
α. Additionally, the sequences used in the lower bound also have the property that they
are terminated by such a step. Altogether, this implies that our algorithm is also optimal
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for the one-way-trading problem with a fixed target amount and yields a strict competitive
ratio of r for that problem.

1.3. Extensions

We can further generalize the economical caching problem. Each step may be charac-
terized by a consumption and a monotonically increasing price function pi(x) : [0, α] → R

+,
with pi(α) ≥ vi. The price function has the following meaning: The algorithm can buy up
to an amount of pi(x) at rate at most x. The problem with a single price βi and a buying
limit ℓi for each step σi is a special case with pi(x) = 0 for x < βi and pi(x) = ℓi for x ≥ βi.

Such price functions appear, for example, implicitly in the stock market. At any given
time, all sell orders for a specific stock in the order book define one price function since
for every given price x there is a certain number of shares available with an ask price of at
most x.

All our results also hold for this more general model. An (online) algorithm can trans-
form an instance for the general problem into an instance of the special problem on the
fly: A step with consumption vi and price function pi is transformed into a series of steps
as follows: First we determine the maximum rate we have to pay to satisfy the demand as
β := inf{x | pi(x) ≥ vi}. Then we generate the following steps (the upper value indicates
the price, the middle value the consumption, and the lower value the buying limit)





1
pi(1)
pi(1)









1 + ε
pi(1 + ε)− pi(1)
pi(1 + ε)− pi(1)



 · · ·





β − ε
pi(β − ε)− pi(β − 2ε)
pi(β − ε)− pi(β − 2ε)









β
pi(β)− pi(β − ε)
pi(β)− pi(β − ε)





for a small ε with (β − 1)/ε ∈ N. Finally, we append the following steps for the remaining
prices





β + ε
0

pi(β + ε)− pi(β)



 · · ·





α − ε
0

pi(α − ε)− pi(α − 2ε)









α
0

pi(α) − pi(α − ε)





for a small ε with (α − β)/ε ∈ N.
If ε is small, this transformation does not change the cost of an optimal offline algorithm

significantly and hence, our upper bounds on the competitive ratios still hold.

2. Upper Bound

2.1. The Optimal Offline Algorithm

To describe an optimal offline algorithm it is useful to track the cost-profile of the storage
contents. For this, we define a monotonically decreasing function g(x) : [0, α] → [0, 1] that
is initialized with g(x) := 1 and changes with each step. In the following, we denote the
function g(x) after step σi by gi(x) and the initial function by g0(x) = 1.

The intuition behind g(x) is that, assuming the storage of the optimal offline algorithm
is completely filled after step σi, a 1− g(x) fraction of the commodity stored in the storage
was bought at price x or better.

The change of g(x) from step to step follows two basic rules:
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(1) Consumption is satisfied as cheap as possible, i.e., what we remove from the storage
is what we bought at the lowest price.

(2) If we have stored something that was bought at a larger than the current price,
replace it with commodity bought at the current price. That is, we revoke the
decision of the past to buy at the worse price in favor of buying at the current,
better price.

Formalizing this yields the following definition

gi(x) :=

{

min{gi−1(x) + vi, 1} if x ≤ βi,

max{gi−1(x) + vi − ℓi, 0} if x > βi.

Using this definition, we can characterize the cost of an optimal offline algorithm. As
described above, consumption is satisfied at the best possible price. This gives rise to the
cost incurred in step σi, namely

Ci :=

∫ βi

0
max{gi−1(x) + vi − 1, 0} dx .

Based on these values, we can characterize the cost of an optimal offline algorithm.

Lemma 2.1. The cost of an optimal offline algorithm is exactly
∑

i Ci.

Due to space limitations, we omit the technical but straightforward proof of this lemma.

2.2. The Optimal Online Algorithm

Our optimal r := (W
(

1−α
eα

)

+ 1)−1-competitive algorithm is based on the functions
gi(x) introduced in Section 2.1. Note that an online algorithm can compute gi(x) since the
function is solely based on information from the current and past steps. Let the storage
level of the online algorithm after step σi be denoted by Li. The initial storage load is
L0 = 0. Our algorithm bears some similarity with the following “threat-based” policy for
one-way trading defined in [4]: In every step, convert just enough dollars to ensure that the
desired competitive ratio would be obtained if in all following steps the exchange rate were
equal to the worst possible rate. Our algorithm for the economical caching problem can be
described as follows: In every step, the algorithm buys just enough to ensure that it would
be strictly r-competitive if after the current step only one more step with consumption 1
and price α occurred that terminated the sequence.

This algorithm can be made explicit as follows: For each step σi of the input sequence
with price βi, buying limit ℓi, and consumption vi ≤ ℓi, the algorithm buys Bi := vi +

r ·
∫ α/r
1

gi−1(x)−gi(x)
α−x dx at rate βi. The storage level after this step is Li = Li−1 + r ·

∫ α/r
1

gi−1(x)−gi(x)
α−x dx.

Lemma 2.2. The algorithm above is admissible, that is, it does not buy more than the

buying limit and after every step the storage level lies between 0 and 1.

Proof. In a step σi, the algorithm buys

Bi = vi + r ·
∫ α/r

1

gi−1(x)− gi(x)

α − x
dx ,
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which can be written as

= vi + r ·
∫ βi

1

gi−1(x)−min{gi−1(x) + vi, 1}
α− x

dx

+ r ·
∫ α/r

βi

gi−1(x)−max{gi−1(x) + vi − ℓi, 0}
α − x

dx

≤ vi + r ·
∫ α/r

βi

gi−1(x)−max{gi−1(x) + vi − ℓi, 0}
α− x

dx

≤ vi + r ·
∫ α/r

βi

ℓi − vi

α − x
dx ≤ vi + r ·

∫ α/r

1

ℓi − vi

α − x
dx = ℓi ,

where the last equation follows from the following observation.

Observation 2.3. For our choice of r,
∫ α/r

1

1

α− x
dx = ln(α − 1)− ln(α − α/r) = ln

(

1− 1

α

)

− ln

(

1− 1

r

)

=
1

r
.

This observation follows easily from the identity ln(−W (x)) = ln(−x)−W (x).
The storage level after step σi is

Li = Li−1 + r ·
∫ α/r

1

gi−1(x)− gi(x)

α − x
dx = L0 + r ·

∫ α/r

1

g0(x)− gi(x)

α − x
dx

= r ·
∫ α/r

1

1− gi(x)

α − x
dx = 1− r ·

∫ α/r

1

gi(x)

α − x
dx ,

where we use Observation 2.3 to obtain the last equation. This storage level is obviously at
most 1. On the other hand,

Li = 1− r ·
∫ α/r

1

gi(x)

α − x
dx ≥ 1− r ·

∫ α/r

1

1

α − x
dx = 0 ,

where the last step follows again from Observation 2.3.
Finally, let us observe that Bi is non-negative. From the definition of gi it follows that

gi(x) ≤ gi−1(x) + vi for every x. Hence,

Bi ≥ vi + r ·
∫ α/r

1

−vi

α − x
dx = 0 ,

where the last equality is due to Observation 2.3.

Theorem 2.4. The algorithm above is r := (W
(

1−α
eα

)

+ 1)−1-competitive.

Proof. To prove the theorem we show that, on any sequence, the cost of the algorithm above
is at most r times the cost of the optimal offline algorithm plus α. Since α is a constant,
this proves the theorem.

We already characterized the cost of an optimal offline algorithm in Section 2.1. The
next step in our proof is to bound the Ci’s from below. By Lemma 2.1, this yields a lower
bound on the cost of an optimal offline algorithm, which is necessary for proving the desired
competitive ratio.
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Lemma 2.5. For every step σi with βi ≤ α/r,

Ci +

∫ α/r

0
(gi(x)− gi−1(x)) dx = βi · vi −

∫ α/r

βi

min{ℓi − vi, gi−1(x)} dx .

For every step σi with βi > α/r,

Ci +

∫ α/r

0
(gi(x)− gi−1(x)) dx ≥ α

r
· vi .

The only remaining part in the proof is to bound the cost of our algorithm from above.
For this, observe that the cost that our algorithm incurs in step σi is exactly βi · Bi.

Lemma 2.6. For every step σi with βi ≤ α/r,

βi · Bi + α(Li−1 − Li) ≤ r

(

βi · vi −
∫ α/r

βi

min{ℓi − vi, gi−1(x)} dx

)

.

For every step σi with βi > α/r,

βi · Bi + α(Li−1 − Li) ≤ α · vi .

Given the previous lemmas, whose proof will be contained in the full version of this
paper, the proof of the theorem follows from elementary calculations: Due to Lemma 2.5
and 2.6,

βi ·Bi + α(Li−1 − Li) ≤ r

(

Ci +

∫ α/r

0
(gi(x)− gi−1(x)) dx

)

,

for every step σi. Summing over all steps yields
n
∑

i=1

(βi ·Bi)− α(Ln − L0) ≤ r

(

n
∑

i=1

Ci +

∫ α/r

0
(gn(x)− g0(x)) dx

)

≤ r ·
n
∑

i=1

Ci .

This concludes the proof of the theorem since the cost of our online algorithm is exactly
∑n

i=1(βi · Bi), α(Ln − L0) ≤ α and, due to Lemma 2.1,
∑n

i=1 Ci is equal to the cost of an
optimal offline algorithm.

2.3. Algorithm for Larger Storage Capacities

In this section we present a buying function algorithm with a storage capacity of
⌈log α/ log c⌉ − 1 that is c-competitive against an optimal offline algorithm with storage
capacity 1. In particular, this implies that for every z ∈ N \{1}, we have an algorithm with
storage capacity z − 1 that achieves a competitive ratio of z

√
α.

Let Li denote the storage load after step σi. Further, we define a buying function

B(x) := max{⌈log α/ log c⌉ − ⌊log x/ log c⌋ − 1, 0} .

For each step σi of the input sequence with price βi, buying limit ℓi, and consumption
vi ≤ ℓi, the algorithm buys

Bi := max{min{B(βi)− Li−1 + vi, ℓi}, 0} .
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Hence, the storage load Li after the i-th step is Li−1 + Bi − vi. Again, we have to argue
that the algorithm is admissible, i.e., that 0 ≤ Li ≤ ⌈log α/ log c⌉ − 1. For i = 0 this is
obviously the case since L0 = 0. For i ≥ 1, we observe that

Li = Li−1 + Bi − vi

= Li−1 + max{min{B(βi)− Li−1 + vi, ℓi}, 0} − vi

= max{min{B(βi), ℓi + Li−1 − vi}, Li−1 − vi} .

Now, on the one hand,

max{min{B(βi), ℓi + Li−1 − vi}, Li−1 − vi} ≥ min{B(βi), ℓi + Li−1 − vi} ≥ 0

due to the induction hypothesis Li−1 ≥ 0 and since B(βi) ≥ 0 and ℓi ≥ vi. On the other
hand,

max{min{B(βi), ℓi + Li−1 − vi}, Li−1 − vi} ≤ max{B(βi), Li−1 − vi} ≤ ⌈log α/ log c⌉ − 1

due to the induction hypothesis Li−1 ≤ ⌈log α/ log c⌉−1 and since B(βi) ≤ ⌈log α/ log c⌉−1.

Theorem 2.7. The above algorithm is c-competitive.

Proof. To prove the theorem, we use the same functions gi(x) as in Theorem 2.4. Again,
we can characterize the cost of an optimal offline algorithm as

∑

i Ci.
In addition, we introduce functions fi(x) : [0, α] → [0, ⌈log α/ log c⌉ − 1] defined by

f0(x) := 0 and

fi(x) :=

{

min{fi−1(x) + Bi, Li} = Bi + min{fi−1(x), Li−1 − vi} if x ≤ βi,

fi−1(x) if x > βi.

Clearly, the cost of the online algorithm is equal to
∑

i βi · Bi. However, for our proof, we
characterize the cost in a different way that is similar to our characterization of the optimal
cost. For this, define

Di :=

∫ βi

0
max{fi−1(x)− Li + Bi, 0} dx .

Lemma 2.8. For every j,

j
∑

i=1

βi ·Bi =

∫ α

0
fj(x) dx +

j
∑

i=1

Di .

The goal is to relate Di to Ci in order to prove the theorem. More precisely, we show
that, for every i, Di ≤ c · Ci. This yields the theorem as

j
∑

i=1

βi · Bi =

∫ α

0
fj(x) +

j
∑

i=1

Di

≤ α · (⌈log α/ log c⌉ − 1) +

j
∑

i=1

Di

≤ α · (⌈log α/ log c⌉ − 1) + c ·
j
∑

i=1

Ci .

In order to show Di ≤ c · Ci, we need the following invariant.
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Lemma 2.9. For every i and x ∈ [0, α/c], Li − fi(c · x)− 1 + gi(x) ≥ 0.

Using this lemma we obtain

Di =

∫ βi

0
max{fi−1(x)− Li + Bi, 0} dx =

∫ βi

0
max{fi−1(x)− Li−1 + vi, 0} dx

≤
∫ βi

0
max{gi−1(x/c)− 1 + vi, 0} dx = c ·

∫ βi/c

0
max{gi−1(x)− 1 + vi, 0} dx

≤ c ·
∫ βi

0
max{gi−1(x) + vi − 1, 0} dx = c · Ci .

The proofs of Lemmas 2.8 and 2.9 will be contained in the full version of this paper.

3. Lower Bounds

3.1. General Lower Bound

Theorem 3.1. The competitive ratio of any randomized online algorithm for the economical

caching problem is at least

r :=
1

W
(

1−α
eα

)

+ 1
.

This also holds for the economical caching problem without buying limits.

Proof. Let A denote an arbitrary randomized online algorithm. For every β ∈ [1, α/r], we
construct a sequence Σβ. This sequence starts with a series Σ′

β of steps without a buying

limit, without consumption, and with prices decreasing from α/r to β. To be more precise,
let the prices in this series of steps be

α

r
,
α

r
− ε,

α

r
− 2ε, . . . , β + ε, β,

for a small ε > 0 with (α/r − β)/ε ∈ N. Since we can choose the discretization parameter
ε arbitrarily small, we assume in the following that the prices decrease continuously from
α/r to β, to avoid the cumbersome notation caused by discretization. Finally, the sequence
Σβ is obtained by appending one step without a buying limit, consumption 1, and price α
to Σ′

β.
Due to the last step with consumption 1 and price α, we can assume that after a

sequence of the form Σβ algorithm A has an empty storage. Otherwise, we can easily
modify A such that this property is satisfied without deteriorating its performance. Given
this assumption, the behavior of algorithm A on sequences Σβ can be completely described in
terms of a monotonically decreasing buying function f : [1, α/r] → [0, 1] with the following
meaning: after the subsequence Σ′

β with decreasing prices from α/r to β, the expected

storage level of A is f(β). Using linearity of expectation, the expected costs of A on Σβ can
be expressed as

CA(Σβ) = Cf (β) = (1− f(β)) · α + β · f(β) +

∫ α/r

β
f(x) dx .

The first term results from the fact that in the last step of Σβ algorithm A has to purchase
the amount of 1− f(β) for price α. The remaining term is illustrated in Figure 1.
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β α/r

ε · (f(α/r) − f(α/r − ε))

ε · (f(α/r − ε) − f(α/r − 2ε))

ε · (f(α/r − 2ε) − f(α/r − 3ε))

f(β)

β · f(β)

∫ α/r

β
f(x) dx

β α/r

f(β)

Figure 1: The first figure illustrates the cost of algorithm A on the discrete sequence, and
the second figure illustrates its cost on the continuous sequence. Since the function f is
monotone, it is integrable on the compact set [β, α/r], which in turn implies that for ε → 0
the costs on the discrete and continuous sequence coincide.

In addition to the actual buying function f of algorithm A, we also consider the buying
function g defined by

g(x) = r ·
(

ln
(

1− x

α

)

− ln

(

1− 1

r

))

.

This buying function has the property that for all β ∈ [1, α/r]

Cg(β) = (1− g(β)) · α + β · g(β) +

∫ α/r

β
g(x) dx = r · β ,

as shown by the following calculation:

(1− g(β))α + β · g(β) +

∫ α/r

β
g(x) dx

= (1− g(β))α + β · g(β) +

∫ α/r

β
r ·
(

ln
(

1− x

α

)

− ln

(

1− 1

r

))

dx

= (1− g(β))α + β · g(β) +
[

r · (−α + x)
(

ln
(

1− x

α

)

− 1
)]α/r

β
− r ·

(α

r
− β

)

ln

(

1− 1

r

)

= (1− g(β))α + β · g(β) + r ·
(

(−α + β) ln

(

1− 1

r

)

− (−α + β) ln

(

1− β

α

)

+
(

β − α

r

)

)

= (1− g(β))α + β · g(β) + (α − β) · g(β) + r ·
(

β − α

r

)

= r · β .

Furthermore, g is a valid buying function as it is monotonically decreasing, g(α/r) = 0, and

g(1) = r ·
(

ln

(

1− 1

α

)

− ln

(

1− 1

r

))

= 1 ,

which follows from Observation 2.3.
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In order to show the lower bound on A’s competitive ratio, we distinguish between two
cases: either f(x) > g(x) for all x ∈ [1, α/r] or there exists an x ∈ [1, α/r] with f(x) ≤ g(x).
In the former case, we set β = 1 and, according to the previous calculations, obtain that
CA(Σ1) = Cf (1) > Cg(1) = r. Since the cost of an optimal offline algorithm on Σ1 is 1,
the competitive ratio of algorithm A is bounded from below by r in this case. Now let us
consider the case that there exists an x ∈ [1, α/r] with f(x) ≤ g(x). In this case, we set

β = sup{x ∈ [1, α/r] | f(x) ≤ g(x)} .

Since f(x) ≥ g(x) for all x ≥ β, we obtain

CA(Σβ) = Cf (β) ≥ Cg(β) = rβ .

Combining this with the observation that the cost of an optimal offline algorithm on the
sequence Σβ is β implies that, also in this case, the competitive ratio of A is bounded from
below by r.

The argument above shows only that no algorithm can be strictly r′-competitive for
r′ < r (in fact, it is easy to see that no algorithm can be strictly r′-competitive for r′ < α).
However, the assumption that A has an empty storage after each sequence Σβ allows us to
repeat an arbitrary number of sequences of this kind without affecting the argumentation
above, showing that no algorithm can be better than r-competitive. Observe that the buying
function of algorithm A can be different in each repetition, which, however, cannot help to
obtain a better competitive ratio because β is adopted appropriately in each repetition.

3.2. Lower Bound for Algorithms with Fixed Buying Functions

Theorem 3.2. The competitive ratio of any randomized online algorithm for the econom-

ical caching problem with a fixed buying function is at least
√

α. This also holds for the

economical caching problem without buying limits.

Proof. Let us first consider an algorithm A with an arbitrary but monotonically decreasing
buying function f . We will later argue how to extend the proof to functions that are not
necessarily monotonically decreasing. We construct a sequence Σ on which A is at least√

α-competitive as follows: Σ starts with a sequence Σ′ that is similar to Σ′
1 from the proof

of Theorem 3.1 with the only exception that we decrease the efficiency from α to 1. To be
precise, in every step in this sequence there is no consumption, no buying limit, and the
prices are

α,α − ε, α − 2ε, . . . , 1 + ε, 1 ,

for a small ε with (α−1)/ε ∈ N. As in the proof of Theorem 3.1, we simplify the notation by
assuming that the price decreases continuously from α to 1. The cost of A on this sequence
is

q := 1 +

∫ α

1
f(x) dx .

Let us assume that f(1) = 1. Due to the construction of the sequence Σ this can only reduce
the cost of A on Σ. We can also assume that f(α) = 0 because if A purchases anything at
price α, it can easily be seen that A cannot be better than α-competitive.

Now we distinguish between two cases: if q ≥ √
α, then the sequence Σ is formed by

appending one step with price α, consumption 1, and no buying limit to Σ′. The cost of an
optimal offline algorithm on this sequence is 1, whereas the cost of A is q. Hence, in this
case, algorithm A is at least

√
α-competitive.
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Now let us assume that q ≤ √
α. After the sequence Σ′, the price increases again

from 1 to α but this time with consumption. There still is no buying limit and the prices
and consumptions are as follows (the upper value indicates the price, the lower value the
consumption):
(

1 + ε
f(1)− f(1 + ε)

)(

1 + 2ε
f(1 + ε)− f(1 + 2ε)

)

· · ·
(

α− ε
f(α − 2ε)− f(α− ε)

)(

α
f(α− ε)

)

.

Let us call this sequence Σ′′. Observe that consumptions and prices are chosen such that A
does not purchase anything during the sequence Σ′′. The sequence Σ is formed by appending
one step with price α, consumption 1, and no buying limit to Σ′Σ′′. On this sequence, the
optimal cost is 1+q: The optimal offline algorithm purchases an amount of 1 in the last step
of Σ′ for price 1, and then it purchases in every step of Σ′′ exactly the consumption. This
way the storage is completely filled after the sequence Σ′′ and no further cost is incurred in
the final step. Similar arguments as in the proof of Theorem 3.1 show that the cost during
the sequence Σ′′ is q. Since algorithm A does not purchase anything during Σ′′, it has to
purchase an amount of 1 for the price of α in the final step. Hence, its total cost is q + α.
For q ≤ √

α, we have
q + α

q + 1
≥

√
α + α√
α + 1

=
√

α .

Since f(α) = 0, algorithm A has an empty storage after this sequence. Hence, we can
repeat this sequence an arbitrary number of times, proving the theorem.

If the buying function f is not monotonically decreasing, we can, for the purpose of this
proof, replace f by the monotonically decreasing function f∗(x) := sup{f(y) | y ≥ x}. An
algorithm with buying function f behaves the same as an algorithm with buying function
f∗ on the sequences constructed in this lower bound with respect to f∗.
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1. Introduction

Root and root finding are concepts familiar to most branches of mathematics. In graph
theory, H is a square root of G and G is the square of H if two vertices x, y have an edge in G

if and only if x, y are of distance at most two in H. Graph square is a basic operation with
a number of results about its properties in the literature. In this paper we are interested
in the characterization and recognition problems of graph squares. Ross and Harary [22]
characterized squares of trees and showed that tree square roots, when they exist, are unique
up to isomorphism. Mukhopadhyay [20] provided a characterization of graphs which have a
square root, but this is not a good characterization in the sense that it does not give a short
certificate when a graph does not have a square root. In fact, such a good characterization
may not exist as Motwani and Sudan proved that it is NP-complete to determine if a given
graph has a square root [19]. On the other hand, there are polynomial time algorithms to
compute the tree square root [17, 14, 15, 3, 4], a bipartite graph square root [15], and a
proper interval graph square root [16].

The algorithms for computing tree square roots and bipartite graph square roots are
based on the fact that the square roots have no cycles and no odd cycles respectively.
Since computing the graph square uses only local information from the first and the second
neighborhood, it is plausible that there are polynomial time algorithms to compute square
roots that have no short cycles (locally tree-like), and more generally to compute square
roots that have no short odd cycles (locally bipartite). The girth of a graph is the length of
a shortest cycle. In this paper we consider the characterization and recognition problems
of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some
graph H of small girth.

The main results of this paper are the following. In Section 2 we will provide a good
characterization for graphs that are squares of some graph of girth at least 7. This charac-
terization not only leads to a simple algorithm to compute a square root of girth at least
7 but also shows such a square root, if it exists, is unique up to isomorphism. Then, in
Section 3, we will present a polynomial time algorithm to compute a square root of girth
at least 6, or report that none exists. In Section 4 we will show that it is NP-complete to
determine if a graph G has a square root of girth 4. Finally, we discuss some open questions
and conjectures.

These results almost provide a dichotomy theorem for the complexity of the recognition
problem in terms of girth of the square roots. The algorithmic and graph theoretical results
considerably generalize previous results on tree square roots. We believe that our algorithms
can be extended to compute square roots with no short odd cycles (locally bipartite), and
in fact one part of the algorithm for computing square roots of girth at least 6 uses only
the assumption that the square roots have no 3 cycles or 5 cycles. Coloring properties of
squares in terms of girth of the roots have been considered in the literature [2, 5, 11]; our
algorithms would allow those results to apply even though a square root was not known
apriori.

Definitions and notation: All graphs considered are finite, undirected and simple.
Let G = (VG, EG) be a graph. We often write xy ∈ EG for {x, y} ∈ EG. Following [19, 16],
we sometimes also write x↔ y for the adjacency of x and y in the graph in question; this
is particularly the case when we describe reductions in NP-completeness proofs.

The neighborhood NG(v) in G of a vertex v is the set all vertices in G adjacent to v

and the closed neighborhood of v in G is NG[v] = NG(v) ∪ {v}. Set degG(v) = |NG(v)|, the
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degree of v in G. We call vertices of degree one in G end-vertices of G. A center vertex of
G is one that is adjacent to all other vertices.

Let dG(x, y) be the length, i.e., number of edges, of a shortest path in G between x and
y. Let Gk = (VG, Ek) with xy ∈ Ek if and only if 1 ≤ dG(x, y) ≤ k denote the k-th power
of G. If G = Hk then G is the k-th power of the graph H and H is a k-th root of G. Since
the power of a graph H is the union of the powers of the connected components of H, we
may assume that all graphs considered are connected.

A set of vertices Q ⊆ VG is called a clique in G if every two distinct vertices in Q are
adjacent; a maximal clique is a clique that is not properly contained in another clique. A
stable set is a set of pairwise non-adjacent vertices. Given a set of vertices X ⊆ VG, the
subgraph induced by X is written G[X] and G−X stands for G[V \X]. If X = {a, b, c, . . .},
we write G[a, b, c, . . .] for G[X]. Also, we often identify a subset of vertices with the subgraph
induced by that subset, and vice versa.

The girth of G, girth(G), is the smallest length of a cycle in G; in case G has no cycles,
we set girth(G) = ∞. In other words, G has girth k if and only if G contains a cycle of
length k but does not contain any (induced) cycle of length ℓ = 3, . . . , k − 1. Note that
the girth of a graph can be computed in O(nm) time, where n and m are the number of
vertices, respectively, edges of the input graph [13].

A complete graph is one in which every two distinct vertices are adjacent; a complete
graph on k vertices is also denoted by Kk. A star is a graph with at least two vertices
that has a center vertex and the other vertices are pairwise non-adjacent. Note that a
star contains at least one edge and at least one center vertex; the center vertex is unique
whenever the star has more than two vertices.

2. Squares of graphs with girth at least seven

In this section, we give a good characterization of graphs that are squares of a graph
of girth at least seven. Our characterization leads to a simple polynomial-time recognition
for such graphs.

Proposition 2.1. Let G be a connected, non-complete graph such that G = H2 for some
graph H.
(i) If girth(H) ≥ 6 and v is a vertex with degH(v) ≥ 2 then NH [v] is a maximal clique in G;
(ii) If girth(H) ≥ 7 and Q is a maximal clique in G then Q = NH [v] for some vertex v

where degH(v) ≥ 2.

Proof. (i) Let v be a vertex with degH(v) ≥ 2. Clearly, Q = NH [v] is a clique in G.
Consider an arbitrary vertex w outside Q; in particular, w is non-adjacent in H to v. If
w is non-adjacent in H to all vertices in Q, then dH(w, v) > 2. If w is adjacent in H to a
vertex x ∈ Q−v, let y ∈ Q\{v, x}. Then NH [w]∩NH [y] = ∅ (otherwise H would contain a
cycle of length at most five), hence dH(w, y) > 2. Thus, in any case, w cannot be adjacent,
in G, to all vertices in Q, and so Q is a maximal clique in G.

(ii) Let Q be a maximal clique in G and v ∈ Q be a vertex that maximizes |Q∩NH [v]|.
We prove that Q = NH [v]. It can be seen that by the maximality of Q, degH(v) ≥ 2. Now,
we show that if w ∈ Q \NH [v] and x ∈ Q ∩ NH [v], then wx 6∈ EH : As w 6∈ NH [v], this is
clear in case x = v. So, let x 6= v and assume to the contrary that wx ∈ EH . Then, by the
choice of v, there exists a vertex w′ ∈ Q \ NH [x], w′ ∈ NH [v]. Note that w′x,w′w 6∈ EH
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because H has no C3, C4. As ww′ ∈ EG \ EH , there exists a vertex u 6∈ {w,w′, x, v} with
uw, uw′ ∈ EH . But then H[w,w′, x, v, u] contains a C4 or C5. Contradiction.

Finally, we show that Q ⊆ NH [v], and so, by the maximality of Q, Q = NH [v]: Assume
otherwise and let w ∈ Q \ NH [v]. As wv ∈ EG \ EH , there exists a vertex x such that
xw, xv ∈ EH , and so, x ∈ NH [v] \Q. By the maximality of Q, x must be non-adjacent (in
G) to a vertex w′ ∈ Q. In fact, w′ ∈ Q\NH [v] as x is adjacent in G to every vertex in NH [v].
Since w′v ∈ EG \EH , there exists a vertex a such that aw′, av ∈ EH ; note that a 6∈ {x,w}.
Now, if ww′ ∈ EH then H[w,w′, a, v, x] contains a cycle of length at most five. If ww′ 6∈ EH ,
let b be a vertex such that bw, bw′ ∈ EH ; possibly b = a. Then H[w,w′, a, b, v, x] contains
a cycle of length at most six. In any case we have a contradiction, hence Q \NH [v] = ∅.

The 5-cycle C5 and the 6-cycle C6 show that (i), respectively, (ii) in Proposition 2.1 is
best possible with respect to the girth condition of the root. More generally, the maximal
cliques in the square of the subdivision of any complete graph on n ≥ 3 vertices do not
satisfy Condition (ii).

Definition 2.2. Let G be an arbitrary graph. An edge of G is called forced if it is contained
in (at least) two distinct maximal cliques in G.

Proposition 2.3. Let G be a connected, non-complete graph such that G = H2 for some
graph H with girth at least seven, and let F be the subgraph of G consisting of all forced
edges of G. Then
(i) F is obtained from H by deleting all end-vertices in H;
(ii) for every maximal clique Q in G, F [Q ∩ VF ] is a star; and
(iii) every vertex in VG − VF belongs to exactly one maximal clique in G.

Proof. First we observe that xy is a forced edge in G iff xy is an edge in H with degH(x) ≥ 2
and degH(y) ≥ 2. Now, (i) follows directly from the above observations. For (ii), consider a
maximal clique Q in G. By Proposition 2.1, Q = NH [v] for some vertex v with degH(v) ≥ 2.
Let X be the set of all neighbors of v in H that are end-vertices in H and Y = NH(v) \X.
Since G is not complete, Y 6= ∅. By (i), X ∩ VF = ∅, hence F [Q ∩ VF ] = F [{v} ∪ Y ] which
implies (ii). For (iii), consider a vertex u ∈ VG − VF and a maximal clique Q containing u.
Then, u cannot belong to Y and therefore Q is the only maximal clique containing u.

We now are able to characterize squares of graphs with girth at least seven as follows.

Theorem 2.4. Let G be a connected, non-complete graph. Let F be the subgraph of G

consisting of all forced edges in G. Then G is the square of a graph with girth at least seven
if and only if the following conditions hold.
(i) Every vertex in VG − VF belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.
(iii) Every two non-disjoint edges in F belong to a common maximal clique in G.
(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star.
(v) F is connected and has girth at least seven.

Proof. For the only if-part, (ii) and (iii) follow easily from Proposition 2.1, and (i), (iv) and
(v) follow directly from Proposition 2.3.

For the if-part, let G be a connected graph satisfying (i) – (v). We will construct a
spanning subgraph H of G with girth at least seven such that G = H2 as follows. For
each edge xy in F let, by (ii) and (iv), Q 6= Q′ be the two maximal cliques in G with
Q ∩ Q′ = {x, y}. Let, without loss of generality, |Q ∩ VF | ≥ |Q

′ ∩ VF |. Assuming x is
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a center vertex of the star F [Q ∩ VF ], then y is a center vertex of the star F [Q′ ∩ VF ]:
Otherwise, by (iv), x is the center vertex of the star F [Q′ ∩ VF ] and there exists some
y′ ∈ Q′ ∩ VF such that yy′ 6∈ F ; note that xy′ ∈ F (by (iv)). As |Q∩ VF | ≥ |Q

′ ∩ VF |, there
is an edge xz ∈ F − xy in Q−Q′. By (iii), zy′ ∈ EG. Now, as Q′ is maximal, the maximal
clique Q′′ containing x, y, z, y′ is different from Q′. But then {y, y′} ⊆ Q′∩Q′′, i.e., yy′ ∈ F ,
hence F contains a triangle xyy′, contradicting (v).

Thus, assuming x is a center vertex of the star F [Q ∩ VF ], y is a center vertex of the
star F [Q′ ∩ VF ]. Then put the edges xq, q ∈ Q− x, and yq′, q′ ∈ Q′ − y, into H.

By construction, F ⊆ H ⊆ G and by (i),

for all vertices u ∈ VH \ VF , degH(u) = 1, (2.1)

∀v ∈ VF ,∀a, b ∈ VH with va, vb ∈ EH : a and b belong to the same clique in G. (2.2)

Furthermore, as every maximal clique in G contains a forced edge (by (iv)), H is a spanning
subgraph of G. Moreover, F is an induced subgraph of H: Consider an edge xy ∈ EH with
x, y ∈ VF . By construction of H, x or y is a center vertex of the star F [Q ∩ VF ] for some
maximal clique Q in G. Since x, y ∈ VF , xy must be an edge of this star, i.e., xy ∈ EF .
Thus, F is an induced subgraph of H. In particular, by (2.1) and (v), H is connected and
girth(H) = girth(F ) ≥ 7.

Now, we complete the proof of Theorem 2.4 by showing that G = H2. Let uv ∈ EG\EH

and let Q be a maximal clique in G containing uv. By (iv), Q contains a forced edge xy

and x or y is a center vertex of the star F [Q ∩ VF ]. By construction of H, xu and xv,
or else yu and yv are edges of H, hence uv ∈ EH2 . This proves EG ⊆ EH2 . Now, let
ab ∈ EH2 \EH . Then there exists a vertex x such that xa, xb ∈ EH . By (2.1), x ∈ VF , and
by (2.2), ab ∈ EG. This proves EH2 ⊆ EG.

Corollary 2.5. Given a graph G = (VG, EG), it can be recognized in O(|VG|
2 · |EG|) time

if G is the square of a graph H with girth at least seven. Moreover, such a square root, if
any, can be computed in the same time.

Proof. Note that by Proposition 2.1, any square of an n-vertex graph with girth at least
seven has at most n maximal cliques. Now, to avoid triviality, assume G is connected and
non-complete. We first use the algorithm in [23] to list the maximal cliques in G in time
O(n2m). If there are more than n maximal cliques, G is not the square of any graph with
girth at least seven. Otherwise, compute the forced edges of G to form the subgraph F of
G. This can be done in time O(n2) in an obvious way. Conditions (i) – (v) in Theorem 2.4
then can be tested within the same time bound, as well as the square root H, in case all
conditions are satisfied, according to the proof of Theorem 2.4.

Corollary 2.6. The square roots with girth at least seven of squares of graphs with girth at
least seven are unique, up to isomorphism.

Proof. Let G be the square of some graph H with girth ≥ 7. If G is complete, clearly, every
square root with girth ≥ 6 of G must be isomorphic to the star K1,n−1 where n is the vertex
number of G.

Thus, let G be non-complete, and let F be the subgraph of G formed by the forced
edges. If F has only one edge, G clearly consists of exactly two maximal cliques, Q1, Q2,
say, and Q1 ∩Q2 is the only forced edge of G. Then, it is easily seen that every square root
with girth ≥ 6 of G must be isomorphic to the double star T having center edge v1v2 and
degT (vi) = |Qi|.
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So, assume F has at least two edges. Then for each two maximal cliques Q,Q′ in G

with Q∩Q′ = {x, y}, x or y is the unique center vertex of the star F [VF ∩Q] or F [VF ∩Q′].
Hence, for any end-vertex u of H, i.e., u ∈ VG−VF , the neighbor of u in F is unique. Since
F is the graph resulting from H by deleting all end-vertices, H is therefore unique.

2.1. Further Considerations

Squares of bipartite graphs can be recognized in O(∆ ·M(n)) time in [15], where ∆ =
∆(G) is the maximum degree of the n-vertex input graph G and M(n) is the time needed
to perform the multiplication of two n× n-matrices. However, no good characterization is
known so far. As bipartite graphs with girth at least seven are exactly the (C4, C6)-free
bipartite graphs, we immediately have:

Corollary 2.7. Let G be a connected, non-complete graph. Let F be the subgraph of G

consisting of all forced edges in G. Then G is the square of a (C4, C6)-free bipartite graph
if and only if the following conditions hold.
(i) Every vertex in VG − VF belongs to exactly one maximal clique in G.
(ii) Every edge in F belongs to exactly two distinct maximal cliques in G.
(iii) Every two non-disjoint edges in F belong to the same maximal clique in G.
(iv) For each maximal clique Q of G, F [Q ∩ VF ] is a star.
(v) F is a connected (C4, C6)-free bipartite graph.
Moreover, squares of (C4, C6)-free bipartite graphs can be recognized in O(n2m) time, and
the (C4, C6)-free square bipartite roots of such squares are unique, up to isomorphism.

Using the results in this section, we obtain a new characterization for tree squares that
allow us to derive the known results on tree square roots easily.

It was shown in [17] that clique and stable set remain NP-complete on squares of
graphs (of girth three). Another consequence of our results is.

Corollary 2.8. The weighted version of clique can be solved in O(n2m) time on squares
of graphs with girth at least 7, where n and m are the number of vertices, respectively, edges
of the input graph.

Proof. Let G = (VG, EG) be the square of some graph with girth at least seven. By Propo-
sition 2.1, G has O(|VG|) maximal cliques. By [23], all maximal cliques in G then can be
listed in time O(|VG| · |EG| · |VG|).

In [12], it was shown that stable set is even NP-complete on squares of the subdivision
of some graph (i.e. the squares of the total graph of some graph). As the subdivision of
a graph has girth at least six, stable set therefore is NP-complete on squares of graphs
with girth at least six.

3. Squares of graphs with girth at least six

In this section we will show that squares of graphs with girth at least six can be
recognized efficiently. Formally, we will show that the following problem

square of graph with girth at least six

Instance: A graph G.
Question: Does there exist a graph H with girth at least 6 such that G = H2?
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is polynomially solvable (Theorem 3.5).
Similar to the algorithm in [15], our recognition algorithm consists of two steps. The

first step (subsection 3.1) is to show that if we fix a vertex v ∈ V and a subset U ⊆ NG(v),
then there is at most one {C3, C5}-free (locally bipartite) square root graph H of G with
NH(v) = U . Then, in the second step (subsection 3.2), we show that if we fix an edge
e = uv ∈ EG, then there are at most two possibilities of NH(v) for a square root H with
girth at least 6. Furthermore, both steps can be implemented efficiently, and thus it will
imply that square of graph with girth at least six is polynomially solvable.

3.1. Square root with a specified neighborhood

This subsection deals with the first auxiliary problem.
{C3, C5}-free square root with a specified neighborhood

Instance: A graph G, v ∈ VG and U ⊆ NG(v).
Question: Does there exist a {C3, C5}-free graph H such that H2 = G and NH(v) = U?

An efficient recognition algorithm for {C3, C5}-free square root with a specified

neighborhood relies on the following fact.

Lemma 3.1. Let G = H2 for some {C3, C5}-free graph H. Then, for all vertices x ∈ V

and all vertices y ∈ NH(x), NH(y) = NG(y) ∩
(

NG[x] \NH(x)
)

.

Proof. First, consider an arbitrary vertex w ∈ NH(y) − x. Clearly, w ∈ NG(y), as well
w ∈ NG(x). Also, since H is C3-free, wx 6∈ EH . Thus w ∈ NG(y) ∩

(

NG(x) \NH(x)
)

.

Conversely, let w be an arbitrary vertex in NG(y) ∩
(

NG[x] \NH(x)
)

. Assuming wy 6∈
EH , then w 6= x and there exist vertices z and z′ such that zx, zw ∈ EH and z′y, z′w ∈ EH .
As H is C3-free, zy 6∈ EH , z′x 6∈ EH , and zz′ 6∈ EH . But then x, y,w, z and z′ induce a C5

in H, a contradiction. Thus w ∈ NH(y).

Recall that M(n) stands for the time needed to perform a matrix multiplication of two
n× n matrices; currently, M(n) = O(n2.376).

Theorem 3.2. {C3, C5}-free square root with a specified neighborhood has at
most one solution. The unique solution, if any, can be constructed in time O(M(n)).

Proof. Given G, v ∈ VG and U ⊆ NG(v), assume H is a {C3, C5}-free square root of G such
that NH(v) = U . Then, by Lemma 3.1, the neighborhood in H of each vertex u ∈ U is
uniquely determined by NH(u) = NG(u)∩

(

NG[v] \U
)

. By repeatedly applying Lemma 3.1
for each v′ ∈ U and U ′ = NH(v′) and noting that all considered graphs are connected, we
can conclude that H is unique.

Lemma 3.1 also suggests the following BFS-like procedure, Algorithm 1 below, for
constructing the {C3, C5}-free square root H of G with U = NH(v), if any.

It can be seen, by construction, that H is {C3, C5}-free, and thus the correctness of
Algorithm 1 follows from Lemma 3.1. Moreover, since every vertex is enqueued at most
once, lines 1–13 take O(m) steps, m = |EG|. Checking if G = H2 (line 14) takes O(M(n))
steps, n = |VG|.
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ALGORITHM 1

Input: A graph G, a vertex v ∈ VG and a subset U ⊆ NG(v).
Output: A {C3, C5}-free graph H with H2 = G and NH(v) = U ,

or else ‘NO’ if such a square root H of G does not exist.

1. Add all edges vu, u ∈ U , to EH

2. Q← ∅
3. for each u ∈ U do
4. enqueue(Q,u)
5. parent(u)← v

6. while Q 6= ∅ do
7. u← dequeue(Q)
8. set W := NG(u) ∩

(

NG(parent(u)) \NH(parent(u))
)

9. for each w ∈W do
10. add uw to EH

11. if parent(w) = ∅
12. then parent(w)← u

13. enqueue(Q,w)
14. if G = H2 then return H

15. else return ‘NO’

3.2. Square root with a specified edge

This subsection discusses the second auxiliary problem.
girth ≥ 6 root graph with one specified edge

Instance: A graph G and an edge xy ∈ EG.
Question: Does there exist a graph H with girth at least six such that H2 = G

and xy ∈ EH?
The question is easy if |G| ≤ 2. So, for the rest of this section, assume that |G| > 2.

Then, we will reduce this problem to {C3, C5}-free square root with a specified

neighborhood. Given a graph G and an edge xy of G, write Cxy = NG(x) ∩NG(y), i.e.,
Cxy is the set of common neighbors of x and y in G.

Lemma 3.3. Suppose H is of girth at least 6, xy ∈ EH and H2 = G. Then G[Cxy] has
at most two connected components. Moreover, if A and B are the connected components of
G[Cxy] (one of them maybe empty) then (i) A = NH(x) − y and B = NH(y) − x, or (ii)
B = NH(x)− y and A = NH(y)− x.

By Lemma 3.3, we can solve girth ≥ 6 root graph with one specified edge as
follows: Compute Cxy. If G[Cxy] has more than two connected components, there is no
solution. If G[Cxy] is connected, solve {C3, C5}-free square root with a specified

neighborhood for inputs I1 = (G, v = x,U = Cxy + y) and I2 = (G, v = y, U = Cxy + x).
If, for I1 or I2, Algorithm 1 outputs H and H is C4-free, then H is a solution. In other cases
there is no solution. If G[Cxy] has two connected components, A and B, solve {C3, C5}-free

square root with a specified neighborhood for inputs I1 = (G, v = x,U = A + y),
I2 = (G, v = x,U = B + y), I3 = (G, v = y, U = A + x), I4 = (G, v = y, U = B + x), and
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make a decision similar as before. In this way, checking if a graph is C4-free is the most
expensive step, and we obtain

Theorem 3.4. girth ≥ 6 root graph with one specified edge can be solved in time
O(n4).

Let δ = δ(G) denote the minimum vertex degree in G. Now we can state the main
result of this section as follows.

Theorem 3.5. square of graph with girth at least six can be solved in time O(δ·n4).

Proof. Given G, let x be a vertex of minimum degree in G. For each vertex y ∈ NG(x)
check if the instance (G,xy ∈ EG) for girth ≥ 6 root graph with one specified edge

has a solution.

4. Squares of graphs with girth four

Note that the reductions for proving the NP-completeness results by Motwani and
Sudan [19] show that recognizing squares of graphs with girth three is NP-complete. In this
section we show that the following problem is NP-complete.

square of graph with girth four

Instance: A graph G.
Question: Does there exist a graph H with girth 4 such that G = H2?

Observe that square of graph with girth four is in NP. We will reduce the fol-
lowing NP-complete problem set splitting [8, Problem SP4], also known as hypergraph

2-colorability, to it.
set splitting

Instance: Collection D of subsets of a finite set S.
Question: Is there a partition of S into two disjoint subsets S1 and S2 such that

each subset in D intersects both S1 and S2?
Our reduction is a modification of the reductions for proving the NP-completeness of

square of chordal graph [16, Theorem 3.5] and for cube of bipartite graph [15,
Theorem 7.6]. We also apply the tail structure of a vertex v, first described in [19], to ensure
that v has the same neighbors in any square root H of G.

Lemma 4.1 ([19]). Let a, b, c be vertices of a graph G such that (i) the only neighbors of a

are b and c, (ii) the only neighbors of b are a, c, and d, and (iii) c and d are adjacent. Then
the neighbors, in VG −{a, b, c}, of d in any square root of G are the same as the neighbors,
in VG − {a, b, d}, of c in G; see Figure 1.

We now are going to describe the reduction. Let S = {u1, . . . , un}, D = {d1, . . . , dm}
where dj ⊆ S, 1 ≤ j ≤ m, be an instance of set splitting. We construct an instance
G = G(D,S) for square of graph with girth four as follows.

The vertex set of graph G consists of:
(I) Ui, 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui in S.
(II) Dj , 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj in D.
(III) D1

j ,D
2
j ,D

3
j , 1 ≤ j ≤ m. Each three ‘tail vertices’ D1

j ,D
2
j ,D

3
j of the subset vertex Dj

correspond to the subset dj in D.
(IV) S1, S

′

1, S2, S
′

2, four ‘partition vertices’.
(V) X, a ‘connection vertex’.
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The edge set of graph G consists of:
(I) Edges of tail vertices of subset vertices:
For all 1 ≤ j ≤ m: D3

j ↔ D2
j , D3

j ↔ D1
j , D2

j ↔ D1
j , D2

j ↔ Dj , D1
j ↔ Dj , and for all i,

D1
j ↔ Ui whenever ui ∈ dj .

(II) Edges of subset vertices:
For all 1 ≤ j ≤ m: Dj ↔ S1, Dj ↔ S′

1, Dj ↔ S2, Dj ↔ S′

2, Dj ↔ X, Dj ↔ Ui for all i,
and Dj ↔ Dk for all k with dj ∩ dk 6= ∅.
(III) Edges of element vertices:
For all 1 ≤ i ≤ n: Ui ↔ X, Ui ↔ S1, Ui ↔ S2, Ui ↔ S′

1, Ui ↔ S′

2, and Ui ↔ Ui′ for all
i′ 6= i.
(IV) Edges of partition vertices:
S1 ↔ X, S1 ↔ S′

1, S1 ↔ S′

2, S2 ↔ X, S2 ↔ S′

1, S2 ↔ S′

2, S′

1 ↔ X, S′

2 ↔ X.
Clearly, G can be constructed from D,S in polynomial time. For an illustration, given

S = {u1, u2, u3, u4, u5} and D = {d1, d2, d3, d4} with d1 = {u1, u2, u3}, d2 = {u2, u5},
d3 = {u3, u4}, and d4 = {u1, u4}, the graph G is depicted in Figure 2. In the figure, the
two dotted lines from a vertex to the clique {U1, U2, U3, U4, U5,X} mean that the vertex is
adjacent to all vertices in that clique.

Note that, apart from the three vertices X,S′

1, and S′

2 (or, symmetrically, X,S1, and
S2), our construction is the same as those in [16, §3.1.1]. While S1 and S2 will represent a
partition of the ground set S (Lemma 4.3), the vertices X,S′

1, and S′

2 allow us to make a
square root of G being C3-free (Lemma 4.2).

Lemma 4.2. If there exists a partition of S into two disjoint subsets S1 and S2 such that
each subset in D intersects both S1 and S2, then there exists a graph H with girth four such
that G = H2.

In the above example, S1 = {u1, u3, u5} and S2 = {u2, u4} is a possible legal partition
of S. The corresponding graph H constructed in the proof of Lemma 4.2 is depicted in
Figure 3.

Lemma 4.3. If H is a square root of G, then there exists a partition of S into two disjoint
subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Note that in Lemma 4.3 above we did not require that H has girth four. Thus, any
square root of G–particularly, any square root with girth four–will tell us how to do set
splitting. Together with Lemma 4.2 we conclude:

Theorem 4.4. square of graph with girth four is NP-complete.

5. Conclusion and open problems

We have shown that squares of graphs with girth at least six can be recognized in
polynomial time. We have found a good characterization for squares of graphs with girth
at least seven that gives a faster recognition algorithm in this case. For squares of graphs
with girth at most four we have shown that recognizing the squares of such graphs is NP-
complete.

The complexity status of computing square root with girth (exactly) five is not yet
determined. However, we believe that this problem should be efficiently solvable. Also, we
believe that the algorithm to compute a square root of girth 6 can be extended to compute
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a square root with no C3 or C5. More generally, let k be a positive integer and consider the
following problem.

k-power of graph with girth ≥ 3k − 1

Instance: A graph G.
Question: Does there exist a graph H with girth ≥ 3k − 1 such that G = Hk?

Conjecture 5.1. k-power of graph with girth ≥ 3k − 1 is polynomially solvable.

The truth of the above conjecture together with the results in this paper would imply
a complete dichotomy theorem: squares of graphs of girth g is polynomial if g ≥ 5
and NP-complete otherwise.
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Figure 1: Tail in H (left) and in G = H2 (right)
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1. Introduction

Nemhauser and Trotter [20] proved a famous theorem in combinatorial optimization.
In terms of the NP-hard Vertex Cover

1 problem, it can be formulated as follows:

NT-Theorem [20, 4]. For an undirected graph G = (V,E) one can compute in polynomial
time two disjoint vertex subsets A and B, such that the following three properties hold:

(1) If S′ is a vertex cover of the induced subgraph G[V \ (A∪B)], then A∪S′ is a vertex
cover of G.

(2) There is a minimum-cardinality vertex cover S of G with A ⊆ S.
(3) Every vertex cover of the induced subgraph G[V \ (A∪B)] has size at least |V \ (A∪

B)|/2.
In other words, the NT-Theorem provides a polynomial-time data reduction for Vertex

Cover. That is, for vertices in A it can already be decided in polynomial time to put them
into the solution set and vertices in B can be ignored for finding a solution. The NT-
Theorem is very useful for approximating Vertex Cover. The point is that the search for
an approximate solution can be restricted to the induced subgraph G[V \(A∪B)]. The NT-
Theorem directly delivers a factor-2 approximation for Vertex Cover by choosing V \B
as the vertex cover. Chen et al. [7] first observed that the NT-Theorem directly yields a
2k-vertex problem kernel for Vertex Cover, where the parameter k denotes the size of the
solution set. Indeed, this is in a sense an “ultimate” kernelization result in parameterized
complexity analysis [10, 11, 21] because there is good reason to believe that there is a
matching lower bound 2k for the kernel size unless P=NP [16].

Since its publication numerous authors have referred to the importance of the NT-
Theorem from the viewpoint of polynomial-time approximation algorithms (e.g., [4, 17]) as
well as from the viewpoint of parameterized algorithmics (e.g., [1, 7, 9]). The relevance of
the NT-Theorem comes from both its practical usefulness in solving the Vertex Cover

problem as well as its theoretical depth having led to numerous further studies and follow-
up work [1, 4, 9]. In this work, our main contribution is to provide a more general and more
widely applicable version of the NT-Theorem. The corresponding algorithmic strategies and
proof techniques, however, are not achieved by a generalization of known proofs of the NT-
Theorem but are completely different and are based on extremal combinatorial arguments.
Vertex Cover can be formulated as the problem of finding a minimum-cardinality set
of vertices whose deletion makes a graph edge-free, that is, the remaining vertices have
degree 0. Our main result is to prove a generalization of the NT-Theorem that helps in
finding a minimum-cardinality set of vertices whose deletion leaves a graph of maximum
degree d for arbitrary but fixed d. Clearly, d = 0 is the special case of Vertex Cover.

Motivation. Since the NP-hard Bounded-Degree Deletion problem—given a graph
and two positive integers k and d, find at most k vertices whose deletion leaves a graph
of maximum vertex degree d—stands in the center of our considerations, some more ex-
planations about its relevance follow. Bounded-Degree Deletion (or its dual problem)
already appears in some theoretical work, e.g., [6, 18, 22], but so far it has received consider-
ably less attention than Vertex Cover, one of the best studied problems in combinatorial
optimization [17]. To advocate and justify more research on Bounded-Degree Deletion,

1
Vertex Cover is the following problem: Given an undirected graph, find a minimum-cardinality set S

of vertices such that each edge has at least one endpoint in S.
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we describe an application in computational biology. In the analysis of genetic networks
based on micro-array data, recently a clique-centric approach has shown great success [3, 8].
Roughly speaking, finding cliques or near-cliques (called paracliques [8]) has been a central
tool. Since finding cliques is computationally hard (also with respect to approximation),
Chesler et al. [8, page 241] state that “cliques are identified through a transformation to
the complementary dual Vertex Cover problem and the use of highly parallel algorithms
based on the notion of fixed-parameter tractability.” More specifically, in these Vertex

Cover-based algorithms polynomial-time data reduction (such as the NT-Theorem) plays a
decisive role [19] (also see [1]) for efficient solvability of the given real-world data. However,
since biological and other real-world data typically contain errors, the demand for finding
cliques (that is, fully connected subgraphs) often seems overly restrictive and somewhat re-
laxed notations of cliques are more appropriate. For instance, Chesler et al. [8] introduced
paracliques, which are achieved by greedily extending the found cliques by vertices that are
connected to almost all (para)clique vertices. An elegant mathematical concept of “relaxed
cliques” is that of s-plexes2 where one demands that each s-plex vertex does not need to be
connected to all other vertices in the s-plex but to all but s− 1. Thus, cliques are 1-plexes.
The corresponding problem to find maximum-cardinality s-plexes in a graph is basically
as computationally hard as clique detection is [2, 18]. However, as Vertex Cover is the
dual problem for clique detection, Bounded-Degree Deletion is the dual problem for
s-plex detection: An n-vertex graph has an s-plex of size k iff its complement graph has a
solution set for Bounded-Degree Deletion with d = s−1 of size n−k, and the solution
sets can directly be computed from each other. The Vertex Cover polynomial-time data
reduction algorithm has played an important role in the practical success story of analyzing
real-world genetic and other biological networks [3, 8]. Our new polynomial-time data re-
duction algorithms for Bounded-Degree Deletion have the potential to play a similar
role.

Our results. Our main theorem can be formulated as follows.

BDD-DR-Theorem (Theorem 2). For an undirected n-vertex and m-edge graph G =

(V,E), we can compute two disjoint vertex subsets A and B in O(n5/2 ·m + n3) time, such
that the following three properties hold:

(1) If S′ is a solution set for Bounded-Degree Deletion of the induced subgraph G[V \
(A∪B)], then S := S′∪A is a solution set for Bounded-Degree Deletion of G.

(2) There is a minimum-cardinality solution set S for Bounded-Degree Deletion

of G with A ⊆ S.
(3) Every solution set for Bounded-Degree Deletion of the induced subgraph G[V \

(A ∪B)] has size at least

|V \ (A ∪B)|
d3 + 4d2 + 6d + 4

.

In terms of parameterized algorithmics, this gives a (d3 + 4d2 + 6d + 4) · k-vertex
problem kernel for Bounded-Degree Deletion, which is linear in k for constant d-
values, thus joining a number of other recent “linear kernelization results” [5, 12, 14, 15].
Our general result specializes to a 4k-vertex problem kernel for Vertex Cover (the NT-
Theorem provides a size-2k problem kernel), but applies to a larger class of problems.

2Introduced in 1978 by Seidman and Foster [24] in the context of social network analysis. Recently, this
concept has again found increased interest [2, 18].
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For instance, a slightly modified version of the BDD-DR-Theorem (with essentially the
same proof) yields a 15k-vertex problem kernel for the problem of packing at least k vertex-
disjoint length-2 paths of an input graph, giving the same bound as shown in work focussing
on this problem [23].3 For the problem, where, given an undirected graph, one seeks a
set of at least k vertex-disjoint stars4 of the same constant size, we show that a kernel
with a linear number of vertices can be achieved, improving the best previous quadratic
kernelization [23]. We emphasize that our data reduction technique is based on extremal
combinatorial arguments; the resulting combinatorial kernelization algorithm has practical
potential and implementation work is underway. Note that for d = 0 our algorithm computes
the same type of structure as in the “crown decomposition” kernelization for Vertex

Cover (see, for example, [1]). However, for d ≥ 1 the structure returned by our algorithm
is much more complicated; in particular, unlike for Vertex Cover crown decompositions,
in the BDD-DR-Theorem the set A is not necessarily a separator and the set B does not
necessarily form an independent set.

Exploring the borders of parameterized tractability of Bounded-Degree Deletion

for arbitrary values of the degree value d, we show the following.

Theorem 1. For unbounded d (given as part of the input), Bounded-Degree Deletion

is W [2]-complete with respect to the parameter k denoting the number of vertices to delete.

In other words, there is no hope for fixed-parameter tractability with respect to the
parameter k in the case of unbounded d-values. Due to the lack of space the proof of
Theorem 1 and several proofs of lemmas needed to show Theorem 2 are omitted.

2. Preliminaries

A bdd-d-set for a graph G = (V,E) is a vertex subset whose removal from G yields a
graph in which each vertex has degree at most d. The central problem of this paper is

Bounded-Degree Deletion

Input: An undirected graph G = (V,E), and integers d ≥ 0 and k > 0.
Question: Does there exist a bdd-d-set S ⊆ V of size at most k for G?

In this paper, for a graph G = (V,E) and a vertex set S ⊆ V , let G[S] be the subgraph
of G induced by S and G−S := G[V \S]. The open neighborhood of a vertex v or a vertex
set S ⊆ V in a graph G = (V,E) is denoted as NG(v) := {u ∈ V | {u, v} ∈ E} and NG(S) :=
⋃

v∈S NG(v) \ S, respectively. The closed neighborhood is denoted as NG[v] := NG(v) ∪ {v}
and NG[S] := NG(S)∪S. We write V (G) and E(G) to denote the vertex and edge set of G,
respectively. A packing P of a graph G is a set of pairwise vertex-disjoint subgraphs of G.
A graph has maximum degree d when every vertex in the graph has degree at most d. A
graph property is called hereditary if every induced subgraph of a graph with this property
has the property as well.

Parameterized algorithmics [10, 11, 21] is an approach to finding optimal solutions
for NP-hard problems. A common method in parameterized algorithmics is to provide
polynomial-time executable data reduction rules that lead to a problem kernel [13]. This is
the most important concept for this paper. Given a parameterized problem instance (I, k), a

3Very recently, Wang et al. [25] improved the 15k-bound to a 7k-bound. We claim that our kernelization
based on the BDD-DR-Theorem method can be easily adapted to also deliver the 7k-bound.

4A star is a tree where all of the vertices but one are leaves.
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data reduction rule replaces (I, k) by an instance (I ′, k′) in polynomial time such that |I ′| ≤
|I|, k′ ≤ k, and (I, k) is a Yes-instance if and only if (I ′, k′) is a Yes-instance. A param-
eterized problem is said to have a problem kernel, or, equivalently, kernelization, if, after
the exhaustive application of the data reduction rules, the resulting reduced instance has
size f(k) for a function f depending only on k. Roughly speaking, the kernel size f(k) plays
a similar role in the subject of problem kernelization as the approximation factor plays for
approximation algorithms.

3. A Local Optimization Algorithm for Bounded-Degree Deletion

The main result of this section is the following generalization of the Nemhauser-Trotter-
Theorem [20] for Bounded-Degree Deletion with constant d.

Theorem 2 (BDD-DR-Theorem). For an n-vertex and m-edge graph G = (V,E), we can

compute two disjoint vertex subsets A and B in O(n5/2 ·m+n3) time, such that the following
three properties hold:

(1) If S′ is a bdd-d-set of G− (A ∪B), then S := S′ ∪A is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with A ⊆ S.

(3) Every bdd-d-set of G− (A ∪B) has size at least |V \(A∪B)|
d3+4d2+6d+4

.

This first two properties are called the local optimality conditions. The remainder of this
section is dedicated to the proof of this theorem. More specifically, we present an algorithm
called compute AB (see Figure 1) which outputs two sets A and B fulfilling the three
properties given in Theorem 2. The core of this algorithm is the procedure find extremal
(see Figure 2) running in O(n3/2 ·m + n2) time. This procedure returns two disjoint vertex
subsets C and D that, among others, satisfy the local optimality conditions. The procedure
is iteratively called by compute AB. The overall output sets A and B then are the union
of the outputs of all applications of find extremal. Actually, find extremal searches
for C ⊆ V , D ⊆ V , C ∩D = ∅ satisfying the following two conditions:

C1 Each vertex in NG[D] \ C has degree at most d in G− C, and
C2 C is a minimum-cardinality bdd-d-set for G[C ∪D].

It is not hard to see that these two conditions are stronger than the local optimality condi-
tions of Theorem 2:

Lemma 1. Let C and D be two vertex subsets satisfying conditions C1 and C2. Then, the
following is true:

(1) If S′ is a bdd-d-set of G− (C ∪D), then S := S′ ∪ C is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with C ⊆ S.

Lemma 1 will be used in the proof of Theorem 2—it helps to make the description of
the underlying algorithm and the corresponding correctness proofs more accessible. As a
direct application of Theorem 2, we get the following corollary.

Corollary 1. Bounded-Degree Deletion with constant d admits a problem kernel with
at most (d3 + 4d2 + 6d + 4) · k vertices, which is computable in O(n5/2 ·m + n3) time.

We use the following easy-to-verify forbidden subgraph characterization of bounded-
degree graphs: A graph G has maximum degree d if and only if there is no “(d + 1)-star”
in G.



414 M.R. FELLOWS, J. GUO, H. MOSER, AND R. NIEDERMEIER

Algorithm: compute AB (G)
Input: An undirected graph G.
Output: Vertex subsets A and B satisfying the three properties of Theorem 2.

1 A := ∅, B := ∅
2 Compute a witness X and the corresponding residual Y := V \X for G
3 If |Y | ≤ (d + 1)2 · |X| then return (A,B)
4 (C,D)← find extremal (G,X, Y ).
5 G← G− (C ∪D);A← A ∪C;B ← B ∪D; goto line 2

Figure 1: Pseudo-code of the main algorithm for computing A and B.

Definition 3.1. For s ≥ 1, the graph K1,s = ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is called
an s-star. The vertex u is called the center of the star. The vertices v1, . . . , vs are the leaves
of the star. A ≤s-star is an s′-star with s′ ≤ s.

Due to this forbidden subgraph characterization of bounded-degree graphs, we can also
derive a linear kernelization for the (d+1)-Star Packing problem. In this problem, given
an undirected graph, one seeks for at least k vertex-disjoint (d + 1)-stars for a constant d.
With a slight modification of the proof of Theorem 2, we get the following corollary.

Corollary 2. (d + 1)-Star Packing admits a problem kernel with at most (d3 + 4d2 +

6d + 4) · k vertices, which is computable in O(n5/2 ·m + n3) time.

For d ≥ 2, the best known kernelization result was a O(k2) kernel [23]. Note that the
special case of (d + 1)-Star Packing with d = 1 is also called P3-Packing, a problem
well-studied in the literature, see [23, 25]. Corollary 2 gives a 15k-vertex problem ker-
nel. The best-known bound is 7k [25]. However, the improvement from the formerly best
bound 15k [23] is achieved by improving a properly defined witness structure by local mod-
ifications. This trick also works with our approach, that is, we can show that the NT-like
approach also yields a 7k-vertex problem kernel for 2-Star Packing.

3.1. The Algorithm

We start with an informal description of the algorithm. As stated in the introduction
of this section, the central part is Algorithm compute AB shown in Figure 1.

Using the characterization of bounded-degree graphs by forbidding large stars, in line 2
compute AB starts with computing two vertex sets X and Y : First, with a straightforward
greedy algorithm, compute a maximal (d + 1)-star packing of G, that is, a set of vertex-
disjoint (d+1)-stars that cannot be extended by adding another (d+1)-star. Let X be the
set of vertices of the star packing. Since the number of stars in the packing is a lower bound
for the size of a minimum bdd-d-set, X is a factor-(d + 2) approximate bdd-d-set. Greedily
remove vertices from X such that X is still a bdd-d-set, and finally set Y := V \X. We
call X the witness and Y the corresponding residual.

If the residual Y is too big (condition in line 3), the sets X and Y are passed in line 4
to the procedure find extremal in Figure 2 which computes two sets C and D satisfying
conditions C1 and C2. Computing X and Y represents the first step to find a subset pair
satisfying condition C1: Since there is no vertex that has degree more than d in G−X (due
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Procedure: find extremal (G,X, Y )
Input: An undirected graph G, witness X, and residual Y .
Output: Vertex subsets C and D satisfying the local optimality conditions.

1 J ← bipartite graph with X and Y as its two vertex subsets and
E(J)← {{u, v} ∈ E(G) | u ∈ X and v ∈ Y }

2 FX
0 ← ∅ ⊲ Initialize empty set of forbidden vertices

3 start with j = 0 and while FX
j 6= X do ⊲ Loop while not all vertices in X are forbidden

4 F Y
j ← NG[NJ(FX

j )] \X ⊲ Determine forbidden vertices in Y

5 P ← star-packing (J − (FX
j ∪ F Y

j ),X \ FX
j , Y \ F Y

j , d)

6 D0 ← Y \ (F Y
j ∪ V (P )) ⊲ Vertices in Y that are not forbidden and not in P

7 start with i = 0 and repeat ⊲ Start search for C,D satisfying C2
8 Ci ← NJ(Di)
9 Di+1 ← NP (Ci) ∪Di

10 i← i + 1
11 until Di = Di−1

12 C ← Ci, D ← Di

13 if C = X \ FX
j then ⊲ C,D also satisfy C1

14 return (C,D)
15 FX

j+1 ← X \ C ⊲ Determine forbidden vertices in X for next iteration
16 j ← j + 1
17 end while
18 F Y

j ← NG[NJ(FX
j )] \X ⊲ Recompute forbidden vertices in Y (as in line 4)

19 return (∅, V \ (X ∪ F Y
j ))

Procedure: star-packing (J, V1, V2, d)
Input: A bipartite graph J with two vertex subsets V1 and V2.
Output: A maximum-edge packing of stars that have their centers in V1 and have at
most d + 1 leaves in V2.
See Lemma 2, the straightforward implementation details using matching techniques are
omitted.

Figure 2: Pseudo-code of the procedure computing the intermediary vertex subset
pair (C,D).

to the fact that X is a bdd-d-set), the search is limited to those subset pairs where C is a
subset of the witness X and D is a subset of Y .

Algorithm compute AB calls find extremal iteratively until the sets A and B, which
are constructed by the union of the outputs of all applications of find extremal (see line 5),
satisfy the third property in Theorem 2. In the following, we intuitively describe the basic
ideas behind find extremal.

To construct the set C from X, we compute again a star packing P with the centers
of the stars being from X and the leaves being from Y . We relax, on the one hand, the
requirement that the stars in the packing have exactly d + 1 leaves, that is, the packing P
might contain ≤ d-stars. On the other hand, P should have a maximum number of edges.
The rough idea behind the requirement for a maximum number of edges is to maximize the
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number of (d+1)-stars in P in the course of the algorithm. Moreover, we can observe that,
by setting C equal to the center set of the (d + 1)-stars in P and D equal to the leaf set
of the (d + 1)-stars in P , C is a minimum bdd-d-set of G[C ∪D] (condition C2). We call
such a packing a maximum-edge X-center ≤ (d + 1)-star packing. For computing P , the
algorithm constructs an auxiliary bipartite graph J with X as one vertex subset and Y as
the other. The edge set of J consists of the edges in G with exactly one endpoint in X.
See line 1 of Figure 2. Obviously, a maximum-edge X-center ≤ (d + 1)-star packing of G
corresponds one-to-one with a maximum-edge packing of stars in J that have their centers
in X and have at most d+1 leaves in the other vertex subset. Then, the star packing P can
be computed by using techniques for computing maximum matchings in J (in the following,
let star-packing(J ,V1,V2,d) denote an algorithm that computes a maximum-edge V1-center
≤ (d + 1)-star packing P on the bipartite graph J).

The most involved part of find extremal in Figure 2 is to guarantee that the output
subsets in line 4 fulfill condition C1. To this end, one uses an iterative approach to compute
the star packing P . Roughly speaking, in each iteration, if the subsets C and D do not
fulfill condition C1, then exclude from further iterations the vertices from D that themselves
or whose neighbors violate this condition. See lines 2 to 15 of Figure 2 for more details of
the iterative computation. Herein, for j ≥ 0, the sets FX

j ⊆ X and F Y
j ⊆ Y , where FX

j is

initialized with the empty set, and F Y
j is computed using FX

j , store the vertices excluded
from computing P . To find the vertices that themselves cause the violation of the condition,
that is, vertices in D that have neighbors in X\C, one uses an augmenting path computation
in lines 7 to 11 to get in line 12 subsets C and D such that the vertices in D do not themselves
violate the condition. Roughly speaking, the existence of an edge e from some vertex in D
to some vertex in X \ C would imply that the ≤ (d + 1)-star packing is not maximum
(witnessed by an augmenting path beginning with e—in principle, this idea is also used for
finding crown decompositions, cf. [1]). The vertices whose neighbors cause the violation of
condition C1 are all vertices in D with neighbors in Y \D that themselves have neighbors
in X \ C. These neighbors in Y \ D and the corresponding vertices in D are excluded in
line 4 and line 18. We will see that the number of all excluded vertices is O(|X \C|), thus,
in total, we do not exclude too many vertices with this iterative method. The formal proof
of correctness is given in the following subsection.

3.2. Running Time and Correctness

Now, we show that compute AB in Figure 1 computes in the claimed time two vertex
subsets A and B that fulfill the three properties given in Theorem 2.

3.2.1. Running Time of find extremal. We begin with the proof of the running time of
the procedure find extremal in Figure 2, which uses the following lemmas.

Lemma 2. Procedure star-packing(J, V1, V2, d) in Figure 2 runs in O(
√

n ·m) time.

The next lemma is also used for the correctness proof; in particular, it guarantees the
termination of the algorithm.

Lemma 3. If the condition in line 13 of Figure 2 is false for a j ≥ 0, then FX
j ( FX

j+1.
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Proof. In lines 4 and 5 of Figure 2, all vertices in FX
j and their neighbors NJ(FX

j ) are
excluded from the star packing P in the jth iteration of the outer loop. Moreover, the
vertices in NJ(FX

j ) are excluded from the set D0 (line 6). Therefore, a vertex in FX
j cannot

be added to C in line 12. Thus FX
j+1 (set to X \C in line 15) contains FX

j . Moreover, this
containment is proper, as otherwise the condition in line 13 would be true.

Lemma 4. Procedure find extremal runs in O(n3/2 ·m + n2) time.

3.2.2. Correctness of find extremal. The correctness proof for find extremal in Figure 2
is more involved than its running time analysis. The following lemmas provide some prop-
erties of (C,D) which are needed.

Lemma 5. For each j ≥ 0 the following properties hold after the execution of line 12
in Figure 2:

(1) every vertex in C is a center vertex of a (d + 1)-star in P , and
(2) the leaves of every star in P with center in C are vertices in D.

Proof. (Sketch) To prove (1), first of all, we show that v ∈ C implies v ∈ V (P ), since, oth-
erwise, we could get a P -augmenting path from some element in D0 to v. A P -augmenting
path is a path where the edges in E(P ) and the edges not in E(P ) alternate, and the
first and the last edge are not in E(P ). This P -augmenting path can be constructed in an
inductive way by simulating the construction of Ci in lines 6 to 11 of Figure 2. From this
P -augmenting path, we can then construct a X-center ≤ (d+1)-star packing that has more
edges than P , contradicting that E(P ) has maximum cardinality. Second, every vertex
in C is a center of a star due to the definition of P and Procedure star-packing. Finally,
if a vertex v ∈ C is the center of a star with less than (d + 1) leaves, then again we get a
P -augmenting path from some element in D0 to v.

The second statement follows easily from Procedure star-packing and the pseudo-code
in lines 6 to 12.

Lemma 6. For each j ≥ 0 there is no edge in G between D and NJ(FX
j ).

Proof. The vertices in FX
j and the vertices in NG[NJ(FX

j )] \ X are excluded from the

computation of P and are not contained in D0 (lines 4 to 6 in Figure 2). Thus, NJ [FX
j ]∩D =

∅ and therefore there are no edges in G between D and NJ(FX
j ).

The next lemma shows that the output of find extremal fulfills the local optimality
conditions.

Lemma 7. Procedure find extremal returns two disjoint vertex subsets fulfilling condi-
tions C1 and C2.

Proof. Clearly, the output consists of two disjoints sets. The algorithm returns in lines 14
or 19 of Figure 2. If it returns in line 19, then the output C is empty and D contains
only vertices that have a distance at least 3 to the vertices in X: The condition in line 3
implies FX

j = X and, therefore, F Y
j contains all vertices in G \ X that have distance at

most 2 to the vertices in X. Since X is a bdd-d-set of G, all vertices in D and their
neighbors in G have a degree at most d. This implies that both conditions hold for the
output returned in this line. It remains to consider the output returned in line 14.
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To show that condition C1 holds, recall that G−X has maximum degree d and that C ⊆
X. Therefore, if for a vertex v in V \X we have NJ(v) ⊆ C, then v has degree at most d
in G − C. Thus, to show that each vertex in NG[D] \ C has degree at most d in G − C,
it suffices to prove that NJ(NG[D] \ C) ⊆ C. We show separately that NJ(D) ⊆ C and
that NJ(NG(D) \ C) ⊆ C.

The assignment in line 8 and the until-condition in line 11 directly give NJ(D) ⊆ C.
Due to Lemma 6 there is no edge in G between D and NJ(FX

j ), where FX
j = X \ C (the

if-condition in line 13, which has to be satisfied for the procedure to return in line 14).
From this it follows that the vertices in NG(D) \ C have no vertex in FX

j as neighbor and,

thus, NJ(NG(D) \ C) ∩ FX
j = ∅. Therefore, NJ(NG(D) \ C) ⊆ C.

By Properties 1 and 2 of Lemma 5, there are exactly |C| many vertex-disjoint (d + 1)-
stars in G[C ∪D]. Moreover, there is no (d + 1)-star in G[D], since X is a bdd-d-set of G.
Thus, C is a minimum-cardinality bdd-d-set of G[C ∪D].

3.2.3. Running Time and Correctness of compute AB. To prove the running time and
correctness of compute AB, we have to show that the output of find extremal contains
sufficiently many vertices of Y . To this end, the following lemma plays a decisive role.

Lemma 8. For all j ≥ 0, the set F Y
j in line 4 and line 18 of Figure 2 has size at most (d +

1)2 · |FX
j |.

Proof. The proof is by induction on j. The claim trivially holds for j = 0, since F Y
0 = ∅.

Assume that the claim is true for j > 0. Since FX
j ( FX

j+1 (Lemma 3), we have

F Y
j+1 = F Y

j ∪NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )].

We first bound the size of NJ−F Y
j

(FX
j+1 \FX

j ). Since FX
j+1 was set to X \C at the end of the

jth iteration of the outer loop (line 15), the vertices in NJ−F Y
j

(FX
j+1\FX

j ) were not excluded

from computing the packing P (line 5) of the jth iteration. Moreover, NJ−F Y
j

(FX
j+1 \FX

j ) ⊆
V (P ) for the star packing P computed in the jth iteration, since, otherwise, the set D0 in
line 6 would contain a vertex v in NJ−F Y

j
(FX

j+1 \FX
j ) and, then, line 8 would include NJ(v)

into C, which would contradict the fact that C ∩ FX
j+1 = ∅ (line 15). Due to property 2

in Lemma 5 the leaves of every star in P with center in C are vertices in D and, thus, the
vertices in NJ−F Y

j
(FX

j+1 \FX
j ) are leaves of stars in P with centers in FX

j+1 \FX
j . Since each

star has at most (d+1) leaves, the set NJ−F Y
j

(FX
j+1\FX

j ) has size at most (d+1)·|FX
j+1 \ FX

j |.
The remaining part is easy to bound: since all the vertices in V \X have degree at most d,
we get

∣

∣

∣

NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )]
∣

∣

∣

≤ (d · (d + 1) + (d + 1)) · |FX
j+1 \ FX

j |

= (d + 1)2 · |FX
j+1 \ FX

j |.
With the induction hypothesis, we get that

|F Y
j+1| ≤ |F Y

j |+ |NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )]|

= (d + 1)2 · |FX
j |+ (d + 1)2 · |FX

j+1 \ FX
j | = (d + 1)2 · |FX

j+1|.
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Lemma 9. Procedure find extremal always finds two sets C and D such that |Y \D| ≤
(d + 1)2 · |X \ C|.
Proof. If find extremal terminates, then V ′ = FX

j ∪ F Y
j for the graph G′ = (V ′, E′)

resulting by removing C ∪ D from G. Since C ⊆ X and D ⊆ Y , we have X \ C = FX
j

and Y \D = F Y
j , and by Lemma 8 it follows immediately that |Y \D| ≤ (d+1)2 · |X \C|.

Therefore, if |Y | > (d+1)2 · |X|, then find extremal always returns two sets C and D
such that D is not empty.

Lemma 10. Algorithm compute AB runs in O(n5/2 ·m + n3) time.

Lemma 11. The sets A and B computed by compute AB fulfill the three properties
given in Theorem 2.

Proof. Since every (C,D) output by find extremal in line 4 of compute AB in Figure 1
fulfills conditions C1 and C2 (Lemma 7), the pair (A,B) output in line 3 of compute AB
fulfills conditions C1 and C2, and, therefore, also the local optimality conditions (Lemma 1).
It remains to show that (A,B) fulfills the size condition.

Let X and Y be the last computed witness and residual, respectively. Since the condi-
tion in line 3 is true, we know that |Y | ≤ (d + 1)2 · |X|. Recall that X is a factor-(d + 2)
approximate bdd-d-set for G′ := G − (A ∪ B). Thus, every bdd-d-set of G′ has size at
least |X|/(d + 2). Since the output sets A and B fulfill the local optimality conditions and
the bounded-degree property is hereditary, every bdd-d-set of G′ has size at least

|X|
d + 2

(∗)

≥ |V ′|
(d + 2)((d + 1)2 + 1)

=
|V ′|

(d3 + 4d2 + 6d + 4)
.

The inequality (*) follows from the fact that Y is small, that is, |Y | ≤ (d + 1)2 · |X| (note
that V ′ = X ∪ Y ).

With Lemmas 10 and 11, the proof of Theorem 2 is completed.

4. Conclusion

Our main result is to generalize the Nemhauser-Trotter-Theorem, which applies to
the Bounded-Degree Deletion problem with d = 0 (that is, Vertex Cover), to
the general case with arbitrary d ≥ 0. In particular, in this way we contribute problem
kernels with a number of vertices linear in the solution size k for all constant values of d
for Bounded-Degree Deletion. To this end, we developed a new algorithmic strategy
that is based on extremal combinatorial arguments. The original NT-Theorem [20] has
been proven using linear programming relaxations—we see no way how this could have
been generalized to Bounded-Degree Deletion. By way of contrast, we presented a
purely combinatorial data reduction algorithm which is also completely different from known
combinatorial data reduction algorithms for Vertex Cover (see [1, 4, 9]). Finally, Baldwin
et al. [3, page 175] remarked that, with respect to practical applicability in the case of
Vertex Cover kernelization, combinatorial data reduction algorithms are more powerful
than “slower methods that rely on linear programming relaxation”. Hence, we expect
that benefits similar to those derived from Vertex Cover kernelization for biological
network analysis (see the motivation part of our introductory discussion) may be provided
by Bounded-Degree Deletion kernelization.
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[9] M. Chleb́ık and J. Chleb́ıková. Crown reductions for the minimum weighted vertex cover problem.

Discrete Appl. Math., 156:292–312, 2008.
[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[11] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[12] J. Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci., 2008. To appear.
[13] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. ACM SIGACT

News, 38(1):31–45, 2007.
[14] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar graphs. In Proc.

34th ICALP, volume 4596 of LNCS, pages 375–386. Springer, 2007.
[15] I. A. Kanj, M. J. Pelsmajer, G. Xia, and M. Schaefer. On the induced matching problem. J. Comput.

System Sci., 2009. To appear.
[16] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2− ǫ. J. Comput. System

Sci., 74(3):335–349, 2008.
[17] S. Khuller. The Vertex Cover problem. ACM SIGACT News, 33(2):31–33, 2002.
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KERNEL(S) FOR PROBLEMS WITH NO KERNEL:

ON OUT-TREES WITH MANY LEAVES (EXTENDED ABSTRACT)
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Abstract. The k-Leaf Out-Branching problem is to find an out-branching, that is a
rooted oriented spanning tree, with at least k leaves in a given digraph. The problem has
recently received much attention from the viewpoint of parameterized algorithms. Here,
we take a kernelization based approach to the k-Leaf-Out-Branching problem. We give
the first polynomial kernel for Rooted k-Leaf-Out-Branching, a variant of k-Leaf-

Out-Branching where the root of the tree searched for is also a part of the input. Our
kernel has cubic size and is obtained using extremal combinatorics.

For the k-Leaf-Out-Branching problem, we show that no polynomial kernel is pos-
sible unless the polynomial hierarchy collapses to third level by applying a recent break-
through result by Bodlaender et al. (ICALP 2008) in a non-trivial fashion. However,
our positive results for Rooted k-Leaf-Out-Branching immediately imply that the
seemingly intractable k-Leaf-Out-Branching problem admits a data reduction to n in-
dependent O(k3) kernels. These two results, tractability and intractability side by side,
are the first ones separating many-to-one kernelization from Turing kernelization. This
answers affirmatively an open problem regarding “cheat kernelization” raised by Mike
Fellows and Jiong Guo independently.

1. Introduction

Parameterized decision problems are defined by specifying the input (I), the parameter
(k), and the question to be answered. A parameterized problem that can be solved in

time f(k)|I|O(1) where f is a function of k alone is said to be fixed parameter tractable
(FPT). Kernelization is a powerful and natural technique in the design of parameterized
algorithms. The main idea of kernelization is to replace a given parameterized instance
(I, k) of a problem Π by a simpler instance (I ′, k′) of Π in polynomial time, such that (I, k)

Key words and phrases: Parameterized Algorithms, Kernelization, Out-Branching, Max-Leaf, Lower
Bounds.
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is a yes-instance if and only if (I ′, k′) is a yes-instance and the size of I ′ is bounded by a
function of k alone. The reduced instance I ′ is called the kernel for the problem. Typically
kernelization algorithms work by applying reduction rules, which iteratively reduce the
instance to an equivalent “smaller” instance. From this point of view, kernelization can
be seen as pre-processing with an explicit performance guarantee, “a humble strategy for
coping with hard problems, almost universally employed” [14].

A parameterized problem is said to have a polynomial kernel if we have a polynomial
time kernelization algorithm which reduces the size of the input instance down to a polyno-
mial in the parameter. There are many parameterized problems for which polynomial, and
even linear kernels are known [9, 8, 13, 17, 25]. Notable examples include a 2k-sized kernel
for k-Vertex Cover [9], a O(k2) kernel for k-Feedback Vertex Set [25] and a 67k ker-
nel for k-Planar-Dominating Set [8], among many others. While positive kernelization
results have been around for quite a while, the first results ruling out polynomial kernels for
parameterized problems have appeared only recently. In a seminal paper Bodlaender et al.
[4] have shown that a variety of important FPT problems cannot have polynomial kernels
unless the polynomial hierarchy collapses to the third level (PH = Σ3

p), a well known com-
plexity theory hypothesis. Examples of such problems are k-Path, k-Minor Order Test,
k-Planar Graph Subgraph Test, and many others. However, while this negative result
rules out the existence of a polynomial kernel for these problems, it does not rule out the
possibility of a kernelization algorithm reducing the instance to |I|O(1) independent polyno-
mial kernels. This raises the question of the relationship between many-to-one kernelization

and Turing kernelization, see [3, 13, 17]: Is there a natural parameterized problem having

no polynomial kernel, but where we can “cheat” this lower bound by providing |I|O(1) poly-
nomial kernels? Besides being of theoretical interest, this type of results would be very
desirable from a practical point of view, as well. We show k-Leaf Out-Branching as the
first example of such a problem.

The Maximum Leaf Spanning Tree problem on connected undirected graphs is:
find a spanning tree with the maximum number of leaves in a given input graph G. The
problem is well studied both from an algorithmic [16, 22, 23] and combinatorial [11, 19, 21]
point of view, as well as from the parameterized complexity perspective [5, 13, 15]. An
extension of Maximum Leaf Spanning Tree to directed graphs is defined as follows.
We say that a subdigraph T of a digraph D is an out-tree if T is an oriented tree with
only one vertex r of in-degree zero (called the root). The vertices of T of out-degree zero
are called leaves. If T is a spanning out-tree, i.e., V (T ) = V (D), then T is called an out-

branching of D. The Directed Maximum Leaf Out-Branching problem is to find an
out-branching in a given digraph with the maximum number of leaves. The parameterized
version of the Directed Maximum Leaf Out-Branching problem is k-Leaf Out-

Branching, where for a given digraph D and integer k, it is asked to decide whether D
has an out-branching with at least k leaves. If we replace “out-branching” with “out-tree”
in the definition of k-Leaf Out-Branching, we get a problem called k-Leaf Out-Tree.

Unlike its undirected counterpart, the study of k-Leaf Out-Branching has only
begun recently. Alon et al. [1, 2] proved that the problem is fixed parameter tractable
(FPT) by providing an algorithm deciding in time O(f(k)n) whether a strongly connected
digraph has an out-branching with at least k leaves. Bonsma and Dorn [6] extended this
result to connected digraphs, and improved the running time of the algorithm. Recently,
Kneis et al. [20] provided a parameterized algorithm solving the problem in time 4knO(1).
This result was further improved by Daligaut et al. [10]. In a related work, Drescher
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k-Out-Tree k-Out-Branching

Rooted O(k3) kernel O(k3) kernel

Unrooted
No poly(k) kernel, No poly(k) kernel,

n kernels of size O(k3) n kernels of size O(k3)

Table 1: Our Results

and Vetta [12] described an
√

OPT -approximation algorithm for the Directed Maximum

Leaf Out-Branching problem. Let us remark that, despite similarities between directed
and undirected variants of Maximum Leaf Spanning Tree, the directed case requires a
totally different approach (except from [20]). However, the existence of a polynomial kernel
for k-Leaf Out-Branching has not been addressed until now.

Our contribution. We prove that Rooted k-Leaf Out-Branching, where for a given
vertex r one asks for a k-leaf out-branching rooted at r, admits a O(k3) kernel. A similar
result also holds for Rooted k-Leaf Out-Tree, where we are looking for a rooted (not
necessary spanning) tree with k leaves. While many polynomial kernels are known for
undirected graphs, this is the first known non-trivial parameterized problem on digraphs
admitting a polynomial kernel. To obtain the kernel we establish a number of results
on the structure of digraphs not having a k-leaf out-branching. These results may be of
independent interest.

In the light of our positive results it is natural to suggest that k-Leaf Out-Branching

admits a polynomial kernel, as well. We find it a bit striking that this is not the case –
k-Leaf Out-Branching and k-Leaf Out-Tree do not admit polynomial kernels unless
PH = Σ3

p. While the main idea of our proof is based on the framework of Bodlaender
et al. [4], our adaptation is non-trivial. In particular, we use the cubic kernel obtained
for Rooted k-Leaf Out-Branching to prove the lower bound. Our contributions are
summarized in Table 1.

Finally, notice that the polynomial kernels for the rooted versions of our problems yield
a “cheat” solution for the poly-kernel-intractable k-Leaf Out-Branching and k-Leaf

Out-Tree. Let D be a digraph on n vertices. By running the kernelization for the rooted
version of the problem for every vertex of D as a root, we obtain n graphs where each of
them has O(k3) vertices, at least one of them having a k-leaf out-branching iff D does.

Most proofs had to be omitted due to space limitations. More information can be found
at http://arxiv.org/abs/0810.4796.

2. Preliminaries

Let D be a directed graph or digraph for short. By V (D) and A(D), we represent the
vertex set and arc set, respectively, of D. Given a subset V ′ ⊆ V (D) of a digraph D, by
D[V ′] we mean the digraph induced on V ′. A vertex y of D is an in-neighbor (out-neighbor)
of a vertex x if yx ∈ A (xy ∈ A). The in-degree (out-degree) of a vertex x is the number of
its in-neighbors (out-neighbors) in D. Let P = p1p2 . . . pl be a given path. Then by P [pipj ]
we denote a subpath of P starting at vertex pi and ending at vertex pj. For a given vertex
q ∈ V (D), by q-out-branching (or q-out-tree) we denote an out-branching (out-tree) of D
rooted at vertex q. We say that the removal of an arc uv (or a vertex set S) disconnects

a vertex w from the root r if every path from r to w in D contains arc uv (or one of the
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vertices in S). An arc uv is contracted as follows: add a new vertex u′, and for each arc wv
or wu add the arc wu′ and for an arc vw or uw add the arc u′w, remove all arcs incident
to u and v and the vertices u and v. We say that a reduction rule is safe for a value k if
whenever the rule is applied to an instance (D, k) to obtain an instance (D′, k′), D has an
r-out-branching with ≥ k leaves if and only if D′ has an r-out-branching with ≥ k′ leaves.

Proposition 2.1. [20] Let D be a digraph and r be a vertex from which every vertex in

V (D) is reachable. Then if we have an out-tree rooted at r with k leaves then we also have

an out-branching rooted at r with k leaves.

Let T be an out-tree of a digraph D. We say that u is a parent of v and v is a child of
u if uv ∈ A(T ). We say that u is an ancestor of v if there is a directed path from u to v in
T . An arc uv in A(D) \A(T ) is called a forward arc if u is an ancestor of v, a backward arc
if v is an ancestor of u and a cross arc, otherwise.

3. Reduction Rules for Rooted k-Leaf Out-Branching

In this section we give all the data reduction rules we apply on the given instance of
Rooted k-Leaf Out-Branching to shrink its size.

Reduction Rule 1. [Reachability Rule] If there exists a vertex u which is disconnected

from the root r, then return No.

For the Rooted k-Leaf Out-Tree problem, Rule 1 translates into the following: If a
vertex u is disconnected from the root r, then remove u and all in-arcs and out-arcs of u.

Reduction Rule 2. [Useless Arc Rule] If vertex u disconnects a vertex v from the root r,
then remove the arc vu.

Lemma 3.1. Reduction Rules 1 and 2 are safe.

Reduction Rule 3. [Bridge Rule] If an arc uv disconnects at least two vertices from the

root r, contract arc uv.

Lemma 3.2. Reduction Rule 3 is safe.

Reduction Rule 4. [Avoidable Arc Rule] If a vertex set S, |S| ≤ 2, disconnects a vertex

v from the root r, vw ∈ A(D) and xw ∈ A(D) for all x ∈ S, then delete the arc vw.

Lemma 3.3. Reduction Rule 4 is safe.

Reduction Rule 5. [Two Directional Path Rule] If there is a path P = p1p2 . . . pl−1pl with

l = 7 or l = 8 such that

• p1 and pin ∈ {pl−1, pl} are the only vertices with in-arcs from the outside of P .
• pl and pout ∈ {p1, p2} are the only vertices with out-arcs to the outside of P .
• The path P is the unique out-branching of D[V (P )] rooted at p1.
• There is a path Q that is the unique out-branching of D[V (P )] rooted at pin.
• The vertex after pout on P is not the same as the vertex after pl on Q.

Then delete R = P \ {p1, pin, pout, pl} and all arcs incident to these vertices from D. Add

two vertices u and v and the arc set {poutu, uv, vpin, plv, vu, up1} to D.

Notice that every vertex on P has in-degree at most 2 and out-degree at most 2. Figure 1
gives an example of an application of Reduction Rule 5.
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p1 u v p8pin

p1 p4 p5 p8

pout

p2 p3 p6 p7

Figure 1: An Illustration of Reduction Rule 5.

Lemma 3.4. Reduction Rule 5 is safe.

Proof. Let D′ be the graph obtained by performing Reduction Rule 5 to a path P in D.
Let Pu be the path p1poutuvpinpl and Qv be the path pinplvup1pout. Notice that Pu is the
unique out-branching of D′[V (Pu)] rooted at p1 and that Qv is the unique out-branching of
D′[V (Pu)] rooted at pin.

Let T be an r-out-branching of D with at least k leaves. Notice that since P is the
unique out-branching of D[V (P )] rooted at p1, Q is the unique out-branching of D[V (P )]
rooted at pin and p1 and pin are the only vertices with in-arcs from the outside of P , T [V (P )]
is either a path or the union of two vertex disjoint paths. Thus, T has at most two leaves
in V (P ) and at least one of the following three cases must apply.

(1) T [V (P )] is the path P from p1 to pl.
(2) T [V (P )] is the path Q from pin to pout.

(3) T [V (P )] is the vertex disjoint union of a path P̃ that is a subpath of P rooted at

p1, and a path Q̃ that is a subpath of Q rooted at pin.

In the first case we can replace the path P in T by the path Pu to get an r-out-branching
of D′ with at least k leaves. Similarly, in the second case, we can replace the path Q in
T by the path Qv to get an r-out-branching of D′ with at least k leaves. For the third
case, observe that P̃ must contain pout since pout = p1 or p1 appears before pout on Q and
thus, pout can only be reached from p1. Similarly, Q̃ must contain pl. Thus, T \ R is an
r-out-branching of D \R. We build an r-out-branching T ′ of D′ by taking T \R and letting
u be the child of pout and v be the child of pl. In this case T and T ′ have same number of
leaves outside of V (P ) and T has at most two leaves in V (P ) while both u and v are leaves
in T ′. Hence T ′ has at least k leaves.

The proof for the reverse direction is similar.

A digraph D is a reduced instance of Rooted k-Leaf Out-Branching if none of the
reduction rules (Rules 1–5) can be applied to D. The following statement is easy to see:

Lemma 3.5. For a digraph D on n vertices, we can obtain a reduced instance D′ in poly-

nomial time.
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4. Polynomial Kernel: Bounding a Reduced No-instance

Here, we show that any reduced no-instance of Rooted k-Leaf Out-Branching

must have at most O(k3) vertices. In order to do so we start with T , a breadth-first search-
tree (or BFS-tree for short) rooted at r, of a reduced instance D and look at a path P of T
such that every vertex on P has out-degree one in T . We bound the number of endpoints
of arcs with one endpoint in P and one endpoint outside of P (Section 4.1). We then use
these results to bound the size of any maximal path with every vertex having out-degree
one in T (Section 4.2). Finally, we combine these results to bound the size of any reduced
no-instance of Rooted k-Leaf Out-Branching by O(k3).

4.1. Bounding the Number of Entry and Exit Points of a Path

Let D be a reduced no-instance, and T be a BFS-tree rooted at r. The BFS-tree T
has at most k − 1 leaves and hence at most k − 2 vertices with out-degree at least 2 in T .
Now, let P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree 1 in
T (P does not need to be a maximal path of T ). Let T1 be the subtree of T induced by
the vertices reachable from r in T without using vertices in P and let T2 be the subtree of
T rooted at the child r2 of pl in T . Since T is a BFS-tree, it does not have any forward
arcs, and thus plr2 is the only arc from P to T2. Thus all arcs originating in P and ending
outside of P must have their endpoint in T1.

Lemma 4.1. Let D be a reduced instance, T be a BFS-tree rooted at r, and P = p1p2 . . . pl

be a path in T such that all vertices in V (P ) have out-degree 1 in T . Let upi ∈ A(D), for

some i between 1 and l, be an arc with u /∈ P . There is a path Pupi
from r to pi using the

arc upi, such that V (Pupi
) ∩ V (P ) ⊆ {pi, pl}.

Proof. Let T1 be the subtree of T induced by the vertices reachable from r in T without
using vertices in P and let T2 be the subtree of T rooted at the child r2 of pl in T . If
u ∈ V (T1) there is a path from r to u avoiding P . Appending the arc upi to this path yields
the desired path Pupi

, so assume u ∈ V (T2). If all paths from r to u use the arc pl−1pl then
pl−1pl is an arc disconnecting pl and r2 from r, contradicting the fact that Reduction Rule
3 can not be applied. Let P ′ be a path from r to u not using the arc pl−1pl. Let x be the
last vertex from T1 visited by P ′. Since P ′ avoids pl−1pl we know that P ′ does not visit any
vertices of P \ {pl} after x. We obtain the desired path Pupi

by taking the path from r to
x in T1 followed by the subpath of P ′ from x to u appended by the arc upi.

Corollary 4.2. Let D be a reduced no-instance, T be a BFS-tree rooted at r and P =
p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree 1 in T . There are

at most k vertices in P that are endpoints of arcs originating outside of P .

Lemma 4.3. Let D be a reduced no-instance, T be a BFS-tree rooted at r and P = p1p2 . . . pl

be a path in T such that all vertices in V (P ) have out-degree 1 in T . There are at most

7(k − 1) vertices outside of P that are endpoints of arcs originating in P .

Proof. Let X be the set of vertices outside P which are out-neighbors of the vertices on P .
Let P ′ be the path from r to p1 in T and r2 be the unique child of pl in T . First, observe
that since there are no forward arcs, r2 is the only out-neighbor of vertices in V (P ) in the
subtree of T rooted at r2. In order to bound the size of X, we differentiate between two
kinds of out-neighbors of vertices on P : (a) Out-neighbors of P that are not in V (P ′); and
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(b) Out-neighbors of P in V (P ′). First, observe that |X \ V (P ′)| ≤ k − 1. Otherwise we
could have made an r-out-tree with at least k leaves by taking the path P ′P and adding
X \ V (P ′) as leaves with parents in V (P ).

In the rest of the proof we bound |X ∩ V (P ′)|. Let Y be the set of vertices on P ′

with out-degree at least 2 in T and let P1, P2, . . . , Pt be the remaining subpaths of P ′ when
vertices in Y are removed. For every i ≤ t, Pi = vi1vi2 . . . viq. We define the vertex set Z
to contain the two last vertices of each path Pi. The number of vertices with out-degree at
least 2 in T is upper bounded by k − 2 as T has at most k − 1 leaves. Hence, |Y | ≤ k − 2,
t ≤ k − 1 and |Z| ≤ 2(k − 1).

Claim 1. For every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, there is either an arc uiviq−1 or uiviq

where ui /∈ V (Pi).

To see the claim observe that the removal of arc viq−2viq−1 does not disconnect the root
r from both viq−1 and viq else Rule 3 would have been applicable to our reduced instance.
For brevity assume that viq−1 is reachable from r after the removal of arc viq−2viq−1. Hence
there exists a path from r to viq. Let uiviq be the last arc of this path. The fact that the
BFS-tree T does not have any forward arcs implies that ui /∈ V (Pi).

To every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, we associate an interval Ii = vi1vi2 . . . viq−2

and an arc uiviq′ , q′ ∈ {q − 1, q}. This arc exists by Claim 1. Claim 1 and Lemma 4.1
together imply that for every path Pi there is a path Pri from the root r to viq′ that does
not use any vertex in V (Pi)\{viq−1, viq} as an intermediate vertex. That is, V (Pri∩(V (Pi)\
{viq−1, viq}) = ∅.

Let P ′
ri be a subpath of Pri starting at a vertex xi before vi1 on P ′ and ending in a

vertex yi after viq−2 on P ′. We say that a path P ′
ri covers a vertex x if x is on the subpath

of P ′ between xi and yi and we say that it covers an interval Ij if xi appears before vj1 on
the path P ′ and yi appears after vjq−2 on P ′. Hence, the path P ′

ri covers the interval Ii.
Let P = {P ′

1, P
′
2, . . . , P

′
l } ⊆ {P ′

r1, . . . , P
′
rt} be a minimum collection of paths, such that

every interval Ii, 1 ≤ i ≤ t, is covered by at least one of the paths in P. Furthermore, let
the paths of P be numbered by the appearance of their first vertex on P ′. The minimality
of P implies that for every P ′

i ∈ P there is an interval I ′i ∈ {I1, . . . , It} such that P ′
i is the

only path in P that covers I ′i.

Claim 2. For every 1 ≤ i ≤ l, no vertex of P ′ is covered by both P ′
i and P ′

i+3.

The path P ′
i+1 is the only path in P that covers the interval I ′i+1 and hence P ′

i does not
cover the last vertex of I ′i+1. Similarly P ′

i+2 is the only path in P that covers the interval
I ′i+2 and hence P ′

i+3 does not cover the first vertex of I ′i+2. Thus the set of vertices covered
by both P ′

i and P ′
i+3 is empty.

Since paths P ′
i and P ′

i+3 do not cover a common vertex, we have that the end vertex of
P ′

i appears before the start vertex of P ′
i+3 on P ′ or is the same as the start vertex of P ′

i+3.
Partition the paths of P into three sets P0,P1,P2, where path P ′

i ∈ Pi mod 3. Also let Ii be
the set of intervals covered by Pi. Observe that every interval Ij , 1 ≤ j ≤ t, is part of some
Ii for i ∈ {0, 1, 2}.

Let i ≤ 3 and consider an interval Ij ∈ Ii. There is a path Pj′ ∈ Pi that covers Ij such
that both endpoints of Pj′ and none of the inner vertices of Pj′ lie on P ′. Furthermore for
any pair of paths Pa, Pb ∈ Pi such that a < b, there is a subpath in P ′ from the endpoint
of Pa to the starting point of Pb. Thus for every i ≤ 3 there is a path P ∗

i from the root r
to p1 which does not use any vertex of the intervals covered by the paths in Pi.
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We now claim that the total number of vertices on intervals Ij , 1 ≤ j ≤ t, which are
out-neighbors of vertices on V (P ) is bounded by 3(k − 1). If not, then for some i, the
number of out-neighbors in Ii is at least k. Now we can make an r-out-tree with k leaves
by taking any r-out-tree in D[V (P ∗

i ) ∪ V (P )] and adding the out-neighbors of the vertices
on V (P ) in Ii as leaves with parents in V (P ).

Summing up the obtained upper bounds yields |X| ≤ (k−1)+ |{r2}|+ |Y |+ |Z|+3(k−
1) ≤ (k − 1) + 1 + (k − 2) + 2(k − 1) + 3(k − 1) = 7(k − 1), concluding the proof.

Remark: Observe that the path P used in Lemmas 4.1 and 4.3 and Corollary 4.2 need not
be a maximal path in T with its vertices having out-degree one in T .

4.2. Bounding the Length of a Path: On Paths Through Nice Forests

For a reduced instance D, a BFS-tree T of D rooted at r, let P = p1p2 . . . pl be a path
in T such that all vertices in V (P ) have out-degree 1 in T , and let S be the set of vertices
in V (P ) \ {pl} with an in-arc from the outside of P .

Definition 4.4. A subforest F = (V (P ), A(F )) of D[V (P )] is said to be a nice forest of P
if the following three properties are satisfied: (a) F is a forest of directed trees rooted at
vertices in S; (b) If pipj ∈ A(F ) and i < j then pi has out-degree at least 2 in F or pj has
in-degree 1 in D; and (c) If pipj ∈ A(F ) and i > j then for all q > i, pqpj /∈ A(D).

In order to bound the size of a reduced no-instance D we are going to consider a nice
forest with the maximum number of leaves. However, in order to do this, we first need to
show the existence of a nice forest of P .

In the following discussion let D be a reduced no-instance, T be a BFS-tree T of D
rooted at r, P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree 1
in T and S be the set of vertices in V (P ) \ {pl} with an in-arc from the outside of P .

Lemma 4.5. There is a nice forest in P .

For a nice forest F of P , we define the set of key vertices of F to be the set of vertices
in S, the leaves of F , the vertices of F with out-degree at least 2 and the set of vertices
whose parent in F has out-degree at least 2.

Lemma 4.6. Let F be a nice forest of P . There are at most 5(k − 1) key vertices of F .

We can now turn our attention to a nice forest F of P with the maximum number of
leaves. Our goal is to show that if the key vertices of F are too spaced out on P then some
of our reduction rules must apply. We need some more observations concerning P and F .

Observation 4.7. [Unique Path] For any two vertices pi, pj in V (P ) such that i < j,
pipi+1 . . . pj is the only path from pi to pj in D[V (P )].

Corollary 4.8. No arc pipi+1 is a forward arc of F .

Observation 4.9. Let ptpj be an arc in A(F ) such that neither pt nor pj are key vertices,
and t ∈ {j − 1, j + 1, . . . , l}. Then for all q > t, pqpj 6∈ A(D).

Observation 4.9 follows directly from the definitions of a nice forest and key vertices.

Observation 4.10. If neither pi nor pi+1 are key vertices, then either pipi+1 /∈ A(F ) or
pi+1pi+2 /∈ A(F ).
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In the following discussion let F be a nice forest of P with the maximum number
of leaves and let P ′ = pxpx+1 . . . py be a subpath of P containing no key vertices, and
additionally having the property that px−1px /∈ A(F ) and pypy+1 /∈ A(F ).

Lemma 4.11. V (P ′) induces a directed path in F .

In the following discussion let Q′ be the directed path F [V (P ′)].

Observation 4.12. For any pair of vertices pi, pj ∈ V (P ′) if i ≤ j − 2 then pj appears
before pi in Q′.

Lemma 4.13. All arcs of D[V (P ′)] are contained in A(P ′) ∪A(F ).

Combining our previous observations with Lemma 4.11, we can show:

Lemma 4.14. If |P ′| ≥ 3, there are exactly 2 vertices in P ′ that are endpoints of arcs

starting outside of P ′.

Observation 4.15. Let Q′ = F [V (P ′)]. For any pair of vertices u, v such that there is a
path Q′[uv] from u to v in Q′, Q′[uv] is the unique path from u to v in D[V (P ′)].

Lemma 4.16. For any vertex x /∈ V (P ′), there are at most 2 vertices in P ′ with arcs to x.

This assertion follows by combining the previously derived lemmas and observations in
a proof by contradition.

Corollary 4.17. There are ≤ 14(k − 1) vertices in P ′ with out-neighbors outside of P ′.

Proof. By Lemma 4.3, there are ≤ 7(k − 1) vertices that are endpoints of arcs originating
in P ′. By Lemma 4.16, each such vertex is the endpoint of ≤ 2 arcs from vertices in P ′.

Lemma 4.18. |P ′| ≤ 154(k − 1) + 10.

Proof. Assume for contradiction that |P ′| > 154(k− 1)+10 and let X be the set of vertices
in P ′ with arcs to vertices outside of P ′. By Corollary 4.17, |X| ≤ 14(k − 1). Hence there
is a subpath of P ′ on at least (154(k − 1) + 10)/(14(k − 1) + 1) = 9 vertices containing no
vertices of X. By Observation 4.10 there is a subpath P ′′ = papa+1 . . . pb of P ′ on 7 or 8
vertices such that neither pa−1pa nor pbpb+1 are arcs of F . By Lemma 4.11 F [V (P ′′)] is a
directed path Q′′. Let pq and pt be the first and last vertices of Q′′, respectively. By Lemma
4.14 pa and pq are the only vertices with in-arcs from outside of P ′′. By Observation 4.12
pq ∈ {pb−1, pb} and pt ∈ {pa, pa+1}. By the choice of P ′′ no vertex of P ′′ has an arc to a
vertex outside of P ′. Furthermore, since P ′′ is a subpath of P ′ and Q′′ is a subpath of Q′

Lemma 4.13 implies that pb and pt are the only vertices of P ′ with out-arcs to the outside
of P ′′. By Lemma 4.7, the path P ′′ is the unique out-branching of D[V (P ′′)] rooted at pa.
By Lemma 4.15, the path Q′′ is the unique out-branching of D[V (P ′′)] rooted at pq. By
Observation 4.12 pb−2 appears before pa+2 in Q′′ and hence the vertex after pb in Q′′ and
pt+1 is not the same vertex. Thus Rule 5 can be applied on P ′′, contradicting the fact that
D is a reduced instance.

Lemma 4.19. Let D be a reduced no-instance to Rooted k-Leaf Out-Branching.

Then |V (D)| = O(k3). More specifically, |V (D)| ≤ 1540k3.

Lemma 4.19 results in a cubic kernel for Rooted k-Leaf Out-Branching as follows.

Theorem 4.20. Rooted k-Leaf Out-Branching and Rooted k-Leaf Out-Tree

admits a kernel of size O(k3).
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Proof. Let D be the reduced instance of Rooted k-Leaf Out-Branching obtained in
polynomial time using Lemma 3.5. If |V (D)| > 1540k3, then return Yes. Else, we have an
instance of size bounded by O(k3). The correctness of this step follows from Lemma 4.19
which shows that any reduced no-instance to Rooted k-Leaf Out-Branching has size
bounded by O(k3). The result for Rooted k-Leaf Out-Tree follows similarly.

5. Kernelization Lower Bounds

In the last section we gave a cubic kernel for Rooted k-Leaf Out-Branching. It
is natural to ask whether the closely related k-Leaf Out-Branching has a polynomial
kernel. The answer to this question, somewhat surprisingly, is no, unless an unlikely collapse
of complexity classes occurs. To show this we utilize a recent result of Bodlaender et al. [4]
that states that any compositional parameterized problem does not have a polynomial kernel
unless the polynomial hierarchy collapses to the third level.

Definition 5.1 ([4]). A composition algorithm for a parameterized problem L ⊆ Σ∗ × N

receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ ×N
+ for each 1 ≤ i ≤ t,

uses time polynomial in
∑t

i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N
+ with: (1) (y, k′) ∈

L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t; (2) k′ is polynomial in k. A parameterized problem
is compositional if there is a composition algorithm for it.

Now we state the main result of [4] which we need for our purpose.

Theorem 5.2 ([4]). Let L be a compositional parameterized language whose unparameter-

ized version L̃ is NP-complete. Unless PH=Σ3
p, there is no polynomial kernel for L.

By considering disjoint graph unions, a relatively simple composition shows:

Theorem 5.3. k-Leaf Out-Tree has no polynomial kernel unless PH=Σ3
p.

A willow graph [12] D = (V,A1 ∪ A2) is a directed graph such that D′ = (V,A1) is a
directed path P = p1p2 . . . pn on all vertices of D and D′′ = (V,A2) is a directed acyclic
graph with one vertex r of in-degree 0, such that every arc of A2 is a backwards arc of P .
p1 is called the bottom vertex of the willow, pn is called the top of the willow and P is called
the stem. A nice willow graph D = (V,A1∪A2) is a willow graph where pnpn−1 and pnpn−2

are arcs of D, neither pn−1 nor pn−2 are incident to any other arcs of A2 and D′′ = (V,A2)
has a pn-out-branching.

Observation 5.4. Let D = (V,A1 ∪ A2) be a nice willow graph. Every out-branching of
D with the maximum number of leaves is rooted at the top vertex pn.

Lemma 5.5. k-Leaf Out-Tree in nice willow graphs is NP-hard under Karp reductions.

Theorem 5.6. k-Leaf Out-Branching has no polynomial kernel unless PH=Σ3
p.

Proof. We prove that if k-Leaf Out-Branching has a polynomial kernel then so does
k-Leaf Out-Tree. Let (D, k) be an instance to k-Leaf Out-Tree. For every vertex
v ∈ V we make an instance (D, v, k) to Rooted k-Leaf Out-Tree. Clearly, (D, k) is
a yes-instance for k-Leaf Out-Tree if and only if (D, v, k) is a yes-instance to Rooted

k-Leaf Out-Tree for some v ∈ V . By Theorem 4.20 Rooted k-Leaf Out-Tree has a
O(k3) kernel, so we can apply the kernelization algorithm for Rooted k-Leaf Out-Tree

separately to each of the n instances of Rooted k-Leaf Out-Tree to get n instances
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(D1, v1, k), (D2, v2, k), . . ., (Dn, vn, k) with |V (Di)| = O(k3) for each i ≤ n. By Lemma 5.5,
k-Leaf Out-Branching in nice willow graphs is NP-complete under Karp reductions,
so we can reduce each instance (Di, vi, k) of Rooted k-Leaf Out-Tree to an instance
(Wi, bi) of k-Leaf Out-Branching in nice willow graphs in polynomial time in |Di|, and
hence in polynomial time in k. Thus, in each such instance, bi ≤ (k + 1)c for some fixed
constant c independent of both n and k. Let bmax = maxi≤n bi. Without loss of generality,
bi = bmax for every i. This assumption is safe because if it does not hold we can modify the
instance (Wi, bi) by replacing bi with bmax, subdividing the last arc of the stem bmax − bi

times and adding an edge from ri to each subdivision vertex.
¿From the instances (W1, bmax), . . ., (Wn, bmax) we build an instance (D′, bmax + 1) of

k-Leaf Out-Branching. Let ri and si be the top and bottom vertices of Wi, respectively.
We build D′ simply by taking the disjoint union of the willows graphs W1,W2, . . . ,Wn and
adding in an arc risi+1 for i < n and the arc rns1. Let C be the directed cycle in D obtained
by taking the stem of D′ and adding the arc rns1.

If for any i ≤ n, Wi has an out-branching with at least bmax leaves, then Wi has an
out-branching rooted at ri with at least bmax leaves. We can extend this to an out-branching
of D′ with at least bmax + 1 leaves by following C from ri. In the other direction suppose
D′ has an out-branching T with at least bmax + 1 leaves. Let i be the integer such that the
root r of T is in V (Wi). For any vertex v in V (D′) outside of V (Wi), the only path from
r to v in D′ is the directed path from r to v in C. Hence, T has at most 1 leaf outside of
V (Wi). Thus, T [V (W1)] contains an out-tree with at least bmax leaves.

By assumption, k-Leaf Out-Branching has a polynomial kernel. Hence, we can
apply a kernelization algorithm to get an instance (D′′, k′′) of k-Leaf Out-Branching

with |V (D′′)| ≤ (bmax +1)c2 for a constant c2 independent of n and bmax such that (D′′, k′′)
is a yes-instance iff (D′, bmax) is. Since k-Leaf Out-Tree is NP-complete, we can reduce
(D′′, k′′) to an instance (D∗, k∗) of k-Leaf Out-Tree in polynomial time. Hence, k∗ ≤
|V (D∗)| ≤ (|V (D′′)| + 1)c3 ≤ (k + 1)c4 for some constants c3 and c4. Hence, if k-Leaf

Out-Branching has a polynomial kernel then so does k-Leaf Out-Tree. Theorem 5.3
implies that k-Leaf Out-Branching has no polynomial kernel unless PH=Σ3

p.

6. Conclusion and Discussions

We demonstrated that Turing kernelization is a more poweful technique than many-to-
one kernelization. We showed that while k-Leaf Out-Branching and k-Leaf Out-Tree

do not have a polynomial kernel unless an unlikely collapse of complexity classes occurs,
they do have n independent cubic kernels. Our paper raises far more questions than it
answers. We believe that there are many more problems waiting to be addressed from the
viewpoint of Turing kernelization. A few concrete open problems in this direction are as
follows:

(1) Is there a framework to rule out the possibility of |I|O(1) polynomial kernels similar
to the framework developed in [4]?

(2) Which other problems admit a Turing kernelization like the cubic kernels for k-Leaf

Out-Branching and k-Leaf Out-Tree obtained here?
(3) Does there exist a problem for which we do not have a linear many-to-one kernel,

but does have linear kernels from the viewpoint of Turing kernelization?
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ABSTRACT. Well-structured transition systems provide the right foundation to compute a finite basis
of the set of predecessors of the upward closure of a state. The dual problem, to compute a finite
representation of the set of successors of the downward closure of a state, is harder: Until now, the
theoretical framework for manipulating downward-closed sets was missing. We answer this problem,
using insights from domain theory (dcpos and ideal completions), from topology (sobrifications), and
shed new light on the notion of adequate domains of limits.

1. Introduction

The theory of well-structured transition systems (WSTS) is20 years old [9, 11, 2]. The most
often used result of this theory [11] is the backward algorithm for computing a finite basis of the
set↑ Pre∗(↑ s) of predecessors of the upward closure↑ s of a states. The starting point of this
paper is our desire to compute↓ Post∗(↓ s) in a similar way. We then need a theory to finitely (and
effectively) represent downward-closed sets, much as upward-closed subsets can be represented by
their finite sets of minimal elements. This will serve as a basis for constructing forward procedures.

Thecover, ↓ Post∗(↓ s), contains more information than the set of predecessors↑ Pre∗(↑ s)
because it characterizes a good approximation of the reachability set, while the set of predecessors
describes the states from which the system may fail; the cover may also allow the computation of a
finite-state abstraction of the system as a symbolic graph. Moreover, the backward algorithm needs a
finite basis of the upward closed set of bad states, and its implementation is, in general, less efficient
than a forward procedure: e.g., for lossy channel systems, although the backward procedure always
terminates, only the non-terminating forward procedure isimplemented in the tool TREX [1].

Except for some partial results [9, 7, 13], a general theory of downward-closed sets is missing.
This may explain the scarcity of forward algorithms for WSTS. Quoting Abdullaet al. [3]: “Finally,
we aim at developing generic methods for building downward closed languages, in a similar manner
to the methods we have developed for building upward closed languages in [2]. This would give a
general theory for forward analysis of infinite state systems, in the same way the work in [2] is for
backward analysis.” Our contribution is to provide such a theory of downward-closed sets.

Key words and phrases:WSTS, forward analysis, completion, Karp-Miller procedure, domain theory, sober spaces,
Noetherian spaces.
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Related Work.Karp and Miller [16] proposed an algorithm that computes a finite representation of
the downward closure of the reachability set of a Petri net. Finkel [9] introduced the WSTS frame-
work and generalized the Karp-Miller procedure to a class ofWSTS. This is done by constructing
the completion of the set of states (by ideals, see Section 3)and in replacing theω-acceleration
of an increasing sequence of states (in Petri nets) by its least upper bound (lub). However, there
are no effective finite representations of downward closed sets in [9]. Emerson and Namjoshi [7]
considered a variant of WSTS (using cpos, but still without atheory of effective finite representa-
tions of downward-closed subsets) for defining a Karp-Miller procedure to broadcast protocols—
termination is then not guaranteed [8]. Abdullaet al. [1] proposed a forward procedure for lossy
channel systems using downward-closed languages, coded asSREs. Ganty, Geeraerts, and others
[13, 12] proposed a forward procedure for solving the coverability problem for WSTS equipped
with an effective adequate domain of limits. This domain ensures that every downward closed set
has a finite representation; but no insight is given how thesedomains can be found or constructed.
They applied this to Petri nets and lossy channel systems. Abdulla et al. [3] proposed another
symbolic framework for dealing with downward closed sets for timed Petri nets.

We shall see that these constructions are special cases of our completions (Section 3). We shall
illustrate this in Section 4, and generalize to a comprehensive hierarchy of data types in Section 5.
We briefly touch the question of computing approximations ofthe cover in Section 6, although we
shall postpone most of it to future work. We conclude in Section 7.

2. Preliminaries

We shall borrow from theories of order, both from the theory of well quasi-orderings, as used
classically in well-structured transition systems [2, 11], and from domain theory [5, 14]. We should
warn the reader that this is one bulky section on preliminaries. We invite her to skip technical points
first, returning to them on demand.

A quasi-ordering≤ is a reflexive and transitive relation on a setX. It is a (partial)ordering iff
it is antisymmetric. A setX equipped with a partial ordering is aposet.

We write≥ the converse quasi-ordering,≈ the equivalence relation≤ ∩ ≥, < associated strict
ordering (≤ \ ≈), and> the converse (≥ \ ≈) of <. The upward closure↑ E of a setE is
{y ∈ X | ∃x ∈ E · x ≤ y}. Thedownward closure↓ E is {y ∈ X | ∃x ∈ E · y ≤ x}. A subset
E of X is upward closedif and only if E = ↑ E, i.e., any element greater than or equal to some
element inE is again inE. Downward closedsets are defined similarly. When the ambient space
X is not clear from context, we shall write↓X E, ↑X E instead of↓ E, ↑ E.

A quasi-ordering iswell-foundediff it has no infinite strictly descending chain, i.e.,x0 > x1 >

. . . > xi > . . .. An antichain is a set of pairwise incomparable elements. A quasi-ordering is well
if and only it is well-founded and has no infinite antichain.

There are a number of equivalent definitions for well quasi-orderings (wqo). One is that, from
any infinite sequencex0, x1, . . . , xi, . . ., one can extract an infinite ascending chainxi0 ≤ xi1 ≤
. . . ≤ xik ≤ . . ., with i0 < i1 < . . . < ik < . . .. Another one is that any upward closed subset
can be written↑ E, with E finite. Yet another, topological definition [15, Proposition 3.1]is to
say thatX, with its Alexandroff topology, is Noetherian. TheAlexandroff topologyon X is that
whose opens are exactly the upward closed subsets. A subsetK is compact if it satisfies the Heine-
Borel property, i.e., every one may extract a finite subcoverfrom any open cover ofK. A topology
is Noetherianiff every open subset is compact, iff any increasing chain ofopens stabilizes [15,
Proposition 3.2]. We shall cite results from the latter paper as the need evolves.
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We shall be interested in rather particular topological spaces, whose topology arises from order.
A directed familyof X is any non-empty family(xi)i∈I such that, for alli, j ∈ I, there is ak ∈ I

with xi, xj ≤ xk. The Scott topologyon X has as opens all upward closed subsetsU such that
every directed family(xi)i∈I that has a least upper boundx in X intersectsU , i.e., xi ∈ U for
somei ∈ I. The Scott topology is coarser than the Alexandroff topology, i.e., every Scott-open is
Alexandroff-open (upward closed); the converse fails in general. The Scott topology is particularly
interesting ondcpos, i.e., posetsX in which every directed family(xi)i∈I has a least upper bound
supi∈I xi.

The way belowrelation≪ on a posetX is defined byx ≪ y iff, for every directed family
(zi)i∈I that has a least upper boundz ≥ y, thenzi ≥ x for somei ∈ I already. Note thatx ≪ y

implies x ≤ y, and thatx′ ≤ x ≪ y ≤ y′ implies x′ ≪ y′. However,≪ is not reflexive or
irreflexive in general. Write↑↑E = {y ∈ X | ∃x ∈ E · x ≪ y}, ↓↓E = {y ∈ X | ∃x ∈ E · y ≪ x}.
X is continuousiff, for every x ∈ X, ↓↓x is a directed family, and hasx as least upper bound. One
may be more precise: Abasisis a subsetB of X such that any elementx ∈ X is the least upper
bound of a directed family of elements way belowx in B. ThenX is continuous if and only if it
has a basis, and in this caseX itself is the largest basis. In a continuous dcpo,↑↑x is Scott-open for
all x, and every Scott-open setU is a union of such sets, viz.U =

⋃
x∈U ↑

↑x [5].
X is algebraic iff every elementx is the least upper bound of the set of finite elements below

x—an elementy is finite if and only if y ≪ y. Every algebraic poset is continuous, and has a least
basis, namely its set of finite elements.

N, with its natural ordering, is a wqo and an algebraic poset. All its elements are finite, so
x ≪ y iff x ≤ y. N is not a dcpo, sinceN itself is a directed family without a least upper bound.
Any finite product of continuous posets (resp., continuous dcpos) is again continuous, and the Scott-
topology on the product coincides with the product topology. Any finite product of wqos is a wqo.
In particular,Nk, for any integerk, is a wqo and a continuous poset: this is the set of configurations
of Petri nets.

It is clear how to completeN to make it a cpo: letNω be N with a new elementω such that
n ≤ ω for all n ∈ N. ThenNω is still a wqo, and a continuous cpo, withx ≪ y if and only if x ∈ N

andx ≤ y. In general, completing a wqo is necessary to extend coverability tree techniques [9, 13].
Geeraertset al. (op. cit.) axiomatize the kind of completions they need in the form of so-called
adequate domains of limits. We discuss them in Section 3. For now, let us note that the second
author also proposed to use another notion of completion in another context, known assobrification
[15]. We need to recap what this is about.

A topological spaceX is always equipped with aspecialization quasi-ordering, which we shall
write ≤ again:x ≤ y if and only if any open subset containingx also containsy. X is T0 if and
only if ≤ is a partial ordering. Given any quasi-ordering≤ on a setX, both the Alexandroff and the
Scott topologies admit≤ as specialization quasi-ordering. In fact, the Alexandroff topology is the
finest (the one with the most opens) having this property. Thecoarsest is called theupper topology;
its opens are arbitrary unions of complements of sets of the form ↓ E, E finite. The latter sets↓ E,
with E finite, will play an important role, and we call them thefinitary closedsubsets. Note that
finitary closed subsets are closed in the upper, Scott, and Alexandroff topologies, recalling that a
subset isclosediff its complement is open. Theclosurecl(A) of a subsetA of X is the smallest
closed subset containingA. A closed subsetF is irreducible if and only if F is non-empty, and
wheneverF ⊆ F1 ∪ F2 with F1, F2 closed, thenF ⊆ F1 or F ⊆ F2. The finitary closed subset
↓ x = cl({x}) (x ∈ X) is always irreducible. A spaceX is soberiff every irreducible closed subset
F is the closure of a unique point, i.e.,F = ↓ x for some uniquex. Any sober space isT0, and
any continuous cpo is sober in its Scott topology. Conversely, given aT0 spaceX, the spaceS(X)
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of all irreducible closed subsets ofX, equipped with upper topology of the inclusion ordering⊆, is
always sober, and the mapηS : x 7→ ↑ x is a topological embedding ofX insideS(X). S(X) is
thesobrificationof X, and can be thought asX together with all missing limits fromX. Note in
particular that a sober space is always a cpo in its specialization ordering [5, Proposition 7.2.13].

It is an enlightening exercise to check thatS(N) is Nω. Also, the topology onS(N) (the upper
topology) coincides with that ofNω (the Scott topology). In general,X is Noetherian if and only
if S(X) is Noetherian [15, Proposition 6.2], however the upper and Scott topologies do not always
coincide [15, Section 7]. In case of ambiguity, given any poset X, we writeXa the spaceX with
its Alexandroff topology.

Another important construction is theHoare powerdomainH(X) of X, whose elements are
the closed subsets ofX, ordered by inclusion. (We do allow the empty set.) We again equip it with
the corresponding upper topology.

3. Completions of Wqos

One of the central problems of our study is the definition of acompletionof a wqoX, with all
missing limits added. Typically, the Karp-Miller construction [16] works not withNk, but withNk

ω.
We examine several ways to achieve this, and argue that they are the same, up to some details.

ADLs, WADLs.We start with Geeraertset al.’s axiomatization of so-calledadequate domain of
limits for well-quasi-ordered setsX [13]. No explicit constructions for such adequate domains of
limits is given, and they have to be found by trial and error. Our main result, below, is that there is
a unique least adequate domain of limits: thesobrificationS(Xa) of Xa. (Recall thatXa is X with
its Alexandroff topology.) This not only gives a concrete construction of such an adequate domain
of limits, but also shows that we do not have much freedom in defining one.

An adequate domain of limits[13] (ADL) for a well-ordered setX is a triple(L,�, γ) where
L is a set disjoint fromX (the set oflimits); (L1) the mapγ : L ∪X → P(X) is such thatγ(z) is
downward closed for allz ∈ L ∪ X, andγ(x) = ↓X x for all non-limit pointsx ∈ X; (L2) there
is a limit point⊤ ∈ L such thatγ(⊤) = X; (L3) z � z′ if and only if γ(z) ⊆ γ(z′); and (L4) for
any downward closed subsetD of X, there is a finite subsetE ⊆ L∪X such that̂γ(E) = D. Here
γ̂(E) =

⋃
z∈E γ(z).

Requirement (L2) in [13] only serves to ensure that all closed subsets ofL ∪X can be repre-
sented as↓L∪X E for some finite subsetE: the closed subsetL∪X itself is then exactly↓L∪X {⊤}.
However, (L2) is unnecessary for this, sinceL ∪ X already equals↓L∪X E by (L3), whereE is
the finite subset ofL ∪ X such that̂γ(E) = L ∪ X as ensured by (L4). Accordingly, we drop
requirement (L2):

Definition 3.1 (WADL) . Let X be a poset. Aweak adequate domain of limits(WADL) on X is any
triple (L,�, γ) satisfying (L1), (L3), and (L4).

Proposition 3.2. LetX be a poset. Given a WADL(L,�, γ) onX, γ defines an order-isomorphism
from (L ∪X,�) to some subset ofH(Xa) containingS(Xa).

Conversely, assumeX wqo, and letY be any subset ofH(Xa) containingS(Xa). Then(Y \
ηS(Xa),�, γ) is a weak adequate domain of limits, whereγ maps eachx ∈ X to ↓X x and each
F ∈ Y \ ηS(Xa) to itself;� is defined by requirement (L3).

Proof. The Alexandroff-closed subsets ofX are just its downward-closed subsets. Soγ(z) is in
H(Xa) for all z, by (L1). Let Y be the image ofγ. By (L3), γ defines an order-isomorphism of
L ∪ X onto Y . It remains to show thatY must containS(Xa). Let F be any irreducible closed
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subset ofXa. By (L4), there is a finite subsetE ⊆ L ∪ X such thatF =
⋃

x∈E γ(x). SinceF is
irreducible, there must be a singlex ∈ E such thatF = γ(x). SoF is in Y .

Conversely, letX be wqo,L = Y \ ηS(Xa), andγ, � be as in the Lemma. Properties (L1)
and (L3) hold by definition. For (L4), note thatXa is a Noetherian space, henceS(Xa) is, too
[15, Proposition 6.2]. However, by [15, Corollary 6.5], every closed subset of a sober Noetherian
space is finitary. In particular, take any downward closed subsetD of X. This is closed inXa,
hence its imageηS(D) by the topological embeddingηS is closed inηS(Xa), i.e., is of the form
ηS(Xa) ∩ F for some closed subsetF of S(Xa). Also, D = η−1

S (F ). SinceS(Xa) is both sober
and Noetherian,F is finitary, hence is the downward-closure↓S(X) E′ of some finite subsetE′ in
S(X). LetE be the set consisting of the (limit) elements inE′ ∩L, and of the (non-limit) elements
x ∈ X such that↓X x ∈ E′. We obtain̂γ(E) =

⋃
z∈E′ z. On the other hand,D = η−1

S (F ) = {x ∈
X | ↓ x ∈↓S(X) E′} = {x ∈ X | ∃z ∈ E′ · ↓ x ⊆ z} =

⋃
z∈E′ z = γ̂(E). So (L4) holds.

I.e., up to the coding functionγ, there is a uniqueminimal WADL on any given wqoX:
its sobrificationS(Xa). There is also a unique largest one: its Hoare powerdomainH(Xa). An
adequate domain of limits in the sense of Geeraertset al. [13], i.e., one that additionally satisfies
(L2) is, up to isomorphism, any subset ofH(Xa) containingS(Xa) plus the special closed setX

itself as top element. We contend thatS(Xa) is, in general, the sole WADL worth considering.

Ideal completions.We have already argued thatS(X), for any Noetherian spaceX, was in a sense
of completion ofX, adding missing limits. Another classical construction toadd limits to some
posetX is its ideal completionIdl(X). The elements of the ideal completion ofX are itsideals,
i.e., its downward-closed directed families, ordered by inclusion. Idl(X) can be visualized as a
form of Cauchy completion ofX: we add all missing limits of directed families(xi)i∈I from
X, by declaring these families to be their limits, equating two families when they have the same
downward-closure. InIdl(X), the finite elements are the elements ofX; formally, the mapηIdl :
X → Idl(X) that sendsx to ↓ x is an embedding, and the finite elements ofIdl(X) are those of
the formηIdl(x). It turns out that sobrification and ideal completion coincide, in a strong sense:

Proposition 3.3([17]). For any posetX, S(Xa) = Idl(X).

This is not just an isomorphism: the irreducible closed subsets ofXa areexactlythe ideals.
Note also thatIdl(X) is always an algebraic dcpo [5, Proposition 2.2.22, Item 4].

WhenX is wqo, any downward-closed subset ofX is afinite union of ideals. So(Idl(X) \
X,⊆, id) is a WADL onX. Proposition 3.2 and Proposition 3.3 entail this, and a bit more:

Theorem 3.4. For any wqoX, S(Xa) = Idl(X) is the smallest WADL onX.

Well-based continuous cpos.There is a natural notion of limit in dcpos: whenever(xi)i∈I is a
directed family, considersupi∈I xi. Starting from a wqoX, it is then natural to look at some dcpo
Y that would containX as a basis. In particular,Y would be continuous. This prompts us to define
awell-based continuous dcpoas one that has a well-ordered basis—namely the original poset X.

This has several advantages. First, in general there are several notions of “sets of limits” of
a given subsetA ⊆ Y , but we shall see that they all coincide in continuous posets. Such sets of
limits are important, because these are what we would like Karp-Miller-like procedures to compute,
through acceleration techniques. Here are the possible notions. First, defineLubY (A) as the set
of all least upper bounds inY of directed families inA. Second,IndY (A), the inductive hullof
A in Y , is the smallest sub-dcpo ofY containingA. Finally, the (Scott-topological) closurecl(A)
of A. It is well-known thatcl(A) is the smallestdownward closedsub-dcpo ofY containingA.
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(Recall that any open is upward closed, so that any closed setmust be downward closed.) In any
dcpoY , one hasA ⊆ LubY (A) ⊆ IndY (A) ⊆ cl(A), and all inclusions are strict in general. E.g.,
in Y = Nω, takeA to be the set of even numbers. ThenLubY (A) = IndY (A) = A ∪ {ω} while
cl(A) = Nω. While LubY (A) = IndY (A) in this case, there are cases whereLubY (A) is itself not
closed under least upper bounds of directed families, and one has to iterate theLubY operator to
computeIndY (A). On continuous posets however, all these notions coincide [10, Appendix A].

Proposition 3.5. Let Y be a continuous poset. Then, for every downward-closed subset A of Y ,
IndY (A) = LubY (A) = cl(A).

We shall use this in Section 6. The key point now is that, again, well-based continuous dcpos
coincide with completions of the formS(Xa) or Idl(X), and are therefore WADLs [10, Appen-
dix B]. This even holds for continuous dcpos having a well-founded (not well-ordered) basis:

Proposition 3.6. Any continuous dcpoY with a well-founded basis is order-isomorphic toIdl(X)
for some well-ordered setX. One may take the subset of finite elements ofX for Y . If Y is well-
based, thenX is well-ordered.

4. Some Concrete WADLs

We now build WADLs for several concrete posetsX. Following Proposition 3.2, it suffices to
characterizeS(Xa). AlthoughS(Xa) = Idl(X) (Proposition 3.3), the mathematics ofS(Xa) is
easier to deal with thanIdl(X).

Nk. We start withX = Nk, with the pointwise ordering. We have already recalled from[15]
that S(Nk

a) was, up to isomorphism,(Nω)k, ordered with the pointwise ordering, whereω is a
new element above any natural number. This is the structure used in the standard Karp-Miller
construction for Petri nets [16].

Σ∗. Let Σ be a finite alphabet. Thedivisibility ordering | on Σ∗, a.k.a. the subsequence (non-
continuous subword) ordering, is defined bya1a2 . . . an | w0a1w1a2 . . . anwn, for any letters
a1, a2, . . . , an ∈ Σ and wordsw0, w1, . . . , wn ∈ Σ∗. There is a more general definition, where
letters themselves are quasi-well-ordered. Our definitionis the special case where the wqo on let-
ters is=, and is the one required in verifying lossy channel systems [4]. Higman’s Lemma states
that | is wqo onΣ∗.

Any upward closed subsetU of Σ∗ is then of the form↑ E, with E finite. For any element
w = a1a2 . . . an of E, ↑ w is the regular languageΣ∗a1Σ

∗a2Σ
∗ . . . Σ∗anΣ∗. Forward analysis

of lossy channel systems is instead based on simple regular expressions (SREs). Recall from [1]
that anatomic expressionis any regular expression of the forma?, with a ∈ Σ, or A∗, whereA is
a non-empty subset ofΣ. WhenA = {a1, . . . , am}, we takeA∗ to denote(a1 + . . . + am)∗; a?

denotes{a, ǫ}. A product is any regular expression of the forme1e2 . . . en (n ∈ N), where eachei

is an atomic expression. Asimple regular expression, or SRE, is a sum, either∅ or P1 + . . . + Pk,
whereP1, . . . , Pk are products. Sum is interpreted as union. That SREs and products are relevant
here is no accident, as the following proposition shows.

Proposition 4.1. The elements ofS(Σ∗
a) are exactly the denotations of products. The downward

closed subsets ofΣ∗ are exactly the denotations of SREs.

Proof. The second part is well-known. IfF = P1 + . . . + Pk is irreducible closed, then by irre-
ducibility k must equal1, henceF is denoted by a product. Conversely, it is easy to show that any
product denotes an ideal, hence an element ofIdl(X) = S(Xa) (Proposition 3.3).
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Inclusion between products can then be checked in quadratictime [1]. Inclusion between SREs
can be checked in polynomial time, too, because of the remarkable property thatP1 + . . . + Pm ⊆
P ′

1 + . . . + P ′
n if and only if, for everyi (1 ≤ i ≤ m), there is aj (1 ≤ j ≤ n) with Pi ⊆ P ′

j [1,
Lemma 1].Similar lemmas are given by Abdullaet al. [3, Lemma 3, Lemma 4] for more general
notions of SREs on words on infinite alphabets, and for a similar notion for finite multisets of
elements from a finite set (both will be special cases of our constructions of Section 5). This is
again no accident, and is a general fact about Noetherian spaces:

Proposition 4.2. Let X be a Noetherian space, e.g., a wqo with its Alexandroff topology. Every
closed subsetF of X is a finite union of irreducible closed subsetsC1, . . . , Cm. If C ′

1, . . . , C
′
n are

also irreducible closed, ThenC1 ∪ . . .∪Cm ⊆ C ′
1 ∪ . . .∪C ′

n if and only if for everyi (1 ≤ i ≤ m),
there is aj (1 ≤ j ≤ n) with Ci ⊆ C ′

j .

Proof. For the first part, by the results of [15],S(X) is Noetherian and sober, which entails thatF

can be written↓ {x1, . . . , xm}; now takeCi = η−1
S (↓ xi), 1 ≤ i ≤ m (see [10, Appendix C] for

details). The second part is an easy consequence of irreducibility.

Proposition 4.2 suggests to represent closed subsets ofX as finite subsetsA of S(X), inter-
preted as the closed set

⋃
C∈A C. WhenX = Σ∗

a, A is a finite set of products, i.e., an SRE. When
X = Nk

a, A is a finite subset ofNk
ω, interpreted as↓ A ∩ Nk.

Finite Trees.All the examples given above are well-known. Here is one thatis new, and also more
involved than the previous ones. LetF be a finite signature of function symbols with their arities.
We letFk the set of function symbols of arityk; F0 is the set ofconstants, and is assumed to be
non-empty. The setT (F) is the set of ground terms built fromF . Kruskal’s Tree Theorem states
that this is well-quasi-ordered by thehomeomorphic embeddingordering�, defined as the smallest
relation such that, wheneveru = f(u1, . . . , um) andv = g(v1, . . . , vn), u � v if and only if u � vj

for somej, 1 ≤ j ≤ n, or f = g, m = n, andu1 � v1, u2 � v2, . . . ,um � vm. (As for Σ∗, we take
a special case, where each function has fixed arity.)

The structure ofS(T (F)a) is described using an extension of SREs to the tree case. Thisuses
regular tree expressions as defined in [6, Section 2.2]. LetK be a countably infinite set of additional
constants, calledholes2. Most tree regular expressions are self-explanatory, except Kleene star
L∗,2 and concatenationL.2L′. The latter denotes the set of all terms obtained from a termt in L

by replacing all occurrences of2 by (possibly different) terms fromL′. The language of a hole2
is just{2}. L∗,2 is the infinite union of the languages of2, L, L.2L, L.2L.2L, etc.

Definition 4.3 (STRE). Tree productsandproduct iteratorsare defined inductively by:
• Every hole2 is a tree product.
• f ?(P1, . . . , Pk) is a tree product, for anyf ∈ Σk and any tree productsP1, . . . , Pk. We take

f ?(P1, . . . , Pk) as an abbreviation forf(P1, . . . , Pk) + P1 + . . . + Pk.
• (

∑n
i=1 Ci)

∗,2.2P is a tree product, for any tree productP , anyn ≥ 1, and any product
iteratorsCi over2, 1 ≤ i ≤ n. We write

∑n
i=1 Ci for C1 + C2 + . . . + Cn.

• f(P1, . . . , Pk) is a product iterator over2 for anyf ∈ Σk, where: 1. eachPi, 1 ≤ i ≤ k is
either2 itself or a tree product such that2 is not in the language ofPi; and 2.Pi = 2 for
somei, 1 ≤ i ≤ k.

A simple tree regular expression(STRE) is a finite sum of tree products.

A tree regular expression isclosediff it has no free hole, where a hole is free inf(L1, . . . , Lk),
L1 + . . . + Lk, or in f ?(L1, . . . , Lk) iff it is free in someLi, 1 ≤ i ≤ k; the only free hole in2 is
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2 itself; the free holes ofL∗,2 are those ofL, plus2; the free holes ofL.2L′ are those ofL′, plus
those ofL except2. E.g.,f ?(a?, b?) and(f(2, g?(a?)) + f(g?(b?),2))∗,2.2f ?(a?, b?) are closed
tree products. Then [10, Appendix D]:

Theorem 4.4. The elements ofS(T (F)a) are exactly the denotations of closed tree products. The
downward closed subsets ofT (F) are exactly the denotations of closed STREs. Inclusion is decid-
able in polynomial time for tree products and for STREs.

5. A Hierarchy of Data Types

The sobrification WADL can be computed in a compositional way, as we now show. Consider
the following grammar of data types of interest in verification:
D ::= N natural numbers

| A≤ finite setA, quasi-ordered by≤
| D1 × . . .×Dk finite product
| D1 + . . . + Dk finite, disjoint sum
| D∗ finite words
| D⊛ finite multisets

By compositional, we mean that the sobrification of any data typeD is computed in terms of the
sobrifications of its arguments. E.g.,S(D∗

a) will be expressed as some extended form of products
overS(Da). The semantics of data types is the intuitive one. Finite products are quasi-ordered
by the pointwise quasi-ordering, finite disjoint sums by comparing elements in each summand—
elements from different summands are incomparable. For anyposetX (even infinite),X∗ is the set
of finite words overX ordered by theembeddingquasi-ordering≤∗: w ≤∗ w′ iff, writing w as the
sequence ofm lettersa1a2 . . . am, one can writew′ asw0a

′
1w1a

′
2w2 . . . wm−1a

′
mw′

m with a1 ≤ a′1,
a2 ≤ a′2, . . . ,am ≤ a′m. X⊛ is the set of finite multisets{|x1, . . . , xn|} of elements ofX, and is
quasi-ordered by≤⊛, defined as:{|x1, x2, . . . , xm|} ≤

⊛ {|y1, y2, . . . , yn|} iff there is an injective
mapr : {1, . . . ,m} → {1, . . . , n} such thatxi ≤ yr(i) for all i, 1 ≤ i ≤ m. When≤ is just
equality,m ≤⊛ m′ iff every element ofm occurs at least as many times inm′ as inm: this is the
≤m quasi-ordering considered, on finite setsX, by Abdullaet al. [3, Section 2].

The analogue of products and SREs forD∗ is given by the following definition, which gen-
eralizes theΣ∗ case of Section 4. Note thatD is in general aninfinite alphabet, as in [3]. The
following definition should be compared with [1]. The only meaningful difference is the replace-
ment of(a + ǫ), wherea is a letter, withC?, whereC ∈ S(Xa). It should also be compared with
theword language generatorsof [3, Section 6]. Indeed, the latter are exactly our products onA⊛,
whereA is a finite alphabet (in our notation,A≤, with≤ given as equality).

Definition 5.1 (Product, SRE). Let X be a topological space. LetX∗ be the set of finite words
on X. For anyA,B ⊆ X∗, let AB be {ww′ | w ∈ A,w′ ∈ B}, A∗ be the set of words onA,
A? = A ∪ {ǫ}.

Atomic expressionsare either of the formC?, with C ∈ S(X), or A∗, with A a non-empty
finite subset ofS(X). Productsare finite sequencese1e2 . . . ek, k ∈ N, andSREsare finite sums of
products. The denotation of atomic expressions is given by

q
C?

y
= C?, JA∗K = (

⋃
C∈A JCK)∗; of

products byJe1e2 . . . ekK = Je1K Je2K . . . JekK; of SREs byJP1 + . . . + PkK =
⋃k

i=1 JPiK.
Atomic expressions are ordered byC? ⊑ C ′? iff C ⊆ C ′; C? ⊑ A′∗ iff C ⊆ C ′ for some

C ′ ∈ A′; A∗ 6⊑ C ′?; A∗ ⊑ A′∗ iff for every C ∈ A, there is aC ′ ∈ A′ with C ⊆ C ′. Products are
quasi-ordered byeP ⊑ e′P ′ iff (1) e 6⊑ e′ andeP ⊑ P ′, or (2) e = C?, e′ = C ′?, C ⊆ C ′ and
P ⊑ P ′, or (3)e′ = A′∗, e ⊑ A′∗ andP ⊑ e′P ′. We let≡ be⊑ ∩ ⊒.
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Definition 5.2 (⊛-Product,⊛-SRE). Let X be a topological space. For anyA,B ⊆ X, let A ⊙
B = {m ⊎ m′ | m ∈ A,m′ ∈ B}, A⊛ be the set of multisets comprised of elements fromA,
A

g? = {{|x|} | x ∈ A} ∪ {∅∅∅}, where∅∅∅ is the empty multiset.
The⊛-productsP are the expressions of the formA⊛⊙C

g?
1 ⊙ . . .⊙C

g?
n , whereA is a finite

subset ofS(X), n ∈ N, andC1, . . . , Cn ∈ S(X). Their denotationJP K is (
⋃

C∈A C)⊛⊙ JC1K
g? ⊙

. . .⊙ JCnK g? . They are quasi-ordered byP ⊑ P ′, whereP = A⊛⊙C
g?

1 ⊙C
g?

2 ⊙ . . .⊙C
g?

m and
P ′ = A′⊛⊙C ′

1

g? ⊙C ′
2

g? ⊙ . . .⊙C ′
n

g? , iff: (1) for everyC ∈ A, there is aC ′ ∈ A′ with C ⊆ C ′,
and (2) lettingI be the subset of those indicesi, 1 ≤ i ≤ m, such thatCi ⊆ C ′ for no C ′ ∈ A′,
there is an injective mapr : I → {1, . . . , n} such thatCi ⊆ C ′

r(i) for all i ∈ I. Let≡ be⊑ ∩ ⊒.

Theorem 5.3. For every data typeD, S(Da) is Noetherian, and is computed by:S(Na) = Nω;
S(A≤a) = A≤; S((D1 × . . . × Dk)a) = S(D1a) × . . . × S(Dka); S((D1 + . . . + Dk)a) =
S(D1a)+. . .+S(Dka); S(D∗) is the set of products onD modulo≡, ordered by⊑ (Definition 5.1);
S(D⊛) is the set of⊛-products onD modulo≡, ordered by⊑ (Definition 5.2).

For any data typeD, equality and ordering (inclusion) inS(Da) is decidable in the polynomial
hierarchy.

Proof. We show thatS(Da) is Noetherian and is computed as given above, by induction onthe
construction ofD. We in fact prove the following two facts separately: (1)S(D) is Noetherian (D,
notDa), whereD is topologized in a suitable way, and (2)D = Da.

To show (1), we topologizeN andA≤ with their Alexandroff topologies, sums and products
with the sum and product topologies respectively;X∗ with thesubword topology, viz. the smallest
containing the open subsetsX∗U1X

∗U2X
∗ . . . X∗UnX∗, n ∈ N, U1, U2, . . . ,Un open inX; and

X⊛ with thesub-multiset topology, namely the smallest containing the subsetsX⊛ ⊙ U1 ⊙ U2 ⊙
. . . ⊙ Un, n ∈ N, whereU1, U2, . . . , Un are open subsets ofX. The case ofN has already been
discussed above. WhenA≤ is finite, it is both Noetherian and sober. The case of finite products is
by [15, Section 6], that of finite sums by [15, Section 4]. The cases ofX∗, resp.X⊛, are dealt with
in [10, Appendices E, F].

To show (2), we appeal to a series of coincidence lemmas, showing that(X∗)a = X∗
a and that

(X⊛)a = X⊛
a notably. The other cases are obvious.

Finally, we show that inclusion and equality are decidable in the polynomial hierarchy. For
this, we show in the appendices that inclusion onS(D∗) is ⊑ on products, and is decidable by a
polynomial time algorithm modulo calls to an oracle deciding inclusion inS(D). This is by dynamic
programming. Inclusion inS(D⊛) is ⊑ on ⊛-products, and is decidable by a non-deterministic
polynomial time algorithm modulo a similar oracle. We conclude since the orderings onNω and on
A≤ are polynomial-time decidable, while inclusion inS(D1 × . . .×Dk) ∼= S(D1)× . . .×S(Dk)
and inS(D1 + . . . + Dk) ∼= S(D1) + . . . + S(Dk) are polynomial time modulo oracles deciding
inclusion inS(Di), 1 ≤ i ≤ k.

Look at some special cases of this construction. First,Nk is the data typeN× . . .×N, and we
retrieve thatS(Nk) = Nk

ω. Second, whenA is a finite alphabet,A∗ is given by products, as given in
theΣ∗ paragraph of Section 4; i.e., we retrieve the products (and SREs) of Abdullaet al. [1]. The
more complicated case(A⊛)∗ was dealt with by Abdullaet al. [3]. We note that the elements of
S((A⊛)∗a) are exactly theirword language generators, which we retrieve here in a principled way.
Additionally, we can deal with more complex data structuressuch as, e.g.,(((N ×A≤)∗ × N)⊛)⊛.

Finally, note that (1) and (2) are two separate concerns in the proof of Theorem 5.3. If we
are ready to relinquish orderings for the more general topological route, as advocated in [15], we
could also enrich our grammar of data types with infinite constructions such asP(D), whereP(D)
is interpreted as the powerset ofD with the so-called lower Vietoris topology. In fact,S(P(X)) ∼=
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H(X) is Noetherian wheneverX is, and its elements can be represented asfinitesubsetsA of S(X),
interpreted as

⋃
C∈A C [10, Appendix G]. In a sense, whileS(Xa) = Idl(X) for all ordered spaces

X, the sobrification construction is more robust than the ideal completion.

6. Completing WSTS, or: Towards Forward Procedures Computing the Cover

We show how one may use our completions on wqos to deal with forward analysis of well-
structured systems. We shall describe this in more detail inanother paper. First note that any data
typeD of Section 5 is suited to applying the expand, enlarge and check algorithm [13] out of the
box to this end, since thenS(Da) is (the least) WADL forD. We instead explore extensions of
the Karp-Miller procedure [16], in the spirit of Finkel [9] or Emerson and Namjoshi [7]. While the
latter assumes an already built completion, we construct it. Also, we make explicit how this kind of
acceleration-based procedure really computes the cover, i.e.,↓ Post∗(↓ x), in Proposition 6.1.

Recall that awell-structured transition system(WSTS) is a tripleS = (X,≤, (δi)
n
i=1), where

X is well-quasi-ordered by≤, and eachδi : X → X is a partial monotonic transition function.
(By “partial monotonic” we mean that the domain ofδi is upward closed, andδi is monotonic on
its domain.) LettingPre(A) =

⋃n
i=1 δ−1

i (A), Pre0(A) = A, andPre∗(A) =
⋃

k∈N
Prek(A),

it is well-known that any upward closed subset ofX is of the form↑ E for some finiteE ⊆ X,
and thatPre∗(↑ E) is an upward-closed subset↑ E′, E′ finite, that arises as

⋃m
k=0 Prek(↑ E) for

somem ∈ N. Hence, provided≤ is decidable andδ−1
i (↑ E) is computable for each finiteE, it is

decidable whetherx ∈ Pre∗(↑ E), i.e., whether one may reach↑ E from x in finitely many steps.
It is equivalent to check whethery ∈ ↓ Post∗(↓ x) for somey ∈ E, wherePost(A) =

⋃n
i=1 δi(A),

Post0(A) = A, andPost∗(A) =
⋃

k∈N
Postk(A).

All the existing symbolic procedures that attempt to compute ↓ Post∗(↓ x), even with a fi-
nite number of accelerations (e.g., Fast, Trex, Lash), can only compute subsets of the larger set
Lub(↓ Post∗(↓ x)). In general,Lub(↓ Post∗(↓ x)) does not admit a finite representation. On
the other hand, we know that the Scott-closurecl(Post∗(↓ x)), as a closed subset ofIdl(X) (in-
tersected withX itself), is always finitary. Indeed, it is also a closed subset of S(Xa) (Proposi-
tion 3.3), which is represented as the downward closure of finitely many elements ofS(Xa). Since
Y = Idl(X) is continuous, Proposition 3.5 allows us to conclude thatLubY (↓ Post∗(↓ x)) =
cl(Post∗(↓ x)) is finitary—hence representable providedX is one of the data types of Section 5.

This leads to the following construction. Any partial monotonic mapf : X → Y between
quasi-ordered sets lifts to acontinuouspartial mapSf : S(Xa) → S(Ya): for each irreducible
closed subset (a.k.a., ideal)C of S(Xa), eitherC ∩ dom f 6= ∅ andSf(C) = ↓ f(C) = {y ∈ Y |
∃x ∈ C ∩ dom f · y ≤ f(x)}, or C ∩ dom f = ∅ andSf(C) is undefined. Thecompletionof a
WSTSS = (X,≤, (δi)

n
i=1) is then the transition system̂S = (S(Xa),⊆, (Sδi)

n
i=1).

For example, whenX = Nk, andS is a Petri net with transitionsδi defined asδi(~x) = ~x + ~di

(where~di ∈ Zk; this is defined whenever~x + ~d ∈ Nk), thenŜ is the transition system whose set of
states isS(X) = Nk

ω, and whose transition functions are:Sδi(~x) = ~x + ~di, whenever this has only
non-negative coordinates, taking the convention thatω + d = ω for anyd ∈ Z.

We may emulate lossy channel systems through the followingfunctional-lossychannel systems
(FLCS). For simplicity, we assume just one channel and no local state; the general case would only
make the presentation more obscure. An FLCS differs from an LCS in that it loses only the least
amount of messages needed to enable transitions. TakeX = Σ∗ for some finite alphabetΣ of
messages; the transitions are either of the formδi(w) = wai for some fixed letterai (sendingai onto
the channel), or of the formδi(w) = w2 wheneverw is of the formw1aiw2, with w1 not containing
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ai (expecting to receiveai). Any LCS is cover-equivalent to the FLCS with the same sendsand
receives, where two systems arecover-equivalentif and only if they have the same sets↓ Post∗(F )
for any downward-closedF . EquatingS(Σ∗

a) with the set of products, as advocated in Section 4,
we find that transition functions of the first kind lift toSδi(P ) = Pa?

i , while transition functions
of the second kind lift to:Sδi(ǫ) is undefined,Sδi(a

?P ) = Sδi(P ) if ai 6= a, Sδi(a
?
i P ) = P ,

Sδi(A
∗P ) = Sδi(P ) if ai 6∈ A, Sδi(A

∗P ) = A∗P otherwise. This is exactly how Trex computes
successors [1, Lemma 6].

In general, the results of Section 5 allow us to use any domainof datatypesD for the state space
X of S. The construction̂S then generalizes all previous constructions, which used tobe defined
specifically for each datatype.

The Karp-Miller algorithm in Petri nets, or the Trex procedure for lossy channel systems, gives
information about the cover↓ Post∗(↓ x). This is true ofanycompletionŜ as constructed above:

Proposition 6.1. LetS be a WSTS. Let̂Post be thePost map of the completion̂S. For any closed

subsetF ofS(Xa), P̂ ost(F ) = cl(Post(F ∩X)), andP̂ ost
∗
(F ) = cl(Post∗(F ∩X)). Hence, for

any downward closed subsetF of X, ↓ Post(F ) = X ∩ P̂ ost(F ), ↓ Post∗(F ) = X ∩ P̂ ost
∗
(F ).

Proof. Let F be closed inS(Xa). P̂ ost(F ) =
⋃n

i=1 cl(δi(F )) = cl(
⋃n

i=1 δi(F )) = cl(Post(F )),

since closure commutes with (arbitrary) unions. We then claim thatP̂ ost
k
(F ) = cl(Postk(F )) for

eachk ∈ N. This is by induction onk. The casesk = 0, 1 are obvious. Whenk ≥ 2, we use

the fact that, for any continuous partial mapf : (∗) cl(f(cl(A))) = cl(f(A)). ThenP̂ ost
k
(F ) =

⋃n
i=1 cl(δi(P̂ ost

k−1
(F ))) =

⋃n
i=1 cl(δi(cl(Postk−1(F )))) =

⋃n
i=1 cl(δi(Postk−1(F ))) (by (∗))

= cl(Postk(F )). Finally, P̂ ost
∗
(F ) =

⋃
k∈N

P̂ ost
k
(F ) =

⋃
k∈N

cl(Postk(F )) = cl(Post∗(F )).
We conclude, since for anyA ⊆ X, ↓ A is the closure ofA in Xa; the topology ofXa is the
subspace topology of that ofS(Xa); so, writingcl for closure inS(Xa), ↓ A = X ∩ cl(A).

Writing F as the finite unionC1∪. . .∪Ck, whereC1, . . . , Ck ∈ S(Xa), P̂ ost(F ) is computable
as

⋃
1≤i1,...,in≤k Sδ1(Ci1)∪ . . .∪Sδn(Cin), assumingSδi computable for eachi. (We takeSδj(Ci)

to mean∅ if undefined, for notational convenience.) AlthoughSδi may be uncomputable even
whenδi is, it is computable on most WSTS in use. This holds, for example, for Petri nets and lossy
channel systems, as exemplified above.

So it is easy to compute↓ Post(↓ x), as (the intersection ofX with) P̂ ost(↓ x). Computing

↓ Post∗(↓ x) (our goal) is also easily computed aŝPost
∗
(↓ x) (intersected withX again), using

acceleration techniques for loops. This is what the Karp-Miller construction does for Petri nets, what
Trex does for lossy channel systems [1]. (We examine termination issues below.) Our framework
generalizes all these procedures, using a weak acceleration assumption, whereby we assume that
we can compute the least upper bound of the values of loops iteratedk times,k ∈ N. For any
continuous partial mapg : Y → Y (with open domain) on a dcpoY , let the iteration g be the
map of domaindom g such thatg(y) is the least upper bound of(gk(y))k∈N

if y < g(y), andg(y)
otherwise. Let∆ = {Sδ1, . . . ,Sδn}, ∆∗ be the set of all composites of finitely many maps from
∆. Our acceleration assumptionis that one can computeg(y) for any g ∈ ∆∗, y ∈ S(Xa). The

following procedure then computes↓ Post∗(↓ x), as (the intersection ofX with) P̂ ost
∗
(↓ x), itself

represented as a finite union of elements ofS(Xa): initially, let A be{x}; then, whileP̂ ost(A) 6⊆
↓ A, choose fairly(g, a) ∈ ∆∗ × A such thata ∈ dom g and addg(a) to A. If this terminates,A
is a finite set whose downward closure is exactly↓ Post∗(↓ x). Despite its simplicity, this is the
essence of the Karp-Miller procedure, generalized to a large class of spacesX.
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Termination is ensured for flat systems, i.e., systems whosecontrol graph has no nested loop, as
one only has to compute the effect of a finite number of loops. In general, the procedure terminates
on cover-flattablesystems, that is systems that are cover-equivalent to some flat system. Petri nets
are cover-flattable, while, e.g., not all LCS are: recall that, in an LCS,↓ Post∗(↓ x) is always
representable as an SRE, however not effectively so.

7. Conclusion and Perspectives

We have developed the first comprehensive theory of downward-closed subsets, as required for
a general understanding of forward analysis techniques of WSTS. This generalizes previous domain
proposals on tuples of natural numbers, on words, on multisets, allowing for nested datatypes, and
infinite alphabets. Each of these domains is effective, in the sense that each has finite presenta-
tions with a decidable ordering. We have also shown how the notion of sobrificationS(Xa) was
in a sense inevitable (Section 3), and described how this applied to compute downward closures
of reachable sets of configurations in WSTS (Section 6). We plan to describe such new forward
analysis algorithms, in more detail, in papers to come.
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Abstract. The notions of hypertree width and generalized hypertree width were intro-
duced by Gottlob, Leone, and Scarcello (PODS’99, PODS’01) in order to extend the con-
cept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx
in SODA’06, who introduced the fractional hypertree width of a hypergraph. All these
width parameters on hypergraphs are useful for extending tractability of many problems
in database theory and artificial intelligence. Computing each of these width parameters
is known to be an NP-hard problem. Moreover, the (generalized) hypertree width of an
n-vertex hypergraph cannot be approximated within a logarithmic factor unless P=NP.
In this paper, we study the approximability of (generalized, fractional) hyper treewidth of
sparse hypergraphs where the criterion of sparsity reflects the sparsity of their incidence
graphs. Our first step is to prove that the (generalized, fractional) hypertree width of a
hypergraph is constant-factor sandwiched by the treewidth of its incidence graph, when the
incidence graph belongs to some apex-minor-free graph class (the family of apex-minor-
free graph classes includes planar graphs and graphs of bounded genus). This determines
the combinatorial borderline above which the notion of (generalized, fractional) hypertree
width becomes essentially more general than treewidth, justifying that way its functionality
as a hypergraph acyclicity measure. While for more general sparse families of hypergraphs
treewidth of incidence graphs and all hypertree width parameters may differ arbitrarily,
there are sparse families where a constant factor approximation algorithm is possible. In
particular, we give a constant factor approximation polynomial time algorithm for (gener-
alized, fractional) hypertree width on hypergraphs whose incidence graphs belong to some
H-minor-free graph class. This extends the results of Feige, Hajiaghayi, and Lee from
STOC’05 on approximating treewidth of H-minor-free graphs.

1. Introduction

Many important theoretical and “real-world” problems can be expressed as constrained
satisfaction problems (CSP). Among examples one can mention numerous problems from
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Key words and phrases: Graph, hypergraph, hypertree width, treewidth.
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different domains like Boolean satisfiability, temporal reasoning, graph coloring, belief main-
tenance, machine vision, and scheduling. Another example is the conjunctive-query con-
tainment problem, which is a fundamental problem in database query evaluation. In fact,
as it was shown by Kolaitis and Vardi [19], CSP, conjunctive-query containment, and find-
ing homomorphism for relational structures are essentially the same problem. The problem
is known to be NP-hard in general [2] and polynomial time solvable for restricted class
of acyclic queries [25]. Recently, in the database and constraint satisfaction communities
various extensions of query (or hypergraph) acyclicity were studied. The main motivation
for the quest for a suitable measure of acyclicity of a hypergraph (query, or relational struc-
ture) is the extension of polynomial time solvable cases (like acyclic hypergraphs) to more
general instances. In this direction, Chekuri and Rajaraman in [3] introduced the notion
of query width. Gottlob, Leone, and Scarcello [13, 14, 16] defined hypertree width and
generalized hypertree width. Furthermore, Grohe and Marx [18] have introduced the most
general parameter known so far, fractional hypertree width, and proved that CSP, restricted
to instances of bounded fractional hypertree width, is polynomial time solvable.

Unfortunately, all known variants of hypertree width are NP-complete [12, 17]. More-
over, generalized hypertree width is NP-complete even when checking whether its value
is at most 3 (see [17]). In the case of hypertree width, the problem is W [2]-hard when
parameterized by k [12]. Both hypertree width and the generalized hypertree are hard to
approximate. For example, the reduction of Gottlob et al. in [12] can be used to show that
the generalized hypertree width of an n-vertex hypergraph cannot be approximated within
a factor c log n for some constant c > 0 unless P = NP.

All these parameters for hypergraphs can be seen as generalizations of the treewidth of
a graph. The treewidth is a fundamental graph parameter from Graph Minors Theory by
Robertson and Seymour [22] and it has numerous algorithmic applications. It is an old open
question whether the treewidth can be approximated within a constant factor and the best
known approximation algorithm for treewidth is

√
log OPT -approximation due to Feige et

al. [9]. However, as it was shown by Feige et al. [9], the treewidth of an H-minor-free graph
is constant factor approximable.

Our results. Our first result is combinatorial. We show that for a wide family of hyper-
graphs (those where the incidence graph excludes an apex graph as a minor – that is a graph
that can become planar after removing a vertex) the fractional and generalized hypertree
width of a hypergraph is bounded by a linear function of treewidth of its incidence graph.
Apex-minor-free graph classes include planar and bounded genus graphs.

For hypergraphs whose incidence graphs are apex graphs the two parameters may differ
arbitrarily, and this result determines the boundary where fractional hypertree width starts
being essentially different from treewidth of the incidence graph. This indicates that hyper-
tree width parameters are more useful as the adequate version of acyclicity for non-sparse
instances.

Our proof is based on theorems from bidimensionality theory and a min-max (in terms of
fractional hyperbrambles) characterization of fractional hypertree width. The proof essen-
tially identifies what is the obstruction analogue of fractional hypertree width for incidence
graphs.

Our second result applies further for sparse classes where the difference between (gen-
eralized, fractional) hypertree width of a hypergraph and treewidth of its incidence graph
can be arbitrarily large. In particular, we give a constant factor approximation algorithm
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for generalized and fractional hypertree width of hypergraphs with H-minor-free incidence
graphs extending the results of Feige et al. [9] from treewidth to (generalized, fractional)
hypertree width. The algorithm is based on a series of theorems based on the main decom-
position theorem of the Robertson-Seymour’s Graph Minor project. As a combinatorial
corollary of our results, it follows that generalized hypertree width and fractional hypertree
width differ within constant multiplicative factor if the incidence graph of the hypergraph
does not contain a fixed graph as a minor.

Due the space restrictions some proofs are omitted here. They will appear in the journal
paper, but also they can be found in our technical report[10].

2. Definitions and preliminaries

Basic definitions and properties. We consider finite undirected graphs without loops or
multiple edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G)
(or simply by V and E if it does not create confusion).

Let G be a graph. For a vertex v, we denote by NG(v) its (open) neighborhood, i.e.
the set of vertices which are adjacent to v. The closed neighborhood of v, i.e. the set
NG(v)∪{v}, is denoted by NG[v]. For U ⊆ V (G), we define NG[U ] =

⋃
v∈U NG[v] (we may

omit index if the graph under consideration is clear from the context). If U ⊆ V (G) (or
u ∈ V (G)) then G− U (or G− u) is the graph obtained from G by the removal of vertices
of U (vertex u correspondingly). Given an edge e = {x, y} of a graph G, the graph G/e is
obtained from G by contracting e; which is, to get G/e we identify the vertices x and y and
remove all loops and replace all multiple edges by simple edges. A graph H obtained by a
sequence of edge-contractions is said to be a contraction of G. A graph H is a minor of
G if H is a subgraph of a contraction of G. We say that a graph G is H-minor-free when
it does not contain H as a minor. We also say that a graph class G is H-minor-free (or,
excludes H as a minor) when all its members are H-minor-free. An apex graph is a graph
obtained from a planar graph G by adding a vertex and making it adjacent to some of the
vertices of G. A graph class G is apex-minor-free if G excludes a fixed apex graph H as a
minor. The (k × k)-grid is the Cartesian product of two paths of lengths k − 1. A surface
Σ is a compact 2-manifold (we always consider connected surfaces). Whenever we refer to
a Σ-embedded graph G we consider a 2-cell embedding of G in Σ. To simplify notations,
we do not distinguish between a vertex of G and the point of Σ used in the drawing to
represent the vertex or between an edge and the line representing it. We also consider a
graph G embedded in Σ as the union of the points corresponding to its vertices and edges.
That way, a subgraph H of G can be seen as a graph H, where H ⊆ G. Recall that ∆ ⊆ Σ
is a (closed) disc if it is homeomorphic to {(x, y) : x2 + y2 ≤ 1}. The Euler genus of a
nonorientable surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number).
The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of
Σ.

If X ⊆ 2A for some set A, then by
⋃

X we denote the union of all elements of X. Recall
that a hypergraph H is a pair H = (V (H), E(H)) where V (H) is a finite nonempty set of
vertices, and E(H) is a set of nonempty subsets of V (H) called hyperedges,

⋃
E(H) = V (H).

We consider here only hypergraphs without isolated vertices (i.e. every vertex is in some
hyperedge). For vertex v ∈ V (H), we denote by EH(v) the set of its incident hyperedges.
The incidence graph of the hypergraph H is the bipartite graph I(H) with vertex set
V (H) ∪ E(H) such that v ∈ V (H) and e ∈ E(H) are adjacent in I(H) if and only if v ∈ e.
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Treewidth of graphs and hypergraphs. A tree decomposition of a hypergraph H is
a pair (T, χ), where T is a tree and χ : V (T ) → 2V (H) is a function associating a set of
vertices χ(t) ⊆ V (H) (called a bag) to each node t of the decomposition tree T such that i)
V (H) =

⋃
t∈V (T ) χ(t), ii) for each e ∈ E(H), there is a node t ∈ V (T ) such that e ⊆ χ(t),

and iii) for each v ∈ V (G), the set {t ∈ V (T ) : v ∈ χ(t)} forms a subtree of T .
The width of a tree decomposition equals max{|χ(t)| − 1: t ∈ V (T )}. The treewidth of

a hypergraph H is the minimum width over all tree decompositions of H. We use notation
tw(H) for the treewidth of a hypergraph H.

It is easy to verify that for any hypergraph H, tw(H) + 1 ≥ tw(I(H)). However, these
parameters can differ considerably on hypergraphs. For example, for the n-vertex hyper-
graph H with one hyperedge which contains all vertices, tw(H) = n− 1 and tw(I(H)) = 1.

Since tw(H) ≥ |e| for every e ∈ E(H), we have that the presence of a large hyperedge
results in a large treewidth of the hypergraph. The paradigm shift in the transition from
treewidth to hypertree width consists in counting the covering hyperedges rather than
counting the number of vertices in a bag. This parameter seems to be more appropriate,
especially with respect to constraint satisfaction problems. We start with the introduction
of even more general parameter of fractional hypertree width.

Hypertree width and its generalizations. In general, given a finite set A, we use
the term labeling of A for any function γ : A → [0, 1]. We also use the notation G (A)
for the collection of all labellings of a set A. The size of a labelling of A is defined as
|γ| = ∑

x∈A γ(x). If the values of a labelling γ are restricted to be 0 or 1, then we say that
γ is a binary labelling of A. Clearly, the size of a binary labelling is equal to the number of
the elements of A that are labelled by 1. Given a hyperedge labelling γ of a hypergraph H,
we define the set of vertices of H that are blocked by γ as

B(γ) = {v ∈ V (H) |
∑

e∈EH(v)

γ(e) ≥ 1},

i.e. the set of vertices that are incident to hyperedges whose total labelling sums up to 1 or
more.

A fractional hypertree decomposition [18] of H is a triple (T, χ, λ), where (T, χ) is a tree
decomposition of H and λ : V (T ) → G (E(H)) is a function, assigning a hyperedge labeling
to each node of T , such that for every t ∈ V (T ), χ(t) ⊆ B(λ(t)), i.e. all vertices of the bag
χ(t) are blocked by the labelling λ(t). The width of a fractional hypertree decomposition
(T, χ, λ) is min{|λ(t)| : t ∈ V (T )}, and the fractional hypertree width fhw(H) of H is the
minimum of the widths of all fractional hypertree decompositions of H. If λ assigns a binary
hyperedge labeling to each node of T , then (T, χ, λ) is a generalized hypertree decomposition
[15]. Correspondingly, the generalized hypertree width ghw(H) of H is the minimum of the
widths of all generalized hypertree decompositions of H. Clearly, fhw(H) ≤ ghw(H) but,
as it was shown in [18], there are families of hypergraphs of bounded fractional hypertree
width but unbounded generalized hypertree width. Notice that computing the fractional
hypertree width is an NP-complete problem even for sparse graphs. To see this, take a
connected graph G that is not a tree and construct a new graph H by replacing every edge
of G by |V (G)| + 1 paths of length 2. It is easy to check that tw(G) + 1 = fhw(H).

The proof of the next lemma follows from results of [3] about query width. For com-
pleteness, a direct proof is given in [10].

Lemma 2.1. For any hypergraph H, fhw(H) ≤ ghw(H) ≤ tw(I(H)) + 1. [Proof in [10]]
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It is necessary to remark here that the fractional hypertree width of a hypergraph can
be arbitrarily smaller that the treewidth of its incidence graph. Suppose that a hypergraph
H′ is obtained from the hypergraph H by adding a hyperedge which includes all vertices.
Then fhw(H′) = 1 and tw(I(H′)) + 1 ≥ tw(I(H)) + 1 ≥ fhw(H).

Hyperbrambles. Let H be a hypergraph. Two sets X,Y ⊆ V (H) touch if X ∩ Y 6= ∅ or
there exists e ∈ E(H) such that e∩X 6= ∅ and e∩Y 6= ∅. A hyperbramble of H is a set B of
pairwise touching connected subsets of V (H) [1]. We say that a labelling γ of E(H) covers
a vertex set S ⊆ V (H) if some of its vertices are blocked by γ. The fractional order of a
hyperbramble is the minimum k for which there is a labeling γ of size at most k covering
all elements in B. The fractional hyperbramble number, fbn(H), of H is the maximum of
the fractional orders of all hyperbrambles of H. Using [18, Theorem 11], we can prove the
following lemma.

Lemma 2.2. For any hypergraph H, fbn(H) ≤ fhw(H). [Proof in [10]]

i-brambles. An i-labeled graph G is a triple (G,N,M) where N,M ⊆ V (G), N ∪ M =
V (G), M − N and N − M are independent sets of G, and for any v ∈ V (G) its closed
neighborhood NG[v] is intersecting both N and M . Notice that {N,M} is not necessarily a
partition of V (G). The incidence graph I(H) of a hypergraph H can be seen as an i-labeled
graph (I(H), N,M) where N = V (H), M = E(H).

The result of the contraction of an edge e = {x, y} of an i-labeled graph (G,N,M) to a
vertex ve is the i-labeled graph (G′, N ′,M ′) where i) G′ = G/e ii) N ′ contains all vertices of
N −{x, y} and also the vertex ve, in case {x, y} ∩N 6= ∅ and iii) M ′ contains all vertices of
M−{x, y} and also the vertex ve, in case {x, y}∩M 6= ∅. An i-labeled graph (G′,N ′,M ′) is
a contraction of an i-labeled graph (G,N,M) if (G′, N ′,M ′) can be obtained after applying
a (possibly empty) sequence of contractions to (G,N,M). The following lemma is a direct
consequence of the definitions.

Lemma 2.3. Let (G,N,M) be an i-labeled graph and let G′ be a contraction of G. Then
there are N ′,M ′ ⊆ V (G′) such that the i-labeled graph (G′, N ′,M ′) is a contraction of
(G,N,M).

Let (G,N,M) be an i-labeled graph. We say that a set S ⊆ N is i-connected if any pair
x, y ∈ S is connected by a path in G[S ∪M ]. We say that two subsets S,R ⊆ N i-touch
either if i) S ∩R 6= ∅, or ii) there is an edge {x, y} with x ∈ S and y ∈ R, or iii) there is a
vertex z ∈ M such that NG[z] intersects both S and R.

Given an i-labeled graph (G,N,M) we define an i-bramble of (G,N,M) as any collec-
tion B of i-touching i-connected sets of vertices in N . We say that a labeling γ of M blocks
a vertex x ∈ N if

∑
y∈NG[x]∩M γ(y) ≥ 1. We say that γ fractionally covers a vertex set

S ⊆ N if some of its vertices is blocked by γ. The order of an i-bramble is the minimum k
for which there is a labeling γ of M of size at most k that fractionally covers all sets of B.

The fractional i-bramble number fibn(G,N,M) of an i-labeled graph (G,N,M) is the
maximum order of all i-brambles of it.

The following statement follows immediately from the definitions of hyperbrambles and
i-brambles.

Lemma 2.4. For any hypergraph H, fibn(I(H), V (H), E(H)) = fbn(H).

Also it can be easily seen that the fractional i-bramble number is a contraction-closed
parameter.
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Lemma 2.5. If an i-labeled graph (G′, N ′,M ′) is the contraction of an i-labeled graph
(G,N,M) then fibn(G′, N ′,M ′) ≤ fibn(G,N,M).

Obviously, i-bramble number is not a subgraph-closed parameter (not even for induced
subgraphs), but we can note the following useful claim.

Lemma 2.6. Let (G,N,M) be an i-labeled graph and X ⊆ V (G) such that G−X has no
isolated vertices, and for every v ∈ X ∩M , NG[v] ⊆ X. Then (G −X,N −X,M −X) is
an i-labeled graph and fibn(G−X,N −X,M −X) ≤ fibn(G,N,M). [Proof in [10]]

3. When hypertree width is sandwiched by treewidth

Influence and valency of i-brambles. Let (G,N,M) be an i-labelled graph and B an
i-bramble of it. We define the influence of B, as ifl(B) = maxv∈∪B |{x ∈ ∪B | distG(v, x) ≤
2}|. We also define the valency of B as the quantity val(B) = maxv∈∪B |{S ∈ B | v ∈ S}|.
Lemma 3.1. If B is an i-bramble of an i-labeled graph (G,N,M), then the order of B is

at least |B|
ifl(B)·val(B) . [Proof in [10]]

Triangulated grids. A partially triangulated (k × k)-grid is a graph G that is obtained
from a (k × k)-grid (we refer to it as its underlying grid) after adding some edges without
harming the planarity of the resulting graph. Each vertex of G will be denoted by a pair
(i, j) corresponding to its coordinates in the underlying grid. We will also denote as U(G)
the vertices, we call them non-marginal, of G that in the underlying grid have degree 4 and
we call the vertices in V (G) − U(G) marginal.

Lemma 3.2. Let (G,N,M) be an i-labeled graph, where G is a partially triangulated (k×k)-
grid for k ≥ 4. Then fibn(G,N,M) ≥ k/50 − c, for some constant c ≥ 0.

Proof. We use notation Ci,j for the set vertices of N ∩U(G) that belong to the i-th row or
the j-th column of the underlying grid of G. We claim that B = {Ci,j | 2 ≤ i, j ≤ k − 1} is
an i-bramble of G of order ≥ k/50 − c, for some constant c ≥ 0. Since k ≥ 4, we have that
each set Ci,j is non-empty and i-connected. Notice also that the intersection of the i-th row
and the j′-th column of the underlying grid of G is either a vertex in N and Ci,j ∩Ci′,j′ 6= ∅,
or a vertex in M −N , but then all neighbors of it in G belong to N . Therefore, all Ci,j and
Ci′,j′ should i-touch, and B is an i-bramble. Each vertex v = (i, j) in N(

⋃B) is contained
in exactly 2k − 5 sets of B (that is k − 2 sets Ci′,j′ that agree on the first coordinate plus
k− 2 sets Ci′,j′ that agree on the second, minus one set Ci,j that agrees on both), therefore
val(B) = 2k − 5. For each non-marginal vertex x in G, there are at most 25 non-marginal
vertices within distance ≤ 2 in G (in the worst case, consider a triangulated (5 × 5)-grid
subgraph of G that is centered at x) and thus ifl(B) ≤ 25. As |B| = (k − 2)2, Lemma 3.1
implies that there is a constant c such that the order of B is at least k/50−c and the lemma
follows.
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Theorem 3.3. If H is a hypergraph with a planar incidence graph I(H), then fhw(H)−1 ≤
ghw(H)− 1 ≤ tw(I(H)) ≤ 300 · fhw(H) + c for some constant c ≥ 0.

Proof. The left hand inequality follows directly from Lemma 2.1. Suppose now that H is
a hypergraph where fhw(H) ≤ k. By Lemmata 2.2 and 2.4, fibn(I(H), V (H), E(H)) =
fbn(H) ≤ fhw(H) ≤ k. By Lemmata 2.5 and 3.2, (I(H), V (H), E(H)) cannot be i-
contracted to an i-labeled graph (G,N,M) where G is a partially triangulated (l × l)-grid,
where l = 50 · k + O(1). By Lemma 2.3, I(H) cannot be contracted to a partially trian-
gulated (l × l)-grid and thus I(H) excludes an (l × l)-grid as a minor. From [21, (6.2)],
tw(I(H)) ≤ 6 · l ≤ 300 · k + c and the result follows.

Brambles in Gridoids. We call a graph G by a (k, g)-gridoid if it is possible to obtain
a partially triangulated (k × k)-grid after removing at most g edges from it (we call these
edges additional).

Lemma 3.4. Let (G,N,M) be an i-labeled graph where G is a (k, g)-gridoid. Then
fibn(G,N,M) ≥ k/50 − c · g for some constant c ≥ 0. [Proof in [10]]

The proof of the next theorem is similar to the one of Theorem 3.3 (use Lemma 3.4
instead of Lemma 3.2 and [6, Theorem 4.12] instead of [21, (6.2)].

Theorem 3.5. If H is a hypergraph with an incidence graph I(H) of Euler genus at most
g, then fhw(H)− 1 ≤ ghw(H)− 1 ≤ tw(I(H)) ≤ 300 · g · fhw(H) + c · g, for some constant
c ≥ 0.

Brambles in augmented grids. An augmented (r × r)-grid of span s is an r × r grid
with some extra edges such that each vertex of the resulting graph is attached to at most
s non-marginal vertices of the grid.

Lemma 3.6. If (G,N,M) is an i-labeled graph where G is an augmented (k× k)-grid with
span s, then fibn(G,N,M) ≥ k

2·s2 − c, for some constant c ≥ 0. [Proof in [10]]

As it was shown by Demaine et al. [5], every apex-minor-free graph with treewidth
at least k can be contracted to a (f(k) × f(k))-augmented grid of span O(1) (the hidden
constants in the “O”-notation depend only on the excluded apex). Because, f(k) = Ω(k)
(due to the results of Demaine and Hajiaghayi in [7]), we have the following proposition.

Proposition 3.7. Let G be an H-apex-minor-free graph of treewidth at least cH · k. Then
G contains as a contraction an augmented (k× k)-grid of span sH , where constants cH , sH

depend only on the size of apex graph H that is excluded.

The proof of the next theorem is similar to the one of Theorem 3.3 (use Lemma 3.6
instead of Lemma 3.2 and Proposition 3.7 instead of [21, (6.2)].

Theorem 3.8. If H is a hypergraph with an incidence graph I(H) that is H-apex-minor-
free, then fhw(H)− 1 ≤ ghw(H)− 1 ≤ tw(I(H)) ≤ cH · fhw(H) for some constant cH that
depends only on H.
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4. Hypergraphs with H-minor-free incidence graphs

The results of Theorem 3.8 cannot be extended to hypergraphs which incidence graph
excludes an arbitrary fixed graph H as a minor. For example, for every integer k, it is pos-
sible to construct a hypergraph H with the planar incidence graph such that tw(I(H)) ≥ k.
By adding to H an universal hyperedge containing all vertices of H, we obtain a hyper-
graph H′ of generalized hypertree width one. Its incidence graph I(H′) does not contain the
complete graph K6 as a minor, however its treewidth is at least k. Despite of that, in this
section we prove that if a hypergraph has H-minor-free incidence graph, then its generalized
hypertree width and fractional hypertree width can be approximated by the treewidth of a
graph that can be constructed from its incidence graph in polynomial time. By making use
of this result we show that in this case generalized hypertree width and fractional hypertree
width are up to a constant multiplicative factor from each other. Another consequence of
the combinatorial result is that there is a constant factor polynomial time approximation
algorithm for both parameters on this class of hypergraphs. Our proof is based on the
Excluded Minor Theorem by Robertson and Seymour [23].

Graph minor theorem. Before describing the Excluded Minor Theorem we need some
definitions.

Definition 4.1 (Clique-Sums). Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint
graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊆ Vi, form a clique of size h and let G′

i

be the graph obtained from Gi by removing a set of edges (possibly empty) from the clique
Gi[Wi]. Let F : W1 → W2 be a bijection between W1 and W2. We define the h-clique-sum
of G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if there is no confusion, as the
graph obtained by taking the union of G′

1 and G′
2 by identifying w ∈ W1 with F (w) ∈ W2,

and by removing all the multiple edges. The image of the vertices of W1 and W2 in G1⊕G2

is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible that these
graphs had edges which were removed by clique-sum operation. Such edges are called virtual
edges of G. We remark that ⊕ is not well defined; different choices of G′

i and the bijection
F could give different clique-sums. A sequence of h-clique-sums, not necessarily unique,
which result in a graph G, is called a clique-sum decomposition of G.

Definition 4.2 (h-nearly embeddable graphs). Let Σ be a surface with boundary cycles
C1, . . . , Ch, i.e. each cycle Ci is the border of a disc in Σ. A graph G is h-nearly embeddable
in Σ, if G has a subset X of size at most h, called apices, such that there are (possibly empty)
subgraphs G0, . . . , Gh of G−X such that i) G−X = G0 ∪ · · · ∪Gh, ii) G0 is embeddable in
Σ, we fix an embedding of G0, iii) graphs G1, . . . , Gh (called vortices) are pairwise disjoint,
iv) for 1 ≤ · · · ≤ h, let Ui := {ui1 , . . . , uimi

} = V (G0)∩V (Gi), Gi has a path decomposition

(Bij), 1 ≤ j ≤ mi, of width at most h such that a) for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi

we have uj ∈ Bij, b) for 1 ≤ i ≤ h, we have V (G0) ∩ Ci = {ui1 , . . . , uimi
} and the points

ui1 , . . . , uimi
appear on Ci in this order (either if we walk clockwise or anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [23] and is the
cornerstone of Robertson and Seymour’s Graph Minors theory.

Theorem 4.3 ([23]). For every non-planar graph H, there exists an integer h, depending
only on the size of H, such that every graph excluding H as a minor can be obtained by
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h-clique-sums from graphs that can be h-nearly embedded in a surface Σ in which H cannot
be embedded.

Let us remark that by the result of Demaine et al. [8] such a clique-sum decomposition
can be obtained in time O(nc) for some constant c which depends only from H (see also
[4]).

Approximation. Let H be a hypergraph such that its incidence graph G = I(H) excludes
a fixed graph H as a minor. Every graph excluding a planar graph H as a minor has a
constant treewidth [21]. Thus if H is planar, by Theorem 3.8, the generalized hypertree
width does not exceed some constant. In what follows, we always assume that H is not
planar.

By Theorem 4.3, there is an h-clique-sum decomposition of G = G1 ⊕ G2 ⊕ · · · ⊕ Gm

such that for every i ∈ {1, 2, . . . ,m}, the summand Gi can be h-nearly embedded in a
surface Σ in which H can not be embedded. We assume that this clique-sum decomposition
is minimal, in the sense that for every virtual edge {x, y} ∈ E(Gi) there is an x, y-path in
G with all inner vertices in V (G) − V (Gi) (otherwise it is always possible to remove such
edges and modify clique-sum operations correspondingly). Let Ai be the set of apices of Gi.
We define Ei = Ai ∩ E(H) and G′

i = Gi − (NG[Ei] ∪ Ai). For every virtual edge {x, y} of
G′

i we perform the following operation: if there is no x, y-path in G− (N [Ei]∪Ai) with all
inner vertices in G− V (G′

i), then {x, y} is removed from G′
i. We denote the resulted graph

by Fi.
In what remains we show that the maximal value of tw(Fi), where maximum is taken

over all i ∈ {1, 2, . . . ,m}, is a constant factor approximation of generalized and fractional
hypertree widths of H. The upper bound is given by the following lemma (the proof uses
results from [1]).

Lemma 4.4. ghw(H) ≤ 3 ·max{tw(Fi) : i ∈ {1, 2, . . . ,m}}+ 6h + 4. [Proof in [10]]

To prove the lower bound we need the following property of the clique-sum decomposi-
tion which was observed by Demaine and Hajiaghayi [7] (with the reference on the personal
communication by Seymour).

Proposition 4.5. Let G = G1 ⊕G2 ⊕ · · · ⊕Gm. Then every clique sum in this expression
involves at most three vertices other than apices and vertices in vortices of the corresponding
summand (i.e. at most three such vertices are identified by the operation).

We also need a result roughly stating that if a graph G with a big grid as a surface
minor is embedded on a surface Σ of small genus, then there is a disc in Σ containing a big
part of the grid of G. This result is implicit in the work of Robertson and Seymour and
there are simpler alternative proofs by Mohar and Thomassen [20, 24] (see also [6, Lemma
3.3]). We use the following variant of this result from Geelen et al. [11].

Proposition 4.6 ([11]). Let g, l, r be positive integers such that r ≥ g(l + 1) and let G be
an (r, r)-grid. If G is embedded in a surface Σ of Euler genus at most g2 − 1, then some
(l, l)-subgrid of G is embedded in a closed disc ∆ in Σ such that the boundary cycle of the
(l, l)-grid is the boundary of the disc.

Now we are ready to prove the following lower bound.

Lemma 4.7. fbn(H) ≥ εH ·max{tw(Fi) : i ∈ {1, 2, . . . ,m}} for some constant εH depend-
ing only on H. [Proof in [10]]
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Proof. Let i ∈ {1, 2, . . . ,m}. We assume that G− (N [Ei] ∪Ai) is a connected graph which
has at least one edge. (Otherwise one can consider the components of this graph separately
and remove isolated vertices.) The main idea of the proof is to contract it to a planar graph
with approximately the same treewidth as Fi and then apply same techniques that were
used in the previous section for the planar case.
Structure of G − (N [Ei] ∪ Ai). Let us note that an h-clique-sum decomposition G =
G1 ⊕ G2 ⊕ · · · ⊕ Gm induces an h-clique-sum decomposition of G′ = G − (N [Ei] ∪ Ai)
with the summand Gi replaced by Fi. Let G′

1, G
′
2, . . . , G

′
l be the connected components of

G′ − V (Fi). Every such component G′
j is attached via clique-sum to Fi by some clique Qj

of Fi. Note that cliques Qj contain all virtual edges of Fi. We assume that each clique
Qj does not separate vertices of Fi. Otherwise, it is possible to decompose Fi into the

clique-sum of graphs F
(1)
i ⊕F

(2)
i with the join Qj and prove the bound for summands and,

since tw(Fi) = max{F (1)
i , F

(2)
i }, that will prove the lemma. To simplify the structure of the

graph, for every component G′
j , we contract all its edges and denote by Sj the star whose

central vertex is the result of the contraction and leaves are the vertices of Qj .
Contracting vortices. The h-nearly embedding of the graph Gi induces the h-nearly
embedding of Fi = X0∪X1∪· · ·∪Xh without apices. Here we assume that X0 is embedded
in a surface Σ of genus depending on H and X1,X2, . . . ,Xh are the vortices. For every
vortex Xj , the vertices V (X0) ∩ V (Xj) are on the boundary Cj of some face of X0. If
for a star Sk some of its leaves Qk are in Xj or Cj , we do the following operation: if
Qk∩(V (Xj)−V (Cj)) 6= ∅ then all edges of Sk are contracted, and if Qk∩(V (Xj)−V (Cj)) = ∅
but |Qk ∩ V (Cj)| ≥ 2, then we contract all edges of Sk that are incident to the vertices of
Qk ∩V (Cj). These contractions results in the contraction of some edges of Fi. Particularly,
all virtual edges of Xj and Cj are contracted. Additionally, we contract all remaining edges
of Xj and Cj . We perform theses contractions for all vortices of Fi and denote the result
by F ′

i . It follows immediately from the definition of the h-clique-sum and Proposition 4.5,
that F ′

i coincides with the graph obtained from Fi by contractions of all vortices Xj and
boundaries of faces Cj. It can be easily seen that F ′

i is embedded in Σ. It is known
(see e.g. [6, 7]) that there is a positive constant aH which depends only on H such that
tw(F ′

i ) ≥ aH · tw(Fi).
Contracting the part that lies outside of some planar disc. Since F ′

i is embedded
in Σ, we have that the graph F ′

i contains some (k × k)-grid as a surface minor, where
k ≥ bH · tw(F ′

i ) for some constant bH [6]. Combining this result with Proposition 4.6, we
receive the following claim. There is a disc ∆ ⊆ Σ such that i) the subgraph R of F ′

i induced
by vertices of F ′

i ∩∆ is a connected graph; ii) the subgraph R′ of F ′
i induced by NF ′

i
[V (R)]

is completely in some disc ∆′; iii) vertices of V (R′) − V (R) induce a cycle C which is the
border of ∆′, and iv) tw(R) ≥ cH ·tw(F ′

i ) for some constant cH . Now we treat the part of F ′
i

which is outside ∆ exactly the same way we have treated vortices. For stars Sk intersecting
V (F ′

i ) − V (R′) or C, we do the following: if Qk ∩ (V (F ′
i ) − V (R′)) 6= ∅, then all edges of

Sk are contracted, and if Qk ∩ (V (F ′
i )− V (R′)) = ∅ but |Qk ∩ V (C)| ≥ 2, then all edges of

Sk incident to the vertices of Qk ∩ V (C) are contracted. These contractions result in the
contraction of some edges of F ′

i with endpoints on C or outside ∆′. Particularly, all such
virtual edges are contracted. Additionally, we contract all remaining edges of F ′

i−V (R) and
C. Thus this part of the graph is contracted to a single vertex. Denote the obtained graph
X. This graph is planar, and since R is a subgraph of X, we have that tw(X) ≥ tw(R).
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Embedding the stars. Some edges of X are virtual, and all such edges are in cliques Qj .
By Proposition 4.5, |Qj | ≤ 3. For every clique Q = V (X) ∩ Qj, we do the following. If
Q = {x, y}, then the edge of the star Sj incident to x is contracted. If Q = {x, y, z}, then if
two vertices of Q, say x and y, are joined by an edge in G, then the edge of Sj incident to
z is contracted, and if there are no such edges and the triangle induced by {x, y, z} is the
boundary of some face of X, then we add a new vertex on this face, join it with x, y and z
(it can be seen as Sj embedded in this face, and since our graph is i-labeled, it is assumed
that this new vertex has same labels as the central vertex of Sj), and then remove virtual
edges. Note that if the triangle is not a boundary of some face, then Q is a separator of
our graph, but we assumed that there are no such separators. Denote by Y the obtained
graph. Similar construction was used in the proof of the main theorem in [7], and by the
same arguments as were used by Demaine et al. we immediately conclude that there is a
positive constant dH such that tw(X) ≥ dH · tw(Y ).

Now all contractions are finished. Note that the graph Y is a planar graph which is
a contraction of G′ = G − (N [Ei] ∪ Ai). Also there is some positive constant eH which
depends only on H such that tw(Y ) ≥ eH · tw(Fi). Recall that we consider the i-labeled
graph (G,V (H), E(H)). By Lemma 2.4, fbn(H) = fibn(G,V (H), E(H)). Because the sets
V (H) and E(H) are independent, by Lemma 2.6, we have that fibn(G,V (H), E(H)) ≥
fibn(G′, N,M), where N = V (H) − (N [Ei] ∪ Ai) and M = E(H) − (N [Ei] ∪ Ai). By
Lemma 2.5, fibn(G′, N,M) ≥ fibn(Y,N ′,M ′), where N ′ and M ′ are sets which were ob-
tained as the result of contractions of N and M . Finally, as in Theorem 3.3, one can show
that fibn(Y,N ′,M ′) ≥ fH · tw(Y ) for some constant fH . By putting all these bounds
together, we prove that there is a positive constant εH which depends only on H, such that
fbn(H) ≥ εH · tw(Fi).

Combining Lemmata 2.1, 2.2, 4.4, and 4.7, we obtain the following theorem.

Theorem 4.8. (1/cH ) · w ≤ fhw(H) ≤ ghw(H) ≤ cH · w, where w = max{tw(Fi) : i ∈
{1, 2, . . . ,m}}, and cH is a constant depending only on H.

Remark. Notice that, by Theorem 4.8, the generalized hypertree width and the fractional
hypertree width of a hypergraph with H-minor-free incidence graph may differ within a
multiplicative constant factor. We stress that, as observed in [18], this is not the case for
general hypergraphs.

Demaine et al. [8] (see also [4, 9, 23]) described an algorithm which constructs a clique-

sum decomposition of an H-minor-free graph G on n vertices with the running time nO(1)

(the hidden constant in the running time depends only on H). As far as we constructed
summands Gi, the construction of graphs Fi can be done in polynomial time. Moreover,
since the algorithm of Demaine et al. provides h-nearly embeddings of these graphs, it is
possible to use it to construct a polynomial constant factor approximation algorithm for the
computation of tw(Fi). This provides us with the main algorithmic result of this section.

Theorem 4.9. For any fixed graph H, there is a polynomial time cH -approximation al-
gorithm computing the generalized hypertree width and the fractional hypertree width for
hypergraphs with H-minor-free incidence graphs, where the constant cH depends only on H.

We finally remark that by making use of the results from [16], our results can be used not
only to compute but to construct, up to constant multiplicative-factor, the corresponding
decompositions.
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Abstract. Given string S[1..N ] and integer k, the suffix selection problem is to determine
the kth lexicographically smallest amongst the suffixes S[i . . . N ], 1 ≤ i ≤ N . We study the
suffix selection problem in the cache-aware model that captures two-level memory inherent
in computing systems, for a cache of limited size M and block size B. The complexity of
interest is the number of block transfers. We present an optimal suffix selection algorithm
in the cache-aware model, requiring Θ (N/B) block transfers, for any string S over an
unbounded alphabet (where characters can only be compared), under the common tall-
cache assumption (i.e. M = Ω

`

B1+ǫ
´

, where ǫ < 1). Our algorithm beats the bottleneck
bound for permuting an input array to the desired output array, which holds for nearly
any nontrivial problem in hierarchical memory models.

1. Introduction

Background: Selection vs Sorting. A collection of N numbers can be sorted using
Θ (N log N) comparisons. On the other hand, the famous five-author result [2] from early
70’s shows that the problem of selection — choosing the kth smallest number — can be
solved using O (N) comparisons in the worst case. Thus, selection is provably simpler than
sorting in the comparison model.

Consider a sorting vs selection question for strings. Say S = S[1 · · ·N ] is a string. The
suffix sorting problem is to sort the suffixes S[i · · ·N ], i = 1, . . . ,N , in the lexicographic
order. In the comparison model, we count the number of character comparisons. Suffix
sorting can be performed with O (N log N) comparisons using a combination of character
sorting and classical data structure of suffix arrays or trees [11, 9, 4]. There is a lower
bound of Ω (N log N) since sorting suffixes ends up sorting the characters. For the related
suffix selection problem where the goal is to output the kth lexicographically smallest suffix
of S, the result in [6] recently gave an optimal O (N) comparison-based algorithm, thereby
showing that suffix selection is provably simpler than suffix sorting.

The first two authors have been partially supported by the MIUR project MAINSTREAM.
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The Model. Time-tested architectural approaches to computing systems provide two (or
more) levels of memory: the highest one with a limited amount of fast memory; the lowest
one with slow but large memory. The CPU can only access input stored on the fastest level.
Thus, there is a continuous exchange of data between the levels. For cost and performance
reasons, data is exchanged in fixed-size blocks of contiguous locations. These transfers may
be triggered automatically like in internal CPU caches, or explicitly, like in the case of
disks; in either case, more than the number of computing operations executed, the number
of block transfers required is the actual bottleneck.

Formally, we consider the model that has two memory levels. The cache level contains
M locations divided into blocks (or cache lines) of B contiguous locations, and the main
memory level can be arbitrarily large and is also divided into blocks. The processing unit
can address the locations of the main memory but it can process only the data residing in
cache. The algorithms that know and exploit the two parameter M and B, and optimize
the number of block transfers are cache-aware. This model includes the classical External
Memory model [1] as well as the well-known Ideal-Cache model [7].

Motivation. Suffix selection as a problem is useful in analyzing the order statistics of
suffixes in a string such as the extremes, medians and outliers, with potential applications
in bioinformatics and information retrieval. A quick method for finding say the suffixes
of rank i(n/10) for each integer i, 0 ≤ i ≤ 10, may be used to partition the space of
suffixes for understanding the string better, load balancing and parallelization. But in
these applications, such as in bioinformatics, the strings are truly massive and unlikely to
fit in the fastest levels of memory. Therefore it is natural to analyze them in a hierarchical
memory model.

Our primary motivation however is really theoretical. Since the inception of the first
block-based hierarchical memory model ([1],[10]), it has been difficult to obtain “golden
standard” algorithms i.e., those using just O (N/B) block transfers. Even the simplest
permutation problem (perm henceforth) where the output is a specified permutation of
the input array, does not have such an algorithm. In the standard RAM model, perm

can be solved in O (N) time. In both the Ideal-Cache and External Memory models,

the complexity of this problem is denoted perm(N) = Θ
(

min
{

N, (N/B logM/B N/B
})

.

Nearly any nontrivial problem one can imagine from list ranking to graph problems such
as Euler tours, DFS, connected components etc., sorting and geometric problems have the
lower bound of perm(N), even if they take O (N) time in the RAM model, and therefore
do not meet the “golden standard”. Thus the lower bound for perm is a terrible bottleneck
for block-based hierarchical memory models.

The outstanding question is, much as in the comparison model, is suffix selection prov-
ably simpler than suffix sorting in the block-based hierarchical memory models? Suffix

sorting takes Θ
(

(N/B) logM/B(N/B)
)

block transfers [5]. Proving any problem to be sim-

pler than suffix sorting therefore requires one to essentially overcome the perm bottleneck.

Our Contribution. We present a suffix selection algorithm with optimal cache complex-
ity. Our algorithm requires Θ (N/B) block transfers, for any string S over an unbounded
alphabet (where characters can only be compared) and under the common tall-cache as-
sumption, that is M = Ω

(

B1+ǫ
)

with ǫ < 1. Hence, we meet the “golden standard”; we
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beat the perm bottleneck and consequently, prove that suffix selection is easier than suffix
sorting in block-based hierarchical memory models.

Overview. Our high level strategy for achieving an optimal cache-aware suffix selection
algorithm consists of two main objectives.

In the first objective, we want to efficiently reduce the number of candidate suffixes
from N to O (N/B), where we maintain the invariant that the wanted kth smallest suffix
is surely one of the candidate suffixes.

In the second objective, we want to achieve a cache optimal solution for the sparse suffix
selection problem, where we are given a subset of O (N/B) suffixes including also the wanted
kth suffix. To achieve this objective we first find a simpler approach to suffix selection for
the standard comparison model. (The only known linear time suffix selection algorithm for
the comparison model [6] hinges on well-known algorithmic and data structural primitives
whose solutions are inherently cache inefficient.) Then, we modify the simpler comparison-
based suffix selection algorithm to exploit, in a cache-efficient way, the hypothesis that
O (N/B) (known) suffixes are the only plausible candidates.

Map of the paper. We will start by describing the new simple comparison-based suffix selec-
tion algorithm in Section 2. This section is meant to be intuitive. We will use it to derive a
cache-aware algorithm for the sparse suffix selection problem in Section 3. We will present
our optimal cache-aware algorithm for the general suffix selection problem in Section 4.

2. A Simple(r) Linear-Time Suffix Selection Algorithm

We now describe a simple algorithm for selecting the kth lexicographically smallest
suffix of S in main memory. We give some intuitions on the central notion of work, and
some definitions and notations used in the algorithm. Next, we show how to perform main
iteration, called phase transition. Finally, we present the invariants that are maintained in
each phase transition, and discuss the correctness and the complexity of our algorithm.

Notation and intuition. Consider the regular linear-time selection algorithm [2], hereafter
called bfprt. Our algorithm for a string S = S[1 . . . N ] uses bfprt as a black box.1

Each run of bfprt permits to discover a longer and longer prefix of the (unknown) kth
lexicographically smallest suffix of S. We need to carefully orchestrate the several runs of
bfprt to obtain a total cost of O(N) time. We use S = bbbabbbbbaa$, where n = 12, as
an illustrative example, and show how to find the median suffix (hence, k = n/2 = 6).

Phases and phase transitions. We organize our computation so that it goes through phases,
numbered t = 0, 1, 2, . . . and so on. In phase t, we know that a certain string, denoted σt,
is a prefix of the (unknown) kth lexicographically smallest suffix of S. Phase t = 0 is the
initial one: we just have the input string S and no knowledge, i.e., σ0 is the empty string.
For t ≥ 1, a main iteration of our algorithm goes from phase t− 1 to phase t and is termed
phase transition (t− 1 → t): it is built around the tth run of bfprt on a suitable subset of
the suffixes of S. Note that t ≤ N , since we ensure that the condition |σt−1| < |σt| holds,
namely, each phase transition extends the known prefix by at least one symbol.

1In the following, we will assume that the last symbol in S is an endmarker S[N ] = $, smaller than any
other symbol in S.
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Phase transition (0 → 1). We start out with phase 0, where we run bfprt on the individual
symbols of S, and find the symbol α of rank k in S (seen as a multiset). Hence we know
that σ1 = α, and this fact has some implications on the set of suffixes of S. Let si denote
the ith suffix S[i . . . N ] of S, for 1 ≤ i ≤ N , and wi be a special prefix of si called work.
We anticipate that the works play a fundamental role in attaining O(N) time. To complete
the phase transition, we set wi = S[i] for 1 ≤ i ≤ N , and we call degenerate the works wi

such that wi 6= α. (Note that degenerate works are only created in this phase transition.)
We then partition the suffixes of S into two disjoint sets:

• The set of active suffixes, denoted by A1—they are those suffixes si such that wi =
σ1 = α.

• The set of inactive suffixes, denoted by I1 and containing the rest of the suffixes—
none of them is surely the kth lexicographically smallest suffix in S.

In our example (k = 6), we have σ1 = α = b and, for i = 1, 2, 3, 5, 6, 7, 8, 9, wi = b and
si ∈ A1. Also, we have sj ∈ I1 for j = 4, 10, 11, 12, where w4 = w10 = w11 = a and w12 = $
are degenerate works.

A comment is in order at this point. We can compare any two works in constant
time, where the outcome of the comparison is ternary [<,=, >]. While this observation is
straightforward for this phase transition, we will be able to extend it to longer works in the
subsequent transitions. Let us discuss the transition from phase 1 to phase 2 to introduce
the reader to the main point of the algorithm.

Phase transition (1 → 2). If |A1| = 1, we are done since there is only one active suffix and
this should be the kth smallest suffix in S. Otherwise, we exploit the total order on the
current works. Letting z1 be the number of works smaller than the current prefix σ1, our
goal becomes how to find the (k − z1)th smallest suffix in A1. In particular, we want a
longer prefix σ2 and the new set A2 ⊆ A1.

To this end, we need to extend some of the works of the active suffixes in A1. Consider
a suffix si ∈ A1. In order to extend its work wi, we introduce its prospective work. Recall
that wi = σ1 = α = S[i]. If wi+1 = S[i+1] 6= α (hence, si+1 is inactive in our terminology),
the prospective work for si is the concatenation wiwi+1, where si+1 ∈ I1. Otherwise, since
wi = wi+1 (and so si+1 ∈ A1), we consider i + 2, i + 3, and so on, until we find the first
i + r such that wi 6= wi+r (and so si+r ∈ I1). In the latter case, the prospective work for
si is the concatenation wiwi+1 · · ·wi+r, where wi = wi+1 = · · · = wi+r−1 = σ1 = α and
their corresponding suffixes are active, while wi+r 6= σ1 is different and corresponds to an
inactive suffix.

In any case, each prospective work is a sequence of works of the form αrβ = σr
1β, where

r ≥ 1 and β 6= α. The reader should convince herself that any two prospective works can
be compared in O (1) time. We exploit this fact by running bfprt on the set A1 of active
suffixes and, whenever bfprt requires to compare any two si, sj ∈ A1, we compare their
prospective works. Running time is therefore O(|A1|) if we note that prospective works can
be easily identified by a scan of A1: if wiwi+1 · · ·wi+r is the prospective work for si, then
wi+1 · · ·wi+r is the prospective work for si+1, and so on. In other words, a consecutive run
of prospective works forms a collision, which is informally a maximal concatenated sequence
of works equal to σ1 terminated by a work different from σ1 (this notion will be described
formally in Section 2).
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After bfprt completes its execution, we know the prospective work that is a prefix of
the (unknown) kth suffix in S. That prospective work becomes σ2 and A2 is made up of
the the suffixes in A1 such that their prospective work equals σ2 (and we also set z2).

In our example, z1 = 3, and so we look for the third smaller suffix in A1. We have
the following prospective works: one collision is made up of p1 = bbba, p2 = bba, and
p3 = ba; another collision is made up of p5 = bbbbba, p6 = bbbba, p7 = bbba, p8 = bba,
and p9 = ba. Algorithm bfprt discovers that bba is the third prospective work among
them, and so σ2 = bba and A2 = {s2, s8} (and z2 = 5).

How to maintain the works. Now comes the key point in our algorithm. For each suffix
si ∈ A2, we update its work to be wi = σ2 (whereas it was wi = σ1 in the previous phase
transition, so it is now longer). For each suffix si ∈ A1 −A2, instead, we leave its work wi

unchanged. Note this is the key point: although si can share a longer prefix with σ2, the
algorithm bfprt has indirectly established that si cannot have σ2 as a prefix, and we just
need to record a Boolean value for wi, indicating if wi is either lexicographically smaller
or larger than σ2. We can stick to wi unchanged, and discard its prospective work, since
si becomes inactive and is added to I2. In our example, w2 = w8 = bba, while the other
works are unchanged (i.e, w3 = b while p3 = ba, w5 = b while p5 = bbbbba, and so on).

In this way, we can maintain a total order on the works. If two works are of equal length,
we declare that they are equal according to the symbol comparisons that we have performed
so far, unless they are degenerate—in the latter case they can be easily compared as single
symbols. If two works are of different length, say |wi| < |wj |, then si has been discarded by
bfprt in favor of sj in a certain phase, so we surely know which one is smaller or larger.
In other words, when we declare two works to be equal, we have not yet gathered enough
symbol comparisons to distinguish among their corresponding suffixes. Otherwise, we have
been able to implicitly distinguish among their corresponding suffixes. In our example,
w3 < w2 because they are of different length and bfprt has established this disequality,
while we declare that w3 = w5 since they have the same length. Recall that the total order
on the works is needed for comparing any two prospective works in O (1) time as we proceed
in the phase transitions. The works exhibit some other strong properties that we point out
in the invariants described in Section 2.

Time complexity. From the above discussion, we spend O (|A1)|) time for phase transition
(1 → 2). We present a charging scheme to pay for that. works come again into play for
an amortized cost analysis. Suppose that, in phase 0, we initially assign each suffix si two
kinds of credits to be charged as follows: O(1) credits of the first kind when si becomes
inactive, and further O(1) credits of the second kind when si is already inactive but its
work wi becomes the terminator of the prospective work of an active suffix. Note that wi

is incapsulated by the prospective work of that suffix (which survives and becomes part of
A2).

Now, when executing bfprt on A1 as mentioned above, we have that at most one
prospective work survives in each collision and the corresponding suffix becomes part of
A2. We therefore charge the cost O(|A1|) as follows. We take Θ (|A1| − |A2|) credits of
the first kind from the |A1| − |A2| ≥ 0 active suffixes that become inactive at the end of
the phase transition. We also take Θ (|A2|) credits from the |A2| inactive suffixes whose
work terminates the prospective work of the survivors. In our example, the Θ (|A1| − |A2|)
credits are taken from s1, s3, s5, s6, s7, and s9, while Θ (|A2|) credits are taken from s4 and
s10.
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At this point, it should be clear that, in our example, the next phase transition (2 → 3)
looks for the (k − z2)th smaller suffix in A2 by executing bfprt in O(|A2|) time on the
prospective works built with the runs of consecutive occurrences of the work σ2 = bba into
S. We thus identify bbaa$ (with σ3 = bbaa) as the median suffix in S.

Phase transition (t−1 → t) for t ≥ 1. We are now ready to describe the generic phase
transition (t− 1 → t) more formally in terms of the active suffixes in At−1 and the inactive
ones in It−1, where t ≥ 1.

The input for the phase transition is the following: (a) the current prefix σt−1 of the
(unknown) kth lexicographically smallest suffix in S; (b) the set At−1 of currently active
suffixes; (c) the number zt−1 of suffixes in It−1 whose work is smaller than that of the
suffixes in At−1 (hence, we have to find the (k − zt−1)th smallest suffix in At−1); and (d) a
Boolean vector whose ith element is false (resp., true) iff, for suffix si ∈ It−1, the algorithm
bfprt has determined that its work wi is smaller (resp., larger) than σt−1. The output of
the phase transition are data (a)–(d) above, updated for phase t.

We now define collisions and prospective works in a formal way. We say that two
suffixes si, sj ∈ At collide if their works wi and wj are adjacent as substrings in S, namely,
|i− j| = |wi| = |wj |. A collision C is the maximal subsequence wl1wl2 · · ·wlr , such that
wl1 = wl2 = · · · = wlr = σt, where the active suffixes slf and slf+1

collide for any 1 ≤ f < r.
For our algorithm, a collision can also be a degenerate sequence of just one active suffix si

(since its work does not collide with that of any other active suffix).
The prospective work of a suffix si ∈ At−1, denoted by pi, is defined as follows. Consider

the collision C to which si belongs. Suppose that si is the hth active suffix (from the left) in
C, that is, C = wl1wl2 · · ·wlh−1

wiwlh+1
· · ·wlr−1

wlr . Consider the suffix su ∈ It−1 adjacent
to wlr (because of the definition of collision, su must be an inactive suffix following wlr).
We define the prospective work of si, to be the string pi = wiwlh+1

· · ·wlr−1
wlrwu. Note

that wi = wlh+1
= · · · = wlr−1

= wlr = σt−1 since their corresponding suffixes are all active,

while wu is shorter. In other words, pi = σr−h
t−1 wu, with |wu| < |σt−1|.

Lemma 2.1. For any two suffixes si, sj ∈ At, we can compare their prospective works pi

and pj in O (1) time.

We now give the steps for the phase transition. Note that we can maintain At−1 in
monotone order of suffix position (i.e., i < j implies that si comes first than sj in At−1).

(1) Scan the active set At−1 and identify its collisions and the set T containing all the
suffixes su ∈ It−1 such that wu immediately follows a collision. For any suffix si in
At−1, determine its prospective work pi using the collisions and T .

(2) Apply algorithm bfprt to the set {pi}si∈At−1
using the constant-time comparison

as stated in Lemma 2.1. In this way, find the (k− zt−1)th lexicographically smallest
prospective work p, and the corresponding set At = {si ∈ At−1 | pi = p} of active
suffixes whose prospective works match p.
(a) If |At| = 1, stop the computation and return the singleton si ∈ At as the kth

smallest suffix in S.
(b) If |At| > 1, set σt = p (and update zt accordingly).

(3) For each si ∈ At: Let p = wiwlh+1
· · ·wlrwu be its prospective work, where su ∈ T .

Set its new work to be wi = p = σt.
(4) For each sj ∈ At−1−At, leave its work wj unchanged and, as a byproduct of running

bfprt in step 2, update position j of the Boolean vector (d) given in input, so as
to record the fact that wj is lexicographically smaller or larger than σt.
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Lemma 2.2. Executing phase transition (t− 1 → t) with t ≥ 1, requires O (|At−1|) time in
the worst case.

Invariants for phase t. Before proving the correctness and the complexity of our algo-
rithm, we need to establish some invariants that are maintained through the phase tran-
sitions. We say that wi is maximal if there does not exist another suffix sj such that wj

contains wi, namely, such that j < i and i + |wi| ≤ j + |wj |. For any t ≥ 1, the following
invariants holds (where A0 is trivially the set of all the suffixes):

(i) [prefixes]: σt−1 and σt are prefixes of the (unknown) kth smallest suffix of S, and
|σt−1| < |σt|.

(ii) [works]: For any suffix si, its work wi is either degenerate (a single mismatching
symbol) or wi = σt′ for a phase t′ ≤ t. Moreover, wi = σt iff si ∈ At.

(iii) [comparing]: For any si and sj, |wi| 6= |wj | implies that we know whether wi < wj

or wi > wj.
(iv) [nesting]: For any two suffixes si and sj, their works wi and wj do not overlap

(either they are disjoint or one is contained within the other). Namely, i > j implies
i + |wi| ≤ j + |wj | or i ≥ j + |wj |.

(v) [covering]: The works of the active suffixes are all maximal and, together with the
maximal works generated by the inactive suffixes, form a non-overlapping covering
of S (i.e. S = wi1wi2 · · ·wir , where i1 < i2 < · · · < ir and either sij ∈ At, or sij ∈ It

and wij is maximal, for 1 ≤ j ≤ r).

Lemma 2.3. After phase transition (t − 1 → t) with t ≥ 1, the invariants (i)–(v) are
maintained.

Theorem 2.4. The algorithm terminates in a phase t ≤ N , and returns the kth lexico-
graphically smallest suffix.

Theorem 2.5. Our suffix selection algorithm requires O (N) time in the worst case.

This simpler suffix selection algorithm is still cache “unfriendly”. For example, it re-
quires O (N) block transfers with a string S with period length Θ (B) (if S is a prefix of gi

for some integer i, then g is a period of S).

3. Cache-Aware Sparse Suffix Selection

In the sparse suffix selection problem, along with the string S and the rank k of the
suffix to retrieve, we are also given a set K of suffixes such that |K | = O (N/B) and the
kth smallest suffix belongs in K . We want to find the wanted suffix in O (N/B) block
transfers using the ideas of the algorithm described in Section 2.

Consider first a particular situation in which the suffixes are equally spaced B positions
each other. We can split S into blocks of size B, so that S is conceptually a string of N/B
metacharacters and each suffix starts with a metacharacters. This is a fortunate situation
since we can apply the algorithm described in Section 2 as is, and solve the problem in the
claimed bound. The nontrivial case is when the suffixes can be in arbitrary positions.

Hence, we revisit the algorithm described in Section 2 to make it more cache efficient.
Instead of trying to extend the work of an active suffix si by just using the works of the
following inactive suffixes, we try to batch these works in a sufficiently long segment, called
reach. Intuitively, in a step similar to step 2 of the algorithm in Section 2, we could first
apply the bfprt algorithm to the set of reaches. Then, after we select a subset of equal
reaches, and the corresponding subset of active suffixes, we could extend their works using
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their reaches. This could cause collisions between the suffixes and they could be managed in
a way similar to what we did in Section 2. This yields the notion of super-phase transition.

Super-phase transition. The purpose of a super-phase is to group consecutive phases
together, so that we maintain the same invariants as those defined in Section 2. However,
we need further concepts to describe the transition between super-phases. We number the
super-phases according to the numbering of phases. We call a super-phase m if the first
phase in it is m (in the overall numbering of phases).

Reaches, pseudo-collisions and prospective reaches. Consider a generic super-phase m. Re-
call that, by the invariant (v) in Section 2, the phase transitions maintain the string S
partitioned into maximal works. We need to define a way to access enough (but not too
many) consecutive “lookahead” works following each active suffix, before running the super-
phase. Since some of these active suffixes will become inactive during the phases that form
the super-phase, we cannot prefetch too many such works (and we cannot predict which
ones will be effectively needed). This idea of prefetching leads to the following notion.

For any active suffix si ∈ Am, the reach of si, denoted by ri, is the maximal sequence
of consecutive works wl1wl2 · · ·wlf such that

(i) i < l1 < l2 < · · · < lf and lf − l1 < B;
(ii) wi and wl1 are adjacent and, for 1 < x ≤ f , wlx−1

and wlx are adjacent in S;
(iii) if sj is the leftmost active suffix in S[i + 1 . . . N ], then lf ≤ j.

We call a reach full if lf < j in condition (iii), namely, we do not meet an active suffix
while loading the reach. Since we know how to compare two works, we also know how to
compare any two reaches ri, rj , seen as sequences of works. We have the following.

Lemma 3.1. For any two reaches ri and rj , such that |ri| < |rj |, we have that ri cannot
be a prefix of rj .

Using reaches, we must possibly handle the collisions that may occur in an arbitrary
phase that is internal to the current super-phase. We therefore introduce a notion of collision
for reaches that is called pseudo-collision because it does not necessarily implies a collision.

For any two reaches ri, rj such that i < j, we say that ri and rj pseudo-collide if ri = rj

and the last work of ri is wj itself (not just equal to wj). Thus, the last work of rj is
active and equal to wi and wj. Certainly, the fact that ri and rj pseudo-collide during
a super-phase does not necessarily imply that the works wi and wj collide in one of its
phases. A pseudo-collision PC (l) is a maximal sequence rl1rl2 · · · rla such that rlf and rlf+1

pseudo-collide, for any 1 ≤ f < a. For our algorithm, a degenerate pseudo-collision is a
sequence of just one reach.

Let us consider an active suffix si and the pseudo-collision to which ri belongs. Let
us suppose that the pseudo-collision is rl1rl2 · · · rlf−1

rirlf+1
· · · rla (i.e. ri is the fth reach).

Also, let us consider the reach ru of the last work wu that appears in rla (by the definition
of pseudo-collision, we know that the last work wu of rla is equal to its first work, so su is
active and has a reach). The prospective reach of an active work wi, denoted by pri, is the
sequence rirlf+1

· · · rlatail (pri), where tail (pri) = lcp (ri, ru) is the tail of pri and denotes
the longest initial sequence of works that is common to both ri and ru. Analogously to
prospective works, we can define a total order on the prospective reaches. The multiplicity
of pri, denoted by mult (pri), is a− f + 1 (that is the number of reaches following ri in the
pseudo-collision plus ri).
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Lemma 3.2. If the invariants for the phases hold for the current super-phase then, for any
two reaches ri and rj such that ri = rj , we have that their prospective reaches pri and prj

can be compared in O (1) time, provided we know the lengths of tail (pri) and tail
(

prj

)

.

Super-phase transition (m → m′). The transition from a super-phase m to the next super-
phase m′ emulates what happens with phases m,m+1, . . . ,m′ in the algorithm of Section 2,
but using O(N/B) block transfers.

(1) For each active suffix si, we create a pointer to its reach ri.
(2) We find the (k − zm)th lexicographically smallest reach ρ using bfprt on the

O (N/B) pointers to reaches created in the previous step. The sets R= = {si | si is
active and ri = ρ}, R< = {si | si is active and ri < ρ}, and R> = {si | si is active
and ri > ρ} are thus identified, and, for any si ∈ R<∪R>, the length of lcp (ri, ρ).2

If |R=| = 1, we stop and return si, such that si ∈ R=, as the kth smallest suffix
in S.

(3) For any si ∈ R=, we compute its prospective reach pri.
(4) We find the (k− zm−|R<|)th lexicographically smallest prospective reach π among

the ones in {pri | si ∈ R=}, thus obtaining P= = {si | si is active and pri = π},
P< = {si | si is active and pri < π}, P> = {si | si is active and pri > π}, and, for
any si ∈ P< ∪ P>, the length of lcp (pri, π). If |P=| = 1, we stop and return si,
such that si ∈ P=, as the kth smallest suffix in S.

Theorem 3.3. The sparse suffix selection problem can be solved using O (N/B) block trans-
fers in the worst case.

4. Optimal Cache-Aware Suffix Selection

The approach in Sec. 3 does not work if the number of input active suffixes is ω (N/B).
The process would cost O

(

N
B log B

)

block transfers (since it would take Ω (log B) transitions
to finally have O (N/B) active suffixes left). However, if we were able to find a set K of
O (N/B) suffixes such that one of them is the kth smallest, we could solve the problem
with O (N/B) block transfers using the algorithm in Sec. 3. In this section we show how to
compute such a set K .

Basically, we consider all the substrings of length B of S and we select a suitable set
of p > B pivot substrings that are roughly evenly spaced. Then, we find the pivot that is
lexicographically “closest” to the wanted k-th and one of the following two situations arises:

• We are able to infer that the kth smallest suffix is strictly between two consecutive
pivots (that is its corresponding substring of B characters is strictly greater and smaller
of the two pivots). In this case, we return all the O (N/p) = O (N/B) suffixes that are
contained between the two pivots.

• We can identify the suffixes that have the first B characters equal to those of the kth
smallest suffix. We show that, in case they are still Ω (N/B) in number, they must satisfy
some periodicity property, so that we can reduce them to just O (N/B) with additional
O (N/B) block transfers.

2Given strings S and T , their longest common prefix lcp (S, T ) is longest string U such that both S and
T start with U .
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4.1. Finding pivots and the key suffixes

Let p =
√

Mc

B , for a suitable constant c > 1. We proceed with the following steps.

First. We sort the first M c substrings of length B of S (that is substrings S[1 . . . B],
S[2 . . . B +1],. . . , S[M c−1 . . . B +M c−2], S[M c . . . B +M c−1]). Then we sort the second
M c substrings of length B and so forth until all the N positions in S have been considered.
The product of this step is an array V of N pointers to the substrings of length B of S.

Second. We scan V and we collect in an array U of N/p positions the N/p pointers
V [p], V [2p], V [3p], . . ..

Third. We (multi)-select from U the p pointers to the substrings (of length B) b1, . . . , bp

such that bi has rank iN
p2 among the substrings (pointed by the pointers) in U . These are

the pivots we were looking for. We store the p (pointers to the) pivots in an array U ′.
Fourth. We need to find the rightmost pivot bx such that the number of substrings

(of length B of S) lexicographically smaller than bx is less than k (the rank of the wanted
suffix). We cannot simply distribute all the substrings of length B according to all the p
pivots in U ′, because it would be too costly. Instead, we proceed with the following refining
strategy.

1. From the p pivots in U ′ we extract the group G1 of δM equidistant pivots, where
δ < 1 is a suitable constant, (i.e. the pivots bt, b2t, . . ., where t = p

δM ). Then, for any
bj ∈ G1, we find out how many substrings of size B are lexicographically smaller
than bj . After that we find the rightmost pivot bx1

∈ G1 such that the number of
substrings (of length B) smaller than bx1

is less than k.
2. From the p

δM pivots in U ′ following bx1
we extract the group G2 of δM equidistant

pivots. Then, for any bj ∈ G2, we find out how many substrings of size B are smaller
than bj . After that we find the rightmost pivot bx2

∈ G2 such that the number of
substrings smaller than bx2

is less than k.

More generally:

f . Let Gf be the δM pivots in U ′ following bxf−1
. Then, for any bj ∈ Gf , we find out

how many substrings of size B are smaller than bj. After that we find the rightmost
pivot bxf

∈ Gf such that the number of substrings smaller than bxf
is less than k.

The pivot bxf
found in the last iteration is the pivot bx we are looking for in this step.

Fifth. We scan S and compute the following two numbers: the number n<
x of substrings

of length B lexicographically smaller than bx; the number n=

x of substrings equal to bx.
Sixth. In this step we treat the following case: n<

x < k ≤ n<
x + n=

x . More specifically,
this implies that the wanted kth smallest suffix has its prefix of B characters equal to bx.
We proceed as follows. We scan S and gather in a contiguous zone R (the indexes of)
the suffixes of S having their prefixes of B characters equal to bx. In this case we have
already found the key suffixes (whose indexes reside in R). Therefore the computation in
this section ends here and we proceed to discard some of them (sec. 4.2).

Seventh. In this step we treat the following remaining case: n<
x + n=

x < k. In other
words, in this case we know that the prefix of B characters of the wanted kth smallest
suffix is (lexicographically) greater than bx and smaller than bx+1. Therefore, we scan S
and gather in a contiguous zone R (the indexes of) the suffixes of S having their prefix
of B characters greater than bx and smaller than bx+1. Since there are less than N/B
such suffixes (see below Lemma 4.1), we have already found the set of sparse active suffixes
(whose indexes reside in R) that will be processed in Sec. 3.
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Lemma 4.1. For any S and k, either the number of key suffixes found is O (N/B), or their
prefixes of B characters are all the same.

Lemma 4.2. Under the tall-cache assumption, finding the key suffixes needs O (N/B) block
transfers in the worst case.

4.2. Discarding key suffixes

Finally, let us show how to reduce the number of key suffixes gathered in Sec. 4.1 to
≤ 2N/B so that we can pass them to the sparse suffix selection algorithm (Sec. 3). Let us
assume that the number of key suffixes is greater than 2N/B.

The indexes of the key suffixes have been previously stored in an array R. Clearly, the
kth smallest suffix is among the ones in R. We also know the number n< of suffixes of S
that are lexicographically smaller than each suffix in R. Finally, we know that there exists
a string q of length B such that R contains all and only the suffixes si such that the prefix
of length B of si is equal to q (i.e. R contains the indexes of all the occurrences of q in S).

To achieve our goal we exploit the possible periodicity of the string q. A string u is a
period of a string v (|u| ≤ |v|) if v is a prefix of ui for some integer i ≥ 1. The period of v
is the smallest of its periods. We exploit the following:

Property 1 ([8]). If q occurs in two positions i and j of S and 0 < j − i < |q| then q has
a period of length j − i.

Let u be the period of q. Since the number of suffixes in R is greater than 2N/B, there
must be some overlapping between the occurrences of q in S. Therefore, by Property 1, we
can conclude that |u| < |q|. For the sake of presentation let us assume that |q| is not a
multiple of |u| (the other case is analogous).

From how R has been built (by left to right scanning of S) we know that the indexes in it
are in increasing order, that is R[i] < R[i+1], for any i (i.e. the indexes in R follow the order,
from left to right, in which the corresponding suffixes may be found in S). Let us consider
a maximal subsequence Ri of R such that, for any 1 ≤ j < |Ri|, Ri[j + 1] − Ri[j] ≤ B/2
(i.e. the occurrence of q in S starting in position Ri[j] overlaps the one starting in position
Ri[j + 1] by at least B/2 positions). Clearly, any two of these subsequences of R do not
overlap and hence R can be seen as the concatenation R1R2 · · · of these subsequences. From
the definition of the partitioning of R and from the periodicity of q we have:

Lemma 4.3. The following statements hold:

(i) There are less than 2N/B such subsequences.
(ii) For any Ri, the substring S[Ri[1] . . . Ri[|Ri|]+B− 1] (the substring of S spanned by

the substrings whose indexes are in Ri) has period u.
(iii) The substring of length B of S starting in position Ri[|Ri|] + |u| (the substring

starting one period-length past the rightmost member of Ri) is not equal to q.

For any key suffix sj, let us consider the following prefix: psj = S[j . . . Ri[|Ri|] + |u|+
B−1], where Ri is the subsequence of R where (the index of) sj belongs to. By Lemma 4.3,
we know two things about psj: (a) the prefix of length |psj| − |u| of psj has period u; (b)
the suffix of length B of psj is not equal to q.

In light of this, we associate with any key suffix sj a pair of integers 〈αj , βj〉 defined as
follows: αj is equal to the number of complete periods u in the prefix of length |psj| − |u|
of psj; βj is equal to |Ri| + |u| (that is the index of the substring of length B starting one
period-length past the rightmost member of Ri).
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There is natural total order ⊳ that can be defined over the key suffixes. It is based on
the pairs of integers 〈αj , βj〉 and it is defined as follow. For any two key suffixes sj′, sj′′ :

• If αj′ = αj′′ then sj′ and sj′′ are equal (according to ⊳).
• If αj′ < αj′′ then sj′ ⊳ sj′′ iff S[βj′ . . . βj′+B−1] is lexicographically smaller than q.

By Lemma 4.3, we know that the suffix of length B of psj′ (which is the substring S[βj′ . . . βj′+
B − 1]) is not equal to q. Therefore the total order ⊳ is well defined.

We are now ready to describe the process for reducing the number of key suffixes. We
proceed with the following steps.

First. By scanning S and R, we compute the pair 〈αj, βj〉 for any key suffix sj . The
pairs are stored in an array (of pairs of integers) Pairs.

Second. We scan S and compute the array Comp of N positions defined as follows: for
any 1 ≤ i ≤ N , Comp[i] is equal to −1, 0 or 1 if S[i . . . i + B − 1] is less than, equal to or
greater than q, respectively (the array Comp tells us what is the result of the comparison
of q with any substring of size B different from it).

Third. By scanning Pairs and Comp at the same time, we compute the array PComp
of size |Pairs|, such that, for any l, PComp[l] = Comp[Pairs[l].β]] (where Pairs[l].β is the
second member of the pair of integers in position l of Pairs).

Fourth. Using Pairs and PComp, we select the (k − n<)-th smallest key suffix sx and
all the key suffixes equal to sx according to the total order ⊳ (where n< is the number of
suffixes of S that are lexicographically smaller than each suffix in R, known since Sec. 4.1).
The set of the selected key suffixes is the output of the process.

Lemma 4.4. At the end of the discarding process, the selected key suffixes are less than
2N/B in number and the kth lexicographically smallest suffix is among them.

Lemma 4.5. The discarding process requires O (N/B) block transfers at the worst case.

Theorem 4.6. The suffix selection problem for a string defined over a general alphabet can
be solved using O (N/B) block transfers in the worst case.
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1 Computer Science Department, Boston University
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3 DI École Normale Supérieure and CREA École Polytechnique, Paris.

Abstract. We extend the notion of randomness (in the version introduced by Schnorr)
to computable Probability Spaces and compare it to a dynamical notion of randomness:
typicality. Roughly, a point is typical for some dynamic, if it follows the statistical behavior
of the system (Birkhoff’s pointwise ergodic theorem). We prove that a point is Schnorr
random if and only if it is typical for every mixing computable dynamics. To prove the
result we develop some tools for the theory of computable probability spaces (for example,
morphisms) that are expected to have other applications.

1. Introduction

The roots of algorithmic randomness go back to the work of von Mises in the 20th cen-
tury. He suggested a notion of individual infinite random sequence based on limit-frequency
properties invariant under the action of selection functions from some “acceptable” set.
The problem was then to properly define what an “acceptable” selection function could be.
Some years later, the concept of computable function was formalized, providing a natural
class of functions to be considered as acceptable. This gave rise to Church’s notion of com-
putable randomness. Nevertheless, substantial understanding was achieved only with the
works of Kolmogorov [7], Martin-Löf [8], Levin [17] and Schnorr [9] and since then, many
efforts have contributed to the development of this theory which is now well established and
intensively studied.

There are several different possible definitions, but it is Martin-Löf’s one which has
received most attention. This notion can be defined, at least, from three different points of
view:

(1) measure theoretic. This was the original presentation by Martin-Löf ([8]). Roughly,
an infinite sequence is random if it satisfies all “effective” probabilistic laws (see
definition 3.21).
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(2) compressibility. This characterization of random sequences, due to Schnorr and
Levin (see [17, 10]), uses the prefix-free Kolmogorov complexity: random sequences
are those which are maximally complex.

(3) predictability. In this approach (started by Ville [13] and reintroduced to the modern
theory by Schnorr [10]) a sequence is random if, in a fair betting game, no “effective”
strategy (“martingale”) can win an unbounded amount of money against it.

In [9], a somewhat broader notion of algorithmic randomness (narrower notion of prob-
abilistic law) was proposed: Schnorr randomness. This notion received less attention over
the years: Martin-Löfs definition is simpler, leads to universal tests, and many equivalent
characterizations (besides, Schnorr’s book is not in English. . . ). Recently, Schnorr random-
ness has begun to receive more attention. The work [2] for instance, characterizes it in
terms of Kolmogorov complexity.

In the present paper, first we extend Schnorr randomness to arbitrary computable
probability spaces and develop some useful tools. Then, taking a dynamical systems point
of view, we introduce yet another approach to the definition of randomness: typicality.
Roughly, a point is typical for some measure-preserving ergodic dynamic, if it follows the
statistical behavior of the system (given by Birkhoff’s pointwise ergodic theorem) with
respect to every bounded continous function used to follow its trajectory (or equivalently,
every computable function, see Definition 3.28). We then show that:

Theorem. In any computable probability space, a point is Schnorr random if and only if
it is typical for every mixing computable dynamical system.

The paper is organized as follows: Section 2 presents all needed concepts of computabil-
ity theory and computable measure theory over general metric spaces. Parts of this section,
for example on µ-computable functions, are new and should be of independent interest.
Section 3.1 generalizes Schnorr randomness and studies some useful properties, after which
we introduce the notion of typicality. Section 3.3 is devoted to the proof of our main result.

2. Computability

In classical recursion theory, a set of natural numbers is called recursively enumerable
(r.e. for short) if it is the range of some partial recursive function. That is if there exists
an algorithm listing (or enumerating) the set.

Strictly speaking, recursive functions only work on natural numbers, but this can be
extended to the objects (thought of as “finite” objects) of any countable set, once a num-
bering of its elements has been chosen. We will sometimes use the word algorithm instead
of recursive function when the inputs or outputs are interpreted as finite objects. The op-
erative power of an algorithm on the objects of such a numbered set obviously depends on
what can be effectively recovered from their numbers.

Examples 2.1.

1 Nk can be numbered in such a way that the k-tuple of number i can be computed from i
and vice versa.

2 The set Q of rational numbers can be injectively numbered Q = {q0, q1, . . .} in an effective
way: the number i of a rational a/b can be computed from a and b, and vice versa. We
fix such a numbering.
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All through this work, we will use recursive functions over numbered sets to define
computability or constructivity notions on infinite objects. Depending on the context, these
notions will take particulars names (computable, recursively enumerable, r.e. open, decid-
able, etc...) but the definition will be always of the form: obect x is constructive if there
exists a recursive ϕ: N → D satisfying property P(ϕ, x) (where D is some numbered set).

For example, E ⊂ N is r.e. if there exists a recursive ϕ: N → N satisfying E =
range(ϕ).

Each time, a uniform version will be implicitly defined: a sequence (xi)i is constructive
uniformly in i if there exists a recursive ϕ: N × N → D satisfying property P(ϕ(i, ·), xi)
for all i.

In our example, a sequence (Ei)i is r.e. uniformly in i if there exists ϕ: N×N → N

satisfying Ei = range(ϕ(i, ·)) for all i.
Let us ilustrate this in the case of reals numbers (computable reals numbers were

introduced by Turing in [11]).

Definition 2.2. A real number x ∈ R is said to be computable if there exists a total
recursive ϕ : N → Q satisfying |x− ϕ(n)| < 2−n for all n ∈ N.

Hence by a sequence of reals (xi)i computable uniformly in i we mean that there
exists a recursive ϕ : N× N → Q satisfying |x− ϕ(i, n)| < 2−n for all n ∈ N, for all i ∈ N.

We also have the following notions:

Definition 2.3. Let x be a real number. We say that:
• x is lower semi-computable if the set {i ∈ N : qi < x} is r.e.,
• x is upper semi-computable if the set {i ∈ N : qi > x} is r.e.,

It is easy to see that a real number is computable if and only if it is lower and upper
semi-computable.

2.1. Computable metric spaces

We breifly recall the basic of computable metric spaces.

Definition 2.4. A computable metric space (CMS) is a triple X = (X, d,S), where
• (X, d) is a separable complete metric space.
• S = (si)i∈N is a numbered dense subset of X (called ideal points).
• The real numbers (d(si, sj))i,j are all computable, uniformly in i, j.

Some important examples of computable metric spaces:

Examples 2.5.

1 The Cantor space (ΣN, d, S) with Σ a finite alphabet. If x = x1x2 . . . , y = y1y2 . . . , are
elements then the distance is defined by d(x, y) =

∑

i:xi 6=yi
2−i. Let us fix some element of

Σ denoting it by 0. The dense set S is the set of ultimately 0-stationary sequences.
2 (Rn, dRn ,Qn) with the Euclidean metric and the standard numbering of Qn.

For further examples we refer to [15].
The numbered set of ideal points (si)i induces the numbered set of ideal balls B :=

{B(si, qj) : si ∈ S, qj ∈ Q>0}. We denote by B〈i,j〉 (or just Bn) the ideal ball B(si, qj),
where 〈·, ·〉 is a computable bijection between tuples and integers.
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Definition 2.6 (Computable points). A point x ∈ X is said to be computable if the set
Ex := {i ∈ N : x ∈ Bi} is r.e.

Definition 2.7 (R.e. open sets). We say that the set U ⊂ X is r.e. open if there is some
r.e. set E ⊂ N such that U =

⋃

i∈E Bi. If U is r.e. open and D ⊂ X is an arbitrary set then
the set A := U ∩D is called r.e. open in D.

Examples 2.8.
1 If the sequence (Un)n is r.e. open uniformly in n, then the union

⋃

nUn is an r.e. open set.
2 Ui ∪ Uj and Ui ∩ Uj are r.e. open uniformly in (i, j). See [5].

Let (X,SX , dX) and (Y, SY , dY ) be computable metric spaces. Let (BY
i )i be the collec-

tion of ideal balls from Y .

Definition 2.9 (Computable Functions). A function T : X → Y is said to be computable
if T−1(BY

i ) is r.e. open uniformly in i.

It follows that computable functions are continuous. Since we will work with functions
which are not necessarily continuous everywhere (and hence not computable), we shall
consider functions which are computable on some subset of X. More precisely, a function
T is said to be computable on D (D ⊂ X) if T−1(BY

i ) is r.e. open in D, uniformly in i.
The set D is called the domain of computability of T .

3. Computable Probability Spaces

Let us recall some basic concepts of measure theory. Let X be a set. A family B of
subsets of X is called an algebra if (i)X ∈ B, (ii)A ∈ B ⇒ AC ∈ B and (iii) A,B ∈ B ⇒
A ∪B ∈ B. We say that B is a σ-algebra if moreover Ai ∈ B, i ≥ 1 ⇒

⋃

iAi ∈ B. If B0

is a family of subsets of X, the σ-algebra generated by B0 (denoted σ(B0)) is defined to
be the smallest σ-algebra over X that contains B0. If B is a σ-algebra of subsets of X, we
say that µ : B → [0, 1] is a probability measure if, for every family (Ai)i ⊂ B of disjoint
subsets of X, the following holds:

µ(
⋃

i

Ai) =
∑

i

µ(Ai). (3.1)

If X is a topological space, the Borel σ-algebra of X is defined as the σ-algebra
generated by the family of open sets of X. Sets in the Borel σ-algebra are called Borel sets.
In this paper, a probability space will always refer to the triple (X,B, µ), where B is the
Borel σ-algebra of X and µ is a probability measure. A set A ⊂ X has measure zero if
there is a Borel set A1 such that A ⊂ A1 and µ(A1) = 0. We call two sets A1, A2 ⊂ X
equivalent modulo zero, and write A1 = A2 (mod 0), if the symmetric difference has
measure zero. We write A1 ⊂ A2 (mod 0) if A1 is a subset of A2 and A1 = A2 (mod 0).

When X is a computable metric space, the space of probability measures over X,
denoted by M(X), can be endowed with a structure of computable metric space. Then a
computable measure can be defined as a computable point in M(X).

Example 3.1 (Measure over a Cantor space). As a special example, we can set X = BN

where B = {0, 1} and λ([x]) = 2−|x|, where |x| is the length of the binary string x ∈ {0, 1}∗.
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This is the distribution on the set of infinite binary sequences obtained by tossing a fair
coin, and condition (3.1) simplifies to

λ(x0) + λ(x1) = λ(x).

Let X = (X, d, S) be a computable metric space. Let us consider the space M(X) of
measures over X endowed with weak topology, that is:

µn → µ iff µnf → µf for all real continuous bounded f,

where µf stands for
∫

f dµ.
If X is separable and complete, then M(X) is separable and complete. Let D ⊂M(X)

be the set of those probability measures that are concentrated in finitely many points of S
and assign rational values to them. It can be shown that this is a dense subset ([1]).

We consider the Prokhorov metric ρ on M(X) defined by:

ρ(µ, ν) := inf{ǫ ∈ R+ : µ(A) ≤ ν(Aǫ) + ǫ for every Borel set A}

where Aǫ = {x : d(x,A) < ǫ}.
This metric induces the weak topology on M(X). Furthermore, it can be shown that

the triple (M(X),D, ρ) is a computable metric space (see [3], [5]).

Definition 3.2. A measure µ is computable if it is a computable point of (M(X),D, ρ)

The following result (see [5]) will be intensively used in the sequel:

Lemma 3.3. A probability measure µ is computable if and only if the measure of finite
union of ideal balls µ(Bi1 ∪ . . . ∪Bik) is lower semi-computable, uniformly in i1, . . . , ik.

Definition 3.4. A computable probability space (CPS) is a pair (X , µ) where X is a
computable metric space and µ is a computable Borel probability measure on X.

As already said, a computable function defined on the whole space is necessarily continu-
ous. But a transformation or an observable need not be continuous at every point, as many
interesting examples prove (piecewise-defined transformations, characteristic functions of
measurable sets,. . . ), so the requirement of being computable everywhere is too strong. In
a measure-theoretical setting, the natural weaker condition is to require the function to
be computable almost everywhere. In the computable setting this is not enough, and a
computable condition on the set on which the function is computable is needed:

Definition 3.5 (Constructive Gδ-sets). We say that the set D ⊂ X is a constructive
Gδ-set if it is the intersection of a sequence of uniformly r.e. open sets.

Definition 3.6 (µ-computable functions). Let (X , µ) and Y be a CPS and a CMS respec-
tively. A function f : (X , µ) → Y is µ-computable if it is computable on a constructive
Gδ-set (denoted as domf or Df ) of measure one.

Example 3.7. Let m be the Lebesgue measure on [0, 1]. The binary expansion of reals
defines a function from non-dyadic numbers to infinite binary sequences which induces a
m-computable function from ([0, 1],m) to {0, 1}N.

Remark 3.8. Given a uniform sequence of µ-computable functions (fi)i, any computable
operation ⊙n

i=0fi (adition, multiplication, composition, etc...) is µ-computable, uniformly
in n.
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We recall that F : (X , µ) → (Y, ν) is measure-preserving if µ(F−1(A)) = ν(A) for all
Borel sets A.

Definition 3.9 (morphisms of CPS’s). A morphism of CPS’s F : (X , µ) → (Y, ν), is a
µ-computable measure-preserving function F : DF ⊆ X → Y .

An isomorphism of CPS’s (F,G) : (X , µ) ⇄ (Y, ν) is a pair (F,G) of morphisms
such that G ◦ F = id on F−1(DG) and F ◦G = id on G−1(DF ).

Example 3.10. Let (BN, λ) the probability space introduced in Example 3.1 with the coin-
tossing distribution λ over the infinite sequences. The binary expansion (see example 3.7)
creates an isomorphism of CPS’s between the spaces ([0, 1],m) and (BN, λ).

Remark 3.11. To every isomorphism of CPS’s (F,G) one can associate the canonical
invertible morphism of CPS’s ϕ = F |Dϕ with ϕ−1 = G|D

ϕ−1
, where Dϕ = F−1(G−1(DF ))

and Dϕ−1 = G−1(DF ). Of course, (ϕ,ϕ−1) is an isomorphism of CPS’s as well.

The next proposition is a direct consequence of theorem 5.1.1 from [5]:

Proposition 3.12. Every computable probability space is isomorphic to the Cantor space
with an appropiate computable measure.

Definition 3.13. A set A ⊂ X is said to be almost decidable if the function 1A :
X → {0, 1} is µ-computable.

It is easy to see that a set A is almost decidable iff there is a constructive Gδ set D of
measure one and two r.e. open sets U and V such that:

U ∩D ⊂ A, V ∩D ⊆ AC , µ(U) + µ(V ) = 1.

Remarks 3.14.

1 The collection of almost decidable sets is an algebra.
2 An almost decidable set is always a continuity set.
3 Ideal balls with zero boundary measure are always almost decidable.
4 Unless the space is disconnected (i.e. has non-trivial clopen subsets), no set can be decid-
able, i.e. semi-decidable (r.e.) and with a semi-decidable complement (such a set must be
clopen1). Instead, a set can be decidable with probability 1: there is an algorithm which
decides if a point belongs to the set or not, for almost every point. This is why we call it
almost decidable.

Ignoring computability, the existence of open sets with zero boundary measure directly
follows from the fact that the collection of open sets is uncountable and µ is finite. The
problem in the computable setting is that there are only countable many open r.e. sets.
Fortunately, there still always exists a basis of almost decidables balls.

Lemma 3.15. Let X be R or R+ or [0, 1]. Let µ be a computable probability measure on
X. Then there is a sequence of uniformly computable reals (xn)n which is dense in X and
such that µ({xn}) = 0 for all n.

1In the Cantor space for example (which is totally disconnected), every cylinder (ball) is a decidable set.
Indeed, to decide if some infinite sequence belongs to some cylinder it suffices to compare the finite word
defining the cylinder to the corresponding finite prefix of the infinite sequence.
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Proof. Let I be a closed rational interval. We construct x ∈ I such that µ({x}) = 0.
To do this, we construct inductively a nested sequence of closed intervals Jk of measure
< 2−k+1, with J0 = I. Suppose Jk = [a, b] has been constructed, with µ(Jk) < 2−k+1. Let
m = (b− a)/3: one of the intervals [a, a+m] and [b−m, b] must have measure < 2−k, and
since their measure is upper-computable, we can find it effectively—let it be Jk+1.

From a constructive enumeration (In)n of all the dyadic intervals, we can construct
xn ∈ In uniformly.

Corollary 3.16. Let (X , µ) be a CPS and (fi)i be a sequence of uniformly computable real
valued functions on X. Then there is a sequence of uniformly computable reals (xn)n which
is dense in R and such that µ({f−1

i (xn)}) = 0 for all i, n.

Proof. Consider the uniformly computable measures µi = µ ◦ f−1
i and define ν =

∑

i 2
−iµi.

By Lemma 3.3, ν is a computable measure and then, by Lemma 3.15, there is a sequence
of uniformly computable reals (xn)n which is dense in R and such that ν({xn}) = 0 for all
n. Since ν(A) = 0 iff µi(A) = 0 for all i, we get µ({f−1

i (xn)}) = 0 for all i, n.

The following result will be used many times in the sequel.

Corollary 3.17. There is a sequence of uniformly computable reals (rn)n∈N such that
(B(si, rn))i,n is a basis of almost decidable balls.

Proof. Apply Corollary 3.16 to (fi)i defined by fi(x) = d(si, x).

We remark that every ideal ball can be expressed as a r.e. union of almost decidable
balls, and vice-versa. So the two bases are constructively equivalent.

Definition 3.18. A computable probability space is a computable Lebesgue space if
it is isomorphic to the computable probability space ([0, 1],m) where m is the Lebesgue
measure.

Theorem 3.19. Every computable probability space with no atoms is a computable Lebesgue
space.

Proof. We first prove the result for I = ([0, 1], µ).

Lemma 3.20. The interval endowed with a non-atomic computable probability measure is
a computable Lebesgue space.

Proof. We define the morphism of the CPS as F (x) = µ([0, x]). As µ has no atom and
is computable, F is computable and surjective. As F is surjective, it has right inverses.
Two of them are G<(y) = sup{x : F (x) < y} and G>(y) = inf{x : F (x) > y}, and satisfy
F−1({y}) = [G<(y), G>(y)]. They are increasing and respectively left- and right-continuous.
As F is computable, they are even lower- and upper semi-computable respectively. Let us
define D = {y : G<(y) = G>(y)}: every y ∈ D has a unique pre-image by F , which is
then injective on F−1(D). The restriction of F on F−1(D) has a left-inverse, which is given
by the restriction of G< and G> on D. Let us call it G : D → I. By lower and upper
semi-computability of G< and G>, G is computable. Now, D is a constructive Gδ-set:
D =

⋂

n{y : G>(y) − G<(y) < 1/n}. We show that I \ D is a countable set. The family
{[G<(y), G>(y)] : y ∈ I} indexed by I is a family of disjoint closed intervals, included in
[0, 1]. Hence, only countably many of them have positive length. Those intervals correspond
to points y belonging to I \ D, which is then countable. It follows that D has Lebesgue
measure one (it is even dense). (F,G) is then an isomorphism between (I, µ) and (I,m).
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Now, we know from Theorem 3.12 that every CPS (X , µ) has a binary representation,
which is in particular an isomorphism with the Cantor space (BN, µ′). As mentioned in
Example 3.10, the latter is isomorphic to (I, µI) where µI is the induced measure. If µ is
non-atomic, so is µI . By the previous lemma, (I, µI) is isomorphic to (I,m).

3.1. Randomness and typicality

3.1.1. Algorithmic randomness.

Definition 3.21. A Martin-Löf test (ML-test) is an uniform sequence (An)n of r.e. open
sets such that µ(An) ≤ 2−n. We say that x fails the ML-test if x ∈ An for all n. A point
x is called ML-random if it fails no ML-test.

Definition 3.22. A Borel-cantelli test (BC-test) is a uniform sequence (Cn)n of r.e. open
sets such that

∑

n µ(Cn) < ∞. We say that x fails the BC-test if x ∈ Cn infinitly often
(i.o.).

It is easy to show that:

Proposition 3.23. x fails a ML-test iff x fails a BC-test.

Definition 3.24. A Schnorr test (Sch-test) is a ML-test (An)n such that the sequence
of reals (µ(An))n is uniformly computable. We say that x fails the Sch-test if x ∈ An for
all n. A point x is called Sch-random if it fails no Sch-test.

Definition 3.25. A strong BC-test is a BC-test (Cn)n such that
∑

n µ(Cn) is computable.

Proposition 3.26. An element x fails a Sch-test if and only if x fails a strong BC-test.

Proof. Let (Cn)n be a strong BC-test. Let c be such that 2c >
∑

n µ(Cn). Define the

r.e. open set Ak := {x : |{n : x ∈ Cn}| ≥ 2k+c}. Then µ(Ak) < 2−k. Observe that Ak is
the union of all the (2k+c)-intersections of Cn’s. Since µ(Ck) =

∑

n µ(Cn) −
∑

n 6=k µ(Cn)

and the Cn’s are r.e. we have that µ(Cn) is computable (uniformly in n). We choose a basis
(Bi)i of almost decidable balls to work with. Recall that finite unions or intersections of
almost decidable sets are almost decidable too and that the measure of an almost decidable
set is computable. Now we show that µ(Ak) is computable uniformly in k. Let ǫ > 0 be
rational. Let n0 be such that

∑

n≥n0
µ(Cn) < ǫ

2 . Then µ(
⋃

n≥n0
Cn) < ǫ

2 . For each Cn with

n < n0 we construct an almost decidable set Cǫ
n ⊂ Cn (a finite union of almost decidable

balls) such that µ(Cn)− µ(Cǫ
n) < 1

n0

ǫ
2 . Then

∑

n<n0
[µ(Cn) − µ(Cǫ

n] < ǫ
2 . Define Aǫ

k to be

the union of the (2k+c)-intersections of the Cǫ
n’s for n < n0. Then Aǫ

k is almost decidable
and then has a computable measure. Moreover Ak ⊂ Aǫ

k ∪ (
⋃

n≥n0
Cn) ∪ (

⋃

n<n0
Cn \ C

ǫ
n),

hence µ(Ak)− µ(Aǫ
k) < ǫ.

The following result is an easy modification of a result from [5], so we omit the proof.

Proposition 3.27. Morphisms of computable probability spaces are defined (and com-
putable) on Schnorr random points and preserve Sch-randomness.
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3.2. Dynamical systems and typicality

Let X be a metric space, let T : X 7→ X be a Borel map. Let µ be an invariant Borel
measure on X, that is: µ(A) = µ(T−1(A)) holds for each measurable set A. A set A is
called T -invariant if T−1(A) = A modulo a set of measure 0. The system (T, µ) is said to
be ergodic if each T -invariant set has total or null measure. In such systems the famous
Birkhoff ergodic theorem says that time averages computed along µ-typical orbits coincide
with space averages with respect to µ. More precisely, for any f ∈ L1(X) it holds

lim
n→∞

Sf
n(x)

n
=

∫

f dµ, (3.2)

for µ-almost each x, where Sf
n = f + f ◦ T + . . .+ f ◦ T n−1.

If a point x satisfies equation (3.2) for a certain f , then we say that x is typical with
respect to the observable f .

Definition 3.28. If x is typical w.r. to every bounded continuous function f : X → R,
then we call it a T -typical point.

Remark 3.29. The proof of our main theorem will show as a side result that the definition
would not change if we replaced “continuous” with “computable” in it.

In [14] is proved that ML-random infinite binary sequences are typical w.r. to any
computable f . In [4], this is generalized via effective symbolic dynamics to computable
probability spaces and µ-computable observables.

To have the result for Sch-random points it seems that a certain “mixing” property or
“loss of memory” of the system has to be required. This is naturally expressed by means
of the correlation functions. For measureable functions f, g let

C(f, g) = µ(f · g)− µf · µg,

Cn(f, g) = C(f ◦ T n, g).

For events A,B with indicator functions 1A, 1B let

Cn(A,B) = Cn(1A, 1B),

which measures the dependence between the events A and B at times n≫ 1 and 0 respec-
tively. Note that Cn(A,B) = 0 corresponds, in probabilistic terms, to T−n(A) and B being
independent events.

Let us say that a family of Borel sets E is essential, if for every open set U there is a
sequence (Ei)i of borel sets in E such that ∪iEi ⊂ U (mod 0) (see Section 3).

Definition 3.30. We say that a system (X,T, µ) is (polynomially) mixing if there is α > 0
and an essential family E = {E1, E2, ...} of almost decidable events such that for each i, j
there is ci,j > 0 computable in i, j such that

|Cn(Ei, Ej)| ≤
ci,j
nα

for all n ≥ 1.

We say that the system is independent if all correlation functions Cn(Ei, Ej) are 0 for
sufficiently large n.

Examples of non-mixing but still ergodic systems are given for instance by irrational
circle rotations with the Lebesgue measure. Examples of mixing but not independent sytems
are given by piecewise expandings maps or uniformly hyperbolic systems which have a
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distinguished ergodic measure (called SRB measure and which is “physical” in some sense)
with respect to which the correlations decay exponentially (see [12]). An example of a
mixing system for which the decrease of correlations is only polynomial and not exponential,
is given by the class of Manneville-Pomeau type maps (non uniformly expanding with an
indifferent fixed point, see [6]). For a survey see [16].

3.3. Proof of the main result

Now we prove our main theorem.

Theorem 3.31. Let (X , µ) be a computable probability space with no atoms The following
properties of a point x ∈ X are equivalent.

(i) x is Schnorr random.
(ii) x is T -typical for every mixing endomorphism T .
(iii) x is T -typical for every independent endomorphism T .

Remark 3.32. If the measure µ is atomic, it is easy to see that:

(1) (X , µ) admits a mixing endomorphism if and only if µ = δx for some x. In this case
the theorem still holds, the only random point being x.

(2) (X , µ) admits an ergodic endomorphism if and only if µ = 1
n
(δx1

+ ...+ δxn) (where
xi 6= xj, for all i 6= j). In this case, a point x is Schnorr random if and only if it is
typical for every ergodic endomorphism if and only if it is an atom.

Proof. Let us first prove a useful lemma. Let E ⊂ X be a Borel set. Denote by 1E its
indicator function. The ergodic theorem says that the following equality holds for almost
every point:

lim
n

1

n

n−1
∑

i=0

1E ◦ T
i(x) = µ(E). (3.3)

Lemma 3.33. Let E be an essential family of events. If x satisfies equation (3.3) for all
E ∈ E then x is a T -typical point.

Proof. We have to show that equation (3.3) holds for any bounded continuous observable
f . First, we extend equation (3.3) to every continuity open set C. Let (Ei)i be a sequence
of elements of E such that

⋃

iEi ⊆ Int(C) and µ(
⋃

iEi) = µ(C). Define Ck =
⋃

i≤k Ei.

Then µ(Ck) ր µ(C). For all k:

lim inf
n

1

n

n−1
∑

i=0

1C ◦ T
i(x) ≥ lim

n

1

n

n−1
∑

i=0

1Ck
◦ T i(x) = µ(Ck)

so lim infn
1
n

∑n−1
i=0 1C ◦ T i(x) ≥ µ(C). Applying the same argument to X \ C gives the

result.
Now we extend the result to bounded continuous functions. Let f be continuous and

bounded (|f | < M) and let ǫ > 0 be a real number. Then, since the measure µ is finite,
there exist real numbers r1, . . . , rk ∈ [−M,M ] (with r1 = −M and rk = M) such that
|ri+1 − ri| < ǫ for all i = 1, . . . , k − 1 and µ(f−1({ri})) = 0 for all i = 1, . . . , k. It follows
that for i = 1, . . . , k − 1 the sets Ci = f−1(]ri, ri+1[) are all continuity open sets.

Hence the function fǫ =
∑k−1

i=1 ri1Ci
satisfies ‖f − fǫ‖∞ ≤ ǫ and then the result follows

by density.
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We are now able to prove that (i) ⇒ (ii).
Let E ∈ E . Put f = 1E . Observe that f is µ-computable. For δ > 0, define the

deviation sets:

Af
n(δ) =

{

x ∈ X :

∣

∣

∣

∣

∣

Sf
n(x)

n
−

∫

f dµ

∣

∣

∣

∣

∣

> δ

}

.

By Corollary 3.16 we can choose δ such that Af
n(δ) is almost decidable. Then their measures

are computable, uniformly in n.

By the Chebychev inequality, µ(Af
n(δ)) ≤ 1

δ2

∥

∥

∥

S
f
n(x)
n

−
∫

f dµ
∥

∥

∥

2

L2
. Let us change f by

adding a constant to have
∫

f dµ = 0. This does not change the above quantity. Then, by
invariance of µ we have

∥

∥

∥

∥

∥

Sf
n(x)

n
−

∫

f dµ

∥

∥

∥

∥

∥

2

L2

=

∫

(

Sf
n(x)

n

)2

dµ =
1

n2

∫

nf2 dµ+
2

n2

∫

(

∑

i<j<n

f ◦ T j−if
)

dµ

and hence

δ2µ(Af
n(δ)) ≤

‖f‖2
L2

n
+

2

n

∑

k<n

|Ck(f, f)| ≤
‖f‖2

L2

n
+

2cf,f

(1− α)nα
.

(Observe that α can be replaced by any smaller positive number, so we assume α < 1.)

Hence, µ(Af
n(δ)) ≤ Cn−α for some constant C. Now, it is easy to find a sequence (ni)i∈N

such that the subsequence (n−α
i )i is effectively summable and ni

ni+1
→ 1 (take for instance

ni = iβ with αβ > 1). This shows that the sequence Af
ni(δ) is a strong BC-test. Therefore,

if x is Sch-random then x belongs to only finitely many Af
ni(δ) for any δ and hence the

subsequence
S

f
ni

(x)

ni
converges to

∫

f dµ = µ(E). To show that for such points the whole

sequence S
f
n(x)
n

converges to
∫

f dµ = µ(E), observe that if ni ≤ n < ni+1 and βi := ni

ni+1

then we have:
Sf

ni

ni
− 2(1− βi)M ≤

Sf
n

n
≤
Sf

ni+1

ni+1
+ 2(1− βi)M,

where M is a bound of f . To see this, for any k, l, β with β ≤ k/l ≤ 1:

Sf
k

k
−
Sf

l

l
=

(

1−
k

l

)

Sf
k

k
−
Sf

l−k ◦ T
l−k

l
≤ (1− β)M +

(l − k)M

l
= 2(1 − β)M.

Taking β = βi and k = ni, l = n first and then k = n, l = ni+1 gives the result. Thus,
we have proved that a Schnorr random point x satisfies equation (3.3) for any E ∈ E .
Lemma 3.33 allows to conclude.

The (ii) ⇒ (iii) part follows since any independent dynamic is in particular mixing.
To prove the (iii) ⇒ (i) part we will need the following proposition which is a strength-

ening of a result of Schnorr in [9]. The proof is somewhat technical, for lack of space we do
not included here (see appendix).

Proposition 3.34. If the infinite binary string ω ∈ (BN, λ) is not Schnorr random (w.r. to
the uniform measure), then there exists an isomorphism Φ : (BN, λ) → (BN, λ) such that
Φ(ω) is not typical for the shift transformation σ.
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Now we are able to finish the proof of our main result: suppose that x is not Schnorr
random. We construct a dynamic T for which x is not T -typical. From Proposition 3.12 and
Theorem 3.19 we know that there is an isomorphism η : (X , µ) → (BN, λ) (here, λ denotes
the uniform measure). If x /∈ dom(η), we can take any independent endomorphism and
modify it in order to be the identity on x. It is cleary still an independent endomorphism
(maybe with a smaller domain of computability) and x, being a fixed point, can’t be T -
typical. So let x ∈ dom(η). Then η(x) is not Schnorr random in (BN, λ), since η as well as its
inverse preserve Schnorr randomness. Then, by Proposition 3.34, Φ(η(x)) is not σ-typical,
where σ is the shift which is clearly independent (cylinders being the essential events). Put
ψ = Φ ◦ η. Define the dynamics T on X by T = ψ−1 ◦ σ ◦ ψ. It is easy to see that T is
independent for events of the form E = ψ−1[w]. Since {ψ−1[w] : w ∈ 2∗} form an essential
family of almost decidable events, T is independent too. As ψ(x) is not σ-typical, x is not
T -typical either.
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[3] Peter Gács. Uniform test of algorithmic randomness over a general space. Theoretical Computer Science,

341:91–137, 2005.
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[5] Mathieu Hoyrup and Cristóbal Rojas. Computability of probability measures and Martin-Löf random-
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Abstract. The paper investigates the power of the dynamic complexity classes DynFO,
DynQF and DynPROP over string languages. The latter two classes contain problems that
can be maintained using quantifier-free first-order updates, with and without auxiliary
functions, respectively. It is shown that the languages maintainable in DynPROP exactly
are the regular languages, even when allowing arbitrary precomputation. This enables
lower bounds for DynPROP and separates DynPROP from DynQF and DynFO. Further,
it is shown that any context-free language can be maintained in DynFO and a number
of specific context-free languages, for example all Dyck-languages, are maintainable in
DynQF. Furthermore, the dynamic complexity of regular tree languages is investigated and
some results concerning arbitrary structures are obtained: there exist first-order definable
properties which are not maintainable in DynPROP. On the other hand any existential
first-order property can be maintained in DynQF when allowing precomputation.

1. Introduction

Traditional complexity theory asks for the necessary effort to decide whether a given
input has a certain property, more precisely, whether a given string is in a certain language.
In contrast, dynamic complexity asks for the effort to maintain sufficient knowledge to be
able to decide whether the input object has the property after a series of small changes of
the object. The complexity theoretic investigation of the dynamic complexity of algorithmic
problems was initiated by Patnaik and Immerman [18]. They defined the class DynFO
of dynamic problems where small changes in the input can be mastered by formulas of
(first-order) predicate logic (or, equivalently, poly-size circuits of bounded depth, see [8]).
More precisely, the dynamic program makes use of an auxiliary data structure and after
each update (say, insertion or deletion) the auxiliary data structure can be adapted by a
first-order formula.

Among others they showed that the dynamic complexity of the following problems is
in DynFO: Reachability in undirected graphs, minimum spanning forests, multiplication,
regular languages, the Dyck languages Dn. Subsequent work has yielded more problems in
DynFO [8] some of which are LOGCFL-complete [20] and even PTIME-complete [17, 18]
(even though the latter are highly artificial). Other work also considered stronger classes
(like Hesse’s result that Reachability in arbitrary directed graphs is in DynTC0 [13]), studied
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Figure 1: An overview of the main results in this paper.1

notions of completeness for dynamic problems [15], and elaborated on the handling of
precomputations [20].

The choice of first-order logic as update language in [18] was presumably triggered by
the hope that, in the light of lower bounds for AC0, it would be possible to prove that
certain problems do not have DynFO dynamic complexity. As it is easy to show that every
DynFO problem is in PTIME, a non-trivial lower bound result would have to show that
the dynamic complexity of some PTIME problem is not in DynFO. However, so far there
are no results of this kind.

The inability to prove lower bounds has naturally led to the consideration of subclasses
of DynFO. Hesse studied problems with quantifier-free update formulas, yielding DynPROP
if the maintained data structure is purely relational and DynQF if functions are allowed as
well [12, 14]. As further refinements the subclasses DynOR and DynProjections were stud-
ied. In [12] separation results for subclasses of DynPROP were shown and the separation
between DynPROP and DynP was stated as an open problem.

The framework of [18] allows more general update operations and some of the results
we mention depend on the actual choice of operations. Nevertheless, most research has
concentrated on insertions and deletions as the only available operations. Furthermore,
most work considered underlying structures of the following three kinds.

Graphs: Here, edges can be inserted or deleted. One of the main open questions
is whether Reachability (aka transitive closure) can be maintained in DynFO for
directed, possibly cyclic graphs.

Strings: Here, letters can be inserted or deleted. As mentioned above, [18] showed
that regular languages and Dyck languages can be maintained in DynFO. Later
on, Hesse proved that the dynamic complexity of regular languages is actually in
DynQF [14].

Databases: The dynamic complexity of database properties were studied in the
slightly different framework of First-Order Incremental Evaluation Systems (FOIES)
[7]. Many interesting results were shown including a separation between determin-
istic and nondeterministic systems [5] and inexpressibility results for auxiliary rela-
tions of small arity [4, 6]. Nevertheless, general lower bounds have not been shown
yet.

Continuing the above lines of research, this paper studies the dynamic complexity of formal
languages with a particular focus on dynamic classes between DynPROP and DynQF. Our
main contributions are as follows (see also Figure 1):

• We give an exact characterization of the dynamic complexity of regular languages:
a language can be maintained in DynPROP if and only if it is regular. This also
holds in the presence of arbitrary precomputed (aka built-in) relations. (Section 3)

1In this figure the dynamic complexity classes are allowed to operate with precomputation. Some of the
results also hold without precomputation, for example all results concerning formal languages.
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• We provide (presumably) better upper bounds for context-free languages: every
context-free language can be maintained in DynFO, Dyck languages even in DynQF,
Dyck languages with one kind of brackets in a slight extension of DynPROP, where
built-in successor and predecessor functions can be used. (Section 4)

• As an immediate consequence, we get a separation between DynPROP and DynQF,
thereby also separating DynPROP from DynFO and DynP.

• We investigate a slightly different semantics for dynamic string languages, and we
show that regular tree languages can be maintained in DynPROP, when allowing
precomputation and the use of built-in functions. (Section 5).

• Further, we study general structures, and show that (bounded-depth) alternating
reachability is not maintainable in DynPROP. From this we can conclude that not
all first-order definable properties are maintainable in DynPROP. On the other
hand, we prove that all existential first-order definable properties are maintainable
in DynQF when allowing precomputation. (Section 6)

Related work. We already discussed most of the related work above. A related re-
search area is the study of incremental computation and the complexity of problems in the
cell probe model. Here, the focus is not on structural (parallel) complexity of updates but
rather on (sequential) update time [16, 17]. In particular, [9, 10] give efficient incremen-
tal algorithms and analyse the complexity of formal language classes based on completely
different ideas.

Another area related to dynamic formal languages is the incremental maintenance of
schema information (aka regular tree languages) [1, 2] and XPath query evaluation [3] in
XML documents. There, the interest is mainly in fast algorithms, less in structural dynamic
complexity. Nevertheless techniques of dynamic algorithms on string languages also find
applications in these settings.

Due to lack of space all proofs are omitted, except for some proof sketches. They are
available in the full version of the paper [11].

2. Definitions

Let Σ = {σ1, ..., σk} be a fixed alphabet. We represent words over Σ encoded by word
structures, i.e., logical structures W with universe {1 . . . , n}, one unary relation Rσ for each
symbol σ ∈ Σ, and the canonical linear order < on {1 . . . , n}. We only consider structures
in which, for each i ≤ n, there is at most one σ ∈ Σ such that Rσ(i) holds, but there might
be none such σ. We write W (i) = σ if Rσ(i) holds and W (i) = ε if no such σ exists. We
call n the size of W .

The word w = word(W ) represented by a word structure W is simply the concatenation
W (1) ◦ · · · ◦W (n). Notice that, due to the fact that certain elements in W might not carry
a symbol, the actual length of the string can be less than n. In particular, every word w
can be encoded by infinitely many different word structures. Let [i, j] and ]i, j[ denote the
intervals from i to j, resp. from i+1 to j−1. For a word structure W , and positions i ≤ j in
[1, n], we write w[i, j] for the (sub-)string W (i) ◦ · · · ◦W (j). In particular w[i, i− 1] denotes
the empty substring between positions i and i− 1.

By En we denote the structure with universe {1, .., n} representing the empty string ε
(thus in En all relations Rσ are empty).
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2.1. Dynamic Languages and Complexity Classes

In this section, we first define dynamic counterparts of formal languages. Informally,
a dynamic language consists of all sequences of insertions and deletions of symbols that
transform the empty string into a string of a particular (static) language L. Then we define
dynamic programs which are intended to keep track of whether the string resulting from
a sequence of updates is in L. Finally we define complexity classes of dynamic languages.
Most of our definitions are inspired by [18] but, as we consider strings as opposed to arbitrary
structures, we try to keep the formalism as simple as possible.

Dynamic Languages. We will associate with each string language L a dynamic language
Dyn(L). The idea is that words can be changed by insertions and deletions of letters and
Dyn(L) is basically the set of update sequences α which turn the empty string into a string
in L.

For an alphabet Σ we define the set ∆ := {insσ | σ ∈ Σ} ∪ {reset} of abstract updates.
A concrete update is a term of the form insσ(i) or reset(i), where i is a positive integer. A
concrete update is applicable in a word structure of size n if i ≤ n. By ∆n we denote the
set of applicable concrete updates for word structures of size n. If there is no danger of
confusion we will simply write “update” for concrete or abstract updates.

The semantics of applicable updates is defined as expected: δ(W ) is the structure
resulting from W by

• setting Rσ(i) to true and Rσ′(i) to false, for σ′ 6= σ, if δ = insσ(i), and
• setting all Rσ(i) to false, if δ = reset(i).

For a sequence α = δ1 . . . δk ∈ ∆+
n of updates we define α(W ) as δk(. . . (δ1(W )) . . .).

Definition 2.1. Let L be a language over alphabet Σ. The dynamic language Dyn(L) is
the set of all (non-empty) sequences α of updates, for which there is n > 0 such that α ∈ ∆+

n

and word(α(En)) ∈ L. We call L the underlying language of Dyn(L).2

Dynamic Programs. Informally, a dynamic program is a transition system which reads
sequences of concrete updates and stores the current string and some auxiliary relations
in its state. It also maintains the information whether the current string is in the (static)
language under consideration.

A program state S is a word structure W extended by (auxiliary) relations over the
universe of W . The schema of S is the set of names and arities of the auxiliary relations of
S. We require that each program has a 0-ary relation ACC.

A dynamic program P over alphabet Σ and schema R consists of an update function
φR
op(y;x1, . . . , xk), for every op ∈ ∆ and R ∈ R, where k = arity(R). A dynamic program
P operates as follows. Let S be a program state with word structure W . The application of
an applicable update δ = op(i) on S yields the new state S′ = δ(S) consisting of W ′ = δ(W )
and new relations R′ = {j̄ | S |= φR

op(i, j̄)}, for each R ∈ R. For each n ∈ N and update

sequence α = δ1 . . . δk ∈ ∆+
n we define α(S) as δk(. . . (δ1(S)) . . .). We say that a state S is

accepting iff S |= ACC, i.e., if the 0-ary ACC-relation contains the empty tuple.3

2There is a danger of confusion as we deal with two kinds of languages: “normal languages” consisting of
“normal strings” and dynamic languages consisting of sequences of updates. We use the terms “word” and
“string” only for “normal strings” and call the elements of dynamic languages “sequences”.

30-ary relations can be viewed as propositional variables: either they contain the empty tuple (corre-
sponding to TRUE) or not.
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We say that a dynamic program P recognizes the dynamic language Dyn(L) if for all
n ∈ N and all α ∈ ∆+

n it holds that α(En
′) is accepting iff word(α(En)) ∈ L, where En

′

denotes the state with word structure En and otherwise empty relations.

Dynamic Complexity Classes. DynFO is the class of all dynamic languages that are recog-
nized by dynamic programs whose update functions are definable by first-order formulas.
DynPROP is the subclass of DynFO where all these formulas are quantifier free.

2.2. Extended Dynamic Programs

To gain more insight into the subtle mechanics of dynamic computations, we study two
orthogonal extensions of dynamic programs: auxiliary functions and precomputations.

Extending dynamic programs with functions. A dynamic program P with auxiliary functions
is a dynamic program over a schema R, possibly containing function symbols, which has,
for each σ ∈ Σ and each function symbol F ∈ R an update function ψF

σ (i;x1, ..., xk) where
k = arity(F ).

As we are mainly interested in quantifier free update functions for updating auxiliary
functions we restrict ourselves to update functions defined by update terms, defined as:

• Every xi is an update term.
• If F ∈ R is a function and t̄ contains only update terms then F (t̄) is an update

term.
• If φ is a quantifier free formula (possibly using update terms) and t1 and t2 are

update terms then ite(φ, t1, t2) is an update term.

The semantics of update terms is straightforward for the first two rules. A term
ite(φ, t1, t2) takes the value of t1 if φ evaluates to true and the value of t2 otherwise.

After an update δ, the auxiliary functions in the new state are defined by the update
functions in the straightforward way. Unless otherwise stated, the functions in the initial
state En

′ map every tuple to its first element.

Extending dynamic programs with precomputations. Sometimes it can be useful for a dy-
namic algorithm to have a precomputation which prepares some sophisticated data struc-
tures. Such precomputations can easily be incorporated into the model of dynamic pro-
grams.

In [18] the class DynFO+ allowed polynomial time precomputations on the auxiliary
relations. The structual properties of dynamic algorithms with precomputation were further
studied and refined in [20]. In this paper, we do not consider different complexities of
precomputations but distinguish only the cases where precomputations are allowed or not.

A dynamic program P with precomputations uses an additional set of initial auxiliary
relations (and possibly initial auxiliary functions). For each initial auxiliary relation symbol

R and each n, P has a relation Rinit
n over {1, . . . , n}. The semantics of dynamic programs

with precomputations is adapted as follows: in the initial state En
′ each initial auxiliary

relation R is interpreted by Rinit
n . Similarly, for initial auxiliary function symbol F and

each n there is a function F init
n over {1, . . . , n}.

Initial auxiliary relations and functions are never updated, i.e., P does not have update
functions for them.
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The extension of dynamic programs by functions and precomputations can be combined
and gives rise to different complexity classes: For I ∈ {⊥,Rel,Fun} and A ∈ {Rel,Fun} we
denote by DynC(I,A) the class of dynamic languages recognized by dynamic programs

• without precomputations, if I = ⊥,
• with initial auxiliary relations, if I = Rel,
• with initial auxiliary relations and functions, if I = Fun,
• with (updatable) auxiliary relations only, if A = Rel, and
• with (updatable) auxiliary relations and functions, if A = Fun.

Thus, we have DynFO = DynFO(⊥,Rel) and DynPROP = DynPROP(⊥,Rel). If the
base class DynC is DynPROP or DynFO, DynC(I,A) is clearly monotonic with respect to
the order ⊥ < Rel < Fun In particular,

DynPROP(Rel,Rel) ⊆ DynPROP(Fun,Rel) ⊆ DynPROP(Fun,Fun)

As we are particularly interested in the class DynPROP(⊥,Fun) we denote it also more
consisely by DynQF.

As auxiliary functions can be simulated by auxiliary relations if the update functions
are first-order formulas we also have DynFO(Rel,Rel) = DynFO(Fun,Fun) and DynFO =
DynFO(⊥,Fun). Thus, in our setting there are only two classes with base class DynFO:
the one with and the one without precomputations.

We will also examine the setting where we only allow a specific set of initial auxiliary
(numerical) functions, namely built-in successor and predecessor functions. For each uni-
verse size n let succ be the function that maps every universe element to its successor
(induced by the ordering) and the element n to itself, let pre be the function mapping to
predecessors and the element 1 to itself, and let min be the constant (i.e. nullary function)
mapping to the minimal element 1 in the universe. Then DynPROP(SUCC,Rel) is the class
of dynamic languages recognized by dynamic programs using quantifier-free formulas with
initial (precomputed) auxiliary relations, the auxiliary functions succ, pre and min and
updatable auxiliary relations.

3. Dynamic Complexity of Regular Languages

As already mentioned in the introduction, it was shown by Patnaik and Immerman [18]
that every regular language can be recognized by a DynFO program. Hesse [14] showed
that the full power of DynFO is actually not needed: every regular language is recognized
by some DynQF program.

Our first result is a precise characterization of the dynamic languages Dyn(L) with an
underlying regular language L: they exactly constitute the class DynPROP. Before stating
the result formally and sketch its proof, we will give a small example to illustrate how
regular languages can be maintained in DynPROP.

Example 3.1. Consider the regular language (a + b)∗a(a + b)∗ over the alphabet {a, b}.
One has to maintain one binary relation A(i, j) that is true iff i < j and there exists
k ∈ ]i, j[ such that w[k, k] = a and two unary relations I(j) ≡ ∃k < j : w[k, k] = a and
F (i) ≡ ∃k > i : w[k, k] = a. We note that it is important here that A(i, j) refers to the
interval ]i, j[, and not [i, j], in order to maintain these relations in DynPROP.
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For the operation insa the update formulas are straightforward, therefore we will give
here just the update formulas for A and ACC after the operation insb. Exactly the same
formulas can be used for the reset operation.

φA
insb

(y;x1, x2) ≡
(

y /∈ ]x1, x2[ ∧A(x1, x2)
)

∨
(

y ∈ ]x1, x2[ ∧ (A(x1, y) ∨A(y, x2))
)

φACC
insb

(y) ≡ I(y) ∨ F (y)

Proposition 3.2. For every regular language L, Dyn(L) ∈ DynPROP.

Proof. Let A = (Q, δ, s, F ) be a DFA accepting L with transition function δ : Q× Σ → Q.
Let δ∗ : Q× Σ∗ → Q denote the reflexive-transitive closure of δ.

Like in the example above one has to maintain information about the open intervals
]i, j[, namely whether the substring w[i+ 1, j − 1] brings the automaton from a state p to
state q. Here, we only give the different auxiliary relations. For all states p and q we
maintain

• Rp,q = {(i, j) | i < j ∧ δ∗(p,w[i + 1, j − 1]) = q}
• Iq = {j | δ∗(s,w[1, j − 1]) = q} and Fp = {i | δ∗(p,w[i+ 1, n]) ∈ F}

As a matter of fact, the converse of Proposition 3.2 is also true, thus DynPROP is the
exact dynamic counterpart of the regular languages.

Proposition 3.3. Let L = Dyn(L′) be a dynamic language in DynPROP. Then L′ is
regular.

Proof. The idea of the proof is as follows. We consider a dynamic program P for L and see
what happens if, starting from the empty word, the positions of a word are set in a left-to-
right fashion. Since the acceptance of the word by P does not depend on the sequence of
updates used to produce the word, it suffices to care only about this one update sequence.

We make the following observations.

(1) After each update all tuples of positions that have not been set yet behave the same
with respect to the auxiliary relations.

(2) There is only a bounded number (depending only on P , namely on the number and the
maximal arity of the auxiliary relations) of possible ways these tuples behave.

(3) The change in behavior of the tuples by one update is uniquely determined by the
inserted symbol.

Together these observations enable us to define a finite automaton for L′.

Remark 3.4. Proposition 3.3 is a powerful tool for proving lower bounds as it, of course,
shows that, for every non-regular language L, Dyn(L) 6∈ DynPROP.

The proof of Proposition 3.3 intuitively relies on the fact that all remaining string
positions cannot be distinguished before they are set. Using a Ramsey argument, this
idea can be generalized to the setting with precomputations, thus showing that (relational)
precomputations do not increase the expressive power of DynPROP-programs. This fact
and the above two propositions can then be combined into the following theorem.

Theorem 3.5. Let L be a language. Then, the following are equivalent:

(1) L is regular;
(2) Dyn(L) ∈ DynPROP; and
(3) Dyn(L) ∈ DynPROP(Rel,Rel).
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4. Dynamic Complexity of Context-free Languages

In the previous section we have seen that the regular languages are exactly those lan-
guages that can be recognized by a DynPROP program. In this section, we will study the
dynamic complexity of context-free languages. We first show that any context-free language
can be maintained in DynFO. Later on, we exhibit languages that can be maintained in
DynQF or a weak extension of DynPROP.

Theorem 4.1. Let L be a context-free language. Then, Dyn(L) is in DynFO.

Proof. Let L be a context-free language. Consider a grammar G = (V,Σ, S,D) for L and
assume w.l.o.g. that is in Chomsky normal form. For U ∈ V , and w ∈ (V ∪Σ)∗, we denote
by U →∗ w that w can be derived from U . Then, L = {w | w ∈ Σ∗ ∧ S →∗ w}.

Our dynamic program P recognizing L will maintain for all X,Y ∈ V the following
relation:

RX,Y = {(i1, i2, j1, j2) | [j1, j2] ⊆ [i1, i2] ∧X →∗ w[i1, j1 − 1]Y w[j2 + 1, i2]}

However, we cannot hope for an equivalence between DynFO and the context-free
languages, as for DynPROP and the regular languages before. This follows easily as opposed
to the class of context-free languages, DynFO is closed under intersection and complement.
Furthermore, one can show that non-contextfree languages can be maintained in DynQF
and DynPROP(SUCC,Rel). This is because unary counters can be implemented easily
by dynamic programs in these classes. Let EQUALr be the language over the alphabet
Σ = {a1, . . . , ar} containing all strings with an equal number of occurrences of each symbol
ai. Note that already EQUAL3 is not context-free. Using the counters one can prove the
following

Proposition 4.2.

(1) Dyn(EQUALr) ∈ DynPROP(SUCC,Rel)
(2) Dyn(EQUALr) ∈ DynQF

From Proposition 4.2 and Theorem 3.5 one can conclude the following

Corollary 4.3.

(1) DynPROP ( DynPROP(SUCC,Rel)
(2) DynPROP ( DynQF

One can also get better upper bounds for Dyck-languages, the languages of properly
balanced parentheses. For a set of opening brackets {(1, ..., (n} and the set of its closing
brackets {)1, ..., )n} the language Dn is the language produced by the context free grammar:

S → SS | (1S)1 | ... | (nS)n | ε

Proposition 4.4. For every n > 0, Dn ∈ DynQF.

The proof of Proposition 4.4 mainly relies on the fact that each terminal symbol oc-
curs in only one rule of the grammar and therefore corresponding positions (i.e. matching
brackets) can be maintained using auxiliary functions. Together with relations similar to
the proof of Theorem 4.1 these functions enable us to maintain Dn.

We expect the result to hold for a broader class of context-free languages which has
yet to be pinned down exactly. It is even conceivable that all deterministic or unambiguous
context-free languages are in DynQF.
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It turns out that for Dyck languages with only one kind of brackets, i.e., D1, auxiliary
functions are not needed, if built-in successor and predecessor functions are given.

Proposition 4.5. D1 ∈ DynPROP(SUCC,Rel)

Proof. The idea of the proof uses the well known level-trick for the Dyck-languages (cf.[18]).
All string positions of the same level are stored in a list, represented by the edge relation of
a directed graph forming a cycle. This representations allows to infer whether there exists
a string position of a given level and is maintainable in DynPROP(SUCC,Rel)

Thus, whereas built-in relations did not increase the power of DynPROP, already the
three simple functions succ, pre and min allow the maintenance of non-regular languages.

5. Variations

Alternative Semantics. Following [18], we have introduced in Section 2 dynamic languages
in which it is both allowed to insert or change labels at positions in the string and to delete
elements at positions. In a universe of size n, one can thus create all strings of length smaller
or equal than n.

However, one can also consider the setting in which each position in the string must at
any time be assigned a symbol. Although this setting is less “dynamic”, it has the advantage
that a word is always associated with its canonical logical structure. This can be achieved
by starting with an initial structure in which each symbol is already assigned a symbol, and
subsequently only allowing labels to be changed (and not deleted).

More formally, we assign to every language L, a dynamic language Dyn-alt(L) as follows.
For a distinguished initial symbol a ∈ Σ, and n ∈ N, let Ea

n be the word structure in which
Ra(i) is true, for all i, and Rσ is empty, for all σ 6= a. Further, ∆n = {insσ | σ ∈ Σ}. Then,
Dyn-alt(L) = {(n, δ) | δ ∈ ∆+

n ∧ word(δ(Ea
n)) ∈ L}4.

Proposition 5.1 shows that the situation is less appealing than in the original semantics.
In particular, there are regular languages which cannot be maintained without precompu-
tation; and with precomputation all regular, but also non-regular, languages can be main-
tained. Here, MIDDLE = {wbw′ | |w| = |w′|} is the language over the alphabet Σ = {a, b}
which contains all strings whose middle element is b, which is clearly not regular.

Proposition 5.1.

(1) Dyn-alt(L((aa)∗)) /∈ DynPROP
(2) For any regular language L, Dyn-alt(L) ∈ DynPROP(Rel,Rel)
(3) Dyn-alt(MIDDLE) ∈ DynPROP(Rel,Rel)

Notice that, contrary to Theorem 3.5, this proposition does not allow us to infer lower
bounds for DynPROP(Rel,Rel) under the current semantics. However, if we consider the
class of languages with neutral elements, this becomes possible again. We say that a lan-
guage L has a neutral element a if for all w,w′ ∈ Σ∗ it holds that ww′ ∈ L iff waw′ ∈ L.
Here, if a language has at least one neutral element we will assume that the initial symbol
for its dynamic algorithm is one of these neutral elements.

4Notice that Dyn(L) consists only of update sequences δ, whereas Dyn-alt(L) contains tuples (n, δ). This
change is necessary as the membership of a word of a language under the current semantics can depend both
on the size of the initial structure n, and the update sequence δ.
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Then, a straigthforward generalization of Theorem 3.5 yields the following proposi-
tion which implies, for instance, that Dyn-alt(L) /∈ DynPROP(Rel,Rel) for all non-regular
languages L which have a neutral element.

Proposition 5.2. Let L be a language which has a neutral element. Then, the following
are equivalent:

(1) L is regular;
(2) Dyn-alt(L) ∈ DynPROP; and
(3) Dyn-alt(L) ∈ DynPROP(Rel,Rel).

Regular Tree Languages. We now investigate the dynamic complexity of the regular tree
languages. Thereto, we first define dynamic tree language. A tree t over an alphabet
Σ is encoded by a logical structure T with as universe the first n elements of the list
(1, 11, 12, 111, 112, 121, 122, . . .), for some n ∈ N, and consisting of (1) one unary relation
Rσ, for each symbol σ ∈ Σ, (2) a constant root, denoting the element 1, and (3) binary
relations L-child and R-child, containing all tuples (u, u1) and (u, u2), respectively.

The updates are terms insσ(u) and reset(u), setting and resetting the label of node u
in T , exactly as in the string case. So, the logical structure T is a fixed balanced binary
tree in which the labels can change. Then, the tree t encoded by T is the largest subtree of
T whose root is the element 1 and in which all nodes are labelled with an alphabet symbol.
Notice that a node of T is included in t if it, and all its ancestors, carry an alphabet symbol.

Exactly as for the word languages, for a tree language L, we let Dyn(L) be the set of
update sequences leading to a tree t ∈ L. A dynamic program works on a dynamic tree
language exactly as it does on a dynamic language. We then obtain the following result.

Proposition 5.3. Let L be a regular tree language. Then, Dyn(L) ∈ DynPROP(Fun,Rel).

6. Beyond Formal Languages

The definitions given in Section 2 only concerned dynamic problems for word structures.
Following [20], we now extend these definitions to arbitrary structures. Thereto, let γ be
a vocabulary containing relation symbols of arbitrary arities. We assume that a structure
over γ of size n has as universe {1, . . . , n}. The empty structure over vocabulary γ of size
n and only empty relations is denoted En(γ).

The set of abstract updates ∆(γ) is defined as {insR,delR | R ∈ γ}. A concrete update
is a term of the form insR(i1, . . . , ik) or delR(i1, . . . , ik), where k = arity(R). A concrete
update is applicable in a structure of size n if ij ≤ n, for all j ∈ [1, k]. By ∆n(γ) we
denote the set of applicable concrete updates for structures over γ of size n. For a sequence
α = δ1 . . . δk ∈ (∆n(γ))+ of updates we define α(A) as δk(. . . (δ1(A)) . . .), where δ(A) is the
structure obtained from A by setting R(i1, . . . , ik) to true if δ = insR(i1, . . . , ik); and setting
R(i1, . . . , ik) to false if δ = delR(i1, . . . , ik).

Definition 6.1. Let γ be a vocabulary, and F be a set of γ-structures. The dynamic
problem Dyn(F ) is the set of all pairs (n, α), with n > 0 and α ∈ (∆n(γ))+ such that
α(En(γ)) ∈ F . We call F the underlying static problem of Dyn(F ).

Dynamic programs operate on dynamic problems just as they do on dynamic languages.
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Incomparability of FO and DynPROP. As we have seen in the previous sections, when
restricted to monadic input schemas, DynPROP in a sense has the power of MSO. However,
if we add one binary relation DynPROP cannot even capture first-order logic. This is also
true if we allow the program to use precomputed functions from the set SUCC.

Thereto we will consider alternating graphs, coded via the binary edge relation E and
two unary relations A and B that form a decomposition of the universe V into the set
of existential and universal nodes. Given a node s ∈ V , the set of all reachable nodes
Reach(s) is defined as the smallest set satisfying (1) s ∈ Reach(s), (2) if u ∈ A and there
is an v ∈ Reach(s) such that (u, v) ∈ E, then u ∈ Reach(s) and (3) if u ∈ B and for all
nodes v such that (u, v) ∈ E we have v ∈ Reach(s), then v ∈ Reach(s). Now we define
ALT-REACH as the problem, given an alternating graph G = (A∪̇B,E) and two nodes s
and t, is t ∈ Reach(s). We note that ALT-REACH is P-complete (see for example [19]).

Proposition 6.2. Dyn(ALT-REACH) /∈ DynPROP(SUCC,Rel)

In fact from the proof of the above proposition one can conclude an even stronger
statement. The graphs used in the proof are very restricted in the sense that the length
of the longest path is bounded by a constant. Let ALT-REACHdepth≤d be the alternating
reachability problem on graphs of depth at most d. It is easily seen that ALT-REACHdepth≤d

is expressible by a FO-formula, so we get the following

Theorem 6.3. There exists a problem F ∈ FO such that Dyn(F ) /∈ DynPROP(SUCC,Rel).

On the other hand the reachability problem on acyclic deterministic directed graphs
can be maintained in DynPROP (Hesse [14]) but cannot be expressed via an FO-formula
(as can be easily seen by standard EF-games arguments). So these classes are incomparable.

Using functions to maintain EFO. Next we exhibit a class of properties which can be
maintained in DynQF with precomputation. An existential first-order (EFO) sentence is a
first-order sentence of the form ∃x1, . . . xkφ(x̄), where φ(x̄) is a quantifier free formula.

Theorem 6.4. For any EFO-definable problem F , Dyn(F ) ∈ DynPROP(Fun,Fun)

The proof of this theorem relies on the fact that an EFO sentence can only assert
whether a tuple of elements in the structure has certain properties, i.e. has a certain type.
Then, using precomputed addition and subtraction functions, it is possible to count the
number of tuples in a structure which have a certain type, and thus decide whether an EFO
sentence is satisfied in the structure.

7. Conclusion

We have studied the dynamic complexity of formal languages and, by characterizing
the languages maintainable in DynPROP as exactly the regular languages, obtained the
first lower bounds for DynPROP. This yields a separation of DynPROP from DynQF and
DynFO. We proved that every context-free language can be maintained in DynFO and
investigated the power of functions for dynamic programs in maintaining specific context-
free and non context-free languages.

As a modest extension we also proved a lower bound for DynPROP with built-in suc-
cessor functions. Hence, we are now one step closer to proving lower bounds for DynFO,
but, of course, a number of questions arise:
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• Can the results on the Dyck languages be extended to show that an entire subclass
of the context-free languages, such as the deterministic or unambiguous context-free
languages, can be maintained in DynQF?

• We have seen that D1 ∈ DynPROP(SUCC,Rel). Can it be shown that D2 /∈
DynPROP(SUCC,Rel)?

• Can some of the lower bound techniques for DynPROP be extended to DynQF, in
order to separate DynQF from DynFO, or at least from DynP? Is there a context-
free language that is not maintainable in DynQF?
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Abstract. Partition functions, also known as homomorphism functions, form a rich family
of graph invariants that contain combinatorial invariants such as the number of k-colourings
or the number of independent sets of a graph and also the partition functions of certain “spin
glass” models of statistical physics such as the Ising model.

Building on earlier work by Dyer and Greenhill [7] and Bulatov and Grohe [6], we com-
pletely classify the computational complexity of partition functions. Our main result is a
dichotomy theorem stating that every partition function is either computable in polynomial
time or #P-complete. Partition functions are described by symmetric matrices with real
entries, and we prove that it is decidable in polynomial time in terms of the matrix whether
a given partition function is in polynomial time or #P-complete.

While in general it is very complicated to give an explicit algebraic or combinatorial
description of the tractable cases, for partition functions described by a Hadamard matrices —
these turn out to be central in our proofs — we obtain a simple algebraic tractability criterion,
which says that the tractable cases are those “representable” by a quadratic polynomial over
the field F2.

1. Introduction

We study the complexity of a family of graph invariants known as partition functions
or homomorphism functions (see, for example, [10, 17, 18]). Many natural graph invariants
can be expressed as homomorphism functions, among them the number of k-colourings, the
number of independent sets, and the number of nowhere-zero k-flows of a graph. The functions
also appear as the partition functions of certain “spin-glass” models of statistical physics such
as the Ising model or the q-state Potts model.
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Let A ∈ R
m×m be a symmetric real matrix with entries Ai,j . The partition function ZA

associates with every graph G = (V,E) the real number

ZA(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v).

We refer to the row and column indices of the matrix, which are elements of [m] := {1, . . . ,m},
as spins. We use the term configuration to refer to a mapping ξ : V → [m] assigning a spin
to each vertex of the graph. To avoid difficulties with models of real number computation,
throughtout this paper we restrict our attention to algebraic numbers. Let RA denote the set
of algebraic real numbers.1

Our main result is a dichotomy theorem stating that for every symmetric matrix A ∈
R

m×m
A

the partition function ZA is either computable in polynomial time or #P-hard. This
extends earlier results by Dyer and Greenhill [7], who proved the dichotomy for 0-1-matrices,
and Bulatov and Grohe [6], who proved it for nonnegative matrices. Therefore, in this paper
we are mainly interested in matrices with negative entries.

Examples

In the following, let G = (V,E) be a graph with N vertices. Consider the matrices

S =

(

0 1
1 1

)

and C3 =





0 1 1
1 0 1
1 1 0



 .

It is not hard to see that ZS(G) is the number of independent sets of a graph G and ZC3
(G)

is the number of 3-colourings of G. More generally, if A is the adjacency matrix of a graph H

then ZA(G) is the number of homomorphisms from G to H. Here we allow H to have loops
and parallel edges; the entry Ai,j in the adjacency matrix is the number of edges from vertex
i to vertex j.

Let us turn to matrices with negative entries. Consider

H2 =

(

1 1
1 −1

)

. (1.1)

Then 1
2ZH2

(G)+2N−1 is the number of induced subgraphs of G with an even number of edges.
Hence up to a simple transformation, ZH2

counts induced subgraphs with an even number of
edges. To see this, observe that for every configuration ξ : V → [2] the term

∏

{u,v}∈E Aξ(u),ξ(v)

is 1 if the subgraph of G induced by ξ−1(2) has an even number of edges and −1 otherwise.
Note that H2 is the simplest nontrivial Hadamard matrix. Hadamard matrices will play a
central role in this paper. Another simple example is the matrix

U =

(

1 −1
−1 1

)

.

It is a nice exercise to verify that for connected G the number ZU (G) is 2N if G is Eulerian
and 0 otherwise.

A less obvious example of a counting function that can be expressed in terms of a partition
function is the number of nowhere-zero k-flows of a graph. It can be shown that the number of

1There is a problem with the treatment of real numbers in [6], but all results stated in [6] are valid for
algebraic real numbers. We use a standard representation of algebraic numbers by polynomials and standard
Turing machines as our underlying model of computation.
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nowhere-zero k-flows of a graph G with N vertices is k−N ·ZFk
(G), where Fk is the k×k matrix

with (k − 1)s on the diagonal and −1s everywhere else. This is a special case of a more
general connection between partition functions for matrices A with diagonal entries d and off
diagonal entries c and certain values of the Tutte polynomial. This well-known connection can
be derived by establishing certain contraction-deletion identities for the partition functions.
For example, it follows from [20, Equations (3.5.4)] and [19, Equation (2.26) and (2.9)]

Complexity

Like the complexity of graph polynomials [2, 12, 14, 16] and constraint satisfaction prob-
lems [1, 3, 4, 5, 8, 11, 13], which are both closely related to our partition functions, the
complexity of partition functions has already received quite a bit of a attention. Dyer and
Greenhill [7] studied the complexity of counting homomorphisms from a given graph G to
a fixed graph H without parallel edges. (Homomorphisms from G to H are also known as
H-colourings of G.) They proved that the problem is in polynomial time if every connected
component of H is either a complete graph with a loop at every vertex or a complete bi-
partite graph, and the problem is #P-hard otherwise. Note that, in particular, this gives
a complete classification of the complexity of computing ZA for symmetric 0-1-matrices A.
Bulatov and Grohe [6] extended this to symmetric nonnegative matrices. To state the result,
it is convenient to introduce the notion of a block of a matrix A. To define the blocks of
A, it is best to view A as the adjacency matrix of a graph with weighted edges; then each
non-bipartite connected component of this graph corresponds to one block and each bipartite
connected component corresponds to two blocks. A formal definition will be given below.
Bulatov and Grohe [6] proved that computing the function ZA is in polynomial time if the
row rank of every block of A is 1 and #P -hard otherwise. The problem for matrices with
negative entries was left open. In particular, Bulatov and Grohe asked for the complexity of
the partition function ZH2

for the matrix H2 introduced in (1.1). Note that H2 is a matrix
with one block of row rank 2. As we shall see, ZH2

is computable in polynomial time. Hence
the complexity classification of Bulatov and Grohe does not extend to matrices with negative
entries. Nevertheless, we obtain a dichotomy, and this is our main result.

Results and outline of the proofs

Theorem 1.1 (Dichotomy Theorem). Let A ∈ R
m×m
A

be a symmetric matrix. Then the
function ZA either can be computed in polynomial time or is #P-hard.

Furthermore, there is a polynomial time algorithm that, given the matrix A, decides
whether ZA is in polynomial time or #P-hard.

Let us call a matrix A tractable if ZA can be computed in polynomial time and hard if
computing ZA is #P-hard. Then the Dichotomy Theorem states that every symmetric matrix
with entries in RA is either tractable or hard. The classification of matrices into tractable and
hard ones can be made explicit, but is very complicated and does not give any real insights.
Very roughly, a matrix A is tractable if each of its blocks can be written as a tensor product
of a positive matrix of row rank 1 and a tractable Hadamard matrix. Unfortunately, the real
classification is not that simple, but for now let us focus on tractable Hadamard matrices.
Recall that a Hadamard matrix is a square matrix H with entries from {−1, 1} such that
H · HT is a diagonal matrix. Let H ∈ {−1, 1}n×n be a symmetric n × n Hadamard matrix
with n = 2k. Let ρ : F

k
2 → [n] be a bijective mapping, which we call an index mapping. We
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say that a multivariate polynomial h(X1, . . . ,Xk, Y1, . . . , Yk) over F2 symmetrically represents
H with respect to ρ if, for all x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ F

k
2, it holds that

h(x1, . . . , xk, y1, . . . , yk) = 1 ⇐⇒ Hρ(x),ρ(y) = −1.

For example, the F2-polynomial h2(X1, Y1) = X1 ·Y1 symmetrically represents the matrix
H2 with respect to the index mapping ρ(x1) = x1+1. The F2-polynomial h4(X1,X2, Y1, Y2) =
X1 · Y2 ⊕X2 · Y1 symmetrically represents the matrix

H4 =









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









with respect to the index mapping ρ(x1, x2) = 2 ·x1 +x2 +1. The qualifier “symmetrically” in
“symmetrically represents” indicates that the same index mapping is applied to both x and y.
We will need to consider asymmetric representations later. Note that we can only represent
a matrix H ∈ {−1, 1}n×n by an F2-polynomial in this way if n is a power of 2. In this case,
for every index mapping ρ there is a unique F2-polynomial symmetrically representing h with
respect to ρ. We say that H has a quadratic representation if there is an index mapping ρ

and an F2-polynomial h of degree at most 2 that symmetrically represents H with respect to
ρ.

Theorem 1.2 (Complexity Classification for Hadamard Matrices). A symmetric Hadamard
matrix H is tractable if it has a quadratic representation and hard otherwise.

Hence, in particular, the matrices H2 and H4 are tractable. The tractability part of
Theorem 1.2 is an easy consequence of the fact that counting the number of solutions of
a quadratic equation over F2 (or any other finite field) is in polynomial time (see [9, 15]).
The difficulty in proving the hardness part is that the degree of a polynomial representing
a Hadamard matrix is not invariant under the choice of the index mapping ρ. However,
for normalised Hadamard matrices, that is, Hadamard matrices whose first row and column
consists entirely of +1s, we can show that either they are hard or they can be written as an
iterated tensor product of the two simple Hadamard matrices H2 and H4. This gives us a
canonical index mapping and hence a canonical representation by a quadratic F2-polynomial.
Unfortunately, we could not find a direct reduction from arbitrary to normalised Hadamard
matrices. To get a reduction, we first need to work with a generalisation of partition functions.
If we view the matrix A defining a partition function as an edge-weighted graph, then this
is the natural generalisation to graphs with edge and vertex weights. Let A ∈ R

m×m
A

be a

symmetric matrix and D ∈ R
m×m
A

a diagonal matrix, which may be viewed as assigning the
weight Di,i to each vertex i. We define the partition function ZA,D by

ZA,D(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v) ·
∏

v∈V

Dξ(v),ξ(v),

for every graph G = (V,E). As a matter of fact, we need a further generalisation that takes
into account that vertices of even and odd degree behave differently when it comes to negative
edge weights. For a symmetric matrix A ∈ R

m×m
A

and two diagonal matrices D,O ∈ R
m×m
A

we let

ZA,D,O(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v) ·
∏

v∈V
deg(v) is even

Dξ(v),ξ(v) ·
∏

v∈V
deg(v) is odd

Oξ(v),ξ(v),
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for every graph G = (V,E). We call ZA,D,O the parity-distinguishing partition function
(pdpf) defined by A,D,O. We show that the problem of computing ZA,D,O(G) is always
either polynomial-time solvable or #P-hard, and we call a triple (A,D,O) tractable or hard
accordingly. Obviously, if D = O = Im are identity matrices, then we have ZA = ZA,D =
ZA,D,O.

Returning to the proof of Theorem 1.2, we can show that, for every Hadamard matrix H,
either H is hard or there is a normalised Hadamard matrix H ′ and diagonal matrices D′, O′

such that computing ZH is polynomial time equivalent to computing ZH′,D′,O′ . Actually, we
may assume D′ to be an identity matrix and O′ to be a diagonal matrix with entries 0, 1
only. For the normalised matrix H ′ we have a canonical index mapping, and we can use this
to represent the matrices D′ and O′ over F2. Then we obtain a tractability criterion that
essentially says that (H ′,D′, O′) is tractable if the representation of H ′ is quadratic and that
of O′ is linear (remember that D′ is an identity matrix, which we do not have to worry about).

For the proof of the Dichotomy Theorem 1.1, we actually need an extension of Theorem 1.2
that states a dichotomy for parity-distinguishing partition functions ZA,D,O, where A is a
“bipartisation” of a Hadamard matrix (this notion will be defined later). The proof sketched
above can be generalised to give this extension. Then to prove the Dichotomy Theorem, we
first reduce the problem of computing ZA to the problem of computing ZC for the connected
components C of A. The next step is to eliminate duplicate rows and columns in the matrix,
which can be done at the price of introducing vertex weights. Using the classification theorem
for nonnegative matrices and some gadgetry, from there we get the desired reduction to
parity-distinguishing partition functions for bipartisations of Hadamard matrices.

Let us finally mention that our proof shows that the Dichotomy Theorem not only holds
for simple partition functions ZA, but also for vertex-weighted and parity-distinguishing par-
tition functions.

Preliminaries

Let A ∈ R
m×n
A

be an (m × n)-matrix. The entries of A are denoted by Ai,j . The ith
row of A is denoted by Ai,∗, and the jth column by A∗,j . By abs(A) we denote the matrix
obtained from A by taking the absolute value of each entry in A.

Let Im be the m×m identity matrix and let Im;Λ be the m×m matrix that is all zero
except that Ij,j = 1 for j ∈ Λ.

The Hadamard product C of two m × n matrices A and B, written C = A ◦ B, is the
m× n component-wise product in which Ci,j = Ai,jBi,j. −A denotes the Hadamard product
of A and the matrix in which every entry is −1.

We write 〈u, v〉 to denote the inner product (or dot product) of two vectors in R
n
A
.

Recall that the tensor product (or Kronecker product) of an r× s matrix B and an t× u

matrix C is an rt × su matrix B ⊗ C. For k ∈ [r], i ∈ [t], ℓ ∈ [s] and j ∈ [u], we have
(B ⊗C)(k−1)t+i,(ℓ−1)u+j = Bk,ℓCi,j. It is sometimes useful to think of the product in terms of
rs “blocks” or “tiles” of size t× u.

B ⊗ C =







B11C . . . B1sC
...

. . .
...

Br1C . . . BrsC







For index sets I ⊆ [m], J ⊆ [n], we let AI,J be the (|I|×|J |)-submatrix with entries Ai,j for
i ∈ I, j ∈ J . The matrix A is indecomposable if there are no index sets I ⊆ [m], J ⊆ [n] such
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that (I, J) 6= (∅, ∅), (I, J) 6= ([m], [n]) and Ai,j = 0 for all (i, j) ∈
(

([m]\I)×J
)

∪
(

I×([n]\J)
)

.
Note that, in particular, an indecomposable matrix has at least one nonzero entry. The
blocks of a matrix are the maximal indecomposable submatrices. For every symmetric matrix
A ∈ R

n×n we can define a graph G with vertex set [n] and edge set
{

{i, j}
∣

∣ Ai,j 6= 0
}

. We
call the matrix A bipartite if the graph G is bipartite. We call A connected if the graph G

is connected. The connected components of A are the maximal submatrices AC,C such that
G[C], the subgraph of G induced by C ⊆ [n], is a connected component. If the connected
component G[C] is not bipartite then AC,C is a block of A. If the connected component G[C]

is bipartite and contains an edge then AC,C has the form

(

0 B

BT 0

)

, where B is a block of

A. Furthermore, all blocks of A arise from connected components in this way.
For two Counting Problems f and g, we write f ≤ g if there is a polynomial time Turing

reduction from f to g. If f ≤ g and g ≤ f holds, we write f ≡ g. For a symmetric matrix
A and diagonal matrices D,O of the same size, EVAL(A,D,O) (EVAL(A,D), EVAL(A))
denotes the problem of computing ZA,D,O(G) (ZA,D(G), ZA(G), respectively) for an input
graph G (which need not be a simple graph - it may have loops and/or multi-edges).

2. Hadamard matrices

The main focus of this section is to prove Theorem 2.2 below which is a strengthened
version of Theorem 1.2. Suppose that H is an n × n Hadamard matrix and that ΛR and
ΛC are subsets of [n]. It will be useful to work with the bipartisation M,Λ of H, ΛR and
ΛC which we define as follows. Let m = 2n and let M be the m ×m matrix defined by the
following equations for i, j ∈ [n]: Mi,j = 0, Mi,n+j = Hi,j, Mn+i,j = Hj,i, and Mn+i,n+j = 0.
The matrix M can be broken into four “tiles” as follows.

M =

(

0 H

HT 0

)

.

Let Λ = ΛR ∪ {n + j | j ∈ ΛC}. Note that the matrix Im;Λ can be decomposed naturally in
terms of the tiles In;ΛR and In;ΛC .

Im;Λ =

(

In;ΛR 0
0 In;ΛC

)

.

We identify a set of conditions on H, ΛR and ΛC that determine whether or not the prob-
lem EVAL(M, Im, Im;Λ) can be computed in polynomial time. We will see how this implies
Theorem 1.2.

The Group Condition. For an n× n matrix H and a row index l ∈ [n], let

G(H, l) := {Hi,∗ ◦Hl,∗ | i ∈ [n]} ∪ {−Hi,∗ ◦Hl,∗ | i ∈ [n]} .

The group condition for H is:

(GC) For all l ∈ [n], both G(H, l) = G(H, 1) and G(HT , l) = G(HT , 1).

The group condition gets its name from the fact that the condition implies that G(H, l)
is an Abelian group . As all elements of this group have order 2, the group condition gives us
some information about the order of such matrices:

Lemma 2.1. Let H be an n × n Hadamard matrix. If H satisfies (GC) then n = 2k for
some integer k.



PARTITION FUNCTIONS WITH MIXED SIGNS 499

The Representability Conditions. We describe Hadamard matrices H satisfying (GC) by F2-
polynomials. By Lemma 2.1 these matrices have order n = 2k. We extend our notion of
“symmetric representation”: Let ρR : F

k
2 → [n] and ρC : F

k
2 → [n] be index mappings (i.e.

bijective mappings) and X = (X1, . . . ,Xk) and Y = (Y1, . . . , Yk). A polynomial h(X,Y ) over
F2 represents H with respect to ρR and ρC if for all x,y ∈ F

k
2 it holds that

h(x,y) = 1 ⇐⇒ HρR(x),ρC(y) = −1.

So a symmetric representation is just a representation with ρR = ρC . We say that the
set ΛR is linear with respect to ρR if there is a linear subvectorspace LR ⊆ F

k
2 a such that

ρR(LR) = ΛR. Note that, if ΛR is linear, then |ΛR| = 2l for some l ≤ k. We may therefore
define a coordinatisation of ΛR (with respect to ρR) as a linear map φR : F

l
2 → F

k
2 such that

φR(Fl
2) = LR, that is ΛR is just the image of the concatenated mapping ρR ◦ φR. We define

the notion of linearity of ΛC with respect to ρC and the coordinatisation of ΛC with respect

to ρC similarly. For a permutation π ∈ Sk we use the shorthand Xπ · Y :=
⊕k

i=1 Xπ(i) · Yi.
The following conditions stipulate the representability (R) of H by F2-polynomials, the

linearity (L) of the sets ΛR and ΛC , and the appropriate degree restrictions on the associated
polynomials (D).

(R) There are index mappings ρR : F
k
2 → [n] and ρC : F

k
2 → [n] and a permutation π ∈ Sk

such that (w.r.t. ρR and ρC) the matrix H is represented by a polynomial of the form

h(X,Y ) = Xπ · Y ⊕ gR(X)⊕ gC(Y ). (2.1)

Moreover, if ΛR is non-empty, then ρR(0) ∈ ΛR. Similarly, if ΛC is non-empty, then
ρC(0) ∈ ΛC .

Finally, if H is symmetric and ΛR = ΛC , then gR = gC and ρR = ρC .

(L) ΛR and ΛC are linear with respect to ρR and ρC respectively.

(D) Either ΛR is empty or there is a coordinatisation φR of ΛR w.r.t ρR such that the
polynomial gR ◦ φR has degree at most 2. Similarly, either ΛC is empty or there is a
coordinatisation φC of ΛC w.r.t ρC such that the polynomial gC ◦ φC has degree at
most 2. Finally, if H is symmetric and ΛR = ΛC is nonempty then φR = φC .

Actually, it turns out that condition (D) is invariant under the choice of the coordinatisations
φR, φC . However, the conditions are not invariant under the choice of the representation
ρR, ρC , and this is a major source of technical problems.

Before we can apply the conditions (R), (L) and (D) we deal with one technical issue.
Let H be an n × n Hadamard matrix and let ΛR,ΛC ⊆ [n] be subsets of indices. Let M,Λ
be the bipartisation of H, ΛR and ΛC . We say that H is positive for ΛR and ΛC if there
is an entry Hi,j = +1 such that (1) i ∈ ΛR or ΛR = ∅, (2) j ∈ ΛC or ΛC = ∅, and (3)
If H is symmetric and ΛR = ΛC then i = j. Otherwise, note that −H is positive for ΛR

and ΛC . Since ZM,Im,Im;Λ
(G) = (−1)|E(G)|Z−M,Im,Im;Λ

(G), the problems EVAL(M, Im, Im;Λ)
and EVAL(−M, Im, Im;Λ) have equivalent complexity, so we lose no generality by restricting
attention to the positive case, which is helpful for a technical reason.

Theorem 2.2. Let H be an n×n Hadamard matrix and let ΛR,ΛC ⊆ [n] be subsets of indices.
Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. If H is positive for ΛR and ΛC

then EVAL(M, Im, Im;Λ) is polynomial-time computable if, and only if, H ΛR and ΛC satisfy
the group condition (GC) and conditions (R), (L), and (D). Otherwise EVAL(M, Im, Im;Λ)

is #P-hard. If H is not positive for ΛR and ΛC then EVAL(M, Im, Im;Λ) is polynomial-time
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computable if, and only if, −H ΛR and ΛC satisfy the group condition (GC) and condi-
tions (R), (L), and (D). Otherwise EVAL(M, Im, Im;Λ) is #P-hard. There is a polynomial-

time algorithm that takes input H, ΛR and ΛC and decides whether EVAL(M, Im, Im;Λ) is
polynomial-time computable or #P-hard.

The theorem is proved using a sequence of lemmas.

Lemma 2.3 (Group Condition Lemma). Let H be an n × n Hadamard matrix and let
ΛR,ΛC ⊆ [n] be subsets of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and
let m = 2n. If H does not satisfy (GC) then EVAL(M, Im, Im;Λ) is #P-hard. There is a
polynomial-time algorithm that takes determines whether H satisfies (GC).

Proof sketch. For any integer p and a symmetric non-negative matrix C [p], which depends
upon H, the proof uses gadgetry to transform an input to EVAL(C [p]) into an input to
EVAL(M, Im, Im;Λ). The fact that H does not satisfy (GC) is used to show that, as long as p

is sufficiently large with respect to M , then C [p] has a block of rank greater than one. By a
result of Bulatov and Grohe, EVAL(C [p]) is #P-hard, so EVAL(M, Im, Im;Λ) is #P-hard.

Lemma 2.4 (Polynomial Representation Lemma). Let H be an n×n Hadamard matrix and
ΛR,ΛC ⊆ [n] subsets of indices. Suppose that H satisfies (GC) and that H is positive for ΛR

and ΛC . Then the Representability Condition (R) is satisfied. There is a polynomial-time
algorithm that computes the representation.

Proof sketch. The representation is constructed inductively. First, permutations are used to
transform H into a normalised matrix Ĥ, that is, a Hadamard matrix Ĥ whose first row
and column consist entirely of +1s, which still satisfies (GC). We then show that there is

a permutation of Ĥ which can be expressed as the tensor product of a simple Hadamard
matrix (either H2 or H4) and a smaller normalised symmetric Hadamard matrix H ′. By
induction, we construct a representation for H ′ and use this to construct a representation
for the normalised matrix Ĥ of the form Xπ · Y for a permutation π ∈ Sk. We use this to
construct a representation for H.

Lemma 2.5 (Linearity Lemma). Let H be an n × n Hadamard matrix and ΛR,ΛC ⊆ [n]
subsets of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. Suppose
that (GC) and (R) are satisfied. Then the problem EVAL(M, Im, Im;Λ) is #P-hard unless the
Linearity condition (L) holds. There is a polynomial-time algorithm that determines whether
(L) holds.

Proof sketch. For a symmetric non-negative matrix C, which depends upon H, the proof uses
gadgetry to transform an input to EVAL(C, Im, Im;Λ) to an input of EVAL(M, Im, Im;Λ). By

(R), there are bijective index mappings ρR : F
k
2 → [n] and ρC : F

k
2 → [n] and a permutation

π ∈ Sk such that (w.r.t. ρR and ρC) the matrix H is represented by a polynomial of the
appropriate form. Let τR be the inverse of ρR and τC be the inverse of ρC . Let LC = τC(ΛC)
and LR = τR(ΛR). We show that either EVAL(C, Im, Im;Λ) is #P-hard or (L) is satisfied. In
particular, the assumption that EVAL(C, Im, Im;Λ) is not #P-hard means that its blocks all

have rank 1 by the result of Bulatov and Grohe. We use this fact to show that LR and LC

are linear subspaces of F
k
2. To show that LR is a linear space of F

k
2, we use LR to construct

an appropriate linear subspace and compare Fourier coefficients to see that it is in fact LR

itself.
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Lemma 2.6 (Degree Lemma). Let H be an n×n Hadamard matrix and ΛR,ΛC ⊆ [n] subsets
of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. Suppose that
(GC),(R) and (L) are satisfied. Then EVAL(M, Im, Im;Λ) is #P-hard unless the Degree
Condition (D) holds. There is a polynomial-time algorithm that determines whether (D)
holds.

Proof sketch. For any (even) integer p and a symmetric non-negative matrix C [p], which
depends upon H, the proof uses gadgetry to transform an input to EVAL(C [p]) into an input
to EVAL(M, Im, Im;Λ). Using the representation of H, a coordinatisation φR with respect to

ΛR, and a coordinatisation φC with respect to ΛC , some of the entries C
[p]
a,b of the matrix C [p]

may be expressed as sums, over elements in F
ℓ
2, for some ℓ, of appropriate powers of −1. We

study properties of polynomials g(X1, . . . ,Xk) ∈ F2[X1, . . . ,Xk], discovering that the number
of roots of a certain polynomial gα,β,γ(X1, . . . ,Xk), which is derived from g(X1, . . . ,Xk),
depends upon the degree of g. From this we can show that if (D) does not hold then there

is an even p such that EVAL(C [p]) is #P-hard.

Proof of Theorem 2.2. By the equivalence of the problems EVAL(M, Im, Im;Λ) and

EVAL(−M, Im, Im;Λ) we can assume that H is positive for ΛR and ΛC . The hardness part
follows directly from the Lemmas above. We shall give the proof for the tractability part.
Given H, ΛR and ΛC satisfying (GC), (R), (L) and (D), we shall show how to compute
ZM,Im,Im;Λ

(G) for an input graph G in polynomial time.
Note first that ZM,Im,Im;Λ

(G) = 0 unless G is bipartite. If G has connected components
G1, . . . Gc, then

ZM,Im,Im;Λ
(G) =

c
∏

i=1

ZM,Im,Im;Λ
(Gi).

Therefore, it suffices to give the proof for connected bipartite graphs. Let G = (V,E) be such
a graph with vertex bipartition U ∪̇W = V . Let Vo ⊆ V be the set of odd-degree vertices in
G and let Uo = W ∩ Vo and Wo = W ∩ Vo be the corresponding subsets of U and W . Let
Ue = U \ Uo and We = W \Wo. We have

ZM,Im,Im;Λ
(G) =

∑

ξ:V→[m]

∏

{u,w}∈E

Mξ(u),ξ(w)

∏

v∈Vo

(Im;Λ)ξ(v),ξ(v) =
∑

ξ:V→[m]
ξ(Vo)⊆Λ

∏

{u,w}∈E

Mξ(u),ξ(w).

As G is bipartite and connected this sum splits into ZM,Im,Im;Λ
(G) = Z→ + Z← for values

Z→ =
∑

ξ:U→[n]
ξ(Uo)⊆ΛR

∑

ζ:W→[n]
ζ(Wo)⊆ΛC

∏

{u,w}∈E
u∈U

Hξ(u),ζ(w) and Z← =
∑

ξ:U→[n]
ξ(Uo)⊆ΛC

∑

ζ:W→[n]
ζ(Wo)⊆ΛR

∏

{u,w}∈E
u∈U

Hζ(w),ξ(u)

We will show how to compute Z→. The computation of the value Z← is similar.
Fix configurations ξ : U → [n] and ζ : W → [n] and let ρR, ρC be the index mappings and

h the F2-polynomial representing H as given in condition (R). Let τR be the inverse of ρR

and let τC be the inverse of ρC . Let LR = τR(ΛR) and LC = τC(ΛC). Then ξ and ζ induce
a configuration ς : V → F

k
2 defined by

ς(v) :=

{

τR(ξ(v)) , if v ∈ U

τC(ζ(v)) , if v ∈ W
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which implies, for all u ∈ U,w ∈ W that h(ς(u), ς(w)) = 1 iff Hξ(u),ζ(w) = −1. Let φR and φC

be coordinatisations of ΛR and ΛC w.r.t. ρR and ρC satisfying (L) and (D). We can simplify

Z→ =
∑

ξ:U→[n]
ξ(Uo)⊆ΛR

∑

ζ:W→[n]
ζ(Wo)⊆ΛC

∏

{u,w}∈E
u∈U

(−1)h(τR(ξ(u)),τC(ζ(w)))

=
∑

ς:V→Fk
2

ς(Uo)⊆LR

ς(Wo)⊆LC

(−1)
L

{u,w}∈E:u∈U h(ς(u),ς(w))

Define, for a ∈ F2, sets

sa :=

∣

∣

∣

∣

∣

∣

∣

∣















ς : V → F
k
2 | ς(Uo) ⊆ LR, ς(Wo) ⊆ LC ,

⊕

{u,w}∈E
u∈U

h(ς(u), ς(w)) = a















∣

∣

∣

∣

∣

∣

∣

∣

. (2.2)

Then Z→ = s0− s1. Therefore, it remains to show how to compute the values sa. Define,
for each v ∈ V , a tuple Xv = (Xv

1 , . . . ,Xv
k ) and let hG be the F2-polynomial

hG :=
⊕

{u,w}∈E
u∈U

h(Xu,Xw) =
⊕

{u,w}∈E
u∈U

(Xu)π ·X
w ⊕

⊕

u∈Uo

gR(Xu)⊕
⊕

w∈Wo

gC(Xw). (2.3)

Here the second equality follows from the definition of the polynomial h given in condition (R)
and the fact that the terms gR(Xu) and gC(Xw) in the definition of h appear exactly deg(u)
and deg(w) many times in hG. Therefore, these terms cancel for all even degree vertices.

Let var(hG) denote the set of variables in hG and for mappings χ : var(hG) → F2 we use
the expression χ(Xv) := (χ(Xv

1 ), . . . , χ(Xv
k )) as a shorthand and define the F2-sum hG(χ) :=

⊕

{u,w}∈E:u∈U h(χ(Xu), χ(Xw)). We find that sa can be expressed by

sa =

∣

∣

∣

∣

{

χ : var(hG) → F2 |
χ(Xu) ∈ LR for all u ∈ Uo,

χ(Xw) ∈ LC for all w ∈ Wo,
h(χ) = a)

}∣

∣

∣

∣

(2.4)

By equation (2.4) we are interested only in those assignments χ of the variables of hG

which satisfy χ(Xu) ∈ LR and χ(Xw) ∈ LC for all u ∈ Uo and w ∈ Wo. With |ΛR| = 2ℓR

and

|ΛC | = 2ℓC

for some appropriate ℓR, ℓC , we introduce variable vectors Y u = (Y u
1 , . . . , Y u

ℓR) and
Zw = (Zw

1 , . . . , Zw
ℓC ) for all u ∈ Uo and w ∈ Wo. If u ∈ Uo or w ∈ Wo then we can express the

term (Xu)π ·X
w in hG in terms of these new variables. In particular, let

h′′G =
⊕

{u,w}∈E
u∈Uo,w∈Wo

(φR(Y u))π · φ
C(Zw)⊕

⊕

{u,w}∈E
u∈Ue,w∈We

(Xu)π ·X
w

⊕
⊕

{u,w}∈E
u∈Ue,w∈Wo

(Xu)π · φ
C(Zw)⊕

⊕

{u,w}∈E
u∈Uo,w∈We

(φR(Y u))π ·X
w.

Let
h′G = h′′G ⊕

⊕

u∈Uo

gR(φR(Y u))⊕
⊕

w∈Wo

gC(φC(Zw)) (2.5)

We therefore have

sa =
∣

∣

{

χ : var(h′G) → F2 | h
′
G(χ) = a)

}∣

∣ . (2.6)
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By condition (D), the polynomials gR ◦ φR and gC ◦ φC are of degree at most 2 and
therefore h′G is a polynomial of degree at most 2. Furthermore, we have expressed sa as the
number of solutions to a polynomial equation over F2. Therefore, the proof now follows by
the following well-known fact.

Fact 2.7. The number of solutions to polynomial equations of degree at most 2 over F2 can
be computed in polynomial time.

This is a direct consequence of Theorems 6.30 and 6.32 in [15] (see also [9]).

3. The General Case

In this section we will prove Theorem 1.1. Before we can give the proof some further
results have to be derived, which then enable us to extend Theorems 1.2 and 2.2. It will be
convenient to focus on connected components. This is expressed by the following Lemma.

Lemma 3.1. Let A be a symmetric matrix with entries in RA and let A1, . . . , Ac denote its
components. Then the following holds

(1) If EVAL(Ai) is #P-hard for some i ∈ [c] then EVAL(A) is #P-hard.
(2) If EVAL(Ai) is PTIME computable for all i ∈ [c] then EVAL(A) is PTIME com-

putable.

Recall that for each connected symmetric matrix A there is a block B such that either

A = B or, up to permutation of the rows and columns, A =

(

0 B

BT 0

)

. We call B the

block underlying A. For such connected A we furthermore see that the evaluation problem is
either #P-hard or we can reduce it to the evaluation problem on bipartisations of Hadamard
matrices.

Lemma 3.2. Suppose that A is a symmetric connected matrix.
Then either EVAL(A) is #P-hard or the following holds.

(1) If A is not bipartite there is a symmetric r×r Hadamard matrix H and a set ΛR ⊆ [r]
such that

EVAL(A) ≡ EVAL(H, Ir, Ir;ΛR).

(2) If A is bipartite then there is an r × r Hadamard matrix H, sets ΛR,ΛC ⊆ [r] and a
bipartisation M,Λ of H,ΛR and ΛC such that

EVAL(A) ≡ EVAL(M, I2r, I2r;Λ).

Furthermore it can be decided in time polynomial in the size of A which of the three
alternatives (#P-hardness, (1), or (2)) holds.

We are now able to prove the main Theorem.

Proof of Theorem 1.1. Given a symmetric matrix A ∈ R
m×m
A

. By Lemma 3.1 we may assume
that the matrix A is connected. By Lemma 3.2, Theorem 2.2 the problem EVAL(A) is either
polynomial time computable or #P-hard. The existence of a polynomial time algorithm for
deciding which of the two possibilities holds, given a matrix A, follows directly by these
results.
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Abstract. Here we prove an asymptotically optimal lower bound on the information
complexity of the k-party disjointness function with the unique intersection promise, an
important special case of the well known disjointness problem, and the ANDk-function in
the number in the hand model. Our Ω(n/k) bound for disjointness improves on an earlier
Ω(n/(k log k)) bound by Chakrabarti et al. (2003), who obtained an asymptotically tight
lower bound for one-way protocols, but failed to do so for the general case. Our result
eliminates both the gap between the upper and the lower bound for unrestricted protocols
and the gap between the lower bounds for one-way protocols and unrestricted protocols.

1. Introduction

Primarily, communication complexity, introduced by Yao [10], deals with the amount
of communication that is needed in distributed computation, but apart from distributed
computation, nowadays communication complexity has found applications in virtually all
fields of complexity theory. The book by Kushilevitz and Nisan [9] gives a comprehensive
introduction to communication complexity and its applications.

Suppose that k players, each of them knowing exactly one argument of a function
f(x1, . . . , xk) with k arguments, want to evaluate the function for the input that is dis-
tributed among them. Clearly, to succeed at this task the players need to communicate.
Here we consider the case that the players communicate by writing to a blackboard that
is shared by all players. The rules that determine who writes which message to the black-
board are usually called a protocol. The protocol terminates if the value of the function
can be inferred from the contents of the blackboard, the so-called transcript of the protocol.
Then the communication complexity of the function is the minimum number of bits that
the players need to write to the blackboard in the worst case to jointly compute the result.
This setting is usually called the number in the hand model since each part of the input is
exclusively known to a single player who figuratively hides the input in his hand. In the
randomized version of this model each player has access to a private source of unbiased
independent random bits and his actions may depend on his input and his random bits.
For a randomized ε-error protocol the output of the protocol may be different from the value

Key words and phrases: computational complexity, communication complexity.
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of the function f with probability at most ε. The ε-error randomized communication com-
plexity of a function is defined in the obvious way. A formal definition of k-party protocols
can be found in [9]. Note that there are also other models of multi-party communication,
but these models are not the topic of this paper.

In recent publications [5, 2, 3, 4] lower bounds on the communication complexity of
functions have been obtained by using information theoretical methods. In this context
communication complexity is supplemented by an information theoretical counterpart, the
information complexity of a function. Roughly, the information complexity of a function f is
the minimal amount of information that the transcript of a protocol for f must reveal about
the input. Besides being a lower bound for the communication complexity, information
complexity has additional nice properties with respect to so-called direct sum problems.

1.1. Our Result

In this paper we will prove an asymptotically optimal lower bound on the communi-
cation complexity of the multi-party set disjointness problem with the unique intersection
promise.

Definition 1.1. In the k-party set disjointness problem each of the players is given the
characteristic vector of a subset of an n-element set. It is promised that the subsets are
either pairwise disjoint or that there is a single element that is contained in all subsets and
that the subsets are disjoint otherwise. The players have to distinguish these two cases, the
output of a protocol for set disjointness should be 0 in the first case and 1 in the second
case. If the promise is broken, then the players may give an arbitrary answer.

Here we will prove the following result about the randomized communication complexity
of the multi-party set disjointness problem in the number in the hand model.

Theorem 1.2. For every sufficiently small constant ε > 0 the randomized ε-error com-

munication complexity of the k-party set disjointness problem with the unique intersection

promise is bounded from below by Ω(n/k).

By the upper bound shown in [4] this result is asymptotically optimal with respect
to the number of players k and the size of the inputs n. An important application of
this problem is the proof of a lower bound for the memory requirements of certain data
stream algorithms [1]. Our improvement of the lower bound for disjointness does not have
a significant impact on this application. But we think that the disjointness problem is
interesting and important on its own since it is a well-known basic problem in communication
complexity theory [1, 3, 4, 9]. Up to now the best known lower bound was Ω(n/(k log k))
by Chakrabarti, Khot, and Sun [4], who also proved an asymptotically optimal lower bound
for one-way protocols. This result left a gap both between the upper and the lower bound
and between the lower bounds for one-way protocols and unrestricted protocols. Our result
closes these gaps.

Like the earlier results, our lower bound is based on an information theoretical approach.
The main ingredient of this approach is a lower bound on the information complexity of
the ANDk-function, the Boolean conjunction of k bits. Since Theorem 1.2 will be a simple
corollary of this result, and more importantly, since ANDk is a basic building block of
any computation, the lower bound on the information complexity of ANDk is the main
result of this paper. We postpone the precise statement of this result to Theorem 3.2 in
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Section 3 because some preparing definitions are needed beforehand. But we stress here
that our result also closes the gap between the upper and lower bound on the conditional
information complexity of ANDk for unrestricted protocols and the gap between the lower
bounds on the information complexity of ANDk for one-way protocols and unrestricted
protocols that was left open in [4].

1.2. Related Work

The general disjointness problem without the unique intersection promise has a long
history in communication complexity theory. Here we focus only on recent results for the
multi-party set disjointness problem with the unique intersection promise, and especially
on lower bounds that rely on information complexity arguments. For older results we refer
the reader to the book by Kushilevitz and Nisan [9] and the references therein.

Alon, Matias, and Szegedy [1] proved an Ω(n/k4) lower bound for multi-party set
disjointness and applied this bound to prove lower bounds for the memory requirements of
data stream algorithms. Bar-Yossef, Jayram, Kumar, and Sivakumar [3] improved this to a
lower bound of Ω(n/k2). They introduced the direct sum approach on which later results,
including our result, are based and proved that the information complexity of ANDk is
bounded from below by Ω(1/k2). Chakrabarti, Khot, and Sun [4] improved the lower
bound for the information complexity of ANDk to Ω(1/(k log k)) and thereby improved
the lower bound for multi-party set disjointness to Ω(n/(k log k)). They also proved an
asymptotically optimal lower bound for one-way protocols, a restricted model in which the
players communicate in a predetermined order. Our result improves on these results, but
furthermore we think that our proof technique is a useful contribution to the framework for
which Bar-Yossef et al. [3] coined the term “information statistics”. Bar-Yossef et al. use this
term for the combination of information theory and other statistical metrics on probability
spaces. We use the direct sum approach from [3], but instead of the Hellinger distance that
is used in [3] we use the Kullback Leibler distance. Since the Kullback Leibler distance
is closely related to mutual information, we do not loose precision in the transition from
information theory to statistical distance measures. By this, we are able to prove sharper
bounds. Like Chakrabarti et al. [4], we take a closer look at the analytical properties of the
functions that are involved. Our improvements on this result are also due to the fact that
our Kullback Leibler distance based arguments are very close to the information theory
domain.

2. Preliminaries

2.1. Notation

We use lower case letters for constants and variables and upper case letters for random
variables. If the random variables X and Y have the same distribution, we briefly write
X ∼ Y . For vector-valued variables we use a boldface font. For example, X = (X1, . . . ,Xk)
is a random vector whose components are the random variables Xi for i = 1, . . . , k. In this
case let X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xk) denote the vector X without the ith compo-
nent. A boldface zero 0 and boldface one 1 denote the all-zero vector and all-one vector of
appropriate size, respectively. Thus X−i = 0 says that Xj = 0 for all j ∈ {1, . . . , k} − {i}.
For sums like

∑n
i=0 ai we sometimes do not explicitly specify the bounds of summation and
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just write
∑

i ai. In this case the sum is taken over the set of all values of i for which ai is
meaningful. This set must be derived from context. For example, the sum

∑

v f(Pr{X =v})
should be taken over all values v in the range of X. All logarithms, denoted by log, are
with respect to base 2.

2.2. Information Theory

Here we can merely define our notation for the basic quantities from information theory
and cite some results that are needed in this paper. For a proper introduction to informa-
tion theory we refer the reader to the book by Cover and Thomas [6]. In the following let
h2 denote the binary entropy function h2(p) = −p log p − (1 − p) log (1 − p) for p ∈ [0, 1].
Let X, Y , and Z be random variables and let E be an event, for example the event Y = y.
Then H(X) denotes the entropy of the random variable X and H(X|E) denotes the entropy
of X with respect to the conditional distribution of X given that the event E occurred.
If there are several events separated by commas, then we analogously use the conditional
distribution of X given that all of the events occurred. Let H(X|Y ) denote the conditional
entropy of X given Y . Recall that H(X|Y ) =

∑

y Pr{Y = y}H(X|Y = y). If we condition
on several variables, we separate the variables by commas. If we mix events and vari-
ables in the condition, we first list the variables, after that we list the events, for example
H(X|Y,Z = z). The mutual information of X and Y is I(X : Y ) = H(X) − H(X|Y ) and
I(X :Y |E) = H(X|E) − H(X|Y,E) is the mutual information of X and Y with respect to
the conditional distribution of X and Y given that the event E occurred. The conditional
mutual information of X and Y given Z is I(X :Y |Z) = H(X|Z) −H(X|Y,Z). Recall that
I(X :Y |Z) =

∑

z Pr{Z =z} I(X :Y |Z =z).
Suppose that the random variables X and Y have the same range. Then the Kull-

back Leibler distance of their distributions is D(X,Y ) =
∑

v Pr{X = v} log Pr{X=v}
Pr{Y=v} . If

Pr{X =v} = 0 in the above sum, then the corresponding term is 0 independently of the
value of Pr{Y =v}, by continuity arguments. If Pr{X =v} 6= 0 and Pr{Y =v} = 0 for some
v, then the whole sum is defined to be equal to ∞. If E is an event, then (X|E) denotes the
conditional distribution of X given that the event E occurred, for example D((X|E),X) is
the Kullback Leibler distance of the conditional distribution of X given that the event E
occurred and the distribution of X. Recall that the mutual information of X and Y is the
Kullback Leibler distance of the joint distribution (X,Y ) and the product distribution of
the marginal distributions:

I(X :Y ) =
∑

x,y

Pr{X =x, Y =y} · log
Pr{X =x, Y =y}

Pr{X =x} · Pr{Y =y}
.

The following lemma is a useful tool for the proof of lower bounds on the Kullback Leibler
distance of distributions. A proof of the log sum inequality can be found in [6].

Lemma 2.1 (Log sum inequality). For nonnegative numbers ai and bi, where i = 1, . . . , n,

∑

i

ai log
ai

bi

≥

(

∑

i

ai

)

log

∑

i ai
∑

i bi

.

Suppose that the random variables X and Y have the same finite range R. Then the
total variation distance of their distributions is V(X,Y ) = 1

2

∑

v |Pr{X =v} − Pr{Y =v}|.
It is a well-known fact (see e.g. [7]) that V(X,Y ) = maxS⊆R |Pr{X ∈ S} − Pr{Y ∈ S}|.
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The following lemma by Kullback relates the Kullback Leibler distance of distributions to
their total variation distance.

Lemma 2.2 (Kullback [8]). Suppose that X and Y are random variables that have the same

finite range. Then D(X,Y ) ≥ 2 ·V(X,Y )2.

2.3. Information Complexity

The notion of the information cost of a protocol was introduced by Chakrabarti, Shi,
Wirth, and Yao [5]. The information cost of a randomized protocol is the mutual information
of the input and the transcript of the protocol. Then the information complexity of a
function can be defined in the canonical way. Here we will use the conditional information
complexity of a function, a refinement that was introduced by Bar-Yossef, Jayram, Kumar,
and Sivakumar [3].

Definition 2.3. Let B be a set, let f : Bk −→ {0, 1} be a function, and let X ∈ Bk and
D be random variables. Suppose that P is a randomized k-party protocol for f and that
M(X) is the transcript of P for the input X. Then the conditional information cost of P
with respect to X and D is defined by

icost(P ;X|D) = I(M(X) :X|D) .

The conditional ε-error information complexity ICε(f ;X|D) of f w.r.t. X and D is the
minimal conditional information cost of a communication protocol for f(X) where the
minimum is taken over all randomized ε-error protocols for f .

The information complexity of a function is a lower bound for the communication
complexity. A proof of the next theorem can be found in [3].

Theorem 2.4. Let B be a set, let f : Bk −→ {0, 1} be a function, and let X ∈ Bk and D be

random variables. Then the ε-error communication complexity of f is bounded from below

by ICε(f ;X|D).

2.4. The Direct Sum Paradigm

Information complexity has very nice properties with respect to direct sum problems.
In this section we summarize the approach of Bar-Yossef, Jayram, Kumar and Sivakumar [3]
using a slightly different terminology. We call a problem f a direct sum problem if it can
be decomposed into simpler problems of smaller size.

Definition 2.5. Let f : (Bn)k −→ {0, 1} be a function and let xi = (xi,1, . . . , xi,n) ∈ Bn

for i = 1, . . . , k. If there are functions g : {0, 1}n −→ {0, 1} and h : Bk −→ {0, 1} such that

f(x1, . . . ,xk) = g (h(x1,1, x2,1, . . . , xk,1) , . . . , h(x1,n, x2,n, . . . , xk,n) )

then the function f is called a g-h-direct sum.

Here the goal is to express a lower bound on the conditional information complexity
of f in terms of the conditional information complexity of the simpler function h and the
parameter n. In order for this approach to work, the joint distribution of the inputs of h
and the condition must have certain properties. As a first requirement, the condition must
partition the distribution of the inputs into product distributions.
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Definition 2.6. Let B be a set and let X = (X1, . . . ,Xk) ∈ Bk and D be random variables.
The variable D partitions X, if for every d in the support of D the conditional distribution
(X|D=d) is the product distribution of the distributions (Xi|D=d) for i = 1, . . . , k.

The function f can be decomposed into instances of the function h if the distribution
of the inputs of f satisfies our second requirement.

Definition 2.7. Let B be a set, let g : {0, 1}n −→ {0, 1} and h : Bk −→ {0, 1} be functions,
and let X ∈ Bk be a random variable. If for every i ∈ {1, . . . , n}, for every a ∈ Bk, and for
every x = (x1, . . . ,xn) ∈ (Bk)n such that xj ∈ support(X) for all j

g (h(x1), . . . , h(xi−1), h(a), h(xi+1), . . . , h(xn)) = h(a)

then the distribution of X is called collapsing for g and h.

If these two requirements are met, then the conditional information complexity of f can
be expressed in terms of the conditional information complexity of h and the parameter n.

Theorem 2.8 (Bar-Yossef et al. [3]). Suppose that f : (Bn)k −→ {0, 1} is a g-h-direct

sum and that X ∈ Bk and D are random variables such that the distribution of X is

collapsing for g and h and D partitions X. Let Y = (Y1, . . . ,Yk) ∈ (Bn)k and E ∈

support(D)n be random variables and let Y j
i and Ej denote the projection of Yi and E

to the jth coordinate, respectively. If the random variables Vj = ((Y j
1 , . . . , Y j

k ), Ej) for

j = 1, . . . , n are independent and Vj ∼ (X,D) for all j, then ICε(f ;Y|E) ≥ n·ICε(h;X|D).

This direct sum approach can be applied to the k-party set disjointness problem.

Observation 2.9. Let ANDℓ and ORℓ denote the Boolean conjunction and disjunction of
ℓ bits, respectively. Then the k-party set disjointness problem is a ORn-ANDk-direct sum.

Consequently, for the proof of Theorem 1.2 it is sufficient to prove a lower bound
on the conditional information complexity of ANDk for a distribution that satisfies the
requirements of Theorem 2.8 and, in addition, honors the unique intersection promise. A
distribution with these properties is defined in the following section. This approach was
already used in [3] and [4].

3. The Information Complexity of ANDk

For the following distribution of D and the input Z = (Z1, . . . , Zk) of ANDk the variable
D partitions Z and the distribution of Z is collapsing for ORn and ANDk. Additionally,
there is at most a single i such that Zi = 1.

Definition 3.1. From here on let Z = (Z1, . . . , Zk) ∈ {0, 1}k and D ∈ {1, . . . , k} be
random variables such that the joint distribution of Z and D has the following properties:
D is uniformly distributed in {1, . . . , k}. For all i ∈ {1, . . . , k} we have Pr{Zj =0|D= i} = 1
for j 6= i and Pr{Zi =0|D= i} = Pr{Zi =1|D= i} = 1

2 .

Now we can state the main result of this paper, an asymptotically optimal lower bound
on the information complexity of the ANDk-function for inputs that are distributed ac-
cording to the last definition.

Theorem 3.2. Let ε < 3
10

(

1−
√

1
2 log 4

3

)

be a constant. Then there is a constant c(ε) > 0

that does only depend on ε such that ICε(ANDk;Z|D) ≥ c(ε)/k.
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It is easy to see that icost(P ;Z|D) = 1/k for a trivial deterministic protocol P for
ANDk where each player in turn writes his input to the blackboard until the first 0 is
written. Therefore our lower bound is optimal. As we have seen, this result immediately
implies Theorem 1.2, the other main result of this paper. In the rest of the paper we will
outline the proof of Theorem 3.2.

3.1. Some Basic Observations

We start with some basic observations about the joint distribution of the inputs and
the transcript of a protocol for ANDk with independent, uniformly distributed inputs.

Definition 3.3. From now on, let P be a fixed randomized k-player protocol that computes
ANDk with error at most ε and for x ∈ {0, 1}k let M(x) denote the transcript of P for
the input x. Let X = (X1, . . . ,Xk) be a random variable that is uniformly distributed in
{0, 1}k and let T = M(X) denote the transcript of P for the the input X.

Note that the transcript M(x) does depend on x and the random inputs of the players.
Thus even for a fixed input x the transcript is a random variable whose value depends on
the random bits used in the protocol.

A randomized k-party protocol can be seen as a deterministic protocol in which the
ith player has two inputs: The input to the randomized protocol, in our case Xi, and as a
second input the random bits that are used by the ith player. Then the first observation
is a restatement of the fact that the set of the inputs (real inputs and random bits) that
correspond to a fixed transcript is a combinatorial rectangle (see [9] for a definition of
combinatorial rectangles).

Observation 3.4 ([3, 4]). Let x = (x1, . . . , xk) ∈ {0, 1}
k and let t be an element from the

support of T . Then Pr{X=x|T = t} =
∏

i Pr{Xi =xi|T = t}.

We omit the simple combinatorial proof of this observation because this basic prop-
erty of k-party protocols was already used in [3] and [4]. The following observation is an
immediate, but very useful consequence of the previous one.

Observation 3.5. Let x = (x1, . . . , xk) ∈ {0, 1}
k and let t be an element from the support

of T . Then Pr{Xi =xi|T = t,X−i =x−i} = Pr{Xi =xi|T = t} for all i ∈ {1, . . . , k}.

Proof. This observation follows immediately from Observation 3.4: By adding the equality
from Observation 3.4 for (x1, . . . , xi−1, 0, xi+1, . . . , xk) and (x1, . . . , xi−1, 1, xi+1, . . . , xk) we
obtain

Pr{X−i =x−i|T = t} =
∏

j 6=i

Pr{Xj =xj|T = t} .

Using this and Observation 3.4 verbatim yields

Pr{Xi =xi|T = t,X−i =x−i} =
Pr{Xi =xi,X−i =x−i|T = t}

Pr{X−i =x−i|T = t}

=

∏

j Pr{Xj =xj|T = t}
∏

j 6=i Pr{Xj =xj |T = t}
= Pr{Xi =xi|T = t} .
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The next observation relates the joint distribution of Zi and M(Z) given that D = i
to the joint distribution of Xi and T = M(X) given that X−i = 0. Combined with the
previous observations, this will be the basis for the proof of the main result.

Observation 3.6. Let i ∈ {1, . . . , k}. Then I(M(Z) :Zi|D= i) = I(T :Xi|X−i =0).

Proof. First observe that Pr{Z=v,M(Z) = t|D = i} = Pr{X=v, T = t|X−i =0} for every
v ∈ {0, 1}k and every t in the support of M(X) and M(Z). This follows from the fact
that the conditional distribution of X given that X−i = 0 is the same as the conditional
distribution of Z given that D= i, the fact that the random inputs of P are independent of
X and Z, and the fact that the transcript is a function of the inputs and the random inputs.
Then the claim of the lemma is an immediate consequence of the initial observation.

3.2. Main Idea of the Proof

Like the approach of Bar-Yossef et al. [3], our approach is based on the observation that
the distribution of the transcripts of a randomized protocol for ANDk with small error must
at least be very different for the inputs X = 0 and X = 1. The difference is expressed using
some appropriate metric on probability spaces. Then, by using Observations 3.4 and 3.5,
this result is decomposed into results about the distributions of (Xi,M(X)|X−i =0) which
are finally used to bound the conditional mutual information of Z and M(Z) given D by
using Observation 3.6. The result from [3] mainly uses the Hellinger distance (see [7]) to
carry out this very rough outline of the proof. We will stick to the rough outline, but our
result will use the Kullback Leibler distance instead of the Hellinger distance. Due to the
limited space in the STACS-proceedings we can only present proof-sketches of the technical
lemmas in this section. A version of this paper with full proofs can be found on the authors
homepage 1.

We will first decompose the Kullback Leibler distance of the distributions (T |X = 0)
and (T |X=1) into results about the joint distributions of Xi and T for i = 1, . . . , k. The
result will be expressed in terms of the following function.

Definition 3.7. From now on, let g(x) = x log x
1−x

.

Note that the left hand side of the equation in the following lemma is the Kullback
Leibler distance of (T |X=0) and (T |X=1) if S is the set of all possible transcripts.

Lemma 3.8. Let S be a subset of the set of all possible transcripts. Then

∑

t∈S

Pr{T = t|X=0}·log
Pr{T = t|X=0}

Pr{T = t|X=1}
= 2

∑

i

∑

t∈S

Pr{T = t|X−i =0}·g(Pr{Xi =0|T = t}) .

Proof Sketch. The proof of this lemma is mainly based on the fact that

Pr{T = t|X=0}

Pr{T = t|X=1}
=

Pr{X=0|T = t}

Pr{X=1|T = t}
.

Then Observation 3.4 can be applied to decompose the log-function into a sum. Finally, we
use that Pr{T = t|X=0} = 2Pr{T = t|X−i =0} · Pr{Xi =0|T = t} by Observation 3.5.

1http://ls2-www.cs.uni-dortmund.de/~gronemeier/
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Next, we will express a lower bound on I(M(Z) :Z|D) in terms of the following function
f and set B(α).

Definition 3.9. From now on, let f(x) = x log 2x + 1−x
2 log 2(1 − x).

Definition 3.10. Let B(α) denotes the set of all transcripts t such that Pr{Xi =0|T = t} < α
for all i ∈ {1, . . . , k}.

The role of the parameter α will become apparent later. The only property that is
needed for the proof of the following lemma is that α > 1/2.

Lemma 3.11. Let α > 1
2 be a constant. Then

I(M(Z) :Z|D) ≥
1

k

∑

i

∑

t∈B(α)

Pr{T = t|X−i =0} · f(Pr{Xi =0|T = t}) .

Proof Sketch. This lemma can be proved by using that f(x) = 1
2(f1(x) + f2(x)) where

f1(x) = x log 2x + (1− x) log 2(1− x) and f2(x) = x log 2x. It is sufficient to prove that the
lower bound holds for f1 and f2 instead of f . To this end one can show that

I(M(Z) :Z|D) =
1

k

∑

i

∑

t

Pr{T = t|X−i =0} · f1(Pr{Xi =0|T = t}) .

Then the bound for f1 is obvious since f1(x) is nonnegative for all x ∈ [0, 1]. The bound
for f2 use the fact that f1(x) = f2(x) + f2(1− x), that f2(x) ≥ 0 for x ∈ [1/2, 1], and that

∑

t

Pr{T = t|X−i =0} · f2(Pr{Xi =1|T = t})

is nonnegative.

The right hand sides of the equation in Lemma 3.8 and the inequality in Lemma 3.11
look very similar. In fact, if there was a positive constant c such that c · f(x) ≥ g(x) for
all x ∈ [0, 1], then for a complete proof of Theorem 3.2 it would be sufficient to show that
the Kullback Leibler distance of (T |X = 0) and (T |X = 1) is bounded from below by a
constant c(ε) if the error of the protocol P is bounded by ε. Unfortunately f(x) ≤ 1 for
x ∈ [0, 1] while g(x) is not bounded from above for x ∈ [0, 1]. So this naive first idea does
not work. But the function g(x) is bounded in every interval [0, β] where β < 1. The
following Lemma shows that we can easily bound f(x) from below in terms of g(x) if we
restrict x to an appropriate interval [0, β].

Lemma 3.12. There is a constant β > 1
2 such that 4 · f(x) ≥ g(x) for all x ∈ [0, β].

This lemma can probably be proved in many ways. By inspection and numeric compu-
tations it is easy to verify that it holds for β ≈ 0.829. Here it is more important to note that
our choice of the function f is one of the crucial points of our proof: The function g(x) is
negative for x ∈ [0, 1

2 ) and nonnegative and increasing for x ∈ [12 , 1]. Furthermore g(1
2 ) = 0

and in the interval [12 , 1] the slope of g(x) is bounded from below by a positive constant.
It will become clear in Lemma 3.14 that we have to lower bound f(x) in terms of g(x) for
x ≈ 1

2 + O( 1
k
) where k is the number of players. Recall that f(x) = 1

2 (f1(x) + f2(x)) where
f1(x) = x log 2x + (1− x) log 2(1− x) and f2(x) = x log 2x and that we prove Lemma 3.11
by lower bounding the mutual information of M(Z) and Z in terms of f1(x) and f2(x).
Thus f1(x) and f2(x) would be natural candidates for the function f(x). Unfortunately,
neither f1(x) nor f2(x) alone does work in our proof. The function f1(x) is nonnegative for
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x ∈ [0, 1], therefore f1(x) ≥ g(x) for x ∈ [0, 1
2 ], but the slope of f1(x) is too small in the

interval [12 , 1]. It turns out that f1(
1
2 + 1

k
) ≈ 1/k2. If we used the function f1(x) instead

of f(x) in our proof, we could only obtain an Ω(1/k2) lower bound for the information
complexity of ANDk. The function f2(x) does not suffer from this problem since the slope
of f2(x) in [12 , 1] is bounded from below by a constant. But here we have the problem that

f2(x) is too small for x ∈ [0, 1
2 ). For every constant c > 0 such that c · f(x) ≥ g(x) in the

interval x ∈ [12 , 1] we have g(x) > c · f(x) in the interval x ∈ [0, 1
2). Luckily, for the average

f(x) of f1(x) and f2(x) the good properties of the functions are preserved while the bad
properties “cancel out”. The bounded slope for x ∈ [12 , 1] of f(x) is inherited from f2(x).

The fact that f(x) is not to small for x ∈ [0, 1
2) is inherited from f1(x).

We can use the set B(α) in Lemma 3.11 and the set S in Lemma 3.8 to restrict t to the
transcripts that satisfy Pr{Xi = 0|T = t} ≤ β for all i ∈ {1, . . . , k}. Then, by our previous
observations, it is easy to lower bound f(Pr{Xi =0|T = t}) in terms of g(Pr{Xi =0|T = t}).

Definition 3.13. Let β be the constant from Lemma 3.12. recall that B(α) denotes the
the set of all transcripts t such that Pr{Xi =0|T = t} < α for all i ∈ {1, . . . , k}. Then B is
a shorthand notation for the set B(β).

Unfortunately, the restriction of t to the set S = B complicates the proof of a lower
bound for the left hand sum in Lemma 3.8 since we remove the largest terms from the sum.
For example, we will see in the proof of Corollary 3.17 that for zero-error protocols the set
B does only contain transcripts for the output 1. Therefore, by the zero-error property,
Pr{T ∈ B|X=0} = 0 for zero error protocols and the left hand sum in Lemma 3.8 is equal
to 0. Consequently, without further assumptions that do not hold in general it is impossible
to prove large lower bounds on the sum in Lemma 3.8 for the set S = B. However, the
next Lemma shows that we can lower bound the sum, if we assume that Pr{T ∈ B|X=0}
is sufficiently large.

Lemma 3.14. Suppose that Pr{T ∈ B|X=0} ≥ 3
4 and that the error ε of the protocol P

is bounded by ε < 3
10

(

1−
√

1
2 log 4

3

)

. Then

∑

t∈B

Pr{T = t|X=0}

Pr{T ∈ B|X=0}
· log

Pr{T = t|X=0}

Pr{T = t|X=1}
≥ min

{

log
3

2
, 2

(

1−
10

3
ε

)2

− log
4

3

}

> 0 .

Proof Sketch. For the proof of this lemma we consider two cases: If Pr{T ∈ B|X=1} < 1
2

then we can use the log sum inequality (Lemma 2.1) to lower bound the sum on the left
hand side. If Pr{T ∈ B|X=1} ≥ 1

2 then the error of the protocol P under the condition
that T ∈ B must be small both for the input X = 0 and the input X = 1. With this
assumption we can lower bound the left hand side using Lemma 2.2 since in this case the
total variation distance of (T |X=0, T ∈ B) and (T |X=1, T ∈ B) is large.

Note that, by Lemma 3.8 and the fact that the slope of g(x) is bounded from below by a
positive constant for x ∈ [1/2, 1], this lower bound can be met if Pr{Xi =0|T = t} = 1

2 +Θ( 1
k
)

for all i ∈ {1, . . . , k} and every t ∈ B.
By Lemma 3.14, under the condition that Pr{T ∈ B|X=0} ≥ 3

4 our initial naive plan
of bounding f in terms of g does work. The details of this idea are elaborated on in the
proof of Theorem 3.16. Next, we look at the case that Pr{T ∈ B|X=0} is small. It turns
out that this assumption alone already leads to a large lower bound on I(M(Z) :Z|D).
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Lemma 3.15. Let α be a constant subject to 1/2 < α ≤ 1. Then

I(M(Z) :Z|D) ≥
1

2k
· Pr{T /∈ B(α)|X=0} · (1− h2(α)).

Proof Sketch. The proof of this lemma is based on the fact that, by the definition of B(α),
under the condition that T = t /∈ B(α) the entropy of Xi is bounded by h2(α) < 1 for at
least one i.

Now all prerequisites for a full proof of Theorem 3.2 are in place. It is implied by the
following theorem because P was assumed to be an arbitrary ε-error protocol for ANDk.

Theorem 3.16. Let ε < 3
10

(

1−
√

1
2 log 4

3

)

be a constant. If the error of the protocol P

is bounded by ε, then there is a constant c(ε) > 0 that does only depend on ε such that

I(M(Z) :Z|D) ≥
c(ε)

k
.

Proof. Recall that B is the set of all transcripts t such that Pr{Xi =0|T = t} < β for all
i ∈ {1, . . . , k}, where β is the constant from Lemma 3.12. For the proof of the lemma we
will consider two cases.

For the first case, assume that Pr{T ∈ B|X = 0} ≤ 3
4 . In this case we can apply

Lemma 3.15 with α = β and we get

I(M(Z) :Z|D) ≥
1

2k
Pr{T /∈ B|X=0}(1 − h2(β)) ≥

1

8k
(1− h2(β)) .

Note that in this case the lower bound does not depend on ε and that, since β > 1/2, there
is a constant c1 > 0 such that the right hand side of the last inequality is bounded from
below by c1/k.

For the second case, assume that Pr{T ∈ B|X = 0} > 3
4 . In this case we first apply

Lemma 3.11 for α = β, thus B(α) = B, then Lemma 3.12, and finally Lemma 3.8 for the
subset S = B to get

I(M(Z) :Z|D) ≥
1

k

∑

i

∑

t∈B

Pr{T = t|X−i =0} · f(Pr{Xi =0|T = t})

≥
1

4k

∑

i

∑

t∈B

Pr{T = t|X−i =0} · g(Pr{Xi =0|T = t})

=
1

8k

∑

t∈B

Pr{T = t|X=0} · log
Pr{T = t|X=0}

Pr{T = t|X=1}
.

Then, by the assumption Pr{T ∈ B|X=0} > 3
4 , we can apply Lemma 3.14 to obtain

I(M(Z) :Z|D) ≥
1

8k
· Pr{T ∈ B|X=0} ·min

{

log
3

2
, 2

(

1−
10

3
ε

)2

− log
4

3

}

≥
3

32k
·min

{

log
3

2
, 2

(

1−
10

3
ε

)2

− log
4

3

}

.

For ε < 3
10

(

1−
√

1
2 log 4

3

)

the minimum in the last inequality is a positive constant that

does only depend on the constant ε. Hence, there is a constant c2(ε) > 0 that does only
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depend on the constant ε such that the right hand side is bounded from below by c2(ε)/k.
The claim of the Lemma follows from the two cases if we choose c(ε) = min{c1, c2(ε)}.

3.3. A Simple Lower Bound for Zero-Error Protocols

For zero-error protocols a lower bound can be proved by using only Lemma 3.15.

Corollary 3.17. For every randomized k-player zero-error protocol with input Z and tran-

script M(Z) the conditional information cost satisfies I(M(Z) :Z|D) ≥ 1/(2k).

Proof. Consider the transcript T of the protocol P for the input X. Then the corollary
follows immediately from Lemma 3.15 if we set α = 1: Recall that the output of the
protocol can be inferred from the transcript and let P (t) denote the output of the protocol
P for transcript t. Suppose that P (t) = 0. Then Pr{Xi = 0|T = t} = 1 for at least one i
since otherwise, by Observation 3.4, Pr{X = 1|T = t} > 0 and under the condition T = t
the output of P would be wrong with a nonzero probability. Clearly this is not possible
for zero-error protocols, hence Pr{T /∈ B(1)|P (T ) = 0} = 1. Under the condition X = 0

the output of P is 0 with probability 1, again by the zero-error property, therefore the last
observation implies that Pr{T /∈ B(1)|X=0} = 1 and obviously 1− h2(1) = 1.
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Abstract. We consider the problem of representing, in a compressed format, a bit-
vector S of m bits with n 1s, supporting the following operations, where b ∈ {0, 1}:

• rankb(S, i) returns the number of occurrences of bit b in the prefix S [1..i];
• selectb(S, i) returns the position of the ith occurrence of bit b in S.

Such a data structure is called fully indexable dictionary (fid) [Raman, Raman, and Rao,
2007], and is at least as powerful as predecessor data structures. Viewing S as a set
X = {x1, x2, . . . , xn} of n distinct integers drawn from a universe [m] = {1, . . . , m}, the
predecessor of integer y ∈ [m] in X is given by select1(S, rank1(S, y − 1)). fids have
many applications in succinct and compressed data structures, as they are often involved
in the construction of succinct representation for a variety of abstract data types.

Our focus is on space-efficient fids on the ram model with word size Θ(lg m) and
constant time for all operations, so that the time cost is independent of the input size.

Given the bitstring S to be encoded, having length m and containing n ones, the
minimal amount of information that needs to be stored is B(n, m) = ⌈log

`

m
n

´

⌉. The
state of the art in building a fid for S is given in [Pǎtraşcu, 2008] using B(m, n) +

O(m/((log m/t)t)) + O(m3/4) bits, to support the operations in O(t) time.
Here, we propose a parametric data structure exhibiting a time/space trade-off such

that, for any real constants 0 < δ ≤ 1/2, 0 < ε ≤ 1, and integer s > 0, it uses

B(n, m) + O
“

n1+δ + n
“ m

ns

”ε”

bits and performs all the operations in time O(sδ−1 + ε−1). The improvement is twofold:
our redundancy can be lowered parametrically and, fixing s = O(1), we get a constant-
time fid whose space is B(n, m) + O(mε/poly(n)) bits, for sufficiently large m. This is a
significant improvement compared to the previous bounds for the general case.
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1. Introduction

Data structures for dictionaries [3, 27, 34, 37], text indexing [5, 12, 22, 24, 31, 32], and
representing semi-structured data [11, 14, 15, 30, 37], often require the very space-efficient
representation of a bivector S of m bits with n 1s (and m − n 0s). Since there are

(m
n

)

possible choices of n 1s out of the m bits in S, a simple information-theoretic argument
shows that we need at least B(n,m) = ⌈log

(m
n

)

⌉ bits of space, in the worst case, to store S
in some compressed format. However, for the aforementioned applications, it is not enough
just to store the compressed S, as one would like to support the following operations on S,
for b ∈ {0,1}:

• rankb(S, i) returns the number of occurrences of bit b in the prefix S [1..i];
• selectb(S, i) returns the position of the ith occurrence of bit b in S.

Our focus will be on space-efficient data structures that support these operations ef-
ficiently, on the ram model with word size Θ(logm). The resulting data structure is
called a fully indexable dictionary (fid) [37] and is quite powerful. For example, S can
equally represent a set X = {x1, x2, . . . , xn} of n distinct integers drawn from a universe
[m] = {1, . . . ,m}, where S [xi] = 1, for 1 ≤ i ≤ n, while the remaining m− n bits of S are
0s. In this context, the classical problem of finding the predecessor in X of a given integer
y ∈ [m] (i.e. the greatest lower bound of y in X) can be solved with two fid queries on S by
select1(S, rank1(S, y− 1)). fids have also connections with coding theory, since they rep-
resent a sort of locally decodable source code for S [4]. They are at the heart of compressed
text indexing since they enable space to be squeezed down to the high-order entropy when
properly employed [20]. Finally, they are the building blocks for many complex low space
data structures [2, 9, 28, 29] that require O(1) lookup time, namely, their time complexity
is independent of the number of entries stored at the expense of using some extra space.

To support the rank and select operations in O(t) time, for some parameter t, it
appears to be necessary to use additional space, beyond the bound B(n,m) needed for rep-
resenting the bitstring S in compressed format. This extra space is termed the redundancy
R(n,m, t) of the data structure, and gives a total of B(n,m)+R(n,m, t) bits [13]. Although
the leading term B(n,m) is optimal from the information-theoretic point of view, a discrep-
ancy between theory and practice emerges when implementing fids for various applications
[6, 19, 21, 23, 33, 39]. In particular, the term B(n,m) is often of the same order as, if not
superseded by, the redundancy term R(n,m, t). For example, consider a constant-time fid

storing n = o(m/polylog(m)) integers from the universe [m]: here, B(n,m) is negligible
when compared to the best known bound of R(n,m, 1) = O(m/polylog(m)) [35].

Our goal is that of reducing the redundancy R(n,m, t) for the general case n ≤ m.
Although most of the previous work has generally focussed on the case t = O(1), and
m = n · polylog(n), the burgeoning range of applications (and their complexity) warrant a
much more thorough study of the function R(n,m, t).

There are some inherent limitations on how small can the redundancy R(n,m, t) be,
since fids are connected to data structures for the predecessor problem, and we can in-
herit the predecessor lower bounds regarding several time/space tradeoffs. The connection
between fids and the predecessor problem is well known [1, 23, 36, 37] and is further de-
veloped in this paper, going beyond the simple inheritance of lower bounds. A predecessor
data structure which gives access to the underlying data set is, informally, a way to support
half the operations natively: either select1 and rank1, or select0 and rank0. In fact, we
show that a data structure solving the predecessor problem can be turned into a fid and
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can also be made to store the data set using B(n,m)+O(n) bits, under certain assumptions
over the data structure.

Consequently, if we wish to understand the limitations in reducing the redundancy
R(n,m, t) of the space bounds for fids, we must briefly survey the state of the art for the
lower bounds involving the predecessor problem. The work in [36] shows a number of lower
bounds and matching upper bounds for the predecessor problem, using data structures
occupying at least Ω(n) words, from which we obtain, for example, that R(n,m, 1) can be

o(n) only when n = polylog(m) (a degenerate case) or m = n polylog(n). For m = nO(1),
the lower bound for B(n,m) + R(n,m, 1) is Ω(n1+δ) for any fixed constant δ > 0. Note
that in the latter case, B(n,m) = O(n logm) = o(R(n,m, 1)), so the “redundancy” is larger
than B(n,m). Since rank1 is at least as hard as the predecessor problem, as noted in [1, 36],
then all fids suffer from the same limitations. (It is obvious that rank0 and rank1 have the
same complexity, as rank0(S, i) + rank1(S, i) = i.) As noted in [37, Lemma 7.3], select0

is also at least as hard as the predecessor problem. Other lower bounds on the redundancy
were given for “systematic” encodings of S (see [13, 16, 26] and related papers), but they
are not relevant here since our focus is on “non-systematic” encodings [17, 18], which have
provably lower redundancy. (In “non-systematic” encodings one can store S in compressed
format.)

In terms of upper bounds for R(n,m, t), a number are known, of which we only enu-
merate the most relevant here. For systematic structures, an optimal upper bound is given
by [16] for R(n,m,O(1)) = O(m log logm/ logm). Otherwise, a very recent upper bound in

[35] gives R(n,m, t) = O(m/((logm)/t)t +m3/4polylog(m)) for any constant t > 0. These
bounds are most interesting when m = n ·polylog(n). As noted earlier, sets that are sparser
are worthy of closer study. For such sets, one cannot have best of two worlds: one would
either have to look to support queries in non-constant time but smaller space, or give up
on attaining R(n,m, 1) = o(B(n,m)) for constant-time operations.

The main role of generic case fids is expressed when they take part in more structured
data structures (e.g. succinct trees) where there is no prior knowledge of the relationship
between n and m. Our main contribution goes along this path, striving for constant-time
operations. Namely, we devise a constant-time fid having redundancy R(n,m,O(1)) =
O(n1+δ + n(m/ns)ε), for any fixed constants δ < 1/2, ε < 1 and s > 0 (Theorem 3.1).
The running time of the operations is always O(1) for select1 (which is insensitive to
time-space tradeoffs) and is O(ε−1 + sδ−1) = O(1) for the remaining operations. When m
is sufficiently large, our constant-time fid uses just B(n,m) + O(mε/poly(n)) bits, which
is a significant improvement compared to the previous bounds for the general case, as we
move from a redundancy of kind O(m/polylog(m)) to a one of kind O(mε), by proving for
the first time that polynomial reduction in space is possible.

Moreover, when instantiated in a polynomial universe case (when m = Θ(nO(1)), for
a sufficiently small ε, the redundancy is dominated by n1+δ, thus extending the known
predecessor search data structure with all four fid operations without using a second copy
of the data. Otherwise, the mε term is dominant when the universe is superpolynomial,
e.g. when m = Θ(2logc n) for c > 1. In such cases we may not match the lower bounds
for predecessor search; however, this is the price for a solution which is agnostic of m,n
relationship.

We base our findings on the Elias-Fano encoding scheme [7, 8], which gives the basis
for fids naturally supporting select1 in O(1) time.
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2. Elias-Fano Revisited

We review how the Elias-Fano scheme [7, 8, 33, 39] works for an arbitrary set X =
{x1 < · · · < xn} of n integers chosen from a universe [m]. Recall that X is equivalent
to its characteristic function mapped to a bitstring S of length m, so that S [xi] = 1 for
1 ≤ i ≤ n while the remaining m−n bits of S are 0s. Based on the Elias-Fano encoding, we
will describe the main ideas behind our new implementation of fully indexable dictionaries
(fids). We also assume that n ≤ m/2—otherwise we build a fid on the complement set of
X (and still provide the same functionalities), which improves space consumption although
it does not guarantee select1 in O(1) time.

Elias-Fano encoding. Let us arrange the integers of X as a sorted sequence of consecutive
words of logm bits each. Consider the first1 ⌈log n⌉ bits of each integer xi, called hi, where
1 ≤ i ≤ n. We say that any two integers xi and xj belong to the same superblock if hi = hj .

The sequence h1 ≤ h2 ≤ · · · ≤ hn can be stored as a bitvector H in 3n bits, instead of
using the standard n⌈log n⌉ bits. It is the classical unary representation, in which an integer
x ≥ 0 is represented with x 0s followed by a 1. Namely, the values h1, h2−h1, . . . , hn−hn−1

are stored in unary as a multiset. For example, the sequence h1, h2, h3, h4, h5 = 1, 1, 2, 3, 3
is stored as H = 01101011, where the ith 1 in H corresponds to hi, and the number of
0s from the beginning of H up to the ith 1 gives hi itself. The remaining portion of the
original sequence, that is, the last logm − ⌈log n⌉ bits in xi that are not in hi, are stored
as the ith entry of a simple array L. Hence, we can reconstruct xi as the concatenation of
hi and L [i], for 1 ≤ i ≤ n. The total space used by H is at most 2⌈log n⌉ + n ≤ 3n bits and
that used by L is n× (logm− ⌈log n⌉) ≤ n log(m/n) bits.

Interestingly, the plain storage of the bits in L is related to the information-theoretic
minimum, namely, n log(m/n) ≤ B(n,m) bits, since for n ≤ m/2, B(n,m) ∼ n log(m/n) +
1.44n by means of Stirling approximation. In other words, the simple way of representing
the integers in X using Elias-Fano encoding requires at most n log(m/n)+3n bits, which is
nearly 1.56n away from the theoretical lower bound B(n,m). If we employ a constant-time
fid to store H, Elias-Fano encoding uses a total of B(n,m) + 1.56n + o(n) bits.

Rank and select operations vs predecessor search. Using the available machinery—
the fid on H and the plain array L—we can perform select1(i) on X in O(1) time: we first
recover hi = select1(H, i)− i and then concatenate it to the fixed-length L [i] to obtain xi

in O(1) time [22]. As for rank and select0, we point out that they are intimately related
to the predecessor search, as we show below (the converse has already been pointed out in
the Introduction).

Answering rank1(k) in X is equivalent to finding the predecessor xi of k in X, since
rank1(k) = i when xi is the predecessor of k. Note that rank0(k) = k − rank1(k), so
performing this operation also amounts to finding the predecessor. As for select0(i) in
X, let X = [m] \ X = {v1, v2, . . . , vm−n} be the complement of X, where vi < vi+1, for
1 ≤ i < m − n. Given any 1 ≤ i ≤ m − n, our goal is to find select0(i) = vi in constant
time, thus motivating that our assumption n ≤ m/2 is w.l.o.g.: whenever n ≤ m/2, we
store the complement set of X and swap the zero- and one-related operations.

The key observation comes from the fact that we can associate each xl with a new value
yl =

∣

∣{vj ∈ X such that vj < xl}
∣

∣, which is the number of elements in X that precede xl,

1Here we use Elias’ original choice of ceiling and floors, thus our bounds slightly differ from the sdarray
structure of [33], where they obtain n⌈log(m/n)⌉+ 2n.
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where 1 ≤ l ≤ n. The relation among the two quantities is simple, namely, yl = xl− l, as we
know that exactly l−1 elements of X precede xl and so the remaining elements that precede
xl must originate from X . Since we will often refer to it, we call the set Y = {y1, y2, . . . , yn}
the dual representation of the set X.

Returning to the main problem of answering select0(i) in X, our first step is to find
the predecessor yj of i in Y , namely, the largest index j such that yj < i. As a result, we
infer that xj is the predecessor of the unknown vi (which will be our answer) in the set X.
We now have all the ingredients to deduce the value of vi. Specifically, the yjth element of

X occurs before xj in the universe, and there is a nonempty run of elements of X up to and

including position xj , followed by i− yj elements of X up to and including (the unknown)
vi. Hence, vi = xj + i − yj and, since yj = xj − j, we return vi = xj + i − xj + j = i + j.
(An alternative way to see vi = i+ j is that x1, x2, . . . , xj are the only elements of X to the
left of the unknown vi.) We have thus proved the following.

Lemma 2.1. Using the Elias-Fano encoding, the select1 operation takes constant time,
while the rank and select0 operations can be reduced in constant time to predecessor search
in the sets X and Y , respectively.

The following theorem implies that we can use both lower and upper bounds of the
predecessor problem to obtain a fid, and vice versa. Below, we call a data structure storing
X set-preserving if it stores x1, . . . , xn verbatim in a contiguous set of memory cells.

Theorem 2.2. For a given set X of n integers over the universe [m], let fid(t, s) be a fid

that takes t time and s bits of space to support rank and select. Also, let pred(t, s) be a
static data structure that takes t time and s bits of space to support predecessor queries on
X, where the integers in X are stored in sorted order using n logm ≤ s bits. Then,

(1) given a fid(t, s), we can obtain a pred(O(t), s);
(2) given a set-preserving pred(t, s), we can obtain a fid(O(t), s − n log n + O(n))

(equivalently, R(n,m, t) = s− n logm+O(n)) with constant-time select1.
(3) if there exists a non set-preserving pred(t, s), we can obtain a fid(O(t), 2s+O(n))

with constant-time select1.

Proof (sketch). The first statement easily follows by observing that the predecessor of k in
X is returned in O(1) time by select1(S, rank1(S, k − 1)), where S is the characteristic
bitstring of X. Focusing on the second statement, it suffices to encode X using the Elias
Fano encoding, achieving space s− n log n+O(n).

To further support select0, we exploit the properties of Y and X. Namely, there exists
a maximal subset X ′ ⊆ X so that its dual representation Y ′ is strictly increasing, thus being
searchable by a predecessor data structure. Hence we split X into X ′ and the remaining
subsequence X ′′ and produce two Elias-Fano encodings which can be easily combined by
means of an extra O(n) bits fid in order to perform select1, rank1 and rank0. select0
can be supported by exploiting the set preserviness of the data structure, thus building only
the extra data structure to search Y ′ and not storing Y ′. When data structures are not
set-preserving, we simply replicate the data and store Y ′, thus giving a justification to the
O() factor.
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3. Basic Components and Main Result

We now address and solve two questions, which are fundamental to attain a O(t)-time
fid with B(n,m)+R(n,m, t) bits of storage using Lemma 2.1 and Theorem 2.2: (1) how to
devise an efficient index data structure that can implement predecessor search using Elias-
Fano representation with tunable time-space tradeoff, and (2) how to keep its redundancy
R(n,m, t) small.

Before answering the above questions, we give an overview of the two basic tools that
are adopted in our construction (the string B-tree [10] and a modified van Emde Boas
tree [36, 38]). We next develop our major ideas that, combined with these tools, achieve
the desired time-space tradeoff, proving our main result.

Theorem 3.1. Let s > 0 be an integer and let 0 ≤ ε, δ ≤ 1 be reals. For any bitstring S,
|S| = m, having cardinality n, there exists a fully indexable dictionary solving all operations
in time O(sδ−1 + ε−1) using B(n,m) +O(n1+δ + n(m/ns)ε) bits of space.

Modified van Emde Boas trees. Pǎtraşcu and Thorup [36] have given some matching
upper and lower bounds for the predecessor problem. The discussion hereafter regards the
second branch of their bound: as a candidate bound they involve the equation (with our
terminolgy and assuming our word RAM model) t = log(log(m/n)/ log(z/n)), where t is
our desired time bound and z is the space in bits. By reversing the equation and setting
ǫ = 2−t, we obtain z = Θ(n(m/n)ǫ) bits. As mentioned in [36], the tradeoff is tight for
a polynomial universe m = nγ , for γ > 1, so the above redundancy cannot be lower than
Θ(n1+δ) for any fixed δ > 0.

They also describe a variation of van Emde Boas (veb) trees [38] matching the bound
for polynomial universes, namely producing a data structure supporting predecessor search

that takes O(log log(m/n)
log(z/n) )) time occupying O(z logm) bits. In other words, for constant-

time queries, we should have log(m/n) ∼ log(z/n), which implies that the space is z =
Θ(n(m/n)ǫ). They target the use of their data structure for polynomial universes, since
for different cases they build different data structures. However, the construction makes
no assumption on the above relation and we can extend the result to arbitrary values of
m. By Theorem 2.2, we can derive a constant-time fid with redundancy R(n,m,O(1)) =
O(n(m/n)ǫ).

Corollary 3.2. Using a modified veb tree, we can implement a fid that uses B(n,m) +
O(n(m/n)ε) bits of space, and supports all operations in O(log(1/ε)) time, for any constant
ε > 0.

The above corollary implies that we can obtain a first polynomial reduction by a
straightforward application of existing results. However, we will show that we can do
better for sufficiently large m, and effectively reduce the term n(m/n)ε to n1+δ +n(m/ns)ε.
The rest of the paper is devoted to this goal.

String B-Tree: blind search for the integers. We introduce a variant of string B-tree
to support predecessor search in a set of integers. Given a set of integers X = {x1, . . . , xp}
from the universe [u], we want obtain a space-efficient representation of X that supports
predecessor queries efficiently. We develop the following structure:

Lemma 3.3. Given a set X of p integers from the universe [u], there exists a representa-
tion that uses extra O(p log log u) bits apart from storing the elements of X, that supports



LOWERING THE REDUNDANCY IN FULLY INDEXABLE DICTIONARIES 523

predecessor queries on X in O(log p/ log log u) time. The algorithm requires access to a
precomputed table of size O(uγ) bits, for some positive constant γ < 1, which can be shared
among all instances of the structure with the same universe size.

Proof. The structure is essentially a succinct version of string B-tree on the elements of X
interpreted as binary strings of length log u, with branching factor b = O(

√
log u). Thus, it

is enough to describe how to support predecessor queries in a set of b elements in constant
time, and the query time follows, as the height of the tree is O(log p/ log log u). Given a set
x1, x2, . . . , xb of integers from [u] that need to be stored at a node of the string B-tree, we
construct a compact trie (Patricia trie) over these integers (interpreted as binary strings of
length log u), having b leaves and b − 1 internal nodes. The leaves disposition follows the
sorting order of X. Each internal node is associated with a skip value, indicating the string
depth at which the LCP with previous string ends. Canonically, left-pointing edges are
labeled with a 0 and right-pointing with a 1. Apart from storing the keys in sorted order,
it is enough to store the tree structure and the skip values of the edges. This information
can be represented using O(b log log u) bits, as each skip value is at most log u and the trie
is represented in O(b) bits.

Given an element y ∈ [u], the search for the predecessor of y proceeds in two stages.
In the first stage, we simply follow the compact trie matching the appropriate bits of y to
find a leaf v. Let xi be the element associated with leaf v. One can show that xi is the
key that shares the longest common prefix with y among all the keys in X. In the second
stage, we compare y with xi to find the longest common prefix of y and xi (which is either
the leftmost or rightmost leaf of the internal node at which the search ends). By following
the path in the compact trie governed by this longest common prefix, one can find the
predecessor of y in X. We refer the reader to [10] for more details and the correctness of the
search algorithm. The first stage of the search does not need to look at any of the elements
associated with the leaves. Thus this step can be performed using a precomputed table of
size O(uγ) bits, for some positive constant γ < 1 (by dividing the binary representation
of y into chunks of size smaller than γ log u bits each). In the second stage, finding the
longest common prefix of y and xi can be done using bitwise operations. We again use the
precomputed table to follow the path governed by the longest common prefix, to find the
predecessor of y.

4. Main Ideas for Achieving Polynomial Redundancy

In this section, we give a full explanation of the main result, Theorem 3.1. We first
give an overview, and then detail the multiranking problem by illustrating remaining details
involving the construction of our data structure.

4.1. Overview of our recursive dictionary

We consider the rank1 operation only, leaving the effective development of the details
to the next sections. A widely used approach to the fid problem (e.g. see [25, 27]) lies in
splitting the universe [m] into different chunks and operating independently in each chunk,
storing the rank at the beginning of the block. Queries are redirected into a chunk via a
preliminary distributing data structure and the local data structure is used to solve it. Thus,
the space occupancy is the distributing structure (once) plus all chunks. Our approach is
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orthogonal, and it guarantees better control of the parameter of subproblems we instantiate
with respect to many previous approaches.

Let X (|X| = n) be the integer sequence of values drawn from [m] and let q ∈ [m]
be a generic rank query. Our goal is to produce a simple function f : [m] → [m/n] and a

machinery that generates a sequence X̃ from X of length n coming from the universe [m/n],

so that given the predecessor of q̃ = f(q) in X̃, we can recover the predecessor of q in X.
By this way, we can reduce recursively, multiple times, the rank problem while keeping a
single sequence per step, instead of having one data structure per chunk.

Easily enough, f is the “cutting” operation of the upper log n bits operated by the
Elias Fano construction, which generates p different superblocks. Let X l

1, . . . ,X
l
p the sets

of lower log(m/n) bits of values in X, one per superblock. We define our X̃ as X̃ =
∪1≤i≤pX

l
i , that is, the set of unique values we can extract from the X ls. Suppose we have

an oracle function ψ, so that given a value x̃ ∈ X̃ and an index j ∈ [p], ψ(j, x̃) is the
predecessor of x̃ in X l

j . We also recall from Section 2 that the upper bit vector H of the

Elias Fano construction over X can answer the query rank1(x/2
⌈log n⌉) in constant time (by

performing select0(H,x/2
⌈log n⌉). That is, it can give the rank value at the beginning of

each superblock.
Given a query q we can perform rank1(q) in the following way: we use H to reduce

the problem within the superblock and know the rank at the beginning of the superblock j.
We then have the lower bits of our query (f(q)) and the sequence X̃: we rank f(q) there,
obtaining a certain result, say v; we finally refer to our oracle to find the predecessor of v into
X l

j , and thus find the real answer for rank1(q). The main justification of this architecture
is the following: in any superblock, the predecessor of some value can exhibit only certain
values in its lower bits (those in X̃), thus once given the predecessor of f(q) our necessary

step is only to reduce the problem within [|X̃ |] as the lower bits for any superblock are a

subset of X̃. The impact of such choice is, as explained later, to let us implement the above
oracle in just O(n1+δ) bits, for any 0 < δ < 1. That is, by using a superlinear number of
bits in n, we will be able to let m drop polynomially both in n and m.

The above construction, thus, requires one to write X in an Elias Fano dictionary,
plus the oracle space and the space to solve the predecessor problem on X̃. The first part
accounts for B(n,m)+O(n) bits, to which we add O(n1+δ) bits for the oracle. By carefully

employing the String B-tree we can shrink the number of elements of X̃ to O(n/ log2 n)
elements, leaving us with the problem of ranking on a sequence of such length and universe
[m/n]. We solve the problem by replicating the entire schema from the beginning. Up to
the final stage of recursion, the series representing the space occupancy gives approximately
O((n log(m/n))/ log2i n + (n/ log2i n)1+δ) bits at the i-th step, descending geometrically.
Each step can be traversed in constant time during a query, so the overall time is constant
again. More interestingly, at each step we reduce the universe size of the outcoming sequence
to mn−i. Thus, at the final step s, we employ the previous result of Corollary 3.2 and obtain
a final redundancy of O(mεn1−sε).

4.2. Multiranking

We now give further details on our construction. Mainly, we show that using our choice
on how to build X̃ and the function f , being able to rank over X̃ we can build the oracle in
O(n1+δ) bits. We do it by illustrating, in a broader framework, the multiranking problem.
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We are given a universe [u] (in our dictionary case, we start by setting u = m), and a
set of nonempty sequences A1, . . . , Ac each containing a sorted subset of [u]. We also define
r =

∑

1≤j≤n |Aj | as the global number of elements. The goal is, given two values 1 ≤ i ≤ c

(the wanted superblock ŝ) and 1 ≤ q ≤ u (the query f(q)), perform rank1(q) in the set Ai

(in our case, the head in ŝ that is predecessor of the searched key) in O(1) time and small
space.

A trivial solution to this problem would essentially build a fid for each of the sequences,
thus spending a space proportional to O(cu), which is prohibitive. Instead, we can carefully
exploit the global nature of this task and solve it in less space. The core of this technique
is the universe scaling procedure. We perform the union of all the A sequences and extract
a new, single sequence Λ containing only the distinct values that appear in the union (that
is, we kill duplicates). Λ is named the alphabet for our problem and we denote its length
with t ≤ r. Next, we rewrite all sequences by using rank of their elements in the alphabet
instead of the initial arguments: now each sequence is defined on [t].

The multiranking problem is solved in two phases. We first perform ranking of the
query q on Λ and then we exploit the information to recover the predecessor in the given
set. Here we achieve our goal to (i) decouple a phase that depends on the universe from
one that dependes on the elements and (ii) have only one version of the problem standing
on the initial universe. The following lemma solves the multiranking problem completely,
that is, outside our original distinction between a oracle and the alphabet ranking:

Lemma 4.1. There exists a data structure solving the multirank problem over c nonempty
increasing sequences A = {A1, . . . , Ac} with elements drawn from the universe [u], having r
elements in total using B(r, u) +O(r1+δ) + o(u) bits for any given 0 < δ < 1/2.

Proof. Let Λ be the alphabet defined over u by the sequences in A, and let t = |Λ|. For
each of the sequences in A we create a bitvector βi of length t where the βij = 1 if Λj ∈ Ai.
We first view βis as rows of a matrix of size tc; since t ≤ r and each of the sequences
are non-empty (and hence r ≥ c), the matrix is of size O(r2). We linearize the matrix
by concatenating its rows and obtain a new bitvector β′ on which we want to perform
predecessor search. We note that the universe size of this bitvector is O(r2), that is, the
universe is polynomial. We store β′ using the data structure of Corollary 3.2 setting the
time to log(1/δ), so that space turns out to be O(r1+δ). Finally, we store we store a fid

occupying B(r, u) + o(u) that represents the subset Λ of the universe [u].
Solving the multirank is easy now: given a query q and a set index i, we use the o(u)

fid and find λ = rank1(q) in U , which leads to the predecessor into the alphabet Λ of our
query q. Since λ ∈ [t] we can now use the β fid to find p = rank1(ti+λ). The final answer
is clearly p− rank1(ti).

4.3. Completing the puzzle

The multiranking problem is closely connected with the Elias-Fano representation of
Section 2. When plugged in our framework, as explained in Section 4.1, that we can use
our data structure itself to implement the ranking procedure. Similarly we can use it for
select0 by employing another set of data.

We are left with just one major detail. Each time we produce the output sequence X̃ ,
containing the lower bits for all elements, our only clue for the number of elements is the
worst case upper bound n, which is unacceptable. We now review the whole construction
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and employ the string B-tree to have a polylogarithmic reduction on the number of elements,
paying O(n log logm) bits per recursion step. Generally, at each step we receive a sequence
Xi as input and must output a new sequence Xi+1 plus some data structures that can link
the predecessor problem for Xi to Xi+1. Each Xi is stored in an Elias-Fano dictionary, and
the sets of superblocks and lower bits sequences are built as explained before. We then apply
a further reduction step on the problem cardinality. Each superblock can be either slim or
fat depending on whether it contains less than log2 n elements or not. Each superblock is
split into blocks of size log2 n, apart from the last block, and for each block we store a String
B-tree with fan-out

√
log n. Since the block is polylogarithmic in size, by means of shared

precomputed tables we can perform predecessor search in constant time. Slim superblocks
are handled directly by the tree and they do not participate further in the construction. For
each block in a fat superblock, we logically extract its head, that is, the smallest element
in it. We now use heads in the multiranking problems and we build the output sequence
Xi+1 using only heads lower bits. As there can only be at most O(n/ log2 n) blocks in fat
superblocks, the size of the output sequence is at most O(n/ log2 n). The oracle is built as
usual, on the heads, using O(n1+δ) bits.

Ranking now performs the following steps: for each recursive step, it uses the Elias-
Fano H vector to move into a superblock and at the same time check if it is slim or fat. In
the latter case, it first outsources the query for the lower bits to the next dictionary, then
feeds the answer to the multiranking instance and returns the actual answer. Thus, we just
proved the following (with v = log2 n and w = n):

Theorem 4.2. Let w and v be two integer parameters and let 0 < δ < 1/2 be a real constant.
Given Xi, ni ≥ v and mi > w, where ni ≤ mi, there exists a procedure that produces a data
structure involved in predecessor search. The data structure occupies B(ni,mi) + O(w +

ni log logmi + n1+δ
i ) space, and in O(δ−1) time, it reduces a predecessor query on Xi to a

predecessor query on a new sequence Xi+1 of length ni+1 = O(ni/v) over a universe [mi+1],
where mi+1 = mi/w.

We must then deal with the last two steps. The first step aims at supporting select0
since the above data structure can only support rank1. The second step deals with how
treat the final sequence after a number of iteration steps have been executed. We can finally
give the proof of our main result:

Proof of Theorem 3.1. Let X ⊆ [m] be the set whose characteristic vector is S. The data
structure involves recursive instances of Theorem 4.2, by starting with X0 = X and using
each step’s output as input for the next step. As previously mentioned, we must only
cover the base case and the last recursive step. We begin by describing the whole data
structure, moving to algorithms later on. We start by partitioning X into X ′ and X ′′ as
described in the proof of Theorem 2.2, so that the construction is operated on both X ′ and
X ′′. We now describe representation of X ′; X ′′ is stored in a similar way. We recursively
build smaller sequences by invoking Theorem 4.2 exactly s times, using δ as given, and
parameters w = n, v = log2m. By invoking Corollary 3.2 the space bound easily follows.
To support select0 on the original sequence, we operate on the X ′ sequence alone, since
when transformed to its dual Y ′, we obtain a strictly monotone sequence. Interpreting X ′

as an implicit representation of Y ′ we build a multiset representation for the high bits (H ′),
a new set of succinct string B-trees using the superblocks of the dual sequence and thought
of as operating on Y ′ (similarly to Theorem 2.2) and a new set of s recursive applications
of Theorem 4.2.
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select1 is trivial, thanks to the machinery of Theorem 2.2. The rank1 algorithm for
a query q is performed on both X ′ and X ′′ fid: we start by querying H0, the upper bits
of F ′

0 (F ′′
0 respectively) for q/2⌈log n⌉, thus identifying a certain superblock in which the

predecessor for q can appear. Unless the superblock is slim (refer to proof of Theorem 4.2)
we must continue to search through the next lower-order bits. This is done via multiranking,
which recurses in a cascading manner with the same technique on the s steps up to the last
fid, that returns the answer. The chain is then walked backwards to find the root fid

representative. We finally proceed through the succinct string B-tree to find the head
and the next succinct string B-tree until we find the predecessor of q. The last step for
recursion takes O(ε−1) time. All the middle steps for multiranking and succinct string B-
tree traversals take O(sδ−1 + s) time. To support select0, we act on X ′, using exactly the
same algorithm as before using, but with the collection of data structures built for the dual
representation Y ′, and following the steps of Theorem 2.2.

During the buildup of the recursive process, say being at step i, the size n′i for sequence

X ′
i (i > 1), is upper bounded by n/ log2im, while the universe has size m/ni. If at any

step 2 ≤ j ≤ s the condition mj < w = n does not apply, we cannot apply Theorem 4.2,
so we truncate recursion and use a o(w) fid to store the sequence Xj . This contributes a
negligible amount to the redundancy. We name the fid for each step F1 up to Fs. Suppose
we can recurse for s steps with Theorem 4.2, we end up with a sequence over a universe
ms = m/ns. By using Corollary 3.2 the space bound is no less than O(n(m/ns)ε). The

B(ni,mi)+O(n1+δ
i ) factors decrease geometrically, so the root dominates and we can show

that, apart from lower order terms, the space bound is as claimed. Otherwise, the total
space s(ni,mi) of the recursive data structure satisfies:

s(ni,mi) = s(ni+1,mi+1) + space(fid for high bits) + space(string B-trees) +O(n1+δ
i )

where ni+1 = ni/ log2m and mi+1 = mi/n. The claimed redundancy follows easily.
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Abstract. The edit distance problem is a classical fundamental problem in computer
science in general, and in combinatorial pattern matching in particular. The standard
dynamic-programming solution for this problem computes the edit-distance between a
pair of strings of total length O(N) in O(N2) time. To this date, this quadratic upper-
bound has never been substantially improved for general strings. However, there are known
techniques for breaking this bound in case the strings are known to compress well under
a particular compression scheme. The basic idea is to first compress the strings, and then
to compute the edit distance between the compressed strings.

As it turns out, practically all known o(N2) edit-distance algorithms work, in some
sense, under the same paradigm described above. It is therefore natural to ask whether
there is a single edit-distance algorithm that works for strings which are compressed under
any compression scheme. A rephrasing of this question is to ask whether a single algorithm
can exploit the compressibility properties of strings under any compression method, even
if each string is compressed using a different compression. In this paper we set out to
answer this question by using straight-line programs. These provide a generic platform
for representing many popular compression schemes including the LZ-family, Run-Length
Encoding, Byte-Pair Encoding, and dictionary methods.

For two strings of total length N having straight-line program representations of
total size n, we present an algorithm running in O(n1.4

N
1.2) time for computing the edit-

distance of these two strings under any rational scoring function, and an O(n1.34
N

1.34)-
time algorithm for arbitrary scoring functions. This improves on a recent algorithm of
Tiskin that runs in O(nN

1.5) time, and works only for rational scoring functions.
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1. Introduction

The edit distance between two strings over a fixed alphabet Σ is the minimum cost
of transforming one string into the other via a sequence of character deletion, insertion,
and replacement operations [31]. The cost of these elementary editing operations is given
by some scoring function which induces a metric on strings over Σ. The simplest and
most common scoring function is the Levenshtein distance [16] which assigns a uniform
score of 1 for every operation. Determining the edit-distance between a pair of strings is a
fundamental problem in computer science in general, and in combinatorial pattern matching
in particular, with applications ranging from database indexing and word processing, to
bioinformatics [11].

The standard dynamic programming solution for computing the edit distance between a
pair of strings A = a1a2 · · · aN and B = b1b2 · · · bN involves filling in an (N+1)×(N+1) table
T , with T [i, j] storing the edit distance between a1a2 · · · ai and b1b2 · · · bj . The computation
is done according to the base-case rules given by T [0, 0] = 0, T [i, 0] = T [i−1, 0]+ the cost of
deleting ai, and T [0, j] = T [0, j−1]+ the cost of inserting bj, and according to the following
dynamic programming step:

T [i, j] = min











T [i− 1, j] + the cost of deleting ai

T [i, j − 1] + the cost of inserting bj

T [i− 1, j − 1] + the cost of replacing ai with bj

(1.1)

Note that as T has (N + 1)2 entries, the time-complexity of the algorithm above is O(N2).
Compression is traditionally used to efficiently store data. In this paper, we focus on

using compression to accelerate the dynamic-programming solution for the edit-distance
problem described above. The basic idea is to first compress the strings, and then com-
pute the edit distance between the compressed strings. Note that the “acceleration via
compression” approach has been successfully applied also to other classical problems on
strings. Various compression schemes, such as LZ77 [33], LZW-LZ78 [32], Huffman coding,
Byte-Pair Encoding (BPE) [27], Run-Length Encoding (RLE), were employed to accelerate
exact string matching [3, 13, 17, 20, 28], subsequence matching [9], approximate pattern
matching [2, 12, 13, 24], and more [23].

Regarding edit-distance computation, Bunke and Csirik presented a simple algorithm
for computing the edit-distance of strings that compress well under RLE [8]. This algorithm
was later improved in a sequence of papers [5, 6, 10, 19] to an algorithm running in time
O(nN), for strings of total length N that encode into run-length strings of total length
n. In [10], an algorithm with the same time complexity was given for strings that are
compressed under LZW-LZ78, where n again is the length of the compressed strings. Note
that this algorithm is also O(N2/ lg N) in the worst-case for any strings over constant-size
alphabets.

The first paper to break the quadratic time-barrier of edit-distance computation was the
seminal paper of Masek and Paterson [21], who applied the ”Four-Russians technique” to
obtain a running-time of O(N2/lg N) for any pair of strings, and of O(N2/lg2 N) assuming
a unit-cost RAM model. Their algorithm essentially exploits repetitions in the strings to
obtain the speed-up, and so in many ways it can also be viewed as compression-based. In
fact, one can say that their algorithm works on the “naive compression” that all strings over
constant-sized alphabets have. A drawback of the the Masek and Paterson algorithm is that
it can only be applied when the given scoring function is rational. That is, when all costs of
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editing operations are rational numbers. Note that this restriction is indeed a limitation in
biological applications, where PAM and evolutionary distance similarity matrices are used
for scoring [10, 21]. For this reason, the algorithm in [10] mentioned above was designed
specifically to work for arbitrary scoring functions. We mentioned also Bille and Farach-
Colton [7] who extend the Masek and Paterson algorithm to general alphabets.

There are two important things to observe from the above: First, all known techniques
for improving on the O(N2) time bound of edit-distance computation, essentially apply ac-
celeration via compression. Second, apart from RLE, LZW-LZ78, and the naive compression
of the Four-Russians technique, we do not know how to efficiently compute edit-distance
under other compression schemes. For example, no algorithm is known which substantially
improves O(N2) on strings which compress well under LZ77. Such an algorithm would be
interesting since there are various types of strings that compress much better under LZ77
than under RLE or LZW-LZ78. In light of this, and due to the practical and theoretical
importance of substantially improving on the quadratic lower bound of string edit-distance
computation, we set out to answer the following question:

“Is there a general compression-based edit-distance algorithm that can ex-
ploit the compressibility of two strings under any compression scheme?”

A key ingredient to answering this question, we believe, lies in a notion borrowed from the
world of formal languages: The notion of straight-line programs.

1.1. Straight-line programs

A straight-line program (SLP) is a context-free grammar generating exactly one string.
Moreover, only two types of productions are allowed: Xi → a where a is a unique terminal,
and Xi → XpXq with i > p, q where X1, . . . ,Xn are the grammar variables. Each variable
appears exactly once on the left hand side of a production. The string represented by a
given SLP is a unique string corresponding to the last nonterminal Xn. We define the size
of an SLP to be n, the number of variables (or productions) it has. The length of the strings
that is generated by the SLP is denoted by N . It is important to observe that many SLPs
can be exponentially smaller than the string they generate.

Example 1.1. Consider the string abaababaabaab. It could be generated by the following
SLP, also known as the Fibonacci SLP :

X1 → b
X2 → a
X3 → X2X1

X4 → X3X2

X5 → X4X3

X6 → X5X4

X7 → X6X5

Rytter [25] proved that the resulting encoding of most compression schemes including
the LZ-family, RLE, Byte-Pair Encoding, and dictionary methods, can be transformed to
straight-line programs quickly and without large expansion1. In particular, consider an

1Important exceptions of this list are statistical compressors such as Huffman or arithmetic coding, as
well as compressions that are applied after a Burrows-Wheeler transformation.
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LZ77 encoding [33] with n′ blocks for a string of length N . Rytter’s algorithm produces an
SLP-representation with size n = O(n′ log N) of the same string, in O(n) time. Moreover,
n lies within a log N factor from the size of a minimal SLP describing the same string. This
gives us an efficient logarithmic approximation of minimal SLPs, since computing the LZ77
encoding of a string can be done in linear-time. Note also that any string compressed by
the LZ78-LZW encoding can be transformed directly into a straight-line program within a
constant factor.

1.2. Our results

Due to Rytter’s results, SLPs are perfect candidates for achieving our goal of generaliz-
ing compression-based edit-distance algorithms. Indeed, a fast edit-distance algorithm for
strings that have small SLP representations, would give a fast algorithm for strings which
compress well under the compression schemes generalized by SLPs. Note that since con-
structing the strings generated by the SLPs requires linear-time in the length of the strings,
an O(N2) algorithm is available via the standard dynamic-programming formulation (1.1).
The main result of this paper gives an algorithm which beats this bound:

Theorem 1.2. Let A and B be two SLPs of total size n that respectively generate two string

A and B of total size N . Then, given A and B, one can compute the edit-distance between

A and B in O(n1.4N1.2) time for any rational scoring function.

We can remove the dependency of rational scoring schemes in Theorem 1.2, recalling
that arbitrary scoring schemes are important for biological applications. We obtain the
following secondary result for arbitrary scoring functions:

Theorem 1.3. Let A and B be two SLPs of total size n that respectively generate two string

A and B of total size N . Then, given A and B, one can compute the edit-distance between

A and B in O(n1.34N1.34) time for any arbitrary scoring function.

In the last part of the paper, we explain how the four-russians technique can also be
incorporated into our SLP edit-distance scheme. We obtain a very simple algorithm that
matches the performance of [10] in the worst-case. That is, we obtain a four-russian like
algorithm with an Ω(lg N) speed-up which can handle arbitrary scoring functions, unlike
the Masek and Paterson algorithm which works only for rational functions. We add this
algorithm to our presentation not only for its practical importance, but also to emphasize
the fact that SLPs provide a framework which allows an almost perfect generalization of
compression-based edit-distance algorithms.

1.3. Related Work

Rytter et al. [14] was the first to consider SLPs in the context of pattern matching,
and other subsequent papers also followed this line [15, 22]. In [25] and [17] Rytter and
Lifshits took this work one step further by proposing SLPs as a general framework for
dealing with pattern matching algorithms that are accelerated via compression. However,
the focus of Lifshits was on determining whether or not these problems are polynomial in n
or not. In particular, he gave an O(n3)-time algorithm to determine equality of SLPs [17],
and he established hardness for the edit distance [18], and even for the hamming distance
problems [17]. Nevertheless, Lifshits posed as an open problem the question of whether or
not there is an O(nN) edit-distance algorithm for SLPs. Here, our focus is on algorithms
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which break the quadratic O(N2) time-barrier, and therefore all algorithms with running-
times between O(nN) and O(N2) are interesting for us.

Recently, Tiskin [29] gave an O(nN1.5) algorithm for computing the longest common
subsequence between two SLPs, an algorithm which can be extended at constant-factor
cost to compute the edit-distance between the SLPs under any rational scoring function.
Observe that our algorithm for arbitrary scoring functions in Theorem 1.3 is already faster
than Tiskin’s algorithm for most values of N and n. Also, it has the advantage of being
much more simpler to implement. As for our main algorithm of Theorem 1.2, our faster
running-time is achieved also by utilizing some of the techniques used by Tiskin in a more
elaborate way.

2. The DIST Table

The central dynamic-programming tool we use in our algorithms is the DIST table, a
simple and handy data-structure which was originally introduced by Apostolico et al. [4],
and then further developed by others in [10, 26]. In the following section we briefly review
basic facts about this tool that are essential for understanding our results, following mostly
the presentation in [10]. We begin with the so-called dynamic-programming grid, a graph
representation of edit-distance computation on which DIST tables are defined.

Consider the standard dynamic programming formulation (1.1) for computing the
edit-distance between two strings A = a1a2 · · · aN and B = b1b2 · · · bN . The dynamic-

programming grid associated with this program, is an acyclic-directed graph which has a
vertex for each entry of T (see Figure 1). The vertex corresponding to T [i, j] is associ-
ated with ai and bj , and has incoming edges according to (1.1) – an edge from T [i − 1, j]
whose weight is the cost of deleting ai, an edge from T [i, j − 1] whose weight is the cost
of inserting bj, and an edge from T [i − 1, j − 1] whose weight is the cost of replacing ai

with bj. The value at the vertex corresponding to T [i, j] is the value stored in T [i, j], i.e.

the edit-distance between the length i prefix of A and the length j prefix of B. Using
the dynamic-programming grid G, we reduce the problem of computing the edit-distance
between A and B to the problem of computing the weight of the lightest path from the
upper-left corner to bottom-right corner in G.
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Figure 1: A subgraph of a Levenshtein distance dynamic program graph. On the left,
DIST [4, 4] (in bold) gives the minimum-weight path from I[4] to O[4]. On the
right, the value 9 of O[4] is computed by miniI[i] + DIST [i, 4].
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We will work with sub-grids of the dynamic-programming grid that will be referred to
as blocks. The input vertices of a block are all vertices in the first row and column of the
block, while its output vertices are all vertices in the last row and column. Together, the
input and output vertices are referred to as the boundary of the block. The substrings of
A and B associated with the block are defined in the straightforward manner according
to its first row and column. Also, for convenience purposes, we will order the input and
output vertices, with both orderings starting from the vertex in bottom-leftmost corner of
the block, and ending at the vertex in the upper-rightmost corner. The ith input vertex
and jth output vertex are the ith and jth vertices in these orderings. We next give the
definition of DIST tables, defined over blocks of G.

Definition 2.1 (DIST [4]). Let G′ be a block in G with x input vertices and x output
vertices. The DIST table corresponding to G′ is an x× x matrix, with DIST [i, j] storing
the weight of the minimum-weight path from the ith input to the jth output in G, and
otherwise ∞ if no such paths exists.

It is important to notice that the values at the output vertices of a block are completely
determined by that values at its input and its corresponding DIST table. In particular, if
I[i] and O[j] are the values at the ith input vertex and jth output vertex of a block G′ of
G, then

O[j] = min
1≤i≤x

I[i] + DIST [i, j]. (2.1)

Equation 2.1 implies not only the input-output relation of the dynamic-programming values
of a block, but also that the values at the output vertices can be computed in linear time from
the values at the input vertices. Indeed, by (2.1), the values at the output vertices of G′ are
given by the column minima of the matrix I+DIST . Furthermore, by a simple modification
of all ∞ values in I +DIST , we get what is known as a totally-monotone matrix [10]. Now,
Aggarwal et al. [1] gave a simple recursive algorithm, nicknamed SMAWK in the literature,
that computes all column minima of an x × x totally-monotone matrix by querying only
O(x) elements of the matrix. It follows that using SMAWK we can compute the output
values of G′ in O(x) time.

Let us now discuss how to efficiently construct the DIST table corresponding to a block
in G. Observe that this can be done quite easily in O(x3) time, for blocks with boundary
size O(x), by computing the standard dynamic-programming table between every prefix of
A against B and every prefix of B against A. Each of these dynamic-programming tables
contains all values of a particular row in the DIST table. In [4], Apostolico et al. show an
elegant way to reduce the time-complexity of this construction to O(x2 lg x). In the case
of rational scoring functions, the complexity can be further reduced to O(x2) as shown by
Schmidt [26].

3. Acceleration via Straight-Line Programs

In the following section we describe a generic framework for accelerating the edit dis-
tance computation of two strings which are given by their SLP representation. This frame-
work will later be used for explaining all our algorithms. We will refer throughout the paper
to this framework as the block edit-distance procedure.

Let A and B be two SLP representations of a pair of strings A and B, and for ease
of presentation assume that |A| = |B| = n and |A| = |B| = N . Recall the definition in
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Section 2 for the dynamic-programming grid corresponding to A and B. The general idea
behind the block edit-distance procedure is to partition this grid into disjoint blocks, and
then to compute the edit-distance between A and B at the cost of computing the values at
the boundary vertices of each block. This is achieved by building in advance a repository
containing all DIST tables corresponding to blocks in the partition. To efficiently construct
this repository, we show how to partition the grid in a way which induces many block repeats.
This is possible by utilizing substring repeats in A and B that are captured in A and B,
and imply block repeats in the partitioning of G. The edit-distance of A and B is then
computed by propagating the dynamic programming values at the boundary vertices of the
blocks using the DIST tables in the repository and SMAWK. Before giving a complete
description of this algorithm, we need to introduce the notion of xy-partition.

Definition 3.1 (xy-partition). An xy-partition is a partitioning of G into disjoint blocks
such that every block has boundary of size O(x), and there are O(y) blocks in each row and
column. In addition, we require each pair of substrings of A and B associated with a block
to be generated by a pair of SLP variables in A and B.

A      B        C A        B        C        A       B                        
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An xy-partition of an edit distance graph
for two SLPs generating the strings
“ABCABCAB” and “BBCBBBCB”. The
white blocks are the ones of the partition
and their corresponding SLP variables are
marked in bold. Notice that there are nine
blocks in the partition but only six of them
are distinct.

Figure 2: An xy-partition.

An xy-partition of G is a partition with a specific structure, but more importantly, one
where each substring is generated by a unique SLP variable of A and B. This latter require-
ment allows us to exploit the repetitions of A and B captured by their SLPs. We next give
a complete description of the block edit distance procedure. It assumes an xy-partition of
G has already been constructed. Section 4 explains how to construct such partitions.

Block Edit Distance

(1) Construct a repository with the DIST tables corresponding to each block in the
xy-partition.

(2) Fill-in the first row and column of G using the standard base-case rules.
(3) In top-to-bottom and left-to-right manner, identify the next block in the partition

of G and use its input and the repository to compute its output using (2.1).
(4) Use the outputs in order to compute the inputs of the next blocks using (1.1).
(5) The value in the bottom-rightmost cell is the edit distance of A and B.
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Apart from the repository construction in step 1, all details necessary for implementing
the block edit-distance procedure are by now clear. Indeed, steps 2 and 5 are trivial, and
step 4 is done via the standard dynamic-programming formulation of (1.1). Furthermore,
the SMAWK computation of output values of a block, given its input values plus its cor-
responding DIST table (step 3), is explained in Section 2. We next show that, as we are
working with xy-partitions where each block is associated with an SLP variable, we can
compute a repository containing all DIST necessary which is rather small.

The first crucial observation for this, is that any two blocks associated with the same
pair of substrings A′ and B′ have the same DIST table. This is immediate since any such
pair of blocks have identical edge-weights.

Observation 3.2. A pair of substrings A′, B′ uniquely identify the DIST table of a block.

Since we required each substring in the xy-partition of G to be generated by some SLP
variable, the above observation actually suggests that the number of different DIST tables
is bounded by the number of variable pairs X ∈ A and Y ∈ B:

Observation 3.3. The number of different DIST tables corresponding to any xy-partition
is O(n2).

Therefore, combining the two observations above, we know that a repository containing
a DIST tables for each SLP variable pair X ∈ A and Y ∈ B will not be too large, and that
it will contain a table corresponding to each block in our given xy-partition at hand. We
can therefore state the following lemma:

Lemma 3.4. The block edit-distance procedure runs in O(n2x2 lg x + Ny) time.

Proof. We analyze the time complexity of each step in the block edit-distance procedure
separately. Step 1 can be performed in O(n2x2 lg x) time, as we can construct every DIST
table in O(x2 lg x) time (see Section 2), and the total number of such distinct matrices is
O(n2). Step 2 can be done trivially in O(N) time. Then, step 3 takes O(x) time per block
by using the SMAWK algorithm as explained in Section 2. Step 4 also takes O(x) time per
block as it only computes the values in the O(x) vertices adjacent to the output vertices.
The total time complexity of steps 3 and 4 is thus equal to the total number of boundary
vertices in the xy-partition of G, and therefore to O(Ny). Accounting for all steps together,
this gives us the time complexity stated in the lemma.

4. Constructing an xy-partition

In this section we discuss the missing component of Section 3, namely the construction
of xy-partitions. In particular, we complete the proof of Theorem 1.3 by showing how to
efficiently construct an xy-partition where y = O(nN/x) for every x ≤ N . Together with

Lemma 3.4, this implies an O(n
4

3 N
4

3 lg
1

3 N) = O(n1.34N1.34) time algorithm for arbitrary

scoring functions by considering x = N
2

3 /(n lg N)
1

3 . In the remainder of this section we
prove the following lemma.

Lemma 4.1. For every x ≤ N there exists an xy-partition with y = O(nN/x). Moreover,

this partition can be found in O(N) time.
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The key-vertices vi and vi+1 both
generate substrings of length Θ(x),
and their least common ancestor is
ui. The white vertices “hanging”
of the vi-to-vi+1 path are the added
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ate the substring that lies between
the substrings of vi and vi+1.

Figure 3: A closer look on the parse tree of an SLP A.

To prove the lemma, we show that for every SLP A generating a string A and every
x ≤ N , one can partition A into O(nN/x) disjoint substrings, each of length O(x), such
that every substring is generated by some variable in A. This defines a subset of variables
in both input SLPs which together defined our desired xy-partition. To partition A, we
first identify O(N/x) grammar variables in A each generating a disjoint substring of length
between x and 2x. We use these variables to partition A. We then show that the substrings
of A that are still not associated with a variable can each be generated by O(n) additional
variables. Furthermore, these O(n) variables each generate a string of length bounded by
x. We add all such variables to our partition of A for a total of O(nN/x) variables.

Consider the parse tree of A. We want to identify O(nN/x) key-vertices such that every
key-vertex generates a substring of length O(x), and A is a concatenation of substrings
generated by key-vertices. We start by marking every vertex v that generates a substring
of length greater than x as a key-vertex iff both children of v generate substrings of length
smaller than x. This gives us ℓ ≤ N/x key-vertices so far, each generating a substring of
length Θ(x) (see Figure 3). But we are still not guaranteed that these vertices cover A
entirely.

To fix this, consider the ordering v1, v2, . . . , vℓ on the current key-vertices induced by
a left-to-right postorder traversal of the parse tree. This way, vi+1 is “to the right of” vi.
If every vi generates the substring Ai then A = A′

1A1A
′
2A2 · · ·A′

ℓAℓA
′
ℓ+1, where every Ai

is of length Θ(x), and every A′
i is the “missing” substring of A that lies between Ai−1 and

Ai. We now show that every A′
i is a concatenation of substrings of length smaller than x

generated by at most O(n) vertices.
Let ui be the lowest common ancestor of vi and vi+1 and let Pi (resp. Pi+1) be the

unique path between ui and vi (resp. vi+1). For every vertex v ∈ Pi − {ui} such that
v’s left child is also in Pi mark v’s right child as a key-vertex. Similarly, for every vertex
v ∈ Pi+1 − {ui} such that v’s right child is also in Pi+1 mark v’s left child as a key-vertex.
It is easy to verify that A′

i is the concatenation of substrings generated by these newly
marked key-vertices. There are at most 2n of these key-vertices since the depth of the parse
tree is bounded by the number of different SLP variables. Moreover, they each generate a
substring of length smaller than x for the following reason. Assume for contradiction that
one of them generates a string of length greater than x. This would imply the existence of
some vertex between vi and vi+1 in the v1, v2, . . . , vℓ ordering.
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To conclude, we showed that A = A′
1A1A

′
2A2 · · ·A′

ℓAℓA
′
ℓ+1 where ℓ ≤ N/x, every Ai

is of length Θ(x) and is generated by one vertex, and every A′
i is a concatenation of O(n)

substrings each of length smaller than x and generated by one vertex. Overall, we get that
y = O(nℓ) = O(nN/x) vertices suffice to generate A for every x ≤ N . It is easy to see
that we can identify these vertices in O(N) time thus proving Lemma 4.1. By choosing

x = N
2

3 /(n lg N)
1

3 , and using the block edit distance time complexity of Lemma 3.4, this
implies an O(n1.34N1.34) time algorithm for arbitrary scoring functions.

5. Improvement for Rational Scoring Functions

In this section we show that in the case of rational scoring functions, the time complexity
of the block edit distance procedure can be reduced substantially by using a recursive
construction of the DIST tables. In particular, we complete the proof of Theorem 1.2 by
showing that in this case the repository of DIST tables can be computed in O(n2x1.5) time.
This implies an O(n1.4N1.2) time algorithm for rational scoring functions by considering
x = N0.8/n0.4 and the xy-partition with y = nN/x.

Before we describe how to compute the repository in O(n2x1.5) time, we need to in-
troduce some features that DIST tables over rational scoring functions have. The first
property, discovered by Schmidt [26], is what is known as the succinct representation prop-
erty: Any x× x DIST table can be succinctly stored using only O(x) space. This follows
from considering the vector obtained by subtracting a DIST column from the column to
its right, and observing that this vector has only a constant number of value changes. The
second property is that succinct representations allow to efficiently merge two DIST tables.
That is, if D1 and D2 are two DIST tables, one between a pair of substrings A′ and B′

and the other between A′ and B′′, then we refer to the DIST table between A′ and B′B′′

as the product of merging D1 and D2. A recent important result of Tiskin [30] shows how
to utilize the succinct representation of DIST tables in order to merge two succinct x× x
DIST tables in O(x1.5) time.

Lemma 5.1. The block edit distance algorithm runs in O(n2x1.5 + Ny) time in case the

underlying scoring function is rational.

Proof. To prove the lemma it suffices to show how to compute the repository of DIST tables
in step 1 of the block edit-distance procedure in O(n2x1.5) time, in case the underlying
scoring function is rational. We will work with succinct representations of the DIST tables
as described above. Say X → XpXq and Y → YsYt are two rules in the SLPs A and B
respectively. To compute the DIST table that corresponds to the strings generated by X
and Y , we first recursively compute the four DIST tables that correspond to the pairs
(Xp, Ys), (Xp, Yt), (Xq, Ys), and (Xq, Yt). We then merge these four tables to obtain the
DIST table that corresponds to (X,Y ). To do so we use Tiskin’s procedure to merge
(Xp, Ys) with (Xp, Yt) into (Xp, YsTt), then merge (Xq, Ys) with (Xq, Yt) into (Xq, YsTt),
and finally we merge (Xp, YsTt) and (Xq, YsTt) into (XpXq, YsTt) = (X,Y ). This recursive
procedure computes each succinct DIST table by three merge operations, each taking
O(x1.5) time and O(x) space. Since the number of different DIST tables is bounded by
O(n2), the O(n2x1.5) time for constructing the repository follows.
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To conclude, we have shown an O(n2x1.5 + Ny) time algorithm for computing the edit
distance. Using the xy-partition from Lemma 4.1 with x = N0.8/n0.4 and y = nN/x, we
get a time complexity of O(n1.4N1.2) .

6. Four-Russian Interpretation

In the previous sections we showed how SLPs can be used to speed up the edit distance
computation of strings that compress well under some compression scheme. In this section,
we conclude the presentation of our SLP framework by presenting an Ω(lg N) speed-up for
strings that do not compress well under any compression scheme. To do so, we adopt the
Four Russions approach of Masek and Paterson [21] that utilizes a naive property that every
string over a fixed alphabet has. Namely, that short enough substrings must appear many
times. However, while the Masek and Paterson algorithm can only handle rational scoring
functions, the SLP version that we propose can handle arbitrary scoring functions.

Consider a string A of length N over an alphabet Σ. The parse tree of the naive SLP
A is a complete binary tree with N leaves2. This way, for every x ≤ N we get that A is
the concatenation of O(N/x) substrings each of length Θ(x) and each can be generated by
some variable in A. This partition of A suggests an xy-partition in which y = N/x. At
first glance, this might seem better than the partition guarantee of Lemma 4.1 in which
y = nN/x. However, notice that in the naive SLP we have n ≥ N so we can not afford to
compute a repository of O(n2) DIST tables.

To overcome this problem, we choose x small enough so that |Σ|x, the number of
possible substrings of length x, is small. In particular, by taking x = 1

2
log|Σ| N we get

that the number of possible substrings of length x is bounded by |Σ|x =
√

N . This implies
an xy-partition in which x = 1

2
log|Σ| N , y = N/x, and the number of distinct blocks n′ is

O(N). Using this partition, we get that the total construction time of the DIST repository
is O(n′x2 lg x). Similar to Lemma 3.4, we get that the total running time of the block edit
distance algorithm is O(n′x2 lg x + Ny) which gives O(N2/ lg N).
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RANDOM FRUITS ON THE ZIELONKA TREEFLORIAN HORN 1

1 CWI, Amsterdam, The NetherlandsE-mail address: f.horn�wi.nlAbstrat. Stohasti games are a natural model for the synthesis of ontrollers on-fronted to adversarial and/or random ations. In partiular, ω-regular games of in�nitelength an represent reative systems whih are not expeted to reah a orret state, butrather to handle a ontinuous stream of events. One ritial resoure in suh appliationsis the memory used by the ontroller. In this paper, we study the amount of memory thatan be saved through the use of randomisation in strategies, and present mathing upperand lower bounds for stohasti Muller games.1. IntrodutionA stohasti game arena is a direted graph with three kinds of states: Eve's, Adam'sand random states. A token irulates on this arena: when it is in one of Eve's states,she hooses its next loation among the suessors of the urrent state; when it is in oneof Adam's states, he hooses its next loation; and when it is in a random state, the nextloation is hosen aording to a �xed probability distribution. The result of playing thegame for ω moves is an in�nite path of the graph. A play is winning either for Eve orfor Adam, and the �winner problem� onsists in determining whether one of the playershas a winning strategy, from a given initial state. Closely related problems onern theomputation of winning strategies, as well as determining the nature of these strategies: pureor randomised, with �nite or in�nite memory. There has been a long history of using arenaswithout random states (2-player arenas) for modelling and synthesising reative proesses[BL69, PR89℄: Eve represents the ontroller, and Adam the environment. Stohasti (21
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542 FLORIAN HORNIn the ase of 2-player Muller games, a fundamental determinay result of Bühi andLandweber states that, from any initial state, one of the players has a winning strategy[BL69℄. Gurevih and Harrington used the latest appearane reord (LAR) struture of M-Naughton to extend this result to strategies with memory fatorial in the size of the game[GH82℄. Zielonka re�nes the LAR onstrution into a tree, and derives from it an elegantalgorithm to ompute the winning regions [Zie98℄. An insightful analysis of the Zielonka treeby Dziembowski, Jurdzinski, and Walukiewiz leads to optimal (and asymmetrial) mem-ory bounds for pure (non-randomised) winning strategies [DJW97℄. Chatterjee extendedthese bounds to the ase of pure strategies over 21
2 -player arenas [Cha07b℄. However, thelower bound on memory does not hold for randomised strategies, even in non-stohasti are-nas: Chatterjee, de Alfaro, and Henzinger show that memoryless randomised strategies areenough for to deal with upward-losed winning onditions [CdAH04℄. Chatterjee extendsthis result in [Cha07a℄, showing that onditions with non-trivial upward-losed subsets admitrandomised strategies with less memory than pure ones.Our ontributions. The memory bounds of [Cha07a℄ are not tight in general, even for2-player arenas. We give here mathing upper and lower bounds for any Muller ondition

F , in the form of a number rF omputed from the Zielonka tree of F :
• if Eve has a winning strategy in a 21

2 -player game (A,F), she has a randomisedwinning strategy with memory rF (Theorem 4.2);
• there is a 2-player game (AF ,F) where any randomised winning strategy for Evehas at least rF memory states (Theorem 5.2).Furthermore, the witness arenas we build in the proof of Theorem 5.2 are signi�antlysmaller than in [DJW97℄, even though the problem of polynomial arenas remains open.Outline of the paper. Setion 2 realls the lassial notions in the area, while Setion 3presents former results on memory bounds and randomised strategies. The next two setionspresent our main results. In Setion 4, we introdue the number rF and show that it is anupper bound on the memory needed to win in any 21

2 -game (A,F). In Setion 5, we showthat this bound is tight. Finally, in Setion 6, we haraterise the lass of Muller onditionsthat admit memoryless randomised strategies, and show that for eah Muller ondition, atleast one of the players annot improve its memory through randomisation.2. De�nitionsWe onsider turn-based stohasti two-player Muller games. We reall here severallassial notions in the �eld, and refer the reader to [Tho95, deA97℄ for more details.Probability Distribution. A probability distribution γ over a set X is a funtion from Xto [0, 1] suh that ∑

x∈X γ(x) = 1. The set of probability distributions over X is denotedby D(X).Arenas. A 21
2 -player arena A over a set of olours C onsists of a direted �nite graph

(S,T ), a partition (SE ,SA,SR) of S, a probabilisti transition funtion δ : SR → D(S) suhthat δ(s)(t) > 0 ⇔ (s, t) ∈ T , and a partial olouring funtion χ : S ⇀ C. The states in SE(resp. SA, SR) are Eve's states (resp. Adam's states, random states), and are graphiallyrepresented as #'s (resp. 2, △). A 2-player arena is an arena where SR = ∅.A set U ⊆ S of states is δ-losed if for every random state u ∈ U∩SR, (u, t) ∈ T → t ∈ U .It is live if for every non-random state u ∈ U ∩ (SE ∪ SA), there is a state t ∈ U suh that
(u, t) ∈ T . A live and δ-losed subset U indues a subarena of A, denoted by A ↾ U .



RANDOM FRUITS ON THE ZIELONKA TREE 543Plays and Strategies. An in�nite path, or play, over the arena A is an in�nite sequene
ρ = ρ0ρ1 . . . of states suh that (ρi, ρi+1) ∈ T for all i ∈ N. The set of states ourringin�nitely often in a play ρ is denoted by Inf(ρ) = {s | ∃∞i ∈ N, ρi = s}. We write Ω for theset of all plays, and Ωs for the set of plays that start from the state s.A strategy with memory M for Eve on the arena A is a (possibly in�nite) transduer
σ = (M,σn, σu), where σn is the �next-move� funtion from (SE × M) to D(S) and σu isthe �memory-update� funtion, from (S × M) to D(M). Notie that both the move andthe update are randomised: strategies whose memory is deterministi are a di�erent, lessompat, model. The strategies for Adam are de�ned likewise. A strategy σ is pure if itdoes not use randomisation. It is �nite-memory if M is a �nite set, and memoryless if Mis a singleton. Notie that strategies de�ned in the usual way as funtions from S∗ to San be de�ned as strategies with in�nite memory: the set of memory states is S∗ and thememory update is σu(s,w) 7→ ws.One a starting state s ∈ S and strategies σ ∈ Σ for both players are �xed, the outomeof the game is a random walk ρσ,τ

s for whih the probabilities of events are uniquely �xed(an event is a measurable set of paths). For an event P ∈ Ω, we denote by Pσ,τ
s (P ) theprobability that a play belongs to P if it starts from s and Eve and Adam follow the strategies

σ and τ .A play is onsistent with σ if for eah position i suh that wi ∈ SE, Pσ,τ
w0

(ρi+1 = wi+1 |
ρ0 = w0 . . . ρi = wi) > 0. The set of plays onsistent with σ is denoted by Ωσ. Similarnotions an be de�ned for Adam's strategies.Traps and Attrators. The attrator of Eve to the set U , denoted AttrE(U), is the set ofstates where Eve an guarantee that the token reahes the set U with a positive probability.It is de�ned indutively by:

Attr0
E(U) = U

Attri+1
E (U) = Attri

E(U) ∪{s ∈ SE ∪ SR,∃t ∈ Attri
E(U) | (s, t) ∈ T }

∪{s ∈ SA | ∀t, (s, t) ∈ E ⇒ t ∈ Attri
E(U)}

AttrE(U) =
⋃

i>0 Attri
E(U)The orresponding attrator strategy to U for Eve is a pure and memoryless strategy

aU suh that for any state s ∈ SE ∩ (AttrE(U) \ U), s ∈ Attri+1
E (U) ⇒ aU (s) ∈ Attri

E(U).The dual notion of trap for Eve denotes a set from where Eve annot esape, unlessAdam allows her to do so: a set U is a trap for Eve if and only if ∀s ∈ U ∩ (SE ∪SR), (s, t) ∈
T ⇒ t ∈ U and ∀s ∈ U ∩ SA,∃t ∈ U, (s, t) ∈ T . Notie that a trap is a �strong� notion�the token an never leave it if Adam does not allow it to do so� while an attrator is a�weak� one �the token an avoid the target even if Eve uses the attrator strategy. Notiealso that a trap (for either player) is always a subarena.Winning Conditions. A winning ondition is a subset Φ of Ω. A play ρ is winning forEve if ρ ∈ Φ, and winning for Adam otherwise. We onsider ω-regular winning onditionsformalised as Muller onditions. A Muller ondition is determined by a subset F of thepower set P(C) of olours, and Eve wins a play if and only if the set of olours visitedin�nitely often belongs to F : ΦF = {ρ ∈ Ω|χ(Inf(ρ)) ∈ F}. An example of Muller game isgiven in Figure 1(a). We use it throughout the paper to desribe various notions and results.Winning Strategies. A strategy σ for Eve is surely winning (or sure) from a state s for thewinning ondition Φ if any play onsistent with σ belongs to Φ, and almost-surely winning(or almost-sure) if for any strategy τ for Adam, Pσ,τ

s (Φ) = 1. The sure and almost-sureregions are the sets of states from whih she has a sure (resp. almost-sure) strategy.
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a b(b) Zielonka Tree of FFigure 1: Reurring Example3. Former results in memory bounds and randomisation3.1. Pure strategiesThere has been intense researh sine the sixties on the non-stohasti setting, i.e. purestrategies and 2-player arenas. Bühi and Landweber showed the determinay of Mullergames in [BL69℄. Gurevih and Harrington used the LAR (Latest Appearane Reord) ofMNaughton to prove their Forgetful Determinay theorem [GH82℄, whih shows that amemory of size |C|! is su�ient for any game that uses only olours from C, even when thearena is in�nite. This result was later re�ned by Zielonka in [Zie98℄, using a representationof the Muller onditions as trees:De�nition 3.1 (Zielonka Tree of a Muller ondition). The Zielonka Tree ZF ,C of a winningondition F ⊆ P(C) is de�ned indutively as follows:(1) If C /∈ F , then ZF ,C = ZF ,C, where F = P(C) \ F .(2) If C ∈ F , then the root of ZF ,C is labelled with C. Let C1, C2, . . . , Ck be all themaximal sets in {U /∈ F | U ⊆ C}. Then we attah to the root, as its subtrees, theZielonka trees of F ↾ Ci, i.e. the ZF↾Ci,Ci
, for i = 1 . . . k.Hene, the Zielonka tree is a tree with nodes labelled by sets of olours. A node of ZF ,C isan Eve node if it is labelled with a set from F , otherwise it is an Adam node.A later analysis of this onstrution by Dziembowski, Jurdzinski and Walukiewiz in[DJW97℄ led to an optimal and asymmetrial bound on the memory needed by the playersto de�ne sure strategies:De�nition 3.2 (Number mF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,and ZF1,C1

,ZF2,C2
, . . . ,ZFk ,Ck

be the subtrees attahed to the root of the tree ZF ,C . Wede�ne the number mF indutively as follows:
mF =



















1 if ZF ,C does not have any subtrees,
max{mF1

,mF2
, . . . ,mFk

} if C /∈ F (Adam node),
k

∑

i=1

mFi
if C ∈ F (Eve node).Theorem 3.3 ([DJW97℄). If Eve has a sure strategy in a 2-player Muller game with thewinning ondition F , she has a pure sure strategy with at most mF memory states. Further-more, there is a 2-player arena AF suh that Eve has a sure strategy, but none of her surestrategies have less than mF memory states.



RANDOM FRUITS ON THE ZIELONKA TREE 545Theorem 3.4 ([Cha07b℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith the winning ondition F , she has a pure almost-sure with at most mF memory states.3.2. Memory redution through randomisationRandomised strategies are more general than pure strategies, and in some ases, they arealso more ompat. In [CdAH04℄, a �rst result showed that upward-losed onditions admitmemoryless randomised strategies, while they don't admit memoryless pure strategies:Theorem 3.5 ([CdAH04℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith an upward-losed winning ondition, she has a randomised almost-sure strategy.This result was later extended in [Cha07a℄, by removing the leaves attahed to a nodeof the Zielonka Tree representing an upward-losed subondition:De�nition 3.6 ([Cha07a℄). Let F ⊆ P(C) be a Muller ondition, and ZF1,C1

,ZF2,C2
, . . . ,

ZFk,Ck
be the subtrees attahed to the root of the tree ZF ,C . We de�ne the number mU

Findutively as follows:
mU
F =



























1 if ZF ,C does not have any subtrees,
1 if F is upward-losed,
max{mU

F1
,mU

F2
, . . . ,mU

Fk
} if C /∈ F (Adam node),

k
∑

i=1

mU
Fi

if C ∈ F (Eve node).Theorem 3.7 ([Cha07a℄). If Eve has an almost-sure strategy in a 21
2 -player Muller gamewith the winning ondition F , she has a randomised almost-sure strategy with at most mU

Fmemory states.4. Randomised Upper BoundThe upper bound of Theorem 3.7 is not tight for all onditions. For example, the number
mUF of the ondition F in Figure 1(b) is three, while there is always an almost-sure strategywith two memory states. We present here yet another number for any Muller ondition F ,denoted rF , that we ompute from the Zielonka Tree:De�nition 4.1 (Number rF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,where the root has k + l hildren, l of them being leaves. We denote by ZF1,C1

,ZF2,C2
, . . . ,

ZFk,Ck
the non-leaves subtrees attahed to the root of ZF ,C . We de�ne rF indutively asfollows:
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1 if ZF ,C does not have any subtrees,
max{1, rF1

, rF2
, . . . , rFk

} if C /∈ F (Adam node),
k

∑

i=1

rFi
if C ∈ F (Eve node) and l = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and l > 0.



546 FLORIAN HORNThe �rst remark is that if ∅ ∈ F , rF is equal to mF : as the leaves belong to Eve, thefourth ase annot our. In the other ase, the intuition is that we merge leaves if they aresiblings. For example, the number rF for our reurring example is two: one for the leaveslabelled bcd and acd, and one for the leaves labelled a and b. The number mF is four (onefor eah leaf), and mUF is three (one for the leaves labelled a and b, and one for eah otherleaf). This setion will be devoted to the proof of Theorem 4.2:Theorem 4.2 (Randomised upper bound). If Eve has an almost-sure strategy in a 2-1
2player Muller game with the winning ondition F), she has an almost-sure strategy withmemory rF .Let G = (F ,A) be a game de�ned on the set of olours C suh that Eve wins from anyinitial node. We desribe in the next three subsetions a reursive proedure to ompute analmost-sure strategy for Eve with rF memory states in eah non-trivial ase in the de�nitionof rF . We use two lemmas � Lemmas 4.3 and 4.5 � that derive diretly from similar resultsin [DJW97℄ and [Cha07b℄. The appliation of these priniples to the game G in Figure 1builds a randomised strategy with two memory states left and right. In left, Eve sends thetoken to (տ or ւ) and in right, to (ր or ց). The memory swithes from right to left withprobability one when the token visits a c, and from left to right with probability 1

2 at eahstep.4.1. C is winning for AdamIn the ase where Adam wins the set C, the onstrution of σ relies on Lemma 4.3:Lemma 4.3. Let F ⊆ P(C) be a Muller winning ondition suh that C /∈ F , and A be a21
2 -player arena suh that Eve wins everywhere. There are subarenas A1 . . .An suh that:

• i 6= j ⇒ Ai ∩ Aj = ∅;
• ∀i,Ai is a trap for Adam in the subarena A \ AttrE

(

∪i−1
j=1Aj

);
• ∀i, χ(Ai) is inluded in the label Ei of a hild of the root of ZF ,C, and Eve winseverywhere in (Ai,F ↾ Ei);
• A = AttrE(∪n

j=1Aj).Let the subarenas Ai be the ones whose existene is proved in this lemma. We denoteby σi the almost-sure strategy for Eve in Ai, and by ai the attrator strategy for Eve to Aiin the arena A \Attr(∪i−1
j=1Aj). We identify the memory states of the σi, so their union hasthe same ardinal as the largest of them. For a state s, if i = min{j | s ∈ Attr

E
(∪j

k=1Ak)},we de�ne σ(s,m) by:
• if s ∈ Ai� σu(s,m) = σu

i (s,m)� σn(s,m) = σn

i (s,m)
• if s ∈ AttrE(∪i

k=1Ak) \ Ai� σu(s,m) = m� σn(s,m) = ai(s)By indution hypothesis over the number of olours, we an assume that the strategies
σi have rFi

memory states. The strategy σ uses max{rFi
} memory states.Proposition 4.4. Pσ,τ

s0
(∃i, Inf(ρ) ⊆ Ai) = 1.



RANDOM FRUITS ON THE ZIELONKA TREE 547Proof. The subarenas Ai are embedded traps, de�ned in suh a way that the token anesape an Ai only by going to the attrator of a smaller one. Eve has thus a positiveprobability of reahing an Aj with j < i. Thus, if the token esapes one of the Ai in�nitelyoften, the token has probability one to go to an Aj with j < i. By argument of minimality,after a �nite pre�x, the token will stay in one of the traps forever.The strategy σi is almost-sure from any state in Ai. As Muller onditions are pre�x-independent, it follows from Proposition 4.4 that σ is also almost-sure from any state in
A.4.2. C is winning for Eve, and the root of ZF ,C has no leaves among its hildren.In this ase, the onstrution relies on the following lemma:Lemma 4.5. Let F ⊆ P(C) be a Muller winning ondition suh that C ∈ F , A a 21

2 -playerarena oloured by C suh that Eve wins everywhere, and Ai the label of a hild of the root in
ZF ,C. Then, Eve wins everywhere on the subarena A\AttrE(χ−1(C \Ai)) with the ondition
F ↾ Ai.Eve has a strategy σi that is almost-sure from eah state in A \ AttrE(χ−1(C \ Ai)).In this ase, the set of memory states of σ is M = ∪k

i=1(i × M i). The �next-move� and�memory-update� funtions σn and σu for a memory state m = (i,mi) are de�ned below:
• if s ∈ χ−1(C \ Ai)� σu(s, (i,mi)) = (i + 1,mi+1) where mi+1 is any state in M i+1� if s ∈ SE, σn(s, (i,mi)) is any suessor of s in A
• if s ∈ AttrE(χ−1(C \ Ai))� σu(s, (i,mi)) = (i,mi)� σn(s, (i,mi)) = ai(s)
• if s ∈ A \ AttrE(χ−1(C \Ai))� σu(s, (i,mi)) = (i, σu

i (s,mi))� σn(s, (i,mi)) = σn

i (s,m
i)One again, we an assume that the memory Mi of the strategy σi is of size rF↾Ai

. Here,however, the memory set of σ is the disjoint union of the Mi', so σ's needs the sum of the
{rF↾Ai

}'s.Proposition 4.6. Let uc be the event �the top-level memory of σ is ultimately onstant�.Then, Pσ,τ
s0

(ρ ∈ ΦF | uc) = 1.Proof. We all i the value of the top-level memory at the limit. After a �nite pre�x, the tokenstops visiting χ−1(C \Ai). Thus, with probability one, it also stops visiting AttrE(χ−1(C \
Ai)). From this point on, the token stays in the arena Ai, where Eve plays with the almost-sure strategy σi. Thus, Pσ,τ (ρ ∈ ΦF↾Ai

| uc) = 1, and, as ΦF↾Ai
⊆ ΦF , Proposition 4.6follows.Proposition 4.7. If the top-level memory takes eah value in 1 . . . k in�nitely often, thensurely, ∀i ∈ 1 . . . k, χ(Inf(ρ)) * Ai.Proof. The update on the top-level memory follows a yle on 1 . . . k, leaving i only whenthe token visits χ−1(C \Ai). Thus, in order for the top-level memory to hange ontinuously,the token has to visit eah of the χ−1(C \Ai) in�nitely often. Proposition 4.7 follows.



548 FLORIAN HORN4.3. C is winning for Eve, and the root of ZF ,C has at least one leaf in its hildren.As in the previous setion, the onstrution relies on Lemma 4.5. In fat, the on-strution for hildren whih are not leaves, labelled A1, . . . , Ak, is exatly the same. Thedi�erene is that we add here a single memory state �0� that represents all the leaves (la-belled A−1, . . . , A−l). The memory states are thus updated modulo k+1, and not modulo k.The �next-move� funtion of σ when the top-level memory is 0 is an even distribution overall the suessors in A of the urrent state. The �memory-update� funtion has probability
1
2 to stay into 0, and 1

2 to go to (1,m1), for some memory state m1 ∈ M1. Thus, σ usesmemory ∑k
i=1 rFi

+ 1. We prove now that σ is almost-sure. The struture of the proof isthe same as in the former setion, with some extra onsiderations for the memory state 0.Proposition 4.8. Let uc be the event �the top-level memory of σ is ultimately onstant anddi�erent from 0�. Then, Pσ,τ
s (ρ ∈ ΦF | uc) = 1.Proof. The proof is exatly the same as the one of Proposition 4.6.Proposition 4.9. The event �the top-level memory is ultimately onstant and equal to 0�has probability 0.Proof. When the top-level memory is 0, the memory-update funtion has probability 1

2 ateah step to swith to 1. Proposition 4.9 follows.Proposition 4.10 onsiders the ase where the top-level memory evolves ontinuously.By de�nition of the memory update, this an happen only if all the memory states arevisited in�nitely often.Proposition 4.10. Let ec be the event �the top-level memory takes eah value in 0 . . . kin�nitely often�. Then, ∀i ∈ −l . . . k, Pσ,τ
s (χ(Inf(ρ)) ⊆ Ci | ec) = 0.Proof. As in the proof of Proposition 4.7, from the fat that the memory is equal to eah ofthe i ∈ 1 . . . k in�nitely often, we an dedue that the token surely visits eah of the C \ Aiin�nitely often. We only need to show that, with probability one and for any j ∈ 1 . . . l,the set of limit states is not inluded in A−j . The Zielonka Trees of the onditions F ↾ A−jare leaves. This means that they are trivial onditions, where all the plays are winning forAdam. Consequently, in this ase, Lemma 4.5 guarantees that AttrE(χ−1(C \ A−j)) is thewhole arena. The de�nition of σ in the memory state (0) is to play legal moves at random.There is thus a positive probability that Eve will play aording to the attrator strategy ajlong enough to guarantee a positive probability that the token visits χ−1(C \ A−j). To bepreise, for any s ∈ S, this probability is greater than (2 · |S|)−|S|. Thus, with probabilityone, the token visits eah χ−1(C \A−j) in�nitely often. Proposition 4.10 follows.The initial ase, where the Zielonka tree is redued to a leaf, is trivial: the winner doesnot depend on the play. Thus, Theorem 4.2 follows from Setions 4.1, 4.2, and 4.3.5. Lower BoundIn this setion, we onsider lower bounds on memory, i.e. if we �x a Muller ondition Fon a set of olours C, the minimal size of the memory set that is enough to de�ne randomisedalmost-sure strategies for Eve on any arena oloured by the set C. In his thesis, Majumdarshowed the following theorem:



RANDOM FRUITS ON THE ZIELONKA TREE 549Theorem 5.1 ([Maj03℄). For any set of olours C, there is a 2-player Muller game GC =
(AC ,FC) suh that Eve has an almost sure, but none of her almost-sure strategies have lessthan |C|

2 ! memory states.However, this is a general lower bound on all Muller onditions, while we aim to �ndspei� lower bounds for eah ondition. We prove here that there is a lower bound for eahMuller ondition that mathes the upper bound of Theorem 4.2:Theorem 5.2. Let F be a Muller ondition on C. There is a 2-player arena AF over Csuh that Eve has a sure strategy, but none of her almost-sure strategies have less than rFmemory states.As the onstrution of the upper bound was based on the Zielonka tree, the lower boundis based on the Zielonka DAG :De�nition 5.3. The Zielonka DAG DF ,C of a winning ondition F ⊆ P(C) is derived from
ZF ,C by merging the nodes whih share the same label.5.1. Cropped DAGsThe relation between rF and the shape of DF ,C is asymmetrial: it depends diretly onthe number of hildren of Eve's nodes, and not at all on the number of hildren of Adam'snodes. The notion of ropped DAG is the next logial step: a sub-DAG where Eve's nodeskeep all their hildren, while eah node of Adam keeps only one hild:De�nition 5.4. A DAG E is a ropped DAG of a Zielonka DAG DF ,C if and only if

• The nodes of E are nodes of DF ,C , with the same owner and label.
• There is only one node without predeessor in E , whih we all the root of E . It isthe root of DF ,C , if it belongs to Eve; otherwise, it is one of its hildren.
• The hildren of a node of Eve in E are exatly its hildren in DF ,C .
• A node of Adam has exatly one hild in E , hosen among his hildren in DF ,C ,provided there is one. If it has no hildren in DF ,C , it has no hildren in E .Cropped DAG resemble Zielonka DAGs: the nodes belong to either Eve or Adam, andthey are labelled by sets of states. We an thus ompute the number rE of a ropped DAG

E in a natural way. In fat, this number has a more intuitive meaning in the ase of roppedDAGs: if the leaves belong to Eve, it is the number of branhes; if Adam owns the leaves, itis the number of branhes with the leaf removed. Furthermore, there is a diret link betweenthe ropped DAGs of a Zielonka DAG DF ,C and the number rF :Proposition 5.5. Let F be a Muller ondition on C, and DF ,C be its Zielonka DAG. Thenthere is a ropped DAG E∗ suh that rE∗ = rF .5.2. From ropped DAGs to arenasFrom any ropped DAG E of DF ,C , we de�ne an arena AE whih follows roughly thestruture of E : the token starts from the root, goes towards the leaves, and then restartsfrom the root. In her nodes, Eve an hoose to whih hild she wants to go. Adam's hoies,on the other hand, onsists in either stopping the urrent traversal or allowing it to proeed.We �rst present two �maros�, depending on a subset of C:
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• in Pick∗(C), Adam an visit any subset of olours in C;
• in Pick(D), he must visit exatly one olour in D.Both are represented in Figure 2, and they are the only oasions where olours are visitedin AE : all the other states are olourless.

c1 ci ck
· · · · · ·

C = {c1 . . . ck}(a) Pick∗(C)

d1 di dk· · · · · ·

D = {d1 . . . dk}(b) Pick(D)Figure 2: Pick∗(C) and Pick(D)Eve's states in the arena AE are in bijetion with her nodes in E . Adam's nodes, on theother hand, are in bijetion with the pairs parent-hild of E , where the parent belongs toEve and the hild to Adam.In the state orresponding to the node n, Eve an send the token to any state of theform n − c. In states orresponding to leaves, Eve has no deision to take, and Adam anvisit any olours in the label of the leaf (Pick∗ proedure). The token is then sent bak tothe root.Adam's moves do not involve the hoie of a hild: by De�nition 5.4, Adam's nodes in
E have but one hild. Instead, he an either stop the urrent traversal, or, if the urrentnode is not a leaf, allow it to proeed to its only hild. If he hooses to stop, Adam has tovisit some oloured states before the token is sent bak to the root. The available hoiesdepend on the labels of both the urrent and the former nodes � whih is why there areas many opies of Adam's nodes in AE as they have parents in E . If the parent is labelledby E, and the urrent node by A, the token goes through Pick∗(E) and Pick(E \A). Adaman thus hoose any number of olours in E, as long as he hooses at least one outside of A.

E

A

E′

E

E − A

E′

Pick∗(E)

Pick(E \ A)root(a) Edge �E� - �A� when �A� is a node E

A

Pick∗(E)

Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFigure 3: Adam's states in AE .5.3. Winning strategy and branh strategiesWe �rst desribe a sure strategy ς for Eve in the game (AE ,F). Its memory states arethe branhes of E , and do not hange during a traversal. If the urrent memory state is
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b = E1A1 . . . Eℓ(Aℓ), Eve's moves follow the branh b: in Ei, she goes to Ei − Ai. WhenAdam stops the traversal at the ith step, Eve updates her memory as follows:

• If Ei has zero or one hild in E , the memory is unhanged;
• otherwise, the new memory branh has E1A1 . . . EiA as a pre�x, where A is the nexthild of Ei, or the �rst one if Ai was the last.Proposition 5.6. The strategy ς is surely winning for Eve in the game (AE ,F).Proof. Let ρ be a play onsistent with ς. We denote by i the smallest integer suh thattraversals stops in�nitely often at the ith step. After a �nite pre�x, the �rst 2i− 1 nodes inthe memory branh are onstant, and we denote them by E1A1E2 . . . Ei. From this pointon, the olours visited belong to Ei. Furthermore, eah time a traversal stops at step i, astate is visited outside of the urrent Ai, whih hanges afterwards to the next, in a irularway. It follows that Inf(ρ) ⊆ Ei, and, for any hild A of Ei in E , Inf(ρ) * A. Thus ρ iswinning for Eve. Proposition 5.6 follows.Obviously, Adam has no winning strategy in AE . However, we desribe the lass ofbranh strategies, whose point is to punish any attempt of Eve to win with less than rFmemory states. There is one suh strategy τb for eah branh b in E (whene the name),and the priniple is that τb stops the traversal as soon as Eve deviates from b:De�nition 5.7. The branh strategy τb for Adam in AE , orresponding to the branh

b = E1A1E2 . . . Eℓ(Aℓ) in E , is a positional strategy whose moves are desribed below.
• In a state E −A suh that ∃i, E = Ei ∧A 6= Ai: stop the traversal and visit Ai;
• in a state E −A suh that ∃i, E = Ei ∧A = Ai: send the token to Ei+1;
• in the state Eℓ −Aℓ, or the leaf Eℓ: visit the olours of Eℓ.No move is given for a state E−A suh that ∀i, E 6= Ei, as these states are not reahablefrom the root when Adam plays τb. Notie also that when Adam hooses to stop a traversalin a state Ei − A, he an visit exatly the olours of Ai: as A and Ai are maximal subsetsof Ei, there is at least one state in Ai \A that he an pik in the Pick(Ei \A) area.5.4. Winning against branh strategiesThe key idea of the proof of Theorem 5.2 is that if two branhes b and b′ of E are toodi�erent, Eve needs di�erent memory states to win against τb and τb′ .Proposition 5.8. Let σ = (M,σn, σu) be an almost-sure strategy for Eve in (AE ,F). Then

σ has memory at least rE .Proof. Let b = E1A1 . . . Eℓ(Aℓ) be a branh of E and τb be the orresponding branh strategyfor Adam. By de�nition of τb, the set of olours visited in a traversal onsistent with τb isone of the Ai's, or Eℓ if and only if Eve plays along b. As σ is almost-sure, there must be amemory state m suh that Eve has a positive probability to play along b. It is also neessaryto ensure that none of the Ai's is visited in�nitely often, with the possible exeption of Aℓ.So, if Eve has a positive to play along a branh b′ when she is in the memory state m,
E1A1 . . . Eℓ must be a pre�x of b′. It follows that a single memory state an be suitableagainst two strategies τb and τb′ with b = E1A1 . . . Eℓ(Aℓ) and b′ = E′

1A
′
1 . . . E′

ℓ′(A
′
ℓ′) onlyif ℓ = ℓ′ and ∀i ≤ ℓ,Ei = E′

i. By De�nition 4.1, the underlying equivalene relation has rEequivalene lasses. Proposition 5.8 follows.



552 FLORIAN HORNBy Proposition 5.5, there is a ropped DAG E of DF ,C suh that rE = rF . So, ingeneral, Eve needs randomised strategies with memory rF in order to win games whosewinning ondition is F . This ompletes the proof of Theorem 5.2.6. ConlusionWe have provided better and tight bounds for the memory needed to de�ne almost surewinning randomised strategies. This allows us to haraterise the lass of Muller onditionswhih admit randomised memoryless strategies:Corollary 6.1. Eve admits randomised memoryless almost-sure strategies for a Muller on-dition F if and only if all her nodes in ZF ,C have either one hild, or only leave hildren.This yields a NP algorithm for the winner problem of suh games, as solving 11
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Abstract. The ambiguity of a nondeterministic finite automaton (NFA) N for input size
n is the maximal number of accepting computations of N for an input of size n. For all
k, r ∈ N we construct languages Lr,k which can be recognized by NFA’s with size k·poly(r)

and ambiguity O(nk), but Lr,k has only NFA’s with exponential size, if ambiguity o(nk)
is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long
standing open problem (Ravikumar and Ibarra, 1989, Leung, 1998).

1. Introduction

The ambiguity of an NFA N measures the degree of nondeterminism employed by N
as a function of the input size: let ambigN (x) be the number of accepting computations of
N on input x and define

ambigN (n) = max{ambigN (x) : x ∈ Σn}
to be the ambiguity of N . There are related complexity measures such as the advice and
the leaf complexity of N . To describe their definition let TN (x) be the computation tree of
N on input x. Then adviceN (x) is the maximum, over all paths in TN (x) from the root to
a leaf, of the number of nodes with at least two children and

adviceN (n) = max{adviceN (x) : x ∈ Σn}
is the advice complexity of N . The leaf complexity of N determines the maximal number
of computations for inputs of length n. Thus, if leafN (x) is the number of leaves of TN (x),
then

leafN (n) = max{leafN (x) : x ∈ Σn}.
For a minimal NFA N these measures are related as follows [2]

adviceN (n), ambigN (n) ≤ leafN (n) = O(adviceN (n) · ambigN (n))
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and, since adviceN (n) is at most linear, leaf complexity and ambiguity are polynomially
related, provided both are at least linear. Since leaf complexity is either bounded by a
constant or at least linear but polynomially bounded, or otherwise exponential in the in-
put length, we obtain that ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential [2].

Advice and leaf complexity are rather coarse measures, since advice and leaf complexity
of an unambiguous NFA may be linear. Ambiguity on the other hand also influences the
tractability of algorithmic questions. For instance, for any fixed k ∈ N it can be determined
efficiently whether two NFA’s of ambiguity at most k are equivalent, resp. whether the
ambiguity of a given NFA is at most k [7].

How large is the decrease in conciseness, i.e., the increase in the number of states, if
ambiguity is restricted? To study this question, four classes of NFA’s, namely UNA (unam-
biguous nondeterministic automata), FNA (finitely ambiguous NFA), PNA (polynomially
ambiguous NFA) and ENA (exponentially ambiguous NFA) are introduced in [6]. The
classification into FNA’s, PNA’s or ENA’s can be performed efficiently [8].

Remember that the ambiguity of an NFA N is either at least exponential or at most
polynomial and hence an NFA is either a PNA or an ENA. Leung [4] shows that there are
ENA’s Nn with n states such that any equivalent PNA has at least 2n − 1 states. Hence
ENA’s can be far more succinct than PNA’s. Subsequently a similar result, applicable to a
larger class of languages, was shown in [2] by using methods of communication complexity.
In particular, the conciseness problem for PNA’s can be reduced to the following commu-
nication result for the iterated language of non-disjointness. Let Σr be the alphabet of all
subsets of {1, . . . , r32} of size r and set

Lr = {xy|x, y ∈ Σr and x ∩ y 6= ∅}.
Thus (Lr)

t consists of all strings x1y1 · · · xtyt where all pairs xiyi correspond to overlapping
subsets. We assume the standard communication model with two players, Alice and Bob,
where Alice receives x1 · · · xt and Bob receives y1 · · · yt. (Observe that (Lr)

t has small NFA’s
with poly(r + t) states.)

Fact 1.1. ([3], pages 51-53). Let r, t ∈ N be arbitrary. If a deterministic protocol D accepts
only strings from (Lr)

t and if at most 2α·r·t messages are exchanged, then D accepts at most
|(Lr)

t|/2α·t strings from (Lr)
t. (α is a sufficiently small constant).

Of particular interest are FNA’s, for instance since their equivalence problem is effi-
ciently solvable. However a separation of FNA’s and PNA’s has remained open for almost
twenty years [4, 6]. We are able to show such a separation and even prove a hierarchy result
for polynomial ambiguity. To describe our result we introduce the languages used in the
separation. For a language L of strings of identical length define

∃k(L) = {w1w2 · · ·wm | m ∈ N and wi ∈ L for at least k different positions}.
Thus the input is partitioned into blocks of identical length and an input is accepted iff at
least k blocks belong to the finite set L. Now assume that L can be recognized by a small
NFA N . Since L is a finite set, we can recognize ∃k(L) by an NFA with ambiguity O(nk),
if we increase the size of N by at most the factor k.

How should the languages L look like? In a first attempt set L = {uv | u, v ∈ {0, 1}r , u 6=
v} as the language of inequality between r-bit strings. Then L is recognizable by an NFA
with poly(r) states and (bounded) ambiguity r. But ∃1(L) is also recognizable with poly(r)
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states and ambiguity r: guess a position i ∈ {1, . . . , r} and accept u1v1 · · · umvm if uj
i 6= vj

i
for some 1 ≤ j ≤ r.

What went wrong? Few advice bits suffice and these advice bits can be remembered.
In our second (and successful) attempt we therefore set L = (Lr)

t, where we work with the
iterated language of non-disjointness from Fact 1.1. This construction has two advantages.
Firstly, L has a small NFA. Secondly, at least intuitively, the number of guesses required
for L increases exponentially with t and hence a small NFA’s for ∃1(Lr) cannot remember
sequences of t guesses. Our main result verifies this intuition.

Theorem 1.2. Let r ∈ N be arbitrary. Set t = r1/3 and L = (Lr)
t. Any NFA for ∃k(L)

with ambiguity o(nk) has at least 2Ω((r/k2)1/3) states. However, ∃k(L) can be recognized by
an NFA with ambiguity O(nk) and size k · poly(r).

Observe that we have obtained the claimed separation of FNA’s and PNA’s for k = 1,
but Theorem 1.2 also establishes a hierarchy of polynomial ambiguity.

2. A Proof Sketch

We start by proving Theorem 1.2 for k = 1. Let L = (Lr)
t and assume that the NFA

N recognizes ∃1(L) with sublinear ambiguity. Observe that all strings in L have length 2t
and hence strings in ∃1(L) have blocks of identical length 2t. We set K = Σ2t

r , where Σr is
the alphabet of Lr. Finally set

∃=0(L) = {w1w2 · · ·wm : m ∈ N and wi ∈ K \ L for all i }.
Thus, as in the definition of ∃1(L), the input is partitioned into blocks and an input is
accepted iff no block belongs to the finite set L. The computationally hardest task for the
NFA N is to separate ∃=0(L) from ∃1(L).

The critical part of the argument is to exploit the limitation of sublinear ambiguity.
Let Q be the set of states of N . In Section 3 we construct states p0, p1 ∈ Q such that at
least |L|/|Q|2 strings in L have a computation starting in p0 and ending in p1. Moreover
we show in Lemma 3.3 that for any string z′ ∈ K \ L there is a string u ∈ ∃=0(L) such
that strings S(z′) with period z′u can be “stored” in a “launching cycle” before reaching

p0 and in a “storage cycle” after leaving p1. The launching cycle has the form r
(z′u)a

→ r

and allows to reach p0 via a computation r
(z′u)a1→ p0; analogously the storage cycle is built

from computations p1
(uz′)a2→ s and s

(uz′)a

→ s. So far the launching cycle is harmless, since
it delivers strings in ∃=0(L) to state p0, but these strings cannot use computations from p0

to p1 which may be reserved for strings in L. However, if a single occurrence of z′ within
S(z′) is replaced by an impostor string z ∈ L and if the launching cycle does not detect the
replacement, then N is forced into linear ambiguity, provided the impostor z can also hide
at a matching position within the storage cycle (see Lemma 3.4).

Thus the NFA N has to solve the “detection problem”, namely it has to detect whether
an impostor z ∈ L has replaced an occurrence of z′ ∈ K \ L in both cycles. The detection
problem is set up in such a way that

- at least |L|/|Q|2 strings from L are accepted, namely those strings z ∈ L with a

computation p0
z→ p1, and
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- all strings z which for some z′ ∈ K \ L survive in matching positions within both
cycles are rejected. In particular, all strings in K \ L are rejected, since a string
z ∈ K \ L is its own impostor.

Observe that no string z is simultaneously accepted as well as rejected, since all impostors
have to be detected. N may try to solve the detection problem unconventionally for instance
by allowing a potential impostor z to survive undetected within the launching and storage
cycle, but not allowing z to survive in matching positions within both cycles. Also N does
not have to solve the detection problem completely, since it can tolerate an impostor z

without a computation p0
z→ p1.

We then simulate N in Section 4 by a nondeterministic communication protocol which
rejects all strings in K \L, accepts at least |L|/|Q|2 strings in L and does not simultaneously
accept and reject a string in K \ L (see Lemma 4.1). Thus we have reduced the problem
of avoiding linear ambiguity for NFA’s recognizing ∃1(L) to a communication problem in
which a rather small minority of strings in L has to be separated from all of K \ L. We
show in Lemma 5.1 how to transform such a nondeterministic protocol into a deterministic
protocol by increasing the number of messages only subexponentially. We are left with a
deterministic protocol which rejects all strings in K \L and accepts at least |L|/|Q|2 strings
in L. Finally the argument concludes with an application of Fact 1.1. Thus, as in the case of
exponential ambiguity, we again have reduced the conciseness problem to an investigation of
deterministic protocols which recognize a “small, but significant chunk” of a given product
language.

The general case of ambiguity O(nk) is tackled in Section 6. Showing the existence
of launching and storage cycles has now become a more complex problem. Previously it
was sufficient that the periodic string S(z) was “living” in the one launching and the one
storage cycle. Now we have to work with a vector p0, p1, . . . , p2k−2, p2k−1 of states and have
to move S(z) to p0 and all the way from p2i+1 to p2(i+1) for all i = 0, . . . k − 2 and finally
from p2k−1 to an accepting state.

3. From Automata to Communication

We begin by utilizing the special structure of the languages ∃1(L).

Definition 3.1. Let N be an NFA for ∃1(L) with initial state q0. Let p be an arbitrary
state of N .

(a) We say that a string v ∈ ∃=0(L) reaches state p iff there is a string u ∈ ∃=0(L) and
a computation for u · v which starts in q0 and ends in p. Moreover state p accepts

v ∈ ∃=0(L) iff there is a string w ∈ ∃=0(L) and an accepting computation for v · w
starting in p.

(b) A pair (p0, p1) of states of N is critical for the pair (ξ0, ξ1) ∈ ∃=0(L) × ∃=0(L) iff
all strings in ∃=0(L) · ξ0 reach p0 and all strings in ξ1 · ∃=0(L) are accepted by p1.

Our next goal is to construct a pair (ξ0, ξ1) ∈ ∃=0(L)×∃=0(L) such that for all strings
uξ0zξ1w ∈ ∃=0(L) ·(ξ0 ·L ·ξ1) ·∃=0(L) acceptance is “decided” by critical pairs. In particular

we construct (ξ0, ξ1) such that there are accepting computations of the form q0
uξ0→ p0

z→
p1

ξ1w→ qf for a final state qf and a critical pair (p0, p1) for (ξ0, ξ1). The crucial advantage of
a critical pair is that all strings in ∃0(L) ·ξ0 reach p0 and all strings in ξ1 ·∃0(L) are accepted



AMBIGUITY AND COMMUNICATION 557

by p1; in particular, there is no transition p0
z→ p1 for a string z ∈ ∃0(L) and acceptance is

indeed decided by (p0, p1).

Lemma 3.2. Let N be an NFA for ∃1(L). Then there are strings ξ0, ξ1 ∈ ∃=0(L) such that
⋃

(p0,p1) is critical for (ξ0,ξ1)

{z ∈ L | p0
z→ p1} = L.

Proof. We process the states of N in two phases. In the first phase we construct a string
ξ0 ∈ ∃=0(L) such that each state p is either alive for ξ0 (i.e., all strings in ∃=0(L) · ξ0 reach
p) or dead for ξ0 (i.e., no string in ∃=0(L) · ξ0 reaches p). The construction process proceeds
iteratively by processing all states p of N in an arbitrary order. We begin by setting ξ0 = ǫ.
When processing state p we differentiate two cases.

Case 1: All strings in ∃=0(L) · ξ0 reach p. We do not modify ξ0. Observe that p is
alive for ξ0 and stays alive for any string in ∃=0(L) with suffix ξ0.

Case 2: There is a string ξ ∈ ∃=0(L) such that ξ · ξ0 does not reach p. The string
ξ · ξ0 does not reach p and hence no string in ∃=0(L) · ξ · ξ0 has a computation beginning in
the starting state q0 and ending in p. We replace ξ0 by ξ · ξ0 and p is dead for ξ0, but also
dead for any string in ∃=0(L) with suffix ξ0. Also observe that any already processed state
q stays alive, resp. remains dead.

In the second phase we proceed completely analogously, but now construct a string
ξ1 ∈ ∃=0(L) such that each state p is either alive for ξ1 (i.e., p accepts all strings in
ξ1 · ∃=0(L)) or dead for ξ1 (i.e., p does not accept any string in ξ1 · ∃=0(L)).

Now consider any string s = ξ0zξ1 in M = ξ0 · L · ξ1. Observe that M is a subset of
∃1(L). However ξ0 cannot reach a dead state for ξ0 and ξ1 cannot be accepted by a dead

state for ξ1. Thus any accepting computation for s has to utilize a transition p0
z→ p1

between alive states p0 for ξ0 and p1 for ξ1. But any pair (p0, p1) of alive states is a critical
pair and we are done.

From now on we fix a pair (ξ0, ξ1) ∈ ∃=0(L)× ∃=0(L) for which Lemma 3.2 holds. Let
(p0, p1) be an arbitrary critical pair for (ξ0, ξ1). We now utilize that all strings in ∃=0(L) ·ξ0

reach p0 and all strings in ξ1 · ∃=0(L) are accepted by p1.

Lemma 3.3. For all strings z ∈ K \ L there are states r, s, integers a ≥ 1, a1, a2 (with
a1 + a2 ≤ a) and a string u ∈ ∃=0(L) as well as computations

r
(zu)a

→ r
(zu)a1→ p0 and (3.1)

p1
(uz)a2→ s

(uz)a

→ s. (3.2)

Proof. We consider all strings of the form

α(z) = (zξ1ξ0)
|Q| and β(z) = (ξ1ξ0z)|Q|.

The string α(z) has suffix ξ0 and hence α(z) reaches p0. As a consequence there is ξ ∈ ∃=0(L)
and a computation C for ξ · α(z) which begins in the initial state q0 and reaches p0. After
reading ξ, computation C processes α(z) and produces a sequence of |Q|+ 1 states, where
we list all states before reading a copy of zξ1ξ0, resp. after reading the last copy. A state

r of N appears twice in this sequence and we obtain a transition of the form r
(zξ1ξ0)a

→ r for
a ≥ 1. Finally C, starting in r, reaches p0 after reading the remaining a1 copies.

To establish (3.1), we set u = ξ1ξ0 and obtain transitions r
(zu)a

→ r and r
(zu)a1→ p0. Thus

(3.1) follows. Part (3.2) is established by a similar argument, but now applied to β(z). This
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time we get transitions p1
(uz)a2→ s and s

(uz)b

→ s. But then r
(zu)ma

→ r as well as s
(uz)m′b

→ s are
transitions for any multiples m,m′ ≥ 1 and the claim follows, if we replace both a and b by
ab(a1 + a2) ≥ a1 + a2.

Let (p0, p1) be a critical pair for (ξ0, ξ1). We now introduce the detection problem
for (p0, p1) in which strings in L have to be “weakly” separates from strings in K \ L. It
turns out that any NFA N for ∃1(L) solves the detection problems for all critical pairs,
provided N has ambiguity o(n). Since we show later that N can be efficiently simulated by
a communication protocol –with communication resources related to the number of states–
and that the detection problem is hard for communication complexity, N must have many
states. The detection problem of (p0, p1) has the following form:

(a) Accept a string z ∈ K iff there is a computation p0
z→ p1 of N . Remember that for

no z ∈ K \ L there is a computation

q0
ξξ0→ p0

z→ p1
ξ1ξ′→ qf

with the initial state q0, a final state qf and strings ξ, ξ′, ξ0, ξ1 ∈ ∃=0(L). Hence no
string z ∈ K \ L is accepted.

(b) Reject a string z ∈ K iff there are states r, r′, r′′, s, s′, s′′, integers a ≥ 1, a1, a2 (with
a1 + a2 ≤ a) and strings u ∈ ∃=0(L), z′ ∈ K \ L with computations

r
(z′u)a1→ r′

zu→ r′′
(z′u)a−a1−1

→ r
(z′u)a1→ p0 and (3.3)

p1
(uz′)a2→ s

(uz′)a−a2−1

→ s′
uz→ s′′

(uz′)a2→ s. (3.4)

(The computations (3.3) and (3.4) will be used later to define a launching and
storage cycle respectively. It turns out that z is placed within matching positions
of the z′u- and uz′-cycle and hence z plays the role of an impostor of z′.)

(c) z ∈ K is left undecided iff z is neither accepted nor rejected.

To explain the purpose of these transitions consider the string

S1 = [zu · (z′u)a−1] · [zu · (z′u)a−1].

If we process the first half zu ·(z′u)a−1 of S1 starting in state r′, then there is a computation
C0 of the form

r′
zu→ r′′

(z′u)a−a1−1

→ r
(z′u)a1→ r′

as well as a computation C1 from r′ to p0 according to (3.3). When reading the second half
of S1, computation C0 splits into a computation C00 which goes full circle reaching state r′

again and a computation C01 which reaches p0 after completely reading S1. Now assume

that there is a transition p0
z→ p1. Computation C1 has reached p0 after reading the first

half of S1 and now reads the second half zu · (z′u)a−1 = z · (uz′)a−1 ·u of S1. It travels from
p0 to p1 and subsequently reaches state s′′, if additionally the string z is read. We have
been successful

(1) in “storing” a mother computation via computation C00 in state r′,
(2) preparing for a new “launch” in state p0 via computation C01 and
(3) ”storing” offspring computations in state s′′ via computation C1.

We utilize properties (1)-(3) by defining a sequence (Sm | m ≥ 1) with many computations,
namely we set

Sm+1 = Sm · [zu · (z′u)a−1] = Sm · [z · (uz′)a−1 · u].
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Assume inductively that there are computations for Sm which have reached the states r′ and
p0 respectively and a computation for Sm · z which has reached s′′. After reading the suffix
zu · (z′u)a−1 of Sm+1, the computation starting in r′ has split into a computation reaching
r′ again and a computation reaching p0, whereas the freshly launched computation reaches
s′′ from p0 after reading Sm+1 · z. Observe that all previously launched computations go
full circle after reading (uz′)a−1 · uz and again have reached state s′′. As a consequence,
there are m distinct computations for Smz all reaching state s′′ at the same time.

We say that N has no redundant states, if each state is part of some accepting compu-
tation of N . Which strings are rejected and which strings are accepted?

Lemma 3.4. Let N be an NFA recognizing ∃1(L) without redundant states. Also assume
that N has ambiguity o(n).

(a) Consider the detection problem of an arbitrary critical pair (p0, p1). Then all strings
in K \ L are rejected and no string in K is simultaneously accepted and rejected.

(b) Each string in L is accepted in the detection problem of some critical pair.

Proof. (a) We observe first that every string z ∈ K \ L is rejected. Why? We may choose
z′ = z and the transitions required in (3.3) and (3.4) exist as a consequence of Lemma 3.3:
the states r′, r′′ and s′, s′′ belong to the r-cycle and the s-cycle respectively.

Now assume that there is a string z ∈ K which is accepted and rejected. Since z is

accepted, there is a computation p0
z→ p1. Also, since z is rejected, there are computations

of the form (3.3) and (3.4). Thus we may construct the strings Smz for every m and obtain
m distinct computations which, starting from state r′, reach state s′′ at the same time. But
N does not have redundant states and each state, and in particular state r′, is reachable
from the initial state. Also each state, and in particular state s′′, can reach an accepting
state. Thus there are strings ξ0, ξ1 such that ξ0 · Smz · ξ1 has m accepting computations.
But Smz is a string with length linear in m and hence N has at least linear ambiguity.

(b) follows from part (a), if we apply Lemma 3.2.

4. The Communication Problem

We show that the detection problem has an efficient communication protocol, provided
a small NFA N with ambiguity o(n) recognizes ∃1(L). Remember that L = (Lr)

t and
K = Σ2t

r . We work with the conventional two-party communication model consisting of two
players Alice and Bob. If x1y1 · · · xtyt is the input of N , then Alice receives x1 · · · xt and Bob
receives y1 · · · yt as their respective inputs. Alice and Bob communicate nondeterministically
with computations either being accepting, rejecting or undecided. We say that an input is
accepted if at least one computation is accepting, rejecting if at least one computation is
rejecting and undecided if all computations are undecided. (Thus undecided computations
play the role of rejecting computations for conventional nondeterminism.) Observe that we
allow to simultaneously accept and reject an input.

Now assume that the NFA N recognizes ∃1(L). Let q, q∗ be two states of N and let
z ∈ K be an input string. Our first goal is to determine whether N has a computation for
z starting in q and ending in q∗. Set q0 = q. Beginning with i = 1, Alice simulates N for
input xi by starting in state qi−1 and sends state q′i, if q′i is reached. Bob simulates N for
input yi by starting in state q′i and sends state qi, if qi is reached. In the last round Bob
accepts if additionally qs = q∗ holds and otherwise outputs “undecided”. Obviously the
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simulating protocol exchanges at most |Q|2t messages. It has an accepting computation iff

N has a computation q
z→ q∗ and otherwise leaves the input undecided.

We say that a protocol solves the detection problem of (p0, p1) if the protocol labels
each input as accepted, rejected or undecided as prescribed by the detection problem.

Lemma 4.1. Assume that N recognizes ∃1(L) and that N has ambiguity o(n). Let (p0, p1)
be a critical pair for (ξ0, ξ1). Then there is a nondeterministic protocol P which solves the

detection problem of (p0, p1) with |Q|O(t) messages.

Proof. We begin by describing the protocol P . In its first attempt P tries to accept its
input z ∈ K by simulating the automaton N when reading z starting in state p0. P accepts
z iff state p1 is reached and otherwise leaves z undecided.

In its second attempt P tries to reject z. Alice guesses states r, r′, r′′, s, s′, s′′ as well as
strings z′ ∈ K \ L, u ∈ ∃=0(L) and integers a1, a2, a (with a1 + a2 ≤ a). Then Alice verifies
the following transitions without communication, namely

- r
(z′u)a1→ r′ as well as r′′

(z′u)a−a1−1

→ r
(z′u)a1→ p0 and

- p1
(uz′)a2→ s

(uz′)a−a2−1

→ s′ as well as s′′
(uz′)a2→ s.

In order to check the remaining transition r′
zu→ r′′ and s′

uz→ s′′, Alice guesses additional

states ρ, σ and verifies the transitions ρ
u→ r′′ and s′

u→ σ by herself. Subsequently Alice
communicates the states r′, ρ as well as σ, s′′ and both Alice and Bob simulate the automaton

N on input z for starting states r′ and σ. Bob rejects iff the transitions r′
z→ ρ and σ

z→ s′′

have been verified and otherwise labels z as undecided. Observe that P exchanges at most
|Q|O(t) messages, since P uses messages only when simulating N on the string z ∈ K.

5. From Nondeterminism to Determinism

In Lemma 4.1 we have solved the detection problem of a critical pair by a nondeter-
ministic protocol P with only |Q|O(t) messages. However the detection problem separates
L from its complement K \ L only weakly, since the majority of strings from L are either
rejected or left undecided. We begin our analysis by transforming the nondeterministic
protocol P into a deterministic protocol D. We avoid an exponential blowup in the number
of messages by observing the structural limitations of P . In particular, P accepts a subset
Lyes of L and rejects a superset Lno of K \ L, where Lyes and Lno are disjoint.

Lemma 5.1. There is a deterministic protocol D which accepts at least |L|/|Q|2 strings
from L and rejects all strings from K \ L. No string is left undecided and no string is

accepted as well as rejected. Moreover, at most |Q|O(t2·log2 |Q|) messages are exchanged.

Proof. We begin by fixing a critical pair (p0, p1) such that at least |L|/|Q|2 strings are
accepted in the detection problem of (p0, p1). Observe that such a critical pair exists as a
consequence of Lemma 3.4 (b), since each string in L is accepted in the detection problem
of at least one critical pair and there are at most |Q|2 critical pairs.

Let Lyes be the subset of L which is accepted in the detection problem of (p0, p1) and
let Lno be the superset of K \ L of rejected strings. According to Lemma 4.1 there is a
nondeterministic protocol P which solves the detection problem of (p0, p1) with at most

|Q|O(t) messages. Thus there are conventional nondeterministic protocols Pyes for Lyes and

Pno for Lno which exchange at most |Q|O(t) messages each.
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To obtain a deterministic protocol D from Pyes and Pno we utilize that deterministic

protocols with MO(log2 M) messages can be built from nondeterministic protocols, provided
the protocols recognize a language and its complement by exchanging at most M messages
[1]. Our situation however is more complicated, since Lyes is only a subset of the complement
of Lno. We employ the construction in [5] with the following modifications. Define the
communication matrix C of (Pyes, Pno) by setting

C[x1 · · · xt, y1 · · · yt] =







1 x1y1 · · · xtyt ∈ Lyes,
0 x1y1 · · · xtyt ∈ Lno

undecided otherwise.

Each message m corresponds to a submatrix M of C defined by the collection of rows for
which the message is sent and the collection of columns for which it is accepted. Now let
M be a submatrix of the communication matrix C. We define ∆yes(M) to be the maximal
size of a submatrix T of M , where T , after a suitable permutation of rows and columns of
M , is a lower triangular matrix with ones on the diagonal and zeroes above the diagonal.
(Observe that T may contain undecided entries, but these entries have to appear below the
diagonal.) Since Lyes is accepted by the nondeterministic protocol Pyes and since no two
diagonal entries can be accepted by the same message, we obtain that ∆yes(C) is bounded

by the number of messages of Pyes and hence ∆yes(C) ≤ |Q|O(t) follows.
We first try to reject the given input by deterministically selecting a sequence mi of

messages from the protocol Pno. As for the conventional transformation to deterministic
protocols, the triangular message complexity will be halved in each step and in particular
∆yes(M1∩· · ·∩Mi) ≤ ∆yes(C)/2i follows. We proceed as in the conventional transformation
and stop the communication prematurely, if the output “no” can be excluded and output
“yes”. Otherwise, after at most log2 ∆yes(C) rounds, we obtain ∆yes(M1 ∩ · · · ∩ Mi) ≤ 1.
As a consequence, the submatrix M1 ∩ · · · ∩Mi has no triangular submatrix of size two or
larger. In particular, the submatrix M of M1 · · ·Mi spanned by all rows and columns of
M∗

i with a one, contains all ones of M1 · · ·Mi, no zeroes and possibly undecided entries. If
the joint input belongs to M , then we stop and accept, resp. stop and reject otherwise. In
each round only messages of Pno and hence at most |Q|O(t) messages are exchanged. Thus

overall at most
[

|Q|O(t)
]log2 ∆yes(C)

= |Q|O(t2·log2 |Q|) messages are generated.

Remember that L = (Lr)
t, where Lr is the language of non-disjointness for r-element

subsets of {1, . . . , r32}. Let D be a deterministic protocol which accepts only strings in L.
Also let α be a sufficiently small positive constant. We apply Fact 1.1 and obtain that D
accepts at most |L|/2α·t strings from L, provided at most 2α·r·t messages are exchanged.

Now, if an NFA N with sublinear ambiguity recognizes ∃1(L), then we apply Lemma 5.1

to obtain a deterministic protocol which exchanges at most |Q|O(t2·log2 |Q|) messages, accepts

at least |Lr|/|Q|2 strings and accepts only strings from L. Thus, if |Q|O(t2·log2 |Q|) ≤ 2α·r·t for
a sufficiently small positive constant α, then at most |L|/2α·t inputs from L are accepted.
But the nondeterministic protocol accepts at least |L|/|Q|2 strings from L and hence

|Q| = 2Ω(t) (5.1)

follows. We set t = r1/3. Let β be a sufficiently small positive constant. Now either

|Q| ≥ 2β·
√

r/t and we are done, since then |Q| = 2Ω(r1/3) or |Q| < 2β·
√

r/t holds. In the
latter case

|Q|t2·log2 |Q| < 2(β·
√

r/t)·t2·(β·
√

r/t) = 2β2·t·r
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and the upper bound on the number of messages in Fact 1.1 is met, provided β is sufficiently
small. But then |Q| = 2Ω(t) follows from (5.1) and hence |Q| ≥ 2γ·t holds for some positive

constant γ. We obtain 2γ·t ≤ |Q| < 2β·
√

r/t and hence 2γ·t < 2β·
√

r/t = 2β·t, since t = r1/3.
We get a contradiction if β is chosen sufficiently small and we have shown

Lemma 5.2. Let N be an NFA with sublinear ambiguity recognizing ∃1(L). Then N has

at least 2Ω(r1/3) states.

6. A Hierarchy for Polynomial Ambiguity

Let k ≥ 1 be arbitrary and let N be an NFA for ∃k(L). We again follow the strategy for
k = 1, however the transition from NFA’s to communication protocols is now more involved.
For k > 1 we have to work with vectors (p0, p1, . . . , p2(k−1), p2(k−1)+1) of states and besides
reachabilty for p0 and acceptance by p2(k−1)+1 we also have to guarantee that computation
paths exist between p2i and p2i+1. This last requirement requires some further work.

Definition 6.1. Let (ξ0, ξ1) ∈ ∃=0(L) × ∃=0(L) be arbitrary. We say that the vector
(p0, p1, . . . , p2(k−1), p2(k−1)+1) is critical for (ξ0, ξ1) iff

(1) all strings in ∃=0(L) · ξ0 reach p0 and all strings in ξ1 · ∃=0(L) are accepted by
p2(k−1)+1

(2) and for all strings u ∈ ∃=0(L) and for all i (0 ≤ i < k − 1) there is a string v such
that a computation for ξ1uv starts in p2i+1 and ends in p2(i+1).

We construct ξ0 as in Lemma 3.2 and hence for any state p of the NFA N either all
strings in ∃=0(L) · ξ0 reach p or no such string reaches p. To construct ξ1 we first run the
procedure of Lemma 3.2 and property (1) is satisfied. Then we process all pairs (p, q) of
states of N in some arbitrary order. If for all strings u ∈ ∃=0(L) there is a string v ∈ ∃=0(L)
such that ξ1uv has a computation beginning in p and ending in q, then we say that the pair
(p, q) is “alive” and ξ1 is left unchanged. Otherwise there is a string u ∈ ∃=0(L) such that
no computation for a string in ξ1 · u · ∃=0(L) has a computation beginning in p and ending
in q. We replace ξ1 by ξ1u. The pair (p, q) is now “dead”, since no string in ξ1 · ∃=0(L)
has a computation beginning in p and ending in q. Also observe that processed pairs do
not change their status, i.e., remain dead, resp. stay alive after updating ξ1. We have
generalized Lemma 3.2.

Lemma 6.2. Let N be an NFA for ∃k(L). Then there are strings ξ0, ξ1 ∈ ∃=0(L) such that
⋃

(p0,...,p2k−1) is critical for (ξ0,ξ1)

{z ∈ L | p2i+1
z→ p2(i+1) for all 0 ≤ i < k − 1} = L.

Proof. The argument is analogous to the proof of Lemma 3.2. This time we have to observe
that accepting computations for strings in ξ0 · (L · ξ1)

k have to traverse critical vectors.

For k = 1 Lemma 3.3 establishes that a string S(z) “lives” in a launching cycle for p0

and a storage cycle for p1. Its generalization requires more work. Let ~p = (p0, . . . , p2k−1) be
a critical vector and let z ∈ K \L be an arbitrary string. We construct a string u ∈ ∃=0(L)
for z so that some string with period uz can be launched by p0, stored and launched in
between p2i+1 and p2(i+1) and finally stored by p2(k−1)+1. In particular, we say that a string
u ∈ ∃=0(L) is appropriate for z if the following properties are satisfied:
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(1) (zu)|Q| reaches p0.

(2) For every i, 0 ≤ i < k − 1, there is a string si and computations p2i+1
si→ p2(i+1).

Moreover, si starts with a suffix of uz containing ξ1 as prefix, followed by (uz)|Q|

and completed by a prefix of u.
(3) State p2(k−1)+1 accepts any string sk−1 which consists of a suffix of uz containing

ξ1 as prefix, followed by (uz)|Q|.

(4) The string s = (zu)|Q|zs0z · · · zsk−2zsk−1 has periods zu and uz respectively.

Now assume that u is appropriate for z. We show that the string S(z) = s “lives” in
appropriate cycles for each pi. First observe that S(z) has period zu and hence also period

uz. The proof of Lemma 3.3 shows that a launching cycle r
(zu)a

→ r
(zu)a1→ p0 is established,

once (zu)|Q| reaches p0. Also, intermediate cycles in between p2i+1 and p2(i+1) exist, since

si has substring (uz)|Q|, and a final storage cycle following p2(k−1)+1 exists, since p2(k−1)+1

accepts a string with suffix (uz)|Q|.

Lemma 6.3. For every string z ∈ K \ L there is an appropriate string u ∈ ∃=0(L) for z.

Proof. Let ql be some arbitrary ordering of the states of N . Each pair (p2i+1, p2(i+1))
influences the construction of u. Assume for the moment that strings ξi,l are already defined.
We set

ui,j = ξ1 ·Πl≤j,(ql,p2(i+1)) is alive zξ1ξi,l

for all j (1 ≤ j ≤ |Q|). Observe that ui,j = ui,j−1 · (zξ1ξi,j), if (qj, p2(i+1)) is alive, and that
ξ1 is a prefix of ui,j. Choose the strings ξi,l ∈ ∃=0(L) so that there is a computation for ui,j

from qj to p2(i+1). Such strings ξi,l exist with property (2) of a critical vector, since ξ1 is a
prefix of ui,j and (qj , p2(i+1)) is alive. Finally set

ui = ui,|Q| · zξ1 and u = u0 · · · uk−2 · ξ0.

We show that u is appropriate for z by first verifying property (1). The string u has suffix

ξ0 and hence, by property (1) of a critical vector, (zu)|Q| reaches p0, the first component of
the critical vector ~p.

Observe that each ui,j has prefix ξ1 and hence ui and u have ξ1 as prefix. We start
the verification of properties (2) and (3) by defining s0 and constructing a computation

p1
s0→ p2. Since ξ1 is a prefix of u, there is a computation for (uz)|Q| which leads from p1

to a state qj such that the pair (qj , p2) is alive. But then, by definition of u0,j, there is a

computation for (uz)|Q| ·u0,j which starts in p1, reaches qj after reading (uz)|Q| and ends in

p2 after reading u0,j. We set s0 = (uz)|Q| ·u0,j. By construction, u0,j is a prefix of u0 which
itself is a prefix of u. Thus there is a string v0,j with u = u0,j · z · v0,j and v0,j has prefix ξ1.

We now construct a string s1 and a computation p3
s1→ p4 as follows. Since v0,j has

prefix ξ1 there is a computation for v0,j ·z ·(uz)|Q| ·u0 which reaches a state qk when starting
in state p3. Since the pair (qk, p4) is alive, we obtain the computation

p3
v0,jz(uz)|Q|u0→ qk

u1,k→ p4

and set s1 = v0,jz(uz)|Q|u0u1,k. The construction of si and verifying a computation p2i+1
si→

p2(i+1) for arbitrary i < k − 1 proceeds in a completely analogous fashion. Finally, again
by property (1) of a critical vector, state p2(k−1)+1 accepts any string sk−1 consisting of a

suffix of uz followed by (zu)|Q|, since the suffix of uz has prefix ξ1.
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To complete the argument observe that by construction s = (zu)|Q|zs0z · · · zsk−2zsk−1

has periods uz and zu respectively.

The remainder of the argument proceeds completely analogous to the case of k = 1.
Lemma 3.4 shows that an NFA with sublinear ambiguity solves the detection problem for
k = 1. To introduce its generalization we firstly introduce the detection problem for k > 1:
z has to be rejected iff there is a string z′ ∈ K \L such that z, acting as an impostor of z′,
can be placed in matching positions within the k + 1 individual uz′-cycles of N . Lemma
3.4 was a direct consequence of Lemma 3.3 in the case of k = 1. In the same manner we
can now show that an NFA with ambiguity o(nk) solves the detection problem for general
k as a direct consequence of Lemma 6.3.

Let N be an NFA with ambiguity o(nk) for ∃k(L). As in Lemma 4.1 we simulate N to
obtain a nondeterministic protocol P solving the detection problem with |Q|O(kt) messages;
the exponent grows by the factor k, since k+1 instead of two computations of N on input z

have to be simulated. We transform P into a deterministic protocol D with |Q|O((kt)2 log |Q|)

messages as in Lemma 5.1. To complete the proof of Theorem 1.2, we replace r by r/k2

in the proof of Lemma 5.2 (to compensate for the increase in the number of messages of D

from |Q|O(t2 log |Q|) to |Q|O(k2t2 log |Q|)) and obtain

Lemma 6.4. Let N be an NFA with ambiguity o(nk) recognizing ∃k(L). Then N has at

least 2Ω((r/k2)1/3) states.
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ON THE BOREL INSEPARABILITY OF GAME TREE LANGUAGESSZCZEPAN HUMMEL 1 AND HENRYK MICHALEWSKI 1 AND DAMIAN NIWI�SKI 1

1 Faulty of Mathematis, Informatis, and MehanisWarsaw University, PolandE-mail address: {shummel,henrykm,niwinski}�mimuw.edu.plAbstrat. The game tree languages an be viewed as an automata-theoreti ounterpartof parity games on graphs. They witness the stritness of the index hierarhy of alternatingtree automata, as well as the �xed-point hierarhy over binary trees.We onsider a game tree language of the �rst non-trivial level, where Eve an fore that0 repeats from some moment on, and its dual, where Adam an fore that 1 repeats fromsome moment on. Both these sets (whih amount to one up to an obvious renaming) areomplete in the lass of o-analyti sets. We show that they annot be separated by anyBorel set, hene a fortiori by any weakly de�nable set of trees.This settles a ase left open by L.Santoanale and A.Arnold, who have thoroughly inves-tigated the separation property within the µ-alulus and the automata index hierarhies.They showed that separability fails in general for non-deterministi automata of type Σ
µ
n,starting from level n = 3, while our result settles the missing ase n = 2.IntrodutionIn 1970 Rabin [15℄ proved the following property: If a set of in�nite trees an be de�nedboth by an existential and by a universal sentene of monadi seond order logi thenit an also be de�ned in a weaker logi, with quanti�ation restrited to �nite sets. Anautomata-theoreti ounterpart of this fat [15, 12℄ states that if a tree language, as well asits omplement, are both reognizable by Bühi automata (alled speial in [15℄) then theyare also reognizable by weak alternating automata. Yet another formulation, in terms ofthe µ-alulus [3℄, states that if a tree language is de�nable both by a Πµ
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2 -term (µν), then it is also de�nable by an alternation free term, i.e.,one in Comp(Πµ

1 ∪Σµ
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Πµ
n ∩ Σµ

n = Comp(Πµ
n−1 ∪ Σµ

n−1)holds on all levels of the �xed-point hierarhy. Santoanale and Arnold showed [17℄, rathersurprisingly, that it is not the ase for n ≥ 3. They exhibit a series of �ambiguous� properties,expressible by terms in Πµ
n and in Σµ

n, but not in Comp(Πµ
n−1 ∪ Σµ
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566 S. HUMMEL, H. MICHALEWSKI, AND D. NIWI�SKIhowever, they disover a more subtle generalization of Rabin's result, whih ontinues tohold on the higher stages of the hierarhy.Let us explain it at a more abstrat level, with L (�large�) and S (�small�) being twolasses of subsets of some universe U . Consider the following properties.Simpli�ation. Whenever L and its omplement L̄ are both in L, they arealso in S.Separation. Any two disjoint sets L,M ∈ L are separated by some set K in
S (i.e., L ⊆ K ⊆ U −M).Note that (given some L and S) separation implies simpli�ation, but in general not vieversa. In topology, it is well known (see, e.g., [11℄) that the separation property holds for
L = analyti (Σ1

1) subsets of a Polish spae (e.g., {0, 1}ω),
S = Borel sets,but fails for L = o-analyti sets (Π1

1) and S as above. On the other hand both lassesenjoy the simpli�ation property (whih amounts to the Suslin Theorem).In this setting, Rabin's result establishes the simpli�ation property for
L = Bühi de�nable tree languages (Πµ

2 in the �xed-point hierarhy),
S = weakly de�nable tree languages (Comp(Πµ

1 ∪ Σµ
1 )).A loser look at the original proof reveals that a (stronger) separation property also holdsfor these lasses.Santoanale and Arnold [17℄ showed in turn that the separation property holds for

L = tree languages reognizable by non-deterministi automata of level Πµ
n,

S = tree languages de�nable by �xed-point terms in Comp(Πµ
n−1 ∪ Σµ

n−1),for the remaining ase of n ≥ 3. On the negative side, they showed that the separationproperty fails for L onsisting of tree languages reognizable by non-deterministi automataof level Σµ
n, for n ≥ 3, leaving open the ase of n = 2. In fat, their proof reveals that, inthe ase under onsideration, even a (weaker) simpli�ation property fails (see [17℄, setion2.2.3). As for Σµ

2 however, the simpli�ation property does hold, beause of Rabin's result1.For this reason, the argument of Santoanale and Arnold annot be extended to the lass Σµ
2 .In the present paper, we show that the separation property fails also in this ase, ompletingthe missing point in the lassi�ation of [17℄.We use a topologial argument and show in fat a somewhat stronger result, exhibitingtwo disjoint languages reognized by non-deterministi tree automata with o-Bühi on-dition (i.e., Σµ

2 ), whih annot be separated by any Borel set (in a standard Cantor-liketopology on trees). The languages in question are the so-alled game tree languages (of level(0,1)), whih were used in [8℄ (and later also in [2℄) in the proof of the stritness of the�xed-point hierarhy over binary trees. More spei�ally, one of these languages onsistsof the trees labeled in {0, 1} × {∃,∀}, suh that in the indued game (see de�nition below)Eve has a strategy to fore only 0's from some moment on. The seond is the twin opy ofthe �rst and onsists of those trees that Adam has a strategy to fore only 1's from somemoment on.1If a set and its omplement are reognized by non-deterministi o-Bühi automata then they are alsoboth reognized by alternating Bühi automata [5℄, and hene by non-deterministi Bühi automata, andhene are weakly de�nable [15℄.



ON THE BOREL INSEPARABILITY OF GAME TREE LANGUAGES 567The wording introdued above di�ers slightly from the standard terminology of de-sriptive set theory, where a separation property of a lass L means our property with
S = {X : X, X̄ ∈ L} (see [11℄). To emphasize the distintion, following [1℄, we will referto the latter as to the �rst separation property . In this setting, the �rst separation prop-erty holds for the lass of Bühi reognizable tree languages, but it fails for the o-Bühilanguages, similarly as it is the ase of the analyti vs. o-analyti sets, mentioned above.This may be read as an evidene of a strong analogy between the Bühi lass and Σ

1
1. Infat, Rabin [15℄ early observed that the Bühi tree languages are de�nable by existentialsentenes of monadi logi, and hene analyti. We show however that, maybe surprisingly,the onverse is not true, by exhibiting an analyti tree language, reognized by a parity(Rabin) automaton, but not by any Bühi automaton.Note. The �xed-point hierarhy disussed above provides an obvious ontext of ourresults, but in the paper we do not rely on the µ-alulus onepts or methods. For de�nitionsof relevant onepts, we refer an interested reader to the work by Santoanale and Arnold [17℄or, e.g., to [4℄.1. Basi oneptsThroughout the paper, ω stands for the set of natural numbers.Metris on trees. A full binary tree over a �nite alphabet Σ (or shortly a tree, if onfusiondoes not arise) is represented as a mapping t : {1, 2}∗ → Σ.We onsider the lassial topology à la Cantor on TΣ indued by the metri

d(t1, t2) =

{
0 if t1 = t2
2−n with n = min{|w| : t1(w) 6= t2(w)} otherwise (1.1)It is well-known and easy to see that if Σ has at least two elements then TΣ with thistopology is homeomorphi to the Cantor disontinuum {0, 1}ω . Indeed, it is enough to �xa bijetion α : ω → {1, 2}∗, and a mapping (ode) C : Σ → {0, 1}∗, suh that C(Σ) formsa maximal antihain w.r.t. the pre�x ordering. Then TΣ ∋ t 7→ C ◦ t ◦ α ∈ {0, 1}ω is adesired homeomorphism. We assume that the reader is familiar with the basi onepts ofset-theoreti topology (see, e.g., [11℄). The Borel sets over TΣ onstitute the least familyontaining open sets and losed under omplement and ountable union. The Borel relationsare de�ned similarly, starting with open relations (i.e., open subsets of T n

Σ , for some n,onsidered with produt topology). The analyti (or Σ
1
1) sets are those representable by

L = {t : (∃t′)R(t, t′)}where R ⊆ TΣ × TΣ is a Borel relation. The o-analyti (or Π
1
1) sets are the omplementsof analyti sets. A ontinuous mapping f : TΣ → TΣ redues a tree language A ⊆ TΣ to

B ⊆ TΣ if f−1(B) = A. As in omplexity theory, a set L ∈ K is omplete in lass K if allsets in this lass redue to it.



568 S. HUMMEL, H. MICHALEWSKI, AND D. NIWI�SKINon-deterministi automata. A non-deterministi tree automaton over trees in TΣ with aparity aeptane ondition2 is presented as A = 〈Σ, Q, qI ,Tr , rank 〉, where Q is a �nite setof states with an initial state qI , Tr ⊆ Q×Σ×Q×Q is a set of transitions, and rank : Q → ωis the ranking funtion. A transition (q, σ, p1, p2) is usually written q
σ
→ p1, p2.A run of A on a tree t ∈ TΣ is itself a Q�valued tree ρ : {1, 2}∗ → Q suh that

ρ(ε) = qI , and, for eah w ∈ dom (ρ), ρ(w)
t(w)
→ ρ(w1), ρ(w2) is a transition in Tr . A path

P = p0p1 . . . ∈ {1, 2}ω in ρ is aepting if the highest rank ourring in�nitely often alongit is even, i.e., lim supn→∞ rank (ρ(p0p1 . . . pn)) is even. A run is aepting if so are all itspaths. A tree language T (A) reognized by A onsists of those trees in TΣ whih admit anaepting run.The Rabin�Mostowski index of an automaton A is the pair (min(rank (Q)),max(rank (Q))); without loss of generality, we may assume that min(rank (Q)) ∈ {0, 1}.An automaton with the Rabin�Mostowski index (1, 2) is alled a Bühi automaton. Notethat a Bühi automaton aepts a tree t if, on eah path, some state of rank 2 ours in�nitelyoften. We refer to the tree languages reognizable by Bühi automata as to Bühi (tree)languages. The o-Bühi languages are the omplements of Bühi languages. It is knownthat if a tree language is reognized by a non-deterministi automaton of index (0, 1) thenit is o-Bühi3; the onverse is not true in general (see the languages Mi,k in Example 1.1below).Example 1.1. Let
L = {t ∈ T{0,1} : (∃P ) lim sup

n→∞
t(p0p1 . . . pn) = 1}This set is reognized by a Bühi automaton with transitions

q/p
0
→ q, T ; q/p

1
→ p, T ; T

(0/1)
→ T, T ;

q/p
0
→ T, q; q/p

1
→ T, p;with rank (q) = 1 and rank (p) = rank(T ) = 2. Rabin [15℄ showed that its omplement L̄ an-not be reognized by any Bühi automaton, but it is reognizable by an (even deterministi)automaton of index (0, 1)

0/1
0
→ 0, 0; 0/1

1
→ 1, 1; rank(i) = i; for i = 0, 1.This last set an be generalized to the so-alled parity languages (with i ∈ {0, 1})

Mi,k = {t ∈ T{i,...,k} : (∀P ) lim sup
n→∞

t(p0p1 . . . pn) is even}whih are all o-Bühi but require arbitrary high indies [13℄. It an also be showed that alllanguages Mi,k (exept for (i, k) = (0, 0), (1, 1), (1, 2)) are omplete in the lass of o-analytisets Π
1
1 (see, e.g., [14℄).The lass of languages whih are simultaneously Bühi and o-Bühi has numerousharaterizations mentioned in the introdution; all these haraterizations easily implythat suh sets are Borel (even of �nite Borel rank).2Currently most frequently used in the literature, these automata are well-known to be equivalent tohistorially previous automata with the Muller or Rabin onditions [18℄.3It follows, in partiular, from the equivalene of the non-deterministi and alternating Bühi automata [5℄,mentioned in footnote 1.



ON THE BOREL INSEPARABILITY OF GAME TREE LANGUAGES 569Example 1.2. Consider the set L̄ = M0,1 of Example 1.1, and its twin opy obtained bythe renaming 0 ↔ 1,
M ′

0,1 = {t ∈ T{0,1} : (∀P ) lim inf
n→∞

t(p0p1 . . . pn) = 1}.The sets M0,1 and M ′
0,1 are disjoint, o-Bühi and, as we have already noted, Π

1
1 omplete.They an be separated by a set K of trees4, suh that on the rightmost branh, there areonly �nitely many 1's

K = {t ∈ T{0,1} : lim sup
n→∞

t(22 . . . 2
︸ ︷︷ ︸

n

) = 0}(i.e., M0,1 ⊆ K ⊆ T{0,1}−M ′
0,1). The set K an be presented as a ountable union of losedsets

K =
⋃

m

{t ∈ T{0,1} : (∀n ≥ m) t(22 . . . 2
︸ ︷︷ ︸

n

) = 0}so it is on the level Σ
0
2 (i.e., Fσ) of the Borel hierarhy. The membership in the Borelhierarhy an also be seen trough an automata-theoreti argument by showing that K issimultaneously Bühi and o-Bühi. Indeed it an be reognized by an (even deterministi)automaton with o-Bühi ondition

0/1
0
→ T, 0; 0/1

1
→ T, 1; T

(0/1)
→ T, T ; rank (i) = i, for i = 0, 1, rank (T ) = 0,as well as by a (non-deterministi) Bühi automaton

q
(0/1)
→ T, q/p; p

0
→ T, p; T

(0/1)
→ T, T ; rank (q) = 1, rank(p) = rank (T ) = 2.We will see in the next setion that a Borel separation of o-Bühi languages is notalways possible.2. Inseparable pairLet

Σ = {∃,∀} × {0, 1},we denote by πi the projetion on the ith omponent of Σ. With eah t ∈ TΣ, we assoiatea game G(t), played by two players, Eve and Adam. The positions of Eve are those nodes
v, for whih π1(t(v)) = ∃, the remaining nodes are positions of Adam. For eah position v,it is possible to move to one of its suessors, v1 or v2. The players start in the root andthen move down the tree, thus forming an in�nite path P = (p0p1p2 . . .). The suessor isseleted by Eve or Adam depending on who is the owner of the position p0p1 . . . pn−1. Theplay is won by Eve if

lim sup
n→∞

π2 (t(p0p1 . . . pn)) = 0i.e., 1 ours only �nitely often, otherwise Adam is the winner. A strategy for Eve selets amove for eah of her positions; it is winning if any play onsistent with the strategy is wonby Eve. We say that Eve wins the game G(t) if she has a winning strategy. The analogousonepts for Adam are de�ned similarly.A reader familiar with the parity games ([10℄, see also [18℄) has notied of ourse thatthe games G(t) are a speial ase of these (with the index (0, 1)).4This argument is due to Paweª Milewski.
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W0,1 = {t : Eve wins G(t)}We also de�ne a set W ′

0,1 ⊆ TΣ−W0,1, onsisting of those trees t, where Adam has a strategywhih guarantees him not only to win in G(t), but also to fore a stronger ondition, namely
lim inf
n→∞

π2 (t(p0p1 . . . pn)) = 1.It should be lear that W ′
0,1 an be obtained from W0,1 by applying (independently on eahomponent) a renaming 0 ↔ 1, ∃ ↔ ∀. Thus, the sets W0,1 and W ′

0,1 are disjoint, but haveidential topologial and automata-theoreti properties.Let us see that the set W0,1 an be reognized by a non-deterministi automaton ofindex (0, 1); it is enough to take the states {0, 1}∪{T}, with rank (T ) = 0, and rank (ℓ) = ℓ,for ℓ ∈ {0, 1}, the initial state 0, and transitions
ℓ

(∀,m)
→ m,m; ℓ

(∃,m)
→ m,T ; ℓ

(∃,m)
→ T,m; T

(Q,m)
→ T, T,with m ∈ {0, 1}, and Q ∈ {∃,∀}. Hene, the sets W0,1 and W ′

0,1 are o-Bühi (.f. theremark before Example 1.1).We are ready to state the main result of this paper.Theorem 2.1. The sets W0,1 and W ′
0,1 annot be separated by any Borel set.Proof. The proof relies on the following.Lemma 2.2. For any Borel set B ⊆ TΣ, there is a ontinuous funtion fB : TΣ → TΣ, suhthat

u ∈ B ⇒ fB(u) ∈ W0,1

u 6∈ B ⇒ fB(u) ∈ W ′
0,1Proof. Note that fB is required to redue simultaneously B to W0,1 and TΣ − B to W ′

0,1.We proeed by indution on the omplexity of the set B.Note �rst that if B is lopen (simultaneously losed and open) then it is enough to �xtwo trees t ∈ W0,1 and t′ ∈ W ′
0,1, and de�ne fB by

u ∈ B ⇒ fB(u) = t
u 6∈ B ⇒ fB(u) = t′Also note that, by symmetry of the sets W0,1 and W ′

0,1, the laim for B readily implies thelaim for the omplement TΣ − B. (Spei�ally, fB′ is obtained by omposing fB with asuitable renaming.)Finally note that the spae TΣ ≈ {0, 1}ω has a ountable basis onsisting of lopen sets.Then, in order to omplete the proof, it remains to settle the indution step for B =
⋃

n<ω Bn. Assume that we have already the redutions fBn satisfying the laim, for n < ω.Given u ∈ TΣ, we onstrut a tree fB(u), by labeling the rightmost path by (∃, 1), andletting a subtree in the node 2n1 be fBn(u) (see Figure 1). In symbols,
fB(u)(2n) = (∃, 1)
fB(u)(2n1v) = fBn(u)(v), for n < ω, v ∈ {1, 2}∗ .Sine all the funtions fBn are ontinuous, the resulting fB is ontinuous as well. Now, if

u ∈ Bm, for some m, then Eve has an obvious winning strategy: follow the rightmost pathand turn left in 2m, then use the winning strategy on the subtree fBm(u), whih exists, byindution hypothesis.
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Figure 1: Indution step for ⋃

n Bn.If, however, (∀n)u 6∈ Bn then Adam an win the game with the stronger winningriterion, required in the de�nition of W ′
0,1. Indeed, he an do so as soon as Eve enters anyof the subtrees fBn(u) (by indution hypothesis), but he also wins if Eve remains forever onthe rightmost path.This proves the laim for fB, and thus ompletes the proof of the lemma.We are ready to omplete the proof of the theorem. Suppose that there is a Borel set

C, suh that W0,1 ⊆ C ⊆ TΣ −W ′
0,1. The laim of the lemma immediately implies that

u ∈ B ⇒ fB(u) ∈ C
u 6∈ B ⇒ fB(u) ∈ TΣ − C.Thus any Borel set B over TΣ is reduible to C, but this is learly impossible, as it wouldontradit the stritness of the Borel rank hierarhy in the Cantor disontinuum {0, 1}ω (see,e.g., [11℄).Sine the sets W0,1 and W ′
0,1 are reognizable by non-deterministi automata of index

(0, 1), Theorem 2.1 settles the ase of n = 2, missing in Setion 2.2.3 of [17℄, devoted tothe failure of separation property for non-deterministi automata of type Σµ
n and the lass

Comp(Πµ
n−1 ∪ Σµ

n−1).In the terminology introdued at the end of introdution, we an state the following.Corollary 2.3. The lass of o-Bühi tree languages does not have the �rst separationproperty.This may be ontrasted with the positive result of [15℄. As we have mentioned in theintrodution, Rabin's original proof essentially shows this property for the lass of Bühi treelanguages, although it is not expliitly stated there. For the sake of ompleteness, we skeththe argument below, following losely the µ-alulus version of [3℄ (based on the originalproof of [15℄).Theorem 2.4 (Rabin). The lass of Bühi tree languages has the �rst separation property.Proof. Let A and B be two non-deterministi Bühi automata, suh that T (A)∩ T (B) = ∅.We will refer to the states of rank 2 as to aepting states (of the orresponding automaton).A ut (of a tree) is a �nite maximal antihain in {1, 2}∗ with respet to the pre�x ordering
≤. For two uts X,Y we let Y > X if Y lies below X, i.e., (∀y ∈ Y ) (∃x ∈ X) y > x. Itis easy to see that a run ρ of a Bühi automaton is aepting if, for eah ut X, there is a



572 S. HUMMEL, H. MICHALEWSKI, AND D. NIWI�SKIut Y > X, labeled by the aepting states (i.e., (∀y ∈ Y ) rank (ρ(y)) = 2). We indutivelyde�ne a sequene of tree languages Kn
q , for eah state q of A, and n ≥ 0.The set K0

q onsists of all trees t whih admit some run (not neessarily aepting) of
A starting from q (q-run, for short). The set Kn+1

q omprises those trees t, whih admita q-run ρ, suh that, for eah ut X, there exists a ut X ′ > X, and a run ρ′, with thefollowing properties:
• ρ′ agrees with ρ until the ut X,
• all states in ρ′(X ′) are aepting,
• (∀v ∈ X ′) , the subtree of t rooted in v (in symbols t.v) belongs to Kn

p , where
p = ρ′(v).It follows by indution on n that T (A) ⊆ Kn

qI
, where qI is the initial state of A. Now let

nA and nB be the numbers of states of A and B, respetively, and let M = 2nA·nB + 1. Welaim that KM
qI

separates T (A) and T (B). We already know that T (A) ⊆ KM
qI
. For the sakeof ontradition, suppose that t ∈ KM

qI
∩ T (B), and let ρ′ be an aepting run of B on t.Using the indutive de�nition of KM
qI
, we an onstrut a sequene of uts X1 < X ′

1 <

. . . < XM < X ′
M , and a run ρ of A on t, suh that

• (∀i ≤ M) all states in ρ(Xi) are aepting,
• (∀i ≤ M, ∀v ∈ Xi) t.v ∈ KM−i

ρ(v) ,
• (∀i ≤ M) all states in ρ′(X ′

i) are aepting.By the hoie of M , there exist 1 ≤ k < ℓ ≤ M , suh that
{(ρ(u), ρ′(u)) : u ∈ Xk} = {(ρ(v), ρ′(v)) : v ∈ Xℓ}Note that, by onstrution,

Xk < X ′
k < Xlwith all states in ρ′(X ′

k) aepting. Hene, by a standard tree-pumping argument, wean onstrut a new tree along with two aepting runs: by A and by B, ontraditing
T (A) ∩ T (B) = ∅.It remains to show that the language KM

qI
is both Bühi and o-Bühi. A diret on-strution of two Bühi automata would be somewhat umbersome, but one an use hereany of the haraterizations of this intersetion lass mentioned above. In the proof givenin [3℄, it is shown that the sets Kn

q are de�nable in the alternation-free µ-alulus. A readerfamiliar with monadi seond-order logi an easily see that these languages are de�nablein its weak fragment, i.e., with quanti�ers restrited to �nite sets. This is enough as well,aording to the haraterization given by Rabin [15℄.3. Broken analogyA reader familiar with desriptive set theory may think of another inseparable pair ofreognizable tree languages, indued by a lassial example ([11℄, setion 33.A). We willexplain why it would not be useful for our purpose. Let us now onsider non-labeled trees,i.e., subsets T ⊆ ω∗ losed under initial segments. They an be viewed as elements of theCantor disontinuum {0, 1}ω by �xing a bijetion ι : ω → ω∗ and identifying a tree T withits harateristi funtion, given by fT (n) = 1 i� ι(n) ∈ T . In partiular, we an disuss



ON THE BOREL INSEPARABILITY OF GAME TREE LANGUAGES 573topologial properties of sets of suh trees. As before, P ∈ ωω is a path in a tree T if all�nite pre�xes of P are in T . LetWF = {T : T has no in�nite path }UB = {T : T has exatly one in�nite path }Both sets are known to be Π
1
1-omplete, although the membership of UB in Π

1
1 is notobvious, and is the subjet of one of Lusin's theorems (Theorem 18.11 in [11℄). WF and UBare also known to be inseparable by Borel sets ([11℄, setion 35, see also [6℄). Now, it is notdi�ult to �enode� these sets as languages of labeled binary trees, whih turn out to bereognizable by parity automata. In [14℄ a ontinuous redution of WF to M0,1 was used toshow that the latter set is omplete in Π

1
1 (Example 1.1 above). LetUBbin = {t ∈ T{0,1} : there is exatly one path Pwith lim supn→∞ t(p0p1 . . . pn) = 1}It is easy to onstrut a non-deterministi automaton aepting this language; one an alsoassure that this automaton is non-ambiguous, i.e., for eah aepted tree, has exatly oneaepting run. From onsiderations above, one an dedue that the sets T0,1 and UBbin areinseparable by Borel languages. However, the language UBbin is not o-Bühi.Proposition 3.1. The language UBbin is reognizable and analyti, but not Bühi.Proof. Let us all a path with in�nitely many 1's bad . So the above language onsists oftrees that have either none or at least two bad paths. Rabin [15℄ shows that the language

T0,1 (no bad paths) annot be reognized by a Bühi automaton, by onstruting a orrettree whih by pumping argument an be transformed to a tree with exatly one bad path(mistakingly aepted by the hypothetial automaton). So this lassial argument appliesto the language UBbin without any hanges.As we have argued in the introdution, this example somehow breaks the analogy be-tween the lass of Bühi reognizable tree languages and that of analyti sets. It turns outthat the topologial omplexity, and the automata-theoreti omplexity, although loselyrelated, do not always oinide.4. ConlusionThe automata-theoreti hierarhies, in partiular the index hierarhies for non-determi-nisti and alternating tree automata, are studied beause of the issues of expressibility andomplexity. Typially, the higher the level in the hierarhy, the higher the expressive powerof automata, but also the omplexity of the related algorithmi problems (like emptinessor inlusion). One the stritness of the hierarhy is established [7, 8℄, the next importantproblem is an e�etive simpli�ation, i.e., determining the exat level of an objet (e.g.,a tree language) in the hierarhy. The problem is generally unsolved (see [9℄ for a reentdevelopment in this diretion). One may expet that a better understanding of struturalproperties of the hierarhy an bring a progress also in this problem. We believe that ideasoming from desriptive set theory, like separation and redution properties, uniformization,or ompleteness, an be helpful here.The inseparable pairs of o-analyti sets are ommon in mathematis. Natural examplesinlude the set of all ontinuous real�valued funtions on the unit interval [0, 1] whih areeverywhere di�erentiable together with the set of all ontinuous real�valued funtions on



574 S. HUMMEL, H. MICHALEWSKI, AND D. NIWI�SKIthe unit interval [0, 1] whih are not di�erentiable in exatly one point, but as in this ase,other examples usually re�et the same pattern of WF vs. UB (.f. [6℄). In ontrast, ourpair presented in Setion 2 is very symmetri: the two sets are opies of eah other up to asymboli renaming. Reently, Saint Raymond [16℄ established that the pair WF vs. UB isomplete (in the sense of Wadge) with respet to all oanalyti pairs in the Cantor set. Inthe proof he uses an interesting example of another omplete oanalyti pair, whih exhibitsertain symmetri properties. Building on his results, in subsequent work, we show that thepair W0,1, W ′
0,1, has an analogous ompleteness property.Our example shows that the �rst separation property fails for the o-Bühi lass (Σµ

2 inthe �xed-point hierarhy) while, by Rabin results [15℄, it holds for the Bühi lass (Πµ
2 ). Bythis we have also settled a missing ase in a lassi�ation by Santoanale and Arnold [17℄.However, these authors were interested in the relative separation property (as explained inour introdution), as they primarily wanted to �nd if the ambiguous lass Πµ

n ∩ Σµ
n anbe e�etively aptured by Comp(Πµ

n−1 ∪ Σµ
n−1). As this oinidene turned out to fail for

n ≥ 3, it is meaningful to ask if the status of the �rst separation property established forthe Bühi/o-Bühi lasses, ontinues to hold for the higher-level lasses Πµ
n/Σµ

n. That is, iftwo disjoint sets de�nable in Πµ
n an always be separated by a set in Πµ

n ∩ Σµ
n. (A similarquestion for Σµ

n, with expeted answer negative.) In our opinion, it is an interesting problem,whih may hallenge for a better understanding of the topologial struture of reognizablelanguages above Π
1
1 ∪Σ

1
1.Referenes[1℄ J. W. Addison. Tarski's theory of de�nability: ommon themes in desriptive set theory, reursivefuntion theory, lassial pure logi, and �nite-universe logi. Annals of Pure and Applied Logi, 126(2004), 77�92.[2℄ A. Arnold. The µ-alulus alternation-depth hierarhy is strit on binary trees. RAIRO-TheoretialInformatis and Appliations, 33 (1999), 329�339.[3℄ A. Arnold and D. Niwi«ski. Fixed point haraterization of weak monadi logi de�nable sets of trees.In M.Nivat, A.Podelski, editors, Tree Automata and Languages, Elsevier, 1992, 159-188.[4℄ A. Arnold and D. Niwi«ski. Rudiments of µ-Calulus. Elsevier Siene, Studies in Logi and the Foun-dations of Mathematis, 146, North�Holland, Amsterdam, 2001.[5℄ A. Arnold and D. Niwi«ski. Fixed point haraterization of Bühi automata on in�nite trees. J. Inf.Proess. Cybern. EIK, 26, 1990, 453�461.[6℄ H. Beker. Some Examples of Borel Inseparable Pairs of Co-analyti Sets. Mathematika 33, 1986, 72�79.[7℄ J. C. Brad�eld. The modal mu-alulus alternation hierarhy is strit. Theoret. Comput. Si., 195(1997), 133�153.[8℄ J. C. Brad�eld. Simplifying the modal mu-alulus alternation hierarhy. In: Pro. STACS'98,Let. Notes Comput. Si. 1373 (1998), 39�49.[9℄ T. Colombet and C. Löding. The Non-deterministi Mostowski Hierarhy and Distane-Parity Au-tomata. Pro. ICALP 2008 , Let. Notes Comput. Si. 5126 (2008), 398-409.[10℄ E. A. Emerson and C. S. Jutla. Tree automata, mu-alulus and determinay. In: Proeedings 32thAnnual IEEE Symp. on Foundations of Comput. Si. (1991), 368�377.[11℄ A. S. Kehris. Classial desriptive set theory. Springer-Verlag, New York, 1995.[12℄ D. E. Muller, A. Saoudi, and P. E. Shupp. Alternating Automata, the Weak Monadi Theory of Treesand its Complexity. Theoret. Comput. Si. 97(2), (1992), 233-244.[13℄ D. Niwi«ski. On �xed point lones. In: ICALP'86, Let. Notes Comput. Si. 226, Springer-Verlag, 1986,464�473.[14℄ D. Niwi«ski and I. Walukiewiz. A gap property of deterministi tree languages. Theoret. Comput. Si.303 (2003), 215�231.



ON THE BOREL INSEPARABILITY OF GAME TREE LANGUAGES 575[15℄ M. O. Rabin. Weakly de�nable relations and speial automata. In: Mathematial Logi and Foundationsof Set Theory , Y. Bar-Hillel ed., 1970, 1-23.[16℄ J. Saint Raymond. Complete pairs of oanalyti sets. Fundamenta Mathematiae 194 (2007), 267�281.[17℄ L. Santoanale and A. Arnold. Ambiguous lasses in µ-aluli hierarhies. Theoret. Comput. Si. 333(2005), 265-296.[18℄ W. Thomas. Languages, automata, and logi. In G. Rozenberg and A. Salomaa, editors, Handbook ofFormal Languages, volume 3, Springer-Verlag, 1997, pp. 389�455.



576 S. HUMMEL, H. MICHALEWSKI, AND D. NIWI�SKI

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://reativeommons.org/lienses/by-nd/3.0/.



Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 577–588
www.stacs-conf.org

EQUATIONS OVER SETS OF NATURAL NUMBERS

WITH ADDITION ONLY
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Abstract. Systems of equations of the form X = Y Z and X = C are considered, in
which the unknowns are sets of natural numbers, “+” denotes pairwise sum of sets S+T =
{m + n | m ∈ S, n ∈ T}, and C is an ultimately periodic constant. It is shown that such
systems are computationally universal, in the sense that for every recursive (r.e., co-r.e.)
set S ⊆ N there exists a system with a unique (least, greatest) solution containing a
component T with S = {n | 16n + 13 ∈ T}. This implies undecidability of basic properties
of these equations. All results also apply to language equations over a one-letter alphabet
with concatenation and regular constants.

1. Introduction

Language equations are equations of the form

ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn), (*)

in which the unknowns Xi are formal languages, while the expressions ϕ,ψ use language-
theoretic operations, such as concatenation, Kleene star and Boolean operations, and con-
stant languages. It is well-known that systems of the resolved form Xi = ϕi(X1, . . . ,Xn)
(1 6 i 6 n) with union, concatenation and singleton constants define the semantics of the
context-free grammars [1]. If intersection is also allowed, such equations characterize an
extension of the context-free grammars known as conjunctive grammars [9] and notable for
efficient parsing algorithms.

The expressive power of language equations of the general form (*) was determined by
Okhotin [10, 11], who proved that a language is representable by a unique (least, greatest)
solution of a system with concatenation, Boolean operations and singleton constants if and
only if this language is recursive (recursively enumerable, co-r.e., respectively). The same
expressive power is attained using concatenation with constants and union [11]. It was
subsequently discovered that language equations can be computationally universal even
without any Boolean operations: Kunc [6] constructed a finite language L ⊆ {a, b}∗, for
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(A. Okhotin) Supported by the Academy of Finland under grant 118540.
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which the greatest solution of a language equation LX = XL is Π1-hard (that is, hard
for co-r.e. sets). This paper establishes a similar result in the seemingly trivial case of a
one-letter alphabet.

Unary languages, defined over an alphabet {a}, form an important special class of for-
mal languages. It is well-known that context-free grammars over this alphabet generate
only regular languages. The first example of a unary language equation with a non-regular
unique solution was constructed by Leiss [7]: this was an equation X = ϕ(X) with ϕ

containing concatenation, complementation and constant {a}. The question of whether
conjunctive grammars (in other words, systems of language equations with union, intersec-
tion and concatenation) can generate any non-regular languages had been a long-standing
open problem [9], until Jeż [2] constructed a conjunctive grammar generating {a4n

|n > 0}.
The ideas of this example were used by Jeż and Okhotin [3] to establish some general results
on the expressive power of these equations, as well as the EXPTIME-completeness of their
solutions [4]. For systems of the general form (*) using concatenation and union, it has
recently been shown by the authors [5] that they are computationally complete.

As unary languages can be regarded as sets of natural numbers, unary language equa-
tions are naturally viewed as equations over sets of numbers. Concatenation of languages
accordingly turns into addition of sets S + T = {m+ n |m ∈ S, n ∈ T}, an operation that
has been a subject of much study in number theory and combinatorics [14]. For instance,
if P is the set of primes, then the equation P + P + P = {6, 7, . . .} expresses the Gold-
bach conjecture. Computational complexity of expressions and circuits over sets of numbers
with addition and different sets of Boolean operations has been studied by Stockmeyer and
Meyer [13] and McKenzie and Wagner [8]. Equations over sets of numbers are a more gen-
eral formalism, and its expressive power was related to the allowed Boolean operations in
the aforementioned work on unary language equations [2, 3, 4, 5].

This paper is concerned with equations over sets of numbers that use only addition and
no Boolean operations. These are systems of equations of the form

Xi1 + . . . +Xik + C = Xj1 + . . .+Xjℓ
+D

in variables (X1, . . . ,Xn), where C,D ⊆ N are ultimately periodic constants. In terms of
language equations over {a}, these are equations

Xi1 . . . XikK = Xj1 . . . Xjℓ
L,

with regular constantsK,L ⊆ a∗. This is the ultimately simplest case of language equations,
and at the first glance it seems out of question that such equations could have any non-trivial
unique (least, greatest) solutions. Probably for that reason no one has ever proclaimed their
expressive power to be an open problem. However, as proved in this paper, these equations
can have not only non-periodic unique solutions, but in fact are computationally universal.
Furthermore, their main decision problems are as hard as similar problems for language
equations over multiple-letter alphabets and using all Boolean operations [10, 11].

The new results are directly based on the authors’ recent proof of the computational
completeness of equations over sets of numbers with addition and union [5], though it is
established using completely different techniques. The idea is to take an arbitrary system
using addition and union and encode it in another system using addition only. The solutions
of the two systems will not be identical, but there will be a bijection between solutions based
upon an encoding of sets of numbers.
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This encoding of sets, defined in Section 3, is an injection σ : 2N → 2N, which represents
every number n of the encoded set as the number 16n + 13 in the encoding. The given
encoding has two key properties. First of all, its form can be checked by an equation, which
is satisfied exactly by those sets that are valid encodings; such an equation is constructed
in Section 3. Second, the sum of any two valid encodings, encodes both the sum and the
union of the encoded sets of numbers, and furthermore, adding a certain constant to such
a sum of encodings produces a set that encodes only the sum of the original sets, while
adding another constant allows representing only the union of the original sets. In overall,
as shown in Section 4, the sum and the union of any two sets is represented by summing
their encodings.

Finally, on the basis of this encoding, in Section 5 it is demonstrated how an arbitrary
system of equations over sets of numbers with union and addition can be simulated using
addition only. Each variable Xi of the original system will be represented in the new system
by a variable X ′

i, and the solutions of the new system will be of the form X ′
i = σ(Si) for all

variables X ′
i, where Xi = Si is a solution of the original system.

All constants in the construction are ultimately periodic; some of them are finite and
some are infinite. The last question is whether infinite constants are necessary to specify
any non-periodic sets, and an affirmative answer is given in Section 6.

2. Equations over sets of numbers

Throughout this paper, the set of natural numbers N = {0, 1, 2, . . .} is assumed to
contain zero. A set of numbers S ⊆ N is ultimately periodic if there exist numbers d > 0
and p > 1, such that n ∈ S if and only if n + p ∈ S for every n > d. Otherwise, S is
non-periodic. Note that S is ultimately periodic if and only if the corresponding language
L = {an | n ∈ S} ⊆ a∗ is regular.

For every two subsets of natural numbers S, T ⊆ N, their sum is the set {m+ n |m ∈
S, n ∈ T}. Other typical operations on sets are the Boolean operations, such as union,
intersection and complementation. Using complementation and addition, the first example
of an equation with a non-periodic unique solution was constructed:

Example 2.1 (Leiss [7]). For every expression ϕ, denote 2ϕ = ϕ + ϕ. Then the unique
solution of the equation

X = 2
(
2
(
2X

))
+ {1}

is {n | ∃i > 0 : 23i 6 n < 23i+2} = {n | base-8 notation of n starts with 1, 2 or 3}.

However, the expressive power of this family of equations is still quite limited [12], with
some simple languages being non-representable.

The second example of non-periodic solutions of equations over sets of numbers was
constructed by Jeż [2] as a conjunctive grammar [9] generating the language {a4n

| n > 0}.
In terms of equations it is stated as follows:

Example 2.2 (Jeż [2]). The least solution of the system





X1 =
(
(X1+X3) ∩ (X2+X2)

)
∪ {1}

X2 =
(
(X1+X1) ∩ (X2+X6)

)
∪ {2}

X3 =
(
(X1+X2) ∩ (X6+X6)

)
∪ {3}

X6 = (X1+X2) ∩ (X3+X3)
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is X1 = {4n | n > 0}, X2 = {2 · 4n | n > 0}, X3 = {3 · 4n | n > 0}, X6 = {6 · 4n | n > 0}.

The idea behind this example is to manipulate positional notations of numbers, and this
idea was subsequently used to establish the following general result on the expressive power
of such equations. The statement refers to the family of linear conjunctive languages [9],
which properly contains the Boolean closure of linear context-free languages.

Proposition 2.3 (Jeż, Okhotin [3]). For every k > 2 and for every linear conjunctive
language L ⊆ {0, 1, . . . , k − 1}+ there exists a resolved system of equations






X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

with ϕi using singleton constants and the operations of union, intersection and addition,
which has a least solution with X1 = {n | the base-k notation of n is in L}.

On the basis of this result, it was shown that systems of the general form with the same
operations are computationally complete.

Theorem 2.4 (Jeż, Okhotin [5]). For every recursive (r.e., co-r.e.) set S ⊆ N there exists
an unresolved system






ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

with ϕj , ψj using singleton constants and the operations of union and addition, which has
a unique (least, greatest, respectively) solution with X1 = S.

Exactly the same results hold for unresolved systems with intersection, sum and sin-
gleton constants [5], though they will not be used in this paper.

The goal is now to take any system of equations with union and addition, such as those
constructed in Theorem 2.4, and to simulate it by another system using addition only. The
solutions of the new system will encode the solutions of the original system as described in
the next section.

3. Encoding of sets

An arbitrary set of numbers Ŝ ⊆ N will be represented by another set S ⊆ N, which

contains a number 16n+13 if and only if n is in Ŝ. The membership of numbers i with i 6= 13

(mod 16) in S does not depend on Ŝ and will be defined below. Since many constructions
in the following will be done modulo 16, the following notation shall be adopted:

Definition 3.1. For each i ∈ {0, 1, . . . , 15},

tracki(S) = {n | 16n + i ∈ S},

τi(S
′) = {16n + i | n ∈ S′}.

The subset S∩{16n+ i |n > 0} is called the ith track of S. A set S is said to have an empty
(full) track i if tracki(S) = ∅ (tracki(S) = N, respectively).
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In these terms, it can be said that a set Ŝ shall be encoded in the 13th track of a set S.
The rest of the tracks of S contain technical information needed for the below constructions
to work: track 0 contains a singleton {0}, tracks 6, 8, 9 and 12 are full and the rest of the
tracks are empty.

Definition 3.2. For every set Ŝ ⊆ N, its encoding is the set

S = σ(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ).

The first property of the encoding announced in the introduction is that there exists
an equation with the set of all valid encodings as its set of solutions. Such an equation will
now be constructed.

Lemma 3.3. A set X ⊆ N satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ N.

Proof. ⇒© Let X be any set that satisfies the equation. Then the sum X + {0, 4, 11} has
empty tracks 2, 5, 14 and 15:

track2(X + {0, 4, 11}) = track5(X + {0, 4, 11}) =

= track14(X + {0, 4, 11}) = track15(X + {0, 4, 11}) = ∅

For this condition to hold, X must have many empty tracks as well. To be precise, each track
t with t, t+4 or t+11 (mod 16) being in {2, 5, 14, 15} must be an empty track in X. Calcu-
lating such set of tracks, {2, 5, 14, 15} − {0, 4, 11} (mod 16) = {1, 2, 3, 4, 5, 7, 10, 11, 14, 15}
are the numbers of tracks that must be empty in X.

Similar considerations apply to track 11, as track11(X + {0, 4, 11}) = {0}. For every
track t with t = 11, t + 4 = 11 or t + 11 = 11 (mod 16), it must hold that the tth track
of X is either an empty track or trackt(X) = {0}. The latter must hold for at least one
such t. Let us calculate all such tracks t: these are tracks with numbers {11} − {0, 4, 11}
(mod 16) = {0, 7, 11}. Since tracks number 7 and 11 are already known to be empty, it
follows that track0(X) = {0}.

In order to prove that X is a valid encoding of some set, it remains to prove that tracks
number 6, 8, 9, 12 in X are full. Consider first that track3(X + {0, 4, 11}) = N + 1. Let us
calculate the track numbers t such that there is t′ ∈ {0, 4, 11} with (t + t′) (mod 16) = 3:
these are {3} − {0, 4, 11} (mod 16) = {3, 8, 15}. Since tracks 3, 15 are known to be empty,
then

N + 1 = track3(X + {0, 4, 11}) =

= track3(X) ∪ (track15(X) + 1) ∪ (track8(X) + 1) =

= ∅ ∪∅ ∪ (track8(X) + 1) = track8(X) + 1,

and thus track 8 ofX is full. The analogous argument is used to prove that tracks 12, 9, 6 are
full. Consider track7(X+{0, 4, 11}) = N+1. Then {7}−{0, 4, 11} (mod 16) = {7, 3, 12}.
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Since it is already known that tracks 3, 7 are empty, the track 12 is full:

N + 1 = track7(X + {0, 4, 11}) =

= track7(X) ∪ track3(X) ∪ (track12(X) + 1) =

= ∅ ∪∅ ∪ (track12(X) + 1) = track12(X) + 1.

In the same way consider track9(X + {0, 4, 11}) = N. Then {9} − {0, 4, 11} (mod 16) =
{9, 5, 14} and tracks 5, 14 are empty, thus track 9 is full:

N = track9(X + {0, 4, 11}) =

= track9(X) ∪ track5(X) ∪ (track14(X) + 1) =

= track9(X) ∪∅ ∪∅ = track9(X).

Now let us inspect track10(X + {0, 4, 11}). Then {10}−{0, 4, 11} (mod 16) = {10, 6, 15}.
Since the tracks 10, 15 are empty, then the 6th track is full:

N = track10(X + {0, 4, 11}) =

= track10(X) ∪ track6(X) ∪ (1 + track15(X)) =

= ∅ ∪ track6(X) ∪∅ = track6(X).

Thus it has been proved that X = σ(track13(X)).

⇐© It remains to show the converse, that is, that if X = σ(X̂), then

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}.

Since X =
⋃15

i=0 τi(tracki(X)), then

X + {0, 4, 11} =
( ⋃

i

τi(tracki(X)) + 0
)
∪

( ⋃

i

τi(tracki(X)) + 4
)
∪

∪
( ⋃

i

τi(tracki(X)) + 11
)
,

and Table 1 presents the form of each particular term in this union. Each ith row represents
track number i in X, and each column labelled +j for j ∈ {0, 4, 11} corresponds to the
addition of a number j. The cell (i, j) gives the set tracki(X) + j and the number of the
track in which this set appears in the result (this is track i + j (mod 16)). Then each ℓth

track of X + {0, 4, 11} is obtained as a union of all the appropriate sets in the Table 1.

According to the table, the values of the set X̂ are reflected in three tracks of the
sum X + {0, 4, 11}: in tracks 13, 1 and 8 (in the last two cases, with offset 1). However,
at the same time the sum contains full tracks 8 and 13, as well as N + 1 in track 1, and

the contributions of X̂ to the sum are subsumed by these numbers, as τ13(X̂) ⊆ τ13(N),

τ1(X̂ + 1) ⊆ τ1(N + 1) and τ8(X̂ + 1) ⊆ τ8(N). Therefore, the value of the expression does

not depend on X̂ . Taking the union of all entries of the Table 1 proves that X + {0, 4, 11}
equals ⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11},
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+0 +4 +11

0: {0} 0: {0} 4: {0} 11: {0}
6: N 6: N 10: N 1: N + 1
8: N 8: N 12: N 3: N + 1
9: N 9: N 13: N 4: N + 1
12: N 12: N 0: N + 1 7: N + 1

13: X̂ 13: X̂ 1: X̂ + 1 8: X̂ + 1

Table 1: Tracks in the sum σ(X̂) + {0, 4, 11}, only non-empty tracks of σ(X̂) are included.

as stated in the lemma.

4. Simulating operations

The goal of this section is to establish the second property of the encoding σ, that is,
that a sum of encodings of two sets and a fixed constant set effectively encodes the union
of these two sets, while the addition of a different fixed constant set allows encoding the
sum of the two original sets. This property is formally stated in the following lemma, along
with the actual constant sets:

Lemma 4.1. For all sets X,Y,Z ⊆ N,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

and
σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

Proof. The goal is to show that for all Y,Z ⊆ N, the sum

σ(Y ) + σ(Z) + {0, 1}

encodes the set Y +Z + 1 on one of its tracks, while the contents of all other tracks do not
depend on Y or on Z. Similarly, the sum

σ(Y ) + σ(Z) + {0, 2}

has a track that encodes Y ∪Z, while the rest of its tracks also do not depend on Y and Z.
The common part of both of the above sums is σ(Y ) + σ(Z), so let us calculate it first.

Since

σ(Y ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Y ) and

σ(Z) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Z),

by the distributivity of union, the sum σ(Y )+σ(Z) is a union of 36 terms, each being a sum
of two individual tracks. Every such sum is contained in a single track as well, and Table 2
gives a case inspection of the form of all these terms. Each of its six rows corresponds to
one of the nonempty tracks of σ(Y ), while its six columns refer to the nonempty tracks in
σ(Z). Then the cell gives the sum of these tracks, in the form of the track number and
track contents: that is, for row representing tracki(σ(Y )) and for column representing
trackj(σ(Z)), the cell (i, j) represents the set tracki(σ(Y )) + trackj(σ(Z)), which is
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0: {0} 6: N 8: N 9: N 12: N 13: Z

0: {0} 0: {0} 6: N 8: N 9: N 12: N 13: Z
6: N 6: N 12: N 14: N 15: N 2: N + 1 3: ?
8: N 8: N 14: N 0: N + 1 1: N + 1 4: N + 1 5: ?
9: N 9: N 15: N 1: N + 1 2: N + 1 5: N + 1 6: ?
12: N 12: N 2: N + 1 4: N + 1 5: N + 1 8: N + 1 9: ?
13: Y 13: Y 3: ? 5: ? 6: ? 9: ? 10: (Y +Z)+1

Table 2: Tracks in the sum σ(Y ) + σ(Z). Question marks denote subsets of N + 1 that
depend on Y or Z and whose actual values are unimportant.

σ(Y ) σ(Z) σ(Y )+σ(Z) σ(Y )+σ(Z)+{0, 1} σ(Y )+σ(Z)+{0, 2}

0 {0} {0} N N N

1 ∅ ∅ N + 1 N N + 1
2 ∅ ∅ N + 1 N + 1 N

3 ∅ ∅ ? N + 1 N + 1
4 ∅ ∅ N + 1 N + 1 N + 1
5 ∅ ∅ N + 1 N + 1 N + 1
6 N N N N N

7 ∅ ∅ ∅ N N + 1
8 N N N N N

9 N N N N N

10 ∅ ∅ Y + Z + 1 N N

11 ∅ ∅ ∅ Y + Z + 1 N

12 N N N N N

13 Y Z Y ∪ Z N Y ∪ Z
14 ∅ ∅ N N N

15 ∅ ∅ N N N

Table 3: Tracks in the sums of σ(Y ) + σ(Z) with constants.

bound to be on track i+ j (mod 16). For example, the sum of track 8 of σ(Y ) and track 9
of σ(Z) falls onto track 1 = 8 + 9 (mod 16) and equals

τ8(N) + τ9(N) = {8 + 9 + 16(m + n) |m,n > 0} = {1 + 16n | n > 1} = τ1(N + 1),

while adding track 13 of σ(Y ) to track 13 of σ(Z) results in

τ13(Y ) + τ13(Z) = {26 + 16(m+ n) |m ∈ Y, n ∈ Z} = τ10(Y + Z + 1),

which is reflected in the table. Each question mark denotes a track with unspecified contents.
Though these contents can be calculated, it is actually irrelevant, because it does not
influence the value of the subsequent sums σ(Y ) + σ(Z) + {0, 1} and σ(Y ) + σ(Z) + {0, 2}.
What is important is that none of these tracks contain 0.

Now the value of each ith track of σ(Y ) + σ(Z) is obtained as the union of all sums in
Table 2 that belong to the ith track. The final values of these tracks are presented in the
corresponding column of Table 3.



EQUATIONS OVER SETS OF NATURAL NUMBERS WITH ADDITION ONLY 585

Now the contents of the tracks in σ(Y ) + σ(Z) + {0, 1} can be completely described.
The calculations are given in Table 3, and the result is that for all Y and Z,

track11(σ(Y ) + σ(Z) + {0, 1}) = Y + Z + 1,

tracki(σ(Y ) + σ(Z) + {0, 1}) = N + 1 for i ∈ {2, 3, 4, 5},

tracki(σ(Y ) + σ(Z) + {0, 1}) = N for all other i.

It easily follows that
X = Y + Z

if and only if
σ(X) + σ({0}) + {0, 1} = σ(Y ) + σ(Z) + {0, 1},

as, clearly, X = X + {0}.
For the set σ(Y ) + σ(Z) + {0, 2}, in the same way, for all Y and Z,

track13(σ(Y ) + σ(Z) + {0, 2}) = Y ∪ Z,

trackj(σ(Y ) + σ(Z) + {0, 2}) = N + 1 for j ∈ {1, 3, 4, 5, 7},

trackj(σ(Y ) + σ(Z) + {0, 2}) = N for all other j,

and therefore for all X,Y,Z,
X = Y ∪ Z

if and only if
σ(X) + σ(X) + {0, 2} = σ(Y ) + σ(Z) + {0, 2},

since X = X ∪X.
Both claims of the lemma follow.

5. Simulating a system of equations

Using the encoding defined above, it is now possible to represent a system with union
and addition by a system with addition only. Since Lemma 4.1 on the simulation of individ-
ual operations is applicable only to equations of a simple form, the first task is to convert
a given system to such a form:

Lemma 5.1. For every system of equations over sets of numbers in variables (X1, . . . ,Xn)
using union, addition and constants from a set C there exists a system in variables
(X1, . . . ,Xn,Xn+1, . . . ,Xn+m) with all equations of the form Xi = Xj +Xk, Xi = Xj ∪Xk

or Xi = C with C ∈ C, such that the set of solutions of this system is
{
(S1, . . . , Sn, . . . , fi(S1, . . . , Sn), . . .)

∣∣ (S1, . . . , Sn) is a solution of the original system
}
,

for some monotone functions f1, . . . , fm.

The construction is by a straightforward decomposition of equations, with new variables
representing subexpressions of the sides of the original equations. Once the equations are
thus transformed, the system can be encoded as follows.
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Lemma 5.2. For every system of equations over sets of numbers in variables (. . . ,X, . . .)
and with all equations of the form X = Y + Z, X = Y ∪ Z or X = C, there exists a
system in variables (. . . ,X ′, . . .), using only addition and constants {0, 1}, {0, 2}, {0, 4, 11},
σ({0}), σ(C) with C used in the original system and the ultimately periodic constant from
Lemma 3.3, such that (. . . , S′

X , . . .) is a solution of the latter system if and only if S′
X =

σ(SX) for each variable X, for some solution (. . . , SX , . . .) of the former system.

Proof. The proof is by a direct transformation of this system according to Lemmata 3.3
and 4.1. First, the new system contains the following equation for each variable X ′:

X ′ + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}. (5.1)

Next, for each equation X = Y +Z in the original system, there is a corresponding equation

X ′ + σ({0}) + {0, 1} = Y ′ + Z ′ + {0, 1} (5.2)

in the new system. Similarly, for each equation of the form X = Y ∪ Z, the new system
contains an equation

X ′ +X ′ + {0, 2} = Y ′ + Z ′ + {0, 2}. (5.3)

Finally, every equation X = C in the original system is represented in the new system by
the following equation:

X ′ = σ(C). (5.4)

By Lemma 3.3, (5.1) ensures that each solution (. . . , S′
X , . . .) of the constructed system

satisfies S′
X = σ(SX) for some sets SX . It is claimed that (. . . , SX , . . .) satisfies each

equation of the original system if and only if (. . . , σ(SX), . . .) satisfies the corresponding
equation (5.2–5.4) of the constructed system. Consider each pair of corresponding equations:

• Consider an equation X = Y ∪ Z from the original system. Then there is a cor-
responding equation (5.2), and, by Lemma 4.1, (. . . , SX , . . .) satisfies the original
equation if and only if (. . . , σ(SX ), . . .) satisfies (5.2).

• Similarly, by Lemma 4.1, an equation of the form X = Y + Z is satisfied by
(. . . , SX , . . .) if and only if (. . . , σ(SX), . . .) satisfies the corresponding equation (5.3).

• For each equation of the form X = C it is claimed that a set SX satisfies it if and
only if σ(SX) satisfies the corresponding equation (5.4). Indeed, σ(SX) = σ(C) if
and only if track13(σ(SX)) = track13(σ(C)), and since track13(σ(SX)) = SX

and track13(σ(C)) = C, this is equivalent to SX = C.

This shows that (. . . , SX , . . .) satisfies the original system if and only if (. . . , σ(SX), . . .)
satisfies the constructed system, which proves the correctness of the construction.

Note that σ is a bijection between the sets of solutions of the two systems. Then, in
particular, if the original system has a unique solution, then the constructed system has a
unique solution as well, which encodes the solution of the original system.

Furthermore, it is important that the encoding σ respects inclusion, that is, if X ⊆
Y , then σ(X) ⊆ σ(Y ). Consider the partial order on solutions of a system, defined as
(S1, . . . , Sn) 4 (S′

1, . . . , S
′
n) if Si ⊆ S′

i for all i. Now if one solution of the original system
is less than another, then the corresponding solutions of the constructed system maintain
this relation. Therefore, if the original system has a least (greatest) solution with respect
to this partial order, then so does the new one, and its least (greatest) solution is the image
of the least (greatest) solution of the original system.
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These observations allow applying Lemmata 5.1 and 5.2 to encode each system in
Theorem 2.4 within a system using addition only.

Theorem 5.3. For every recursive (r.e., co-r.e.) set S ⊆ N there exists a system of
equations 





ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

with ϕj , ψj using the operation of addition and ultimately periodic constants, which has a
unique (least, greatest, respectively) solution with X1 = T , where S = {n | 16n+ 13 ∈ T}.

Note that S is computationally reducible to T via the “16n + 13” transduction, hence
the following statements:

Corollary 5.4. For every recursive set S ⊆ N there exists a system of equations over sets of
natural numbers using addition and ultimately periodic constants that has a unique solution,
which is computationally as hard as S.

Corollary 5.5. There exists a system of equations over sets of natural numbers using
addition and ultimately periodic constants which has a least (greatest) solution with its first
component being r.e.-complete (co-r.e.-complete, respectively).

Finally, the decision problems for these systems of equations turn out to be as hard as
in the case of union and addition:

Theorem 5.6. The problem of testing whether a system of equations over sets of natural
numbers using addition and ultimately periodic constants has a solution is Π1-complete. The
problem of whether it has a unique, least or greatest solution is Π2-complete. The problem
of whether it has finitely many solutions is Σ3-complete.

The above results equally apply to language equations over a one-letter alphabet with
concatenation as the only allowed operation and with regular constants.

6. Systems with finite constants

The constructions above essentially use three infinite ultimately periodic constants: one
of them is the right-hand side of the equation from Lemma 3.3, and the other two are the
sets σ({0}) and σ({1}) used in Lemma 5.2 to represent constants {0} and {1}. It will now
be shown that the use of such constants is necessary, and systems using only addition and
finite constants cannot specify any non-trivial infinite sets.

This is done by demonstrating that every solution (. . . , S, . . .) of such a system can be
pruned in the sense that each of its infinite components can be replaced by an empty set
and the resulting vector remains a solution.

Lemma 6.1. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using addition and
only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si

infinite, then (. . . , Fj , . . . ,∅, . . .) is a solution of this system.

In a similar way, infinite components of a solution can be augmented to co-finite sets.
For every nonempty set S ⊆ N, consider its upward closure S+N, which is always co-finite.
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Lemma 6.2. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using addition and
only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si

infinite, then (. . . , Fj , . . . , Si + N, . . .) is a solution as well.

Theorem 6.3. If a system of equations using addition and finite constants has a least
(greatest, unique) solution (. . . , Si, . . .), then each Si is finite (finite or co-finite, finite,
respectively).

Since equations with finite constants have so trivial solutions, it is natural to expect
their decision problems to be much easier than in Theorem 5.6. Establishing the exact
complexity of these problems is left for future work.

7. Conclusion

The study of language equations has progressed by showing the computational univer-
sality of simpler and simpler models [10, 6, 5]. The equations proved universal in this paper
are the simplest considered so far: the constructions use systems of equations X = Y Z and
X = C over an alphabet Σ = {a}, with ultimately periodic constants C ⊆ a∗. Little room
is left for further improvement, as infinite constants were proved to be essential.

The results have been obtained in terms of equations over sets of numbers using the
operation of addition, which is the main subject of additive combinatorics [14]. Hopefully,
this work will lead to some further connections between computability and number theory.
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Abstract. This paper solves the unambiguity and the sequentiality problem for polyno-
mially ambiguous min-plus automata. This result is proved through a decidable algebraic
characterization involving so-called metatransitions and an application of results from the
structure theory of finite semigroups. It is noteworthy that the equivalence problem is
known to be undecidable for polynomially ambiguous automata.

1. Introduction

Min-plus and max-plus automata are studied under various names in the literature, e.g.
distance, finance, or cost automata. They have also appeared in various contexts: logical
problems in formal language theory (star height, finite power property, star problem for
traces) [6, 12, 13, 23, 20], study of dynamics of some discrete event systems (DES) [1, 2],
automatic speech recognition [21], and database theory [3].

The sequentiality/unambiguity problem is one of the most intriguing open problems
for min-plus automata: decide (constructively) whether some given min-plus automaton
admits a sequential/unambiguous equivalent. This problem is wide open despite the fact it
was studied by several researchers, e.g. [15, 19, 21].

In 2004, Klimann, Lombardy, Mairesse, and Prieur showed that this problem is
decidable for finitely ambiguous min-plus automata [15]. For the sequentiality problem,
Mohri presented an imperfect algorithm (which is not a decision algorithm) in 1997 [21].

In the present paper, we show a new partial solution to the sequentiality/unambiguity
problem: we show that this problem is decidable provided that the input automaton is
polynomially ambiguous. Polynomially ambiguous min-plus automata are much more in-
volved objects than finitely ambiguous ones, e.g. the equivalence problem is undecidable for
polynomially, but decidable for finitely ambiguous min-plus automata [16, 8]. In fact, all
the key ideas in [15] for finitely ambiguous min-plus automata (namely the decomposition
technique and the pumping arguments) do not carry over to polynomially ambiguous min-
plus automata and we have to develop advanced proof techniques. We develop a theory of
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so-called metatransitions and establish a decidable algebraic characterization of the poly-
nomially ambiguous min-plus automata which admit an unambiguous equivalent. To prove
the characterization, we utilize some techniques from the limitedness problem for distance
and desert automata [18, 24, 12, 13], results from the structure theory of finite semigroups as
the factorization forest theorem along with various new ideas. The proof for the sufficiency
of the construction leads to an intriguing combination of two Burnside problems.

2. Preliminaries

2.1. Notations

Let Σ be a finite alphabet. The notion of a ♯-expression is due to [7]. Every a ∈ Σ is a
♯-expression. For ♯-expressions r and s, the expressions rs and r♯ are ♯-expressions. For a
♯-expression r and k ≥ 0, let r(k) be the word obtained by replacing every ♯ by k.

Let N = {0, 1, . . . }. Let Zω = (Z ∪ {ω,∞},min,+,∞, 0) be the semiring whereas min

is the minimum for the ordering · · · ≤ −1 ≤ 0 ≤ 1 · · · ≤ ω ≤ ∞ and m + n is defined as
usual if m,n ∈ Z but as maximum of m and n if m ∈ {ω,∞} or n ∈ {ω,∞}. The tropical
semiring Z∞ is the restriction of Zω to Z ∪ {∞}.

Let Q be a finite set. For k ≥ 1, matrices M1, . . . ,Mk,M ∈ Z
Q×Q
ω , and p0, . . . , pk ∈

Q, we denote M1[p0, p1] + · · · + Mk[pk−1, pk] by (M1, . . . ,Mk)[p0, . . . , pk], and we denote
M [p0, p1] + · · · + M [pk−1, pk] by M [p0, . . . , pk].

Let M ∈ Z
Q×Q
ω . We set mind(M) = min{M [p, p] | p ∈ Q}. If some entry of M belongs to

Z, then min(M) (resp. max(M)) is the minimum (resp. maximum) of the set {M [p, q] | p, q ∈
Q,M [p, q] ∈ Z}, and span(M) = max(M)−min(M). Otherwise, span(M) = 0.

The boolean semiring is B = ({0, 1},+, ·, 0, 1), and we denote by α : Zω → B the
morphism defined by α(∞) = 0 and α(z) = 1 for z 6= ∞.

Given P ⊆ Q and M ∈ B
Q×Q, we let P ·M = {q ∈ Q | there is some p ∈ P such that

M [p, q] = 1} and M · P = {q ∈ Q | there is some p ∈ P such that M [q, p] = 1}.
We generalize all these notions (except mind) to matrices which are not quadratic.
Let T be a set and · : T ×T 99K T be partial mapping. We assume that · is associative,

i.e., if for p, q, r ∈ T , either both products (pq)r and p(qr) are undefined or both products
are defined and (pq)r = p(qr). Let T0 = T .∪ {0}. We extend · to T0 by setting pq = 0 for
p, q ∈ T for which pq is undefined in T . Clearly, T0 is a semigroup with zero 0.

2.2. Min-Plus Automata

A min-plus automaton is a tuple A = [Q,µ, λ, ̺] whereas Q is a nonempty, finite set

of states, µ : Σ∗ → Z
Q×Q
∞ is a homomorphism, and λ, ̺ ∈ Z

Q
∞. A min-plus automaton A

computes a mapping |A| : Σ∗ → Z∞ by |A|(w) = λµ(w)̺ for w ∈ Σ∗.
Two min-plus automata are equivalent if and only if they compute the same map-

ping. We call a state q ∈ Q accessible (resp. co-accessible) if there is a v ∈ Σ∗ such that
(λµ(v))[q] ∈ Z (resp. (µ(v)̺)[q] ∈ Z). If every state is accessible and co-accessible, then we
call A trim.

Let I = { q ∈ Q |λ[q] ∈ Z } and F = { q ∈ Q | ̺[q] ∈ Z }. If |I| = 1, and for every a ∈ Σ,
p ∈ Q, there exists at most one q ∈ Q satisfying µ(a)[p, q] ∈ Z, then we call A sequential.

Let w = a1 · · · a|w| ∈ Σ∗. A sequence p0, . . . , p|w| is a path (in A) from p0 to p|w| for w

if (µ(a1), . . . , µ(a|w|))[p0, . . . , p|w|] ∈ Z. We call p0, . . . , p|w| accepting if p0 ∈ I, p|w| ∈ F .
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If there exists some polynomial P : N → N such that for every w ∈ Σ∗, there are
at most P (|w|) accepting paths for w, then A is called polynomially ambiguous. If the
same condition is satisfied for a constant n ∈ N, then A is called finitely ambiguous. If
there is at most one path for each word, then A is called unambiguous. The mapping
f : {a, b}∗ → Z∞ defined as f(w) = min{k | bakb is a factor of w} can be computed by a
polynomially ambiguous min-plus automaton, but not by a finitely ambiguous min-plus
automaton [14].

The following characterization is used implicitly in [10, 11, 22] (cf. Proof of Theorem 3.1
in [11] or Lemma 4.3 in [10]).

Theorem 2.1. A trim min-plus automaton A is polynomially ambiguous if and only if for
every state q and every w ∈ Σ∗, there is at most one path for w from q to q.

We need the following characterization.

Lemma 2.2. Let A = [Q,µ, λ, ̺] be a trim, unambiguous min-plus automaton. Let w ∈ Σ∗,
k ≥ 1, and q0, . . . , qk ∈ Q such that there is path for w from qi−1 to qi for every 1 ≤ i ≤ k.

There are π1, π2, π3 ∈ Q∗ such that |π1π3| ≤ |Q|, |π2| ≤ |Q|, and q0 . . . qk ∈ π1π
∗
2π3.

3. Overview

3.1. Metatransitions

The combination of a forward and backward parsing was one of the key ideas by Hashi-

guchi in various papers on the finite power property and distance automata (e.g. in [4, 5]).
Metatransitions formalize this idea in an algebraic fashion. Metatransitions form a semi-
group, and the homomorphism α : Zω → B extends in a natural way to a homomorphism
between the semigroups of metatransitions. Henceforth, we can utilize semigroup theoretic
approaches by Simon, Leung, and Kirsten (e.g. [18, 23, 24, 12, 13]) on metatransitions.
Consequently, the concept of a metatransition compromises the combinatorial approach by
Hashiguchi and the algebraic approach by Simon and Leung in the research on min-plus
automata. Several results in this section were already shown in [9].

Let Q be a finite set. A metatransition over Zω and Q is a tuple
(

P0

R0
M P1

R1

)

, whereas

MT1.: P0, P1, R0, R1 ⊆ Q,

MT2.: M ∈ Z
(P0∩R0)×(P1∩R1)
ω ,

MT3.: (P0 ∩R0) · α(M) = (P1 ∩R1) and (P0 ∩R0) = α(M) · (P1 ∩R1).

Two metatransitions
(

P0

R0
M P1

R1

)

and
(

P ′
0

R′
0

M ′ P ′
1

R′
1

)

are called concatenable if and only

if P1 = P ′
0 and R1 = R′

0. In this case, their product yields
(

P0

R0
MM ′ P ′

1

R′
1

)

.

Let MT(Zω, Q) be the set consisting of all metatransitions over Q. Then, MT(Zω, Q)0
is a semigroup with a zero.

We define metatransitions over B and Q in the same way.1 We extend the homomor-
phism α : Zω → B to α : MT(Zω, Q)0 → MT(B, Q)0 by setting

α
((

P0

R0
M1

P1

R1

))

=
(

P0

R0
α(M1)

P1

R1

)

and α(0) = 0.

1In (MT3), α(M) is replaced by M .
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Let M ′ ∈ Z
Q×Q
ω and P0, R1 ⊆ Q. Let P1 = P0 · α(M ′), R0 = α(M ′) ·R1, and let M be

the restriction of M ′ to (P0 ∩R0)× (P1 ∩R1). We denote
(

P0

R0
M P1

R1

)

by JP0,M
′, R1K and

call it the metatransition induced by P0,M
′, R1. We also say that JP0,M

′, R1K is induced
by M ′.

Lemma 3.1. Let t1 =
(

P0

R0
M1

P1

R1

)

, t2 =
(

P1

R1
M2

P2

R2

)

∈ MT(Zω, Q) and M ′
1,M

′
2 ∈ Z

Q×Q
ω .

If t1 = JP0,M
′
1, R1K and t2 = JP1,M

′
2, R2K, then t1t2 = JP0, M ′

1M
′
2, R2K.

Let k ≥ 1 and let M ′
1, . . . ,M

′
k ∈ Z

Q×Q
ω . Let P0, Rk ⊆ Q. As above, the matrices

M ′
1, . . . ,M

′
k induce with P0, Rk a sequence of concatenable metatransitions: For 0 < i ≤ k,

let Pi = Pi−1 · α(M ′
i) and Ri−1 = α(M ′

i) · Ri. Finally let Mi be the restriction of M ′
i to

(Pi−1 ∩Ri−1)× (Pi ∩Ri) and ti =
(

Pi−1

Ri−1
Mi

Pi

Ri

)

for 1 ≤ i ≤ k.

Clearly, ti = JPi−1,M
′
i , RiK. Moreover, Pi ∩ Ri 6= ∅ for some 0 ≤ i ≤ k if and only if

Pi ∩Ri 6= ∅ for every 0 ≤ i ≤ k. By Lemma 3.1, we obtain t1 · · · tk = JP0, M1 · · ·Mk, RkK.

3.2. The Semigroup of Metatransitions of an Automaton

Let A = [Q,µ, λ, ̺] be a min-plus automaton, I = { q ∈ Q |λ[q] ∈ Z } and F = { q ∈
Q | ̺[q] ∈ Z }.

Let n ≥ 1 and w1, . . . , wn ∈ Σ∗ be a sequence of words. As above, the matrices
µ(w1), . . . , µ(wn) induce with P0 = I and Rn = F a sequence of concatenable metatransi-
tions t1, . . . , tn.

Let q0, . . . , qn ∈ Q. If λ[q0] +
(

µ(w1), . . . , µ(wn)
)

[q0, · · · , qn] + ̺[qn] ∈ Z, then we have
qi ∈ Pi∩Ri for every 0 ≤ i ≤ k. Conversely, for every 1 ≤ i ≤ k and every q ∈ Pi∩Ri, A can
read w1 · · ·wi from an initial state to q, and it can read wi+1 · · ·wn from q to an accepting
state. In this sense, the metatransitions t1, . . . , tn represent exactly the accepting paths for
w in A. The matrices inside t1, . . . , tn are the matrices µ(w1), . . . , µ(wn) restricted to the
entries which occur in accepting paths for w1 . . . wn.

We have Pi ∩Ri 6= ∅ for some 0 ≤ i ≤ k if and only if Pi ∩Ri 6= ∅ for every 0 ≤ i ≤ k if
and only if A accepts w1 . . . wn.

The most beautiful property is the following: let 0 ≤ i < j ≤ n and assume Pi = Pj and

Ri = Rj . We consider the sequence of words w′ = w1, . . . , wi, (wi+1, . . . , wj , )
kwj+1, . . . , wn

for some k ≥ 0. By applying µ to each word in w′, we obtain a sequence of matrices.
As above, these matrices induce with P0 = I and Rn = F a sequence of metatransitions.
Clearly, we obtain the sequence t1, . . . , ti, (ti+1, . . . , tj , )

ktj+1, . . . , t|w|.
Although this property looks quite obvious, it is of crucial importance since it enables

us to apply pumping- and Burnside-techniques.
We associate to A a subsemigroup of MT(Zω, Q)0. We call some set S ⊆ Q a P -clone

of A (resp. an R-clone of A) if there exists some word v ∈ Σ∗ such that S = I · α(µ(v))
(resp. S = α(µ(v)) · F ). Let MT(Zω,A) =

{

JP0, µ(a), R1K
∣

∣

∣
a ∈ Σ, P0 is a P-clone, R1 is a R-clone, P0 · µ(a) · R1 6= ∞

}

.

The condition P0 · µ(a) ·R1 6= ∞ ensures that µ(a) does not restrict to a ∅ × ∅-matrix.
Let 〈MT(Zω,A)〉0 be the subsemigroup of MT(Zω, Q)0 generated by MT(Zω,A) ∪ {0}.

By Lemma 3.1, we can show that 〈MT(Zω,A)〉0 consists of 0 and metatransitions of the form
JP0, µ(w), R1K for P-clones P0, R-clones R1, and words w ∈ Σ+ satisfying P0 ·µ(w) ·R1 6= ∞.
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For every metatransition t2 ∈ 〈MT(Zω,A)〉0, there are t1, t3 ∈ 〈MT(Zω,A)〉0 such that
t1t2t3 6= 0 and t1t2t3 = JI, µ(w), F K for some word w ∈ Σ∗.

By removing the weights from A, we can define in the same way a set MT(B,A) and
the subsemigroup 〈MT(B,A)〉0 of MT(B,A).

3.3. On Metatransitions with an Idempotent Structure

Let A be a polynomially ambiguous min-plus automaton and let e =
(

P
R

M P
R

)

∈

〈MT(Zω, Q)〉0 be a metatransition with an idempotent structure, i.e., assume α(ee) = α(e).
We define a relation ≤e on P ∩R by setting p ≤e q iff M [p, q] 6= ∞. This relation is “almost
a partial order” in that it satisfies the three following properties.

i) Clearly, ≤e is transitive.
ii) The relation ≤e is antisymmetric. Let p 6= q ∈ P ∩R such that p ≤e q ≤e p. Clearly,

e is induced by µ(v) for some v ∈ Σ∗. Then, A can read v2 from p to p in two paths. One
path stays at p, the other path goes from p to q and back. This contradicts Theorem 2.1.

iii) For every q ∈ P ∩ R, there exist p, r ∈ P ∩ R, p ≤e q ≤e r such that p ≤e p and
r ≤e r. By (MT3), there are q1, q2, . . . ∈ P ∩R such that q ≤e q1 ≤e q2 ≤e · · · By transitivity
and finiteness of P ∩R, there is some r among q1, q2, . . . such that q ≤e r ≤e r. The proof
for p is similar.

Lemma 3.2. Let e =
(

P
R

M P
R

)

∈ 〈MT(Zω,A)〉0 with an idempotent structure. Let k ≥ 1

and p, q ∈ P ∩R such that Mk[p, q] 6= ∞.
There are p = p0, . . . , pk = q in P ∩ R such that Mk[p, q] = M [p0, . . . , pk]. Moreover,

if k > |P ∩ R|, then we can choose p0, . . . , pk such that there are 0 ≤ i < j ≤ k such that
pi = pi+1 = · · · = pj and p0, . . . , pi, pj+1, . . . , pk does not contain a cycle.

The last claim of Lemma 3.2 just says that for large k, one can choose the sequence
p0, . . . , pk to be almost constant up to a short cycle-free prefix and suffix. The total length
of the prefix and the suffix is at most |P ∩R|.

It is important that for the antisymmetry of ≤e and for Lemma 3.2, we do not need to
assume e ∈ 〈MT(Zω,A)〉0, it suffices that e ∈ MT(Zω, Q) and α(e) = α(ee) ∈ 〈MT(B,A)〉0.

3.4. Stabilization

Let A be a polynomially ambiguous min-plus automaton. Let e =
(

P
R

M P
R

)

∈

MT(Zω, Q) such that α(e) = α(ee) ∈ 〈MT(B,A)〉0. Assume mind(M) = 0.
We define M ♯, the stabilization of M . The idea of M ♯ is to understand the sequence

(Mk)k≥1. Let p, q ∈ P ∩R.
If Mk[p, q] = ∞, for some k ≥ 1, then Mk[p, q] = ∞ for every k ≥ 1. In this case, we

define M ♯[p, q] = ∞.
Assume M [p, q] 6= ∞. Lemma 3.2 is crucial to understand the sequence (Mk[p, q])k≥1.

From mind(M) = 0, we can easily deduce a lower bound on (Mk[p, q])k≥1.
We say that some sequence p0, . . . , pk ∈ P ∩ R satisfies (S1), if p0 = p, pk = q, and

M [p0, . . . , pk] ∈ Z. If p0, . . . , pk satisfies (S1) and there exists some 0 ≤ i ≤ k such that
M [pi, pi] = 0, then we say that p0, . . . , pk satisfies (S2).

Assume there exists a sequence which satisfies (S2). Then, there exists a sequence
p0, . . . , pk for some k < |P ∩R| which satisfies (S2) such that m = M [p0, . . . , pk] is minimal
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among all sequences which satisfy (S2). In this case, (Mk[p, q])k≥1 is ultimately constant
m and we define M ♯[p, q] = m.

Assume that there does not exist a sequence which satisfies (S2) although M [p, q] 6= ∞.
We can conclude that the sequence (Mk[p, q])k≥1 is either ultimately ω, or it tends to
infinity, since (S1)-sequences cannot utilize the zeros on the main diagonal of M . In this
case, we set M ♯[p, q] = ω.

Consequently, M ♯[p, q] describes the behaviour of (Mk[p, q])k≥1.

For p ∈ P ∩R satisfying M [p, p] = 0, we have M ♯[p, p] = 0.
We generalize the definition of M ♯ by weakening the assumption mind(M) = 0 to

mind(M) ∈ Z. We still assume α(e) = α(ee) ∈ 〈MT(B,A)〉0.
We normalize M . Let m = mind(M) and define M̄ by M̄ [p, q] = M [p, q] − m for2

p, q ∈ P ∩R. Clearly, α(M̄ ) = α(M) and mind(M̄) = 0. We define M ♯ = M̄ ♯.
For k ≥ 1, we have Mk[p, q] = km + M̄k[p, q]. Let p, q, p′, q′ ∈ P ∩ R. For k ≥ 1, we

have Mk[p, q]−Mk[p′, q′] = M̄k[p, q]− M̄k[p′, q′], provided that Mk[p, q] ∈ Z.
If M ♯[p, q] and M ♯[p′, q′] are integers, then the entries [p, q] and [p′, q′] are ultimately

constant in (M̄k)k≥1, i.e., the entries [p, q] and [p′, q′] grow or sink synchronized in the
sequence (Mk)k≥1 and for every k beyond some bound, we have Mk[p, q] − Mk[p′, q′] =
M ♯[p, q]−M ♯[p′, q′].

However, if M ♯[p, q] = ω and M ♯[p′, q′] ∈ Z, then either (Mk[p, q])k≥1 is ultimately ω,
or the difference (Mk[p, q]−Mk[p′, q′])k≥1 tends to infinity.

Given e =
(

P
R

M P
R

)

∈ MT(Zω, Q) satisfying α(e) = α(ee) ∈ 〈MT(B,A)〉0 and

mind(M) ∈ Z, we define its stabilization e♯ =
(

P
R

M ♯ P
R

)

∈ MT(Zω, Q). We have α(e♯) =

α(e) and e♯ ∈ MT(Zω, Q).
Finally, let t ∈ MT(Zω, Q) and let M be the matrix in t. We define span(t) = span(M)

and generalize the notions min, max, and mind in the same way.

Lemma 3.3. (1) For concatenable t1, t2 ∈ MT(Z, Q), span(t1t2) ≤ span(t1) + span(t2).
(2) For e ∈ MT(Zω, Q) for which e♯ is defined, we have span(e♯) ≤ |Q|span(e).

3.5. Main Results, Conclusions, and Open Questions

Let A be a polynomially ambiguous min-plus automaton and let MT(Zω,A) as in

Section 3.2. Let 〈MT(Zω,A)〉♯0 be the least semigroup which

(1) contains MT(Zω,A) and the zero of MT(Zω, Q),
(2) is closed under the product of metatransitions, and

(3) is closed under stabilization, i.e., for every e ∈ 〈MT(Zω,A)〉♯0, we have

e♯ ∈ 〈MT(Zω,A)〉♯0, provided that e♯ is defined.

We state our main characterization:

Theorem 3.4. Let A be a polynomially ambiguous min-plus automaton.
The following assertions are equivalent:

(1) There exists some metatransition t ∈ 〈MT(Zω,A)〉♯0 such that every entry in t be-
longs to {ω,∞}.

(2) The min-plus automaton A has no unambiguous equivalent.

2Whereas ∞−m =∞ and ω −m = ω.
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(3) Every unambiguous min-plus automaton Ã which accepts the same language as A
satisfies one of the following conditions:
(3a) There are u, v,w ∈ Σ∗ such that uvkw is accepted by A and Ã for k ≥ 1, and

for growing k, the sequence
(

|Ã|(uvkw)− |A|(uvkw)
)

k≥1
tends to infinity.

(3b) There is a ♯-expression r such that r(k) is accepted by A and Ã for k ≥ 1, and

for growing k, the sequence
(

|A|(r(k)) − |Ã|(r(k))
)

k≥1
tends to infinity.

The reader might complain that (as seen in Section 3.4) one entry in the main diagonal
of a stabilization e♯ is 0, and hence, some matrix t as in Theorem 3.4(1) cannot exist.
However, by applying both stabilization and multiplication, metatransitions in which every
entry is either ω or ∞ may arise.

For illustration, let us consider Theorem 3.4 for the particular case that A is unambigu-

ous. Let e =
(

P
R

M P
R

)

∈ 〈MT(Zω,A)〉♯0 be with an idempotent structure. Since P (resp.

R) is a P- (resp. R-clone), there are u, v ∈ Σ∗ such that P = I ·α(µ(u)) and R = α(µ(v)) ·F .
If |P ∩R| > 1, then we can construct two different accepting paths for uv. Hence, P ∩R = 1
and M is a (1× 1)-matrix. By (MT3), the entry of M cannot be ∞. If the entry of M is an
integer, then mind(M) yields the only entry of M , and thus, the entry of the normalization
M̄ is 0, i.e., the entry of M ♯ = M̄ ♯ is 0. Consequently, ω’s cannot arise in the closure

〈MT(Zω,A)〉♯0, and in particular, (1) in Theorem 3.4 is not satisfied.
Note that (3) ⇒ (2) in Theorem 3.4 is obvious. We will prove (1) ⇒ (3) in Section 4.

We assume some t as in (1) and assume some Ã as in (3) which does not satisfy (3a). Then,
we show (3b): as t is constructed from metatransitions in MT(Zω,A) by using multiplication
and stabilization, r is constructed from letters by using concatenation and ♯-powers.

We will prove (2) ⇒ (1) in Section 5. It leads to an intriguing combination of two
Burnside problems over metatransitions which are remotely related to problems considered
by Simon and Leung, e.g. [18, 23, 24].

Theorem 3.5. Given a polynomially ambiguous min-plus automaton A, we can decide
whether A has an unambiguous equivalent, or whether it has a sequential equivalent.

Proof. To decide the existence of an unambiguous equivalent, one process searches for some

t ∈ 〈MT(Zω,A)〉♯0 as in Theorem 3.4(1). A simultaneous process enlists all unambiguous
min-plus automata, and checks (using an algorithm in [17]) whether one of them is equivalent
to A. By Theorem 3.4, exactly one of the processes terminates. To decide the existence of
a sequential equivalent, the algorithm decides at first whether there exists an unambiguous
equivalent A′. If so, it applies an algorithm in [15, 21] to A′.

It is interesting to have by Theorem 3.5 a decidability result for a class of min-plus
automata for which the equivalence problem is undecidable [16]. Many interesting questions
arise from our approach and from the introduced proof techniques. The central question is
of course whether or how our approach can be generalized to arbitrary min-plus automata.
Another question is whether we can achieve complexity results or a practical algorithm.

Further questions are: can we characterize the existence of a sequential equivalent in

terms of the stabilization closure 〈MT(Zω,A)〉♯0? Is the existence of a finitely ambiguous

(resp. finitely sequential) equivalent decidable? Is the membership problem of 〈MT(Zω,A)〉♯0
decidable? Are our techniques helpful to decide the open equivalence problem between a
polynomially and a finitely ambiguous min-plus automaton?
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4. Necessity

We prove (1) ⇒ (3) in Theorem 3.4. We assume some polynomially ambiguous min-
plus automaton A = [Q,µ, λ, ̺] which satisfies (1). We assume an unambiguous automaton

Ã = [Q̃, µ̃, λ̃, ˜̺] which accepts the same language and show (3).

Since A satisfies Theorem 3.4(1), there exists some s ∈ 〈MT(Zω,A)〉♯0 such that every

entry in s is ω or∞. We can assume that s is of the form s =
(

I
Fs

M Is

F

)

for some Fs, Is ⊆ Q

and some M . Since α(s) ∈ 〈MT(B,A)〉0, we have I ∩ Fs 6= ∅ and Is ∩ F 6= ∅.

To explain the idea, let us assume that s is of the form s = t1e
♯
2t3e

♯
4t5 for some

metatransitions t1, e2, t3, e4, t5 ∈ 〈MT(Zω,A)〉0, i.e., there is no ω in t1, e2, t3, e4, t5. Let
u1, . . . , u5 ∈ Σ∗ such that t1, e2, t3, e4, t5 are induced by µ(u1), . . . , µ(u5) with I and F . We
denote by M1, . . . ,M5 the matrices inside t1, e2, t3, e4, t5.

Let ℓ be some extremely large multiple of |Q̃|!. We show that (3a) or (3b) is satisfied.
At first, we consider the output of A on words u1u

ℓk
2 u3u

ℓ
4u5 for large, growing k. The

output of A on such words for large k is mainly determined by uℓk
2 . It should be clear that

for large growing k, the output of A grows by ℓ · mind(M2) per k, i.e., the growth rate is
ℓ ·mind(M2) per k.

Similarly, the output of A on u1u
ℓ
2u3u

ℓk
4 u5 for large, growing k has a growth rate of

ℓ ·mind(M4) per k.
However, what happens for words u1u

ℓk
2 u3u

ℓk
4 u5 for large, growing k. Assume the

growth rate of the output of A on this sequence is ℓ · (mind(M2) + mind(M4)). Assume
some extremely large k and consider some accepting path π for the word u1u

ℓk
2 u3u

ℓk
4 u5.

Assume that the weight of π yields |A|(u1u
ℓk
2 u3u

ℓk
4 u5). We decompose π into π1, . . . , π5

which correspond to u1, u
ℓk
2 , u3, u

ℓk
4 , u5, and denote the first and last states of π1, . . . , π5 by

i0, . . . , i5. For example π2 starts in i1, ends in i2 and reads uℓk
2 .

To achieve the growth rate of ℓ·(mind(M2)+mind(M4)) per k, A has to read almost every
u2 with a weight of mind(M2), and has read almost every u4 with a weight of mind(M4).
Hence, the paths π2 and π4 have to utilize the least entries on the main diagonal on M2

and M4, respectively.
We can factorize π2 into ℓk factors such that each factor reads u2. Let us denote by

r0, . . . , rℓk the first and last states of these factors, in particular, i1 = r0 and rℓk = i2.
Since, π2 utilizes a least entry on the main diagonal of M2, r0, . . . , rℓk utilize a 0 on the

main diagonal of the normalization M̄2, i.e., r0, . . . , rℓk satisfy (S2). Hence, M
♯
2[i1, i2] =

M̄
♯
2[i1, i2] ∈ Z. By the same argument, we obtain M

♯
4[i3, i4] ∈ Z. Consequently, s[i0, i5] ≤

(M1,M
♯
2,M3,M

♯
4,M5)[i0, . . . , i5] ∈ Z, i.e., s[i0, i5] ∈ Z which contradicts the choice of s.

Consequently, the growth rate of the output of A on words u1u
ℓk
2 u3u

ℓk
4 u5 for large,

growing k is strictly larger than ℓ · (mind(M2) + mind(M4)).

Next, we analyze how Ã reads u1u
ℓ
2u3u

ℓ
4u5. Let π be the unique accepting path

of u1u
ℓ
2u3u

ℓ
4u5 in Ã. As above, we decompose π into π1, . . . , π5 which correspond to

u1, u
ℓ
2, u3, u

ℓ
4, u5, and denote the first and last states of π1, . . . , π5 by i0, . . . , i5.

For the structure of π2 and π4, Lemma 2.2 is very helpful. Since ℓ is extremely larger
than |Q̃|, π2 consists mainly of a short cycle π′2 which is looped many times. Let n2 be the
number of u2’s which are read in this cycle. Let m2 the weight of π′2 divided by n2. The
value m2 can be understood as the relative cycle weight of π2.
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Now, we consider the output of Ã on words u1u
ℓk
2 u3u

ℓ
4u5 for large, growing k. Since the

factors u2 are read in many looped π′2 cycles, the growth rate of the output of Ã is ℓkm2

per k.
By applying the same argument on π4 we obtain some m4, and the growth rate of the

output of Ã on words u1u
ℓ
2u3u

ℓk
4 u5 for large, growing k is ℓkm4 per k.

Since Ã is unambiguous, the growth rate of the output of Ã on words u1u
ℓk
2 u3u

ℓk
4 u5 for

large, growing k is ℓk(m2 + m4) per k.
Now, at least one of the following three cases occurs:

• km2 > mind(M2) Then, on words u1u
ℓk
2 u3u

ℓ
4u5 for growing k, the output of Ã

grows faster than the output of A. Hence, we have (3a) by using u1, uℓ
2, u3u

ℓ
4u5 as

u, v,w.
• km4 > mind(M4) Like the previous case.
• km2 ≤ mind(M2) and km4 ≤ mind(M4) We consider words u1u

ℓk
2 u3u

ℓk
4 u5 for grow-

ing k. The growth rate of A on these words is strictly larger than ℓ · (mind(M2) +

mind(M4)) per k, whereas the growth rate of Ã is less than ℓk(m2 + m4) per k.
Hence, we have (3b) by using u1(u

ℓ
2)

♯u3(u
ℓ
4)

♯u5 as r.

Thus, we have shown (3) in the particular case that s is of the form t1e
♯
2t3e

♯
4t5. It is

straightforward to generalize this argument for s which are of the form t1e
♯
2t3 . . . e

♯
n−1tn for

some n. However, this generalization is not sufficient. The real technical challenge is to
prove (3) for some s which is generated by nesting stabilizations, e.g., if s is of the form

t1
(

e
♯
2t3e

♯
4

)♯
t5 or if s is generated by arbitrarily many nested stabilizations.

To deal with these cases, we have to develop the same argumentation as above in a

tree-like fashion. As above, we assume by Theorem 3.4(1) some s ∈ 〈MT(Zω,A)〉♯0 which is

of the form s =
(

I
Fs

M Is

F

)

whereas every entry in M belongs to {ω,∞}.

We define the notion of a ♯-tree. Its nodes are labeled with triples (w, t, t′) whereas

w ∈ Σ∗, t ∈ 〈MT(Z,A)〉♯0, and t′ ∈ 〈MT(Z,A)〉0, satisfying α(t) = α(t′).
Let k ≥ 1. We define now ♯-trees of rank k. For every a ∈ Σ, every P-clone P and every

R-clone R, there is a ♯-tree which consists of a single node labeled with
(

a, t, t
)

, whereas
t = JP, µ(a), RK.

Let T1, T2 be ♯-trees and assume that their roots are labeled with (w1, t1, t
′
1) and

(w2, t2, t
′
2), respectively. If t1 and t2 are concatenable, then we construct a ♯-tree as fol-

lows: its root is labeled with (w1w2, t1t2, t′1t
′
2). Its successors are T1 and T2.

Let T1 be a ♯-tree and assume that its root is labeled with (w1, t1, t
′
1). If t

♯
1 is defined,

then we construct another ♯-tree: its root is labeled with (wk
1 , t

♯
1, t

′k
1 ) and has k copies of T1

as successors.
For every t ∈ 〈MT(Z,A)〉♯0, there are some w ∈ Σ∗, t′ ∈ 〈MT(Z,A)〉0, and a ♯-tree

whose root is labeled with (w, t, t′).
Consequently, there are w ∈ Σ∗, s′ ∈ 〈MT(Z,A)〉0, and a ♯-tree whose root is labeled

with (w, s, s′). We can naturally associate a ♯-expression r to this ♯-tree in a bottom-up-
manner, and we have r(k) = w.

We can then prove various conditions in a bottom-up induction over the nodes of the ♯-
tree. The key argumentation is as follows: we assume that w does not admit a factorization
into three words which prove (3a). Under this assumption, we can show that |A|(w) is much

larger than |Ã|(w), and we can show in particular that r can be used to prove (3b).
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5. Sufficiency

We show (2) ⇒ (1) in Theorem 3.4 by contraposition. We assume a polynomially
ambiguous min-plus automaton A = [Q,µ, λ, ̺] which does not satisfy (1), and we construct
an equivalent unambiguous automaton. We assume that the entries of λ and ̺ are 0 or ∞.

The construction of an unambiguous equivalent relies on the following proposition:

Proposition 5.1. Let A be a polynomially ambiguous min-plus automaton, and assume
that A does not satisfy (1) in Theorem 3.4.

There is some Y ≥ 0 such that the following assertion is true:

For every t =
(

P
R

M P ′

R′

)

∈ 〈MT(Zω,A)〉0, there is some t′ =
(

P
R

M ′ P ′

R′

)

∈ 〈MT(Zω,A)〉♯0
satisfying:

(A1): α(t) = α(t′)
(A2): For every p ∈ P ∩R, q ∈ P ′ ∩R′, satisfying M [p, q] 6= ∞ and

M [p, q] ≥ min(M) + Y, we have M ′[p, q] = ω.

The proof of Proposition 5.1 leads us to an intriguing combination of two Burnside
problems for metatransitions. The main proof of Proposition 5.1 utilizes an inductive ar-

gument via the factorization forest theorem for the homomorphism α : 〈MT(Zω,A)〉♯0 →
〈MT(B,A)〉0. The induction step for metatransitions with an idempotent structure leads
us to another Burnside problem itself. To solve this inner Burnside problem, we consider

subsemigroups Te = 〈MT(Zω,A)〉♯0 ∩ α−1(e) for idempotents e ∈ 〈MT(B,A)〉0. This inner
Burnside problem is then shown by methods which are remotely related to techniques by
Simon and Leung for the limitedness problem of distance automata [18, 23, 24].

To prove Proposition 5.1 by an induction via the factorization forest theorem, we have
to add two more technical conditions to get a stronger inductive hypothesis.

One can deduce Y from the proof of Proposition 5.1. It is elementary but superexpo-
nential. Knowing Y is not required to show the decidability in Theorem 3.5.

We construct now an unambiguous equivalent A′ of A.
For every R-clone R satisfying R∩I 6= ∅, we add an initial state (I, δ,R) to A′, whereas

δ is a (0, . . . , 0) tuple of dimension I ∩R.
Next, we construct for every state of A′ the outgoing transitions and the follow state.
Let (P, δ,R) be some already constructed state of A′. For every a ∈ Σ and every R-clone

R′ satisfying R = α(µ(a)) · R′, we add a transition and a state to A as follows:

(1) Let t =
(

P
R

M P ′

R′

)

be the metatransition induced by µ(a) with P and R′.

(2) Let δ̂ = δ ·M . Hence, δ̂ is a tuple of dimension (P ′ ∩R′).

(3) We normalize δ̂. For every q ∈ P ′ ∩R′, we set δ′[q] = δ̂[q]−min(δ̂).
(4) We introduce a transition from (P, δ,R) to (P ′, δ′, R′).

(5) The label and the weight of this transition are a and min(δ̂), respectively.

In this way, we can construct the entire min-plus automaton A′. At this point of the
construction, the set of states might become infinite.

Some state (P, δ,R) is an accepting state if R = F . The accepting weight is 0.
Consider some word w = a1 . . . an ∈ Σ∗ which is accepted by A′. Denote the states of

the accepting path for w in A′ by (Pi, δi, Ri) for i ∈ {0, . . . , n}. In particular, P0 = I and
Rn = F . For i ∈ {1, . . . , n}, denote by mi the transition weight of the i-th transition of π.
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Let 1 ≤ i ≤ n. By an induction on i, we can show that for every q ∈ Pi ∩ Ri, the
sum m1 + · · ·+ mi + δi[q] is exactly (I · µ(a1 . . . ai))[q]. The sum m1 + · · ·+ mn is then the
minimum of (I · µ(w))[q] for q ∈ F , i.e., the sum m1 + · · ·+ mn is λµ(w)̺ = A(w).

Conversely, consider some word w = a1 . . . an ∈ Σ∗ which is accepted by A. We can
construct an accepting path for w in A′ as follows. Let t1, . . . , tn be the metatransitions

induced by µ(a1), . . . , µ(an) with I and F . Denote ti =
(

Pi−1

Ri−1
Mi

Pi

Ri

)

. The state (P0, δ, R0)

(whereas δ is the (0, . . . , 0) tuple of dimension P0 ∩R0) is the first state of the constructed
path. Then, we proceed along the above steps (1) to (5) for each ai and each Ri for i ∈
{1, . . . , n} and obtain an accepting path for w in A′. We can apply the above argumentation
to show that the sum of the transition weights is exactly λµ(w)̺ = A(w).

Consequently, |A| and |A′| are equivalent, and it is easy to verify that A′ is unambigu-
ous. However, a major problem remained: we cannot show that A′ has finitely many states.
We overcome this problem by changing step (3) in the construction above as follows:

(3’) We normalize δ̂. For every q ∈ P ′ ∩ R′, we set δ′′[q] = δ̂[q] − min(δ̂). Then, we
construct δ′ by replacing in δ′′ every non-∞ entry which is larger than 2Y by ω.

By using (3’) instead of (3), the set of states of A′ will be finite. We have to show that the
construction of A′ is still correct, that is that every entry that becomes too large can be
replaced by ω.

Let u1, u2 ∈ Σ∗ and assume that A accepts u1u2. Let I = { q ∈ Q |λ[q] ∈ Z } and

F = { q ∈ Q | ̺[q] ∈ Z }. We denote t1 = JI, µ(u1), α(µ(u2)) · F K =
(

I
R0

M1
P1

R1

)

and

t2 = JI · α(µ(u1)), µ(u2), F K =
(

P1

R1
M2

P2

F

)

. Then, t1t2 =
(

I
R0

M1M2
P2

F

)

, and moreover,

|A|(u1u2) is the least entry in M1M2, i.e., |A|(u1u2) = min(M1M2).
Let p0 ∈ I ∩R0, let p1 ∈ P1 ∩R1, and let p2 ∈ P2 ∩F . Assume (M1,M2)[p0, p1, p2] ∈ Z.
Moreover, assume that M1[p0, p1] ≥ min(M1) + 2Y , (the Y from Proposition 5.1) but

nevertheless (M1,M2)[p0, p1, p2] = min(M1M2). Intuitively, the path along p0, p1, p2 has
after reading u1 from p0 to p1 a very large weight (in comparison to the path which has a
weight of min(M1)), but nevertheless, by reading u2 from p1 to p2 the weight of the path
becomes smaller and smaller and finally the path has a weight of min(M1M2), i.e., it is the
path with the least weight.

Let q0 ∈ I ∩R0, let q1 ∈ P1 ∩R1, and let q2 ∈ P2 ∩F . Assume (M1,M2)[q0, q1, q2] ∈ Z.
We have (M1,M2)[q0, q1, q2] ≥ min(M1M2) = (M1,M2)[p0, p1, p2]. Hence, we have

M1[q0, q1] ≥ M1[p0, p1] − Y or M2[q1, q2] ≥ M2[p1, p2] + Y ≥ min(M2) + Y . However,
M1[q0, q1] ≥ M1[p0, p1]− Y implies M1[q0, q1] ≥ min(M1) + Y (by the above assumption on
M1[p0, p1]). Consequently, we have M1[q0, q1] ≥ min(M1) + Y or M2[q1, q2] ≥ min(M2) + Y .

Now, let t′1 and t′2 be the matrices which exist by Proposition 5.1. By (A2), we have
M ′

1[q0, q1] = ω or M ′
2[q1, q2] = ω whereas M ′

1 resp. M ′
2 are the matrices in t′1 resp. t′2.

Since this argumentation holds for every q0, q1, q2 (in particular for p0, p1, p2) every
entry of t′1t

′
2 is ω or ∞, i.e., t′1t

′
2 shows that (1) in Theorem 3.4 is satisfied, which is a

contradiction.
Consequently, the above assumed p0, p1, p2 cannot exist.
Let w ∈ Σ∗, and let π be an accepting path. Assume the weight of π is |A|(w). By

the above observation, π can intermediately not have a much larger (i.e. 2Y larger) weight
than another accepting path.
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Abstract. The relation of constant-factor approximability to fixed-parameter tractabil-
ity and kernelization is a long-standing open question. We prove that two large classes of
constant-factor approximable problems, namely MIN F

+Π1 and MAX NP, including the
well-known subclass MAX SNP, admit polynomial kernelizations for their natural decision
versions. This extends results of Cai and Chen (JCSS 1997), stating that the standard pa-
rameterizations of problems in MAX SNP and MIN F

+Π1 are fixed-parameter tractable,
and complements recent research on problems that do not admit polynomial kernelizations
(Bodlaender et al. ICALP 2008).

1. Introduction

The class APX consists of all NP optimization problems that are approximable to within
a constant factor of the optimum. It is known that the decision versions of most APX-
problems are fixed-parameter tractable or even admit efficient preprocessing in the form of
a polynomial kernelization. How strong is the relation between constant-factor approxima-
bility and polynomial kernelizability? Is there a property inherent to most APX-problems
that explains this relation? What is the nature of APX-problems that do not admit a
polynomial kernelization, such as Bin Packing for example?

Since many prominent APX-problems are complete under approximation preserving
reductions and do not admit arbitrarily small approximation ratios, studying their param-
eterized complexity is a natural approach to obtain better results (recently Cai and Huang
presented fixed-parameter approximation schemes for MAX SNP [7]). In conjunction with
recent work on problems without polynomial kernelizations, positive answers to the ques-
tions may provide evidence against APX-membership for some problems (e.g. Treewidth).

Our work: We prove that the standard parameterizations of problems in two large classes of
constant-factor approximable problems, namely MIN F

+Π1 and MAX NP, admit polyno-
mial kernelizations. This extends results of Cai and Chen [6] who showed that the standard
parameterizations of all problems in MIN F

+Π1 and MAX SNP (a subclass of MAX NP)
are fixed-parameter tractable.1 Interestingly perhaps, both our results rely on the Sunflower
Lemma due to Erdős and Rado [10].

1998 ACM Subject Classification: F.2.2.
Key words and phrases: parameterized complexity, kernelization, approximation algorithms.
1The existence of a kernelization, not necessarily polynomial, is equivalent to fixed-parameter tractability.
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Approximation ratio Kernel size
Minimum Vertex Cover 2 [15] O(k) [8]
Feedback Vertex Set 2 [3] O(k3) [4]
Minimum Fill-In O(opt) [19] O(k2) [19]
Treewidth O(

√
log opt) [12] not poly2 [5]

Table 1: Approximation ratio and size of problem kernels for some optimization problems.

Related work: Recently Bodlaender et al. [5] presented the first negative results concern-
ing the existence of polynomial kernelizations for some natural fixed-parameter tractable
problems. Using the notion of a distillation algorithm and results due to Fortnow and
Santhanam [14], they were able to show that the existence of polynomial kernelizations
for so-called compositional parameterized problems implies a collapse of the polynomial
hierarchy to the third level. These are seminal results presenting the first super-linear
lower bounds for kernelization and relating a statement from parameterized complexity to
a hypothesis from classical complexity theory.

In Table 1 we summarize approximability and kernelization results for some well-known
problems.

MIN F+Π1 and MAX NP: Two decades ago Papadimitriou and Yannakakis [23] initi-
ated the syntactic study of optimization problems to extend the understanding of approx-
imability. They introduced the classes MAX NP and MAX SNP as natural variants of NP
based on Fagin’s [11] syntactic characterization of NP. Essentially problems are in MAX NP

or MAX SNP if their optimum value can be expressed as the maximum number of tuples for
which some existential, respectively quantifier-free, first-order formula holds. They showed
that every problem in these two classes is approximable to within a constant factor of the
optimum. Arora et al. complemented this by proving that no MAX SNP-complete problem
has a polynomial-time approximation scheme, unless P=NP [2]. Contained in MAX SNP

there are some well-known maximization problems, such as Max Cut, Max q-Sat, and
Independent Set on graphs of bounded degree. Its superclass MAX NP also contains
Max Sat amongst others.

Kolaitis and Thakur generalized the approach of examining the logical definability
of optimization problems and defined further classes of minimization and maximization
problems [17, 18]. Amongst others they introduced the class MIN F

+Π1 of problems
whose optimum can be expressed as the minimum weight of an assignment (i.e. number of
ones) that satisfies a certain universal first-order formula. They proved that every problem
in MIN F

+Π1 is approximable to within a constant factor of the optimum. In MIN F
+Π1

there are problems like Vertex Cover, d-Hitting Set, and Triangle Edge Deletion.

Section 2 covers the definitions of the classes MIN F
+Π1 and MAX NP, as well as the

necessary details from parameterized complexity. In Sections 3 and 4 we present polynomial
kernelizations for the standard parameterizations of problems in MIN F

+Π1 and MAX NP

respectively. Section 5 summarizes our results and poses some open problems.

2Treewidth does not admit a polynomial kernelization unless there is a distillation algorithm for all coNP
complete problems [5]. Though unlikely, this is not known to imply a collapse of the polynomial hierarchy.
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2. Preliminaries

Logic and complexity classes: A (relational) vocabulary is a set σ of relation sym-
bols, each having some fixed integer as its arity. Atomic formulas over σ are of the
form R(z1, . . . , zt) where R is a t-ary relation symbol from σ and the zi are variables.
The set of quantifier-free (relational) formulas over σ is the closure of the set of all atomic
formulas under negation, conjunction, and disjunction.

Definition 2.1 (MIN F
+Π1, MAX NP). A finite structure of type (r1, . . . , rt) is a tu-

ple A = (A,R1, . . . , Rt) where A is a finite set and each Ri is an ri-ary relation over A.
LetQ be an optimization problem on finite structures of type (r1, . . . , rt). LetR1, . . . , Rt

be relation symbols of arity r1, . . . , rt.
(a) The problemQ is contained in the class MIN F

+Π1 if its optimum on finite structures A
of type (r1, . . . , rt) can be expressed as

optQ(A) = min
S
{|S| : (A, S) |= (∀x ∈ Acx) : ψ(x, S)},

where S is a single relation symbol and ψ(x, S) is a quantifier-free formula in conjunc-
tive normal form over the vocabulary {R1, . . . , Rt, S} on variables {x1, . . . , xcx}. Further-
more, ψ(x, S) is positive in S, i.e. S does not occur negated in ψ(x, S).
(b) The problem Q is contained in the class MAX NP if its optimum on finite structures A
of type (r1, . . . , rt) can be expressed as

optQ(A) = max
S

|{x ∈ Acx : (A,S) |= (∃y ∈ Acy) : ψ(x,y,S)}| ,

where S = (S1, . . . , Su) is a tuple of si-ary relation symbols Si and ψ(x,y,S) is a quantifier-
free formula in disjunctive normal form over the vocabulary {R1, . . . , Rt, S1, . . . , Su} on
variables {x1, . . . , xcx , y1, . . . , ycy}.
Remark 2.2. The definition of MAX SNP is similar to that of MAX NP but without
the existential quantification of y, i.e optQ(A) = maxS |{x : (A,S) |= ψ(x,S)}|.
Example 2.3 (Minimum Vertex Cover). Let G = (V,E) be a finite structure of type (2)
that represents a graph by a set V of vertices and a binary relation E over V as its edges.
The optimum of Minimum Vertex Cover on structures G can be expressed as:

optV C(G) = min
S⊆V

{|S| : (G,S) |= (∀(u, v) ∈ V 2) : (¬E(u, v) ∨ S(u) ∨ S(v))}.

This implies that Minimum Vertex Cover is contained in MIN F
+Π1.

Example 2.4 (Maximum Satisfiability). Formulas in conjunctive normal form can be
represented by finite structures F = (F,P,N) of type (2, 2): Let F be the set of all clauses
and variables, and let P and N be binary relations over F . Let P (x, c) be true if and only
if x is a literal of the clause c and let N(x, c) be true if and only if ¬x is a literal of the
clause c. The optimum of Max Sat on structures F can be expressed as:

optMS(F) = max
T⊆F

|{c ∈ F : (F , T ) |= (∃x ∈ F ) : (P (x, c) ∧ T (x)) ∨ (N(x, c) ∧ ¬T (x))}|.

Thus Max Sat is contained in MAX NP.

For a detailed introduction to MIN F
+Π1, MAX NP, and MAX SNP we refer the

reader to [17, 18, 23]. An introduction to logic and complexity can be found in [22].

Parameterized complexity: The field of parameterized complexity, pioneered by Downey
and Fellows, is a two-dimensional approach of coping with combinatorially hard problems.
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Parameterized problems come with a parameterization that maps input instances to a pa-
rameter value. The time complexity of algorithms is measured with respect to the input
size and the parameter. In the following we give the necessary formal definitions, namely
fixed-parameter tractability, standard parameterizations, and kernelization.

Definition 2.5 (Fixed-parameter tractability). A parameterization of Σ∗ is a polynomial-
time computable mapping κ : Σ∗ → N. A parameterized problem over an alphabet Σ is a
pair (Q, κ) consisting of a set Q ⊆ Σ∗ and a parameterization κ of Σ∗.

A parameterized problem (Q, κ) is fixed-parameter tractable if there exists an algo-
rithm A, a polynomial p, and a computable function f : N → N such that A decides x ∈ Q
in time f(κ(x)) · p(|x|). FPT is the class of all fixed-parameter tractable problems.

Definition 2.6 (Standard parameterization). Let Q be a maximization (minimization)
problem. The standard parameterization of Q is p-Q = (d-Q, κ) where κ : (A, k) 7→ k

and d-Q is the language of all tuples (A, k) such that optQ(A) ≥ k (optQ(A) ≤ k).

Basically d-Q is the decision version of Q, asking whether the optimum is at least k
(respectively at most k). The standard parameterization of Q is d-Q parameterized by k.

Definition 2.7 (Kernelization). Let (Q, κ) be a parameterized problem over Σ. A poly-
nomial-time computable function K : Σ∗ → Σ∗ is a kernelization of (Q, κ) if there is a
computable function h : N → N such that for all x ∈ Σ∗ we have

(x ∈ Q ⇔ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)).

We call h the size of the problem kernel K(x). The kernelization K is polynomial if h
is a polynomial. We say that (Q, κ) admits a (polynomial) kernelization if there exists a
(polynomial) kernelization of (Q, κ).

Essentially, a kernelization is a polynomial-time data reduction that comes with a guar-
anteed upper bound on the size of the resulting instance in terms of the parameter.

For an introduction to parameterized complexity we refer the reader to [9, 13, 20].

Hypergraphs and sunflowers: We assume the reader to be familiar with the basic graph
notation. A hypergraph is a tuple H = (V,E) consisting of a finite set V , its vertices, and
a family E of subsets of V , its edges. A hypergraph has dimension d if each edge has
cardinality at most d. A hypergraph is d-uniform if each edge has cardinality exactly d.

Definition 2.8 (Sunflower). Let H be a hypergraph. A sunflower of cardinality r is a
set F = {f1, . . . , fr} of edges of H such that every pair has the same intersection C, i.e. for
all 1 ≤ i < j ≤ r: fi ∩ fj = C. The set C is called the core of the sunflower.

Note that any family of pairwise disjoint sets is a sunflower with core C = ∅.
Lemma 2.9 (Sunflower Lemma [10]). Let k, d ∈ N and let H be a d-uniform hypergraph
with more than (k−1)d ·d! edges. Then there is a sunflower of cardinality k in H. For every
fixed d there is an algorithm that computes such a sunflower in time polynomial in |E(H)|.
Corollary 2.10 (Sunflower Corollary). The same holds for d-dimensional hypergraphs with
more than (k − 1)d · d! · d edges.

Proof. For some d′ ∈ {1, . . . , d}, H has more than (k − 1)d · d! ≥ (k − 1)d
′ · d′! edges of

cardinality d′. Let Hd′ be the d′-uniform subgraph induced by the edges of cardinality d′.
We apply the Sunflower Lemma on Hd′ and obtain a sunflower F of cardinality k in time
polynomial in |E(Hd′)| ≤ |E(H)|. Clearly F is also a sunflower of H.
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3. Polynomial kernelization for MIN F+
Π1

We will prove that the standard parameterization of any problem in MIN F
+Π1 admits

a polynomial kernelization. The class MIN F
+Π1 was introduced by Kolaitis and Thakur

in a framework of syntactically defined classes of optimization problems [17]. In a follow-up
paper they showed that every problem in MIN F

+Π1 is constant-factor approximable [18].
Throughout the section let Q ∈ MIN F

+Π1 be an optimization problem on finite
structures of type (r1, . . . , rt). Let R1, . . . , Rt be relation symbols of arity r1, . . . , rt and
let S be a relation symbol of arity cS . Furthermore, let ψ(x, S) be a quantifier-free formula
in conjunctive normal form over the vocabulary {R1, . . . , Rt, S} on variables {x1, . . . , xcx}
that is positive in S such that

optQ(A) = min
S⊆AcS

{|S| : (A, S) |= (∀x ∈ Acx) : ψ(x, S)}.

Let s be the maximum number of occurrences of S in any clause of ψ(x, S). The
standard parameterization p-Q of Q is the following problem:

Input: A finite structure A of type (r1, . . . , rt) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≤ k.

We will see that, given an instance (A, k), deciding whether optQ(A) ≤ k is equivalent

to deciding an instance of s-Hitting Set.3 Our kernelization will therefore make use of
existing kernelization results for s-Hitting Set. The parameterized version of s-Hitting

Set is defined as follows:
Input: A hypergraph H = (V,E) of dimension s and an integer k.
Parameter: k.
Task: Decide whether H has a hitting set of size at most k, i.e. S ⊆ V , |S| ≤ k,

such that S has a nonempty intersection with every edge of H.

We consider the formula ψ(x, S) and a fixed instance (A, k), with A = (A,R1, . . . , Rt).
For every tuple x ∈ Acx we can evaluate all literals of the form Ri(z) and ¬Ri(z) for
some z ∈ {x1, . . . , xcx}ri . By checking whether z ∈ Ri, we obtain 1 (true) or 0 (false) for
each literal. Then we delete all occurrences of 0 from the clauses and delete all clauses
that contain a 1. For each x, we obtain an equivalent formula that we denote with ψx(S).
Each ψx(S) is in conjunctive normal form on literals S(z) for some z ∈ {x1, . . . , xcx}cS (no
literals of the form ¬S(z) since ψ(x, S) is positive in S).

Remark 3.1. For all x ∈ Acx and S ⊆ AcS it holds that (A, S) |= ψ(x, S) if and only
if (A, S) |= ψx(S). Moreover, we can compute all formulas ψx(S) for x ∈ Acx in polynomial
time, since cx and the length of ψ(x, S) are constants independent of A.

Deriving a formula ψx(S) can yield empty clauses. This happens when all liter-
als Ri(·), ¬Ri(·) in a clause are evaluated to 0 and there are no literals S(·). In that
case, no assignment S can satisfy the formula ψx(S), or equivalently ψ(x, S). Thus (A, k) is
a no-instance. Note that clauses of ψx(S) cannot contain contradicting literals since ψ(x, S)
is positive in S.

Remark 3.2. From now on, we assume that all clauses of the formulas ψx(S) are nonempty.

We define a mapping Φ from finite structures A to hypergraphs H. Then we show that
equivalent s-Hitting Set instances can be obtained in this way.

3In literature the problem is often called d-Hitting Set but we will need d = s.
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Definition 3.3. Let A be an instance of Q. We define Φ(A) := H with H = (V,E). We
let E be the family of all sets e = {z1, . . . , zp} such that (S(z1) ∨ · · · ∨ S(zp)) is a clause of
a ψx(S) for some x ∈ Acx . We let V be the union of all sets e ∈ E.

Remark 3.4. The hypergraphs H obtained from the mapping Φ have dimension s since
each ψx(S) has at most s literals per clause. It follows from Remark 3.1 that Φ(A) can be
computed in polynomial time.

The following lemma establishes that (A, k) and (H, k) = (Φ(A), k) are equivalent in
the sense that (A, k) ∈ p-Q if and only if (H, k) ∈ s-Hitting Set.

Lemma 3.5. Let A = (A,R1, . . . , Rt) be an instance of Q then for all S ⊆ AcS :

(A, S) |= (∀x) : ψ(x, S) if and only if S is a hitting set for H = Φ(A).

Proof. Let H = Φ(A) = (V,E) and let S ⊆ AcS :

(A, S) |= (∀x ∈ Acx) : ψ(x, S)
⇔ (A, S) |= (∀x ∈ Acx) : ψx(S)
⇔ (∀x ∈ Acx) : each clause of ψx(S) has a literal S(z) for which z ∈ S
⇔ S has a nonempty intersection with every set e ∈ E
⇔ S is a hitting set for (V,E).

Our kernelization will consist of the following steps:

(1) Map the given instance (A, k) for p-Q to an equivalent instance (H, k) = (Φ(A), k)
for s-Hitting Set according to Definition 3.3 and Lemma 3.5.

(2) Use a polynomial kernelization for s-Hitting Set on (H, k) to obtain an equivalent
instance (H′, k) with size polynomial in k.

(3) Use (H′, k) to derive an equivalent instance (A′, k) of p-Q. That way we will be able
to conclude that (A′, k) is equivalent to (H, k) and hence also to (A, k).

There exist different kernelizations for s-Hitting Set: one by Flum and Grohe [13]
based on the Sunflower Lemma due to Erdős and Rado [10], one by Nishimura et al. [21] via
a generalization of the Nemhauser-Trotter kernelization for Vertex Cover, and a recent
one by Abu-Khzam [1] based on crown decompositions. For our purposes of deriving an
equivalent instance for p-Q, these kernelizations have the drawback of shrinking sets during
the reduction. This is not possible for our approach since we would need to change the
formula ψ(x, S) to shrink the clauses. We prefer to modify Flum and Grohe’s kernelization
such that it uses only edge deletions.

Theorem 3.6. There exists a polynomial kernelization of s-Hitting Set that, given an
instance (H, k), computes an instance (H∗, k) such that E(H∗) ⊆ E(H), H∗ has O(ks)
edges, and the size of (H∗, k) is O(ks) as well.

Proof. Let (H, k) be an instance of s-Hitting Set, with H = (V,E). If H contains a
sunflower F = {f1, . . . , fk+1} of cardinality k + 1 then every hitting set of H must have a
nonempty intersection with the core C of F or with the k+1 disjoint sets f1\C, . . . , fk+1\C.
Thus every hitting set of at most k elements must have a nonempty intersection with C.

Now consider a sunflower F = {f1, . . . , fk+1, fk+2} of cardinality k+2 in H and let H′ =
(V,E \{fk+2}). We show that the instances (H, k) and (H′, k) are equivalent. Clearly every
hitting set for H is also a hitting set for H′ since E(H′) ⊆ E(H). Let S ⊆ V be a hitting set
of size at most k for H′. Since F \{fk+2} is a sunflower of cardinality k+1 in H′, it follows
that S has a nonempty intersection with its core C. Hence S has a nonempty intersection
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with fk+2 ⊇ C too. Thus S is a hitting set of size at most k for H, implying that (H, k)
and (H′, k) are equivalent.

We start withH∗ = H and repeat the following step whileH∗ has more than (k+1)s·s!·s
edges. By the Sunflower Corollary we obtain a sunflower of cardinality k + 2 in H∗ in time
polynomial in |E(H∗)|. We delete an edge of the detected sunflower from the edge set of H∗

(thereby reducing the cardinality of the sunflower to k + 1). Thus, by the argument from
the previous paragraph, we maintain that (H, k) and (H∗, k) are equivalent.

Furthermore E(H∗) ⊆ E(H) and H∗ has no more than (k + 1)s · s! · s ∈ O(ks) edges.
Since we delete an edge of H∗ in each step, there are O(|E(H)|) steps, and the total time is
polynomial in |E(H)|. Deleting all isolated vertices fromH∗ yields a size of O(s·ks) = O(ks)
since each edge contains at most s vertices.

The following lemma proves that every s-Hitting Set instance that is “sandwiched”
between two equivalent instances must be equivalent to both.

Lemma 3.7. Let (H, k) be an instance of s-Hitting Set and let (H∗, k) be an equiva-
lent instance with E(H∗) ⊆ E(H). Then for any H′ with E(H∗) ⊆ E(H′) ⊆ E(H) the
instance (H′, k) is equivalent to (H, k) and (H∗, k).

Proof. Observe that hitting sets for H can be projected to hitting sets for H′ (i.e. restricted
to the vertex set of H′) since E(H′) ⊆ E(H). Thus if (H, k) is a yes-instance then (H′, k)
is a yes-instance too. The same argument holds for (H′, k) and (H∗, k). Together with the
fact that (H, k) and (H∗, k) are equivalent, this proves the lemma.

Now we are well equipped to prove that p-Q admits a polynomial kernelization.

Theorem 3.8. Let Q ∈ MIN F
+Π1. The standard parameterization p-Q of Q admits a

polynomial kernelization.

Proof. Let (A, k) be an instance of p-Q. By Lemma 3.5 we have that (A, k) is a yes-instance
of p-Q if and only if (H, k) = (Φ(A), k)) is a yes-instance of s-Hitting Set. We apply
the kernelization from Theorem 3.6 to (H, k) and obtain an equivalent s-Hitting Set

instance (H∗, k) such that E(H∗) ⊆ E(H) and H∗ has O(ks) edges.
Recall that every edge ofH, say {z1, . . . , zp}, corresponds to a clause (S(z1)∨· · ·∨S(zp))

of ψx(S) for some x ∈ Acx . Thus for each edge e ∈ E(H∗) ⊆ E(H) we can select a tuple xe

such that e corresponds to a clause of ψxe(S). Let X be the set of the selected tuples xe for
all edges e ∈ E(H∗). Let A′ ⊆ A be the set of all components of tuples xe ∈ X, ensuring
that X ⊆ A′cx . Let R′

i be the restriction of Ri to A′ and let A′ = (A′, R′
1, . . . , R

′
t).

Let (H′, k) = (Φ(A′), k). By definition of Φ and by construction of H′ we know
that E(H∗) ⊆ E(H′) ⊆ E(H) since X ⊆ A′cx and A′ ⊆ A. Thus, by Lemma 3.7, we
have that (H′, k) is equivalent to (H, k). Furthermore, by Lemma 3.5, (H′, k) is a yes-
instance of s-Hitting Set if and only if (A′, k) is a yes-instance of p-Q. Thus (A′, k)
and (A, k) are equivalent instances of p-Q.

We conclude the proof by giving an upper bound on the size of (A′, k) that is polynomial
in k. The set X contains at most |E(H∗)| ∈ O(ks) tuples. These tuples have no more
than cx · |E(H∗)| different components. Hence the size of A′ is O(cx · ks) = O(ks). Thus
the size of (A′, k) is O(ksm), where m is the largest arity of a relation Ri. The values cx, s,
and m are constants that are independent of the input (A, k). Thus (A′, k) is an instance
equivalent to (A, k) with size polynomial in k.
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4. Polynomial kernelization for MAX NP

We prove that the standard parameterization of any problem in MAX NP admits
a polynomial kernelization. The class MAX NP was introduced by Papadimitriou and
Yannakakis in [23]. They showed that every problem in MAX NP is constant-factor ap-
proximable.

Throughout the section let Q ∈ MAX NP be an optimization problem on finite
structures of type (r1, . . . , rt). Let R1, . . . , Rt be relation symbols of arity r1, . . . , rt and
let S = (S1, . . . , Su) be a tuple of relation symbols of arity s1, . . . , su. Let ψ(x,y,S) be
a formula in disjunctive normal form over the vocabulary {R1, . . . , Rt, S1, . . . , Su} on vari-
ables {x1, . . . , xcx , y1, . . . , ycy} such that for all finite structures A of type (r1, . . . , rt):

optQ(A) = max
S

|{x ∈ Acx : (A,S) |= (∃y ∈ Acy) : ψ(x,y,S)}|.

Let s be the maximum number of occurrences of relations S1, . . . , Su in any disjunct
of ψ(x,y,S). The standard parameterization p-Q of Q is the following problem:

Input: A finite structure A of type (r1, . . . , rt) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≥ k.

Similarly to the previous section, we consider the formula ψ(x,y,S) and a fixed in-
stance (A, k) with A = (A,R1, . . . , Rt). We select tuples x ∈ Acx and y ∈ Acy and evaluate
all literals of the form Ri(z) and ¬Ri(z) for some z ∈ {x1, . . . , xxc , y1, . . . , ycy}ri . By check-
ing whether z ∈ Ri we obtain 1 (true) or 0 (false) for each literal. Since ψ(x,y,S) is in
disjunctive normal form, we delete all occurrences of 1 from the disjuncts and delete all
disjuncts that contain a 0. Furthermore, we delete all disjuncts that contain contradicting
literals Sj(z),¬Sj(z) since they cannot be satisfied. We explicitly allow empty disjuncts
that are satisfied by definition for the sake of simplicity (they occur when all literals in a
disjunct are evaluated to 1). We obtain an equivalent formula that we denote with ψx,y(S).

Remark 4.1. For all x, y, and S it holds that (A,S) |= ψ(x,y,S) iff (A,S) |= ψx,y(S).
Moreover, we can compute all formulas ψx,y(S) for x ∈ Acx , y ∈ Acy in polynomial time,
since cx, cy, and the length of ψ(x,y,S) are constants independent of A.

Definition 4.2. Let A = (A,R1, . . . , Rt) be a finite structure of type (r1, . . . , rt).
(a) We define XA ⊆ Acx as the set of all tuples x such that (∃y) : ψx,y(S) holds for some S:

XA = {x : (∃S) : (A,S) |= (∃y) : ψx,y(S)}.
(b) For x ∈ Acx we define YA(x) as the set of all tuples y such that ψx,y(S) holds for
some S:

YA(x) = {y : (∃S) : (A,S) |= ψx,y(S)}.
Remark 4.3. The sets XA and YA(x) can be computed in polynomial time since the
number of tuples x ∈ Acx and y ∈ Acy is polynomial in the size of A and ψ(x,y,S) is of
constant length independent of A.

Lemma 4.4. Let (A, k) be an instance of p-Q. If |XA| ≥ k ·2s then optQ(A) ≥ k, i.e. (A, k)
is a yes-instance.

Proof. The lemma can be concluded from the proof of the constant-factor approximability of
problems in MAX NP in [23]. For each x ∈ XA we fix a tuple y ∈ YA(x) such that ψx,y(S)
is satisfiable. This yields |XA| formulas, say ψ1, . . . , ψ|XA|. Papadimitriou and Yannakakis



POLYNOMIAL KERNELIZATIONS 609

showed that one can efficiently compute an assignment that satisfies at least
∑
fi of these

formulas, where fi is the fraction of all assignments that satisfies ψi.
To see that fi ≥ 2−s; consider such a formula ψi. Since ψi is satisfiable there exists a

satisfiable disjunct. To satisfy a disjunct of at most s literals, at most s variables need to
be assigned accordingly. Since the assignment to all other variables can be arbitrary this
implies that fi ≥ 2−s. Thus we have that

∑
fi ≥ |XA| ·2−s. Therefore |XA| ≥ k ·2s implies

that the assignment satisfies at least k formulas, i.e. that optQ(A) ≥ k.

Henceforth we assume that |XA| < k · 2s.

Definition 4.5. Let (A, k) be an instance of p-Q with A = (A,R1, . . . , Rt). For x ∈ Acx

we define DA(x) as the set of all disjuncts of ψx,y(S) for y ∈ YA(x).

Definition 4.6. We define the intersection of two disjuncts as the conjunction of all literals
that occur in both disjuncts. A sunflower of a set of disjuncts is a subset such that each pair
of disjuncts in the subset has the same intersection (modulo permutation of the literals).

Remark 4.7. The size of each DA(x) is bounded by the size of YA(x) ⊆ Acy times the
number of disjuncts of ψ(x,y,S) which is a constant independent of A. Thus the size of
each DA(x) is bounded by a polynomial in the input size. The definition of intersection
and sunflowers among disjuncts is a direct analog that treats disjuncts as sets of literals.

Definition 4.8. A partial assignment is a set L of literals such that no literal is the negation
of another literal in L. A formula is satisfiable under L if there exists an assignment that
satisfies the formula and each literal in L.

Proposition 4.9. Let (A, k) be an instance of p-Q. For each x ∈ Acx there exists a
set D∗

A(x) ⊆ DA(x) of cardinality O(ks) such that:

(1) For every partial assignment L of at most sk literals, D∗
A(x) contains a disjunct

satisfiable under L, if and only if DA(x) contains a disjunct satisfiable under L.
(2) D∗

A(x) can be computed in time polynomial in |A|.
Proof. Let A = (A,R1, . . . , Rt) be a finite structure of type (r1, . . . , rt), let x ∈ Acx , and
let DA(x) be a set of disjuncts according to Definition 4.5. From the Sunflower Corollary we
can derive a polynomial-time algorithm that computes a set D∗

A(x) by successively shrinking
sunflowers. We start by setting D∗

A(x) = DA(x) and apply the following step while the
cardinality of D∗

A(x) is greater than (sk + 1)s · s! · s.
We compute a sunflower of cardinality sk+ 2, say F = {f1, . . . , fsk+2}, in time polyno-

mial in |D∗
A(x)| (Sunflower Corollary). We delete a disjunct of F , say fsk+2, from D∗

A(x).
Let O and P be copies of D∗

A before respectively after deleting fsk+2. Observe that F ′ =
F \ {fsk+2} is a sunflower of cardinality sk + 1 in P . Let L be a partial assignment of at
most sk literals and assume that no disjunct in P is satisfiable under L. This means that for
each disjunct of P there is a literal in L that contradicts it, i.e. a literal that is the negation
of a literal in the disjunct. We focus on the sunflower F ′ in P . There must be a literal
in L, say l, that contradicts at least two disjuncts of F ′, say f and f ′, since |F ′| = sk + 1
and |L| ≤ sk. Therefore l is the negation of a literal in the intersection of f and f ′, i.e. the
core of F ′. Thus l contradicts also fsk+2 and we conclude that no disjunct in O = P∪{fsk+2}
is satisfiable under the partial assignment L. The reverse argument holds since all disjuncts
of P are contained in O. Thus each step maintains the desired property (1).



610 S. KRATSCH

At the end D∗
A(x) contains no more than (sk+ 1)s · s! · s ∈ O(ks) disjuncts. For each x

this takes time polynomial in the size of the input since the cardinality of DA(x) is bounded
by a polynomial in the input size and a disjunct is deleted in each step.

Lemma 4.10. Let D′
A(x) be a subset of DA(x) such that D∗

A(x) ⊆ D′
A(x) ⊆ DA(x). For

any partial assignment L of at most sk literals it holds that DA(x) contains a disjunct
satisfiable under L if and only if D′

A(x) contains a disjunct satisfiable under L.

Proof. Let L be a partial assignment of at most sk literals. If DA(x) contains a disjunct
satisfiable under L, then, by Proposition 4.9, this holds also for D∗

A(x). For D∗
A(x) and D′

A
this holds since D∗

A(x) ⊆ D′
A(x). The same is true for D′

A(x) and DA(x).

Theorem 4.11. Let Q ∈ MAX NP. The standard parameterization p-Q of Q admits a
polynomial kernelization.

Proof. The proof is organized in three parts. First, given an instance (A, k) of p-Q, we
construct an instance (A′, k) of p-Q in time polynomial in the size of (A, k). In the second
part, we prove that (A, k) and (A′, k) are equivalent. In the third part, we conclude the
proof by showing that the size of (A′, k) is bounded by a polynomial in k.
(I.) Let (A, k) be an instance of p-Q. We use the sets DA(x) and D∗

A(x) according to
Definition 4.5 and Proposition 4.9. Recall that DA(x) is the set of all disjuncts of ψx,y(S)
for y ∈ YA(x). Thus, for each disjunct d ∈ D∗

A(x) ⊆ DA(x), we can select a yd ∈ YA(x)
such that d is a disjunct of ψx,yd

(S). Let Y ′
A(x) ⊆ YA(x) be the set of these selected

tuples yd. Let D′
A(x) be the set of all disjuncts of ψx,y(S) for y ∈ Y ′

A(x). Since D∗
A(x)

contains some disjuncts of ψx,y(S) for y ∈ Y ′
A(x) andDA(x) contains all disjuncts of ψx,y(S)

for y ∈ YA(x) ⊇ Y ′
A(x), we have that D∗

A(x) ⊆ D′
A(x) ⊆ DA(x).

For each x this takes time O(|D∗
A(x)| · |Y ∗

A(x)|) ⊆ O(ks · |A|cy). Computing Y ′
A(x) for

all x ∈ Acx takes time O(|A|cx · ks · |A|cy), i.e. time polynomial in the size of (A, k) since k
is never larger than |A|cx .4

Let A′ ⊆ A be the set of all components of x ∈ XA and y ∈ Y ′
A(x) for all x ∈ XA. This

ensures that XA ⊆ (A′)cx and Y ′
A(x) ⊆ (A′)cy for all x ∈ XA. Let R′

i be the restriction
of Ri to A′ and let A′ = (A′, R′

1, . . . , R
′
t).

(II.) We will now prove that optQ(A) ≥ k if and only if optQ(A′) ≥ k, i.e. that (A, k)
and (A′, k) are equivalent. Assume that optQ(A) ≥ k and let S = (S1, . . . , Su) such
that |{x : (A,S) |= (∃y) : ψ(x,y,S)}| ≥ k. This implies that there must exist tu-
ples x1, . . . ,xk ∈ Acx and y1, . . . ,yk ∈ Acy such that S satisfies ψxi,yi

(S) for i = 1, . . . , k.
Thus S must satisfy at least one disjunct in each ψxi,yi

(S) since these formulas are in
disjunctive normal form. Accordingly let d1, . . . , dk be disjuncts such that S satisfies the
disjunct di in ψxi,yi

(S) for i = 1, . . . , k. We show that there exists S ′ such that:

|{x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)}| ≥ k.

For p = 1, . . . , k we apply the following step: If yp ∈ Y ′
A(xp) then do nothing. Oth-

erwise consider the partial assignment L consisting of the at most sk literals of the dis-
juncts d1, . . . , dk. The set DA(xp) contains a disjunct that is satisfiable under L, namely dp.
By Lemma 4.10, it follows that D′

A(xp) also contains a disjunct satisfiable under L, say d′p.
Let y′p ∈ Y ′

A(xp) such that d′p is a disjunct of ψxp,y′p
(S). Such a y′p can be found by selection

of D′
A(xp). Change S in the following way to satisfy the disjunct d′p. For each literal of d′p

of the form Si(z) add z to the relation Si. Similarly for each literal of the form ¬Si(z)

4That is, (A, k) is a no-instance if k > |A|cx since k exceeds the number of tuples x ∈ Acx .
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remove z from Si. This does not change the fact that S satisfies the disjunct di in ψxi,yi
(S)

for i = 1, . . . , k since, by selection, d′p is satisfiable under L. Then we replace yp by y′p
and dp by d′p. Thus we maintain that S satisfies di in ψxi,yi

(S) for i = 1, . . . , k.

After these steps we obtain S as well as tuples x1, . . . ,xk, y1, . . . ,yk with yi ∈ Y ′
A(xi),

and disjuncts d1, . . . , dk such that S satisfies di in ψxi,yi
(S) for i = 1, . . . , k. Let S ′ be the

restriction of S to A′. Then we have that (A′,S ′) |= ψxi,yi
(S ′) for i = 1, . . . , k since A′ is

defined to contain the components of tuples x ∈ XA and of all tuples y ∈ Y ′
A(x) for x ∈ XA.

Hence xi ∈ {x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)} for i = 1, . . . , k. Thus optQ(A′) ≥ k.
For the reverse direction assume that optQ(A′) ≥ k. Since A′ ⊆ A it follows that

{x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)} ⊆ {x : (A,S ′) |= (∃y) : ψ(x,y,S ′)}.
Thus |{x : (A,S ′) |= (∃y) : ψ(x,y,S ′)}| ≥ k, implying that optQ(A) ≥ k. There-
fore optQ(A) ≥ k if and only if optQ(A′) ≥ k. Hence (A, k) and (A′, k) are equivalent
instances of p-Q.
(III.) We conclude the proof by providing an upper bound on the size of (A′, k) that is
polynomial in k. For the sets Y ′

A(x) we selected one tuple y for each disjunct in D∗
A(x).

Thus |Y ′
A(x)| ≤ |D∗(x)| ∈ O(ks) for all x ∈ XA. The set A′ contains the components of

tuples x ∈ XA and of all tuples y ∈ Y ′
A(x) for x ∈ XA. Thus

|A′| ≤ cx · |XA|+ cy ·
∑

x∈XA
|Y ′
A(x)|

≤ cx · |XA|+ cy · |XA| ·O(ks)
< cx · k · 2s + cy · k · 2s ·O(ks) = O(ks+1).

For each relation R′
i we have |R′

i| ≤ |A′|ri ∈ O(k(s+1)ri). Thus the size of (A′, k) is

bounded by O(k(s+1)m), where m is the largest arity of a relation Ri.

Remark 4.12. For MAX SNP one can prove a stronger result that essentially relies on
Lemma 4.4. That way one obtains bounds for the sizes of A′ and (A′, k) of O(k) and O(km)
respectively.

5. Conclusion

We have constructively established that the standard parameterizations of problems
in MIN F

+Π1 and MAX NP admit polynomial kernelizations. Thus a strong relation be-
tween constant-factor approximability and polynomial kernelizability has been showed for
two large classes of problems. It remains an open problem to give a more general result
that covers all known examples (e.g. Feedback Vertex Set). It might be profitable to
consider closures of MAX SNP under reductions that preserve constant-factor approxima-
bility. Khanna et al. [16] proved that APX and APX-PB are the closures of MAX SNP

under PTAS-preserving reductions and E-reductions, respectively. Since both classes con-
tain Bin Packing which does not admit a polynomial kernelization, this leads to the
question whether polynomial kernelizability or fixed-parameter tractability are maintained
under restricted versions of these reductions.
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ABSTRACT. We are given a setV of autonomous agents (e.g. the computers of a distributed system)
that are connected to each other by a graphG = (V, E) (e.g. by a communication network connecting
the agents). Assume that all agents have a unique ID between1 andN for a parameterN ≥ |V |
and that each agent knows its ID as well as the IDs of its neighbors in G. Based on this limited
information, every agentv must autonomously compute a set of colorsSv ⊆ C such that the color
setsSu andSv of adjacent agentsu andv are disjoint. We prove that there is a deterministic algorithm
that uses a total of|C| = O(∆2 log(N)/ε2) colors such that for every nodev of G (i.e., for every
agent), we have|Sv| ≥ |C|·(1−ε)/(δv+1), whereδv is the degree ofv and where∆ is the maximum
degree ofG. ForN = Ω(∆2 log ∆), Ω(∆2 + log log N) colors are necessary even to assign at least
one color to every node (i.e., to compute a standard vertex coloring). Using randomization, it is
possible to assign an(1 − ε)/(δ + 1)-fraction of all colors to every node of degreeδ using only
O(∆ log |V |/ε2) colors w.h.p. We show that this is asymptotically almost optimal. For graphs with
maximum degree∆ = Ω(log |V |), Ω(∆ log |V |/ log log |V |) colors are needed in expectation, even
to compute a valid coloring.

The described multicoloring problem has direct applications in the context of wireless ad hoc and
sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such
a network need to employ some medium access control (MAC) protocol. Typical MAC protocols
control the access to the shared channel by time (TDMA), frequency (FDMA), or code division
multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots,
frequencies, or (orthogonal) codes to the nodes of a networksuch that nodes that interfere with each
other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time
slots, frequencies, or codes hence directly corresponds tocomputing a multicoloring of a graphG.
The scarcity of bandwidth, energy, and computing resourcesin ad hoc and sensor networks, as well
as the often highly dynamic nature of these networks requirethat the multicoloring can be computed
based on as little and as local information as possible.

1. Introduction

In this paper, we look at a variant of the standard vertex coloring problem that we name graph
multicoloring. Given ann-node graphG = (V,E), the goal is to assign a setSv of colors to each
nodev ∈ V such that the color setsSu andSv of two adjacent nodesu ∈ V andv ∈ V are disjoint
while at the same time, the fraction of colors assigned to each node is as large as possible and the

Key words and phrases:distributed algorithms, graph coloring, local algorithms, medium access control, multicolor-
ing, TDMA, wireless networks.

For space reasons, most proofs are omitted from this extended abstract. A full version can be received from the
author’s web site athttp://people.csail.mit.edu/fkuhn/publications/multicoloring.pdf.
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total number of colors used is as small as possible. In particular, we look at the followingdistributed
variant of this multicoloring problem. Each node has a unique identifier (ID) between1 andN for
an integer parameterN ≥ n. The nodes areautonomous agentsand we assume that every agent
has only very limited,local information aboutG. Specifically, we assume that every nodev ∈ V
merely knows its own ID as well as the IDs of all its neighbors.Based on this local information,
every nodev needs to compute a color setSv such that the color sets computed by adjacent nodes
are disjoint. Since our locality condition implies that every node is allowed to communicate with
each neighbor only once, we call such a a distributed algorithm aone-shot algorithm.

We prove nearly tight upper and lower bounds for deterministic and randomized algorithms
solving the above distributed multicoloring problem. Let∆ be the largest degree ofG. We show that
for everyε ∈ (0, 1), there is a deterministic multicoloring algorithm that usesO(∆2 log(N)/ε2)
colors and assigns a(1 − ε)/(δ + 1)-fraction of all colors to each node of degreeδ. Note that
because a nodev of degreeδ does not know anything about the topology ofG (except that itself has
δ neighbors), no one-shot multicoloring algorithm can assign more than a1/(δ + 1)-fraction of the
colors to all nodes of degreeδ (the nodes could be in a clique of sizeδ + 1). The upper bound proof
is based on the probabilistic method and thus only establishes the existence of an algorithm. We
describe an algebraic construction yielding an explicit algorithm that achieves the same bounds up
to polylogarithmic factors. UsingO(∆2 log2 N) colors, for a valueε > 0, the algorithm assigns a
ε/O(δ1+ε log N)-fraction of all colors to nodes of degreeδ. At the cost of usingO(∆log∗ N log N)
colors, it is even possible to improve the fraction of colorsassigned to each node by a factor of
log N . The deterministic upper bound results are complemented bya lower bound showing that
if N = Ω(∆2 log ∆), even for the standard vertex coloring problem, every deterministic one-shot
algorithm needs to use at leastΩ(∆2 + log log N) colors.

If we allow the nodes to use randomization (and only require that the claimed bounds are
obtained with high probability), we can do significantly better. In a randomized one-shot algorithm,
we assume that every node can compute a sequence of random bits at the beginning of an algorithm
and that nodes also know their own random bits as well as the random bits of the neighbors when
computing the color set. We show that forε ∈ (0, 1), with high probability,O(∆ log(n)/ε2) colors
suffice to assign a(1 − ε)/(δ + 1)-fraction of all colors to every node of degreeδ. If log n ≤
∆ ≤ n1−ε for a constantε > 0, we show that every randomized one-shot algorithm needs at
leastΩ(∆ log n/ log log n) colors. Again, the lower bound even holds for standard vertex coloring
algorithms where every node only needs to choose a single color.

Synchronizing the access to a common resource is a typical application of coloring in networks.
If we have ac-coloring of the network graph, we can partition the resource (and/or time) intoc parts
and assign a part to each nodev depending onv’s color. In such a setting, it seems natural to use a
multicoloring instead of a standard vertex coloring and assign more than one part of the resource to
every node. This allows to use the resource more often and thus more efficiently.

The most prominent specific example of this basic approach occurs in the context of media
access control (MAC) protocols for wireless ad hoc and sensor networks. These networks consist
of autonomous wireless devices that communicate with each other by the use of radio signals. If
two or more close-by nodes transmit radio signals at the sametime, a receiving node only hears
the superposition of all transmitted signals. Hence, simultaneous transmissions of close-by nodes
interfere with each other and we thus have to control the access to the wireless channel. A stan-
dard way to avoid interference between close-by transmissions is to use a time (TDMA), frequency
(FDMA), or code division multiple access (CDMA) scheme to divide the channel among the nodes.
A TDMA protocol divides the time into time slots and assigns different time slots to conflicting
nodes. When using FDMA, nodes that can interfere with each other are assigned different frequen-
cies, whereas a CDMA scheme uses different (orthogonal) codes for interfering nodes. Classically,
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TDMA, FDMA, and CDMA protocols are implemented by a standardvertex coloring of the graph
induced by the interference relations. In all three cases, it would be natural to use the more general
multicoloring problem in order to achieve a more effective use of the wireless medium. Efficient
TDMA schedules, FDMA frequency assignments, or CDMA code assignments are all directly ob-
tained from a multicoloring of the interference graph wherethe fraction of colors assigned to each
nodes is as large as possible. It is also natural to require that the total number of colors is small. This
keeps the length of a TDMA schedule or the total number of frequencies or codes small and thus
helps to improve the efficiency and reduce unnecessary overhead of the resulting MAC protocols.

In contrast to many wired networks, wireless ad hoc and sensor networks typically consist of
small devices that have limited computing and storage capabilities. Because these devices operate
on batteries, wireless nodes also have to keep the amount of computation and especially commu-
nication to a minimum in order to save energy and thus increase their lifetime. As the nodes of
an ad hoc or sensor network need to operate without central control, everything that is computed,
has to be computed by a distributed algorithm by the nodes themselves. Coordination between the
nodes is achieved by exchanging messages. Because of the resource constraints, these distributed
algorithms need to be as simple and efficient as possible. Themessages transmitted and received
by each node should be as few and as short as possible. Note that because of interference, the
bandwidth of each local region is extremely limited. Typically, for a nodev, the time needed to
even receive a single message from all neighbors is proportional to the degree ofv (see e.g. [19]).
As long as the information provided to each node is symmetric, it is clear that every node needs to
know the IDs of all adjacent nodes inG in order to compute a reasonably good multicoloring ofG.
Hence, the one-shot multicoloring algorithms considered in this paper base their computations on
the minimum information needed to compute a non-trivial solution to the problem. Based on the
above observations, even learning the IDs of all neighbors requires quite a bit of time and resources.
Hence, acquiring significantly more information might already render an algorithm inapplicable in
practice.1

As a result of the scarcity of resources, the size and simplicity of the wireless devices used in
sensor networks, and the dependency of the characteristic of radio transmissions on environmental
conditions, ad hoc and sensor networks are much less stable than usual wired networks. As a con-
sequence, the topology of these networks (and of their interference graph) can be highly dynamic.
This is especially true for ad hoc networks, where it is ofteneven assumed that the nodes are mobile
and thus can move in space. In order to adapt to such dynamic conditions, a multicoloring needs
to be recomputed periodically. This makes the resource and time efficiency of the used algorithms
even more important. This is particularly true for the locality of the algorithms. If the computation
of every node only depends on the topology of a close-by neighborhood, dynamic changes also only
affect near-by nodes.

The remainder of the paper is organized as follows. In Section 2, we discuss related work.
The problem is formally defined in Section 3. We present the deterministic and randomized upper
bounds in Section 4 and the lower bounds in Section 5.

2. Related Work

There is a rich literature on distributed algorithms to compute classical vertex colorings (see
e.g. [1, 4, 11, 15, 16, 21]). The paper most related to the present one is [15]. In [15], deterministic
algorithms for the standard coloring problem in the same distributed setting are studied (i.e., every

1It seems that in order to achieve a significant improvement onthe multicolorings computed by the algorithms pre-
sented in this paper, every node would need much more information. Even if every node knows its completeO(log ∆)-
neighborhood, the best deterministic coloring algorithm that we are aware of needsΘ(∆2) colors.
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node has to compute its color based on its ID and the IDs of its neighbors). The main result is a
Ω(∆2/ log2 ∆) lower bound on the number of colors. The first paper to study distributed coloring
is a seminal paper by Linial [16]. The main result of [16] is anΩ(log∗ n)-time lower bound for
coloring a ring with a constant number of colors. As a corollary of this lower bound, one obtains an
Ω(log log N) lower bound on the number of colors for deterministic one-shot coloring algorithms as
studied in this paper. Linial also looks at distributed coloring algorithms for general graph and shows
that one can compute anO(∆2)-coloring in timeO(log∗ n). In order to color a general graph with
less colors, the best known distributed algorithms are significantly slower.2 Using randomization,
anO(∆)-coloring can be obtained in timeO(

√
log n) [14]. Further, the fastest algorithm to obtain a

(∆ + 1)-coloring is based on an algorithm to compute a maximal independent set by Luby [17] and
on a reduction described in [16] and has time complexityO(log n). The best known deterministic
algorithms to compute a(∆ + 1)-coloring have time complexities2O(

√
log n) andO(∆ log ∆ +

log∗ n) and are described in [21] and [15], respectively. For special graph classes, there are more
efficient deterministic algorithms. It has long been known that in rings [4] and bounded degree
graphs [11, 16], a(∆ + 1)-coloring can be computed in timeO(log∗ n). Very recently, it has
been shown that this also holds for the much larger class of graphs with bounded local independent
sets [26]. In particular, this graph class contains all graph classes that are typically used to model
wireless ad hoc and sensor networks. Another recent result shows that graphs of bounded arboricity
can be colored with a constant number of colors in timeO(log n) [3].

Closely related to vertex coloring algorithms are distributed algorithms to compute edge col-
orings [5, 12, 22]. In a seminal paper, Naor and Stockmeyer were the first to look at distributed
algorithms where all nodes have to base their decisions on constant neighborhoods [20]. It is shown
that a weak coloring withf(∆) colors (every node needs to have a neighbor with a different color)
can be computed in time2 if every vertex has an odd degree. Another interesting approach is taken
in [9] where the complexity of distributed coloring is studied in case there is an oracle that gives
some nodes a few bits of extra information.

There are many papers that propose to use some graph coloringvariant in order to compute
TDMA schedules and FDMA frequency or CDMA code assignments (see e.g. [2, 10, 13, 18, 24,
25, 27]). Many of these papers compute a vertex coloring of the network graph such that nodes
at distance at most2 have different colors. This guarantees that no two neighbors of a node use
the same time slot, frequency, or code. Some of the papers also propose to construct a TDMA
schedule by computing an edge coloring and using different time slots for different edges. Clearly,
it is straight-forward to use our algorithms for edge colorings, i.e., to compute a multicoloring of
the line graph. With the exception of [13] all these papers compute a coloring and assign only one
time slot, frequency, or code to every node or edge. In [13], first, a standard coloring is computed.
Based on this coloring, an improved slot assignment is constructed such that in the end, the number
of slots assigned to a node is inversely proportional to the number of colors in its neighborhood.

3. Formal Problem Description

3.1. Mathematical Preliminaries

Throughout the paper, we uselog(·) to denote logarithms to base2 and ln(·) to denote nat-
ural logarithms, respectively. Bylog(i) x and byln(i) x, we denote thei-fold applications of the
logarithm functionslog and ln to x, respectively3. The log star function is defined aslog∗ n :=

2In [6], it is claimed that anO(∆) coloring can be computed in timeO(log∗(n/∆)). However, the argumentation in
[6] has a fundamental flaw that cannot be fixed [23].

3We havelog(0) x = ln(0) x = x, log(i+1) x = log(log(i) x), andln(i+1) x = ln(ln(i) x). Note that we also use
logi x = (log x)i andlni x = (ln x)i
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mini{log(i) n ≤ 1}. We also use the following standard notations. For an integer n ≥ 1, [n] =

{1, . . . , n}. For a finite setΩ and an integerk ∈ {0, . . . , |Ω|},
(Ω

k

)

= {S ∈ 2Ω : |S| = k}. The
term with high probability (w.h.p.) means with probabilityat least1− 1/nc for a constantc ≥ 1.

3.2. Multicoloring

The multicoloring problem that was introduced in Section 1 can be formally defined as follows.

Definition 3.1 (Multicoloring). An (ρ(δ), k)-multicoloring γ of a graphG = (V,E) is a mapping
γ : V → 2[k] that assigns a setγ(v) ⊂ [k] of colors to each nodev of G such that∀{u, v} ∈ E :
γ(u) ∩ γ(v) = ∅ and such that for every nodev ∈ V of degreeδ, |γ(v)|/k ≥ ρ(δ)/(δ + 1).

We call ρ(δ) the approximation ratioof a (ρ(δ), k)-multicoloring. Because in a one-shot al-
gorithm (cf. the next section for a formal definition), a nodeof degreeδ cannot distinguishG from
Kδ+1, the approximation ratio of every one-shot algorithm needsto be at most1.

The multicoloring problem is related to the fractional coloring problem in the following way.
Assume that every node is assigned the same numberc of colors and that the total number of colors
is k. Taking every color with fraction1/c then leads to a fractional(k/c)-coloring ofG. Hence, in
this case,k/c is lower bounded by the fractional chromatic numberχf (G) of G.

3.3. One-Shot Algorithms

As outlined in the introduction, we are interested in local algorithms to compute multicolorings
of ann-node graphG = (V,E). For a parameterN ≥ n, we assume that every nodev has a unique
ID xv ∈ [N ]. In deterministic algorithms, every node has to compute a color set based on its own
ID as well as the IDs of its neighbors. For randomized algorithms, we assume that nodes also know
the random bits of their neighbors. Formally, a one-shot algorithm can be defined as follows.

Definition 3.2 (One-Shot Algorithm). We call a distributed algorithm a one-shot algorithm if every
nodev performs (a subset of) the following three steps:

1. Generate sequenceRv of random bits (deterministic algorithms:Rv = ∅)
2. Sendxv, Rv to all neighbors
3. Compute solution based onxv, Rv, and the received information

Assume thatG is a network graph such that two nodesu andv can directly communicate with
each other iff they are connected by an edge inG. In the standardsynchronous message passing
model, time is divided into rounds and in every round, every node ofG can send a message to each
of its neighbors. One-shot algorithms then exactly correspond to computations that can be carried
out in a single communication round.

For deterministic one-shot algorithms, the output of everynodev is a function ofv’s ID xv and
the IDs ofv’s neighbors. We call this information on whichv bases its decisions, theone-hop view
of v.

Definition 3.3 (One-Hop View). Consider a nodev with ID xv and letΓv be the set of IDs of the
neighbors ofv. We call the pair(xv ,Γv) the one-hop view ofv.

Let (xu,Γu) and(xv,Γv) be the one-hop views of two adjacent nodes. Becauseu andv are
neighbors, we havexu ∈ Γv and thatxv ∈ Γu. It is also not hard to see that

∀xu, xv ∈ [N ] and∀Γu,Γv ∈ 2[N ] such thatxu 6= xv, xu ∈ Γv \ Γu, xv ∈ Γu \ Γv, (3.1)

there is a labeled graph that has two adjacent nodesu and v with one-hop views(xu,Γu) and
(xv,Γv), respectively. Assume that we are given a graph with maximumdegree∆ (i.e., for all
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one-hop views(xv,Γv), we have|Γv| ≤ ∆). A one-shot vertex coloring algorithm maps every
possible one-hop view to a color. A correct coloring algorithm must assign different colors to two
one-hop views(xu,Γu) and(xv ,Γv) iff they satisfy Condition (3.1). This leads to the definition
of the neighborhood graphN1(N,∆) [15] (the general notion of neighborhood graphs has been
introduced in [16]). The nodes ofN1(N,∆) are all one-hop views(xv,Γv) with |Γv| ≤ ∆. There
is an edge between(xu,Γu) and(xv,Γv) iff the one-hop views satisfy Condition (3.1). Hence, a
one-shot coloring algorithm must assign different colors to two one-hop views iff they are neighbors
in N1(N,∆). The number of colors that are needed to properly color graphs with maximum degree
∆ by a one-shot algorithm therefore exactly equals the chromatic numberχ

(

N1(N,∆)
)

of the
neighborhood graph (see [15, 16] for more details). Similarly, a one-shot(ρ(δ), k)-multicoloring
algorithm corresponds to a(ρ(δ), k)-multicoloring of the neighborhood graph.

4. Upper Bounds

In this section, we prove all the upper bounds claimed in Section 1. We first prove that an
efficient deterministic one-shot multicoloring algorithmexists in Section 4.1. Based on similar
ideas, we derive an almost optimal randomized algorithm in Section 4.2. Finally, in Section 4.3, we
introduce constructive methods to obtain one-shot multicoloring algorithms. For all algorithms, we
assume that the nodes know the size of the ID spaceN as well as∆, an upper bound on the largest
degree in the network. It certainly makes sense that nodes are aware of the used ID space. Note that
it is straight-forward to see that there cannot be a non-trivial solution to the one-shot multicoloring
problem if the nodes do not have an upper bound on the maximum degree in the network.

4.1. Existence of an Efficient Deterministic Algorithm

The existence of an efficient, deterministic one-shot multicoloring algorithm is established by
the following theorem.

Theorem 4.1. Assume that we are given a graph with maximum degree∆ and node IDs in[N ].
Then, for all0 < ε ≤ 1, there is a deterministic, one-shot

(

1− ε,O(∆2 log(N)/ε2)
)

-multicoloring
algorithm.

Proof. We use permutations to construct colors as described in [15]. For i = 1, . . . , k, let ≺i be
a global order on the ID set[N ]. A nodev with 1-hop view(xv,Γv) includes colori in its color
set iff ∀y ∈ Γv : xv ≺i y. It is clear that with this approach the color sets of adjacent nodes
are disjoint. In order to show that nodes of degreeδ obtain aρ/(δ + 1)-fraction of all colors, we
need to show that for allδ ∈ [∆], all x ∈ [N ], and allΓ ∈

([N ]\{x}
δ

)

, for all y ∈ Γ, x ≺i y for
at leastkρ/(δ + 1) global orders≺i. We use the probabilistic method to show that a set of size
k = 2(∆ + 1)2 ln(N)/ε2 of global orders≺i exists such that every node of degreeδ ∈ [∆] gets at
least an(1 − ε)/(δ + 1)-fraction of thek colors. Such a set implies that there exists an algorithm
that satisfies the claimed bounds for all graphs with maximumdegree∆ and IDs in[N ].

Let≺1, . . . ,≺k bek global orders chosen independently and uniformly at random. The prob-
ability that a nodev with degreeδ and1-hop view (xv,Γv) gets colori is 1/(δ + 1) (note that
|Γv| = δ). Let Xv be the number of colors thatv gets. We haveE[Xv] = k/(δ + 1) ≥ k/(∆ + 1).
Using a Chernoff bound, we then obtain

P

[

Xv < (1− ε) · k

δ + 1

]

= P [Xv < (1− ε) · E[Xv]] < e−ε2
E[Xv]/2 ≤ 1

N∆+1
. (4.1)
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Algorithm 1 Explicit Deterministic Multicoloring Algorithm: Basic Construction

Input: one-hop view(x,Γ), parameterℓ ≥ 0
Output: setS of colors, initiallyS = ∅

1: for all (α0, α1, . . . , αℓ) ∈ Fq0 × Fq1 × · · · × Fqℓ
do

2: β0,x := ϕ0,x(α0); ∀y ∈ Γ : β0,y := ϕ0,y(α0)
3: for i := 1 to ℓ do
4: βi,x := ϕi,βi−1,x

(αi); ∀y ∈ Γ : βi,y := ϕi,βi−1,y
(αi)

5: if ∀y ∈ Γ : βℓ,x 6= βℓ,y then
6: S := S ∪ (α0, α1, . . . , αℓ, βℓ,x)

The total number of different possible one-hop views can be bounded as|N1(N,∆)| = N ·
∑∆

δ=1

(

N−1
δ

)

< N∆+1. By a union bound argument, we therefore get that with positive probability,
for all δ ∈ [∆], all possible one-hop views(xv,Γv) with |Γv| = δ get at least(1 − ε) · k/(δ + 1)
colors. Hence, there exists a set ofk global orders on the ID set[N ] such that all one-hop views
obtain at least the required number of colors.

Remark: Note that if we increase the number of permutations (i.e., the number of colors) by a
constant factor, all possible one-hop views(x,Γ) with |Γ| = δ get a(1− ε)/(δ + 1)-fraction of all
colors w.h.p.

4.2. Randomized Algorithms

We will now show that with the use of randomization, the upperbound of Section 4.1 can be
significantly improved if the algorithm only needs to be correct w.h.p. We will again use random
permutations. The problem of the deterministic algorithm is that the algorithm needs to assign a
large set of colors to all roughlyN∆ possible one-hop views. With the use of randomization, we
essentially only have to assign colors ton randomly chosen one-hop views.

For simplicity, we assume that every node knows the number ofnodesn (knowing an upper
bound onn is sufficient). For an integer parameterk > 0, everyv ∈ V choosesk independent
random numbersxv,1, . . . , xv,k ∈ [kn4] and sends these random numbers to all neighbors. We
use these random numbers to inducek random permutations on the nodes. LetΓ(v) be the set of
neighbors of a nodev. A nodev selects all colorsi for which xv,i < xu,i for all u ∈ Γ(v).

Theorem 4.2. Choosingk = 6(∆ + 1) ln(n)/ε2 leads to a randomized one-shot algorithm that
computes a(1− ε, k)-multicoloring w.h.p.

Remark: In the above algorithm, every node has to generateO(∆ log2(n)/ε2) random bits and
send these bits to the neighbors. Using a (non-trivial) probabilistic argument, it is possible to show
that the same result can be achieved using onlyO(log n) random bits per node.

4.3. Explicit Algorithms

We have shown in Section 4.1 that there is a deterministic one-shot algorithm that almost
matches the lower bound (cf. Theorem 5.2). Unfortunately, the techniques of Section 4.1 do not
yield an explicit algorithm. In this section, we will present constructive methods to obtain a one-
shot multicoloring algorithm.

We develop the algorithm in two steps. First, we construct a multicoloring where in the worst
case, every nodev obtains the same fraction of colors independent ofv’s degree. We then show
how to increase the fraction of colors assigned to low-degree nodes. For an integer parameterℓ ≥ 0,
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let q0, . . . , qℓ be prime powers and letd0, . . . , dℓ be positive integers such thatqd0+1
0 ≥ N and

qdi+1
i ≥ qi−1 for i ≥ 1. For a prime powerq and a positive integerd, let P(q, d) be the set of all

qd+1 polynomials of degree at mostd in Fq[z], whereFq is the finite field of orderq. We assume
that that we are given an injectionϕ0 from the ID set[N ] to the polynomials inP(q0, d0) and
injectionsϕi from Fqi−1 to P(qi, di) for i ≥ 1. For a valuex in the respective domain, letϕi,x be
the polynomial assigned tox by injectionϕi. The first part of the algorithm is an adaptation of a
technique used in a coloring algorithm described in [16] that is based on an algebraic construction
of [7]. There, a nodev with one-hop view(x,Γ) selects a color

(

α,ϕ0,x(α)
)

, whereα ∈ Fq0 is a
value for whichϕ0,x(α) 6= ϕ0,y(α) for all y ∈ Γ (we have to setq0 andd0 such that this is always
possible). We make two modifications to this basic algorithm. Instead of only selecting one value
α ∈ Fq0 such that∀y ∈ Γ : ϕ0,x(α) 6= ϕ0,y(α), we select all valuesα for which this is true. We
then use these values recursively (as ifϕi,x(αi) was the ID ofv) ℓ times to reduce the dependence
of the approximation ratio of the coloring onN . The details of the first step of the algorithm are
given by Algorithm 1.

Lemma 4.3. Assume that for0 ≤ i ≤ ℓ, qi ≥ fi∆di wherefi > 1. Then, Algorithm 1 constructs
a multicoloring withqℓ ·

∏ℓ
i=0 qi colors where every node at least receives aλ/qℓ-fraction of all

colors whereλ =
∏ℓ

i=0(1− 1/fi).

Proof. All colors that are added to the color set in line 6 are fromFq0 × Fq1 × · · · × Fqℓ
× Fqℓ

. It is
therefore clear that the number of different colors isqℓ ·

∏ℓ
i=0 qi as claimed. From the condition in

line 5, it also follows that the color sets of adjacent nodes are disjoint.
To determine the approximation ratio, we count the number ofcolors, a nodev with one-hop

view (x,Γ) gets. First note that the condition in line 5 of the algorithmimplies that (and is therefore
equivalent to demand that)βi,x 6= βi,y for all y ∈ Γ and for alli ∈ {0, . . . , ℓ} becauseβi,x = βi,y

implies βj,x = βj,y for all j ≥ i. We therefore need to count the number of(α0, . . . , αℓ) ∈
Fq0 × · · · × Fqℓ

for which βi,x 6= βi,y for all i ∈ {0, . . . , ℓ} and ally ∈ Γ. We prove by induction
on i that fori < ℓ, there are at least

∏i
j=0 qj · (1 − 1/fj) tuples(α0, . . . , αi) ∈ Fq0 × · · ·Fqi

with
βj,x 6= βj,y for all j ≤ i. Let us first prove the statement fori = 0. Because the IDs of adjacent
nodes are different, we know thatϕ0,x 6= ϕ0,y for all y ∈ Γ. Two different degreed0 polynomials
can be equal at at mostd0 values. Hence, for everyy ∈ Γ, ϕ0,x(α) = ϕ0,y(α) for at mostd0 values
α. Thus, since|Γ| ≤ ∆, there are at leastq0−∆d0 ≥ q0 ·(1−1/f0) valuesα for whichϕ0,x 6= ϕ0,y

for all y ∈ Γ. This establishes the statement fori = 0. For i > 0, the argument is analogous. Let
(α0, . . . , αi−1) ∈ Fq0 × · · · × Fqi−1 be such thatβj,x 6= βj,y for all y ∈ Γ and allj < i. Because
βi−1,x 6= βi−1,y, we haveϕi,x 6= ϕi,y. Thus, with the same argument as fori = 0, there are at least
qi · (1 − 1/fi) valuesαi such thatβi,x 6= βi,y for all y ∈ Γ. Therefore, the number of colors in the
color set of every node is at least

∏ℓ
i=0 qi ·

(

1− 1/fi

)

= λ ·∏ℓ
i=0 qi. This is a(λ/qℓ)-fraction of all

colors.

The next lemma specifies how the values ofqi, di, andfi can be chosen to obtain an efficient
algorithm.

Lemma 4.4. Let ℓ be such thatln(ℓ) N > max{e,∆}. For 0 ≤ i ≤ ℓ, we can then chooseqi,
di, andfi such that Algorithm 1 computes a multicoloring withO(ℓ∆)ℓ+2 · log∆ N · log∆ ln(ℓ) N

colors and such that every node gets at least a1/
(

4e9/4∆
⌈

log∆ ln(ℓ) N
⌉)

-fraction of all colors.

The number of colors that Algorithm 1 assigns to nodes with degree almost∆ is close to
optimal even for small values ofℓ. If we chooseℓ = Θ(log∗ N − log∗ ∆), nodes of degreeΘ(∆)
even receive at least a(d/∆)-fraction of all colors for some constantd. Because the number of
colors assigned to a nodev is independent ofv’s degree, however, the coloring of Algorithm 1 is far
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Algorithm 2 Explicit Deterministic Multicoloring Algorithm: Small Number of Colors

Input: one-hop view(x,Γ), instancesA2i,N for i ∈
[

⌈log ∆⌉
]

of Algorithm 1, parameterε ∈ [0, 1]
Output: setS of colors, initiallyS = ∅

1: for all i ∈
[

⌈log ∆⌉
]

do

2: ωi :=
⌈

(

∆/2i−1
)ε ·

∣

∣C2⌈log ∆⌉,N

∣

∣/
∣

∣C2i,N

∣

∣

⌉

3: for all i ∈
{

⌈log |Γ|⌉, . . . , ⌈log ∆⌉
}

do
4: for all c ∈ C2i,N [x,Γ] do
5: for all j ∈ [ωi] do S := S ∪ (c, i, j)

from optimal for low-degree nodes. In the following, we showhow to improve the algorithm in this
respect.

LetA∆,N be an instance of Algorithm 1 for nodes with degree at most∆ and letC∆,N be the
color set ofA∆,N . Further, for a one-hop view(x,Γ), letC∆,N [x,Γ] be the colors assigned to(x,Γ)
by AlgorithmA∆,N . We run instancesA2i,N for all i ∈

[

⌈log ∆⌉
]

. A nodev with degreeδ chooses
the colors of all instances for which2i ≥ δ. In order to achieve the desired trade-offs, we introduce
an integer weightω for each colorc, i.e., instead of adding colorc, we add colors(1, c), . . . , (ω, c).
The details are given by Algorithm 2. The properties of Algorithm 2 are summarized by the next
theorem. The straight-forward proof is omitted.

Theorem 4.5. Assume that in the instances of Algorithm 1, the parameterℓ is chosen such that for
all ∆,A∆,N assigns at least af(N)/∆-fraction of the colors to every node. Then, for a parameter
ε ∈ [0, 1], Algorithm 2 computes a

(

Ω(f(N)ε/δε),O(|C2∆,N | ·∆ε/ε)
)

-multicoloring.

Corollary 4.6. Let ε ∈ [0, 1] and ℓ ≥ 0 be a fixed constant in all used instances of Algorithm
1. Then, Algorithm 2 computes an

(

ε/O(δε log∆ ln(ℓ) N),O(∆ℓ+2 · log∆ N · log∆ ln(ℓ) N)
)

-
multicoloring. In particular, choosingℓ = 0 leads to an

(

ε/O(δε log∆ N),O(∆2 log2
∆ N)

)

-
multicoloring. Taking the maximum possible value forℓ in all used instances of Algorithm 1 yields
an

(

ε/O(δε),∆O(log∗ N−log∗ ∆) · log∆ N
)

-multicoloring.

5. Lower Bounds

In this section, we give lower bounds on the number of colors required for one-shot multicol-
oring algorithms. In fact, we even derive the lower bounds for algorithms that need to assign only
one color to every node, i.e., the results even hold for standard coloring algorithms.

It has been shown in [15] that every deterministic one-shotc-coloring algorithmA can be
interpreted as a set ofc antisymmetric relations on the ID set[N ]. Assume thatA assigns a color
from a setC with |C| = c to every one-hop view(x,Γ). For every colorα ∈ C, there is a relation
⊳α such that for allx, y ∈ [N ] x 6⊳α y∨y 6⊳α x. AlgorithmA can assign colorα ∈ C to a one-hop
view (x,Γ) iff ∀y ∈ Γ : x ⊳α y.

Forα ∈ C, let Badα(x) := {y ∈ [N ] : x 6⊳α y} be the set of IDs that must not be adjacent to
anα-colored node with IDx. To show that there is no deterministic, one-shotc-coloring algorithm,
we need to show that for everyc antisymmetric relations⊳α1 , . . . ,⊳αc on [N ], there is a one-hop
view (x,Γ) such that∀i ∈ [c] : Γ ∩ Badαi

(x) 6= ∅. The following lemma is a generalization of
Lemma 4.5 in [15] and key for the deterministic and the randomized lower bounds. As the proof is
along the same lines as the proof of Lemma 4.5 in [15], it is omitted here.
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Lemma 5.1. LetX ⊆ [N ] be a set of IDs and lett1, . . . , tℓ andk1, . . . , kℓ be positive integers such
that

ti ·
(

λ(|X| − c)ti − c
)

> 2c(ki − 1) for 1 ≤ i ≤ ℓ and a parameterλ ∈ [0, 1].

Then there exists an ID setX ′ ⊆ X with |X ′| > (1− ℓ · λ) · (|X| − c) such that for alli ∈ [ℓ],

∀x ∈ X ′,∀α1, . . . , αti ∈ C :

ti
∑

j=1

∣

∣Badαj
(x) ∩X

∣

∣ ≥ ki, ∀x ∈ X ′,∀α ∈ C : Badα(x) ∩X 6= ∅.

Based on several applications of Lemma 5.1 (and based on anΩ(log log N) lower bound in
[16]), it is possible to derive an almost tight lower bound for deterministic one-shot coloring algo-
rithms. Due to lack of space, we only state the result here.

Theorem 5.2. If N = Ω(∆2 log ∆), every deterministic one-shot coloring algorithm needs atleast
Ω(∆2 + log log N) colors.

5.1. Randomized Lower Bound

To obtain a lower bound for randomized multicoloring algorithms, we can again use the tools
derived for the deterministic lower bound by applying Yao’sprinciple. On a worst-case input, the
best randomized algorithm cannot perform better than the best deterministic algorithm for a given
random input distribution. Choosing the node labeling at random allows to again only consider
deterministic algorithms.

We assume that then nodes are assigned a random permutation of the labels1, . . . , n (i.e.,
every label occurs exactly once). Note that because we want to prove a lower bound, assuming the
most restricted possible ID space makes the bound stronger.For an IDx ∈ [n], we sort all colors
α ∈ C by increasing values of|Badα(x)| and letαx,i be theith color in this sorted order. Further,
for x ∈ [n], we definebx,i :=

∣

∣Badαx,i
(x)

∣

∣. In the following, we assume that

c = κ · ∆⌊ln n⌋
⌈ln ln n⌉+ 2

and n ≥ 12 and n ≥ ∆ · ln n (5.1)

for a constant0 < κ ≤ 1 that will be determined later. By applying Lemma 5.1 in different ways,
the next lemma gives lower bounds on the values ofbx,i for n/2 IDs x ∈ [n].

Lemma 5.3. Assume thatc and n are as given by Equation(5.1) and let 0 < ρ < 1/3 be a
positive constant. Further, let̃t =

⌈

ρ ln n/ ln ln n
⌉

and ti = 2i−1 · ⌊ln n⌋ for 1 ≤ i ≤ ℓ where
ℓ = ⌈ln ln n⌉+ 2. Then, for at leastn/2 of all IDs x ∈ [n], we have

bx,1 ≥
ln ln n

44κ · ln n
· n

∆
−1, bx,t̃ ≥

ρ

48κ
· n

∆
− 1

2
, bx,ti ≥ 2i−1 ·

(

1

8κ
· n

∆
− 1

2

)

for 1 ≤ i ≤ ℓ.

In order to prove the lower bound, we want to show that for a randomly chosen one-hop view
(x,Γ) with |Γ| = ∆, the probability that there is a colorα ∈ C for which Γ ∩ Badα(x) = ∅ is
sufficiently small. Instead of directly looking at random one-hop views(x,Γ) with |Γ| = ∆, we
first look at one-hop views with|Γ| ≈ ∆/e that are constructed as follows. LetX ⊆ [n] be the set
of IDs x of size |X| ≥ n/2 for which the bounds of Lemma 5.3 hold. We choosexR uniformly
at random fromX. The remainingn − 1 IDs are independently added to a setΓR with probability
p = ∆

en . For a colorα ∈ C, let Eα be the event thatΓR ∩ Badα(xR) 6= ∅, i.e.,Eα is the event that
color α cannot be assigend to the randomly chosen one-hop view(xR,ΓR).
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Lemma 5.4. The probability that the randomly chosen one-hop view cannot be assigned one of the
c colors inC is bounded by

P

[

⋂

α∈C

Eα

]

≥
∏

α∈C

P
[

Eα

]

≥
∏

α∈C

(

1− e−
∆
en

·|Badα(xR)|
)

=

c
∏

i=1

(

1− e−
∆·bxR,i

en

)

.

Proof. Note first that forα ∈ C, we have

P
[

Eα

]

= P
[

ΓR ∩ Badα(xR) = ∅
]

= (1− p)|Badα(xR)| ≤ e−p|Badα(xR)| = e−
∆
en

·|Badα(xR)|.

It therefore remains to prove that the probability that all eventsEα occur can be lower bounded by
the probability that would result for independent events. Let us denote the colors inC byα1, . . . , αc.
We then have

P

[

⋂

α∈C

Eα

]

=

c
∏

i=1

P



Eαi

∣

∣

∣

∣

∣

i−1
⋂

j=1

Eαj



 ≥
c

∏

i=1

P
[

Eαi

]

. (5.2)

The inequality holds because the eventsEα are positively correlated. Knowing that an element from
a setBadα(xR) is in ΓR cannot decrease the probability that an element from a setBadα′(xR) is
in ΓR. Note that this is only true because the IDs are independently added toΓR. More formally,
Inequality (5.2) can also directly be followed from the FKG inequality [8].

For space reasons, the following two lemmas are given without proof.

Lemma 5.5. Assume thatc andn are given as in(5.1) where the constantκ is chosen sufficiently
small and letρ > 0 be a constant as in Lemma 5.3. There is a constantn0 > 0 such that forn ≥ n0,
P

[
⋂

α∈C Eα

]

> 1
2n3ρ .

Lemma 5.6. Let (x,Γ) be a one-hop view chosen uniformly at random from all one-hopviews with
|Γ| = ∆. If ∆ ≥ e(ln n + 2) andn, c, andρ are as before, the probability that none of thec colors
can be assigned to(x,Γ) is at least1/(8n3ρ).

In the following, we call a nodeu together with∆ neighborsv1, . . . , v∆, a∆-star.

Theorem 5.7. Let G be a graph withn nodes and2nε disjoint ∆-stars for a constantε > 0. On
G, every randomized one-shot coloring algorithm needs at least Ω(∆ log n/ log log n) colors in
expectation and with high probability.

Proof. W.l.o.g., we can certainly assume thatn ≥ n0 for a sufficiently large constantn0. We choose
ρ ≤ ε/4 and considernε of the 2nε disjoint ∆-stars. Let us call thesenε ∆-starsS1, . . . , Snε .
Assume that the ID assignment of then nodes ofG is chosen uniformly at random from all ID
assignments with IDs1, . . . , n. The IDs of the starS1 are perfectly random. We can therefore
directly apply Lemma 5.6 and obtain that the probability that the center node ofS1 gets no color
is at least1/(8n3ρ). Consider starS2. The IDs of the nodes ofS2 are chosen at random among
then − ∆ − 1 IDs that are not assigned to the nodes ofS1. Applying Lemma 5.6 we get that the
probability thatS2 does not get a color is at least1/(8(n − ∆ − 1)3ρ) ≥ 1/(8n3ρ) independently
of whetherS1 does get a color. The probability that the startsS1, . . . , Snε all get a color therefore
is at most

nε−1
∏

i=0

(

1− 1

8(n − i(∆ + 1))3ρ

)

≤
(

1− 1

8n3ρ

)nε

≤ e−
nε

8n3ρ ≤ e−nρ/8.

Hence, there is a constantη > 0 such thatη∆ ln n/ ln ln n colors do not suffice with probability at
least1− e−nρ/8 for a positive constantρ. The lemma thus follows.
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Abstract. The group isomorphism problem asks whether two given groups are isomor-
phic or not. Whereas the case where both groups are abelian is well understood and can
be solved efficiently, very little is known about the complexity of isomorphism testing for
nonabelian groups. In this paper we study this problem for a class of groups corresponding
to one of the simplest ways of constructing nonabelian groups from abelian groups: the
groups that are extensions of an abelian group A by a cyclic group Zm. We present an
efficient algorithm solving the group isomorphism problem for all the groups of this class
such that the order of A is coprime with m. More precisely, our algorithm runs in time
almost linear in the orders of the input groups and works in the general setting where the
groups are given as black-boxes.

1. Introduction

The group isomorphism problem is the problem of deciding, for two given groups G and
H, whether there exists an isomorphism between G and H, i.e. a one-one map preserving
the group operation. This is a fundamental problem in computational group theory but
little is known about its complexity. It is known that the group isomorphism problem (for
groups given by their multiplication tables) reduces to the graph isomorphism problem [12],
and thus the group isomorphism problem is in the complexity class NP ∩ coAM (since
the graph isomorphism problem is in this class [2]). Miller [14] has developed a general

technique to check group isomorphism in time O(nlog n+O(1)), where n denotes the size of
the input groups and Lipton, Snyder and Zalcstein [13] have given an algorithm working
in O(log2 n) space. However, no polynomial algorithm is known for the general case of this
problem.

Another line of research is the design of algorithms solving the group isomorphism
problem for particular classes of groups. For abelian groups polynomial time algorithms
follow directly from efficient algorithms for the computation of Smith normal form of integer
matrices [10, 6]. More efficient methods have been given by Vikas [22] and Kavitha [11]
for groups given by their multiplication tables. The current fastest algorithm solving the
abelian group isomorphism problem for groups given as black-boxes has been developed

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases: polynomial-time algorithms, group isomorphism, black-box groups.

c© F. Le Gall
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by Buchmann and Schmidt [5] and works in time O(n1/2(log n)O(1)). However, as far as
nonabelian groups are concerned, very little is known. For solvable groups Arvind and
Torán [1] have shown that the group isomorphism problem is in NP ∩ coNP under certain
complexity assumptions but, to our knowledge, the only polynomial-time algorithm testing
isomorphism of a nontrivial class of nonabelian groups is a result by Garzon and Zalcstein
[7], and holds for a very restricted class.

In this work we focus on the worst-case complexity of the group isomorphism problem
over classes of nonabelian groups. Since for abelian groups the problem can be solved
efficiently, we study one of the most natural next targets: cyclic extensions of abelian
groups. Loosely speaking such extensions are constructed by taking an abelian group A
and adding one element y that, in general, does not commute with the elements in A. More
formally the class of groups we consider in this paper, denoted S , is the following.

Definition 1.1. Let G be a finite group. We say that G is in the class S if there exists a
normal abelian subgroup A in G and an element y ∈ G of order coprime with |A| such that
G = 〈A, y〉.
In technical words G is an extension of an abelian group A by a cyclic group Zm with
gcd(|A|,m) = 1. This class of groups includes all the abelian groups and many non-abelian
groups too. For example, for A = Z

4
3 and m = 4 there are exactly 9 isomorphism classes in

S .
A group can be represented on a computer in different ways. In this paper we use the

black-box setting introduced by Babai and Szemerédi [4], which is one of the most general
models for handling groups, and particularly convenient to discuss algorithms running in
sublinear time. In order to state precisely the running time of our algorithm, we introduce
the following definition. For any group G in the class S , let γ(G) be the smallest integer m
such that G is an extension of an abelian group A by the cyclic group Zm with gcd(|A|,m) =
1. The main result of this paper is the following theorem.

Theorem 1.2. There exists a deterministic algorithm checking whether two groups G and
H in the class S given as black-box groups are isomorphic and, if this is the case, computing
an isomorphism from G to H. Its running time has for upper bound (

√
n+ γ)1+o(1), where

n = min(|G|, |H|) and γ = min(γ(G), γ(H)).

Notice that, for any group G in the class S , the relation γ(G) ≤ |G| holds. Then the

complexity of our algorithm has for upper bound n1+o(1), and is almost linear in the size of
the groups. Another observation is that, if γ = O(n1/2), then the complexity of our algo-

rithm is n1/2+o(1) and is of the same order as the best known algorithm testing isomorphism
of abelian groups [5] in the black-box setting. This case γ = O(n1/2) corresponds to the
rather natural problem of testing isomorphism of extensions of a large abelian group by a
small cyclic group.

The outline of our algorithm is as follows. Since a group G in the class S may in
general be written as the extension of an abelian group A1 by a cyclic group Zm1 and as
the extension of an abelian group A2 by a cyclic group Zm2 with A1 6∼= A2 and m1 6= m2, we
introduce (in Section 3) the concept of a standard decomposition of G, which is an invariant
for the groups in the class S in the sense that two isomorphic groups have similar standard
decompositions (but the converse is false). We also show how to compute a standard
decomposition of G efficiently. This allows us to consider only the case where H and G
are two extensions of the same abelian group A by the same cyclic group Zm. One of the
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main technical contributions of this paper is an efficient algorithm that tests whether two
automorphisms of order m in the automorphism group of A are conjugate or not (Section
4). Finally, we present a time-efficient reduction from the problem of testing whether G
and H are isomorphic to an instance of the above conjugacy problem (Section 5).
Remark. Several algorithms for the group isomorphism problem performing relatively
well in practice are known and have been implemented in computational group theory
softwares (GAP, MAGMA,...). The main works in this area are the algorithms developed
by Smith for solvable groups [20] and by O’Brien [15] for p-groups. However these algorithms
involve computation in groups of size exponential in n, e.g. the automorphism groups or
the cohomology groups, and no rigorous analysis of their time complexity is available.

2. Preliminaries

We assume that the reader is familiar with the basic notions of group theory and state
without proofs basic definitions and properties of groups we will use in this paper.

Let G be a finite group (in this paper we will consider only finite groups). Given a set
S of elements of G, the subgroup generated by the elements of G is written 〈S〉. For any
two elements g, h ∈ G we denote [g, h] the commutator of g and h, i.e. [g, h] = ghg−1h−1.
The commutator subgroup of G is defined as G′ = 〈[g, h] |g, h ∈ G〉. The derived series of G

is defined recursively as G(0) = G and G(i+1) = (G(i))′. The group G is said to be solvable
if there exists some integer k such that G(k) = {e}.

Given a prime p, a p-group is a group of order pr for some integer r. It is well-known
that any p-group is solvable. If G is a group and |G| = pei

1 . . . p
er
r for distinct prime numbers

pi such that p1 < · · · < pr, then for each i ∈ {1, . . . , r} the group G has a subgroup of
order pei

i called a Sylow pi-subgroup of G. Moreover, if G is additionally abelian, then each
Sylow pi-group is unique and G is the direct product of its Sylow subgroups. Abelian p-
groups have remarkably simple structures: any abelian p-group P is isomorphic to a direct
product of cyclic p-groups Zpe1 × · · ·×Zpes for some positive integer s and positive integers
e1 ≤ . . . ≤ es, and this decomposition is unique. A total order � over the set of prime
powers can be defined as follows: for any two prime powers pα and qβ where α and β are
positive integers, we write pα � qβ if and only if (p < q) or (p = q and α ≤ β). We say that
a list (g1, . . . , gt) of t elements in G is a basis of an abelian group G if G = 〈g1〉× · · · × 〈gt〉,
the order of each gi is a prime power and |gi| � |gj | for any 1 ≤ i ≤ j ≤ n. It is easy to
show that any (finite) abelian group has a basis and that, if (g1, . . . , gt) and (g′1, . . . , g

′
t′) are

two bases of G, then t = t′ and |gi| = |g′i| for each i ∈ {1, . . . , t}. For example, (g1, . . . , gt)
is a basis of G ∼= Z2 × Z4 × Z

2
3 if and only if t = 4, |g1| = 2, |g2| = 4, |g3| = |g4| = 3 and

G = 〈g1〉 × 〈g2〉 × 〈g3〉 × 〈g4〉.
Let n be a positive integer. A Hall divisor of n is a positive integer m dividing n such

that m is coprime with n/m. A subgroup H of a finite group G is called a Hall subgroup of
G if |H| is a Hall divisor of |G|. We will use in this paper the following well-known theorem.

Theorem 2.1 (Hall’s theorem). Let G be a finite solvable group and r be a Hall divisor
of |G|. If H1 and H2 are two subgroups of G with |H1| = |H2| = r, then H1 and H2 are
conjugate.

We say that a finite group G is an extension of a group K by a group L if there exists a
normal abelian subgroup N ∼= K of G such that G/N ∼= L. We say that such an extension
splits if there exists some subgroup M of G such that G = NM and N ∩M = {e}. The
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Schur-Zassenhaus theorem states that any extension of K by L such that gcd(|K|, |L|) = 1
splits. Concretely, any such split extensions can be constructed as a semidirect product
K ⋊ L. Thus an equivalent definition of the class S is the following: a group G is in S if
and only if there exist an abelian group A and a cyclic group Zm with gcd(|A|,m) = 1 such
that G = A⋊ Zm.

In this paper we work in the black-box setting first introduced in [4]. A black-box group
is a representation of a group where elements are represented by strings (of the same length).
An oracle that performs the group product is available: given two strings representing two
elements g and g′, the oracle outputs the string representing g · g′. Another oracle that,
given a string representing an element g, computes a string representing the inverse g−1 is
available as well. In this paper we assume the usual unique encoding hypothesis, i.e. any
element of the group is encoded by a unique string. We say that a group G is input as a
black-box if a set of strings representing generators {g1, . . . , gs} of G with s = O(log |G|)
is given as input, and queries to the multiplication and inversion oracles can be done at
cost 1. The hypothesis on s is natural since every group G has a generating set of size
O(log |G|), and enables us to make the exposition of our results easier. Also notice that
a set of generators of any size can be converted efficiently into a set of generators of size
O(log |G|) if randomization is allowed [3].

3. Computing a Standard Decomposition

For a given group G in the class S in general many different decompositions as a
semidirect product of an abelian group by a cyclic group exist. For example, the abelian
group Z6 = 〈x1, x2 | x2

1 = x3
2 = [x1, x2] = e〉 can be written as 〈x1〉 × 〈x2〉, 〈x2〉 × 〈x1〉 or

〈x1, x2〉 × {e}. That is why we introduce the notion of a standard decomposition. Let us
first start with a simple definition.

Definition 3.1. Let G be a finite group. For any positive integer m denote by Dm
G the set

(possibly empty) of pairs (A,B) such that the following three conditions hold: (i) A is a
normal abelian subgroup of G of order coprime with m; and (ii) B is a cyclic subgroup of
G of order m; and (iii) G = AB.

Notice that if for some m the set Dm
G is not empty, then G is in the class S . Conversely,

if G is in S , then there exists at least one integer m such that Dm
G is not empty. Also notice

that γ(G) is the smallest positive integer such that D
γ(G)
G 6= ∅. We now define the concept

of a standard decomposition.

Definition 3.2. Let G be a group in the class S . A standard decomposition of G is an

element of D
γ(G)
G .

Before explaining how to compute a standard definition for a group in S , let us mention
that it is well known that the order of an element g of any finite group G can be computed
deterministically in time Õ(|G|1/2) using Shanks’ baby-step/giant-step method [18] or its
variants [19]. In the following proposition we show that the decomposition of an element in
an abelian group can be found efficiently by a very similar approach (we will need this in
Section 5).

Proposition 3.3. Let A be an abelian group and (g1, . . . , gs) be a basis of A. There exists

a deterministic algorithm with time complexity Õ(|A|1/2) that, given any element g ∈ A,
outputs integers a1, . . . , as such that g = ga1

1 · · · gas
s .
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Proof. Denote ri =
√

|gi| for each i ∈ {1, . . . , s} and, for simplicity, suppose that ri is an
integer. The case where ri is not an integer is similar. The algorithm first computes the set
S = {gc1

1 · · · gcs
s | ci ∈ {0, . . . , ri − 1}}. Then the algorithm tries all the elements (b1, . . . , bs)

with bi ∈ {0, . . . , ri−1} until finding an element (b̄1, . . . , b̄s) such that gg−b̄1r1
1 · · · g−b̄srs

s ∈ S.

Denote gg−b̄1r1
1 · · · g−b̄srs

s = gc1
1 · · · gcs

s , where each ci is an element of {1, . . . , ri − 1}. A
clever way for finding the ci’s is to use an appropriate data structure for storing S. Then
the algorithm outputs (r1b̄1 + c1, . . . , rsb̄s + cs). The correctness of this algorithm follows
immediately from the fact that, if g = ga1

1 · · · gas
s , then each ai can be written as ai = b̄iri+ci

for some b̄i and ci in {0, . . . , ri − 1}. Its complexity is Õ(|A|1/2).

We now show how to compute a standard decomposition of any group in the class S

in time polynomial in the order of the group. The key part of the algorithm is the following
procedure Find-Decomposition that, given a group G in S and an integer m, computes
an element of Dm

G if this set is not empty. The description is given in metacode, followed
by more details.

Procedure Find-Decomposition(G,m)

input: a set of generators {g1, . . . , gs} of a group G in S with s = O(log |G|)
a positive integer m dividing |G|

output: an error message or a pair (M,z) where z ∈ G and M is a subset of G
1 compute a set of generators {x1, . . . , xt} of G′ with t = O(log |G|);
2 factorize m and write m = pe1

1 · · · per
r ;

3 search indexes k1, . . . , kr ∈ {1, . . . , s} such that peℓ

ℓ divides |gkℓ
| for each 1 ≤ ℓ ≤ r;

4 if no such r-uple (k1, . . . , kr) exists
5 then return error;
6 else

7 g ← Πr
ℓ=1g

|gkℓ
|/p

eℓ
ℓ

kℓ
;

8 if m does not divide |g|
9 then return error;

10 else

11 z ← g|g|/m;
12 for j = 1 to s do hj ← gm

j ;

13 if 〈x1, . . . , xt, h1, . . . , hs〉 is abelian
and gcd(|xi|,m) = 1 for each i ∈ {1, . . . , t}
and gcd(|hℓ|,m) = 1 for each ℓ ∈ {1, . . . , s}

14 then return ({x1, . . . , xt, h1, . . . , hs}, z);
15 else return error;
16 endelse

17 endelse

At Step 1 a set of generators {z1, . . . , zt′} of G′ with t′ = O(s3) can be computed using
O(s3) group operations by noticing that G′ = 〈gk[gi, gj ]g

−1
k | i, j, k ∈ {1, . . . , s}〉 (we refer to

[9] for a proof of this simple fact). Since G′ is abelian for any group G in the class S , a

generating set {x1, . . . , xt} of G′ with t = O(log |G|) can then be obtained in time Õ(|G|1/2)
using the deterministic algorithm by Buchmann and Schmidt [5] that computes a basis of

any abelian group K in time Õ(|K|1/2). At Step 2 the naive technique for factoring m

(trying all the integers up to
√
m) is sufficient. This takes Õ(|G|1/2) time. At Steps 3, 7
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and 13 we use Shanks’ method [18] to compute orders of elements of G in time Õ(|G|1/2).
At step 13, commutativity is tested by checking that every two generators commute: this
can be done in O(s2 + t2) group operations. Proposition 3.6 below summarizes the time
complexity of the procedure and prove its correctness. We state first two simple lemmas.

Lemma 3.4. Let G be a group in S and m be any positive integer. If (A1, B1) and (A2, B2)
are two elements of Dm

G , then A1 = A2.

Proof. Let us write B1 = 〈y1〉. Any element g of A2 can be written as g = hyc
1 with h ∈ A1

and some integer c. If c 6≡ 0 mod m, then gcd(m, |g|) 6= 1, which is excluded since |A2| and
m are coprime. Then A2 ⊆ A1. By symmetry A1 ⊆ A2 and A1 = A2.

Lemma 3.5. Let G be a group in S and (A,B) be a standard decomposition of G. Denote
|B| = m. Let {g1, . . . , gs} be a set of generators of G. Then A = 〈G′, gm

1 , . . . , g
m
s 〉, where

G′ is the derived subgroup of G.

Proof. Let B = 〈y〉 and, for each i ∈ {1, . . . , s}, write gi as ziy
ki for some zi ∈ A and

ki ∈ {1, . . . ,m}. Then A = 〈G′, z1, . . . , zs〉. Notice that G′ has to be included since in
general A 6= 〈z1, . . . , zs〉, e.g. G = 〈x1, x2, y | x3

1 = x3
2 = y2 = e, yx1 = x2y, yx2 = x1y〉

with the generating set g1 = x1y and g2 = y. A simple computation shows that gm
i =

uiz
m
i y

mki = uiz
m
i for some element ui ∈ G′. Since m is coprime with the order of zi, we

conclude that A = 〈G′, gm
1 , . . . , g

m
s 〉.

Proposition 3.6. The time complexity of the procedure Find-Decomposition(G,m) is

Õ(|G|1/2). If Dm
G 6= ∅, then Find-Decomposition(G,m) outputs a pair (M,z) such that

(〈M〉, 〈z〉)) ∈ Dm
G . Conversely, if Find-Decomposition(G,m) does not output an error

message, then its output (M,z) is such that 〈M,z〉 ∈ S and (〈M〉, 〈z〉) ∈ Dm
〈M,z〉.

Proof. It is clear that the procedure always terminates since no loop is used. The time
complexity follows from the analysis of Steps 1, 2, 3, 7 and 13 already done, and from the
fact that s = O(log |G|).

Suppose that Dm
G 6= ∅ and take a decomposition (A, 〈y〉) ∈ Dm

G . Write m = pe1
1 · · · per

r

for primes p1 < · · · < pr and denote qℓ = peℓ

ℓ for each ℓ ∈ {1, . . . , r}. Notice that for any
generating set {g1, . . . , gs} of G, and for each ℓ ∈ {1, . . . , r}, there should be some index
kℓ for which gkℓ

is of the form uℓy
cℓ, where uℓ ∈ A and cℓ is such that qℓ divides the order

of ycℓ , i.e. qℓ divides m/gcd(m, cℓ). Also notice that in this case qℓ divides the order of gkℓ

as well. Then the element ḡkℓ
= g

|gkℓ
|/qℓ

kℓ
has order qℓ and, more precisely, is of the form

vℓy
dℓ for some vℓ ∈ A and some dℓ = γℓm/qℓ with γℓ coprime with m. Then the element

g = Πr
ℓ=1ḡkℓ

is of the form wyd where w ∈ A and d = d1 + · · · + dr is coprime with m.

Thus m divides |g| and z = g|g|/m is an element of order m of the form w′ye with e coprime
with m. From Lemma 3.5 we know that 〈x1, . . . , xt, h1, . . . , hs〉 = A and conclude that
(〈x1, . . . , xt, h1, . . . , hs〉, 〈z〉) ∈ Dm

G .
We now prove the last part of the proposition. Suppose that the algorithm does not

err and denote (M,z) its output. Then z has order m and 〈M〉 is an abelian subgroup of
G of order coprime with m, since the tests at steps 8 and 13 succeeded. Moreover 〈M〉 is
normal in G since G′ ≤ 〈M〉. We conclude that 〈M,z〉 ∈ S and (〈M〉, 〈z〉) ∈ Dm

〈M,z〉.

We now present an algorithm computing a standard decomposition of any group in S .

Theorem 3.7. There exists a deterministic algorithm that, on an input G in the class
S given as a black box, outputs an element z ∈ G and a set M of elements in G such
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that (〈M〉, 〈z〉) is a standard decomposition of G. The time complexity of this algorithm is
O(|G|1/2+o(1)).

Proof. The algorithm is as follows. Let G be a group in the class S , input as a black box
with generating set {g1, . . . , gs} where s = O(log |G|).

We first compute |gi| for each i ∈ {1, . . . , s} using Shanks’ algorithm. Let m̄ be the
least common multiple of the s integers |g1|, . . . , |gs|. We compute the set S of divisors of
m̄, and denote m1 < m2 < · · · < mr the elements of S in increasing order.

For i from 1 to r we run the procedure Find-Decomposition(G,mi) on the set
{g1, . . . , gs} and mi, and obtain an error message or an output (〈Mi〉, zi). Let n be the
maximum value of the quantity mi|〈Mi〉| over all the i’s such that the output is not an
error message (we will show that for at least one value of i the output is not an error mes-
sage so n is well defined). Notice that computing |Mi| can be done using the deterministic
algorithm by Buchmann and Schmidt [5] that computes the order of any abelian group K

in time Õ(|K|1/2). Finally the algorithm takes the smallest integer i0 ∈ {1, . . . , r} such that
mi0 |Mi0 | = n, and then outputs zi0 and Mi0 .

We now analyze this algorithm. First of all notice that for any m such that Dm
G is not

empty, this integer m is in S since m divides m̄. By Proposition 3.6, if D
mi

G is not empty
then the procedure Find-Decomposition(G,mi) outputs an element (〈Mi〉, 〈zi〉) ∈ D

mi

G
and then mi|〈Mi〉| = |G|. Conversely, and again by Proposition 3.6, if the procedure
Find-Decomposition(G,mi) outputs (Mi, zi), then mi|〈M〉| = |〈zi,Mi〉| ≤ |G|. Thus n is
well defined and is equal to the order of G. Finally, trying all the elements of S gives clearly
the minimal m such that Dm

G is not empty. Then (〈Mi0〉, zi0) is a standard decomposition

of G. The time complexity of the algorithm is shown to be |G|1/2+o(1) using Proposition

3.6 and the following two facts. First, computing the set S can be done in Õ(|G|1/2) time.
Second, the number of divisors of any integer k has for upper bound O(kε) for any positive

constant ε (see for example [8]). Since m̄ ≤ |G| we conclude that r = |G|o(1).

4. Testing Conjugacy

In this section we study the automorphism group of any abelian group and describe
how to decide whether two automorphisms are conjugate.

Let A be a finite abelian group. Then A is the direct product of all its Sylow subgroups.
Since Aut(A) is the direct product of the automorphism groups of the Sylow subgroups, we
can assume without loss of generality that A is an abelian p-group for some prime p. In this
section we suppose that A is isomorphic to the group Zpe1 × · · · × Zpes , for some positive
integers s and e1 ≤ e2 ≤ . . . ≤ es. Let (g1, . . . , gs) be a basis of A, i.e. s elements of A such
that the order of each gi is pei and such that A = 〈g1〉 × · · · × 〈gs〉.

4.1. Automorphisms of an abelian group

We first introduce a matricial characterization of the group Aut(A) and study its struc-
ture.

Let ψ be an endomorphism of A and, for each j ∈ {1, . . . , s}, denote ψ(gj) = g
u1j

1 . . . g
usj
s

where each uij is in the set {0, . . . , pei − 1}. The values uij , which can be seen as an integer
matrix (uij) of size s × s, fully define the endomorphism ψ. However the converse is not
true: an arbitrary integer matrix (uij) of size s×s with each value uij in {0, . . . , pei−1} does
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not necessarily define an endomorphism of A, because ψ should be a homomorphism, and
not only a linear map. It is easy to give necessary and sufficient conditions for these values
uij to define an endomorphism of A: pei−emin(i,j) should divide uij for any i, j ∈ {1, . . . , s}.

More precisely, define M(A) as the following set of integer matrices.

M(A) =
{

(uij) ∈ Z
s×s | 0 ≤ uij < pei and pei−emin(i,j) divides uij for all i, j ∈ {1, . . . , s}

}

.

Given U and U ′ in M(A) we also define the multiplication ∗ as follows: U ∗U ′ is the integer
matrix W of size s× s such that wij = (

∑s
k=1 uiku

′
kj mod pei) for i, j ∈ {1, . . . , s}, i.e. after

computing the usual matrix multiplication UU ′, each entry is reduced modulo pei , where i is
the row of the entry. Let R(A) be the set R(A) = {U ∈M(A) | det(U) 6≡ 0 mod p} . Ranum
has shown [17] that the set R(A) with the product operation ∗ is a group isomorphic to
the group of automorphisms of A. Notice that a canonical isomorphism between R(A) and
Aut(A) follows from the choice of a basis for A. An important example is the case A = Z

s
p

for some integer s, for which M(A) is the set of matrices of size s × s over the finite field
Zp and R(A) is the general linear group GLs(p) of invertible matrices of size s× s over Zp.

Let us write A ∼= H1 × · · · ×Ht with Hi = Z
ki

pfi
where f1 < f2 < · · · < ft are positive

strictly increasing integers and k1, . . . , kt are positive integers. Any matrix M ∈ R(A) has
t diagonal blocks D1, . . . ,Dt with Di ∈ GLki

(p) for i ∈ {1, . . . , t}. Let Ψ be the map from
R(A) to GLs(p) such that any matrix M ∈ R(A) is mapped as follows: the entries in the
diagonal blocks are reduced modulo p; the other entries are set to zero. It is easy to show
that Ψ is a group homomorphism from Aut(A) to GLs(r). Let N(A) denote its kernel and
V (A) denote its image. It is easy to see that N(A) is a subgroup of R(A) of order pr for
some positive integer r, and that V (A) is the subgroup of GLs(p) consisting of all the block
diagonal matrices of the form diag(D1, . . . ,Dt) with Di ∈ GLki

(p) for i ∈ {1, . . . , t}. We
refer to [17] and to the full version of our paper for further details.

4.2. Testing conjugacy in R(A)

In this subsection we consider the following computational problem and present an
efficient algorithm solving it.

Conjugacy

input: an abelian p-group A and two matrices U1 and U2 in R(A) such that

the orders of U1 and U2 are coprime with p (4.1)

output: an element U ∈ R(A) such that U ∗ U1 = U2 ∗ U if such an element exists

Trying all the possibilities for U requires |R(A)| trials. Since for example in the case

A = Z
s
pk with p and k constant the bound |R(A)| = Θ(|A|log |A|) holds, such a naive

approach is not efficient. However, notice that in the case A = Z
s
p the group A has more

than the structure of an abelian group: A is a vector space over the field Zp and then
R(A) = GLs(p) as explained above. A mathematical criterion for the conjugacy of matrices
in GLs(p) (even without the condition (4.1) on their orders) is known: two matrices are
conjugate if and only if their canonical rational forms are equal. Since the canonical rational
form of a matrix can be computed efficiently [21], this gives an algorithm solving the problem
Conjugacy in time polynomial in log |A|. However, when A has no vector space structure,
there is no known simple mathematical criterion for the conjugacy of matrices and, to our
knowledge, no algorithm faster than the above naive approach is known, even for the case
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where A = Z
s
p2. We now show that with the additional condition (4.1) on the order of U1

and U2 there exists an algorithm solving the problem Conjugacy in time polynomial in
log |A| for any abelian p-group A.

Our algorithm is based on the following proposition, which is a generalization of an
argument by Pomfret [16].

Proposition 4.1. Let A be an abelian p-group and U1, U2 be two matrices in R(A) of
order coprime with p. Then U1 and U2 are conjugate in R(A) if and only if Ψ(U1) and
Ψ(U2) are conjugate in V (A). Moreover if U1 and U2 are conjugate in R(A) then for any
X ∈ R(A) such that Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X) there exists a matrix Y ∈ N(A) such
that X ∗ Y ∗ U1 = U2 ∗X ∗ Y .

Proof. For brevity we omit the symbol ∗ when denoting multiplications in R(A). Since
Ψ is an homomorphism, if U1 and U2 are conjugate in R(A) then Ψ(U1) and Ψ(U2) are
conjugate in V (A). Now suppose that Ψ(U1) and Ψ(U2) are conjugate in V (A). Since the
image of Ψ is V (A), there exists some X ∈ R(A) such that Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X)
and thus U1 = X−1U2XM for some M ∈ N(A). Then 〈U1〉N(A) = 〈X−1U2X〉N(A) (since
N(A) is a normal subgroup of R(A)) and the two subgroups 〈U1〉 and 〈X−1U2X〉 are Hall
subgroups of the group 〈U1〉N(A). Moreover since 〈U1〉N(A) is a cyclic extension of the
p-group N(A), this is a solvable group. Then, from Theorem 2.1, this implies that the two
subgroups 〈U1〉 and 〈X−1U2X〉 are conjugate in 〈U1〉N(A) and thus there exists an element
Y ∈ 〈U1〉N(A) and some r > 0 such that Y −1X−1U2XY = U r

1 . Without loss of generality
Y can be taken in N(A). Thus Ψ(U1) = Ψ(X)−1Ψ(U2)Ψ(X) = Ψ(U1)

r. Since the order of
the kernel of Ψ is coprime with the order of U1, the matrices U1 and Ψ(U1) have the same
order, and thus U1 = U r

1 . We conclude that Y −1X−1U2XY = U1. The matrices U1 and U2

are thus conjugate in R(A). The second part of the theorem follows from the observation
that X can be chosen in an arbitrary way.

We now present our algorithm.

Theorem 4.2. There exists a deterministic algorithm that solves the problem Conjugacy

in time polynomial in log |A|.
Proof. The algorithm is as follows.

Given U1 and U2 in R(A) satisfying Condition (4.1), we first compute the two matrices
V1 = Ψ(U1) and V2 = Ψ(U2) in V (A). Then we check the conjugacy of V1 and V2 in
V (A) using the following approach. Let Di(V1) (resp. Di(V2)) be the i-th diagonal block
of V1 (resp. V2) for i ∈ {1, . . . , t}, i.e. a matrix in GLki

(p). The matrices V1 and V2 are
conjugate in V (A) if and only if the blocks Di(V1) and Di(V2) are conjugate in GLki

(p)
for each i ∈ {1, . . . , t}, that is, if Di(V1) and Di(V2) have the same rational normal form.
The rational normal form of matrices of size n× n (and transformation matrices) over any
finite field can be computed using O(n4) field operations (see for example [21]). Thus we
can decide in time polynomial in log |A| whether Di(V1) and Di(V2) are conjugate for all
i ∈ {1, . . . , t}. If this is not the case then we conclude that U1 and U2 are not conjugate in
R(A) from Proposition 4.1. Otherwise U1 and U2 are conjugate in R(A) and the remaining
of the proof shows how to compute a matrix U ∈ R(A) such that U ∗ U1 = U2 ∗ U .

We compute transformation matrices Ti ∈ GLki
(p), for i ∈ {1, . . . , t}, such that

TiDi(V1) = Di(V2)Ti using, for example, again the algorithm [21]. Then we take any matrix
X in R(A) such that Ψ(X) = diag(T1, . . . , Tt), e.g. the matrix X in R(A) with diagonal
blocks equal to T1, . . . , Tt and zero everywhere else. We finally determine a solution Y in
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N(A) of the matrix equation X∗Y ∗U1 = U2∗X∗Y . Such solution exists by Proposition 4.1.
To do this, we write the general form of an element Y of N(A) using s2 variables yij: the
entry corresponding to the i-th row and the j-th column of Y , for i, j ∈ {1, . . . , s}, is of the
form (1 + pyij) if i = j and is of the form pdijyij for some appropriate nonnegative integer
dij otherwise. Then the equation X ∗Y ∗U1 = U2 ∗X ∗ Y can be rewritten as the following

system of s2 linear modular equations of s2 variables yij:
∑s

i,j=1 α
(k,ℓ)
ij yij ≡ β(k,ℓ) mod pek

for 1 ≤ k, ℓ ≤ s, where α
(k,ℓ)
ij and β(k,ℓ) are known. Now we add on each modular equation

a new variable zkℓ with coefficient pek . This transforms the above system into the following

system of s2 linear Diophantine solutions of 2s2 variables:
∑s

i,j=1 α
(k,ℓ)
ij yij + pekzkℓ = β(k,ℓ)

for 1 ≤ k, ℓ ≤ s. It is known that any system of linear Diophantine equations with n1 equa-
tions and n2 variables can be solved in time polynomial in n1, n2 and logN , where N is the
largest coefficient appearing in the system [6]. Then a solution Y ∈ N(A) of the equation
X ∗ Y ∗U1 = U2 ∗X ∗ Y can be computed in time polynomial in log |A|. The output of the
algorithm is the matrix X ∗ Y .

5. Our Algorithm

In this section we give a proof of Theorem 1.2. We first present the following rather
simple result that shows necessary and sufficient conditions for the isomorphism of two
groups in S .

Proposition 5.1. Let G and H be two groups in S . Let (A1, 〈y1〉) and (A2, 〈y2〉) be
standard decompositions of G and H respectively and let ϕ1 (resp. ϕ2) be the action by
conjugation of y1 on A1 (resp. of y2 on A2). The groups G and H are isomorphic if and
only if the following three conditions hold: (i) A1

∼= A2; and (ii) |y1| = |y2|; and (iii) there
exists an integer k ∈ {1, . . . , |y1|} coprime with |y1| and an isomorphism ψ : A1 → A2 such
that ϕ1 = ψ−1ϕk

2ψ.

Proof. First notice that for a group G in S , the integer γ(G) is a group invariant. Now
suppose that G and H are two isomorphic groups in S with standard decomposition re-
spectively (A1, 〈y1〉) and (A2, 〈y2〉). Then |y1| = |y2| = γ(G) = γ(H). Denote by ψ an

isomorphism from G to H and notice that (ψ(A1), ψ(y1)) ∈ D
γ(H)
H . From Lemma 3.4 this

implies that ψ(A1) = A2 and, in particular, A1
∼= A2. The element ψ(y1) can be written as

zyk
2 for some z ∈ A2 and some integer k ∈ {1, . . . , γ(H)} coprime with γ(H). By definition

of ϕ1, for any x ∈ A1 the relation y1x = (y1xy
−1
1 )y1 = ϕ1(x)y1 holds. Applying ψ to each

term gives zyk
2ψ(x) = ψ(ϕ1(x))zy

k
2 and then ϕk

2(ψ(x))zyk
2 = ψ(ϕ1(x))zy

k
2 for any x ∈ A1.

Thus ϕk
2 = ψϕ1ψ

−1.
Now consider two groups G and H in S satisfying the conditions (i), (ii) and (iii) of the

statement of the theorem. Denote m = |y1| = |y2|. Let µ be the map from G to H such that

µ(xyj
1) = ψ(x1)y

kj
2 for any x in A1 and any j ∈ {0, . . . ,m−1}. The map µ is clearly a bijec-

tion fromG toH. We now show that µ is a homomorphism, and thus an isomorphism fromG
toH. Let x and x′ be two elements of A1 and let j and j′ be two elements of ∈ {0, . . . ,m−1}.
Then µ(xyj

1x
′yj′

1 ) = µ(xϕj
1(x

′)yj+j′

1 ) = ψ(xϕj
1(x

′))y
k(j+j′)
2 = ψ(x)ψ(ϕj

1(x
′))y

k(j+j′)
2 . Now

the relation µ(xyj
1)µ(x′yj′

1 ) = ψ(x)ykj
2 ψ(x′)ykj′

2 = ψ(x)ϕkj
2 (ψ(x′))y

k(j+j′)
2 holds. Condi-

tion (iii) of the statement of the theorem implies that ψ(ϕj
1(x

′)) = ϕkj
2 (ψ(x′)) and thus

µ(xyj
1x

′yj′

1 ) = µ(xyj
1)µ(x′yj′

1 ).
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We now present our proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that G and H are two groups in the class S . Denote
n = min(|G|, |H|) and γ = min(γ(G), γ(H)). Without loss of generality let us suppose
that |G| = |H|. In order to test whether these two groups are isomorphic, we first run the
algorithm of Theorem 3.7 on the inputs G and H and obtain outputs (S1, y1) and (S2, y2)
such that (〈S1〉, 〈y1〉) and (〈S2〉, 〈y2〉) are standard decompositions of G and H respectively.

The running time of this algorithm is O(n1/2+o(1)) by Theorem 3.7. Denote A1 = 〈S1〉 and
A2 = 〈S2〉.

We then check whether |y1| = |y2|. If |y1| 6= |y2| we conclude that G and H are not
isomorphic by Proposition 5.1. Otherwise notice that |y1| = |y2| = γ. Then we compute
a basis (g1, . . . , gs) of A1 and a basis (h1, . . . , ht) of A2 using the algorithm by Buchmann

and Schmidt [5]. The running time of this step is Õ(n1/2). Given these bases it is easy to
check the isomorphism of A1 and A2: the groups A1 and A2 are isomorphic if and only if
s = t and |gi| = |hi| for each i ∈ {1, . . . , s}. If A1 6∼= A2 we conclude that G and H are not
isomorphic by Proposition 5.1.

Now suppose that A1
∼= A2 (and then s = t) and denote R = R(A1) = R(A2). We want

to decide whether the action by conjugation ϕ1 of y1 on A1 and the action by conjugation
ϕ2 of y2 on A2 satisfy Condition (iii) in Proposition 5.1. Let pd1

1 · · · pdr
r be the prime power

decomposition of |A1| = |A2|, with p1 < · · · < pd and denote Pi the Sylow pi-subgroup
of A1 for each i ∈ {1, . . . , r}. We compute the matrix M1 in R corresponding to the
automorphism ϕ1 of A1 with respect to the basis (g1, . . . , gs). More precisely let us denote
ϕ1(gi) = y1giy

−1
1 = gui1

1 · · · guis

j for each i ∈ {1, . . . , s}. The values uij for each i can be

found by using the algorithm of Proposition 3.3 on the input y1giy
−1
1 . Then the matrix

M1 = (uij) can be computed in time Õ(n1/2). Similarly we compute the matrix M2 ∈ R
corresponding to the automorphism ϕ2 of A2 with respect to the basis (h1, . . . , hs). A key
observation is that M1 and M2 are block diagonal, consisting in r blocks. More precisely
the i-th block is a matrix in R(Pi).

Finally for each integer k ∈ {1, . . . , γ} coprime with γ, we test whether M1 and Mk
2

are conjugate in R. This is done by using the algorithm of Theorem 4.2 to check whether,
for each i ∈ {1, . . . , r}, the i-th block of M1 is conjugate to the i-th block of M2 in R(Pi).
If there is no k such that M1 and Mk

2 are conjugate in R we conclude that G and H are
not isomorphic. Otherwise we take one value k such that M1 and Mk

2 are conjugate and
compute an explicit block diagonal matrix X in R such that M1 = X−1Mk

2X. This can
be done in time polynomial in log n by Theorem 4.2. The matrix X is naturally associated
to an isomorphism ψ from A1 to A2 through the bases (g1, . . . , gs) and (h1, . . . , hs). The

map µ : G → H defined as µ(xyj
1) = ψ(x)ykj

2 for any x ∈ A1 and any j ∈ {0, . . . , γ − 1} is
then an isomorphism from G to H (see the proof of Proposition 5.1 for details). The total
complexity of this final step is O(γ logc n) for some constant c.

The time complexity of this algorithm is O(γ logc n) +O(n1/2+o(1)) ≤ (
√
n+ γ)1+o(1).
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[4] L. Babai and E. Szemerédi. On the complexity of matrix group problems I. In Proceedings of the 25th

Annual Symposium on Foundations of Computer Science, pages 229–240, 1984.
[5] J. Buchmann and A. Schmidt. Computing the structure of a finite abelian group. Mathematics of

Computation, 74(252):2017–2026, 2005.
[6] T. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear diophantine equations.

SIAM Journal on Computing, 11(4):687–708, 1982.
[7] M. H. Garzon and Y. Zalcstein. On isomorphism testing of a class of 2-nilpotent groups. Journal of

Computer and System Sciences, 42(2):237–248, 1991.
[8] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford Science Publications,

1979.
[9] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of computational group theory. Chapman & Hall /

CRC, 2005.
[10] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms

of an integer matrix. SIAM Journal on Computing, 8(4):499–507, 1979.
[11] T. Kavitha. Linear time algorithms for abelian group isomorphism and related problems. Journal of

Computer and System Sciences, 73(6):986–996, 2007.
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Abstract. We present approximation algorithms for almost all variants of the multi-
criteria traveling salesman problem (TSP), whose performances are independent of the
number k of criteria and come close to the approximation ratios obtained for TSP with a
single objective function.

We present randomized approximation algorithms for multi-criteria maximum traveling
salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have
to be symmetric, we devise an algorithm that achieves an approximation ratio of 2/3− ε.
For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an
algorithm with an approximation ratio of 1/2 − ε. Our algorithms work for any fixed
number k of objectives. To get these ratios, we introduce a decomposition technique for
cycle covers. These decompositions are optimal in the sense that no decomposition can
always yield more than a fraction of 2/3 and 1/2, respectively, of the weight of a cycle
cover. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that
achieves an approximation ratio of 61/243 ≈ 1/4.

Finally, we present a randomized approximation algorithm for the asymmetric multi-
criteria minimum TSP with triangle inequality (Min-ATSP). This algorithm achieves a
ratio of log n + ε. For this variant of multi-criteria TSP, this is the first approximation
algorithm we are aware of. If the distances fulfil the γ-triangle inequality, its ratio is
1/(1− γ) + ε.

1. Multi-Criteria Traveling Salesman Problem

Traveling Salesman Problem. The traveling salesman problem (TSP) is one of the most
famous combinatorial optimization problems. Given a graph, the goal is to find a Hamil-
tonian cycle (also called a tour) of maximum or minimum weight (Max-TSP or Min-TSP).
An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → Q+.
The goal is to find a Hamiltonian cycle of maximum weight. The weight of a Hamiltonian
cycle (or, more general, of any set of edges) is the sum of the weights of its edges. If G is
undirected, we have Max-STSP (symmetric TSP). If G is directed, we obtain Max-ATSP
(asymmetric TSP). An instance of Min-TSP is also a complete graph G with edge weights
w that fulfil the triangle inequality: w(u, v) ≤ w(u, x)+w(x, v) for all u, v, x ∈ V . The goal
is to find a tour of minimum weight. We have Min-STSP if G is undirected and Min-ATSP
if G is directed. In this paper, we only consider the latter. If we restrict the instances to
fulfil the γ-triangle inequality (w(u, v) ≤ γ · (w(u, x) + w(x, v)) for all distinct u, v, x ∈ V

Key words and phrases: Approximation algorithms, traveling salesman, multi-criteria optimization.

c© B. Manthey
CC© Creative Commons Attribution-NoDerivs License
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and γ ∈ [12 , 1)), then we obtain Min-γ-ATSP. All variants introduced are NP-hard and

APX-hard (Min-γ-ATSP is hard for γ > 1
2 ). Thus, we have to content ourselves with

approximate solutions. The currently best approximation algorithms for Max-STSP and
Max-ATSP achieve approximation ratios of 61/81 [7] and 2/3 [14]. Min-ATSP can be ap-
proximated with a factor of 2

3 · log2 n, where n is the number of vertices of the instance [11].

Min-γ-ATSP allows for an approximation ratio of min{ γ
1−γ , 1+γ

2−γ−γ3 } [5, 6].

Cycle covers are often used for designing approximation algorithms for the TSP [5, 14,
11, 6, 15, 7]. A cycle cover is a set of vertex-disjoint cycles such that every vertex is part
of exactly one cycle. The idea is to compute an initial cycle cover and then to join the
cycles to obtain a Hamiltonian cycle. This is called subtour patching [13]. Hamiltonian
cycles are special cases of cycle covers that consist of a single cycle. Thus, the weight of
a maximum-weight cycle cover bounds the weight of a maximum-weight Hamiltonian cycle
from above, and the weight of a minimum-weight cycle cover is a lower bound for the weight
of a minimum-weight Hamiltonian cycle. In contrast to Hamiltonian cycles, cycle covers of
optimal weight can be computed efficiently by reduction to matching problems [1].

Multi-Criteria Optimization. In many optimization problems, there is more than one
objective function. This is also the case for the TSP: We might want to minimize travel
time, expenses, number of flight changes, etc., while maximizing, e.g., the number of sights
along the way. This leads to k-criteria variants of the TSP (k-C-Max-STSP, k-C-Max-
ATSP, k-C-Min-STSP, k-C-Min-ATSP for short; if the number of criteria does not matter,
we will also speak of MC-Max-STSP etc.). With respect to a single criterion, the term
“optimal solution” is well-defined. However, if several criteria are involved, there is no
natural notion of a best choice, and we have to be content with trade-off solutions. The
goal of multi-criteria optimization is to cope with this dilemma. To transfer the concept
of optimal solutions to multi-criteria problems, the notion of Pareto curves was introduced
(cf. Ehrgott [9]). A Pareto curve is a set of solutions that can be considered optimal.

We introduce the following terms only for maximization problems. After that, we briefly
state the differences for minimization problems. An instance of k-C-Max-TSP is a complete
graph G with edge weights w1, . . . , wk : E → Q+. A tour H dominates another tour H ′ if
wi(H) ≥ wi(H

′) for all i ∈ [k] = {1, . . . , k} and wi(H) > wi(H
′) for at least one i. This

means that H is strictly preferable to H ′. A Pareto curve of solutions contains all solutions
that are not dominated by another solution. For other maximization problems, k-criteria
variants are defined analogously.

Unfortunately, Pareto curves cannot be computed efficiently in many cases: First, they
are often of exponential size. Second, they are often NP-hard to compute even for otherwise
easy optimization problems. Third, the TSP is NP-hard already with one objective function,
and optimization problems do not become easier with more objectives involved. Therefore,
we have to be satisfied with approximate Pareto curves.

For simpler notation, let w(H) = (w1(H), . . . , wk(H)). Inequalities are meant compo-
nent-wise. A set P of Hamiltonian cycles of V is called an α approximate Pareto curve
for (G,w) if the following holds: For every tour H ′, there exists a tour H ∈ P with
w(H) ≥ αw(H ′). We have α ≤ 1, and a 1 approximate Pareto curve is a Pareto curve.
(This is not precisely true if there are several solutions whose objective values agree. But
this is inconsequential here, and we will not elaborate on it for the sake of clarity.)

An algorithm is called an α approximation algorithm if, given G and w, it computes
an α approximate Pareto curve. It is called a randomized α approximation if its success
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probability is at least 1/2. This success probability can be amplified to 1−2−m by executing
the algorithm m times and taking the union of all sets of solutions. (We can also remove
solutions from this union that are dominated by other solutions in the union, but this is
not required by the definition of an approximate Pareto curve.) Again, the concepts can be
transfered easily to other maximization problems.

Papadimitriou and Yannakakis [18] showed that (1−ε) approximate Pareto curves of size
polynomial in the instance size and 1/ε exist. The technical requirement for the existence
is that the objective values of all solutions for an instance X are bounded from above by
2p(N) for some polynomial p, where N is the size of X. This is fulfilled in most optimization
problems and in particular in our case. However, they only prove the existence, and for
many optimization problems it is unclear how to actually find an approximate Pareto curve.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria optimiza-
tion problem computes (1 − ε) approximate Pareto curves in time polynomial in the size
of the instance and 1/ε for all ε > 0. Multi-criteria maximum-weight matching admits a
randomized FPTAS [18], i.e., the algorithm succeeds in computing a (1 − ε) approximate
Pareto curve with constant probability. This randomized FPTAS yields also a randomized
FPTAS for the multi-criteria maximum-weight cycle cover problem [17].

To define Pareto curves and approximate Pareto curves also for minimization problems,
in particular for MC-Min-STSP and MC-Min-ATSP, we have to replace all “≥” and “>”
above by “≤” and “<”. Furthermore, α approximate Pareto curves are now defined for
α ≥ 1, and an FPTAS has to achieve an approximation ratio of 1 + ε. There also exists a
randomized FPTAS for the multi-criteria minimum-weight cycle cover problem.

Related Work. For an overview of the literature about multi-criteria optimization, in-
cluding multi-criteria TSP, we refer to Ehrgott and Gandibleux [10]. Angel et al. [2, 3]
considered Min-STSP restricted to edge weights 1 and 2. They analyzed a local search
heuristic and proved that it achieves an approximation ratio of 3/2 for k = 2 and of 2k

k−1 for

k ≥ 3. Ehrgott [8] considered a variant of MC-Min-STSP, where all objectives are encoded
into a single objective by using some norm. He proved approximation ratios between 3/2
and 2 for this problem, where the ratio depends on the norm used.

Manthey and Ram [17] designed a (2 + ε) approximation algorithm for MC-Min-STSP
and an approximation algorithm for MC-Min-γ-ATSP, which achieves a constant ratio but
works only for γ < 1/

√
3 ≈ 0.58. They left open the existence of approximation algorithms

for MC-Max-STSP, MC-Max-ATSP, and MC-Min-ATSP.
Bläser et al. [4] devised the first randomized approximation algorithms for MC-Max-

STSP and MC-Max-ATSP. Their algorithms achieve ratios of 1
k + ε for k-C-Max-STSP and

1
k+1 +ε for k-C-Max-ATSP. They argue that with their approach, only approximation ratios

of 1
k±O(1) can be achieved, but they conjectured that ratios of Ω(1/ log k) are possible.

New Results. We devise approximation algorithms for MC-Max-STSP, MC-Max-ATSP,
and MC-Min-ATSP. The approximation ratios achieved by our algorithms are independent
of the number k of criteria, and they come close to the best approximation ratios known
for Max-STSP, Max-ATSP, and Min-ATSP with only a single objective function. Our
algorithms work for any number k of criteria.

First, we solve the conjecture of Bläser et al. [4] affirmatively. We even prove a stronger
result: For MC-Max-STSP, we achieve a ratio of 2/3 − ε, while for MC-Max-ATSP, we
achieve a ratio of 1/2 − ε (Section 4). Already for k = 2, this is an improvement from
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1
2 − ε to 2

3 − ε for 2-C-Max-STSP and from 1
3 − ε to 1

2 − ε for 2-C-Max-ATSP. The general
idea of these algorithms is sketched in Section 2. After that, we introduce a decomposition
technique in Section 3 that will lead to our algorithms. The running-time of our algorithms
is polynomial in the input size for any fixed ε > 0 and any fixed number k of criteria.

Furthermore, we devise a deterministic approximation algorithm for 2-C-Max-STSP
that achieves a ratio of 61/243 > 1/4. As a side effect, this proves that for 2-C-Max-STSP,
there always exists a single tour that already is a 1/3 approximate Pareto curve.

Finally, we devise the first approximation algorithm for MC-Min-ATSP (Section 6). In
addition, our algorithm improves on the algorithm for MC-Min-γ-ATSP by Manthey and
Ram [17] for γ > 0.55, and it is the first approximation algorithm for MC-Min-γ-ATSP
for γ ∈ [1/

√
3, 1). The approximation ratio of our algorithm is log n + ε for MC-Min-

ATSP, where n is the number of vertices. Furthermore, it is a 1
1−γ + ε approximation for

MC-Min-γ-ATSP for γ ∈ [12 , 1). Our algorithm is randomized.
Due to lack of space, most proofs are omitted. For complete proofs, we refer to the full

version of this paper [16].

2. Outline and Idea for MC-Max-TSP

For Max-ATSP, we can easily get a 1/2 approximation: We compute a maximum-weight
cycle cover, and remove the lightest edge of each cycle. In this way, we obtain a collection
of paths. Then we add edges to connect the paths, which yields a Hamiltonian cycle. For
Max-STSP, this approach yields a ratio of 2/3.

Unfortunately, this does not generalize to multi-criteria Max-TSP, even though (1− ε)
approximate Pareto curves of cycle covers can be computed in polynomial time. The reason
is that the term “lightest edge” is usually not well defined: An edge that has little weight
with respect to one objective might have a huge weight with respect to another objective.
Based on this observation, the basic idea behind our algorithms is the following case dis-
tinction: First, if every edge of a cycle cover is a light-weight edge, i.e., it contributes only
little to the overall weight, then removing one edge does not decrease the total weight by
too much. We can choose the edges for removal carefully to get an approximate tour.

Second, if there is one edge that is very heavy with respect to one objective (a heavy-
weight edge), then we contract this edge. We repeat this process until either we have
obtained a cycle cover that contains only light-weight edges or we have enough weight for
one objective. In the former case, we can use decomposition. In the latter case, we proceed
recursively on the remaining graph with k − 1 objectives.

In Section 3, we deal with the first case. This includes the definition of when we call
an edge a light-weight edge. In Section 4, we present our algorithms, which includes the
recursion in case of a heavy-weight edge. The approximation ratios that we achieve come
close, i.e., up to an arbitrarily small additive ε > 0, to the 1/2 and 2/3 mentioned above
for mono-criterion Max-ATSP and Max-STSP.

3. Decompositions

From any collection P of paths, we obtain a Hamiltonian cycle just by connecting
the endpoints of the paths appropriately. Assume that we are given a cycle cover C. If
we can find a collection of paths P ⊆ C (by removing one edge of every cycle of C) with
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w(P ) ≥ α ·w(C) for some α ∈ (0, 1], then this would yield an approximate solution for Max-
TSP. We call these paths P an α-decomposition of C for some α ∈ (0, 1] if w(P ) ≥ αw(C).
Not every cycle cover possesses an α-decomposition for every α. Let k ≥ 1 be the number
of criteria. Bläser et al. defined αd

k ∈ [0, 1] to be the maximum number such that the
following holds: every directed cycle cover C with edge weights w = (w1, . . . , wk) that
satisfies w(e) ≤ αd

k ·w(C) for all e ∈ C possesses an αd
k-decomposition. The value αu

k ∈ [0, 1]

is analogously defined for undirected cycle covers. We have αd
1 = 1

2 and αu
1 = 2

3 . We also

have αu
k ≥ αd

k and αu
k ≤ αu

k−1 as well as αd
k ≤ αd

k−1.

Bläser et al. [4] proved αd
k ≥ 1

k+1 and αu
k ≥ 1

k . Furthermore, they proved the existence

of Ω(1/ log k)-decompositions, i.e., αd
k, α

u
k ∈ Ω(1/ log k), which led to their conjecture that

Ω(1/ log k) approximation algorithms might exist. However, their approximation algorithms
do not make use of the Ω(1/ log k) decompositions, and they only achieve ratios of 1

k − ε for

k-C-Max-STSP and 1
k+1 − ε for k-C-Max-ATSP. In fact, they indicate that approximation

ratios of 1
k+O(1) are the best that can be proved using their approach. For completeness,

we make their decomposition result more precise with the next theorem. In particular,
we show that αd

k, α
u
k ∈ Θ(1/ log k), which proves that better approximations require a

different decomposition technique. The new decompositions will be introduced later on in
this section.

Theorem 3.1. For all 1 ≤ k ∈ N, we have
1

0.78·log2 k+ 3
2

≈ 1
9
8
·lnk+ 3

2

≤ αu
k ≤ 1

⌊log3 k⌋+1 ≈ 1
0.63·log2 k+1 and

1
1.39·log2 k+4 ≈ 1

2·lnk+4 ≤ αd
k ≤ 1

⌊log2 k⌋+2 .

In order to obtain constant approximation ratios, independent of k, we have to gener-
alize the concept of decompositions. Let C be a cycle cover, and let w = (w1, . . . , wk) be
edge weights. We say that the pair (C,w) is γ-light for some γ ≥ 1 if w(e) ≤ w(C)/γ for

all e ∈ C. In the following, let ηk,ε = ε2

2 lnk .

Theorem 3.2. Let ε be arbitrary with 0 < ε < 1/2, and let k ≥ 2 be arbitrary. Let C be a
cycle cover, and let w = (w1, . . . , wk) be edge weights such that (C,w) is 1/ηk,ε-light. If C

is directed, then there exists a collection P ⊆ C of paths with w(P ) ≥ (1
2 − ε) · w(C). If C

is undirected, then there exists a collection P ⊆ C of paths with w(P ) ≥ (2
3 − ε) · w(C).

We know that decompositions exist due to Theorem 3.2. But, in order to use them in
approximation algorithms, we have to find them efficiently. In the remainder of this section,
we devise devise a simple randomized algorithm for this job. There is also a deterministic
algorithm that we call Decompose with parameters C, w, and ε: C is a cycle cover (directed
or undirected), w = (w1, . . . , wk) are k edge weights, and ε > 0. Then Decompose(C,w, ε)
returns a (1

2 −ε)- or (2
3 −ε)-decomposition P ⊆ C, provided that (C,w) is 1/ηk,ε-light. Due

to lack of space, we do not describe Decompose here.
The randomized algorithm exploits Theorem 3.2: Assume that we have a cycle cover

C with edge weights w such that (C,w) is 1/ηk,ε-light. We randomly select one edge of
every cycle of C for removal and put all remaining edges into P . The probability that P is
not a (1

2 − ε)- or (2
3 − ε)-decomposition (depending on whether C is directed or undirected)

is bounded from above by 1/k ≤ 1/2. Thus, we obtain a decomposition with constant
probability. We iterate this process until a feasible decomposition has been found. In this
way, we get a Las Vegas algorithm with expected linear running-time.
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4. Approximation Algorithms for MC-Max-TSP

In this section, MaxCC-Approx denotes the randomized FPTAS for cycle covers.
More precisely, let G be a graph (directed or undirected), w = (w1, . . . , wk) be edge weights,
ε > 0 and p ∈ (0, 1]. Then MaxCC-Approx(G,w, k, ε, p) yields a (1 − ε)-approximate
Pareto curve of cycle covers of G with weights w with a success probability of at least 1−p.

4.1. Multi-Criteria Max-ATSP

Our goal is now either to use decomposition or to reduce the k-criteria instance to a
(k−1)-criteria instance. To this aim, we put the cart before the horse: Instead of computing
Hamiltonian cycles, we assume that they are given. Then we show how to force an algorithm
to find approximations to them. To obtain a 1/2− ε approximate Pareto curve, we have to

make sure that for every tour H̃, we have a tour H in our set with w(H) ≥ (1
2 − ε) ·w(H̃).

Fix ε with 0 < ε < 1
2 ln k , let H̃ be any tour, and let βi = max{wi(e) | e ∈ H̃} be the weight

of the heaviest edge with respect to the ith objective. Let β = β(H̃) = (β1, . . . , βk). We
will distinguish two cases.

In the first case, we assume that β ≤ (ηk,ε − ε3) · w(H̃), i.e., H̃ does not contain any

heavy-weight edges. We modify our edge weights w to wβ as follows:

wβ(e) =

{

w(e) if w(e) ≤ β and

0 if wi(e) > βi for some i.

This means that we set all edge weights exceeding β to 0. Since H̃ does not contain any
edges whose weight has been set to 0, we have w(H̃) = wβ(H̃). Furthermore, for all subsets
C of edges, we have wβ(C) ≤ w(C). The advantage of wβ is that, if we compute a (1 − ε)
approximate Pareto curve Cβ of cycle covers with edge weights wβ , we obtain a cycle cover
to which we can apply decomposition to obtain a collection P of paths. Then P yields a
tour H that approximates H̃. This is stated in the following lemma.

Lemma 4.1. Let ε > 0 be arbitrary. Let H̃ be a directed tour with w(e) ≤ (ηk,ε−ε3) ·w(H̃)

for all e ∈ H̃. Let β = β(H̃), and let Cβ be a (1 − ε) approximate Pareto curve of cycle
covers with respect to wβ .

Then Cβ contains a cycle cover C that yields a decomposition P ⊆ C with w(P ) ≥
(1
2 − 2ε) · w(H̃).

In the second case, we assume that there exists an edge e = (u, v) ∈ H̃ and an i ∈ [k]

with wi(e) > (ηk,ε−ε3) ·w(H̃). We put this edge into a set K of edges that we want to have
in our cycle cover no matter what. Then we contract the edge e by removing all outgoing
edges of u and all incoming edges of v and identifying u and v. In this way, we obtain a
slightly smaller tour H̃ ′ = H̃ \ {e}. Again, there might be an edge e′ ∈ H̃ ′ and an i′ ∈ [k]

with wi′(e
′) > (ηk,ε − ε3) · wi′(H̃

′). (Since w(H̃ ′) ≤ w(H̃), edges that have not been heavy

can now be heavy with respect to H̃ ′.) We put e′ into K, contract e′ and recurse. How long
can this process go on? There are two cases that can bring it to an end: First, we might get
a tour H ′ that does not have any more heavy-weight edges, i.e., w(e) ≤ (ηk,ε − ε3) · w(H ′)
for all e ∈ H ′. In this case, we can apply Lemma 4.1 with decomposition. Second, we might
get an i ∈ [k] with wi(K) ≥ (1

2 − ε) · wi(H̃), where H̃ is our original tour. Then we have
collected enough weight with respect to the ith objective, and we can continue with only
k − 1 objectives. The next lemma bounds the number of edges in K from above.
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PTSP ←MaxATSP-Approx(G,w, k, ε, p)
input: directed complete graph G = (V,E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: (1

2 − ε) approximate Pareto curve PTSP for k-C-Max-ATSP with a success prob-
ability of at least 1− p

1: if k = 1 then

2: compute a 2/3 approximation PTSP

3: else

4: for all subsets K ⊆ E with |K| ≤ f(k, ε/2) such that K is a path cover do

5: contract all edges of K to obtain GK

6: for all bounds β of (GK , w) do

7: CK,β ←MaxCC-Approx
(

GK , wβ , k, ε
2 , p

2n2k+2f(k,ε/2)

)

8: for all C ∈ CK,β with wβ(e) ≤ ηk,ε/2 · wβ(C) for all e ∈ C do

9: P ← Decompose(C,wβ , ε/2)
10: add edges to K ∪ P to obtain a tour H; add H to PTSP

11: for all i← 1 to k do

12: remove the ith objective from w to obtain w′

13: PK,i
TSP ←MaxATSP-Approx(GK , w′, k − 1, ε

2 , p
2n2k+2f(k,ε/2) )

14: for all H ′ ∈ PK,i
TSP do

15: H ← K ∪H ′; add H to PTSP

Algorithm 1: Approximation algorithm for MC-Max-ATSP.

Lemma 4.2. After at most f(k, ε) = k ·
⌈ log(1/2+ε)

log(1−ηk,ε+ε3)

⌉

iterations, the procedure described

above halts.

To obtain an algorithm, we have to find β and K. So far, we have assumed that we
already know the Hamiltonian cycles that we aim for. But there is only a polynomial
number of possibilities for β and K: For all β, we can assume that for all i there is an edge
with wi(e) = βi. Thus, for every i there are at most O(n2) choices for βi, hence at most
O(n2k) in total. The cardinality of K is bounded in terms of f(k, ε). For fixed k and ε,
there is only a polynomial number of subsets of cardinality at most f(k, ε). We can even
restrict ourselves to the subsets K that are path covers: A path cover is a subset K of edges
such that K does not contain cycles and both the indegree and outdegree of every vertex
is at most one. We obtain MaxATSP-Approx (Alg. 1) and the following theorem.

Theorem 4.3. For every k ≥ 1, ε > 0, MaxATSP-Approx is a randomized 1
2 − ε

approximation for k-criteria Max-ATSP whose running-time for a success probability of at
least 1− p is polynomial in the input size and log(1/p).

Proof. We have to estimate three things: approximation ratio, running-time, and success
probability. The proof is by induction on k. For k = 1, the theorem holds since there is
a deterministic, polynomial-time 2/3 approximation for mono-criterion Max-ATSP. In the
following, we assume that the theorem is correct for k − 1.

Let us focus on the approximation ratio, the other aspects are omitted for lack of space.
For this purpose, we assume that all randomized computations are successful. Let H̃ be an
arbitrary tour. For a subset K ⊆ H̃, let H̃K be H̃ with all edges in K being contracted.
Then, by Lemma 4.2, there exists a (possibly empty) set K ⊆ H̃ of edges of cardinality at
most f(k, ε/2) with one of the two following properties:



644 B. MANTHEY

(1) There exists an i with wi(K) ≥ (1
2 − ε

2) · wi(H̃).

(2) For all e ∈ H̃K , we have w(e) ≤ (ηk,ε/2 − ( ε
2 )3) · w(H̃K).

In the first case, there exists an H ′ ∈ PK,i
TSP (see line 13) with wj(H

′) ≥ (1
2− ε

2) ·wj(H̃K)

for all j ∈ [k]\{i}. H ′ combined with K yields a tour H that satisfies w(H) ≥ (1
2− ε

2)·w(H̃):

First, we have wi(H) ≥ wi(K) ≥
(

1
2 − ε

2

)

· wi(H̃). Second, for j 6= i, we have wj(H) =

wj(K) + wj(H
′) ≥ wj(K) +

(

1
2 − ε

2

)

· wj(H̃K) =
(

1
2 − ε

2

)

· wj(H̃).

In the second case, let βi = max{wi(e) | e ∈ H̃K} ≤
(

ηk,ε/2 − ( ε
2 )3

)

· wi(H̃K). Then

CK,β contains a cycle cover C with w(C) ≥ (1 − ε
2) · w(H̃K) and wβ(e) ≤ ηk,ε/2 · w(H̃K)

(Lemma 4.1). Thus, C can be decomposed into a collection P of paths with w(P ) ≥
(1
2 − ε

2) · w(C) (Lemma 4.1). Together with K, this yields a tour H with

w(H) ≥ w(P ) + w(K) ≥
(

1
2 − ε

2

)

· w(C) + w(K) ≥
(

1
2 − ε

2

)

·
(

1− ε
2

)

· w(H̃K) + w(K)

=
(

1
2 − 3ε

4 + ε2

4

)

· w(H̃K) + w(K) ≥
(

1
2 − ε

)

· w(H̃).

4.2. Multi-Criteria Max-STSP

The approximation for MC-Max-ATSP works of course also for MC-Max-STSP. Our
goal, however, is a ratio of (2

3 − ε). As a first attempt, one might just replace the (1
2 −

ε)-decompositions by (2
3 − ε)-decompositions. Unfortunately, this is not sufficient since

contracting the heavy-weight edges in undirected graphs is not as easy as it is for directed
graphs: First, both statements “remove all incoming” and “remove all outgoing” edges are
not well-defined in an undirected graph. Second, if we just consider all edges of one vertex
as the incoming edges and all edges of the other vertex as the outgoing edges, we obtain a
directed graph, which allows only for a ratio of 1

2 − ε. To circumvent these problems, we
do not contract edges e = {u, v}. Instead, we set the weight of all edges incident to u or v
to 0. This allows us to add the edge e to any tour H ′ without decreasing the weight: We
remove all edges incident to u or v from H ′, and then we add e. The result is a collection of
paths. Then we add edges to connect these paths to a Hamiltonian cycle. The only edges
that we have removed are edges incident to u or v, which have weight 0 anyway.

However, by setting the weight of edges adjacent to u or v to 0, we might destroy a lot
of weight with respect to some objective. To solve this problem as well, we consider larger
neighborhoods of the edges in K. In this way, we can add our heavy-weight edge (plus some
more edges of its neighborhood) to the Hamiltonian cycle without losing too much weight
from removing other edges. The function h in Alg. 2 depends only on k and ε and plays
a similar role as f in Section 4.1. We omit the details and obtain MaxSTSP-Approx

(Alg. 2) and the following theorem.

Theorem 4.4. For every k ≥ 1, ε > 0, MaxSTSP-Approx is a randomized 2
3 −ε approx-

imation for k-criteria Max-STSP whose running-time for a success probability of at least
1− p is polynomial in the input size and log(1/p).
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PTSP ←MaxSTSP-Approx(G,w, k, ε, p)
input: undirected complete graph G = (V,E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: (2

3 − ε) approximate Pareto curve PTSP for k-C-Max-ATSP with a success prob-
ability of at least 1− p

1: if k = 1 then

2: compute a 61/81 approximation PTSP

3: else

4: for all subsets K ⊆ E with |K| ≤ h(k, ε/3) such that K is a path cover do

5: let L be the set of vertices incident to K
6: obtain wL from w by setting the weight of all edges incident to L to 0
7: for all bounds β of (G,wL) do

8: CL,β ←MaxCC-Approx
(

G,wLβ , k, ε
3 , p

2n2k+2h(k,ε/3)

)

9: for all C ∈ CL,β with wLβ(e) ≤ ηk,ε/3 · wLβ(C) for all e ∈ C do

10: P ← Decompose(C,wLβ , ε/3); remove edges of weight 0 from P
11: add edges to K ∪ P to obtain a tour H; add H to PTSP

12: for all i← 1 to k do

13: remove the ith objective from wL to obtain w′L

14: PL,i
TSP ←MaxATSP-Approx(G,w′L, k − 1, ε

3 , p
2n2k+2h(k,ε/3) )

15: for all H ′ ∈ PL,i
TSP do

16: remove edges of weight 0 from H ′

17: add edges to H ′ ∪K to obtain a tour H; add H to PTSP

Algorithm 2: Approximation algorithm for MC-Max-STSP.

5. Deterministic Approximations for 2-C-Max-STSP

The algorithms presented in the previous section are randomized due to the computa-
tion of approximate Pareto curves of cycles covers. So are most approximation algorithms
for multi-criteria TSP. As a first step towards deterministic approximation algorithms for
MC-Max-TSP, we present a deterministic 61/243 ≈ 0.251 approximation for 2-C-Max-
STSP. The key insight for the results of this section is the following lemma, which yields
tight bounds for the existence of approximate Pareto curves with only a single element
(Theorem 5.2). For completeness, we note that single-element approximate Pareto curves
exist for no other variant of multi-criteria TSP than 2-C-Max-STSP.

Lemma 5.1. Let M be a matching, let H be a collection of paths or a Hamiltonian cycle,
and let w be edge weights. Then there exists a subset P ⊆ H such that P∪M is a collection of
paths or a Hamiltonian cycle (we call P in this case an M -feasible set) and w(P ) ≥ w(H)/3.

Theorem 5.2. For every undirected complete graph G with edge weights w1 and w2, there
exists a tour H such that {H} is a 1/3 approximate Pareto curve for 2-C-Max-STSP. This
is tight: There exists a graph G with edge weights w1 and w2 such that, for all ε > 0, no
single Hamiltonian tour of G is a (1/3 + ε) approximate Pareto curve.

Lemma 5.1 and Theorem 5.2 are constructive in the sense that, given a tour H2 that
maximizes w2, the tour H can be computed in polynomial time. A matching M with
w1(M) ≥ w1(H1)/3 can be computed in cubic time. However, since we cannot compute an
optimal H2 efficiently, the results cannot be exploited directly to get an algorithm. Instead,
we use an approximation algorithm for finding a tour with as much weight with respect
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PTSP ← BiMaxSTSP-Approx(G,w1, w2)
input: undirected complete graph G = (V,E), edge weights w1, w2 : E → Nk

output: a 61/243 approximate Pareto curve H
1: compute a maximum-weight matching M with respect to w1

2: compute a 61/81 approximate tour H2 with respect to w2

3: P ← H2 ∩M ; M ′ ←M ; H2 ← H2 \ P
4: while H2 6= ∅ do

5: e← argmax{w2(e
′) | e′ ∈ H2}

6: extend e to a path e1, . . . , eq ∈ H2 such that only e1 and eq are incident to edges
z1, z2 ∈M ′ or the path cannot be extended anymore

7: P ← P ∪ {e1, . . . , eq}; H2 ← H2 \ {e1, . . . , eq}
8: if z1 or z2 exists then

9: let f1, f2 ∈ H2 be the two edges extending the path if they exist
10: H2 ← H2 \ {f1, f2}
11: if both z1 and z2 exist then contract z1 and z2 to z; M ′ ← (M ′ \ {z1, z2})∪ {z}
12: let H be a tour obtained from P ∪M

Algorithm 3: Approximation algorithm for 2-C-Max-STSP.

to w2 as possible. Using the 61/81 approximation algorithm for Max-STSP [7], we obtain
Alg. 3 and the following theorem.

Theorem 5.3. BiMaxSTSP-Approx is a deterministic 61/243 approximation algorithm
with running-time O(n3) for 2-C-Max-STSP.

For metric 2-C-Max-STSP, i.e., the edge weights have to fulfil the triangle inequality,
we obtain the an approximation ratio of 7/24 > 0.29 if we replace the 61/81 approximation
with the 7/8 approximation for metric Max-STSP by Kowalik and Mucha [15].

6. Approximation Algorithm for MC-Min-ATSP

Now we turn to MC-Min-ATSP and MC-Min-γ-ATSP, i.e., tours of minimum weight
are sought in directed graphs. Alg. 4 is an adaptation of the algorithm of Frieze et al. [12]
to multi-criteria ATSP. Therefore, we briefly describe their algorithm: We compute a cycle
cover of minimum weight. If this cycle cover is already a Hamiltonian cycle, then we
are done. Otherwise, we choose an arbitrary vertex from every cycle. Then we proceed
recursively on the subset of vertices thus chosen to obtain a tour that contains all these
vertices. The cycle cover plus this tour form an Eulerian graph. We traverse the Eulerian
cycle and take shortcuts whenever we visit vertices more than once. The approximation ratio
achieved by this algorithm is log2 n for Min-ATSP [12] and 1/(1 − γ) for Min-γ-ATSP [5].

MinATSP-Approx (Alg. 4) for MC-Min-ATSP proceeds as follows: MinCC-Approx

computes an approximate Pareto curve of cycle covers. (MinCC-Approx(G,w, k, ε, p)
computes a (1 + ε) approximate Pareto curve of cycle covers of G with weights w with a
success probability of at least 1−p in time polynomial in the input size, 1/ε, and log(1/p).)
Then we iterate by computing approximate Pareto curves of cycle covers on vertex sets V ′

for every cycle cover C in the previous set. The set V ′ contains exactly one vertex of every
cycle of C. Unfortunately, it can happen that we construct a super-polynomial number of
solutions in this way. To cope with this, we remove some intermediate solutions if there are
other intermediate solutions whose weight is close by. We call this process sparsification.
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PTSP ←MinATSP-Approx(G,w, k, ε)
input: directed complete graph G = (V,E) with n = |V |, k ≥ 1, w : E → Nk, ε > 0
output: (log n+ε) approximate Pareto curve for k-C-Min-ATSP or ( 1

1−γ +ε) approximate

Pareto curve for k-C-Min-γ-ATSP with a probability of at least 1/2
1: ε′ ← ε2/ log3 n; F ← ∅; j ← 1
2: C ←MinCC-Approx

(

G,w, k, ε′, 1
2Q log n

)

3: P0 ← {(C,w(C), V,⊥) | C ∈ C}
4: while Pj−1 6= ∅ do

5: Pj ← ∅
6: for all π = (C ′, w′, V ′, π′) ∈ Pj−1 do

7: if (V ′, C ′) is connected then F ← F ∪ {(C ′, w′, V ′, π′)}
8: else

9: select one vertex of every component of (V ′, C ′) to obtain Ṽ
10: C ←MinCC-Approx

(

G,w, k, ε′, 1
2Q log n

)

11: Pj ← Pj ∪ {(C̃, w̃, Ṽ , π) | C̃ ∈ C, w̃ = w′ + γj · w(C̃)}
12: while there are π′, π′′ ∈ Pj with equal ε′-signature do remove one of them
13: j ← j + 1
14: PTSP ← ∅
15: for all (C ′, w′, V ′, π′) ∈ F do

16: H ← C ′

17: while π′ = (C ′′, w′′, V ′′, π′′) 6= ⊥ do

18: construct tour H ′ on V ′′ from H ∪C ′′ by taking shortcuts such that H ∩H ′ = ∅
19: π′ ← π′′; H ← H ′

20: PTSP ← PTSP ∪ {H}
Algorithm 4: Approximation algorithm for MC-Min-ATSP and MC-Min-γ-ATSP.

It is based on the following observation: Let ε > 0, and consider H of weight w(H) ∈ Nk.
For every i ∈ {1, . . . , k}, there is a unique ℓi ∈ N such that wi(H) ∈ [(1 + ε)ℓi , (1 + ε)ℓi+1).

We call the vector ℓ = (ℓ1, . . . , ℓk) the ε-signature of H and of w(H). Since w(H) ≤ 2p(N),
there are at most qk different ε-signatures for some polynomial k, which is polynomial for
fixed k. To get an approximate Pareto curve, we can restrict ourselves to have at most one
solution with any specific ε-signature.

In the loop in lines 4 to 13, MinATSP-Approx computes iteratively Pareto curves of
cycle covers. The set Pj contains configurations π = (C ′, w′, V ′, π′), where C ′ is a cycle
cover on V ′, π′ is the predecessor configuration, and w′ is the weight of C ′ plus the weight
of its predecessor cycle covers, each weighted with an appropriate power of γ. (We define
the ε′-signature of π = (C ′, w′, V ′, π′) to be the ε′-signature of w′.) These weights are
needed for the analysis of the approximation ratio. If, in the course of this computation, we
obtain Hamiltonian cycles, these are put into F (line 7). In line 12, the sparsification takes
place. Finally, in lines 14 to 20, Hamiltonian cycles are constructed from the cycle covers
computed. In the algorithm, Q = Q(N, 1/ε′) is a two-variable polynomial that bounds the
number of different ε′-signatures of solutions for instances of size at most N .

MinATSP-Approx is the first approximation algorithm for MC-Min-ATSP and for
MC-Min-γ-ATSP for γ ≥

√

1/3 ≈ 0.58. For γ > 0.55, it improves over the previously known

algorithm [17], which achieves a ratio of 1
2 + γ3

1−3γ2 and works only for γ <
√

1/3 ≈ 0.58.
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Theorem 6.1. For every ε > 0, Alg. 4 is a randomized (log n + ε) approximation for MC-
Min-ATSP and a randomized ( 1

1−γ + ε) approximation for MC-Min-γ-ATSP for γ ∈ [12 , 1).

Its running-time is polynomial in the input size and 1/ε.

7. Open Problems

Most approximation algorithms for multi-criteria TSP use randomness for computing
approximate Pareto curves of cycle covers. This raises the question if there are algorithms for
multi-criteria TSP that are faster, deterministic, and achieve better approximation ratios.
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Abstract. The way the graph structure of the constraints influences the complexity of
constraint satisfaction problems (CSP) is well understood for bounded-arity constraints.
The situation is less clear if there is no bound on the arities. In this case the answer depends
also on how the constraints are represented in the input. We study this question for the
truth table representation of constraints. We introduce a new hypergraph measure adaptive

width and show that CSP with truth tables is polynomial-time solvable if restricted to a
class of hypergraphs with bounded adaptive width. Conversely, assuming a conjecture on
the complexity of binary CSP, there is no other polynomial-time solvable case.

1. Introduction

Constraint satisfaction is a general framework that includes many standard algorithmic
problems such as satisfiability, graph coloring, database queries, etc. A constraint satisfac-
tion problem (CSP) consists of a set V of variables, a domain D, and a set C of constraints,
where each constraint is a relation on a subset of the variables. The task is to assign a
value from D to each variable such that every constraint is satisfied (see Definition 1.4 for
the formal definition). For example, 3SAT can be interpreted as a CSP problem where the
domain is D = {0, 1} and the constraints in C correspond to the clauses.

In general, solving constraint satisfaction problems is NP-hard if there are no additional
restrictions on the instances. The main goal of the research on CSP is to identify tractable
special cases of the general problem. The theoretical literature on the CSP investigates two
main types of restrictions. The first type is to restrict the constraint language, that is, the
type of constraints that are allowed. The second type is to restrict the structure induced
by the constraints on the variables. The hypergraph of a CSP instance is defined to be a
hypergraph on the variables of the instance such that for each constraint c ∈ C there is a
hyperedge Ec that contains all the variables that appear in c. If the hypergraph of the CSP
instance has very simple structure, then the instance is easy to solve. For example, it is
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well-known that a CSP instance I with hypergraph H can be solved in time ‖I‖O(tw(H)) [5],
where tw(H) denotes the treewidth of H and ‖I‖ is the size of the representation of I in the
input. Thus if we restrict the problem to instances where the treewidth of the hypergraph
is bounded by some constant w, then the problem is polynomial-time solvable. The aim
of this paper is to investigate whether there exists some other structural property of the
hypergraph besides bounded treewidth that makes the problem tractable. Formally, for a
class H of hypergraphs, let CSP(H) be the restriction of CSP where the hypergraph of the
instance is assumed to be in H. Our goal is to characterize the complexity of CSP(H) for
every class H.

We investigate two notions of tractability. CSP(H) is polynomial-time solvable if every

instance of CSP(H) can be solved in time (‖I‖)O(1), where ‖I‖ is the length of the repre-
sentation of I in the input. The following notion interprets tractability in a less restrictive
way: CSP(H) is fixed-parameter tractable (FPT) if there is a function f such that every
instance I of CSP(H) can be solved in time f(H)(‖I‖)O(1), where H is the hypergraph of
the instance. Equivalently, the factor f(H) in the definition can be replaced with a factor
f(k) depending only on the number k of vertices of H: as the number of hypergraphs on k
vertices is bounded by a function of k, the two definitions result in the same notion. The
motivation behind the definition of fixed-parameter tractability is that in certain applica-
tions we expect the domain size to be much larger than the number of variables, hence a
constant factor in the running time depending only on the number of variables (or on the
hypergraph) is acceptable. For more background on fixed-parameter tractability, see [3, 4].

Bounded arities. If the constraints have bounded arity (i.e., edge size in H is bounded
by a constant), then the complexity of CSP(H) is well understood:

Theorem 1.1 ([7]). If H is a recursively enumerable class of hypergraphs with bounded
edge size, then (assuming FPT 6= W[1]) the following are equivalent:

(1) CSP(H) is polynomial-time solvable.
(2) CSP(H) is fixed-parameter tractable.
(3) H has bounded treewidth.

The assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity.
Thus in the bounded arity case bounded treewidth is the only property of the hypergraph
that can make the problem polynomial-time solvable. Furthermore, the following sharpening
of Theorem 1.1 shows that there is no algorithm whose running time is significantly better
than the ‖I‖O(tw(H)) bound of the treewidth based algorithm. The result is proved under

the Exponential Time Hypothesis (ETH) [9]: it is assumed that there is no 2o(n) time
algorithm for n-variable 3SAT.

Theorem 1.2 ([11]). If there is a computable function f and a recursively enumerable class
H of hypergraphs with bounded edge size and unbounded treewidth such that the problem
CSP(H) can be solved in time f(H)‖I‖o(tw(H)/ log tw(H)) for instances I with hypergraph
H ∈ H, then ETH fails.

This means that the treewidth-based algorithm is almost optimal: in the exponent only
an O(log tw(H)) factor improvement is possible. It is conjectured in [11] that Theorem 1.2
can be made tight:

Conjecture 1.3 ([11]). If H is a class of hypergraphs with bounded edge size, then there is

no algorithm that solves CSP(H) in time f(H)‖I‖o(tw(H)) for instances I with hypergraph
H ∈ H, where f is an arbitrary computable function.
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Unbounded arities. The situation is less understood in the unbounded arity case,
i.e., when there is no bound on the maximum edge size in H. First, the complexity in the
unbounded-arity case depends on how the constraints are represented. In the bounded-
arity case, if each constraint contains at most r variables (r being a fixed constant), then

every reasonable representation of a constraint has size |D|O(r). Therefore, the size of the
different representations can differ only by a polynomial factor. On the other hand, if
there is no bound on the arity, then there can be exponential difference between the size
of succinct representations (e.g., formulas) and verbose representations (e.g., truth tables).
The running time is expressed as a function of the input size, hence the complexity of the
problem can depend on how the input is represented: longer representation means that it
can be easier to obtain a polynomial-time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy
the constraint. For this representation, there are classes H with unbounded treewidth such
that CSP restricted to this class is polynomial-time solvable. For example, classes with
bounded (generalized) hypertree width [6], bounded fractional edge cover number [8], and
bounded fractional hypertree width [8, 10] are such classes. However, no classification the-
orem similar to Theorem 1.1 is known for this version. More succinct representations were
studied by Chen and Grohe [2]: constraints are represented by generalized DNF formulas
and ordered binary decision diagrams (OBDD). The complexity of the problem with this
representation was fully characterized: the complexity depends not on the treewidth of the
hypergraph, but on the treewidth of the incidence structure.

Truth table representation. In this paper we study another natural representation:
truth tables. A constraint of arity r is represented by having one bit for each possible r-
tuple that can appear on the r variables of the constraint, and this bit determines whether
this particular r-tuple satisfies the constraint or not. To increase the flexibility of the
representation and make it more natural, we allow that the variables have different domains,
i.e., each variable v has to be assigned a value from its domain Dom(v). Thus the size of
the truth table of an r-ary constraint is proportional to the size of the direct product of
the domains of the r variables. This representation is more verbose than listing satisfying
tuples: the size of the representation is proportional to the number of possible tuples even
if only few tuples satisfy the constraint. We define CSP as follows:

Definition 1.4. A CSP instance is a quadruple (V,D,Dom, C), where:

• V is a set of variables,
• D is a domain of values,
• Dom : V → 2D assigns a domain Dom(v) ⊆ D to each variable v ∈ V ,
• C is a set of constraints. Each ci ∈ C is a pair 〈si, Ri〉, where:

– si = (ui,1, . . . , ui,mi
) is a tuple of variables (the constraint scope), and

– Ri is a subset of
∏mi

j=1 Dom(ui,j) (the constraint relation).

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of values
for the variables in si. The length mi of the tuple si is called the arity of the constraint.
A solution to a CSP instance is a function f : V → D such that f(v) ∈ Dom(v) for
every v ∈ V and for each constraint 〈si, Ri〉 with si = 〈ui,1, ui,2, . . . , ui,mi

〉, the tuple
〈f(ui,1), f(ui,2), . . . , f(ui,mi

)〉 is in Ri.
We denote by CSPtt the problem where each constraint 〈si, Ri〉 of arity mi is represented

by the truth table of the constraint relation Ri, that is, by a sequence of
∏mi

j=1 |Dom(ui,j)|
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bits that describe that subset Ri of
∏mi

j=1 Dom(ui,j). For a class H, CSPtt(H) is the restric-
tion to instances with hypergraph in H.

Results. The main result of the paper is a complete characterization of the complexity
of CSPtt(H) (assuming Conjecture 1.3). The complexity of the problem depends on a new
hypergraph measure adaptive width:

Theorem 1.5 (Main). Assuming Conjecture 1.3, the following are equivalent:

(1) CSPtt(H) is polynomial-time solvable.
(2) CSPtt(H) is fixed-parameter tractable.
(3) H has bounded adaptive width.

The assumption in Theorem 1.5 is nonstandard, so it is up to the reader to decide
how strong this evidence is. However, the message of Theorem 1.5 is the following: a new
tractable class for CSPtt(H) would imply surprising new results for binary CSP. Thus it is
not worth putting too much effort in further studying CSPtt(H) with the hope of finding
new tractable classes: as this would disprove Conjecture 1.3, such an effort would be better
spent trying to disprove Conjecture 1.3 directly, by beating the ‖I‖O(tw(H)) algorithm for
binary CSP.

Listing the satisfying tuples is a more succinct representation of a constraint than a
truth table. Thus if CSP is polynomial-time solvable or fixed-parameter tractable for some
class H with the former representation, then this also holds for the latter representation as
well. In particular, this means that by the results of [8, 10], CSPtt(H) is polynomial-time
solvable if H has bounded fractional hypertree width. This raises the question whether
Theorem 1.5 gives any new tractable class H. In other words, is there a class H having
bounded adaptive width but unbounded fractional hypertree width? In Section 5, we answer
this question by constructing such a class H. This means that CSPtt(H) is polynomial-time
solvable, but if the constraints are represented by listing the satisfying tuples, then it is not
even known whether the problem is FPT.

2. Width parameters

Treewidth and various variants are defined in this section. We follow the framework of
width functions introduced by Adler [1]. A tree decomposition of a hypergraph H is a tuple
(T, (Bt)t∈V (T )), where T is a tree and (Bt)t∈V (T ) is a family of subsets of V (H) such that for
each E ∈ E(H) there is a node t ∈ V (T ) such that E ⊆ Bt, and for each v ∈ V (H) the set
{t ∈ V (T ) | v ∈ Bt} is connected in T . The sets Bt are called the bags of the decomposition.

Let f : 2V (H) → R
+ be a function that assigns a real number to each subset of vertices. The

f -width of a tree-decomposition (T, (Bt)t∈V (T )) is max
{

f(Bt) | t ∈ V (T )}. The f -width of
a hypergraph H is the minimum of the f -widths of all its tree decompositions.

Definition 2.1. Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

A subset E′ ⊆ E(H) is an edge cover if
⋃

E′ = V (H). The edge cover number ρ(H) is
the size of the smallest edge cover (assuming H has no isolated vertices). For X ⊆ V (H),
let ρH(X) be the size of the smallest set of edges covering X.

Definition 2.2. The (generalized) hypertree width of H is hw(H) := ρH-width(H).

We also consider the linear relaxations of edge covers: a function γ : E(H) → [0, 1]
is a fractional edge cover of H if

∑

E:v∈E γ(E) ≥ 1 for every v ∈ V (H). The fractional
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cover number ρ∗(H) of H is the minimum of
∑

E∈E(H) γ(E) taken over all fractional edge

covers of H. We define ρ∗H(X) analogously to ρH(X): the requirement
∑

E:v∈E γ(E) ≥ 1 is
restricted to vertices of X.

Definition 2.3. The fractional hypertree width of H is fhw(H) := ρ∗H-width(H).

The dual of covering is independence. A subset X ⊆ V (H) is an independent set if
|X ∩E| ≤ 1 for every E ∈ E(H). The independence number α(H) is the size of the largest
independent set and αH(X) is the size of the largest independent set that is a subset of
X. A function φ : V (H) → [0, 1] is a fractional independent set of the hypergraph H if
∑

v∈E φ(v) ≤ 1 for every E ∈ E(H). The fractional independence number α∗(H) of H is
the maximum of

∑

v∈V (H) φ(v) taken over all fractional independent sets φ of H. It is well-

known that α(H) ≤ α∗(H) = ρ∗(H) ≤ ρ(H) for every hypergraph H. Thus α∗-width gives
us the same notion as fractional hypertree width. The main new definition of the paper
uses fractional independent sets, but in a different way. For a function f : V (H) → R

+, we
define f(X) =

∑

v∈X f(v) for X ⊆ V (H) and define f -width accordingly.

Definition 2.4. The adaptive width adw(H) of a hypergraph H is the maximum of
φ-width(H) taken over all fractional independent sets φ of H.

Currently, we do not have an efficient algorithm for computing adaptive width. For-
tunately, the polynomial-time algorithm in Section 3 for instances with bounded adaptive
width does not need to determine the adaptive width of the input, it is sufficient that
the adaptive width is promised to be bounded. However, the hardness proof of Section 4
requires that the question adw(H) ≥ w is decidable (proof is omitted).

Lemma 2.5. There is an algorithm that, given hypergraph H and rational number w,
decides if adw(H) ≥ w. If the answer is yes, then the algorithm returns a rational fractional
independent set α such that the α-width of H is at least w.

We finish the section with a combinatorial observation (the closed neighborhood of a
vertex v is the union of all the edges containing v):

Lemma 2.6. Given a tree decomposition of hypergraph H, it can be transformed in polyno-
mial time (by removing vertices from some bags) into a tree decomposition of H satisfying
the following property: if two adjacent vertices u and v have the same closed neighborhood,
then u and v appear in exactly the same bags.

Proof. Consider a tree decomposition of H. If u and v are two vertices that do not satisfy the
requirements, then remove these vertices from those bags where only one of them appears
(since u and v are neighbors, they appear together in some bag Bt, hence both vertices
appear in at least one bag after the removals). The intersection of two subtrees is also a
subtree, thus it remains true that u and v appear in a connected subset of the bags. We
have to show that for every edge E ∈ E(H), there is a bag Bt that fully contains E even
after the removals. If {u, v} ⊆ E or E ∩ {u, v} = ∅, then this clearly follows from that
fact that some bag fully contains E before the removals. Assume without loss of generality
that u ∈ E and v 6∈ E. We show that E ∪ {v} is fully contained in some bag Bt before the
removals, hence (as {u, v} ⊆ E ∪ {v}) Bt fully contains E ∪ {v} even after the removals.
Since u ∈ E, edge E is in the closed neighborhood of v. Thus by assumption, E is also in
the closed neighborhood of v, which means that E ∪ {v} is a clique in H. It is well known
that every clique is fully contained in some bag of the tree decomposition (this follows from
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the fact that subtrees of a tree satisfy the Helly property), thus it follows that E∪{v} ⊆ Bt

for some bag Bt.
Let us repeat these removals until there are no pairs u, v that violate the requirements;

eventually we get a tree decomposition as required. Observe that the procedure terminates
after a polynomial number of steps: vertices are only removed from the bags.

3. Algorithm for bounded adaptive width

We prove that CSPtt(H) is polynomial-time solvable if H has bounded adaptive width.
Bounded adaptive width ensures that no matter what the distribution of the domain sizes
in the input instance is, there is a decomposition where the variables in each bag have only
a polynomial number of possible assignments. For such a decomposition, the instance can
be solved by standard techniques.

Lemma 3.1. There is an algorithm that, given an instance I of CSPtt, an integer C,
and a tree decomposition (T, (Bt)t∈V (T )) of the hypergraph H of the instance such that
∏

v∈Bt
|Dom(v)| ≤ C for every bag Bt, solves the instance I in time polynomial in ‖I‖ · C.

Proof. If
∏

v∈Bt
|Dom(v)| ≤ C, then there are at most C possible assignments on the

variables in Bt. Using standard dynamic programming techniques, it is easy to check
whether it is possible to select one assignment ft for each bag Bt such that ft satisfies the
instance induced by the bag Bt and these assignments are compatible. For completeness,
we briefly describe how this can be done by a reduction to binary CSP.

Let us construct a binary CSP instance I ′ as follows. The set of variables of I ′ is
V (T ), i.e., the bags of the tree decomposition. For t ∈ V (T ), let bt ≤ C be the number of
assignments f to the variables in Bt such that f(v) ∈ Dom(v) for every v ∈ Bt; denote by
ft,i the i-th such assignment on Bt (1 ≤ i ≤ bt). The domain of I ′ is D′ = {1, . . . , C}. For
each edge t′t′′ ∈ E(T ), we introduce a constraint ct′,t′′ = 〈(t′, t′′), Rt′,t′′〉, where (i, j) ∈ Rt′,t′′

if and only if

• ft′,i and ft′′,j are compatible, i.e., ft′,i(v) = ft′′,j(v) for every v ∈ Bt′ ∩Bt′′ .
• ft′,i satisfies every constraints of I whose scope is contained in Bt′ .
• ft′′,j satisfies every constraints of I whose scope is contained in Bt′′ .

It is easy to see that a solution of I ′ determines a solution of I. The size of I ′ is polynomial
in C and ‖I‖. Since the graph of I ′ is a tree, it can be solved in time ‖I ′‖O(1) = (‖I‖C)O(1).

Theorem 3.2. If H has bounded adaptive width, then CSPtt(H) ∈ PTIME.

Proof. Let I be an instance of CSPtt(H) with hypergraph H such that adw(H) ≤ c. Let
N ≤ ‖I‖ be the size of the largest truth table in the input; we assume that N > 1,
since the problem is trivial if N = 1. We show that it is possible to find in time NO(c) a
tree decomposition (T,Bt∈V (T )) of the instance such that

∏

v∈Bt
|Dom(v)| ≤ NO(c) holds for

every bag Bt. By Lemma 3.1, this means that the instance can be solved in time polynomial
in ‖I‖ and NO(c), i.e., the running time is ‖I‖O(c).

Let φ(v) = log2 |Dom(v)|/ log2 N . We claim that φ is a fractional independent set of
H. If there is a constraint with (vi1 , vi2 , . . . , vir) such that

∑r
j=1 φ(vj) > 1, then the size of

the truth table describing the constraint is larger than N :
r

∏

j=1

|Dom(ij)| =
r

∏

j=1

2φ(vij
)·log2 N = 2log2 N ·

Pr
j=1

φ(vij
) > 2log2 N = N.
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Define φ′(v) = ⌈φ(v) log2 N⌉. Observe that φ(v) ≥ 1/ log2 N , hence φ′(v) < 2φ(v) log2 N
(if |Dom(v)| = 1, then the instance can be simplified). Let H ′ be the hypergraph that
is obtained from H by replacing each vertex v with a set Xv of φ′(v) vertices; if an
edge E contains some vertex v in H, then E contains every vertex of Xv in H ′. We
claim that H ′ has treewidth less than 2c log2 N . Since adw(H) ≤ c, H has a tree de-
composition (T,Bt∈V (T )) such that

∑

v∈Bt
φ(v) ≤ c holds for every bag Bt. Consider

the analogous decomposition (T,B′
t∈V (T )) of H ′; i.e., if a bag Bt contains a vertex v of

H, then let bag B′
t contain every vertex of Xv. The size of a bag B′

t is
∑

v∈Bt
|Xv | =

∑

v∈Bt
φ′(v) ≤ 2 log2 N · ∑v∈Bt

φ(v) ≤ 2c log2 N , thus the treewidth of H ′ is indeed less
than 2c log2 N . Given a graph G with n vertices, it is possible to find a tree decomposi-
tion of width at most 4 tw(G) + 1 in time 2O(tw(G))nO(1) (see e.g., [4, Prop. 11.14]). Thus
we can a find a tree decomposition (T,B′′

t∈V (T )) of width at most 8c log2 N for H ′ in time

2O(2c log2 N)||H ′||O(1) = NO(c)||H ′||O(1).
In H ′, every vertex of Xv is contained in the same set of edges. By Lemma 2.6, it can

be assumed that each bag of (T,B′′
t∈V (T )) contains either all or none of Xv. Define the tree

decomposition (T,B∗
t∈V (T )) of H where bag B∗

t contains v if and only Xv is contained in

B′′
t . The φ-weight of a bag B∗

t can be bounded as
∑

v∈B∗
t

φ(v) ≤ 1

log2 N

∑

v∈B∗
t

φ′(v) =
1

log2 N
|B′′

t | ≤ 8c.

Thus in the tree decomposition (T,B∗
t∈V (T )), the product of the domain sizes is

∏

v∈B∗
t

|Dom(v)| =
∏

v∈B∗
t

2φ(v)·log2 N = 2
log2 N ·

P

v∈B∗
t

φ(v) ≤ 2log2 N ·8c = N8c,

in each bag B∗
t , as required.

4. Hardness result for unbounded adaptive width

We prove the main complexity result of the paper in this section.

Theorem 4.1. Let H be a recursively enumerable class of hypergraphs with unbounded
adaptive width. Assuming Conjecture 1.3, CSPtt(H) is not FPT.

Proof. Suppose that CSPtt(H) can be solved in time h1(H)‖I‖c for some constant c and
computable function h1. Let us fix an arbitrary computable enumeration of the hypergraphs
in H. For every k ≥ 1, let Hk be the first hypergraph in this enumeration with adw(Hk) ≥ k.
For each k ≥ 1, let φk be the fractional independent set returned by the algorithm of
Lemma 2.5 for the question ‘adw(Hk) ≥ k?’.

Constructing the graph class G. For each k ≥ 1, we construct a graph Gk based
on Hk and φk. Let qk be the least common denominator of the rational values φk(v) for
v ∈ V (Hk). The graph Gk has a clique Kv of size qk · φ(v) for each v ∈ V (Hk) and if u
and v are neighbors in Hk, then every vertex of Ku is connected to every vertex of Kv. Let
G = {Gk | k ≥ 1}.

We claim that tw(Gk) ≥ qkk − 1. Suppose for contradiction that Gk has a tree de-
composition (T, (Bt)t∈V (T )) of width less than qkk − 1, i.e., the size of every bag is smaller
than qkk. By Lemma 2.6, it can be assumed that for every v ∈ V (Hk) and bag Bt of
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the decomposition, either Bt fully contains Kv or disjoint from it. Let us construct a tree
decomposition (T, (B′

t)t∈V (T )) of Hk such that B′
t contains v if and only if Bt fully contains

Kv. It is easy to see that this is a tree decomposition of Hk: for every E ∈ E(Hk), the set
⋃

v∈E Kv is a clique in Gk, hence there is a bag Bt containing
⋃

v∈E Kv, i.e, B′
t contains

E. Furthermore, φk(B
′
t) < k for every bag B′

t: if φk(B
′
t) ≥ k, then |⋃v∈E Kv| ≥ qkk,

contradicting the assumption that every bag Bt has size strictly less than qkk. This would
contradict the assumption adw(Hk) ≥ k, thus tw(Gk) ≥ qkk − 1.

Simulating Gk by Hk. We present an algorithm for CSP(G) violating Conjecture 1.3.
We show how a binary CSP(G) instance I1 with graph Gk can be reduced to a CSPtt(H)
instance I2 with hypergraph Hk ∈ H. Then I2 can be solved with the assumed algorithm for
CSPtt(H). Let G ∈ G be the graph of the CSP instance I1. By enumerating the hypergraphs
in H, we can find the first value k such that G = Gk. We construct a CSPtt(H) instance I2

with hypergraph Hk where every variable v ∈ V (Hk) simulates the variables in Kv.

The domain Dom(v) of v is D|Kv|, i.e., Dom(v) is the set of |Kv |-tuples of D. For
every v ∈ V (Hk), there is a natural bijection between the elements of Dom(v) and the

|D||Kv| possible assignments f : Kv → D. For each edge E = (v1, . . . , vr) ∈ E(Hk), we
add a constraint cE = 〈(v1, . . . , vr), RE〉 to I2 as follows. Let (x1, . . . , xr) ∈

∏r
i=1 Dom(vi).

For 1 ≤ i ≤ r, let gi be the assignment of Kvi
corresponding to xi ∈ Dom(vi). These r

assignments together define an assignment g :
⋃r

i=1 Kvi
→ D on the union of their domains.

We define the relation RE such that (x1, . . . , xr) is a member of RE if and only if the
corresponding assignment g satisfies every constraint of I1 whose scope is contained in
⋃r

i=1 Kvi
.

Assume that I1 has a solution f1 : V (Gk) → D. For every v ∈ V (Hk), define f2(v) to
be the member of Dom(v) corresponding to the assignment f1 restricted to Kv. Now f2 is a
solution of I2: for every edge E of Hk, assignment f1 restricted to

⋃

v∈E Kv clearly satisfies
every constraint of I1 whose scope is in

⋃

v∈E Kv.
Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V (Hk), there is an

assignment fv : Kv → D corresponding to the value f2(v). These assignments together
define an assignment f1 : V (Gk) → D. We claim that f1 is a solution of I1. Let c =
〈(u′, v′), R〉 be an arbitrary constraint of I1. Assume that u′ ∈ Ku and v′ ∈ Kv for some
u, v ∈ V (Hk). Since u′v′ ∈ E(Gk), there is an edge E ∈ E(Hk) with u, v ∈ E. The
definition of cE in I2 ensures that f1 restricted to Ku ∪ Kv satisfies every constraint of I1

whose scope is contained in Ku ∪Kv; in particular, f1 satisfies constraint c.
Running time. Assume that an instance I1 of CSP(G) is solved by first reducing it to

an instance I2 as above and then applying the algorithm for CSPtt(H). Let us determine
the running time of this algorithm. The first step of the algorithm is to enumerate the
hypergraphs in H until the correct value of k is found. The time required by this step
depends only on the graph G ∈ G; denote it by h2(G). Let us determine the time required
to construct instance I2 and the size of the representation of I2. As defined above, for
each constraint cE in I2, we have to enumerate every tuple (x1, . . . , xr) ∈

∏r
i=1 Dom(v) and

check whether the corresponding assignment g is a solution of the instance I1[
⋃r

i=1 Kvi
].

Checking a vector (x1, . . . , xr) can be done in time polynomial in ‖I1‖. Moreover,
∣

∣

∣

∣

∣

r
∏

i=1

Dom(v)

∣

∣

∣

∣

∣

=
r

∏

i=1

|D||Kv| =
r

∏

i=1

|D|qk·φk(v) = |D|qk

Pr
i=1

φk(v) ≤ |D|qk ,
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since φk is a fractional independent set and {x1, . . . , xr} is an edge of Hk. Every other step
is polynomial in ‖I1‖, hence the reduction can be done in time h2(G)‖I1‖O(qk), which is

also a bound on ‖I2‖. Thus the algorithm for CSPtt(H) requires h1(Hk)(h2(G)‖I1‖)O(qkc)

time, yielding a total time of h3(G)‖I1‖O(qkc) for some computable function h3.

We show that ‖I1‖O(qkc) is ‖I1‖o(tw(Gk)), violating Conjecture 1.3. Let s(w) be the
smallest k such that tw(Gk) is greater than w (as tw(Gk) ≥ qkk − 1, this is well defined).
Observe that s(w) is nondecreasing and unbounded. We have

‖I1‖O(qkc) ≤ ‖I1‖O(c(tw(Gk)+1)/k) ≤ ‖I1‖O(c(tw(G)+1)/s(tw(G))) = ‖I1‖o(tw(G)).

Thus the total running time is h3(G)‖I1‖o(tw(G)), violating Conjecture 1.3.

5. Relation of bounded fractional hypertree width and bounded adaptive

width

We show that the class of sets of hypergraphs with bounded adaptive width strictly in-
cludes the class of sets with bounded fractional hypertree width. First, fractional hypertree
width is an upper bound for adaptive width.

Proposition 5.1. For every hypergraph H, adw(H) ≤ fhw(H).

Proof. Let (T,Bt∈V (T )) be a tree decomposition of H whose ρ∗H-width is fhw(H). If φ
is a fractional independent set, then φ(Bt) ≤ ρ∗H(Bt) ≤ fhw(H) for every bag Bt of the
decomposition, i.e., φ-width(H) ≤ fhw(H). This is true for every fractional independent
set φ, hence adw(H) ≤ fhw(H).

This implies that if a set of hypergraphs has bounded fractional hypertree width, then it
has bounded adaptive width as well. The converse is not true: the main result of this section
is a set of hypergraphs with bounded adaptive width (Corollary 5.11) that has unbounded
fractional hypertree width (Corollary 5.8).

Definition 5.2. The hypergraph H(d, c) has 2d+1 − 1 vertices vi,j (0 ≤ i ≤ d, 0 ≤ j < 2i)
and the following edges:

• For every 0 ≤ k < 2d, there is a large edge Ek of size d + 1 that contains vi,⌊k/2d−i⌋

for every 0 ≤ i ≤ d.
• For every i, j1, j2 with |j1 − j2| ≤ c, there is a small edge {vi,j1, vi,j2}.

We say that vertex vi,j is on level i. We define χ(vi,j) = j2d−i. The set Hc contains
every hypergraph H(d, c) for d ≥ 1.

Definition 5.3. If vi,j and vi′,j′ are covered by the same large edge Ek and i ≤ i′, then vi,j

is an ancestor of vi′,j′; and vi′,j′ is a descendant of vi,j.

Proposition 5.4. If vi,j is an ancestor of vi′,j′, then χ(vi,j) ≤ χ(vi′,j′) < χ(vi,j) + 2d−i.

Proof. The ancestor of vi′,j′ on level i is vi,⌊j′/2i′−i⌋. Therefore,

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i ≤ j′/2d−i′ = χ(vi′,j′)

and

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i > (j′/2i′−i − 1) · 2d−i = j′ · 2d−i′ − 2d−i = χ(vi′,j′)− 2d−i.
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5.1. Lower bound on fractional hypertree width

Fractional hypertree width has various other characterizations that are equivalent up
to a constant factor [8]. Here we use the characterization by balanced separators to prove
a lower bound on the fractional hypertree width of H(d, c).

For a function γ : E(H) → R
+, we define weight(γ) :=

∑

E∈E(H) γ(E). For a set

W ⊆ V (H), we let weight(γ|W ) =
∑

e∈EW
γ(e), where EW is the set of all edges intersecting

W . For λ > 0, a set S ⊆ V (H) is a λ-balanced separator for γ if weight(γ|C) ≤ λ ·weight(γ)
for every component C of H \ S.

Theorem 5.5 ([8]). Let H be a hypergraph and γ : E(H) → R
+. There is a 1

2-balanced
separator S for γ such that ρ∗H(S) ≤ fhw(H).

Theorem 5.5 can be generalized to λ-separators with arbitrary λ > 0 (proof is omitted):

Corollary 5.6. Let H be a hypergraph and γ : E(H) → R
+. For every λ > 0, there is a

λ-balanced separator S for γ such that ρ∗H(S) ≤ 2 fhw(H)/λ.

Proposition 5.7. For every c ≥ 5 and d > 2 log2 c, fhw(H(d, c)) ≥
√

d/(2c).

Proof. Let γ be a weight function on the edges that assigns 1 to each large edge and 0 to
the small edges. We show that every 1

2c -balanced separator of H(d, c) for γ has fractional

cover number at least
√

d/2. By Corollary 5.6, fhw(H(d, c)) ≥
√

d/(8c) follows.
Suppose that S is a 1

2c -balanced separator of H(d, c) for γ. Observe that on level d/2,

there are at least c vertices: 2d/2 ≥ c. We claim that there is a d/2 ≤ i ≤ d for which there
is no 0 ≤ ai ≤ 2i − c such that vi,j ∈ S for every ai ≤ j < ai + c. Suppose that there is such
an ai for every d/2 ≤ i ≤ d. Let bi = ai + c − 1. It follows from the definition of ai that
vi,ai

, vi,bi
∈ S for every d/2 ≤ i ≤ d. We claim that the set X = {vi,ai

, vi,bi
: d/2 ≤ i ≤ d}

contains an independent set of size at least
√

d/2, contradicting the assumption that the

fractional cover number ρ∗(S) is less than
√

d/2 (recall that αH(S) ≤ ρ∗H(S) holds). First
we show that if a large edge Ek covers vi,ai

and vi′,ai′
then vi,bi

and vi′,bi′
are independent.

Assume without loss of generality that i < i′. By Prop. 5.4, |χ(vi,ai
) − χ(vi′,ai′

)| < 2d−i.

Since χ(vi,bi
) = χ(vi,ai

) + (c− 1)2d−i and χ(vi′,bi′
) = χ(vi′,ai′

) + (c− 1)2d−i′ ,

|χ(vi,bi
)− χ(vi′,bi′

)| > (c− 1)2d−i − (c− 1)2d−i′ − 2d−i

≥ (c− 1)2d−i − c− 1

2
· 2d−i − 2d−i = (c/2 − 3/2)2d−i ≥ 2d−i,

if c ≥ 5. Therefore, vi,bi
and vi′,bi′

are independent (Prop. 5.4). Similarly, if a large edge Ek

covers both vbj ,j and vbj′ ,j
′ then vaj ,j and vaj′ ,j

′ are independent.

If X can be covered with weight less than
√

d/2, then there is an edge that covers at

least |X|/(
√

d/2) = 2
√

d vertices of X. Denote by Y ⊆ X this set of vertices, and let

Ya = {vi,ai
∈ Y : d/2 ≤ i ≤ d} and Yb = {vi,bi

∈ Y : d/2 ≤ i ≤ d}. Now either |Ya| ≥
√

d

or |Yb| ≥
√

d. For each vertex vi,ai
, we call the vertex vi,bi

the pair of vi,ai
and vice versa.

If |Ya| ≥
√

d, then we have seen that the pairs of the vertices in Ya form an independent

set of size |Ya|, thus X cannot be covered with weight less than
√

d. Similarly, if |Yb| ≥
√

d,

then the pairs of the vertices in Yb give an independent set of size
√

d. This contradicts the
assumption that S can be covered with weight strictly less than

√
d/2.
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Thus there is a d/2 ≤ i ≤ d such that for every 0 ≤ j ≤ 2i − c, at least one of
vi,j, . . . , vi,j+c−1 is not in S. It is not difficult to see that the set Ci of vertices on level
i not in S is connected and intersects more than 1/(2c) fraction of the large edges. Thus
weight(γ|C) > weight(γ)/2c for the component C of H(d, c)\S containing Ci, contradicting
the assumption that S is a 1

2c -balanced separator for γ.

Corollary 5.8. Hc has unbounded fractional hypertree width for every c ≥ 5.

5.2. Upper bound on adaptive width

We use the following lemma to give an upper bound for f -width (proof is omitted):

Lemma 5.9. Let H be a hypergraph, 0 < λ < 1, w > 0 constants, and f : 2V (H) → R
+

a function such that f(X) ≤ f(Y ) for every X ⊆ Y and f(X ∪ Y ) ≤ f(X) + f(Y ) for
arbitrary X,Y . Assume that for every subset W ⊆ V (H) there is a subset S ⊆ V (H) with
f(S) ≤ w such that every component C of H \S has f(C∩W ) ≤ λf(W ). Then the f -width
of H is at most 2w/(1 − λ) + w.

To obtain the upper bound on adaptive width, we have to show that the required
separator S exists for every fractional independent set. We say that a set S is closed if the
set S contains every ancestor of every vertex of S. For future use, we show that even a
closed separator exists for H(d, c).

Lemma 5.10. Let φ be a fractional independent set of H(d, c) and let W be a subset of
vertices. Then there is a closed set S with φ(S) ≤ 4c(c+1)+5 such that for every component
C of H(d, c) \ S we have φ(C ∩W ) ≤ 3φ(W )/4.

Proof. Let M(a, b) be the set of vertices vi,j with a ≤ χ(vi,j) < b. Let x and y be integers
such that φ(M(x, x+y)∩W ) ≥ φ(W )/4 and y is as small as possible. Let d0 = d−⌈log2 y⌉;
clearly, we have y ≤ 2d−d0 ≤ 2y. Let A(t) := {vi,j : χ(vi,j) ≥ t and i ≥ d0}. Denote by S(t)
the set of those vertices v that have a descendant vi,j with χ(vi,j) < t such that vi,j has a
neighbor in A(t). We show that φ(S(t1)) ≤ 2c(c + 1) + 1 for some x − y < t1 ≤ y.

Let S1(t) be those vertices of S(t) that are on level less than d0 and let S2(t) be those
vertices that are on level at least d0. First we bound φ(S1(t)). Observe that every v ∈ S1(t)
has a descendant vi,j with χ(vi,j) ≥ t− c2d−d0 : if descendant vi,j has a neighbor u ∈ A(t),
then either vi,j and u are connected by a large edge (in this case u is also a descendant of

v) or vi,j and u are connected by a small edge (in this case χ(vi,j) ≥ t− c2d−i ≥ t− c2d−d0).

Let X be the set of vertices vd0,j with t − c2d0 ≤ χ(vd0,j) < t, we have |X| ≤ c. By the
observation above, every v ∈ S1(t) has a descendant in X. The vertices in X and the
ancestors of X can be covered by |X| ≤ c large edges. Thus φ(S1(t)) ≤ c, as S1(t) can be
covered with at most c large edges and φ(Ek) ≤ 1 for every large edge Ek.

We show that φ(S2(t)) is small on average. We claim that

x
∑

t=x−y+1

φ(S2(t)) ≤ c

min{2d,x+2d−d0−1}
∑

t=max{0,(x−y−c2d−d0 )}

φ(Et) ≤ c(c + 1)2d−d0 + y ≤ 2c(c + 1)y + y.

holds, implying that φ(S2(t)) ≤ 2c(c + 1) + 1 for at least one t. To see the first inequality,
observe that vi,j with i ≥ d0 is in S2(t) only if t − c2d−i ≤ χ(vi,j) < t. Thus such a vertex
contributes to the first sum for at most c2d−i values of t. However, if vi,j contributes at all
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to the first sum, then it contributes to the second sum for exactly 2d−i values of t, as every
large edge containing vi,j is counted. Thus vi,j contributes φ(vi,j) at most c times more to
the first sum than to the second, which is taken care by the factor c before the second sum.

Similarly, we can show that there is a value x + y ≤ t2 < x + 2y such that φ(S2(t2)) ≤
2c(c + 1) + 1. Denote by T (t1, t2) the vertices of M(t1, t2) on level less than d0. We
claim that φ(T (t1, t2)) ≤ 3. First, T (t1, t2) can contain at most 3 vertices on each level: if
vi,j, vi,j′ ∈ T (t1, t2) and j′ ≥ j+3, then |χ(vi,j)−χ(vi,j′)| ≥ 3·2d−i > 3·2d−d0 ≥ 3y ≥ t2−t1,
contradicting the assumption on the χ-values. Every vi,j ∈ T (t1, t2) has a descendant

vi′,j′ ∈ T (t1, t2) for every i < i′ < d0, namely vi′,j′ with j′ = j2i′−i. Thus by covering the at
most 3 vertices of T (t1, t2) on level d0 − 1 by at most 3 large edges, we can cover T (t1, t2),
and φ(T (t1, t2)) ≤ 3 follows.

Define S := S(t1)∪S(t2)∪T (t1, t2). Clearly, φ(S) ≤ 2(2c(c+1)+1)+3 = 4c(c+1)+5. We
show that S separates M(t1, t2) from the rest of the vertices. Suppose that vi,j , vi′,j′ 6∈ S are
adjacent vertices such that vi,j ∈ M(t1, t2) and vi′,j′ 6∈ M(t1, t2). We have i ≥ d0 (otherwise
vi,j ∈ T (t1, t2)), hence vi,j ∈ A(t1). If χ(vi′,j′) < t1, then vi′,j′ ∈ S(t1) ⊆ S, a contradiction.
Moreover, if χ(vi′,j′) > t2, then i′ ≥ d0 as vi,j and vi′,j′ are not neighbors if χ(vi,j) < χ(vi′,j′)
and i > i′. Thus vi′,j′ ∈ A(t2) and vi,j ∈ S(t2) ⊆ S, a contradiction.

By the definition of x and y, we have φ(M(t1, t2)∩W ) ≥ φ(M(x, x+y)∩W ) ≥ φ(W )/4.
To complete the proof that φ(W ∩ C) ≤ 3φ(W )/4 for every component C of H(d, c) \ S,
we show that φ(M(t1, t2) ∩W ) ≤ 3φ(W )/4: as we have seen that every such component C
is fully contained in either M(t1, t2) or V \M(t1, t2), this means that no component C can
have φ(W ∩C) > 3φ(W )/4. Since x−t1 < y, the minimality of y implies φ(M(t1, x)∩W ) ≤
φ(W )/4. Similarly, it follows from t2−(x+y) < y that φ(M(x+y, t2)∩W ) ≤ φ(W )/4. Now
φ(M(t1, t2)∩W ) = φ(M(t1, x)∩W )+φ(M(x, x+y)∩W )+φ(M(x+y, t2)∩W ) ≤ 3

4φ(W ).

By Lemma 5.10, the requirements of Lemma 5.9 hold for H(d, c) with w := 4c(c+1)+5
and λ := 3/4, hence adw(H(d, c)) ≤ 9w = 36c(c + 1) + 45.

Corollary 5.11. The class Hc has bounded adaptive width for every fixed c ≥ 1.
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Abstract. The precise complexity of complementing Büchi automata is an intriguing and
long standing problem. While optimal complementation techniques for finite automata are
simple – it suffices to determinize them using a simple subset construction and to dualize
the acceptance condition of the resulting automaton – Büchi complementation is more
involved. Indeed, the construction of an EXPTIME complementation procedure took a
quarter of a century from the introduction of Büchi automata in the early 60s, and stepwise
narrowing the gap between the upper and lower bound to a simple exponent (of (6e)n for
Büchi automata with n states) took four decades. While the distance between the known
upper (O

`

(0.96 n)n
´

) and lower (Ω
`

(0.76 n)n
´

) bound on the required number of states
has meanwhile been significantly reduced, an exponential factor remains between them.
Also, the upper bound on the size of the complement automaton is not linear in the bound
of its state space. These gaps are unsatisfactory from a theoretical point of view, but also
because Büchi complementation is a useful tool in formal verification, in particular for the
language containment problem. This paper proposes a Büchi complementation algorithm
whose complexity meets, modulo a quadratic (O(n2)) factor, the known lower bound for
Büchi complementation. It thus improves over previous constructions by an exponential
factor and concludes the quest for optimal Büchi complementation algorithms.

1. Introduction

The precise complexity of Büchi complementation is an intriguing problem for two rea-
sons: First, the quest for optimal algorithms is a much researched problem (c.f., [Büc62,
SS78, Péc86, SVW87, Saf88, Mic88, Tho99, Löd99, KV01, GKSV03, FKV06, Pit07, Var07,
Yan08]) that has defied numerous approaches to solving it. And second, Büchi complemen-
tation is a valuable tool in formal verification (c.f., [Kur94]), in particular when studying
language inclusion problems of ω-regular languages. In addition to this, complementation is
useful to check the correctness of other translation techniques [Var07, TCT+08]. The GOAL
tool [TCT+08], for example, provides such a test suite and incorporates four of the more
recent algorithms [Saf88, Tho99, KV01, Pit07] for Büchi complementation.
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This work was partly supported by the EPSRC through the grand EP/F033567/1 Verifying Interoper-

ability Requirements in Pervasive Systems.

c© Sven Schewe
CC© Creative Commons Attribution-NoDerivs License



662 SVEN SCHEWE

While devising optimal complementation algorithms for nondeterministic finite au-
tomata is simple—nondeterministic finite automata can be determinized using a simple
subset construction, and deterministic finite automata can be complemented by comple-
menting the set of final states [RS59, SS78]—devising optimal complementation algorithms
for nondeterministic Büchi automata is hard, because simple subset constructions are not
sufficient to determinize or complement them [Mic88, Löd99].

Given the hardness and importance of the problem, Büchi complementation enjoyed
much attention [Büc62, Péc86, SVW87, Mic88, Saf88, Löd99, Tho99, KV01, GKSV03,
FKV06, Var07, TCT+08, Yan08], resulting in a continuous improvement of the upper and
lower bounds.

The first complementation algorithm dates back to the introduction of Büchi automata
in 1962. In his seminal paper “On a decision method in restricted second order arithmetic”
[Büc62], Büchi develops a complementation procedure that comprises a doubly exponen-
tial blow-up. While Büchi’s result shows that nondeterministic Büchi automata (and thus
ω-regular expressions) are closed under complementation, complementing an automaton
with n states may, when using Büchi’s complementation procedure, result in an automaton

with 22O(n)
states, while an Ω(2n) lower bound [SS78] is inherited from finite automata.

In the late 80s, these bounds have been improved in a first sequence of results, starting
with establishing an EXPTIME upper bound [Péc86, SVW87], which matches the EXP-
TIME lower bound [SS78] inherited from finite automata. However, the early EXPTIME

complementation techniques produce automata with up to 2O(n2) states [Péc86, SVW87];
hence, these upper bounds are still exponential in the lower bounds.

This situation changed in 1988, when Safra introduced his famous determinization
procedure for nondeterministic Büchi automata [Saf88], resulting in an nO(n) bound for
Büchi complementation, while Michel [Mic88] established a seemingly matching Ω(n!) lower
bound in the same year. Together, these results imply that Büchi complementation is in
nθ(n), leaving again the impression of a tight bound.

As pointed our by Vardi [Var07], this impression is misleading, because the O() notation

hides an nθ(n) gap between both bounds. This gap has been narrowed down in 2001 to
2θ(n) by the introduction of an alternative complementation technique that builds on level
rankings and a cut-point construction [KV01]. (Level rankings are functions from the states
Q of a nondeterministc Büchi automaton to {0, 1, . . . , 2|Q|+1}.) The complexity of the plain
method is approximately (6n)n [KV01], leaving a (6e)n gap to Michel’s lower bound [Mic88].

Recently, tight level rankings [FKV06, Yan08]—a special class of level rankings that is
onto a predefined subset—have been exploited by Friedgut, Kupferman, and Vardi [FKV06]
to improved the upper complexity bound to O

(

(0.96n)n
)

, and by Yan [Yan08] to improve

the lower complexity bound to Ω
(

(0.76n)n
)

.
In the remainder of this paper, we first recapitulate the basic complementation tech-

nique of Kupferman and Vardi [KV01], and discuss the core ideas of the improved complexity
analysis of Friedgut, Kupferman, and Vardi [FKV06] and Yan [Yan08]. We then show how
to improve the complementation technique of Friedgut, Kupferman, and Vardi [FKV06]
such that the resulting complementation algorithm meets the known lower bound [Yan08]
modulo a small polynomial factor (quadratic in the size of the automaton that is to be
complemented), and show that, different to older constructions [KV01, GKSV03], we can
achieve an equivalent bound on the number of edges.



BÜCHI COMPLEMENTATION MADE TIGHT 663

2. Preliminaries

2.1. Büchi Automata

Nondeterministic Büchi automata [Büc62] are used to represent ω-regular languages
L ⊆ Σω = ω → Σ over a finite alphabet Σ. A nondeterministic Büchi automaton A =
(Σ, Q, I, δ, F ) is a five tuple, consisting of a finite alphabet Σ, a finite set Q of states with
a non-empty subset I ⊆ Q of initial states, a transition function δ : Q×Σ → 2Q that maps
states and input letters to sets of successor states, and a set F ⊆ Q of final states.

Nondeterministic Büchi automata are interpreted over infinite sequences α : ω → Σ
of input letters. An infinite sequence ρ : ω → Q of states of A is called a run of A on
an input word α if the first letter ρ(0) ∈ I of ρ is an initial state, and if, for all i ∈ ω,
ρ(i + 1) ∈ δ

(

ρ(i), α(i)
)

is a successor state of ρ(i) for the input letter α(i).
A run ρ : ω → Q is called accepting if some finite state appears infinitely often in ρ

(inf (ρ) ∩ F 6= ∅ for inf (ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q}). A word
α : ω → Σ is accepted by A if A has an accepting run on α, and the set L(A) = {α ∈ Σω |
α is accepted by A} of words accepted by A is called its language.

For technical convenience we also allow for finite runs q0q1q2 . . . qn with δ
(

qn, α(n)
)

= ∅.
Naturally, no finite run satisfies the Büchi condition; all finite runs are therefore rejecting,
and have no influence on the language of an automaton.

The two natural complexity measures for a Büchi automaton are the size |Q| of its state
space, and its size

∑

q∈Q, σ∈Σ
1 + |δ(q, σ)|, measured in the size of its transition function.

2.2. Run DAG and Acceptance

In [KV01], Kupferman and Vardi introduce a Büchi complementation algorithm that
uses level rankings as witnesses for the absence of an accepting run.

The set of all runs of a nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ) on a word
α : ω → Σ can be represented by a directed acyclic graph (DAG) Gα = (V,E) with

• vertices V ⊆ Q × ω such that (q, p) ∈ V is in the set V of vertices if and only if
there is a run ρ of A on α with ρ(p) = q, and

• edges E ⊆ (Q× ω)× (Q× ω) such that
(

(q, p), (q′, p′)
)

∈ E if and only if p′ = p + 1

and q′ ∈ δ
(

q, α(p)
)

is a successor of q for the input letter α(p).

We call Gα = (V,E) the run DAG of A for α, and the vertices V ∩ (Q × {i}) of
Gα = (V,E) that refer to the ith position of runs the ith level of Gα = (V,E).

The run DAG Gα is called rejecting if no path in Gα satisfies the Büchi condition.
That is, Gα is rejecting if and only if A rejects α. A can therefore be complemented to a
nondeterministc Büchi automaton B that checks if Gα is rejecting.

The property that Gα is rejecting can be expressed in terms of ranks. We call a vertex
(q, p) ∈ V of a DAG G = (V,E) finite, if the set of vertices reachable from (q, p) in G is
finite, and endangered, if no vertex reachable from (q, p) is accepting (that is, in F × ω).

Based on these definitions, ranks can be assigned to the vertices of a rejecting run DAG.
We set Gα

0 = Gα, and repeat the following procedure until a fixed point is reached, starting
with i = 0:

• Assign all finite vertices of Gα
i the rank i, and set Gα

i+1 to Gα
i minus the states

with rank i (that is, minus the states finite in Gα
i).
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• Assign all endangered vertices of Gα
i+1 the rank i+1, and set Gα

i+2 to Gα
i+1 minus

the states with rank i + 1 (that is, minus the states endangered in Gα
i+1).

• Increase i by 2.

A fixed point is reached in n + 1 steps, and the ranks can be used to characterize the
complement language of a nondeterministic Büchi automaton:

Proposition 2.1. [KV01] A nondeterministic Büchi automaton A with n states rejects a
word α : ω → Σ if and only if Gα

2n+1 is empty.

To see that a fixed point is reached after n + 1 iterations, note that deleting all finite
or endangered vertices leaves a DAG without finite or endangered vertices, respectively.
Hence a fixed point is reached as soon as we do not assign a rank i to any vertex. By
construction, no DAG Gα

2i+1 contains finite vertices. If it contains an endangered vertex v,
then all vertices reachable from v are endangered, too. This implies that some vertex of
almost all levels is assigned the rank 2i+ 1. Hence, if no fixed point is reached earlier, some
rank is assigned to all vertices of almost all levels after n iterations (there cannot be more
than n vertices in a level), and all vertices in Gα

2n must be finite.
If the reached fixed point Gα

∞ is non-empty, then it contains only infinite and non-
endangered vertices, and constructing an accepting run from Gα

∞ is simple. Vice versa, an
accepting run ρ on an ω-word α can be viewed as an infinite sub-graph of Gα that does
not contain finite or endangered nodes. By a simple inductive argument, the sub-graph
identified by ρ is therefore a sub-graph of Gα

i for all i ∈ ω, and hence of Gα
∞.

2.3. Büchi Complementation

The connection between Büchi complementation, run DAGs and ranks leads to an
elegant complementation technique. We call the maximal rank of a vertex in a level the
rank of this level, the rank of almost all vertices (ρ(i), i), i ∈ ω of a run ρ (or: path in G)
the rank of ρ, and the rank of almost all levels of a DAG G the rank of G. (Note that level
ranks can only go down, and that vertex ranks can only go down along a path.)

For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ) with n states, we
call a function f : Q → {0, 1, . . . , 2n} that maps all accepting states to odd numbers
(f(F ) ∩ 2ω = ∅) a level ranking.

Proposition 2.2. [KV01] For a given nondeterministic Büchi automaton A =
(Σ, Q, I, δ, F ), the nondeterministic Büchi automaton B = (Σ, Q′, I ′, δ′, F ′) with

• Q′ = 2Q × 2Q ×R,
• I ′ = {I} × {∅} ×R,
• δ′

(

(S,O, f), σ) =
{(

δ(S, σ), δ(O,σ) r odd(f ′), f ′
)

| f ′ ≤S
σ f, O 6= ∅

}

∪
{(

δ(S, σ), δ(S, σ) r odd(f ′), f ′
)

| f ′ ≤S
σ f, O = ∅

}

, and

• F ′ = 2Q × {∅} ×R,

where

• R is the set of all level rankings of A,
• odd(f) = {q ∈ Q | f(q) is odd}, and
• f ′ ≤S

σ f :⇔ ∀q ∈ S, q′ ∈ δ(q, σ). f ′(q′) ≤ f(q),

accepts the complement L(B) = L(A) = Σω r L(A) of the language of A.
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The first element S of a triple (S,O, f) ∈ Q′ reflects the set of states of A reachable
upon the input seen so far (the states in the respective level of the run DAG), and the third
element f is a mapping that intuitively maps reachable states to their rank.

The condition f ′ ≤S
σ f ensures that the rank of the vertices (or rather: the value

assigned to them) is decreasing along every path of the run DAG. The second element is
used for a standard cut-point construction, comparable to the cut-point constructions in
the determinization of Co-Büchi automata or the nondeterminization of alternating Büchi
automata. It contains the positions whose rank (or rather: the value assigned to them) has
been even ever since the last cut-point (O = ∅) was reached; it intuitively ensures that the
respective vertices are finite.

2.4. Tight Level Rankings

Friedgut, Kupferman, and Vardi [FKV06] improved this complementation technique by
exploiting the observation that the true ranks of the run DAG Gα of a rejected ω-word α are
eventually always tight. A level ranking f : Q → ω is called tight, if it has an odd rank r,
and is onto the odd numbers {1, 3, . . . , r} up to its rank r, and S-tight, if its restriction to
S is tight and if it maps all states not in S to 1 (f(q) = 1 ∀q ∈ Q r S).

Proposition 2.3. [FKV06] For every run DAG Gα with finite rank r, it holds that

• r is odd, and
• there is a level l ≥ 0 such that, for all levels l′ ≥ l and all odd ranks o ≤ r, there is

a node (q, l′) ∈ Gα with rank o in Gα.

This immediately follows from what was said in Subsection 2.2 on reaching a fixed point
after n+1 iterations: If the rank Gα is r then, for every odd number o ≤ r, almost all levels
contain a vertex with rank o, and assuming that r is even implies that all vertices of Gα

r

are finite, which in turn implies that only finitely many levels contain a vertex with rank r
and hence leads to a contradiction.

Using this observation, the construction from Proposition 2.2 can be improved by es-
sentially replacing R by the set T = {f ∈ R | f is tight} of tight level rankings. While the
size |R| = (2n + 1)n of R is in θ

(

(2n)n
)

, the size of T ,

tight(n) = |T |,

is much smaller. Building on an approximation of Stirling numbers of the second kind by
Temme [Tem93], Yan and Friedgut, Kupferman, and Vardi [FKV06, Yan08] showed that
tight(n) can be approximated by (κn)n for a constant κ ≈ 0.76, that is, they showed

κ = lim
n→∞

n
√

tight(n)

n
≈ 0.76.

Friedgut, Kupferman, and Vardi [FKV06] use this observation—together with other
improvements—for an improved complementation algorithm that produces a complement
automaton with approximately (0.96n)n states [FKV06].

Yan [Yan08] showed for full automata—a family of automata that has exactly one
accepting state, and an alphabet that encodes the possible transitions between the states of
the automaton—that every nondeterministic Büchi automaton that accepts the complement
language of a full automaton with n + 1 states must have Ω

(

tight(n)
)

states.

Proposition 2.4. [Yan08] A nondeterministic Büchi automaton that accepts the comple-
ment language of a full Büchi automaton with n states has Ω

(

tight(n− 1)
)

states.
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3. Efficient Büchi Complementation

To optimize the construction from Proposition 2.2, we turn not only to tight functions
(c.f. [FKV06]), but also refine the cut-point construction. While the cut-point construction
of Proposition 2.2 tests concurrently for all even ranks if a path has finite even rank, we
argue that it is much cheaper to test this property turn wise for all even ranks individually.
As a result, the overall construction becomes more efficient and meets, modulo a small
polynomial factor in O(n2), the lower bound recently established by Yan [Yan08].

3.1. Construction

The obtained state space reduction of the proposed construction compared to [FKV06]
is due to an efficient cut-point construction in combination with the restriction to tight
rankings. The improved cut-point construction is inspired by the efficient translation from
generalized to ordinary Büchi automata. Indeed, the acceptance condition that no trace has
an arbitrary even rank, which is reflected by the straight-forward acceptance condition of
previous algorithms [KV01, FKV06], can be replaced by an acceptance condition, which only
rules out that some trace has a particular even rank, but does so for all potential even ranks.

Checking the condition for a particular even rank allows for focusing on exactly this
rank in the cut-point construction, which led to a significant cut in the size of the resulting
state space. While this approach cannot be taken if we literally use a generalized Büchi
condition, the idea of cyclically considering the relevant even ranks proves to be feasible.
Construction: For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ) with
n = |Q| states, let C = (Σ, Q′, I ′, δ′, F ′) denote the nondeterministic Büchi automaton with

• Q′ = Q1 ∪Q2 with
– Q1 = 2Q and
– Q2 = {(S,O, f, i) ∈ 2Q × 2Q × T × {0, 2, . . . , 2n− 2} |

f is S-tight, O ⊆ S and ∃i ∈ ω. O ⊆ f−1(2i)},
• I ′ = {I},
• δ′ = δ1 ∪ δ2 ∪ δ3 for

– δ1 : Q1 × Σ → 2Q1 with δ1(S, σ) = {δ(S, σ)},
– δ2 : Q1 × Σ → 2Q2 with (S′, O, f, i) ∈ δ2(S, σ) ⇔ S′=δ(S, σ), O=∅, and i=0,
– δ3 : Q2 × Σ → 2Q2 with (S′, O′, f ′, i′) ∈ δ3

(

(S,O, f, i), σ
)

⇔ S′ = δ(S, σ), f ′ ≤S
σ f , rank(f) = rank (f ′), and

∗ i′ = (i + 2) mod (rank (f ′) + 1) and O′ = f ′−1(i′) if O = ∅ or

∗ i′ = i and O′ = δ(O,σ) ∩ f ′−1(i) if O 6= ∅, respectively, and
• F ′ = {∅} ∪ (2Q × {∅} × T × ω) ∩Q2.

The complement automaton C operates in two phases. In a first phase it only traces the
states reachable in A upon a finite input sequence. In this phase, only the states in Q1 and
the transition function δ1 are used. In the special case that A rejects an ω-word α because
A has no run on α, C accepts by staying forever in phase one, because {∅} is final.

C intuitively uses its nondeterministic power to guess a point in time where all successive
levels are tight and have the same rank. At such a point, C traverses from Q1 to Q2, using
a transition from δ2. Staying henceforth in Q2 (using the transitions from δ3), C intuitively
verifies turn wise for all potential even ranks e that no path has this particular even rank e.
For a particular rank e, it suffices to trace the positions on traces with unchanged rank e
(hence O ⊆ f−1(e)), and to cyclically update the designated even rank after every cut-point.
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3.2. Correctness

To show that the automaton C from the construction introduced in the previous subsec-
tion recognises the complement language of A, we first show that the complement language
of C contains the language of A (L(A) ⊆ L(C)), and then that the complement language of

A is contained in the language of C (L(A) ⊆ L(C)).

Lemma 3.1. If a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ) accepts an

ω-word α : ω → Σ, then α is rejected by the automaton C = (Σ, Q′, I ′, δ′, F ′). (L(A) ⊆ L(C))

Proof. Let ρ : ω → Q be an accepting run of A on α. First, ρ′ = S0, S1, S2 . . . with S0 = I
and Si+1 = δ

(

Si, α(i)
)

for all i ∈ ω is no accepting run of C, because ρ(i) ∈ Si and hence
no state of ρ′ is accepting (∅ 6= Si /∈ F ′ for all i ∈ ω). Let now

ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . .

be a run of C on α. Again, we have that ρ(j) ∈ Sj for all j ∈ ω. Furthermore, the construction

guarantees that fj+1 ≤
S
α(j) fj holds for all j > p. The sequence

fp+1(ρ(p + 1)
)

≥ fp+2(ρ(p + 2)
)

≥ fp+3(ρ(p + 3)
)

≥ . . .

is therefore decreasing, and stabilizes eventually. That is, there is a k > p and a v ≤ 2n such
that fl

(

ρ(l)
)

= v for all l ≥ k. Since ρ is accepting, there is a position l ≥ k with ρ(l) ∈ F .

Taking into account that fl is a level ranking, this implies that fl

(

ρ(l)
)

—and hence v—is
even. Assuming that ρ′ is accepting, we can infer that, for some position l > k which follows
one of the first n accepting states of ρ′ after position k, il = v and Ol = f−1

l (v) ∋ ρ(l). It

is now easy to show by induction that, for all m ≥ l, im = v and (using fm

(

ρ(m)
)

= v))
ρ(m) ∈ Om 6= ∅ hold true, which contradicts the assumption that ρ′ is accepting.

To proof the second lemma, L(A) ⊆ L(C), we use Propositions 2.1 and 2.3 to infer that
the run DAG Gα of an ω-word rejected by A is either finite or has odd bounded rank and
only finitely many non-tight level rankings. We use this to build an accepting run of C on α.

Lemma 3.2. For a nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ), the automaton

C = (Σ, Q′, I ′, δ′, F ′) accepts an ω-word α : ω → Σ if α is rejected by A. (L(A) ⊆ L(C))

Proof. If α : ω → Σ is rejected by A, then the run DAG Gα has bounded rank by Propo-
sition 2.1, and by Proposition 2.3 almost all levels of Gα have tight level rankings with the
same rank r. For the special case that the rank of all vertices of Gα is 0, that is, if all vertices
of Gα are finite, ρ′ = S0, S1, S2 . . . with S0 = I and Si+1 = δ

(

Si, α(i)
)

for all i ∈ ω is an
accepting run of C on α.

If Gα contains an infinite vertex, then we fix a position p ∈ ω such that the rank of all
levels p′ ≥ p of Gα is r and tight for some (odd) r ≥ 1. We now consider a run

ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . . of C on α with

• S0 = I, Op+1 = ∅, and ip+1 = 0,
• Sj+1 = δ

(

Sj, α(j)
)

for all j ∈ ω, and

• Oj+1 = f−1
j+1(ij+1) if Oj = ∅ or

Oj+1 = δ
(

Oj, α(j)
)

∩ f−1
j+1(ij+1) if Oj 6= ∅, respectively, for all j > p,

• fj is the Sj-tight level ranking that maps each state q∈Sj to the rank of (q, j) ∀j>p,
• ij+1 = ij if Oj 6= ∅ or

ij+1 = (ij + 2) mod (rank (f) + 1) if Oj = ∅, respectively, for all j > p.
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ρ′ is obviously a run of C on α. To show that ρ′ is accepting, we have to show that
Oj is empty infinitely many times. Let us assume that this is not the case; that is, let us
assume that there is a last element ρ′(j) with Oj = ∅ and Ok 6= ∅ for all k > j. (Note that
Op+1 = ∅ is empty.) Then we have that ik = ij+1 for all k > j, and it is easy to show by

induction for all k > j that Ok×{k} is the set of states reachable in Gα
ij+1 from some state

in Oj+1×{j + 1}. But since the rank of all states in Oj+1×{j + 1} is ij+1 (and thus even),

all of these states are finite in Gα
ij+1 , which implies that there are only finitely many states

reachable in Gα
ij+1 from Oj+1 × {j + 1}, and thus contradicts the assumption that Ok 6= ∅

is non-empty for all k > j.

The two lemmata of this subsection immediately imply the claimed language comple-
mentation:

Corollary 3.3. For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ), the
automaton C resulting from the construction introduced in Subsection 3.1 recognises the
complement language of A. (L(C) = L(A))

3.3. Complexity

The costly part in previous approaches [KV01, FKV06] that the proposed method
avoids (de facto, although not technically), is a subset construction in addition to the level
rankings. Avoiding the subset construction results in a state space reduction by a factor
exponential in the size of the automaton A, and even to upper bounds comparable to the
established lower bounds [Yan08].

The subset construction is de facto avoided, because it can be encoded into the ranking
function once we allow for a slightly enlarged set of output values. For example, we could
map all states not in S to −1, and all states in O to −2. Following this convention, the first
two elements of every tuple in Q2 could be pruned. (They remain explicit in the construction
because this representation is more comprehensible, and outlines the connection to the older
constructions of Friedgut, Kupferman, and Vardi [KV01, FKV06].

Theorem 3.4. For a given nondeterministic Büchi automaton A with n states, the au-
tomaton C has O

(

tight(n + 1)
)

states.

Proof. Q1 is obtained by a simple subset construction, and hence Q1 ∈ O(2n), which is a
small subset of O

(

tight(n+1)
)

. For a fixed i, a state (S,O, f, i) with an S-tight level ranking
f of rank r can be represented by a function g : Q → {−2,−1, . . . , r} that maps every state
q ∈ O to g(q) = −1, every state q ∈ Q r S not in S to g(q) = −2, and every other state
q ∈ S r O to g(q) = f(q). Every such function g either has a domain g(Q) ⊆ {0, 1, . . . , r}
and is onto {1, 3, . . . , r}, or is a function to {−2,−1, . . . , r} and onto {−1}∪{1, 3, . . . , r} or
{−2} ∪ {1, 3, . . . , r}. The size of all three groups of functions is hence in O

(

tight(n)
)

(for a

fixed i), which results in an overall size in O
(

tight(n + 1)
)

= O
(

n · tight(n)
)

.

Together with Proposition 2.4, this establishes tight bounds for Büchi complementation:

Corollary 3.5. The minimal size of the state space of a nondeterministic Büchi automaton
that accept the complement language of a nondeterministic Büchi automaton with n states
is in Ω

(

tight(n− 1)
)

and O
(

tight(n + 1)
)

.
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4. Reduced Average Outdegree

A flaw in the construction presented in Section 3 is that it is optimal only with respect
to the state space of the automata. In [KV01], Kupferman and Vardi discuss how to reduce
the number of edges such that the bound on the number of edges becomes trilinear in the
alphabet size, the bound on the number of states, and the rank of the resulting automaton
(see also [GKSV03]). In this section we improve the construction from the previous section
such that the bound on the number of edges is merely bilinear in the bound on the number
of states and the size of the input alphabet. The technique can be adapted to generally
restrict the outdegree to |δ(q, σ)| ≤ 2 when level rankings are not required to be tight.

4.1. Construction

The automaton C obtained from the construction described in Section 3 operates in
two phases. In a first phase, it stays in Q1 and only tracks the reachable states of the Büchi
automata A it complements. It then guesses a point p ∈ ω such that all levels j > p of Gα

have a tight level ranking to transfer to Q2.
We improve over the construction of Section 3 by restricting the number of entry points

to Q2 from O
(

tight(n)
)

to O(n!), and by restricting the number of outgoing transitions
|δ(q, σ)| ≤ 2 for all states q ∈ Q2 and input letters σ ∈ Σ to two. The latter is achieved by
allowing only the successor (S,O, f, i) ∈ δ3(q, σ) with a point wise maximal function f (the
γ3-transitions) or with a function f that is maximal among the final states (S,O, f, i) ∈
δ3(q, σ) ∩ F among them (the γ4-transitions). If such elements exist, then they are unique.

The first restriction is achieved by restricting δ2 to states (S,O, f, i) for which f is
maximal with respect to S. We call an S-tight level ranking f with rank r maximal with
respect to S if it maps all final states q ∈ F ∩ S in S to r − 1, exactly one state to every
odd number o < r smaller than r (|f−1(o)| = 1) and all remaining states of S to r, and
denote the set of tight rankings that are maximal with respect to S by MS = {f ∈ T |
f is maximal with respect to S}.

As there are only |Q1| ≤ 2n states in Q1, the impact of their high outdegree is out-
weighed by the small outdegree (|δ(q, σ)| ≤ 2) of the remaining |Q2| ∈ O

(

tight(n + 1)
)

states.
Construction: For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ) with n =
|Q| states, let D = (Σ, Q′, I ′, γ, F ′) denote the nondeterministic Büchi automaton with Q′,
I ′, F ′, Q1, Q2, and δ1 as in the construction from Section 3, and with γ = δ1∪γ2∪γ3∪γ4 for

• γ2 : Q1×Σ → 2Q2 with (S′, O, g, i) ∈ γ2(S, σ) ⇔ (S′, O, g, i) ∈ δ2(S, σ) and g ∈MS′ ,
• γ3 : Q2×Σ → 2Q2 with γ3

(

(S,O, f, i), σ
)

= {max g

{

(S′, O′, g, i′)∈δ3

(

(S,O, f, i), σ
)}

,

• γ4 : Q2 ×Σ → 2Q2 with (S′, O′′, g′, i′) ∈ γ4

(

(S,O, f, i), σ
)

if

(S′, O′, g, i′) ∈ γ3

(

(S,O, f, i), σ
)

, O′′ = ∅, i′ 6= 0 ∨O′ = ∅, and
g′(q) = g(q) − 1 for all q ∈ O′ and g′(q) = g(q) otherwise,

where max g

{

(S′, O′, g, i′) ∈ δ3

(

(S,O, f, i), σ
)}

selects the unique element with a (point
wise) maximal function g. The supremum over all function obviously exists, but it is not
necessarily tight. (In this case, max g returns the empty set.) Since δ3 is strict with respect
to the selection of the other three elements S′, O′ and i′ for a fixed ranking function, the
mapping of γ3 consists only of singletons and the empty set.

While γ3 selects a maximal successor, γ4 selects a maximal final successor, which only
requires to decrease the value assigned to the states in O′ by the ranking function g by one.
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(Which cannot be done if their value is already 0, hence the restriction i 6= 0 or O′ = ∅.)
The tightness of g′ is then inherited from the tightness of g.

4.2. Correctness

While it is clear that the language of D is contained in the language of C, the converse
is less obvious. To prove L(C) ⊆ L(D), we show that any ω-word α rejected by A will be
accepted by D by exploiting the “standard” run ρ′ of C on α from the proof of Lemma 3.2
to build an accepting run ρ′′ of D on α.

Proposition 4.1. For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F ), the
automaton D resulting from the construction introduced in Subsection 4.1 accepts an ω-word
α : ω → Σ if and only if α is rejected by A. (L(D) = L(A))

Proof. We show L(D) = L(A) by demonstrating L(A) ⊆ L(D) ⊆ L(C) ⊆ L(A), where the
second inclusion is implied by the fact that every (accepting) run of D is also an (accepting)
run of C, and the third inclusion is shown in Lemma 3.1.

To demonstrate L(A) ⊆ L(D), we reuse the proof of Lemma 3.2 to obtain an accepting
run ρ′ = S0, S1, S2, . . . , Sp, (Sp+1, Op+1, fp+1, ip+1), (Sp+2, Op+2, fp+2, ip+2), . . . for C, where
fj(q) is the rank of (q, j) in Gα for all j > p and q ∈ Sj. (If A has no run on α, then D has
the same accepting standard run on α that stays in Q1 as C.)

Let us pick an Sp+1-tight ranking function gp+1 with the same rank as fp+1 that is
maximal with respect to Sp+1. We show that we then can construct the run

ρ′′ = S0, S1, S2, . . . , Sp, (Sp+1, O
′

p+1, gp+1, i
′

p+1), (Sp+2, O
′

p+2, gp+2, i
′

p+2), . . .

of D on α that satisfies Op+1 = ∅, and ip+1 = 0 and, for all j > p,

• (Sj+1, O
′

j+1, gj+1, i
′

j+1) ∈ γ4

(

(Sj , O
′

j , gj , i
′

j), α(j)
)

if Oj+1 = ∅ and ij+1 = i′j+1

(note that i′j+1 does not depend on taking the transition from γ3 or γ4), and

• (Sj+1, O
′

j+1, gj+1, i
′

j+1) ∈ γ3

(

(Sj , O
′

j , gj , i
′

j), α(j)
)

otherwise.

To show by induction that gj ≥ fj holds true for all j > p (where ≥ is the point wise
comparison), we strengthen the claim by claiming additionally that if, for some position
k > p, ρ′(k) is a final state, i′k+1 = ik+1 holds true, and k′ > k is the next position for which
ρ′′(k′) is final, then q ∈ O′j implies q ∈ Oj ∨ gj(q) > fj(q) for all k < j ≤ k′.

For j = p + 1 this holds trivially (basis). For the induction step, let us first consider
the case of γ3-transitions. Then gj+1 ≥ fj+1 is implied, because gj+1 is maximal among the

Sj+1-tight level rankings ≤
Sj

α(j) gj , and gj ≥ fj holds by induction hypothesis. If ρ′(j) is a

final state and i′j+1 = ij+1 holds true, then Oj+1 = fj
−1(ij+1), and hence q ∈ O′j implies

gj+1(q) = i′j+1 = ij+1, which implies q ∈ Oj+1 ∨ gj+1(q) > fj+1(q) (using gj+1 ≥ fj+1).

If a γ4-transition is taken, then taking a γ3-transition implied gj+1 ≥ fj+1 and gj+1(q) =
i′j+1 = ij+1 ⇒ gj+1(q) > fj+1(q) (note that Oj+1 is empty) by the previous argument. This

immediately implies gj+1 ≥ fj+1 for the γ4-transition. Consequently, Oj+1 = fj
−1(ij+1)

(which holds as ρ′(j) is final) entails that q ∈ O′j implies q ∈ Oj+1 ∨ gj+1(q) > fj+1(q).
It remains to show that all functions gj are Sj-tight level rankings. To demonstrate

this, let q ∈ Sp+1 be a state of the automaton A such that gp+1(q) = o is the rank of
(q, p+1) in Gα for an odd number o ≤ r. (Such a state exists for every odd number o ≤ r by
construction.) Since (q, p+1) is endangered but not finite in Gα

o, all nodes (q′, j) with j > p
reachable from (q, p + 1) in Gα

o form an infinite connected sub-DAG of Gα
o, all of whose
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nodes have rank o. (Which, by the proof in Lemma 3.2, entails that fj(q
′) = o holds for

every vertex (q′, j) of this sub-DAG.) By definition of ρ′′, it is easy to show by induction that
gj(q

′) ≤ o holds for all of these nodes (q′, j). As we have just demonstrated gj(q
′) ≥ fj(q

′),
this entails gj(q

′) = o. Since o can be any odd number less or equal to the rank r of Gα, and
since there is, for every j > p, some vertex (q′, j) reachable from (q, p + 1) in Gα

o, gj is an
Sj-tight level ranking for all j > p.

Finally, the assumption that O′j is empty only finitely many times implied that there

was a last position k such that O′k is empty. But this implies that ij is stable for all j > k,
and within the next n visited fixed points in ρ′ there is one that refers to this ik+1. By
construction of ρ′′, this position is a final state in ρ′′, too.  

4.3. Complexity

Extending the tight bound of Section 3 for the state space to a tight bound on the size
of the complement automaton is simple: The mappings of δ1, γ3, and γ4 consist of singletons
or the empty set, such that only the size of γ2 needs to be considered more closely.

Theorem 4.2. For a given nondeterministic Büchi automaton A with n states and an
alphabet of size s, the automaton D has size O

(

s tight(n + 1)
)

.

Proof. For all S ∈ Q1 and σ ∈ Σ, we have that γ2(S, σ) = {S′} × {∅} × MS′ × {0} for
S′ = δ(S). Thus, |γ2(S, σ)| = |MS′ |, which can be estimated by

∑m
i=1

m!
i! for m = |S′ r F |,

which is in O(n!). Thus
∑

S∈Q1, σ∈Σ
|γ2(S, σ)| ∈ O(s 2n n!) ( o

(

s tight(n)
)

holds true.

(2n n! ≈
(

2n
e

)n
≈ (0.74n)n, whereas tight(n) ≈ (0.76n)n.) The claim thus follows with

Theorem 3.4, and |δ1(q1, σ)| = 1 and |γ3(q2, σ)|, |γ4(q2, σ)| ≤ 1 for all q1 ∈ Q1, q2 ∈ Q2 and
σ ∈ Σ.

Together with Proposition 2.4, this establishes tight complexity bounds for Büchi com-
plementation:

Corollary 4.3. The complexity of complementing nondeterministic Büchi automata with
n states is in Ω

(

tight(n−1)
)

and O
(

tight(n+1)
)

. The discussed complementation technique

is therefore optimal modulo a small polynomial factor in O(n2).

5. Discussion

This paper marks the end of the long quest for the precise complexity of the Büchi
complementation problem. It shows that the previously known lower bound is sharp, which
is on one hand surprising, because finding tight lower bounds is generally considered the
harder problem, and seems on the other hand natural, because Yan’s lower bound builds
on the concept of tight level rankings alone [Yan08], while the previously known upper
bound [FKV06] incorporates an additional subset construction and builds on estimations
on top of this, leaving the estimations of the lower bound the simpler concept of the two.

Similar to the complexity gap in Büchi complementation twenty years ago, the com-
plexity of Büchi determinization is known to be in nθ(n), but there is also an nθ(n) gap
between the upper [Sch09] and lower [Yan08] bound. Tightening the bounds for Büchi de-
terminization appears to be the natural next step after the introduction of an optimal Büchi
complementation algorithm.
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ABSTRACT. Canonical models are of central importance in modal logic,in particular as they wit-
ness strong completeness and hence compactness. While the canonical model construction is well
understood for Kripke semantics, non-normal modal logics often present subtle difficulties – up to
the point that canonical models may fail to exist, as is the case e.g. in most probabilistic logics. Here,
we present a generic canonical model construction in the semantic framework of coalgebraic modal
logic, which pinpoints coherence conditions between syntax and semantics of modal logics that guar-
antee strong completeness. We apply this method to reconstruct canonical model theorems that are
either known or folklore, and moreover instantiate our method to obtain new strong completeness
results. In particular, we prove strong completeness of graded modal logic with finite multiplicities,
and of the modal logic of exact probabilities.

In modal logic, completeness proofs come in two flavours:weakcompleteness, i.e. derivability of
all universally valid formulas, is often proved usingfinite modelconstructions, andstrong com-
pleteness, which additionally allows for a possibly infinite set of assumptions. The latter entails
recursive enumerability of the set of consequences of a recursively enumerable set of assumptions,
and is usually established using (infinite)canonical models. The appeal of the first method is that it
typically entails decidability. The second method yields astronger result and has some advantages
of its own. First, it applies in some cases where finite modelsfail to exist, which often means that the
logic at hand is undecidable. In such cases, a completeness proof via canonical models will at least
salvage recursive enumerability. Second, it allows for schematic axiomatisations, e.g. pertaining to
the infinite evolution of a system or to observational equivalence, i.e. statements to the effect that
certain states cannot be distinguished by any formula.

In the realm of Kripke semantics, canonical models exist fora large variety of logics and are
well understood, see e.g. [2]. But there is more to modal logic than Kripke semantics, and indeed
the natural semantic structures used to interpret a large class of modal logics go beyond pure re-
lations. This includes e.g. the selection function semantics of conditional logics [4], the semantics
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of probabilistic logics in terms of probability distributions, and the game frame semantics of coali-
tion logic [16]. To date, there is very little research that provides systematic criteria, or at least
a methodology, for establishing strong completeness for logics not amenable to Kripke semantics.
This is made worse as the question of strong completeness crucially depends on the chosen semantic
domain, which as illustrated above may differ widely. It is precisely this variety in semantics that
makes it hard to employ the strong-completeness-via-canonicity approach, as in many cases there
is no readily available notion of canonical model. The present work improves on this situation by
providing a widely applicable generic canonical model construction. More precisely, we establish
the existence of quasi-canonical models, that is, models based on the set of maximally consistent
sets of formulas that satisfy the truth lemma, as there may beno unique, or canonical, such model in
our more general case. In order to cover the large span of semantic structures, we avoid a commit-
ment to a particular class of models, and instead work withinthe framework of coalgebraic modal
logic [15] which precisely provides us with a semantic umbrella for all of the examples above. This
is achieved by using coalgebras for an endofunctorT as the semantic domain for modal languages.
As we illustrate in examples, the semantics of particular logics is then obtained by particular choices
of T . Coalgebraic modal logic serves in particular as a general semantic framework for non-normal
modal logics. As such, it improves on neighbourhood semantics in that it retains the full semantic
structure of the original models (neighbourhood semanticsoffers only very little actual semantic
structure, and in fact may be regarded as constructed from syntactic material [18]).

In this setting, our criterion can be formulated as a set of coherence conditions that relate
the syntactic component of a logic to its coalgebraic semantics, together with a purely semantic
condition stating that the endofunctorT that defines the semantics needs to preserve inverse limits
weakly, and thus allows for a passage from the finite to the infinite. We are initially concerned with
the existence of quasi-canonical models relative to the class ofall T -coalgebras, that is, whith logics
that are axiomatisable by formulas of modal depth uniformlyequal to one [17]. As in the classical
theory, the corresponding result for logics with extra frame conditions requires that the logic is
canonical, i.e. the frame that underlies a quasi-canonicalmodel satisfies the frame conditions, which
holds in most cases, but for the time being needs to be established individually for each logic.

Our new criterion is then used to obtain both previously known and novel strong completeness
results. In addition to positive results, we dissect a number of logics for which strong completeness
fails and show which assumption of our criterion is violated. In particular, this provides a handle
on adjusting either the syntax or the semantics of the logic at hand to achieve strong completeness.
For example, we demonstrate that the failure of strong completeness for probabilistic modal logic
(witnessed e.g. by the set of formulas assigning probability ≥ 1 − 1/n to an event for alln but ex-
cluding probability1) disappears in the logic of exact probabilities. Moreover,we show that graded
modal logic, and more generally any description logic [1] with qualified number restrictions, role
hierarchies, and reflexive, transitive, and symmetric roles, is strongly complete over the multigraph
model of [5], which admits infinite multiplicities. While strong completeness fails for the naive
restriction of this model to multigraphs allowing only finite multiplicities, we show how to salvage
strong completeness using additive (finite-)integer-valued measures. Finally, we prove strong com-
pleteness of several conditional logics w.r.t. conditional frames (also known as selection function
models); for at least one of these logics, strong completeness was previously unknown.

1. Preliminaries and Notation

Our treatment of strong completeness is parametric in both the syntax and the semantics of a wide
range of modal logics. On the syntactic side, we fix amodal similarity typeΛ consisting of modal
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operators with associated arities. Given a similarity typeΛ and a countable setP of atomic propo-
sitions, the setF(Λ) of Λ-formulasis inductively defined by the grammar

F(Λ) ∋ φ,ψ ::= p | ⊥ | ¬φ | φ ∧ ψ | L(φ1, . . . , φn)

wherep ∈ P andL ∈ Λ is n-ary; further boolean operators (∨,→, ↔, ⊤) are defined as usual.
Given any setX (e.g. of formulas, atomic propositions, or sets (!)), we write Prop(X) for the set
of propositional formulas overX andΛ(X) = {L(x1, . . . , xn) | L ∈ Λ is n-ary, x1, . . . , xn ∈ X}
for the set of formulas arising by applying exactly one operator to elements ofX. We instantiate
our results to a variety of settings later with the followingsimilarity types:

Examples 1.1. 1. The similarity typeΛK of standard modal logic consists of a single unary
operator2.

2. Conditional logic [4] is defined over the similarity typeΛCL = {⇒} where the binary operator
⇒ is read as a non-monotonic conditional (default, relevant etc.), usually written in infix notation.

3. Graded modal operators [8] appear in expressive description logics [1] in the guise of so-called
qualified number restrictions; although we discuss only modal aspects, we use mostly description
logic notation and terminology below. The operators of graded modal logic (GML) areΛGML =
{(≥ k) | k ∈ N} with (≥ k) unary. We write≥ k. φ instead of(≥ k)φ. A formula≥ k. φ is read as
‘at leastk successor states satisfyφ’, and we abreviate2φ = ¬≥ 1.¬φ.

4. The similarity typeΛPML of probabilistic modal logic (PML) [14] contains the unary modal
operatorsLp for p ∈ Q ∩ [0, 1], read as ‘with probability at leastp, . . . ’.

We split axiomatisations of modal logics into two parts: thefirst group of axioms is responsible for
axiomatising the logic w.r.t. the class ofall (coalgebraic) models, whereas the second consists of
frame conditions that impose additional conditions on models. As the class of all coalgebraic mod-
els, introduced below, can always be axiomatised by formulas of rank1, i.e. containing exactly one
level of modal operators [17] (and conversely, every collection of such axioms admits a complete
coalgebraic semantics [18]), we restrict the axioms in the first group accordingly. More formally:

Definition 1.2. A (modal) logic is a tripleL = (Λ,A,Θ) whereΛ is a similarity type,A ⊆
Prop(Λ(Prop(P ))) is a set ofrank-1 axioms, andΘ ⊆ F(Λ) is a set offrame conditions. We
say thatL is a rank-1 logic if Θ = ∅. If φ ∈ F(Λ), we write ⊢L φ if φ can be derived from
A∪Θ with the help of propositional reasoning, uniform substitution, and the congruence rule: from
φ1 ↔ ψ1, . . . , φn ↔ ψn infer L(φ1, . . . , φn) ↔ L(ψ1, . . . , ψn) wheneverL ∈ Λ is n-ary. For
a setΦ ⊆ F(Λ) of assumptions, we writeΦ ⊢L φ if ⊢L φ1 ∧ · · · ∧ φn → φ for (finitely many)
φ1, . . . , φn ∈ Φ. A setΦ isL-inconsistentif Φ ⊢L ⊥, and otherwiseL-consistent.

Examples 1.3. 1. The modal logicK comes about as the rank-1 logic(ΛK ,AK , ∅) whereAk =
{2⊤,2(p → q) → (2p → 2q)}. The logicsK4, S4,KB, . . . arise as(ΛK ,AK ,Θ) whereΘ
contains the additional axioms that define the respective logic [2], e.g.Θ = {2p → 22p} in the
case ofK4.

2. For conditional logic, we take the similarity typeΛCL together with rank-1 axiomsr ⇒ ⊤,
r ⇒ (p → q) → ((r ⇒ p) → (r ⇒ q)) stating that the binary conditional is normal in its second
argument. Typical additional rank-1 axioms are

(ID) a⇒ a (identity)
(DIS) (a⇒ c) ∧ (b⇒ c)→ ((a ∨ b)⇒ c) (disjunction)
(CM) (a⇒ c) ∧ (a⇒ b)→ ((a ∧ b)⇒ c) (cautious monotony)

which together form the so-calledSystem C, a modal version of the well-known KLM
(Krauss/Lehmannn/Magidor) axioms of default reasoning due to Burgess [3].
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3. The axiomatisation of GML given in [8] consists of the rank-1 axioms
2(p→ q)→ (2p→ 2q)
≥ k. p→ ≥ l. p for l < k
≥ k. p↔

∨
i=0,...,k≥ i. (p ∧ q) ∧ ≥(k − i). (p ∧ ¬q)

2(p→ q)→ (≥ k. p→ ≥ k. q)
Frame conditions of interest include e.g. reflexivity (p → ≥ 1. p), symmetry (p → 2 ≥ 1. p), and
transitivity (≥ 1. ≥n. p→ ≥n. p).

To keep our results parametric also in the semantics of modallogic, we work in the framework of
coalgebraic modal logicin order to achieve a uniform and coherent presentation. In this framework,
the particular shape of models is encapsulated by an endofunctor T : Set → Set, thesignature
functor (recall that such a functor maps every setX to a setTX, and every mapf : X → Y to a
mapTf : TX → TY in such a way that composition and identities are preserved), which may be
thought of as a parametrised data type. We fix the dataΛ, L, T etc. throughout the generic part of
the development. The role of models in then played byT -coalgebras:

Definition 1.4. A T -coalgebrais a pairC = (C, γ) whereC is a set (thestate spaceof C) and
γ : C → TC is a function, the transition structure ofC.

We think ofTC as a type of successors, polymorphic inC. The transition structureγ associates
a structured collection of successorsγ(c) to each statex ∈ C. The following choices of signature
functors give rise to the semantics of the modal logics discussed in Expl. 1.3.

Examples 1.5. 1. Coalgebras for the covariant powerset functorP defined on setsX byP(X) =
{A | A ⊆ X} and on mapsf by P(f)(A) = f [A] are Kripke frames, as relationsR ⊆ W ×W
on a setW of worlds are in bijection with functions of typeW → P(W ). Restricting the powerset
functor tofinite subsets, i.e. puttingPω(X) = {A ⊆ X | A finite}, one obtains the class of image
finite Kripke frames asPω-coalgebras.

2. The semantics of conditional logic is captured coalgebraically by the endofunctorS that maps
a setX to the set(P(X) → P(X)) of selection functions overX (the action ofS on functions
f : X → Y is given byS(f)(s)(B) = f [s(f−1[B])]). The ensuingS-coalgebras are precisely the
conditional frames of [4].

3. The (infinite) multiset functorB∞ maps a setX to the setB∞X of multisets overX, i.e.
functions of typeX → N∪ {∞}. Accordingly,B∞-coalgebras aremultigraphs(graphs with edges
annotated by multiplicities). Multigraphs provide an alternative semantics for GML which is in
many respects more natural than the original Kripke semantics [5], as also confirmed by new results
below.

4. Finally, if supp(µ) = {x ∈ X | µ(x) 6= 0} is the support of a functionµ : X → [0, 1]
andD(X) = {µ : X → [0, 1] | supp(µ) finite,

∑
x∈X µ(x) = 1} is the set of finitely supported

probability distributions onX, thenD-coagebras are probabilistic transition systems, the semantic
domain of PML.

The link between coalgebras and modal languages is providedby predicate liftings [15], which are
used to interpret modal operators. Essentially, predicateliftings convert predicates on the state space
X into predicates on the setTX of structured collections of states:

Definition 1.6. [15] An n-ary predicate lifting(n ∈ N) for T is a family of mapsλX : PXn →
PTX , whereX ranges over all sets, satisfying thenaturality condition

λX(f−1[A1], . . . , f
−1[An]) = (Tf)−1[λY (A1, . . . , An)]
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for all f : X → Y ,A1, . . . , An ∈ PY . (For the categorically minded,λ is a natural transformation
Qn → Q ◦ T op, whereQ denotes contravariant powerset.) Astructurefor a similarity typeΛ over
an endofunctorT is the assignment of ann-ary predicate liftingJLK to everyn-ary modal operator
L ∈ Λ.

Given a valuationV : P → P(C) of the propositional variables and aT -coalgebra(C, γ), a
structure forΛ allows us to define a satisfaction relation|=(C,γ,V ) between states ofC and formulas
φ ∈ F(Λ) by stipulating thatc |=(C,γ,V ) p iff c ∈ V (p) and

c |=(C,γ,V ) L(φ1, . . . , φn) iff γ(c) ∈ JLKC(Jφ1K, . . . , JφnK),

whereJφK = {c ∈ C | c |=(C,γ,V ) φ}. An L-modelis now amodel, i.e. a triple(C, γ, V ) as above,
such thatc |=(C,γ,V ) ψ for all all c ∈ C and all substitution instancesψ of A ∪ Θ. An L-frameis
aT -coalgebra(C, γ) such that(C, γ, V ) is anL-model for all valuationsV . The reader is invited
to check that the following predicate liftings induce the standard semantics for the modal languages
introduced in Expl. 1.1.

Examples 1.7. 1. A structure for ΛK over the covariant powerset functorP is given by
J2KX(A) = {Y ∈ P(X) | Y ⊆ A}. The frame classes defined by the frame conditions men-
tioned in Expl. 1.3.1 are well-known; e.g. a Kripke frame(X,R) is aK4-frame iffR is transitive.

2. PuttingJ⇒KX(A,B) = {f ∈ S(X) | f(A) ⊆ B} reconstructs the semantics of conditional
logic in a coalgebraic setting.

3. A structure for GML overB∞ is given byJ(≥ k)KX(A) = {f : X → N∪{∞} |
∑

x∈A f(x) ≥
k}. The frame conditions mentioned in Expl. 1.3.3 correspond to conditions on multigraphs that
can be read off directly from the logical axioms. E.g. a multigraph satisfies the transitivity axiom
≥ 1. ≥n. p → ≥n. p iff wheneverx has non-zero transition multiplicity toy andy has transition
multiplicity at leastn to z, thenx has transition multiplicity at leastn to z.

4. The structure overD that captures PML coalgebraically is given by the the predicate lifting
JLpKX(A) = {µ ∈ D(X) |

∑
x∈A µ(x) ≥ p} for p ∈ [0, 1] ∩Q.

From now on,fix a modal logicL = (Λ,A,Θ) and a structure forΛ over a functorT . We say that
L is strongly completefor some class of models if everyL-consistent set of formulas is satisfiable
in some state of some model in that class. Restricting tofinite setsΦ defines the notion ofweak
completeness; many coalgebraic modal logics are only weakly complete [17].

Definition 1.8. Let X be a set. Ifψ ∈ F(Λ) andτ : P → P(X) is a valuation, we writeψτ for
the result of substitutingτ(p) for p in ψ, with propositional subformulas evaluated according to the
boolean algebra structure ofP(X). (Hence,ψτ is a formula over the setP(X) of atoms.) A formula
φ ∈ Prop(Λ(P(X)) is one-stepL-derivable, denoted⊢1

L φ, if φ is propositonally entailed by the
set{ψτ | τ : P → P(X), ψ ∈ A}. A setΦ ⊆ Prop(Λ(P(X))) is one-stepL-consistentif there do
not exist formulasφ1, . . . , φn ∈ Φ such that⊢1

L ¬(φ1 ∧ · · · ∧ φn). Dually, theone-step semantics
JφK1

X ⊆ TX of a formulaφ ∈ Prop(Λ(P(X)) is defined inductively byJL(A1, . . . , An)K1
X =

JLKX(A1, . . . , An) for A1, . . . , An ⊆ X. A set Φ ⊆ Prop(Λ(P(X))) is one-step satisfiableif⋂
φ∈ΦJφK1

X 6= ∅. We say thatL (or Λ) is separatingif t ∈ TX is uniquely determined by the set

{φ ∈ Λ(P(X)) | t ∈ [[φ]]1X}. We callL (orA) one-step soundif every one-step derivable formula
φ ∈ Prop(Λ(P(X))) is one-step valid, i.e.JφK1

X = X.

Henceforth, we assume thatL is one-step sound, so that everyT -coalgebra satisfies the rank-1
axioms; in the absence of frame conditions (Θ = ∅), this means in particular that everyT -coalgebra
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is anL-frame. The above notions of one-step satisfiability and one-step consistency are the main
concepts employed in the proof of strong completeness in thefollowing section.

Given a structure forΛ overT , every setB of rank-1 axioms overΛ defines a subfunctorTB of
B with TB(X) =

⋂
{[[φτ ]]1X | φ ∈ B, τ : P → P(X)} ⊆ TX. This functor induces a structure for

whichB is one-step sound.

Example 1.9. The additional rank-1 axioms of Expl. 1.3.2 induce subfunctorsSB of the functorS
of Expl. 1.5.2. E.g. we have

S{ID}X = {f ∈ S(X) | ∀A ⊆ X. f(A) ⊆ A}

S{ID ,DIS}X = {f ∈ S(X) | ∀A,B ⊆ X. f(A) ⊆ A ∧ f(A ∪B) ⊆ f(A) ∪ f(B)}

S{ID ,DIS ,CM}X = {f ∈ S(X) | ∀A,B ⊆ X. f(A) ⊆ A ∧ (f(B) ⊆ A⇒ f(A) ∩B ⊆ f(B))}

(it is an amusing exercise to verify the last claim).

2. Strong Completeness Via Quasi-Canonical Models

We wish to establish strong completeness ofL by defining a suitableT -coalgebra structureζ on
the setS of maximallyL-consistent subsets ofF(Λ), equipped with the standard valuationV (p) =
{Γ ∈ S | p ∈ Γ}. The crucial property required is thatζ becoherent, i.e.

ζ(Γ) ∈ [[L]](φ̂1, . . . , φ̂n) ⇐⇒ L(φ1, . . . , φn) ∈ Γ,

whereφ̂ = {∆ ∈ S | φ ∈ ∆}, for L ∈ Λ n-ary, Γ ∈ S, andφ1, . . . , φn ∈ F(Λ), as this allows
proving, by a simple induction over the structure of formulas,

Lemma 2.1(Truth lemma). If ζ is coherent, then for all formulasφ, Γ |=(S,ζ,V ) φ iff φ ∈ Γ.

We define aquasi-canonical modelto be a model(S, ζ, V ) with ζ coherent; the term quasi-canonical
serves to emphasise that the coherence condition does not determine the transition structureζ
uniquely. By the truth lemma, quasi-canonical models forL areL-models, i.e. satisfy all sub-
stitution instances of the frame conditions. The first question is now under which circumstances
quasi-canonical models exist; we proceed to establish a widely applicable criterion. This criterion
has two main aspects: alocal form of strong completeness involving only finite sets, and apreser-
vation condition on the functor enabling passage from finitesets to certain infinite sets. We begin
with the latter part:

Definition 2.2. A surjectiveω-cochain (of finite sets)is a sequence(Xn)n∈N of (finite) sets
equipped with surjective functionspn : Xn+1 → Xn calledprojections. The inverse limitlim←−Xn

of (Xn) is the set{(xi) ∈
∏

i∈N Xi | ∀n. pn(xn+1) = xn} of coherentfamilies (xi). The limit
projectionsare the mapsπi((xn)n∈N) = xi, i ∈ N; note that theπi are surjective, i.e. everyx ∈ Xi

can be extended to a coherent family. Since all set functors preserve surjections,(TXn) is a sur-
jectiveω-cochain with projectionsTpn. The functorT weakly preserves inverse limits of surjective
ω-cochains of finite setsif for every surjectiveω-cochain(Xn) of finite sets, the canonical map
T (lim←−Xn)→ lim←−TXn is surjective, i.e. every coherent family(tn) in

∏
TXn is inducedby a (not

necessarily unique)t ∈ T (lim←−Xn) in the sense thatTπn(t) = tn for all n.

Example 2.3. Let A be a finite alphabet; then the setsAn, n ∈ N, form a surjectiveω-cochain of
finite sets with projectionspn : An+1 → An, (a1, . . . , an+1) 7→ (a1, . . . , an). The inverse limit
lim←−A

n is the setAω of infinite sequences overA. The covariant powerset functorP preserves this
inverse limit weakly: given a coherent family of subsetsBn ⊆ An, i.e. pn[Bn+1] = Bn for all n,
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we define the setB ⊆ Aω as the set of all infinite sequences(an)n≥1 such that(a1, . . . , an) ∈ Bn

for all n; it is easy to check that indeedB induces theBn, i.e.πn[B] = Bn. However,B is by no
means uniquely determined by this property: Observe thatB as just defined is a safety property. The
intersection ofB with any liveness propertyC, e.g. the setC of all infinite sequences containing
infinitely many occurrences of a fixed letter inA, will also satisfyπn[B ∩ C] = Bn for all n.

The second part of our criterion is an infinitary version of a local completeness property called
one-step completeness, which has been used previously inweakcompleteness proofs [15, 17].

Definition 2.4. We say thatL is strongly one-step complete over finite setsif for finite X, every
one-step consistent subsetΦ of Prop(Λ(P(X))) is one-step satisfiable.

The difference with plain one-step completeness is thatΦ above may be infinite. Consequently,
strong and plain one-step completeness coincide in case themodal similarity typeΛ is finite, since
in this case,Prop(Λ(P(X))) is, for finiteX, finite up to propositional equivalence. The announced
strong completeness criterion is now the following.

Theorem 2.5. If L is strongly one-step complete over finite sets and separating, Λ is countable,
andT weakly preserves inverse limits of surjectiveω-cochains of finite sets, thenL has a quasi-
canonical model.

Proof sketch.The most natural argument is via the dual adjunction betweensets and boolean alge-
bras that associates to a set the boolean algebra of its subsets, and to a boolean algebra the set of its
ultrafilters. For economy of presentation, we outline a direct proof instead: we prove that

(∗) every maximally one-step consistentΦ ⊆ Prop(Λ(A)) is one-step satisfiable,
whereA = {φ̂ | φ ∈ F(Λ)} ⊆ P(S).

The existence of the required coherent coalgebra structureζ on S follows immediately, since the
coherence requirement forζ(Γ), Γ ∈ S, amounts to one-step satisfaction of a maximally one-step
consistent subset ofProp(Λ(A)).

To prove (∗), letΛ = {Ln | n ∈ N}, letP = {pn | n ∈ N}, letFn denote the set ofΛ-formulas
of modal nesting depth at mostn that employ only modal operators fromΛn = {L0, . . . , Ln} and
only the atomic propositionsp0, . . . , pn, and letSn be the set of maximally consistent subsets ofFn.
ThenS is (isomorphic to) the inverse limitlim

←−
Sn, where the projectionsSn+1 → Sn and the limit

projectionsS → Sn are just intersection withFn. As the setsSn are finite, we obtain by strong one-
step completenesstn ∈ TSn such thattn |=1

Sn

Φ∩Prop(Λ(An)), whereAn = {φ̂∩Sn | φ ∈ Fn}.
By separation,(tn)n∈N is coherent, and hence is induced by somet ∈ TS by weak preservation of
inverse limits; then,t |=1

S Φ.

Together with the Lindenbaum Lemma we obtain strong completeness as a corollary.

Corollary 2.6. Under the conditions of Thm. 2.5,L is strongly complete forL-models.

Both Thm. 2.5 and Cor. 2.6 do apply to the case thatL has frame conditions. WhenL is of rank 1
(i.e. Θ = ∅), Cor. 2.6 implies thatL is strongly complete for (models based on)L-frames. In
the presence of frame conditions, the underlying frame of anL-model need not be anL-frame, so
that the question arises whetherL is also strongly complete forL-frames. In applications, positive
answers to this question, usually referred to as the canonicity problem, typically rely on a judicious
choice of quasi-canonical model to ensure that the latter isan L-frame, often the largest quasi-
canonical model under some ordering onTS. Detailed examples are given in Sec. 3.

Remark 2.7. It is shown in [13] thatT admits a strongly complete modal logic ifT weakly pre-
serves (arbitrary) inverse limitsand preserves finite sets. The essential contribution of the above
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result is to remove the latter restriction, which fails in important examples. Moreover, the observa-
tion that we need only considersurjectiveω-cochains is relevant in some applications, see below.

Remark 2.8. A last point that needs clearing up is whether strong completeness of coalgebraic
modal logics can be established by some more general method than quasi-canonical models of the
quite specific shape used here. The answer is negative, at least in the case of rank-1 logicsL: it has
been shown in [12] that every suchL admits models which consist of the maximallysatisfiablesets
of formulas and obey the truth lemma. Under strong completeness, such models are quasi-canonical.

This seems to contradict the fact that some canonical model constructions in the literature,
notably the canonical Kripke models for graded modal logics[8, 6], employ state spaces which
have multiple copies of maximally consistent sets. The above argument indicates that such logics
fail to be coalgebraic, and indeed this is the case for GML with Kripke semantics. As mentioned
above, GML has an alternative coalgebraic semantics over multigraphs, and we show below that
this semantics does admit quasi-canonical models in our sense.

3. Examples

We now show how the generic results of the previous section can be applied to obtain canonical
models and associated strong completeness and compactnesstheorems for a large variety of struc-
turally different modal logics. We have included some negative examples where canonical models
necessarily fail to exist due to non-compactness, and we analyse which conditions of Thm. 2.5 fail
in each case. We emphasise that in the positive examples, theverification of said conditions is
entirely stereotypical. Weak preservation of inverse limits of surjectiveω-cochains usually holds
without the finiteness assumption, which is therefore typically omitted.

Example 3.1(Strong completeness of Kripke semantics forK). Recall from Expl. 1.5.1 that Kripke
frames are coalgebras for the powerset functorTX = P(X). Strong completeness ofK with
respect to Kripke semantics is, of course, well known. We briefly illustrate how this can be derived
from our coalgebraic treatment. To see thatK is strongly one-step complete over finite setsX,
let Φ ⊆ Prop(ΛK(P(X))) be maximally one-step consistent. It is easy to check that{x ∈ X |
3{x} ∈ Φ} satisfiesΦ. To prove that the powerset functor weakly preserves inverse limits, let(Xn)
be anω-cochain, and let(An ∈ P(Xn)) be a coherent family. Then(An) is itself a cochain, and the
setA = lim←−An ⊆ lim←−Xn induces(An) (w.r.t. the subset ordering onP(X)). Separation is clear.
By Thm. 2.5, there exists a quasi-canonical Kripke model forall normal modal logics. In particular,
the standard canonical model [4] is quasi-canonical; it witnesses strong completeness (w.r.t. frames)
of all canonical logics such asK4, S4, S5.

Example 3.2 (Failure of strong completeness ofK over finitely branching models). As seen in
Expl. 1.5.1, finitely branching Kripke frames are coalgebras for the finite powerset functorPω.
It is clear that quasi-canonical models fail to exist in thiscase, as compactness fails over finitely
branching frames: one can easily construct formulasφn that force a state to have at leastn different
successors. The obstacle to the application of Thm. 2.5 is that the finite powerset functor fails to
preserve inverse limits weakly, as the inverse limit of anω-cochain of finite sets may fail to be finite.

Example 3.3(Conditional logic). Recall from Expl. 1.5.2 that the conditional logicCK is inter-
preted over the functorS(X) = P(X) → P(X). To prove strong one-step completeness over finite
setsX, let Φ ⊆ Prop(ΛCL(P(X))) be maximally one-step consistent. Definef : P(X) → P(X)
by f(A) =

⋂
{B ⊆ X | A⇒ B ∈ Φ}; it is mechanical to check thatf |=1 Φ. To see thatS weakly

preserves inverse limits, let(Xn) be a surjectiveω-cochain, letX = lim
←−

Xn, and let(fn ∈ S(Xn))
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be coherent. Definef : P(X) → P(X) by letting (xn) ∈ f(A) for a coherent family(xn) ∈ X
iff wheneverA = π−1

n [B] for somen and someB ⊆ Xn, thenxn ∈ fn(B). Using surjectivity
of the projections of(Xn), it is straightforward to prove thatf induces(fn). Finally, separation
is clear. By Thm. 2.5, it follows that the conditional logicCK has a quasi-canonical model, and
hence thatCK is strongly complete for conditional frames. In the case of the additional rank-1
axioms mentioned in Expl. 1.3.2 and the corresponding subfunctors ofS described in Expl. 1.9, the
situation is as follows.

Identity: The functorS{ID} weakly preserves inverse limits of surjectiveω-cochains. In the
notation above, put(xn) ∈ f(A) iff the condition above holds and(xn) ∈ A.

Identity and disjunction: The functorS{ID ,DIS} weakly preserves inverse limits of surjective
ω-cochains: put(xn) ∈ f(A) iff (xn) ∈ A and whenever(xn) ∈ π−1

m B ⊆ A, thenxm ∈ fm(B).
System C:It is open whether the the functorS{ID ,DIS ,CM} weakly preserves inverse limits of

surjectiveω-cochains, and whether System C is strongly complete over conditional frames.
Indeed it appears to be an open problem to findanysemantics for which System C is strongly

complete, other than the generalised neighbourhood semantics as described e.g. in [18], which is
strongly complete for very general reasons but provides little in the way of actual semantic infor-
mation. The classical preference semantics according to Lewis is only known to be weakly com-
plete [3]. Friedman and Halpern [9] do silently prove strongcompleteness of System C w.r.t. plau-
sibility measures; however, on close inspection the latterturn out to be essentially equivalent to the
above-mentioned generalised neighbourhood semantics. Moreover, Segerberg [19] proves strong
completeness for a whole range of conditional logics overgeneralconditional frames, where, in
analogy to corresponding terminology for Kripke frames, a general conditional frame is equipped
with a distinguished set ofadmissible propositionslimiting both the range of valuations and the
domain of selection functions. In contrast, our method yields full conditional frames in which the
frame conditions hold foranyvaluation of the propositional variables. While in the caseof CK and
its extension byID alone, these models differ from Segerberg’s only in that they insert default val-
ues for the selection function on non-admissible propositions, the canonical model for the extension
of CK by {ID ,DIS} has non-trivial structure on non-admissible propositions, and we believe that
our strong completeness result for this logic is genuinely new.

Example 3.4(Strong completeness of GML over multigraphs). Recall from Expl. 1.5.3 that graded
modal logic (GML) has a coalgebraic semantics in terms of themultiset functorB∞. To prove
strong one-step completeness over finite setsX, let Φ ⊆ Prop(ΛGML(P(X))) be maximally one-
step consistent. We defineB ∈ B∞(X) byB(A) ≥ n ⇐⇒ ≥n.A ∈ Φ; it is easy to check thatB
is well-defined and additive. To prove weak preservation of inverse limits, let(Xn) be anω-cochain,
letX = lim

←−
Xn, and let(Bn ∈ B∞(Xn)) be coherent. Then defineB ∈ B∞(X) pointwise by

B((xn)) = min
n∈N

Bn(xn),

noting that the sequence(Bn(xn)) is decreasing by coherence. A straightforward computation
shows thatB induces(Bn). Separation is clear.

By the above and Thm. 2.5, all extensions of GML have quasi-canonical multigraph models.
While the technical core of the construction is implicit in the work of Fine [8] and de Caro [6],
these authors were yet unaware of multigraph semantics, andhence our result thatGML is strongly
complete over multigraphshas not been obtained previously.

The standard frame conditions for reflexivity, symmetry, and transitivity (Expls. 1.5.3
and 1.7. 3) and arbitrary combinations thereof are easily seen to be satisfied in the quasi-canonical
model constructed above. We point out that this contrasts with Kripke semantics in the case of the
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graded version ofS4, i.e. GML extended with the reflexivity and transitivity axioms of Expl. 1.5.3:
as shown in [7], the complete axiomatisation of graded modallogic over transitive reflexive Kripke
frames includes two rather strange combinatorial artefacts, which by the above disappear in the
multigraph semantics. The reason for the divergence (whichwe regard as an argument in favour of
multigraph semantics) is that, while in many cases multigraph models are easily transformed into
equivalent Kripke models by just making copies of states, nosuch translation exists in the transitive
reflexive case (transitivity alone is unproblematic).

Observe moreover that the above extends straightforwardlyto decription logicsALCQ(R)
with qualified number restrictions and a role hierarchyRwhere roles may be distinguished as, in any
combination, transitive, reflexive, or symmetric. As shownin [10, 11],ALCQ(R) is undecidable
for manyR, even when only transitive roles are considered. For undecidable logics, completeness
is in some sense the ‘next best thing’, as it guarantees if notrecursiveness then at least recursive
enumerability of all valid formulas, and hence enables automatic reasoning. Essentially, our results
show that the natural axiomatisation ofALCQ(R) with transitive, symmetric and reflexive roles is
strongly complete over multigraphs, a result which fails for the standard Kripke semantics.

Example 3.5(Failure of strong completeness of image-finite GML). Similarly to the case of image-
finite Kripke frames, one can model an image-finite version ofgraded modal logic coalgebraically
by exchanging the functorB∞ for the finite multiset functorB, whereB(X) consists of all maps
X → N with finite support. Of course, the resulting logic is non-compact and hence fails to admit
a canonical model. This is witnessed not only by the same family of formulas as in the case of
image-finite Kripke semantics, which targets finiteness of the number of different successors, but
also by the set of formulas{≥n. a | n ∈ N}, which targets finiteness of multiplicities. Analysing
the conditions of Thm. 2.5, we detect two violations: not only does weak preservation of inverse
limits fail, but there is also no way to find an axiomatisationwhich is strongly one-step complete
over finite sets (again, consider sets{≥n. {x} | n ∈ N}).

Strong completeness of image-finite GML can be recovered by slight adjustments to the syntax and
semantics. We formulate a more general approach, as follows.

Example 3.6(Strong completeness of the logic of additive measures). We fix an at most countable
commutative monoidM (e.g.M = N). We think of the elements ofM as describing the measure
of a set of elements. To ensure compactness, we have to allow some sets to have undefined measure.
That is, we work with coalgebras for the endofunctorTM defined by

TM (X) = {(A, µ) | A ⊆ P(X) closed under disjoint unions, µ : A→M additive}

The modal logic of additiveM -valued measures is given by the similarity typeΛM = {Em | m ∈
M} whereEmφ expresses thatφ has measurem, i.e.

[[Em]]XB = {(A, µ) ∈ TM (X) | B ∈ A, µ(B) = m}.

ΛM is clearly separating. The logic is axiomatised by the following two axioms:

Ema→ ¬Ena (n 6= m) and Em(a ∧ b) ∧ En(a ∧ ¬b)→ Em+na.

These axioms are strongly one-step complete over finite setsX: if Φ ⊆ Prop(ΛM (P(X))) is
maximally one-step consistent, then(A, µ) |=1 Φ whereA ∈ A iff EmA ∈ Φ for some necessarily
uniquem, in which caseµ(A) = m. Moreover,TM weakly preserves inverse limitsX = lim←−Xn,
with finite Xn: a coherent family((An, µn) ∈ TM (Xn)) is induced by(A, µ) ∈ TM (X), where
A = {π−1

n [B] | n ∈ N, B ∈ An} andµ(π−1
n [B]) = µn(B) is easily seen to be well-defined and

additive. Theorem 2.5 now guarantees existence of quasi-canonical models. A simple example is
M = Z/2Z, which induces a logic of even and odd.
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For the caseM = N, we obtain a variant of graded modal logic with finite multiplicities, where
we code≥ k.φ as¬

∨
0≤i<k Ekφ. However, it may still be the case that a state has a family of

successor sets of unbounded measure, so that undefinedness of the measure of the entire state space
just hides an occurrence of infinity. This defect is repairedby insisting that the measure of the whole
state space is finite at the expense of disallowing the modal operatorE0 in the language, as follows.

Example 3.7(Strong completeness of finitely branchingGML−). To force the entire state space to
have finite measure, we additionally introduce ameasurabilityoperatorE, interpreted by[[E]]B =
{(A, µ) | B ∈ A}, and impose obvious axioms guaranteeing that measures onX are defined on
boolean subalgebras ofP(X), in particularE⊤ (i.e. µ(X) is finite), andEna → Ea. In order to
achieve compactness, we now leave a bolt hole on the syntactical side and exclude the operatorE0.
In other words, the syntax ofGML− is given by the similarity typeΛ−GML = {E} ∪ {En | n > 0},
and we interpretGML− over coalgebras for the functorBM defined by

BM(X) = {(A, µ) | A boolean subalgebra ofP(X), µ : A→ N additive}.

Separation is clear. The axiomatisation ofGML− is given by the axiomatisation of the modal logic
of additive measures, the above-mentioned axioms onE, and the additional axiom

Ena ∧ Eb→ En(a ∧ b) ∨ En(a ∧ ¬b) ∨
∨

0<k<n(Ek(a ∧ b) ∧ En−k(a ∧ ¬b))

which compensates for the absence ofE0. Strong one-step completeness over finite sets and weak
preservation of inverse limits is shown analogously as in Expl. 3.6, so that we obtain astrongly
complete finitely branching graded modal logicGML−. The tradeoff is that the operator≥ k.φ is
no longer expressible as¬

∨
0≤i<k Eiφ in GML− which only allows to formulate the implication

≥ 1.φ→ ≥n. φ.

Example 3.8(Failure of strong completeness for PML over finitely supported probability distribu-
tions). Like image-finite graded modal logic, probabilistic modal logic as introduced in Expl. 1.5.4
fails to be compact, and violates the conditions of Thm. 2.5 on two counts, namely weak preser-
vation of inverse limits and strong one-step completeness over finite sets. The first issue is related
to image-finiteness, while the second is rooted in the structure of the real numbers: e.g. the set
{L1/2−1/na | n ∈ N} ∪ {¬L1/2a} is finitely satisfiable but not satisfiable.

Example 3.9 (Strong completeness of the logic of exact probabilities). In order to remove the
above-mentioned failure of compactness, we consider the fragment of probabilistic modal logic
containing only operatorsEp stating that a given event has probability exactlyp. (This is, of course,
less expressive than the operatorsLp but still allows reasonable statements such as that rollinga six
on a die happens with probability1/6.) Moreover, we require probabilities to be rational and allow
probabilities to be undefined, thus following the additive measures approach as outlined above,
where we consider a subfunctor ofTQ defined by the requirement that the whole set has measure1.
However, we are able to impose stronger conditions on the domain A ⊆ P(X) of a probability
measureP onX: we require thatX ∈ A and thatA,B ∈ A, B ⊆ A imply A−B ∈ FA, which is
reflected in the additional axiomsE1⊤ andEpa∧Eq(a ∧ b)→ Ep−q(a ∧¬b). It is natural that we
cannot force closure under intersection, as there is in general no way to infer the exact probability
of A ∩ B from the probabilities ofA andB. Along the same lines as above, we now obtain quasi-
canonical models, and hence strong completeness and compactness, of the arising modal logic of
exact probabilities.
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4. Conclusion

We have laid out a systematic method of proving existence of canonical models in a generic seman-
tic framework encompassing a wide range of structurally different modal logics. We have shown
how this method turns the construction of canonical models into an entirely mechanical exercise
where applicable, and points the way to obtaining compact fragments of non-compact logics. As
example applications, we have reproved a number of known strong completeness result and estab-
lished several new results of this kind; specifically, the latter includes strong completeness of the
following logics.

• The modal logic of exact probabilities, with operatorsEp ‘with probability exactlyp’.
• Graded modal logic over transitive reflexive multigraphs, i.e. the natural graded version of

S4, and more generally description logic with role hierarchies including transitive, reflexive, and
symmetric roles and qualified number restrictions also on non-simple (e.g. transitive) roles.
• The conditional logicCK+{ID ,DIS}, i.e. with the standard axioms of identity and disjunc-

tion, interpreted over conditional frames.

A number of interesting open problems remain, e.g. to find further strongly complete variants of
probabilistic modal logic or to establish strong completeness of the full set of standard axioms of
default logic, Burgess’ System C [3], over the corresponding class of conditional frames.
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Abstract. We introduce a new technique proving formula size lower bounds based on the
linear programming bound originally introduced by Karchmer, Kushilevitz and Nisan [11]
and the theory of stable set polytope. We apply it to majority functions and prove their for-
mula size lower bounds improved from the classical result of Khrapchenko [13]. Moreover,
we introduce a notion of unbalanced recursive ternary majority functions motivated by a
decomposition theory of monotone self-dual functions and give integrally matching upper
and lower bounds of their formula size. We also show monotone formula size lower bounds
of balanced recursive ternary majority functions improved from the quantum adversary
bound of Laplante, Lee and Szegedy [15].

1. Introduction

Proving formula size lower bounds is a fundamental problem in complexity theory and
also an extremely tough problem to resolve. A super-polynomial lower bound of a function
in NP implies NC1 6= NP. There are a lot of techniques to prove formula size lower bounds,
e.g. [7, 8, 11, 13, 14, 15, 16]. Laptente, Lee and Szegedy [15] introduced a technique based
on the quantum adversary method [1] and gave a comparison with known techniques. In
particular, they showed that their technique subsumes several known techniques such as
Khrapchenko [13] and its extension [14]. The current best formula size lower bound is

n3−o(1) by H̊astad [7] and a key lemma used in the proof is also subsumed by the quantum
adversary bound [15]. Karchmer, Kushilevitz and Nisan [11] introduced a technique proving
formula size lower bounds called the linear programming (or LP) bound and showed that
it cannot prove a lower bound larger than 4n2 for non-monotone formula size in general.
Lee [16] proved that the LP bound [11] subsumes the quantum adversary bound [15] and
Høyer, Lee and Špalek [8] introduced a stronger version of the quantum adversary bound.

Motivated by the result of Lee [16], we devise a stronger version of the LP bound
by using an idea from the theory of stable set polytope, known as clique constraints [19].
Suggesting a stronger technique compared to the original LP bound [11] has possibilities to
improve the best formula size lower bound because it subsumes many techniques including
the key lemma of H̊astad [7]. Moreover, our technique has various possibilities of extensions
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such as rank constraints discussed in Section 6 and orthonormal constraints [6], each of
which subsume clique constraints. Due to this extendability, it is difficult to show the
limitation of our new technique.

To study the relative strength of our technique, we apply it to some families of Boolean
functions. For each family, we have distinct motivation to investigate their formula size.
Three kinds of Boolean functions treated in this paper are defined as follows. All of them
are called monotone self-dual Boolean functions defined in the next section.

Definition 1.1. A majority function MAJ2l+1 : {0, 1}2l+1 7→ {0, 1} outputs 1 if the number
of 1’s in the input bits is greater than or equal to l+1 and 0 otherwise. We define unbalanced
recursive ternary majority functions URecMAJh

3 : {0, 1}2h+1 7→ {0, 1} as

URecMAJh
3(x1, · · · , x2h+1) = MAJ3(URecMAJh−1

3 (x1, · · · , x2h−1), x2h, x2h+1)

with URecMAJ1
3 = MAJ3. We also define balanced recursive ternary majority functions

BRecMAJh
3 : {0, 1}3h 7→ {0, 1} as

BRecMAJh
3(x1, · · · , x3h) = MAJ3(BRecMAJh−1

3 (x1, · · · , x3h−1),

BRecMAJh−1
3 (x3h−1+1, · · · , x2·3h−1),

BRecMAJh−1
3 (x2·3h−1+1, · · · , x3h))

with BRecMAJ1
3 = MAJ3. Through the paper, n means the number of input bits.

Formula size and monotone formula size of a Boolean function f are denoted by L(f) and
Lm(f), respectively.

Although our improvements of lower bounds seem to be slight, it breaks a stiff barrier
(known as the certificate complexity barrier [15]) of previously known proof techniques.
The best monotone upper and lower bounds of majority functions are O(n5.3) [25] and
⌊n/2⌋n [22], respectively. In the non-monotone case, the best formula size upper and lower
bounds of majority functions are O(n4.57) [20] and ⌈n/2⌉2 (= (l + 1)2 when n = 2l + 1),
respectively, which can be proven by the classical result of Khrapchenko [13]. In this
paper, we slightly improve the non-monotone formula size lower bound while no previously
known techniques has been able to improve it since 1971. In Section 4, we will prove
(l+1)2

1−ǫ(l) ≤ L(MAJ2l+1) where ǫ(l) = l2(l+1)

6·(2l+1
l )

. Here,
(n
k

)

denotes nCk. Since formula size takes

an integral value, it implies a (l + 1)2 + 1 lower bound.
It is known that the class of monotone self-dual Boolean functions is closed under com-

positions (equivalently, in so-called Post’s lattice [5, 21]). Any monotone self-dual Boolean
functions can be decomposed into compositions of 3-bit majority functions [9]. A key ob-
servation for our proofs is that a communication matrix (defined in the next section) of a
monotone self-dual Boolean function contains those of the 3-bit majority function as its sub-
matrices. Ibaraki and Kameda [9] developed a decomposition theory of monotone self-dual
Boolean functions in the context of mutual exclusions in distributed systems. The theory
has been further investigated by [3, 4]. Given a monotone self-dual Boolean function f ,
we can decompose it as f = MAJ3(x, f1, (MAJ3(x, f2,MAJ3(· · ·MAJ3(x, fk−1, fk)))))
after decomposing g = f(x = 0) into a conjunction of monotone self-dual functions g =
f1 ∧ f2 ∧ · · · ∧ fk. It holds URecMAJh

3 in its internal structure. To determine its formula
size is of particular interest because it is related with efficiency of the decomposition scheme.
In Section 5, we will prove L(URecMAJh

3) = Lm(URecMAJh
3) = 4h + 1.
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Balanced recursive ternary majority functions have been studied in several contexts [10,
15, 17, 18, 23, 24], see [15] and [23] for details. Ambainis et al. [2] showed a quantum
algorithm which evaluates a monotone formula of size N (or called AND-OR formula) in

N1/2+o(1) time even if it is not balanced. This result implies BRecMAJh
3 can be evaluated

in O(
√

5
h
) time by the quantum algorithm because we have a formula size upper bound

Lm(BRecMAJh
3) ≤ 5h as noted in [15]. Improving this result, Reichardt and Spalek [23]

gave a quantum algorithm which evaluates BRecMAJh
3 in O(2h) time. From this context,

seeking the true bound of the monotone formula size of BRecMAJh
3 is a very interesting

research question. The quantum adversary bound [15] has a quite nice property written
as ADV(f · g) ≥ ADV(f) · ADV(g). It directly implies a formula size lower bound
4h ≤ L(BRecMAJh

3). In Section 6, we will prove 20 ≤ Lm(BRecMAJ2
3) and 4h + 13

36 ·
(

8
3

)h ≤ Lm(BRecMAJh
3). This gives a slight improvement of the lower bound and means

that the 4h lower bound is at least not optimal in the monotone case.

2. Preliminaries

We define a total order 0 < 1 between the two Boolean values. For Boolean vectors
~x = (x1, · · · , xn) and ~y = (y1, · · · , yn), we define ~x ≤ ~y if xi ≤ yi for all i ∈ {1, · · · n}. A
Boolean function f is called monotone if ~x ≤ ~y implies f(~x) ≤ f(~y) for all ~x, ~y ∈ {0, 1}n.
For a monotone Boolean function f , a Boolean vector ~x ∈ {0, 1}n is called minterm if
f(~x) = 1 and (~y ≤ ~x) ∧ (~x 6= ~y) implies f(~y) = 0 for any ~y ∈ {0, 1}n and called maxterm if
f(~x) = 0 and (~x ≤ ~y) ∧ (~x 6= ~y) implies f(~y) = 1 for any ~y ∈ {0, 1}n. Sets of all minterms
and maxterms of a monotone Boolean function f are denoted by minT (f) and maxT (f),

respectively. A Boolean function f is called self-dual if f(x1, · · · , xn) = f(x1, · · · , xn) where
x is the negation of x. Remark that, if a Boolean function f is self-dual, its communication
matrix (see below) has some nice properties, e.g. |X| = |Y |.

A formula is a binary tree with leaves labeled by literals and internal nodes labeled by
∧ and ∨. A literal is either a variable or the negation of a variable. A formula is called
monotone if it does not have negations. It is known that all (monotone) Boolean functions
can be represented by a (monotone) formula. The size of a formula is its number of leaves.
We define the (monotone) formula size of a Boolean function f as the size of the smallest
formula computing f .

Karchmer and Wigderson [12] characterize formula size of any Boolean function in
terms of a communication game called the Karchmer-Wigderson game. In the game, given
a Boolean function f , Alice gets an input ~x such that f(~x) = 1 and Bob gets an input ~y
such that f(~y) = 0. The goal of the game is to find an index i such that xi 6= yi. They
also characterize monotone formula size by a monotone version of the Karchmer-Wigderson
game. In the monotone game, Alice gets a minterm ~x and Bob gets a maxterm ~y. The
goal of the monotone game is to find an index i such that xi = 1 and yi = 0. The number
of leaves in a best communication protocol for the (monotone) Karchmer-Wigderson game
is equal to the (monotone) formula size of f . From these characterizations, we consider
communication matrices derived from the games.

Definition 2.1 (Communication Matrix). Given a Boolean function f , we define its com-
munication matrix as a matrix whose rows and columns are indexed by X = f−1(1) and
Y = f−1(0), respectively. Each cell of the matrix contains indices i such that xi 6= yi. In
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a monotone case, given a monotone Boolean function f , we define its monotone commu-
nication matrix as a matrix whose rows and columns are indexed by X = minT (f) and
Y = maxT (f), respectively. Each cell of the matrix contains indices i such that xi = 1 and
yi = 0. A combinatorial rectangle is a direct product X ′ × Y ′ where X ′ ⊆ X and Y ′ ⊆ Y .
A combinatorial rectangle X ′ × Y ′ is called monochromatic if every cell (~x, ~y) ∈ X ′ × Y ′

contains the same index i. We call a cell singleton if it contains just one index.

The minimum number of disjoint monochromatic rectangles which exactly cover all
cells in the (monotone) communication matrix gives a lower bound for the number of leaves
of a best communication protocol for the (monotone) Karchmer-Wigderson game. Thus,
we obtain the following bound.

Theorem 2.2 (Rectangle Bound [12]). The minimum size of an exact cover by disjoint
monochromatic rectangles for the communication matrix (or monotone communication ma-
trix) associated with a Boolean function f gives a lower bound of L(f) (or Lm(f)).

3. A Stronger Linear Programming Bound via Clique Constraints

In this study, we devise a new technique proving formula size lower bounds based on the
LP bound [11] with clique constraints. We assume that readers are familiar with the basics of
the linear and integer programming theory. Karchmer, Kushilevitz and Nisan [11] formulate
the rectangle bound as an integer programming problem and give its LP relaxation. Given
a (monotone) communication matrix, it can be written as min

∑

r xr such that
∑

r∋c xr = 1
for each cell c in the matrix and xr ≥ 0 for each monochromatic rectangle r. The dual
problem can be written as max

∑

c wc such that
∑

c∈r wc ≤ 1 for each monochromatic
rectangle r. Here, each variable wc is indexed by a cell c in the matrix. From the duality
theorem, showing a feasible solution of the dual problem gives a formula size lower bound.

Now, we introduce our stronger LP bound using clique constraints from the theory
of stable set polytope. We assume that each monochromatic rectangle is a node of a
graph. We connect two nodes by an edge if the two corresponding monochromatic rectangles
intersect. If a set of monochromatic rectangles q compose a clique in the graph, we add
a constraint

∑

r∈q xr ≤ 1 to the primal problem of the LP relaxation. This constraint is
valid for all integral solutions since we consider the disjoint cover problem. That is, we
can assign the value 1 to at most 1 rectangle in a clique for all integral solutions under the
condition of disjointness. The dual problem can be written as max

∑

c wc +
∑

q zq such that
∑

c∈r wc +
∑

q∋r zq ≤ 1 for each monochromatic rectangle r and zq ≤ 0 for each clique q.
Intuitively, this formulation can be interpreted as follows. Each cell c is assigned a weight
wc. The summation of weights over all cells in a monochromatic rectangle is limited to 1.
This limit is relaxed by 1 if it is contained by a clique. Thus, the limit of the total weight
for a monochromatic rectangle contained by k distinct cliques is k + 1.

By using clique constraints, we obtain the following matching lower bound for the
formula size of the 3-bit majority function while the original LP bound cannot prove a
lower bound larger than 4.5. In our proofs, we utilize the following property of combinatorial
rectangles which is trivial from the definition. If a rectangle contains two cells (α1, β1) and
(α2, β2), it also contains both (α1, β2) and (α2, β1). A notion of singleton cells also occupies
an important role for our proofs because there are no monochromatic rectangles which
contain different kinds of singleton cells.
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Theorem 3.1. L(MAJ3) = Lm(MAJ3) = 5

Proof. We have a monotone formula (x1∧x2)∨((x1∨x2)∧x3) for MAJ3. From the definition,
L(MAJ3) ≤ Lm(MAJ3). To prove L(MAJ3) ≥ 5, we consider a communication matrix
of the 3-bit majority function whose rows and columns are restricted to minterms and
maxterms, respectively.

100 010 001

110 2 1 1,2,3
101 3 1,2,3 1
011 1,2,3 3 2

Figure 1: The Communication Matrix of MAJ3

In the dual problem, we assign weights 1 for all singleton cells and 0 for other cells.
There are 6 singleton cells and hence the total weight is 6. We take a clique q composed
of monochromatic rectangles containing two singleton cells. It is clear that every pair of
monochromatic rectangles contained by q intersect at some cell. We assign zq = −1. Then,
the objective function of the dual problem becomes 5 = 6− 1.

Now, we show that all constraints of the dual problem are satisfied. First, we consider
a monochromatic rectangle which contains at most one singleton cell. In this case, the con-
straint is clearly satisfied because the summation of weights in the monochromatic rectangle
is less than or equal to 1. Then, we consider a monochromatic rectangle which contains
two singleton cells. In this case, the summation of weights in the monochromatic rectangle
is 2. However, it is contained by the clique q. It implies that the limit of the total weight
is relaxed by 1. Thus, the constraint is satisfied. There are no monochromatic rectangles
which contain more than 3 singleton cells because a rectangle which contains more than
two kinds of singleton cells is not monochromatic.

4. Formula Size of Majority Functions

In this section, we show a non-monotone formula size lower bound of majority functions
improved from the classical result of Khrapchenko [13].

Theorem 4.1. L(MAJ2l+1) ≥
(l + 1)2

1− ǫ(l)
where ǫ(l) =

l2(l + 1)

6 ·
(2l+1

l

) .

Proof. We consider a communication matrix of a majority function with 2l + 1 input bits
whose rows and columns are restricted to minterms and maxterms, respectively. Let m =
(2l+1

l

)

, which is equal to both the number of rows and columns. Then, the number of all

cells is m2. The number of singleton cells is (l + 1)m and hence the number of singleton

cells for each index is (l+1)m
2l+1 . The number of cells with 3 indices is

(l+1
2

)

· l ·m = l2(l+1)m
2

because we can obtain a maxterm by flipping two bits of 1’s to 0’s and one bit of 0 to 1 for
each minterm.

We consider 3 × 3 submatrices in the following way. From 2l + 1 input bits, we fix
arbitrary 2l − 2 bits and assume that they have the same number of 0’s and 1’s. Then,
we consider the remaining 3 bits. If the 2l + 1 input bits compose a minterm, the 3
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bits are 110 or 101 or 011. If the 2l + 1 input bits compose a maxterm, the 3 bits are
100 or 010 or 001. Thus, we have a 3 × 3 submatrix, which has the same structure as
the communication matrix of the 3-bit majority function as Figure 1. The number of

submatrices is
(2l+1

3

)

·
(2l−2

l−1

)

= l2(l+1)m
6 . Each submatrix has 6 singleton cells and 3 cells

each of which has 3 indices corresponding to the remaining 3 bits. Note that each cell with
3 indices in any submatrix is not contained by other submatrices. In other words, all the
l2(l+1)m

2 cells with 3 indices are exactly partitioned into the l2(l+1)m
6 submatrices.

We assign weights a for all singleton cells, 0 for cells with 3 indices and b for other cells,
which have more than 3 indices. Note that there are no cells with 2 indices. We consider
l2(l+1)m

6 clique constraints assigned weights c (≤ 0) for all the l2(l+1)m
6 submatrix. That is,

we have a clique constraint for each submatrix similar to the proof of Theorem 3.1. More
precisely, a clique associated with a submatrix is composed of monochromatic rectangles
which contain two singleton cells in the submatrix.

Then, the objective function of the dual problem is written as

max
a,b,c

(l + 1)m · a +

(

m2 − (l + 1)m− l2(l + 1)m

2

)

· b +
l2(l + 1)m

6
· c. (4.1)

Now, we fix c = 2b ≤ 0. Then, we have

max
a,b

(l + 1)m · a +

(

m2 − (l + 1)m− l2(l + 1)m

6

)

· b. (4.2)

We assume that a monochromatic rectangle contains k singleton cells and consider
all possible pairs of 2 singleton cells taken from the k singleton cells. If a pair is in the
same submatrix, the monochromatic rectangle is contained by a clique associated with the
submatrix. If a pair is not in the same submatrix, the monochromatic rectangle contains
two cells which are assigned weights b because they have more than 3 indices. Thus, if the
following inequality is satisfied

k · a + (k2 − k) · b ≤ 1 (4.3)

for any integer k (1 ≤ k ≤ (l+1)m
2l+1 ), all constraints of the dual problem are satisfied when

c = 2b.
We can maximize (4.2) by assuming that the inequality is saturated when k = m

l+1 − l2

6

as it satisfies k2
−k
k =

m2
−(l+1)m−

l2(l+1)m
6

(l+1)m . In this case, we have (4.2) = (l+1)m
m

l+1
−

l2

6

= (l+1)2m

m−
1
6
l2(l+1)

and obtain the lower bound.

5. Formula Size of Unbalanced Recursive Ternary Majority Functions

In this section, we show the following matching bound of formula size for unbalanced
recursive ternary majority functions.

Theorem 5.1. L(URecMAJh
3) = Lm(URecMAJh

3) = 4h + 1

Proof. First, we look at the monotone formula size upper bound. Recall that a monotone
formula of the 3-bit majority function can be written as (x1∧x2)∨((x1∨x2)∧x3). The impor-
tant point here is that the literal x3 appears only once. We construct (x2h∧x2h+1)∨ ((x2h∨
x2h+1) ∧ x2h−1) and replace x2h−1 by a monotone formula representing URecMAJh−1

3 . A

recursive construction yields a 4h + 1 monotone formula for URecMAJh
3 .
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Then, we show the non-monotone formula size lower bound. Before using clique con-
straints, we consider the original LP bound. We restrict the communication matrix of
URecMAJh

3 to a submatrix Sh whose rows and columns are minterms and maxterms,
respectively. We can interpret it in the following recursive way as Figure 2.

00 10 01

11 2h, 2h + 1 2h + 1 2h
01 2h + 1 Th−1 Sh−1

10 2h Sh−1 Th−1

Figure 2: Recursive Structure of Sh for URecMAJh
3 (h ≥ 2)

In the figure, “11” denotes a minterm which has 1 in the 2h-th and (2h + 1)-th bits
and 0 in other (2h − 1) bits. Minterms denoted by “01” has 0 in the 2h-th bit and 1 in
the (2h + 1)-th bit and other (2h− 1) bits of them are determined by a recursive way from

minterms of URecMAJh−1
3 . Minterms denoted by “10” has 1 in the 2h-th bit and 0 in

the (2h + 1)-th bit and other (2h − 1) bits of them are also determined by the recursive
way. “00”, “10” and “01” denote maxterms which are similarly defined as minterms. A
submatrix Th−1 does not contain singleton cells because all cells in Th−1 contains indices
{2h, 2h + 1} with indices of corresponding cell in Sh−1. Sh contains two Sh−1. Thus, the
number of singleton cells duplicate in each recursion.

We consider the minimum submatrix ALL−S1 in Sh which contains all three kinds of
singleton cells {1}, {2} and {3}. Note that ALL−S1 does not contain any other kinds of
singleton cells because it only contains cells in S1 and Tl (2 ≤ l ≤ h− 1). A submatrix S1 is
equivalent to a communication matrix of the 3-bit majority function. The total number of
singleton cells {1}, {2} and {3} is 3 ·2h. Both the number of rows and columns of ALL−S1

is equal to 3 ·2h−1 because S1’s duplicate (h−1)-times and does not have any common rows
and columns. Hence, the number of all cells in ALL−S1 is 9 · 4h−1. We assign weights a
for all singleton cells in ALL−S1 and weights b for all other cells in ALL−S1. Then, the
total weight of all cells in ALL−S1 is written as follows:

max
a,b

3 · 2h · a +
(

9 · 4h−1 − 3 · 2h
)

· b. (5.1)

We consider constraints of the dual problem as k · a + (k2 − k) · b ≤ 1 for all integer k
(1 ≤ k ≤ 2h). We assume this inequality is saturated if and only if k = 3 · 2h−2. Then, we

get a = 24·2h
−16

9·4h and b = − 16
9·4h . In this case, (5.1) = 4.

Next, we consider singleton cells {2l} and {2l + 1} (2 ≤ l ≤ h). We partition singleton
cells {2l} into two sets named vertical cells X2l and horizontal cells Y2l which are in (10,00)
and (11,01) of each Sl in Sh, respectively. Similarly, we partition singleton cells {2l+1} into
two sets named vertical cells X2l+1 and horizontal cells Y2l+1 which are in (01,00) and (11,10)
of each Sl in Sh, respectively. We restrict these sets to the minimum subsets X ′

2l ⊂ X2l,
X ′

2l+1 ⊂ X2l+1, Y ′

2l ⊂ Y2l and Y ′

2l+1 ⊂ Y2l+1 so as to satisfy the following condition: If a
monochromatic rectangle contains all cells in X ′

2l∪X ′

2l+1∪Y ′

2l∪Y ′

2l+1, it also contains all cells
in ALL−S1. Note that rows and columns of singleton cells {2l} and {2l+1} dominate those
of singleton cells {1}, {2} and {3}. So, we have |X ′

2l| = |X ′

2l+1| = |Y ′

2l| = |Y ′

2l+1| = 3 · 2h−2.

We assign weights 1
3·2h−2 for all singleton cells in X ′

2l ∪X ′

2l+1 ∪ Y ′

2l ∪ Y ′

2l+1 and 0 for other
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cells at (11,00) of each Sl and cells outside ALL−S1. A monochromatic rectangle which
contains x cells in X ′

2l and y in from Y ′

2l also contains x · y cells in ALL−S1 which are
assigned weights b. The same thing is true for the case of X ′

2l+1 and Y ′

2l+1. Because we
have

(x + y) · 4

3 · 2h
− xy · 16

9 · 4h
≤ 1 (5.2)

for all 0 ≤ x, y ≤ 3 · 2h−2, all constraints of the dual problem are satisfied. The total weight
of singleton cells {2l} and {2l + 1} is 4. So, the total weight of all cells in Sh now becomes
4h.

Now, we incorporate clique constraints. The number of S1 in Sh is 2h−1. We change
weights of all non-singleton cells in submatrices S1 from b to 0. On behalf of them, we add
a clique constraint for each S1 in Sh. Then, (5.1) becomes

max
a,b,c

3 · 2h · a +
(

9 · 4h−1 − 3 · 2h − 3 · 2h−1
)

· b + 2h−1 · c. (5.3)

where c is a weight assigned for each clique constraint. If we take a = 24·2h
−16

9·4h , b = − 16
9·4h

and c = 2b, all constraints of the dual problem are satisfied and (5.3) = 4 + 8
9 · 2−h.

Consequently, the total weight is 4h + 8
9 · 2−h. Since formula size must be an integer, we

have shown the theorem.

6. Monotone Formula Size of Balanced Recursive Ternary Majority Func-

tions

In this section, we show monotone formula size lower bounds of balanced recursive
ternary majority functions. For this purpose, we consider rank constraints, which are
generalizations of clique constraints. Similarly to the case of clique constraints, we consider
a graph composed of monochromatic rectangles and its induced subgraph g. We consider a
constraint

∑

r∈g xr ≤ α(g) where α(g) is the stability number of g. This constraint is valid

because we can assign 1 at most α(g) rectangles in g for any integral solution. The dual
problem can be written as max

∑

c wc +
∑

q zq +
∑

g α(g)zg such that
∑

c∈r wc +
∑

q∋r zq +
∑

g∋r zg ≤ 1 for each monochromatic rectangle r, zq ≤ 0 for each clique q and zg ≤ 0 for
each subgraph g.

First, we consider the case of height 2. By using clique constraints and rank constraints,
we prove the following improved monotone formula size lower bound while we know that
the original LP bound cannot prove a lower bound larger than 16.5.

Theorem 6.1. Lm(BRecMAJ2
3) ≥ 20

Proof. There are 27 minterms and 27 maxterms for the recursive ternary majority function
of height 2. Among them, we choose the following 9 minterms

110,110,000 101,101,000 011,011,000
110,000,110 101,000,101 011,000,011
000,110,110 000,101,101 000,011,011

and 9 maxterms

111,100,100 111,010,010 111,001,001
100,111,100 010,111,010 001,111,001
100,100,111 010,010,111 001,001,111.
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From these 9 minterms and 9 maxterms, a submatrix of the communication matrix can be
described as Figure 3. In the figure, we abbreviate a minterm e.g. 101,101,000 by 110 and
101, which represent the second level and the first level structure of the 9 bits, respectively.
Notice that all minterms which we choose have the same structure in all 3-bits minterm
blocks at the first level. The same thing is true for all 9 maxterms.

100 010 001
100 010 001 100 010 001 100 010 001

110 5 4 4,5 2 1 1,2 2,5 1,4 1,2,4,5
110 101 6 4,6 4 3 1,3 1 3,6 1,3,4,6 1,4

011 5,6 6 5 2,3 3 2 2,3,5,6 3,6 2,5

110 8 7 7,8 2,8 1,7 1,2,7,8 2 1 1,2
101 101 9 7,9 7 3,9 1,3,7,9 1,7 3 1,3 1

011 8,9 9 8 2,3,8,9 3,9 2,8 2,3 3 2

110 5,8 4,7 4,5,7,8 8 7 7,8 5 4 4,5
011 101 6,9 4,6,7,9 4,7 9 7,9 7 6 4,6 4

011 5,6,8,9 6,9 5,8 8,9 9 8 5,6 6 5

Figure 3: A Submatrix of the Communication Matrix for BRecMAJ2
3

100 010 001
100 010 001 100 010 001 100 010 001

110 1 2 3 4 5 6 7 8 9
110 101 10 11 12 13 14 15 16 17 18

011 19 20 21 22 23 24 25 26 27

110 28 29 30 31 32 33 34 35 36
101 101 37 38 39 40 41 42 43 44 45

011 46 47 48 49 50 51 52 53 54

110 55 56 57 58 59 60 61 62 63
011 101 64 65 66 67 68 69 70 71 72

011 73 74 75 76 77 78 79 80 81

Figure 4: Serial Numbers for 81 cells of the Submatrix

To describe 12 cliques q1, · · · , q12 and a induced subgraph g whose stability number is
4, we give serial numbers for 81 cells as Figure 4. We take the following 12 cliques each of
which consists of 3 pairs of 2 singleton cells:

{ (5, 15), (4, 24), (13, 23) }, { (35, 45), (34, 54), (43, 53) },
{ (2, 12), (1, 21), (10, 20) }, { (62, 72), (61, 81), (70, 80) },
{ (29, 39), (28, 48), (37, 47) }, { (59, 69), (58, 78), (67, 77) },
{ (5, 35), (2, 62), (29, 59) }, { (15, 45), (12, 72), (39, 69) },
{ (4, 34), (1, 61), (28, 58) }, { (24, 54), (21, 81) (48, 78) },

{ (13, 43), (10, 70), (37, 67) }, { (23, 53), (20, 80), (47, 77) }.
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For each combination of 3 pairs, it is easy to verify that rectangles each of which contains
both of two singleton cells from one of the 3 pairs compose a clique.

Next, we consider the following 18 pairs of singleton cells which induce the subgraph g:

(5, 45), (15, 35), (4, 54), (24, 34), (13, 53), (23, 43), (2, 72), (12, 62), (1, 81),
(21, 61), (10, 80), (20, 70), (29, 69), (39, 59), (28, 78), (48, 58), (37, 77), (47, 67).

If a rectangle contain both of two singleton cells from one of 18 pairs, it also contains 2
cells from 9 cells { 9, 17, 25, 33, 41, 49, 57, 65, 73 }. Thus, we can choose at most 4 pairs
without conflicts from 18 pairs. It implies that the stability number of g is 4.

Notice that all these 12 cliques and the subgraph cover all pairs of two singleton cells
which have the same index. We assign 1 for all 36 singleton cells in this submatrix and 0
for other cells. We take zq1 = · · · = zq12 = zg = −1. Then, the objective value of the dual
problem becomes 36 − 12 − 4 = 20. If a rectangle contains at most one singleton cell, the
constraint of the dual problem is trivially satisfied. If a rectangle contains k (2 ≤ k ≤ 4)
singleton cells, it is covered by k − 1 cliques or k − 2 cliques plus the subgraph g. So, the
constraint is also satisfied. As a consequence, we obtain the formula size lower bound.

Note that we need a much more complicated argument to look at the non-monotone
case, which we do not investigate in this paper, because singleton cells in the monotone
communication matrix are not singleton in the non-monotone communication matrix.

In the general monotone case, we can prove a slightly better lower bound than the
quantum adversary bound [15], which shows a 4h lower bound.

Theorem 6.2. Lm(BRecMAJh
3) ≥ 4h + 13

36 ·
(

8
3

)h
(h ≥ 2)

Proof. First, we choose 3h minterms and 3h maxterms from 3h input bits of BRecMAJh
3

so as to have the same structure in the 1st, 2nd, · · · and h-th levels in the following sense.
In the l-th level, we have 3h−l bits which are recursively constructed from lower levels in
the following way. We partition 3l bits into 3l−1 blocks each of which contains consecutive 3
bits. For each block of 3 bits, we replace them into 1 bit which is the output of MAJ3 with
the 3 bits. Then, we get 3h−(l+1) bits. We have 3h bits as input bits in the first level and
can construct them for each level by induction. If all of 3l−1 blocks have the same 3 bits
except 000 and 111 in the case of minterms and maxterms, respectively, we call that they
have the same structure in the l-the level. There are 3h minterms and 3h maxterms because
we have 3 choices in each level. We consider the submatrix whose rows and columns are
composed of these 3h minterms and 3h maxterms, respectively.

From another viewpoint, we can interpret it as a recursively construction of the sub-
matrix Sh of the communication matrix of BRecMAJh

3 as follows. We define Sh(k)
(k = 1, 2, 3) as a matrix such that some cell of Sh(k) contains an index (k − 1) · 3h + i
if and only if the corresponding cell of Sh contains an index i. By induction, we can see
that the number of all cells and singleton cells in Sh is 9h and 6h, respectively. Singleton
cells of each index from 3h bits in Sh is 2h. Indices of cells in Th(1, 2), Th(2, 3) and Th(2, 3)
in Figure 5 can be determined from the property of combinatorial rectangles, but we do not
go to the details because we will assign the same weight for all these cells in each level.

Before using clique and rank constraints, we consider the original LP bound. We assign
weights a for all singleton cells, b for other cells in the submatrix and 0 for all cells in the
outside of the submatrix. Then, the objective value of the dual problem is written as

max
a,b

6h · a + (9h − 6h) · b. (6.1)
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100 010 001

110 Sh−1(2) Sh−1(1) Th−1(1, 2)
101 Sh−1(3) Th−1(2, 3) Sh−1(1)
011 Th−1(2, 3) Sh−1(3) Sh−1(2)

Figure 5: Recursive Structure of Sh for BRecMAJh
3 (h ≥ 2)

If a rectangle contains k singleton cells, it also contains at least k2 − k cells which are not
singleton. Thus, if k · a + (k2 − k) · b ≤ 1 is satisfied for all integer k (1 ≤ k ≤ 2h), then
all constraints of the dual problem are also satisfied. We assume that the inequality is

saturated if and only if k = (3/2)h. Then, we get a = 2·6h
−4h

9h and b = −4h

9h . In this case,

we have (6.1) = 4h.
Now, we incorporate clique and rank constraints. We change weights of all cells except

singleton cells in all S2’s in the second level from b to 0. Then, we add 12 clique constraints
and a rank constraint for each S2 in the second level by following the way of Theorem 6.1.
Let c and d be values assigned for every clique and rank constraints, respectively. Then,
the objective value of the dual problem is

max
a,b,c,d

6h · a + (9h − 81 · 6h−2) · b + 12 · 6h−2 · c + 4 · 6h−2 · d. (6.2)

If we take c = d = 2b, then we have (6.2) = 6h · a + (9h − 49 · 6h−2) · b = 4h + 13
36 ·

(

8
3

)h
.

Since all weights which are changed from b to 0 are exactly compensated by clique and rank
constraints, all constraints of the dual problem are satisfied.

We do not exhaust the potential of our new method and have possibilities to improve

the lower bound. For example, we can improve the lower bound as 4h + c ·
(

8
3

)h
for some

constant c by further detailed analysis in constantly higher levels.

7. Conclusions

In this paper, we devised the new technique proving formula size lower bounds and
showed improved formula size lower bounds of some families of monotone self-dual Boolean
functions such as majority functions, unbalanced and balanced recursive ternary majority
functions. We hope that our method will be able to improve formula size lower bounds
for any monotone self-dual Boolean function and even much broader classes of Boolean
functions. Whether our technique (or its extensions) can break the 4n2 barrier and improve
the best formula size lower bound remains open.
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Abstract. An infinite binary sequence has randomness rate at least σ if, for almost every
n, the Kolmogorov complexity of its prefix of length n is at least σn. It is known that
for every rational σ ∈ (0, 1), on one hand, there exists sequences with randomness rate σ

that can not be effectively transformed into a sequence with randomness rate higher than
σ and, on the other hand, any two independent sequences with randomness rate σ can be
transformed into a sequence with randomness rate higher than σ. We show that the latter
result holds even if the two input sequences have linear dependency (which, informally
speaking, means that all prefixes of length n of the two sequences have in common a
constant fraction of their information). The similar problem is studied for finite strings.
It is shown that from any two strings with sufficiently large Kolmogorov complexity and
sufficiently small dependence, one can effectively construct a string that is random even
conditioned by any one of the input strings.

1. Introduction

The randomness rate of an object is the ratio between the information in the object and
its length. An informal principle states that no reasonable transformation can guarantee an
increase of the randomness rate. The principle has different instantiations depending on the
meaning of “object”, “information,” and “reasonable transformation.” For example, if f is
a mapping of the set of n-bit strings to the set of m-bit strings, then there is a distribution X
on the set of n-bit strings with Shannon entropy n/2 (i.e., the randomness rate of X is 1/2)
and the Shannon entropy of f(X) is ≤ m/2 (i.e., the randomness rate of f(X) is ≤ 1/2).
Thus no transformation f guarantees that its output has a randomness rate higher than that
of its input. The case of infinite binary sequences (in short, sequences) is very interesting
and has been recently the subject of intensive research. We say that a sequence x has
randomness rate at least σ if K(x↾n) ≥ σ·n, for all sufficiently large n. Here, x↾n is the prefix
of length n of x and K(·) is the Kolmogorov complexity. A related notion is that of effective
Hausdorff dimension of a sequence x, defined as: dim(x) = lim inf K(x↾n)/n. Reiman and

Key words and phrases: algorithmic information theory, computational complexity, Kolmogorov com-
plexity, randomness extractors.
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Terwijn [Rei04] have asked whether for any sequence x with dim(x) = 1/2 there exists
an effective transformation (formally, a Turing reduction) f such that dim(f(x)) > 1/2.
Initially, some partial negative results have been obtained for transformations f with certain
restrictions. Reimann and Terwijn [Rei04, Th 3.10] have shown that the answer is NO if
we require that f is a many-one reduction. This result has been extended by Nies and
Reimann [NR06] to wtt-reductions. Bienvenu, Doty, and Stephan [BDS07] have obtained
an impossibility result for the general case of Turing reductions, which, however, is valid only
for uniform transformations. More precisely, building on the result of Nies and Reimann,
they have shown that for all constants c1 and c2, with 0 < c1 < c2 < 1, there is no
Turing reduction f such that for any sequence x with dim(x) ≥ c1 has the property that
dim(f(x)) ≥ c2. In other words, loosely speaking, no effective uniform transformation is able
to raise the randomness rate from c1 to c2. Finally, very recently, Miller [Mil08] has fully
solved the original question, by constructing a sequence x with dim(x) = 1/2 such that, for
any Turing reduction f , dim(f(x)) ≤ 1/2 (or f(x) does not exist).

On the other hand, Zimand [Zim08] has shown that it is possible to increase the ran-
domness rate if the input consists of two sequences that enjoy a certain type of independence.
Namely, we say that two sequences x and y are finitary-independent1 if for all n and m,

K(x↾n y↾m) ≥ K(x↾n) + K(y↾m)−O(max(log n, log m)). (1.1)

In [Zim08], it is shown that for any constant 0 < τ ≤ 1, there is a Turing reduction f such
that, for any finitary-independent sequences x and y, both with randomness rate ≥ τ , it
holds that f(x, y) has randomness rate arbitrarily close to 1 (in particular, dim(f(x, y)) = 1).
Moreover f is a truth-table reduction and also f is uniform in τ .

To summarize, if we start with one source, it is impossible to effectively increase the
randomness rate, while if we start with two finitary-independent sequences it is possible to
increase the randomness rate to close to 1 in a uniform and truth-table manner.

It is clear that the independence requirement plays an important role in the positive
result. Since independence can be quantified, it is interesting to see what level of indepen-
dence is needed for a positive result.

For a function d : N → R, we say that strings u and v have dependency d if K(u) +
K(v)−K(uv) ≤ d(max(|u|, |v|)); we say that two sequences x and y have dependency d if,
for every n and m sufficiently large, the strings x↾n and y↾m have dependency d. With this
terminology, sequences x and y are finitary-independent if they have dependency c · log n,
for some positive constant c.

The question becomes: How large can d be so that an effective increase of the random-
ness rate is possible from two sequences with dependency d? Miller’s result shows that this
is impossible for dependency d(n) = n, while the result in [Zim08] shows that this is pos-
sible for dependency d(n) = c · log n. In fact, [Zim08] shows that, for certain combinations
of parameters, an effective increase is possible even for dependency d(n) = nα, for some
0 < α < 1. More precisely, it is shown that for any τ > 0 and δ > 0, there exists 0 < α < 1
and a truth-table reduction f such that for any sequences x and y that have randomness
rate τ and dependency d(n) = nα, it holds that f(x, y) has randomness rate 1− δ.

1In [Zim08], such sequences are called independent. The paper [CZ08] examines thoroughly the concept
of algorithmic independence for sequences and introduces besides finitary-independence, a stronger concept
which is called independence. We adopt here the terminology from [CZ08].
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In this paper, we improve the above result and show that one can effectively increase
the randomness rate even for two input sources that have linear dependency. More formally,
our result is:

(1) We show that for every 0 < τ ≤ 1 and δ > 0, there exist 0 < α < 1 and a truth-
table reduction f such that for any sequences x and y with randomness rate τ and
dependency d(n) = αn, the sequence f(x, y) has randomness rate ≥ (1− δ).

We also study the finite version of the problem, when the input consists of strings.
Similarly to the infinite case, our interest is in determining how many input strings and
what level of dependency are necessary in order to exist an effective procedure that extracts
Kolmogorov complexity. Vereshchagin and Vyugin [VV02, Th. 4] have shown that one input
string is not enough. They construct a string x so that any shorter string that has small
Kolmogorov complexity conditioned by x (in particular any string effectively constructed
from x) has small Kolmogorov complexity unconditionally. On the other hand, Fortnow,
Hitchcock, Pavan, Vinodchandran and Wang [FHP+06] show that an input consisting of
several independent strings can accomplish the task, when the number of strings in the input
depends on the complexity of the strings. Formally, they show that, for any σ there exists a
constant ℓ and a polynomial-time procedure that from an input consisting of ℓ n-bit strings
x1, . . . , xℓ, each with Kolmogorov complexity at least σn, constructs an n-bit string with

Kolmogorov complexity � n−dep(x1, . . . , xℓ) (dep(x1, . . . , xℓ) =
∑ℓ

i=1 K(xi)−K(x1 . . . xℓ)
and �means that the inequality holds within an error of O(log n)). In view of Vereshchagin-
Vyugin result, the question is whether effective extraction of Kolmogorov complexity is
possible from two input strings. We have two results in this regard:

(2) We show that if strings x and y of length n have dependency αn and complexity σn,
then it is possible to effectively construct a string of length ≈ 2σ ·n and complexity
� (2σ−α) ·n, where ≈ (�) means that the equality (resp., the inequality) is within
an error of O(log n). The construction is uniform in x, y, α, σ. Note, however, that
unlike the procedure from [FHP+06], the construction does not run in polynomial
time.

(3) Our second result shows that from strings x and y, with sufficiently large complexity
and sufficiently small dependency, it is possible to construct a string z that has
large complexity even conditioned by any of the input strings. More precisely if
x and y are strings of length n that have complexity s(n) and dependency α(n),
then it is possible to effectively construct a string of length m ≈ s(n)/2 such that
K(z | x) � m − α(n) and K(z | y) � m − α(n). The construction is uniform
in x, y, s(n), α(n). This improves a result from [CZ08], where the input consists of
three strings x1, x2, x3 and the construction produces a string z with large K(z | xi),
i = 1, 2, 3.

Effective procedures that extract the Kolmogorov complexity of strings are related to ran-
domness extractors. These are objects of major interest in computational complexity and
there is a long and very active line of research dedicated to them. A randomness extractor
is a procedure (which, ideally, runs in polynomial time) that improves the quality of a de-
fective source of randomness. A source of randomness is modeled by a distribution X on
{0, 1}n, for some n, and its quality is modeled by the min-entropy of X (X has min-entropy
k if 2−k is the largest probability that X assigns to any string in {0, 1}n). The distribution
X is defective if its min-entropy is less than n, and is perfect if its min-entropy is equal to
n, which implies that X is the uniform distribution on {0, 1}n. In many applications, it is
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desirable to transform a defective distribution X into a distribution X ′ on a set of shorter
strings which is close to the uniform distribution. Such a transformation is called a ran-
domness extractor. Randomness extraction is not possible from a single source [SV86], but
it is possible from two or more sources [Vaz87]. Consequently, the research has focused on
two types of extractors, seeded extractors and multi-source extractors. A seeded extractor
extracts randomness from two independent distributions X and Y , where X is defective
and defined on the set of n-bit strings and Y is perfect and defined on the set of d-bit
strings, with d much shorter than n (typically d = O(log n)). A k-multisource extractor
takes as input k defective distributions on the set of n-bit strings. For k = 2, the best
multisource extractors are (a) the extractor given by Raz [Raz05] with one source having
min-entropy ((1/2) + α)n (for some small α) and the second source having min-entropy
polylog(n), and (b) the extractor given by Bourgain [Bou05] with both sources having min-
entropy ((1/2) − α)n (for some small α). There is a clear analogy between randomness
extractors and procedures that extract Kolmogorov complexity. In particular, the reader
may compare results (2) and (3) discussed above with existing 2-multisource extractors, but
we emphasize that there is a major difference in that extractors run in polynomial time,
while the procedures in (2) and (3) are only in EXPSPACE. On the other hand, results (2)
and (3) suggest that it might be possible to construct multisource extractors with sources
having a certain level of dependence and/or with the output being random even conditioned
by one of the sources.

A few words about the proof technique. At the highest level, our method follows the
structure of the proofs in [Zim08]. One key idea is taken from Fortnow et al. [FHP+06], who
showed that a multisource extractor also extracts Kolmogorov complexity. Since multisource
extractors with the parameters that are needed here are not known to exist, we construct a
combinatorial object, called a balanced table, that is similar with a 2-multisource extractor.
A balanced table is a 2-dimensional N × N table with each entry having one of M colors
such that in each sufficiently large subrectangle all the colors appear approximately the
same number of times (see Definition 2.2). Using the probabilistic method, we show the
existence of balanced tables with appropriate parameters. It follows that such tables can
be effectively constructed using exhaustive search. Next, using arguments similiar to those
in [FHP+06], we show that if x and y have sufficiently large complexity and sufficiently
small dependence, then the color of the entry in row x and column y of the table has large
complexity. These ideas are sufficient to establish result (2) (Theorem 3.1). Results (1)
(Theorem 4.1) and (3) (Theorem 3.2) require non-trivial technical refinements of the basic
method which are explained in the respective proofs.

2. Preliminaries

2.1. Notation

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and a
sequence is an element of {0, 1}∞. If x is a string, |x| denotes its length. If x is a string or a
sequence and n ∈ N, x↾n denotes the prefix of x of length n. The cardinality of a finite set
A is denoted |A|. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. Let M be a standard Turing
machine. For any string x, define the (plain) Kolmogorov complexity of x with respect to
M , as

KM (x) = min{|p| | M(p) = x}.
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There is a universal Turing machine U such that for every machine M there is a constant
c such that for all x,

KU (x) ≤ KM (x) + c. (2.1)

We fix such a universal machine U and dropping the subscript, we let K(x) denote the
Kolmogorov complexity of x with respect to U . For the concept of conditional Komogorov
complexity, the underlying machine is a Turing machine that in addition to the read/work
tape which in the initial state contains the input p, has a second tape containing initially a
string y, which is called the conditioning information. Given such a machine M , we define
the Kolmogorov complexity of x conditioned by y with respect to M as

KM (x | y) = min{|p| | M(p, y) = x}.

Similarly to the above, there exist universal machines of this type and they satisfy the rela-
tion similar to Equation 2.1, but for conditional complexity. We fix such a universal machine
U , and dropping the subscript U , we let K(x | y) denote the Kolmogorov complexity of x
conditioned by y with respect to U .

Let σ ∈ [0, 1]. A sequence x has randomness rate at least σ if K(x(1 : n)) ≥ σ · n, for
almost every n (i.e., the set of n’s violating the inequality is finite).

The procedures that we design for extracting the Kolmogorov complexity of strings
or sequences are either computable functions (in the case of strings) or Turing reductions
(in the case of sequences). In our result, the Turing reduction is also uniform in two
parameters τ and σ. Formally, such a Turing reduction f is represented by a two-oracle
Turing machine Mf . The machine Mf has access to two oracles x and y, which are binary
sequences. When Mf makes the query “n-th bit of first oracle?” (“n-th bit of second
oracle?”), the machine obtains x(n) (respectively, y(n)). On input (τ, σ, 1n), where τ and
σ are rational numbers (given in some canonical representation), Mf outputs one bit. We
say that f(x, y, τ, σ, ) = z ∈ {0, 1}∞, if for all n, Mf on input (τ, σ, 1n) and working with
oracles x and y halts and outputs z(n). In case the machine Mf halts on all inputs and
with all oracles, we say that f is a truth-table reduction.

2.2. Limited Independence

Definition 2.1. (a) The dependency of two strings x and y is dep(x, y) = K(x) +
K(y)−K(xy).

(b) Let d : N → R. We say that strings x and y have dependency at most d(n) if
dep(x, y) ≤ d(max(|x|, |y|)).

(c) Let d : N → R. We say that sequences x and y have dependency at most d(n), if
for every natural numbers n and m, the strings x↾n and y↾m have dependency at
most d(n).

2.3. Balanced Tables

Let N and M be positive integers. An (N,M) table is a function T : [N ]× [N ] → [M ].
It is convenient to view it as a two dimensional table with N rows and N columns where
each entry has a color from the set [M ]. If B1, B2 are subsets of [N ], the B1×B2 rectangle
of table T is the part of T comprised of the rows in B1 and the columns in B2.
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Definition 2.2. Let T : [N ] × [N ] → [M ] be an (N,M) table and S ≤ N and D ≤ M
be two positive integers. We say that the table is (S,D)-balanced if for every set A ⊆ [M ]
with |A| = M/D and for every sets B1 ⊆ [N ], B2 ⊆ [N ] with |B1| ≥ S, |B2| ≥ S,

|T−1(A) ∩ (B1 ×B2)| ≤ 2 ·
|A|

M
· |B1 ×B2|.

The above definition states that in any B1 × B2 rectangle of T and for any set A of
colors of size M/D, the fraction of occurences of colors in A is bounded by 2 · |A|/M .

Lemma 2.3. Suppose S2 > 3M + 3M ln D + 6SD + 6SD ln(N/S). Then there exists a
table T : [N ]× [N ] → [M ] that is (S,D)-balanced.

Proof. The proof is by the probabilistic method. We color the N -by-N table selecting for
each entry independently at random a color from [M ]. Let us fix A ⊆ [M ] with |A| = M/D,
B1 ⊆ [N ] with |B1| = S and B2 ⊆ [N ] with |B2| = S. Note that it is enough to prove the
assertion for sets B1 and B2 of size exactly S. By the Chernoff bounds,

Prob

(

number of A-colored cells in B1 ×B2

S2
> 2

|A|

M

)

≤ e−(1/3)(|A|/M)S2

= e−(1/(3D))S2

.

(2.2)
The number of possibilities of choosing the set A as above is bounded by

(

M

M/D

)

≤ (e ·D)M/D = eM/D+(M/D) lnD. (2.3)

The number of possibilities of choosing the sets B1 and B2 as above is bounded by
(

N

S

)2

≤ (eN/S)2S = e2S+2S·ln(N/S). (2.4)

The hypothesis ensures that the product of the upper bounds in Equations (2.2), (2.3),
and (2.4) is less than 1. It follows from the union bound that there exists an (S,D)-
balanced table.

In our applications, N and M will be powers of two, N = 2n , M = 2m, and [N ] is
identified with {0, 1}n and [M ] is identified with {0, 1}m. We assume this setting in the
following.

Lemma 2.4. Let T : [N ] × [N ] → [M ] be an (S,M)-balanced table. Let v be a string
with |v| ≤ m. Then for all sets B1 ⊆ [N ], B2 ⊆ [N ] with |B1| ≥ S, |B2| ≥ S, the number of
entries in the B1×B2 rectangle of T that have a color whose prefix is v is ≤ 2· 1

2|v|
·|B1×B2|.

Proof. First observe that, since the table is (S,D)-balanced with the value of the parameter
D equal to M , the definition of an (S,D)-balanced table implies that no color a ∈ [M ]
occurs more than a fraction of 2/M times in any rectangle of T with sizes ≥ S. Let v be a

string of length of most m. Then v has 2m−|v| extensions of length m and, as we have just
noted, each such extension occurs at most a fraction 2/M in any rectangle with sizes ≥ S.
It follows that in any B1 × B2 rectangle of T , all the extensions of v taken together occur
at most 2m−|v| · (2/M) · |B1 ×B2| = (2/2|v|) · |B1 ×B2| times.
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3. Increasing the randomness rate of strings

The next theorem shows that from two n-bit strings with complexity σn and dependency
αn, one can construct a string of length ≈ 2σn and complexity ≈ (2σ − α)n.

Theorem 3.1. For every σ > 0, for every 0 < α < σ, there is a computable function
f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗, that, for every n, maps any pair of strings of length n into a
string of length m = 2σn− log n and has the following property: for every sufficiently large
n, if (x, y) is a pair of strings with

(1) |x| = |y| = n,
(2) K(x) ≥ σn, K(y) ≥ σn
(3) (x, y) have dependency at most αn,

then
K(f(x, y)) ≥ (2σ − α)n− 9 log n.

Proof. Let us fix n and let N = 2n,m = 2σn− log n,M = 2m, S = 2σn, d = αn+8 log n, and
D = 2d. Note that the requirements of Lemma 2.3 are satisfied and therefore there exists a
table T : [N ]× [N ] → [M ] that is (S,D)-balanced. By brute force, we find the smallest (in
some canonical sense) such table T . Note that the table T can be described with log n+O(1)
bits. We define f(x, y) to be T (x, y). Thus, let z = T (x, y) for some strings x and y of
length n satisfying the requirements in the theorem hypothesis. For the sake of obtaining a
contradiction, suppose that K(z) < (2σ−α)n− 9 log n = m− d. Let t1 = K(x), t2 = K(y).
From the properties of x and y, t1 ≥ σn and t2 ≥ σn. Let B1 = {u ∈ {0, 1}n | K(u) ≤ t1},
B2 = {v ∈ {0, 1}n | K(v) ≤ t2} and A = {w ∈ {0, 1}m | K(w) < m− d}. We have |B1| ≤
2t1+1, |B2| ≤ 2t2+1 and |A| < 2m−d. We take B′

1 and B′
2 with |B′

1| = 2t1+1, |B′
2| = 2t2+1,

B1 ⊆ B′
1 and B2 ⊆ B′

2. Since the table T is (S,D)-balanced,

|T−1(A) ∩ (B1 ×B2)| ≤ |T−1(A) ∩ (B′
1 ×B′

2)| ≤ 2 · |A|
M · |B′

1 ×B′
2|

≤ 2 · 2m−d 1
2m · 2t1+1 · 2t2+1

≤ 2t1+t2−d+3.

Note that (x, y) ∈ T−1(A)∩(B1×B2) and that T−1(A)∩(B1×B2) can be enumerated if we
are given t1, t2 and n (from which (m− d) and a description of table T can be determined).
Therefore xy can be described by the rank of (x, y) in the above enumeration and by
information needed for performing that enumeration. Thus

K(xy) ≤ t1 + t2 − d + 2(log t1 + log t2 + log n) + O(1)
≤ t1 + t2 − d + 7 log n.

For the second inequality, we took into consideration that t1 ≤ n and t2 ≤ n. On the other
hand, since x and y have dependency bounded by αn.

K(xy) ≥ t1 + t2 − αn.

Keeping in mind that d = αn + 8 log n, we have obtained a contradiction.

The next theorem shows from two n-bit strings with complexity s(n) and dependency
α(n), one can construct a string of length m ≈ s(n)/2 with complexity conditioned by any
one of the input strings ≈ m− α(n).

Theorem 3.2. For every computable function s(n) verifying 6 log n < s(n) ≤ n and every
function α(n), there is a computable function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that, for every
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n, maps any pair of strings of length n into a string of length m = s(n)/2− 7 log n and has
the following property: for every sufficiently large n, if (x, y) is a pair of strings with

(1) |x| = |y| = n,
(2) K(x) ≥ s(n),K(y) ≥ s(n),
(3) (x, y) has dependency at most α(n)

then
K(f(x, y) | x) ≥ m− α(n)− 11 log n,
K(f(x, y) | y) ≥ m− α(n)− 11 log n.

Proof. We fix n and let N = 2n,m = s(n)/2 − 7 log n,M = 2m, S = 2s(n)/2,D = M, t =
α(n) + 11 log n. The requirements of Lemma 2.3 are satisfied and therefore there exists a
table T : [N ]× [N ] → [M ] that is (S,D)-balanced. By brute force, we find the smallest (in
some canonical sense) such table T . The table T is determined by n and s(n), and, thus,
can be described with log n+log s(n)+O(1) bits. Note that, since D = M , it holds that for
every color a ∈ [M ] and for every subsets B1 ⊆ [N ], B2 ⊆ [N ] with |B1| ≥ S, |B2| ≥ S, the
number of occurrences of a in the B1×B2 subrectangle of T is bounded by (2/M) · |B1×B2|.

We define f(x, y) to be T (x, y). Thus, let z = T (x, y) for some strings x and y of
length n satisfying the requirements in the theorem hypothesis. We need to show that
K(z | x) and K(z | y) are at least m− α(n) − 11 log n. We show this relation for K(z | y)
(the proof for K(z | x) is similar). For the sake of obtaining a contradiction, suppose that
K(z | y) < m − α(n) − 11 log n = m − t. Let t1 = K(x). Note that t1 ≥ s(n). Let

B = {u ∈ {0, 1}n | K(u) ≤ t1}. Note that 2t1+1 > |B| ≥ 2s(n)/2 = S. We say that a column
u ∈ [N ] is bad for color a ∈ [M ] and B if the number of occurrences of a in the B × {u}
subrectangle of T is greater that (2/M) · |B| and we say that u is bad for B if it is bad
for some color a and B. For every a ∈ [M ], the number of u’s that are bad for a and B
is < S (because T is (S,D)-balanced). Therefore, the number of u’s that are bad for B is
< M · S. Given t1 and a description of the table T , one can enumerate the set of u’s that
are bad for B. This implies that any u that is bad for B can be described by its rank in
this enumeration and the information needed to perform the enumeration. Therefore, if u
is bad for B,

K(u) ≤ log(M · S) + 2(log t1 + log n + log s(n)) + O(1)
≤ m + s(n)/2 + 6 log n + O(1)
< s(n),

provided n is large enough. Since K(y) ≥ s(n), it follows that y is good for B.
Let A = {w ∈ [M ] | K(w | y) < m− t}. We have |A| < 2m−t and, by our assumption,

z ∈ A. Let G be the subset of B of positions in the strip B × {y} of T having a color from
A (formally, G = proj1(T

−1(A) ∩ (B × {y})) . Note that x is in G. Each color a occurs in
the strip B × {y} at most (2/M) · |B| (because y is good for B). Therefore the size of G is
bounded by

|A| · (2/M) · |B| ≤ 2m−t · (2/M) · 2t1+1 < 2t1−t+2.

Given y, t1,m−t and a description of the table T , one can enumerate the set G. Therefore, x
can be described by its rank in this enumeration and by the information needed to perform
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the enumeration. It follows that

K(x | y) ≤ t1 − t + 2 + 2(log t1 + log(m− t) + log n + log s(n)) + O(1)
≤ t1 − t + 8 log n + O(1)
= t1 − α(n)− 3 log n + O(1)
= K(x)− α(n)− 3 log n + O(1).

Since K(xy) ≤ K(y)+ K(x | y)+ 2 log n + O(1) (this holds for every n-bit strings x and y),
we obtain

K(xy) ≤ K(y) + K(x)− α(n)− 3 log n + 2 log n + O(1)
≤ K(y) + K(x)− α(n)− log n + O(1),

which contradicts that x and y have dependency at most α(n).

4. Increasing the randomness rate of sequences

We prove that the randomness rate of sequences can be effectively increased even from
two sequences having linear dependence.

Theorem 4.1. There exists a truth-table reduction f with the following property. For any
rational numbers τ > 0 and δ > 0, there exists α > 0 such that for any sequences x and y
with randomness rate at least τ and dependency at most αn, f(x, y, τ, δ) has randomness
rate at least 1− δ. Moreover, the reduction f is uniform in x, y, τ and δ.
Proof. The plan is as follows. We split x into strings x1x2 . . . xi . . . and y into strings
y1y2 . . . yi . . .. For each i, let xi = x1 . . . xi and yi = y1 . . . yi. The splitting is done in
such a way that xi and yi have complexity close to τ |xi| and respectively close to τ |yi|
even conditioned by xi−1yi−1. Next, for each i, we construct a balanced table Ti with
appropriate parameters and take zi = T (xi, yi). The output of the truth-table reduction
is the sequence z = z1z2 . . . zi . . .. As in the case of strings, it follows that zi has high
complexity and actually this holds even conditioned by zi−1 = z1z2 . . . zi−1. So far, the
proof is as in [Zim08]. The point of departure is that in order for the construction to work
with inputs having linear dependence, we need to take the length of zi exponential in i
(rather than quadratic in i, which was the case in [Zim08]). This creates difficulties in
showing that every “intermediate” prefix of z (i.e., a string that is an extension of zi−1 and
a prefix of zi, for some i) has high complexity. To handle this, we argue that even prefixes
of zi have relatively high Kolmogorov complexity conditioned by xi−1yi−1 (see Lemma 4.3)
and then the argument for “intermediate” strings forks into two cases depending on whether
the string is long or short (see Lemma 4.4).

We proceed with the formal proof.
We fix rational numbers τ > 0 and δ > 0. Let x and y be sequences with randomness

rate at least τ . Let ǫ = δ/4.
We split x = x1x2 . . . xi . . . and y = y1y2 . . . yi . . . and let ni = |xi| = |yi|. We’ll take

ni = Bi for some constant B, given by the next lemma.

Lemma 4.2. There exists a constant B > 1 with the following properties:

(a) For every i, K(xi | xi−1yi−1) ≥ 0.99τni and K(yi | xi−1yi−1) ≥ 0.99τni.
(b) For any α > 0, if (x, y) have dependency αn, then, for all i

K(xiyi | xi−1yi−1) ≥ K(xi | xi−1yi−1) + K(yi | xi−1yi−1)− (2.1) · α · ni.
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Proof. (Sketch.) The proof is similar to an analogous result from [Zim08]. For (a), it is
easy to show that B can be taken large enough so that the length of xi is so much larger
than the length of xi−1yi−1 that the complexity of xi does not decrease too much if it is
conditioned by xi−1yi−1.

The proof of (b) passes through the following intermediate steps:
(1) We show that for B, i and j sufficiently large,

K(yixj) = K(yi) + K(xj)± 1.001α(Bi + Bj).

(This is the analogue of Lemma 4.5 from [Zim08]).
(2) We show that B, i and j sufficiently large,

K(xi | xi−1yj) = K(xi | xi−1)± 2.004α(Bi + Bj).

(This is the analogue of Lemma 4.6 from [Zim08]; the constants are not optimized).
Next, the statement can be shown similarly to Lemma 4.7 from [Zim08]).

For the rest of this section, we fix the following parameters as follows:

• The constant B is as given by Lemma 4.2,
• α = (1/3)ǫ2 · (0.97τ) · (1/B).

• For each i, Ni = 2ni , Si = 2(0.98τ)·ni , mi = (0.97τ) · ni, Mi = 2mi Di = Mi.

The parameters satisfy the requirements of Lemma 2.3 and, thus, for each i, there exists a
table Ti : [Ni] × [Ni] → [Mi] that is (Si,Di)-balanced. For every i, given i, a smallest (in
some canonical sense) such table Ti can be constructed by exhaustive search. We fix these
tables Ti and define zi = Ti(xi, yi) and next z = z1z2 . . . zi . . .. Clearly z is constructed by a
truth-table reduction f from input sequences x and y. We will show that z has randomness
rate at least 1− δ.

Lemma 4.3. For every i sufficiently large, each prefix v of zi has K(v | xi−1yi−1) ≥
|v| − 3α · ni.

Proof. Suppose that there is a prefix v of zi with K(v | xi−1yi−1) < |v| − 3α ·ni. We define:

• t1 = K(xi | xi−1yi−1), t2 = K(yi | xi−1yi−1),
• B1 = {u ∈ {0, 1}ni | K(u | xi−1yi−1) ≤ t1},
• B2 = {u ∈ {0, 1}ni | K(u | xi−1yi−1) ≤ t2},

• A = {w ∈ {0, 1}|v| | K(w | xi−1yi−1) < |v| − 3α · ni}.

Note that t1 ≥ 0.99τ · ni, t2 ≥ 0.99τ · ni (by Lemma 4.2), 2t1+1 > |B1| ≥ 20.98τ ·ni = Si,

2t2+1 > |B2| ≥ 20.98τ ·ni = Si and |A| < 2|v|−3αni . Let G be the set of entries (represented
by their coordinates in the table) in the B1×B2 rectangle of the table Ti that have a color
with a prefix in A. By Lemma 2.4, the cardinality of G is at most

2 · |A|

2|v|
· |B1 ×B2| ≤ 2 · 2|v|−3αni · 1

2|v|
· 2t1+1 · 2t2+1

= 2t1+t2−3αni+3.

Note that (xi, yi) belongs to G and that G can be enumerated given xi−1yi−1, t1, t2, and
|v| − 3α · ni (observe that i can be determined from xi−1yi−1 and thus the table Ti can be
constructed). Therefore xiyi can be described by its rank in the enumeration of G and by
the information needed to perform this enumeration. This implies

K(xiyi | xi−1yi−1) ≤ t1 + t2 − 3α · ni + 2(log t1 + log t2 + log(|v| − 3αni)) + O(1)
≤ t1 + t2 − 3α · ni + O(log ni).
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On the other hand, by Lemma 4.2,

K(xiyi | xi−1yi−1) ≥ K(xi | xi−1yi−1) + K(yi | xi−1yi−1)− (2.1) · α · ni.

If i is large, the last two inequalities conflict each other and we obtain a contradiction.

The next lemma finishes the proof of Theorem 4.1.

Lemma 4.4. For each sufficiently long prefix w of z, K(w) ≥ (1− 4ǫ)|w|.

Proof. For some i, the prefix w is of the form w = z1 . . . zi−1vi, with vi a prefix of zi. Let
γ = (1/ǫ) · (3α). We consider two cases:

Case 1: vi is long. Suppose |vi| ≥ γ · ni.
Then K(vi | xi−1yi−1) ≥ |vi| − 3α · ni ≥ |vi| − (3α/γ) · |vi| = (1 − ǫ)|vi|. This implies

K(vi | z1 . . . zi−1) > (1 − ǫ) · |vi| − O(1) ≥ (1 − 2ǫ)|vi|, because each zj can be constructed
from xj and yj. By induction, it follows that K(z1z2 . . . zi−1vi) ≥ (1 − 3ǫ)|z1z2 . . . zi−1vi|.
For the induction step, the argument goes as follows:

K(z1z2 . . . zi−1vi) ≥ K(z1 . . . zi−1) + K(vi | z1 . . . zi−1)
−O(log(m1 + . . . + mi−1) + log(|vi|))

≥ (1− 3ǫ)(m1 + . . . + mi−1) + (1− 2ǫ)|vi|
−O(log(m1 + . . . + mi−1) + log |vi|))

> (1− 3ǫ)(m1 + . . . + mi−1 + |vi|).

In the last step, we have used the fact that log(m1 + . . . + mi−1) = O(i), log |vi| = O(i) and
|vi| = Ω(Bi).

Case 2: vi is short. Suppose |vi| < γ · ni.
For a contradiction, suppose K(z1z2 . . . zi−1vi) < (1 − 4ǫ)|z1z2 . . . zi−1vi|. Note that

z1z2 . . . zi−1 can be reconstructed from a descriptor of z1z2 . . . zi−1vi. This implies

K(z1z2 . . . zi−1) < (1− 4ǫ)(m1 + m2 + . . . + mi−1 + |vi|) + O(1)
= (1− 4ǫ)(m1 + . . . + mi−1) + (1− 4ǫ)|vi|+ O(1)
≤ (1− 4ǫ)(m1 + . . . + mi−1) + (1− 4ǫ)γ · ni

≤ (1− 4ǫ)(m1 + . . . + mi−1) + (1− 4ǫ) · (1/ǫ)(3α) · ni.

But the second term is less than ǫ(m1 + . . . + mi−1) (due to the choice of α). This implies
that K(z1z2 . . . zi−1) ≤ (1− 3ǫ)(m1 + m2 + . . . + mi−1), which, by Case 1, is not possible.

Note. It remains an open issue whether from input sequences x and y (even indepen-
dent) one can construct a sequence z that has high randomness rate conditioned by any
one of the input sequences. In other words, the infinite analogue of Theorem 3.2 is open.
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