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Abstract

For integers r > 2 and s > 1, let K., denote the complete multipartite
graph with r partite sets of order s. Let G be a 2-regular graph of odd
order n. If G contains exactly one odd cycle, it is known that there
exists a G-decomposition of Kopni1, of K(2k41)xn, and of Kjsye, for all
positive integers k and k' > 3. If G consists of three vertex-disjoint odd
cycles, then the only known general result is a G-decomposition of Ko, 1.
We use a novel extension of the Bose construction for triple systems to
show that in the three odd cycles case, there exists a G-decomposition of
K (9141)xn for every positive integer k. We also show that there exists a
G-decomposition of Kiyo, as well as of Kog,41 for every integer k£ > 3.

* Corresponding author.
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1 Introduction

Let Z, be the group of integers modulo n. For integers a and b with a < b, we
denote the set {a,a+1,...,b} by [a,b] (if a > b, then [a,b] = &). For a graph G,
let V(G) and E(G) denote the vertex set of G and the edge set of G, respectively.
The order and the size of a graph G are |V (G)| and |E(G)|, respectively. We will
denote the complete multipartite graph with r partite sets of order s by K,xs. The
vertex-disjoint union of r copies of a graph G will be denoted by rG. A non-bipartite
graph G is almost-bipartite if for some e € E(G), the graph G — e is bipartite.

A decomposition of a graph K is a set A = {G1,Ga,...,G;} of subgraphs of
K such that the edge sets of the graphs G; form a partition of the edge set of K.
If each G; is isomorphic to a fixed graph G, such a decomposition is called a G-
decomposition of K or (K,G)-design. In this case, we may say G decomposes K or
K is decomposable by G. A (K,,G)-design is also known as a G-design of order v.
For recent surveys on G-designs, we direct to the reader to [2] and [12].

One of the better studied problems in G-designs is the case when G is a cycle.
Necessary and sufficient conditions for the existence of C),-designs of order v were
found about a decade ago by Alspach and Gavlas [6] and by Sajna [20]. Necessary
and sufficient conditions for the existence of a G-design of order v are found in [3]
when G is a 2-regular graph of order at most 10. For an arbitrary 2-regular graph G
of order n, the problem of finding necessary and sufficient conditions for the existence
of a G-design of order v is far from settled. It is expected however that for such a
G, there will exist a G-design of order v for all v = 1 (mod 2n). This has been
confirmed when G is bipartite (see [16] and [8]), when G is almost-bipartite [14],
when G is rC,, where m is odd [17], and when G has two components (see [1], [9]
and [13]). If in addition n is odd and (G, v) ¢ {(C,UC5,9), (C3UC5UC5,11)}, then
a G-design of order v for all v =n (mod 2n) is likely to exist. This is confirmed in
[15] when G consists of one even and one odd cycle.

A well-known problem on decompositions of complete graphs into 2-regular
graphs is the Oberwolfach Problem. Let G be a 2-regular graph of odd order n.
The problem of determining whether there exists a G-decomposition of K, is known
as the Oberwolfach Problem. This problem was settled in 1989 by Alspach, Schel-
lenberg, Stinson, and Wagner [7] in the case when all the components of G are
isomorphic to the same cycle. More recently, Traetta [21] settled the case when G
consists of two components. The general problem however is far from settled. For
example, very little is known when G consists of three components (see [11] for some
known results).

It is easy to see that Kop,in can be decomposed into (2k + 1)K, and K(ok11)xn-
Thus if there is a G-decomposition of K, and a G-decomposition of K (gj41)xn, then
there is a G-decomposition of Kay,1y. In [15], an extension of the Bose construction
for triple systems is used to show that if GG of order n is the vertex-disjoint union of an
even cycle and an odd cycle, then G decomposes K op41)xn for every positive integer
k. This is then combined with Traetta’s result [21] on the Oberwolfach problem with
two components to show that there is a G-decomposition of Ko,1,. In [15], it is also
shown that there exists a G-decomposition of Kj/yo, for every integer k' > 3. The
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results on G-decompositions of K (gj41)xn and of Ky o, are extended to all 2-regular
almost-bipartite graphs G in [18].

In this article, we use a further extension of the Bose construction for triple
systems to show that if G of order n is the vertex-disjoint union of three odd cycles,
then there exists a G-decomposition of K(gj41)xn for every positive integer k. We
also show that there exists a G-decomposition of Kiyo, as well as of Ky, for
every integer k > 3. As with the Bose construction, these decompositions make use
of commutative quasigroups.

2 Quasigroups and the Bose Construction

A quasigroup of order q is a pair (Q, o) where @ is a set of size ¢, say @ = [1,q],
and o is a binary operation on () such that for every pair of elements a,b € @), the
equations aoxr = b and yoa = b have unique solutions. The quasigroup is idempotent
if 104 =1 for every i € (Q and it is commutative if 1o j = joi for all 7,5 € Q. It is
known that an idempotent commutative quasigroup of order ¢ exists if and only if ¢
is odd (see [19]).

Let @ = [1,2k] and let H = {{1,2},{3,4},...,{2k — 1,2k}}. In what follows,
the two element subsets {2i — 1,2i} € H are called holes. A quasigroup with holes
H is a quasigroup (@, o) of order 2k in which for each h € H, we have (h,o) is a
subquasigroup of (@, o). It is known that for every integer k > 3, there exists a
commutative quasigroup (@, o) of order 2k with holes H (see [19]). Commutative
quasigroups of order 2k with holes H are used to construct Cs-decompositions of
K.« for every integer k > 3.

We give a brief description of Bose’s construction for Steiner triple triple systems
of order 6k + 3. We direct the reader to the book by Lindner and Rodger [19] for
detailed information on quasigroups and triple systems.

We will define a Steiner triple system of order v to be a Cs3-decomposition of
K,. It has long been known that a Steiner triple system of order v exists if and
only if v =1 or 3 (mod 6). In 1939, Bose [10] used the existence of an idempotent
commutative quasigroup of order 2k + 1 to construct a Cs3-decomposition of Kgg, s
for every positive integer k. One can view Kejis as (2k + 1) K3 |J K(2k41)x3- Thus to
construct a Cs-decomposition of Ky 3, it suffices to construct a Cs-decomposition
of K(ar41)x3. Let (a,b, c) denote the C5 with vertex set {a,b, c}.

Let (@, o) be an idempotent commutative quasigroup of order 2k + 1 where @) =
[1,2k + 1] and let V(K (2k11)x3) = Zs x ) with the obvious vertex partition. Let
T = {((0,2),(0,5), (L2 0 5)), ((L,4), (1,7), (2,20 5)), ((2,4),(2,5), (0,i 0 j)): 1 <i <
Jj <2k +1}. Then the C5’s in T form a Cs-decomposition of K (2k+41)x3-

Figure 1 shows an idempotent commutative quasigroup of order 5 and one triple
from the Bose construction of a Steiner triple system of order 15.

Alternatively, let £ > 3 be an integer and for i € [1, k], let h; = {2i — 1,2i} and
gi = Z3 x h;. Let Q = [1,2k] and H = {hy, ha, ..., hi}. Let (Q,0) be a commutative
quasigroup of order 2k with holes H. Let V(Kyixg) = Zs x ) with the vertex-
set partition {gi,¢e,...,9x}. Let T = {((0,4),(0,7), (1,30 5)),{(1,7),(1,5),(2,i 0
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(0,1)e (0,5)® ol1 2 3 4 5
1/1(5]2]3|4
2052413

1,1 1,2)® (1,3)® (1,4)® o

(L)® (1,2)® (1,3)® (L,4)® (1,5) NSMEIE
4131|542

(2,1)® (2,2)® (2,3)® (24)® (2,5)® 5043|125

Figure 1: An idempotent commutative quasigroup of order 5 and one triple from the
Bose construction of a Steiner triple system of order 15.

N, (((2,4),(2,5),(0,i0g))y: 1 < i < j < 2k,{i,j} ¢ H}. Then the C3’'s in T
form a C3-decomposition of Kj.g. This process is part of what is known as the
quasigroups with holes construction for triple systems (see [19]). Figure 2 shows a
commutative quasigroup of order 6 with holes and one triple from the corresponding
Cs-decomposition of K3yg.

(0,1)e (0,2)e (0,3) e (0,4)0 (0,5)e (0,6)e Jd1 93456
1l1(2]5]6|34
(1De (12)e (1,6)e 202|1]6]5[4]3
3l5(6|3(4[1]2
416151413121
(2,1) (2,5)® (2,6)® sl3lal1]2]5]6
6l4[3[2[1]6]5

Figure 2: A commutative quasigroup of order 6 with holes and one triple from the
corresponding C'3-decomposition of Kjyg.

3 Some notation

We denote the directed path with vertices g, z1,...,x, Where x; is adjacent to
Tiz1, 0 <@ < k—1, by (zg,x1,...,2x). The first vertex of this path is xzq, the
second vertex is x1, and the last vertex is zy. If G1 = (xo,21,...,7;) and Gy =
(Y0, Y1, - - ., yx) are directed paths with z; = yo, then by G + G we mean the path
(0, T1, - -, T, Y1, Y2, - - - Yk)-

For the remainder of this section, we consider only subgraphs of a complete
bipartite graph K,,,, with vertex set [0,m — 1] x [1,2] and the obvious vertex bipar-
tition. Furthermore, if m, n, and ¢ are integers with m < n, we denote {(m, i), (m+
1,7),...,(n,i)} by [(m,i),(n,7)]. Define the length of an edge {(i,1),(j,2)} to be
7 — 1 if j > i; otherwise the edge length is n + j — 1.

Let P(k) be the path with k edges and k+1 vertices given by ((0,1), (k,2), (1,1),
(k—1,2),(2,1), (k—2,2),...,([k/2],[k/2]—k/2])+1). Note that the set of vertices
of this graph is AU B, where A = [(0,1), ([k/2],1)], B = [([k/2] + 1,2), (k,2)],
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and every edge joins a vertex of A to one of B. Furthermore, the set of lengths of
the edges of P(k) is [1, k].

Now let a be a nonnegative integer and b be an integer such that [b] < |k/2] +1,
and let us add (a,0) to all the vertices of A and (b,0) to all the vertices of B. We
denote the resulting graph by P(a,b, k). Note that this graph has the following
properties.

P1 P(a,b, k) is a path with first vertex (a, 1) and second vertex (b+ k,2). Its last
vertex is (a + k/2,1) if k is even and (b+ (k + 1)/2,2) if k is odd.

P2 Each edge of P(a,b, k) joins a vertex of A’ = [(a, 1), ([k/2] +a,1)] to a vertex
of B' = [([k/2] +1+1b,2),(k+b,2)].

P3 The set of edge lengths of P(a,b,k) is [b—a+ 1,0 —a + k.

Now consider the directed path (k) obtained from P(k) by replacing each
vertex (4,7) with (k — 4,3 — j). The new graph is the path ((k,2),(0,1),(k —
1,2),(1,1),...,(lk/2], |k/2) — [k/2] + 2)). The set of vertices of Q(k) is AU B,
where A = [(0,1), ([k/2] — 1,1)] and B = [([k/2],2), (k,2)], and every edge joins
a vertex of A to one of B. The set of edge lengths is still [1, k]. We again add (a,0)
to the vertices of A and (b,0) to vertices of B, where a is nonnegative integer and
b is an integer with |b] < [k/2]. We denote the resulting graph by Q(a,b, k). Note
that this graph has the following properties.

Q1 Q(a,b, k) is a path with first vertex (k + b,2). Its last vertex is (b + k/2,2) if
k is even and (a + (K —1)/2,1) if k is odd.

Q2 Each edge of Q(a,b, k) joins a vertex of A’ = [(a,1),(a + [k/2] — 1,1)] to a
vertex of B' = [(b+ [k/2],2), (b+ k,2)].

Q3 The set of edge lengths of Q(a,b, k) is [b—a+ 1,b —a+ k.

(4,1) (5,1) (6,1) 2, (3,1) (6,1)
(11,2) (10,2) (13,2) (12,2) (11,2) (10,2)
P(4,5,6) Q(2,6,7)

Figure 3: Examples of the P(a,b, k) and Q(a,b, k) notation.

4 (G-decompositions of K11y, and of K2,

Let n > 3 be an odd integer and let k be a positive integer. Let K(oxp11)xn have
vertex set Z, x [1,2k + 1] with the obvious vertex partition. As before, we define
the length of an edge {(i,7), (j,s)} where r < s, to be j — i if j > 4; otherwise the
edge length is n + 5 — ¢. Thus, between any two parts, there are edges of lengths
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0,1,...,n — 1. We will often write —j for edge length n — 7 when n is understood.
Therefore, between any two parts, there are edges of lengths 0,£1,+2, ..., :I:("2;1).
For ease of notation, we henceforth use i, and is to denote the vertices (i,7) and
(1, s), respectively.

We first prove a lemma that shows the existence of paths with certain edge lengths
in Ky .

Lemma 1. Let n > 3 be an odd integer and let m < (n — 1)/2 be a positive

integer. Let K, , have vertex set Z, x {1,2} with the obvious vertex partition.

Let dy,ds, ... ,d,_1 be an increasing sequence of consecutive positive integers with

dm—1 < (n —1)/2. There exists a path P in K, , of length 2m — 1 whose edges

have lengths 0, £dy, £ds, . .., £d,,—1 with endpoints 01 and Oy. Furthermore, V(P) C

([0, [2] =1 U [dpno1 — [ 2] +1,dm-]) x [1,2].

Proof. It m = 1, let P be the path consisting of the edge {01,05}. Otherwise,
k—1

for k € [1,m — 1], define ¢}, = Z(_l)idm—l—i‘ Note that since d;;; — d; = 1, we
i=0

have ey; = j and egj41 = dm—1 — j. Thus, e,,-1 = [%] — 1 if m — 1 is even and

em—1 = dm—1— 5] +1if m—11is odd. Similarly, e,,_o = [5] —1or dp—1 — | 5] +1

if m — 1 is odd or even, respectively.

Consider the path of length m — 1 given by P’: 01, (e1)s, (€2)1, (€3)2, ... where
P’ ends with (e,,_1)2 if m — 1 is odd or (e,,_1); if m — 1 is even. Thus, V(P’) C
([0, [2] =1 U [dp-1 — | 2] +1,dmn-1]) x [1,2]. Also, observe that the lengths of the
edges of P, in the order encountered, are d,,_1, dy,—o, ..., d;.

Next consider the path P”: 0o, (1)1, (€2)2, (€3)1, - .. where P” ends with (e;,—1);
if m — 1 is odd or (e,,_1)2 if m — 1 is even, and observe that the edges of P”, in the
order encountered, are —d,,,_1, —dmm_o, ..., —dy. Since P” is constructed in the same
way as P’ with the corresponding vertices lying in the opposite parts of V (K, ), we
have V/(P") C ([0, [2] = 1]U[dm-1— 2] +1,dpn-1]) X [1,2], and V(P)NV (P") = 2.

Construct the path P from the paths P’ and P” by adding the edge from
(ém—1)1 to (em—1)2. Note that P has length 2m — 1, the edges of P have lengths
0,%dy, £ds, ..., £dp_1, and V(P) C ([0, [2] = 1U[dmn-1— 2] +1,dmn]) X [1,2]. 1

Let K be a subgraph of a graph with vertex set Z,, x [1,¢|. For a positive integer
¢, the graph K + ¢ has vertex set {(i +¢),: i, € V(K)} and edge set {{(i +¢),, (j +

O)s}: {ir, s} € E(K)}.
Theorem 2. Let G be a 2-reqular graph of order n consisting of exactly three odd
cycles. For every positive integer k, there exists a G-decomposition of K(ap41)xn-

Proof. Let G = Copq1 U Coyq1 Uy, 41 Where z,y, and z are positive integers and let
n =2x+2y+2z+3. Let k > 1 be an integer. Label the vertex set of K(op41)x, with
the elements of the group 7Z, x [1, 2k+ 1] with the obvious vertex partition. Let (Q, o)
be an idempotent commutative quasigroup of order 2k + 1, where @ = [1, 2k + 1].
Fix r and s with 1 <r < s <2k + 1. We will construct a graph G, 5 consisting
of the vertex disjoint union of the following three cycles: C, s of length 2z + 1, C’;S

of length 2y + 1, and C’;:S of length 2z + 1. We will consider two cases.
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Case 1: G has at least two cycles of length 3. Without loss of generality, we may
assume that x = y = 1. Then the vertex sets of C,, and C;’S can be given by
{0,, 14, 3105} and {3, 24, 5,04}, Tespectively. If z = 1, then the vertex set of C), can
be given by {4,,4s, 8,05 }. Suppose that z > 2. By Lemma 1, there exists a path P} of
length 2z —1, between parts r and s, whose edges have lengths {0} U=[5, 2+3]. In the
lemma, we would use d; =5, dy =6, ..., d.—1 = z+3,80 V(P},) C[0,2+3] x {r, s}
with endpoints 0, and 0,. Let P/, = P} +4. Thus P/, has endpoints 4, and 4,.
Then V(P,) C [4,2 + 7] x {r,s}. Thus, P/, is vertex disjoint from C, and CJ .
Construct the cycle C7_ of length 2z + 1 from the path P/, by adding the edges
{4,805} and {4, 8,05 }. Note that in the induced subgraph of K(p41)xn With vertex
set Z, x {r,s}, G, s contains one edge of each length ¢ € [—1,1] U £[5,2 + 3] (if
z =1, then G, contains one edge of each length i € [—1,1]). Moreover, the three
edges of G, ¢ that are incident only with vertices in Z,, x {r,r o s} are all of different
lengths. In fact, the edges {0, 3,05} in Cr, {3, 5705} in Cy , and {4,,8,0,} in C7,
have lengths 3, 2, and 4, respectively, if r < r o s, and lengths —3, —2, and —4,
respectively, otherwise. Similarly, the three edges of G, s that are incident only with
vertices in Z, X {s,r o s} are all of different lengths. In fact, the edges {15, 3,05} in
Crsy {25, 5005} In O, and {4, 8,05} in 7, have lengths 2, 3, and 4, respectively, if
s < ros, and lengths —2, —3, and —4, respectively, otherwise. Figure 4 shows an
example of C, ;, C] , and C}, where v =y =1 and z = 4.

Next, let Gy, = {Grs +£:0 < ¢ <n—1}. Thus Gy contains n distinct copies
of G. Moreover, in the induced subgraph of K(or11)x, With vertex set Z, x {r, s},
G* contains all edges of length i for all ¢ € [—(n —1)/2,(n —1)/2] \ £[2,4]. Let
C={Gs+0:1<r<s<2k+1,0<¢<n-—1} and note that C contains (Qk;l)n
distinct copies of G. We will show that every edge of K(241)x, appears in some copy
of G in C. Let e = {i,,js} with r < s be an arbitrary edge of Kpi1)xn- Let t' be
the unique solution to r o t’ = s and let o/ = min{r,#'} and §' = max{r,t'}. Let ¢’
be the unique solution to s ot” = r and let o = min{s, t"} and " = max{s,t"}. If
j—i€[—-(n—1)/2,(n—2)/2]\ £[2, 4] then e belongs to G, s+ ¢ where 0 < ¢ < n—1.

Note that if j — i = 2, then e belongs to the triple {(i,r), (i — 1,t'), (4, s)} which
is a copy of Cy, if ' < r, or a copy of C}, if r < t'. If j —i = 3, then e belongs
to the triple {(i,r), (i + 1,%'), (j,s)} which is a copy of Cj,, if ¢ < r, and a copy of
Crp if r < t'. Also, if j —4 = 4, then e belongs to some copy of C7, 5. Thus, if
Jj —1 € [2,4], then e belongs to G g + ¢ where 0 < ¢ <n — 1.

Observe that if j —i = —2, then e belongs to the cycle ((4,s), (j — 1,t"), (i,7))
which is a copy of Cy  if ¥ < s, or a copy of C , if s <t". If j —i = -3, then e
belongs to the cycle ((4, s), (j + 1,t"), (i,7)) which is a copy of C},  if t" < s, or a
copy of Cyyn if s < 1". Also, if j —i = —4, then e belongs to some copy of Cf, 5.
Thus, if j —i € [—4, —2], then e belongs to Go» g + £ where 0 < ¢ < n — 1. Since
every edge of K(op41)xn appears in some copy of GG in C and since C contains (%H)n

2
distinct copies of G, it follows that C is a decomposition of K(g41)x, into copies of

G.

Case 2: (G has at most one cycle of length 3. Suppose y > 2 and z > 2. By
Lemma 1, there exists a path P, of length 2z — 1 using the edge lengths in {0} U
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0, 3, 4, 5. 10, 11,
Dgros Df)ros Wsros
1 25 11, 105 5s 4
: ! 1
Figure 4: C,.,, C] , and C7  where z =y =1 and z = 4.

+ly + 2+ 3,z + y + z + 1] with endpoints 0, and Os. In the lemma, we would
wsed =y+z+3, d=y+z+4 ...,dpy =2x+y+z+1, 80 V(P C
(10,21 =1U[[£] +y+2z+2,2+y+ 2+ 1]) x {r,s}. We construct the cycle C,
of length 2z 4+ 1 from P, by adding the edges {0, (y + 2)0s} and {OS, (Y + 2)ros }-

Next, we will construct the cycle Cj , of length 2y 4 1. Let P!, = G| + G + G}
where

Gy = P31 151 +3,y-2)

o J R (5T 5 (1514 45 [51 4 257),). iy =2 0dd:
2 = :
(51 + 13200, (151 + 5200, (151 + 2550, T3]+ 552)), iy =2 even,
o P([E]+ %2, [2] — &2,y —2), ify—2odd;
Q([E] + &8, [2] — L2,y —2), if y— 2 even.
If y =2, then Pl =Gy = ([£],. ([£] 4+ 2)s, ([2] 4+ 3)r, [£]s).
Note that by Pl, the first vertex of G is [§],, and the last vertex is ([£]+ yTJ“E’)s
if y —2is odd and ([5] + y;2) if y — 2 is even; the first vertex of G is ([§] + yT%)r
and the last vertex is [£], if y—2 is odd. By Q1, the first vertex of G4 is ([£] +£2),

and the last vertex is [$], if y — 2 is even.

For i = 1 or 3, let A; and B] denote the sets labeled A" and B’ in P2 and Q2
corresponding to the graph G;. Then using P2 and Q2, we compute

A’l = [[£1,, (151 + 552D,

= [([%] + 152D)s ([31 +y + D,
= [([$1+ T2, (5] +y+1),],
=515 ([51 + 152D)s)-

Note that V(G7) N V(GY) = {([%] + 42),} if y — 2 is odd and V(G) N V(GY) =
{([£]+2),} if y — 2 is even and, V(G5) NV(G4) = {([£] + £2),} if y — 2 is odd
and V(G5) NV (GY) = {([5] + @’2;2)8} if y — 2 is even; otherwise, G|, G5 and G are
vertex disjoint. Therefore, G} + G5+ GY is a path of length 2y 1 With the endpoints
[51- and [§]s. Since V(P),) C[[5],[5] +y+1] x{r, s}, P, is vertex-disjoint from

5
5
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P, ;.

Next, let E! denote the set of edge lengths in G} for i =1 or 3. By P3 and Q3,
we have edge lengths

By =[4,y+1],
Ey=[-(y+1), -4

Notice that the set of edge lengths in G, is {2, —1, —3}. Then construct the cycle C’és
of length 2y + 1 from the path P7l’,s by adding the edges {(%L , ((%W +y+ 2+ 1)0s}
and {[5],, (]3] +y+ 2+ Dros}-

Finally we will construct the cycle G}/, of length 2z +1. Let P/, = G| + G4 + Gj
where

Gl =Plr+y+z+2,2+2y+2+3,2—2),

(( 2m+4y+32+5)s ’ ( 2:L’+4y2-|—3z—1)r 7 ( 2m+4y2+3z+1)5 ’ ( 2$+4y2+3z+5)7> ’ if 2—2 Odd;

" 2

0=
(( 2$+2y2+3z+2)r 7 ( 2:1:+2y2+3z+8)5 7 ( 2z+2y2+3z+6)r , ( 29:+2y2+3z+2)5) ’ if 2—92 even,
G// P(2x+4y2+32+5’ 290+23§+z+57 2_2)7 if 2 —9 Odd;
3 prm—

Q ( 2x+4y4+324+6 2x42y+2+6
2 ) 2

,z—2), if z— 2 even.
If z =2, then P/, = GY = ((z +y +4),, (z +y+7)s, (z +y +6),, (z +y +4),).
Note that by P1, the first vertex of G7 is (x + y + z + 2),, and the last vertex is
(B0 Cif 2 — 2 s odd and (EEEELEEER) if 2 — 2 is even; the first vertex of G
is (ZHLEED) and the last vertex is (z+y+ 2z +2), if z— 2 is odd. By Q1, the first

vertex of G is (ZE2LE2E2) “and the last vertex is (z +y + 2 + 2), if 2 — 2 is even.

For ¢ = 1 or 3, let A and B! denote the sets labeled A" and B’ in P2 and Q2
corresponding to the graph GY. Then using P2 and Q2, we compute

Al =[x +y+2+2), (@+y+ %] +1)]
BY = [(x + 2y + [%52])s, (2 + 2y + 22 + 1)),
Ay = (@ + 2y + [32])r, (2 + 2y + 22 + 1),
Bi=[z+y+2+2), (x+y+ 2] +1)

Note that V(GY)NV(G5) = {(z+2y+[352]),} if z—2is odd and V(GY)NV(GY) =
{(z+y+[Z]+1),}if z—2is even and, V(G5) NV (GY) = {(z + 2y + [222]),} if
z—2isodd and V(G5) NV(GY) = {(z +y + [£] + 1)} if 2 — 2 is even; otherwise,
GY, GY and GY are vertex disjoint. Therefore, G + G + GY% is a path of length
2z — 1 with the endpoints (z +y + 2z + 2), and (v +y + 2z + 2)s. Since V(P/,) C
[t +y+2+2,0+2y+2z+1] x {r,s}, P/, is vertex disjoint from P, and P} .
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Next, let E! denote the set of edge lengths in G for i =1 or 3. By P3 and Q3,
we have edge lengths

EY =[y+2,y+z—1]
B =[-(y+2z-1),—(y+2)].

Notice that the set of edge lengths in G is {3,1, —2}. Then, construct the cycle C’;:s
of length 2z + 1 from the path P,,f:s by adding the edges {(x +y + z + 2),, (z + 2y +
22+ 4)0st and {(z+y+ 2+ 2)5, (. + 2y + 22+ 4),05 )

Since (Y + 2)ros,([ 2] + ¥+ 2+ 1)yos and (z + 2y + 2z +4),05 are different vertices,
and P, Py, and P/ are vertex disjoint, we have C, , 0;78 and C’;ﬁs are also vertex

disjoint. Figure 5 shows an example of C,,, C] and C;  where z = 4,y = 2 and
z = 0.

Let Gy = {Grs+0:0< ¢ <n—1}. Then G} contains n distinct copies of G
and all the edges of each length i € [—-(n —1)/2,(n —1)/2]\ ]y + 2,y + 2+ 2] in
the induced subgraph of K (o 11)x, With vertex set Z, x {r,s}. Let C = {G, + (:
1 <r<s<2k+10</¢<n-—1} and note that C contains (2’“2“)71 distinct
copies of G. We will show that every edge of K(or41)xn appears in some copy of G
in C. Let e = {i,,js} with » < s be an arbitrary edge of K(api1)xn. Let t' be the
unique solution to r ot = s and let o/ = min{r, '} and ' = max{r,t'}. Let t" be
the unique solution to s ot” = r and let o = min{s,t"} and ” = max{s,t"}. If
j—i€l-(n—1)/2,(n—1)/2]\ £y + 2,y + z+2], then e belongs to G, ; + ¢ for some
Cwith0<{<n-—1.1Ifj—1i€[y+zy+z+2], then e belongs to Gy g + ¢ where
0<l<n—-11tj—ie[—(y+2+2),—(y+ z)|, then e belongs to G~ g + ¢ where
0 < ¢ <n-—1. Since every edge of K(pt1)xn appears in some copy of G' in C and
since C contains (2’“; 1)n distinct copies of G, it follows that C is a decomposition of
K (2k41)xn into copies of G. |

0, 1, 11, 12, 2, 5, 13, 14, 15, 18, 19,
12, 11, 1, 0, 4 2, 19, 18, 16, 14, 13,
Figure 5: C, C; ; and C}, where v =4, y =2 and 2 = 5.

In the proof of Theorem 2, if we replace idempotent symmetric quasigroups with
symmetric quasigroups with holes, then we obtain a G-decomposition of Ko, for
every integer k > 3.

Theorem 3. Let G be a 2-reqular graph of order n consisting of exvactly three odd
cycles. For every integer k > 3, there exists a G-decomposition of Kyyxop.

Proof. Let G = Copy1 U Coypq1 U Co,qq, where ,y,2 > 1. Let £ > 3 be an integer
and let @ = [1,2k]. For i € [1,k|, let h; = {2i — 1,2i} and g; = Z, x h;. Let
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n =2z + 2y + 2z + 3 and let V(Kgxon) = Zyn X [1,2k] with the vertex-set partition
{01,92,---,9x}. Let (Q,0) be a commutative quasigroup of order 2k with holes
H ={hy, hg, -, hy}.

Fix r and s with 1 <r < s < 2k and {r, s} ¢ H. We proceed in the same fashion
as in the proof of Theorem 2 producing the graph G, ; consisting of a cycle C, 5 of
length 2z + 1, a cycle Cj ; of length 2y + 1, and a cycle C]/; of length 2z + 1 such
that C;.,, C}., and C7 are vertex disjoint.

We treat first the case where G contains at most one cycle of length 3 (thus we
assume y > 3 and z > 3 as in Case 2 in Theorem 2). Note that for fixed r and
s with 1 < r < s < 2k and with {r,s} ¢ H, the set {G,s+¢: 0 < { < n—1}
contains n distinct copies of G and all the edges of lengths i € [—(n — 1)/2,(n —
1)/2]\ £[y+ z,y+ 2+ 2] in the induced subgraph of K}y, with vertex set Z, x {r, s}.
Let C ={G,s+0:1<r <s<2k{rs} ¢ HO0</{<n-—1} and note that C
contains 2k(k — 1)n distinct copies of G. We wish to show that every edge of Ko,
appears in some copy of G in C. Let e = {i,,js} where r < s be an arbitrary edge
of Kixon. Let t' be the unique solution to r ot’ = s and let o = min{r,#'} and
B" = max{r,t'}. Let t” be the unique solution to s ot” = r and let o” = min{s,t"}
and 8" = max{s,t"}. If j—ie[-(n—1)/2,(n —1)/2] \ £[y + 2,y + z + 2], then e
belongs to G, + ¢ for some ¢ with 0 < ¢ <mn—1. If j —i = [y+ 2,y + z + 2], then
e belongs to Gy g+ where 0 < ¢ <n—1. If j—i=[—(y+2+2),—(y + 2)], then
e belongs to Gy gr + £ where 0 < ¢ < n — 1. Since every edge of Kjy9, appears in
some copy of G in C and since C contains 2k(k — 1)n distinct copies of G, it follows
that C is a decomposition of Kjya, into copies of G.

An argument similar to the one above can be used to treat the case where G
contains at least two cycles of length 3 (corresponding to Case 1 in Theorem 2). 1§

5 (G-decompositions of Ko,

Let G of order n be the vertex-disjoint union of three odd cycles. It is shown
in [5] and [4] that there exists a G-decomposition of Ky,i1. It was not known
whether a G-decomposition of Koy,i1 exists for every positive integer k. Using
the G-decomposition of Ks,,; and the result from Theorem 3, we can answer this
question in the affirmative for k£ > 3.

Theorem 4. Let G of order n be the vertex-disjoint union of three odd cycles. There
exists a G-decomposition of Koni1 for every positive integer k # 2.

Proof. Since there exists a G-decomposition of Ky, 1, we can assume that k£ > 3.
For i € [1,k], let S; be a set with 2n elements and let H; be a complete graph of
order 2n + 1 with vertex set S; U {oo}. Let V(Kogpi1) = S1 U Sy U...U S U {oc}.
Thus, Koppy1 = HHUHo U . ..U Hp U Kj«9,. Since there is a G-decomposition of H;
for ¢ € [1, k] and there is a G-decomposition of Kjya,, the result follows. 1

If a G-decomposition of K, exists (i.e., if the Oberwolfach problem has a solution
in this case), then a G-decomposition of Koy, will also exist.
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Theorem 5. Let G of order n be the vertex-disjoint union of three odd cycles. If
a G-decomposition of K, ezists, then there exists a G-decomposition of Kopnin for
every positive integer k.

Proof. Observe that Kopnin = (2k + 1)K, U K25 41)xn- Since a G-decomposition of
K, exists, a G-decomposition of (2k 4+ 1)K,, will also exist. By Theorem 2, there
exists a G-decomposition of K(op11)xn. The result follows. 1
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