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Abstract
We give a simple combinatorial proof of three identities of Warnaar. The
proofs exploit involutions due to Franklin and Schur.

1 Introduction

One of the classical arguments in the combinatorial theory of partitions is Franklin’s
argument [1] establishing Euler’s pentagonal number formula:

oo oo

H(l _ qn) _ Z (_1)qu(3k+1)/2. (1)

n=1 k=—00

This proceeds by interpreting the left side of (1) as a weighted generating function
of partitions into distinct parts:

T10—a" = X (1)@

AED

Here D denotes the set of partitions with distinct parts, |A| is the number partitioned
by A and n()\) is the number of parts in A. Franklin defines an involution ¢ defined
on a “large” subset D' C D with the property that (—1)" Mgl = —(—1)»NglAl,
Thus the sum of (—1)"™glAl over D’ vanishes and Euler’s formula (1) follows from
noting that the sum of (—1)"™¢A over D — D’ is the right side of (1).

Later Schur [3] produced a proof, relying on a more complicated involution, of the
Rogers-Ramanujan identities. Schur’s involution later formed the basis of an explicit
bijective proof due to Garsia and Milne [2] of the Rogers-Ramanujan identities.

In this paper we use Franklin’s and Schur’s involutions to prove bounded (polyno-
mial rather than power series) versions of Euler’s formula and the Rogers-Ramanujan
identities.

Theorems 2 and 3 appear as the main theorem (Theorem 1.1) in [4]. Warnaar’s
proof of these results relies on an elaborate formal argument involving Bailey chains.
He leaves the formula of Theorem 1 as an exercise for the reader. He also remarks
that it “seems an extremely challenging problem to find a combinatorial proof of
Theorem 1.17. This paper meets that challenge.
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2 Franklin’s involution

We adopt the standard g-series notation: for each integer n > 0 define (a), =

n—1 1— J
j:()( ag’).
Let A = (A1,..., \) denote a partition, that is, a finite nonincreasing sequence

of positive integers, |\| = Z?:l A;, the number partitioned by A, and n()\) = k, the
number of parts in A\. Let D denote the set of partitions having distinct parts, that
is the set of A with A; > A3 > --+ > Ay, For nonempty A € D let ¢(A\) denote the
smallest part of A and s(\) be the “slope” of A, that is, the largest integer s such
that A, =X\ —s+1>0.

For j € Z we define a partition 7(;y € D as follows: (g is the empty partition,
for j > 0, mj) = (24,25 — 1,-..,5 + 1) and w_; = (2j — 1,2j — 2,...,5). Then
)| = 3(3 + 1)/2 and () = Il

Following Franklin [1] we define an involution ¢ on the set D' = D—{n(; : j € Z}
as follows:

o if () < s(\) remove the smallest part of A\ and add 1 to each of the ¢(\)
largest parts to yield o());

o if t(A) > s(A) subtract 1 from each of the s(\) largest parts of A and create a
new smallest part equal to s(A) to yield a()).

Then o is an involution on D’ and (—1)"M)gleWl = —(—1)rNglAl.

Theorem 1 The following identity holds for each integer m > 0:

[m/2] i [m/2]
(71)tqt( m-t+3)/ (thrl)met =
=0 i=L=my2]

(—1)¢73+D/2,

Proof Let D,, consist of the partitions in D with parts of size at most m. Then
D,, N D' is not invariant under o. Suppose that A € D,,, N D’ but o(A) ¢ D, N D'.
In this case Ay = m and t(A) < s(\). Let s = s(A) and t = ¢(\) = s(o(\)). Then
A contains a part m —s+ 1landsom —t—12>m—s+ 1 > t. Were equality to
hold throughout, then A would equal 7(_¢ ¢ D’. Hence t < m/2. Then () € Dy,
where D,,; is the set of partitions A € D with largest part m + 1, slope ¢ and
smallest part > ¢t. Conversely if p € D, N D', for some ¢, then o(u) € D,,. The set
(D, U UtU:nl/ 2 Dyny) ND' is invariant under o. It follows that

Z (71)n(/\)q|)\\ _ Z (71)jqj(3j+1)/2_ (2)

AEDm UL Dr s i) €PmUUL ™ D
We now examine both sides of (2). The set D, consists of all partitions in D
with parts from {1,2,...,m}. Hence
m

S (="M =TT = ¢) = (@)

AeD, j=1
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The partitions in D,,, , must contain parts m +1,m,m—1,...,m+2—t and also a
subset of {t +1,...,m —t}. We have

m+1 ) m—t )
Z (_1)n()\)q\>\| _ H (_q]) « H (1 _ qz) _ (_1)tqt(2m+3—t)/2(qt+1)m72t.
AEDpm1 j=mt2—t i=t+1
Thus
[m/2]
Z (71)n(/\)q|>\\ _ (q)m+ Z (71)tqt(2m+3—t)/2(qt+1)m72t
AEDm UL Dr s
(m/2] (
_ Z (_1)tqt(2m+57t)/2(qt+1)m72t.

t=0

The partition 7 lies in D, if and only if 0 < j < m/20r 0 > j > (m —1)/2,
that is if and only if |—m/2] < j < |m/2]. If j > 0 and 7(;) € Dy, then m+1 = 2j
and t = j so that 2t > m. If j > 0 and m(_j) € Dy, then m +1=2j — 1l and t = j
so again 2t > m. Hence

[m/2]
D (—1)Tf@HD2 = 3 (—1)igirr/2,
im €DmUUL* D i=l=m/2]
Equating both sides of (2) gives
[m/2] [m/2]
Z (_1)tqt(2m+3—t)/2(qt+1)m72t _ Z (_l)jqj(3j+1)/2
i=0 i=L-m/2]
as required. O

3 Schur’s involution

Schur [3] produced a proof of the Rogers-Ramanujan identities using an involutive
argument akin to Franklin’s proof of Euler’s formula. Let R denote the set of parti-
tions in D having parts differing by at least 2. The first Rogers-Ramanujan identity

states that - )
|l —
2" = g ena—y

HER n=1

Using Jacobi’s triple product we see that this is equivalent to

1 - —3 n— n 1 —
Z q\;t\ _ H(l _ q5n 5)(1 _ qs 2)(1 _ q5 ) _ Z ( 1)qu(5k+l)/2
HER ( ) 1=1 ( ) k=—o00
and so to
Z (— 1)k k(5k+1)/ Z q\ul Z Z n(/\>q\/\\+\ul_ (3)
k=—00 HER AeD pneR
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Hence we define
w((h, ) = (~1)" g

for ()\,,u) €D xR. Let PG = (2J —-1,25-3,..., 1) €R,and let £ = {(W(j),p(m)) :
j € Z}. Note that w((m(j), p(jp)) = (—=1)7¢?®7+D/2. Schur defined an involution 7 on
(D x R) — £ with the property that w(r(A, 1)) = —w(A, u). The formula (3) is an
immediate consequence of the existence of such a 7.

We shall apply 7 to the set of pairs (A, u) € D x R in which each part of A and
u is at most m. Let R,, = D,, N R: the set of partitions in R having parts of size

at most m. Define
€m+2(Q) = Z q\ﬂ\
HERm

The polynomials e, 2(g) were introduced by Schur and satisfy es(q) = 1, e3(q) = 1+¢
and e,,12(9) = ema1(q) + ¢™en(q) for m > 2.

Theorem 2 The following identity holds for each integer m > 0:

m/2] ey m/2] .
Z (_l)sqs( m—3s+5)/ (qs+1)m—256m—2s+2(Q) _ Z (_1)gqj(5j+1)/ )
5=0 j=l-m/2]

Proof We apply Schur’s involution 7 to D,, X R, as best we can. For the definition
of 7 we follow the description of Garsia and Milne [2] who used T to construct a
bijective proof of the Rogers-Ramanujan identities.

Divide the pairs in (D x R) — £ into three disjoint classes:

e the class 7 contains those (A, ) with either A or pu empty, and those with

— ¢ {07 1}7
e the class A contains those (A, u) with A\; — py =1,
e the class B contains those (A, u) with A\; — g = 0.

The involution 7 will preserve 7 and interchange A and B. It will also negate weights:
it (A, p)) = (N, 1) then w((N, 1)) = —w((A, p)). For (A, p) € T, there is a unique
largest part in A and p; 7 simply transfers this part to the other partition. Clearly
T is a weight-negating involution on 7.

We divide each of the class A and B into three subclasses. For (A, u) € AUB we
let p be the smallest part of A, ¢ the slope of A\ and r the 2-slope of u, the largest
integer r such that p, = p1 — 2(r — 1) > 0. Then

e the class A; contains those € A with min(p, q,r) = p,

)

(A )
the class As contains those (A, 1) € A with min(p, ¢, 7) = g < p,
(A )

the class A3z contains those € A with min(p, ¢,r) = r < min(p, q),

)

the class B; contains those (A, u) € B with min(p, ¢,r) = p,

(
(A

1)
the class B, contains those (A, u) € B with min(p, ¢,7) = r < p,

7
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e the class B3 contains those (A, 1) € B with min(p, q,r) = ¢ < min(p, r).

The involution 7 will interchange A; with By, A, with By and A3 with Bs.

We describe its action on each A;. It is then straightforward to check that
T: Ay — By, 7: Ay — By and 7 : A3 — Bs are all weight-negating bijections.

Let (A, p) € A;. Then we obtain 7((A, 1)) = (N, i) by removing the smallest
part p from A and adding 1 to the p largest parts of u.

Let (A, ) € Ag. Then 7((A, 1)) = (N, 1) where X = o(\) and o is the Franklin
involution.

Let (A, u) € A3. Then we obtain 7((\, 1)) = (N, ') by subtracting 1 from the
r largest parts of u, then moving the largest part of A to p and finally adding 1 to
the r largest parts of A\. That is N = (A + L, A3+ 1,..., 41 + 1, A\y2,...) and
p= A= Lpe =1L e =1 g, ).

Let P, = D,, X R,,. Then

> w((\ ) = (@mems2(q)-

(A1) EPm

For 1 < s <m/2 let P, denote the set of pairs (A, u) € D x R where Ay = m + 1,
u1 = m, A has slope s and smallest part > s and p has 2-slope > s. The A € D
with A\; = m + 1 having slope s and smallest part > s must have the s parts
m+1,m,...,m—s+2, and a subset of {s+1,s+2,...,m—s}. It follows that the
sum of (—1)™ ¢ over these \ is

m—+1 m—s
H (_q]) % H (1 _ qz) — (_1)sqs(2mfs+3)/2(qs+1)m_23.
j=m—s+2 i=s+1

The p in R with 1 = m and having slope at least s have parts m,m—2,...,m—s+2,
together with various distinct parts < m — s differing by at least 2. It follows that
the sum of ¢ over these p is

m _m—2 m—2s+2 s(m—s+1)

qrg"T g em—2s+2(q) = ¢ em—2s42(q)-

Hence

(7 1)sqs(Zm—s+3)/2(qs+1)m725qs(m—s+l)

> w((A\w)

(A1) EPm,s

€m—2s+2 (q)

_ (71)qu(4m735+5)/2(qs+l)m—236m—2s+2(q)~

Let Q,, = P, UU? P,,.,. Then

[m/2]
Z w((/\v;u)) = Z (_1)5q8(4m_38+0)/2(qs+l)mf2s€m72s+2(q)-

(Ap)€Qm §=0

We claim that Q,,, — £ is closed under 7. If (\, ) € Py, but (N, 1) = 7((\, ) ¢
P, then (A, p) € By and so (N, i/) € As. Then My = m+ 1, pj = m and if s is
the slope of A’ then all parts of \' exceed s while the slope of i is at least s. Hence
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T((A\, 1)) € Pps- On the other hand if (A, p) € Py s — &, then (A, ) € Ay and so
T((A, i) € Ppy. Hence
> w((hp)=0.

(Am)€Qm—E
The elements of Q,, N € are the (7}, p;) with |—m/2] < j < [m/2]. Hence

Soow(hw) = > w((M\p)

(A p)EQm (Ap)EQmMNE
m/2]
= Z w((m;, P\jl))
j=-m/2]
[m/2]
= Y (=1)igiGiD
j=-m/2]
and the theorem follows. O

The second Rogers-Ramanujan identity states that

1

lul —
Z q H — g3 (1 — ¢n2)

HER

where R’ denotes the set of y € R with all parts at least 2. Using the Jacobi triple
product, this is equivalent to

i (—1)kgkEk+3)/2 Y g = SN (- 1)) gl (4)
k=—o0 peR! XED peR’

There is also a bounded version of (4). To state it we define

dsa(q) = > "

where R, = D,,, N R’ is the set of partitions in R’ having parts of size at most m.

Theorem 3 The following identity holds for each integer m > 0:

w2 [m/2]
(_1).sqs( m-—3s+5)/ (qs+ )m72sdm72s+2(q) =

5=0 ]

(_1)jqj(5j+3)/2.

Proof This proof follows that of Theorem 2 mutatis mutandis so we do not give it
in detail. We let pf;) = (2,2j—2,...,2) and let £ be the set of pairs (7(;), p{;)) with
j > 0and (7@, p(_;_;)) with j < 0. The map 7 is an involution on (D x R') — &".
The proof now follows that of Theorem 2 exactly. O
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