
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 90(1) (2024), Pages 29–45

Fault-tolerant locating-dominating sets on the
infinite tumbling block graph

Devin C. Jean

Computer Science Department
Vanderbilt University

Nashville, TN 37212, U.S.A.
devin.c.jean@vanderbilt.edu

Suk J. Seo

Computer Science Department
Middle Tennessee State University

Murfeesboro, TN 37132, U.S.A.
Suk.Seo@mtsu.edu

Abstract

A detection system, modeled in a graph, uses “detectors” placed on a sub-
set of vertices to detect and uniquely identify the location of an “intruder”
in the network. In this paper, we explore fault-tolerant variants for
locating-dominating sets, a type of detection system in which a detector
installed at a vertex can sense an intruder at said vertex or within its open
neighborhood. In particular, we consider redundant locating-dominating
sets, which permit a detector to be disabled or removed during nor-
mal operation, error-detecting locating-dominating sets, which permit a
false negative from any sensor, and error-correcting locating-dominating
sets, which correct any single sensor error (positive or negative). Specifi-
cally, we present bounds on the minimum densities of these fault-tolerant
locating-dominating sets in the infinite tumbling block graph and show
that these bounds are sharp.

1 Introduction

Let G be an (undirected) graph with vertices V (G) and edges E(G). The open
neighborhood of a vertex v ∈ V (G), denoted N(v), is the set of vertices adjacent to
v, that is, N(v) = {w ∈ V (G) : vw ∈ E(G)}. The closed neighborhood of a vertex
v ∈ V (G), denoted N [v], is N(v) ∪ {v}. If S ⊆ V (G) and every vertex in V (G)
is within distance 1 of some v ∈ S (i.e.,

⋃
v∈S N [v] = V (G)), then S is said to be
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a (closed) dominating set. Similarly, S ⊆ V (G) is an open dominating set if every
vertex is at distance 1 from some v ∈ S (i.e.,

⋃
v∈S N(v) = V (G)). Given a graph

G, a set S ⊆ V (G) is called a detection system if each vertex in S is installed with a
specific type of device for detecting an intruder such that the set of sensor data from
all detectors in S can be used to uniquely determine the intruder’s location in G.

Many types of detection systems with various properties have been explored, each
with their own assumed detector capabilities. For example, an Identifying Code (IC)
[1, 14] is a detection system where each detector at a vertex v ∈ V (G) can sense an
intruder within N [v], but does not know the exact location within N [v]. A Locating-
Dominating (LD) set is a detection system that extends the capabilities of an IC by
allowing a detector at v to differentiate whether an intruder is at v itself or in N(v)
(does not know which vertex in N(v)) [1, 3, 21]. Still another system is called an
Open-Locating-Dominating (OLD) set, where each detector at a vertex v ∈ V (G) can
sense an intruder only in N(v), but not at v itself [15, 17]. Jean and Lobstein [7] have
maintained a bibliography of currently over 500 articles published on various types
of detection systems, and other related concepts including fault-tolerant variants of
IC, LD and OLD sets.

Clearly, a detection system must cover every vertex, v ∈ V (G), in order to locate
an intruder at v; thus, IC and LD sets are closed-dominating sets and OLD sets are
open-dominating sets. However, domination alone is not enough to determine the
exact location of an intruder in the graph; for example, two vertices may be covered
by the same set of detectors. In order to locate an intruder anywhere in the graph,
we must be able to “distinguish” any two vertices based on their covering detectors.
Given a detection system S ⊆ V (G), two distinct vertices u, v ∈ V (G) are said to
be distinguished if we can eliminate u or v as the location of an intruder (if one is
present). In an IC, S, vertices u and v are distinguished if |NS[u]4NS[v]| ≥ 1, where
4 denotes the symmetric difference and NS[u] is a shorthand notation for N [u]∩ S.
In an LD set, S, vertex x ∈ S is, by definition, distinguished from all other vertices,
and u, v /∈ S are distinguished if |NS[u]4NS[v]| ≥ 1. In an OLD set, S, u and v are
distinguished if |NS(u)4NS(v)| ≥ 1, where NS(u) denotes N(u) ∩ S.

Figure 1 shows IC, LD, and OLD sets on the Petersen graph, G, where shaded ver-
tices represent the detector vertices. In (a), we can verify S1 = {v1, v3, v9, v10} forms
a dominating set, and all distinct u, v ∈ V (G) pairs have |NS1 [u]4NS1 [v]| ≥ 1. Simi-
larly, in (b), S2 = {v1, v2, v4, v10} forms a dominating set and all distinct pairs u, v /∈ S
have |NS2 [u]4NS2 [v]| ≥ 1. In (c), we see that S3 = {v1, v2, v3, v4, v5} forms an open-
dominating set and gives that all distinct u, v ∈ V (G) have |NS3(u)4NS3(v)| ≥ 1.
Thus, we have confirmed the domination and distinguishing requirements for each
type of set, and S1, S2, and S3 are IC, LD, and OLD sets, respectively, on G.

Any superset of a detection system is clearly also a detection system, so naturally
we are interested in the smallest sets with the given properties. Our goal of finding
the minimum detection systems is especially important in real-world applications,
as each detector represents a piece of physical hardware, making the smallest de-
tection system the most cost-effective. Let IC(G), LD(G), and OLD(G) denote the
minimum cardinalities of LD, IC, and OLD sets, respectively. Then, IC(G) = 4,
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LD(G) = 4, and OLD(G) = 5 for G in Figure 1 because no smaller sets satisfy the
required properties. The problems of determining IC(G), LD(G), and OLD(G) for an
arbitrary graph G are known to be NP-complete [1, 2, 3, 17]. For more information
about NP-completeness, refer to Garey and Johnson [4].
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Figure 1: Minimum IC (a), LD (b), and OLD (c) sets on the Petersen
graph.

Although the detection systems we have illustrated are relatively simple and
typically require a small number of detectors to cover the network, they are arguably
insufficient for real-world applications. For instance, these parameters assume that
detectors never have any downtime when they are operational, and that they always
correctly report the presence or absence of an intruder (i.e., they do not allow any
sensing errors). Thus, we often impose additional constraints on these parameters
to provide the various types of fault tolerance we might need for use in real-world
applications. In particular, three varieties of fault tolerance we will explore are
redundant detection systems which allow a sensor to go offline or be removed while the
system is still functioning [10, 13, 19], error-detecting detection systems that permit
a false negative from a sensor [11, 12, 19, 22], and error-correcting detection systems
which correct any single error reported from a sensor (i.e., any false positive or false
negative) [8, 9]. In this paper we focus on three fault-tolerant versions of LD sets:
redundant locating-dominating (RED:LD) sets, error-detecting locating-dominating
(DET:LD) sets, and error-correcting locating-dominating (ERR:LD) sets, specifically
for the infinite tumbling block graph.

In Section 2, we introduce the infinite tumbling block graph (TMB) [18] and
present previous results regarding the detection systems on TMB. In Section 3 we
describe the purposes and characteristics of the three fault-tolerant LD sets and
explain how to verify a given detection system meets their requirements. We conclude
the section by proving the tight bounds on the minimum RED:LD, DET:LD, and
ERR:LD sets for TMB.

2 Detection Systems on TMB

The infinite tumbling block graph (TMB) is an infinite bipartite graph with one
part being degree 3 and the other being degree 6; example segments of this graph are
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shown in Figure 2. Seo and Slater [18] described various finite and infinite tumbling
block graphs and determined the values of domination-related and detection system
parameters for them. In this section, we present some of the previous results [18] as
well as the values that we have improved for TMB.

In Section 1, we showed LD, IC, and OLD sets on the Petersen Graph with min-
imum cardinalities denoted as IC(G), LD(G), and OLD(G), respectively. Because
TMB is an infinite graph, we cannot meaningfully measure the cardinality of the
detector set. Instead, we measure the density of the detector set, which represents
the ratio of detector vertices to total vertices. The density-based minimum notations
for these parameters are LD%(G), IC%(G), and OLD%(G), respectively.

Let Br(v) = {u ∈ V (G) : d(u, v) ≤ r} denote the ball of radius r around
v ∈ V (G). Formally, the density of S ⊆ V (G) where G is locally-finite (i.e., Br(v) is
finite for any r and v) is defined to be lim supr→∞ |Br(v) ∩ S|/|Br(v)| for some choice
of center point v ∈ V (G). Notably, this limit always exists for any choice of v due
to the fact that the sequence is bounded (i.e., |Br(v)∩S|/|Br(v)| ∈ [0, 1]). However,
for some infinite graphs, the density value may be a function of the center point
v ∈ V (G). Recently, it has been proven that any graph satisfying the so-called “slow-
growth” property, that is, limr→∞ |Br+1(v)|/|Br(v)| = 1, has the convenience that
the density is invariant of v [16]. Fortunately, TMB has the slow-growth property,
allowing us to determine LD%(TMB), IC%(TMB), and OLD%(TMB) by inspecting
only a single center point or the local density within a periodic tiling.

Figure 2: LD%(TMB) ≤ 13
45 . The shaded vertices represent detectors.

Upper and lower bounds for LD%(TMB)

Seo and Slater [18] initially showed 1
4
< LD%(TMB) ≤ 8

27
≈ 0.296; we have

narrowed the gap by improving the upper bound to LD%(TMB) ≤ 13
45
≈ 0.289.

Figure 2 shows a solution that achieves the upper bound with a tile of 45 vertices.
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Upper and lower bounds on IC%(TMB)

Seo and Slater [18] also found two solutions with density 1
3

for an IC on TMB as
shown in Figure 3 and showed 3

11
≤ IC%(TMB) ≤ 1

3
.

(a) (b)

Figure 3: Two solutions showing IC%(TMB) ≤ 1
3 .

Tight bound on OLD%(TMB)

Seo and Slater [18] proved the tight bound of OLD%(TMB) to be 7
18

with an
optimal solution with a tile of 18 vertices as shown in Figure 4.

Figure 4: OLD%(TMB) ≤ 7
18 .

3 Fault-Tolerant LD sets on TMB

In real-world applications, it is often not enough to be able to locate an intruder
in the graph: we also require some level of fault-tolerance in the system to allow for
maintenance or unpredictable sensor malfunctions. In this section we will discuss
three fault-tolerant variants of LD sets, which include detector redundancies and
the system’s ability to handle false negatives and false positives. To discuss these
concepts further, we will define an LD detector at vertex v to transmit one of three
possible values: 0 to represent no intruder in N [v], 1 to represent an intruder in
N(v), and 2 to represent an intruder at v. The same scheme of transmission values
described above is used in other literature covering fault-tolerant LD sets [10, 21, 22].

The first fault-tolerant variant is a redundant locating-dominating (RED:LD) set
[10], which is an LD set that can tolerate at most one detector being removed or going
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offline. Note that a removed/offline detector transmits no value, which differs from
an online detector transmitting a false negative; i.e., in a RED:LD, any transmitted
value can be assumed to be correct. The redundant property of a RED:LD set is
useful if the detectors are known to give correct output when working, but may need
to be cycled off (individually) for maintenance while the system is still running. This
type of fault is discussed in Hernando et al. [5] for locating sets and in Honkala et
al. [6] for identifying codes, and in Seo and Slater [19] for open-locating-dominating
sets. More general types of fault-tolerant detection systems have also been studied
by Seo and Slater [20].

Definition 3.1 ([23]). A redundant LD (RED:LD) set is an LD set S ⊆ V (G) such
that for any detector v ∈ S, S − {v} is also an LD set.

As an example, in Figure 5 (a), the shaded vertex set S4 = {v2, v3, v4, v5, v8, v9}
makes up a RED:LD set because for any detector vertex w ∈ S4, S4 − {w} remains
an LD set.
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Figure 5: Minimum RED:LD (a), DET:LD (b), and ERR:LD (c) sets on
the Petersen graph.

Next, we consider another fault-tolerant variant known as error-detecting locating-
dominating (DET:LD) sets, which were introduced as fault-tolerant LD sets by Slater
[22] and fully characterized by Jean and Seo [12]. DET:LD sets can tolerate at most
one false negative, which in the context of LD detectors means transmitting 0 instead
of 1 or 2.

Definition 3.2 ([12, 22]). An error-detecting LD (DET:LD) set is an LD set which
can tolerate at most one false negative.

As an example, refer to Figure 5 (b); the shaded vertices make up a DET:LD set.
Because DET:LD only allows false negatives, we may assume that any non-zero value
is correct. Suppose the detector at v10, which is responsible for sensing an intruder
at v5, v7, v8, and v10, incorrectly transmits 0 instead of 1 or 2. If the intruder is
at v10, because we allow at most one error, we can assume v7 transmits 1, meaning
the system narrows the possible intruder locations to v2, v9, or v10. The intruder
cannot be at v2 because both v1 and v3 transmitted 0; similarly, v9 can be eliminated
because both v4 and v6 transmitted 0. Thus, the system correctly determines the
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intruder is at v10. If the intruder is at v5, then v1 and v4 both transmit 1; we see
that N(v1)∩N(v4) = {v5}, so the intruder must be at v5. Similarly, we can correctly
determine if the intruder is at v7 or v8, or indeed at any vertex. It can also be
exhaustively shown that any other fault location (e.g., other than v10) can similarly
locate any arbitrary intruder location despite the presence of said fault.

The third variant is an error-correcting locating-dominating (ERR:LD) set, which
can tolerate one false negative or false positive (including transmitting 1 instead of
2 or vice versa); thus, it has the property of correcting any single transmission error.
The concept of a general error-correcting detection system was introduced by Seo and
Slater [19, 20, 23] and an ERR:LD set was fully characterized by Jean and Seo [9].

Definition 3.3. An error-correcting LD (ERR:LD) set is an LD set which can
tolerate any single transmission error.

To see how ERR:LD sets work, refer to Figure 5 (c) where the shaded vertices
make up an ERR:LD set. Consider the scenario when the detector at v1, which is
responsible for sensing an intruder at v1, v2, v5, and v6, transmits an incorrect value.
If the intruder is at v1, the system knows that the sensor at v1 is in error because both
v2 and v5 detectors would transmit the correct value 1. Similarly, if the intruder is at
v2, then the detectors at v2 would transmit 2 and both detectors at v3 and v7 would
transmit 1, so we know the intruder is at v2 even if the detector at v1 transmits an
incorrect value, 0 or 1. If the intruder is at v6, then both detectors in {v8, v9} would
transmit 1, so we know the intruder is at v6 even if the detector at v1 erroneously
transmits 0 or 2. Indeed, we find that all possible scenarios of intruder location and
fault location result in the system still correctly locating the intruder.

Similar to the LD(G) notation, we use RED:LD(G), DET:LD(G), and
ERR:LD(G) to denote the cardinality of the smallest RED:LD, DET:LD, and
ERR:LD sets in G, respectively. We can verify the RED:LD, DET:LD, and ERR:LD
sets in Figure 5 are of the minimum cardinality on the Petersen graph, G, hence we
have RED:LD(G) = 6, DET:LD(G) = 6, and ERR:LD(G) = 9. The problems of
determining RED:LD(G), DET:LD(G), and ERR:LD(G) for an arbitrary graph G
are known to be NP-complete [9, 10, 12].

As stated in Section 1, when working with detection systems, we often make use
of characterizations in terms of how many vertices must dominate a given vertex,
or how many vertices must distinguish a pair of vertices. These definitions vary
depending on the type of detector being used, e.g., LD, IC, and OLD set detec-
tors have different detection regions and thus different definitions for which vertices
dominate or distinguish others. However, the fault tolerant variants of the detection
systems we will discuss can all be expressed in terms of different “k-dominated,”
“k-distinguished,” and “k#-distinguished” requirements. We will now state these
definitions for LD detectors.

Definition 3.4. Let S be an LD set. A vertex v ∈ V (G) is k-dominated if |(N(v)∪
{v}) ∩ S| = k.
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Definition 3.5. Let S be an LD set. Distinct vertices u, v ∈ V (G) are k-distinguish-
ed if |((N(u)4N(v)) ∪ {u, v}) ∩ S| ≥ k.

Definition 3.6. Let S be an LD set. Distinct vertices u, v ∈ V (G) are k#-dist-
inguished if |((N(u)−N(v)) ∪ {u}) ∩ S| ≥ k or |((N(v)−N(u)) ∪ {v}) ∩ S| ≥ k.

With these definitions established, we can refer to Table 1 for the characteri-
zation of various fault-tolerant LD sets. The original characterizations for fault-
tolerant LD sets were proven by Jean and Seo [9, 10, 12], and here we have presented
alternative definitions of k-distinguished and k#-distinguished such that it is com-
patible with other fault-tolerant detection systems. Using the characterizations for
the three fault-tolerant LD sets given in Table 1, we can confirm the sets of shaded
vertices in Figure 5 constitute RED:LD, DET:LD, and ERR:LD sets for the Petersen
graph. Specifically, in (a) each vertex is 2-dominated and every pair of vertices are
2-distinguished by the shaded vertex set S4 = {v2, v3, v4, v5, v8, v9}, in (b) each vertex
is 2-dominated and every pair of vertices are 2#-distinguished by the shaded vertex
set S5 = {v1, v3, v4, v6, v7, v10}, and in (c) each vertex is 3-dominated and every pair
of vertices are 3-distinguished by S6 = {v1, v2, v3, v4, v5, v7, v8, v9, v10}. Note that the
shaded vertex set S4 in Figure 5 (a) is not a DET:LD set because some vertex pairs
such as (v1v7), (v1v10), (v6v7), and (v6v10) are only 2-distinguished, rather than the
required 2#-distinguished.

Fault-tolerant LD Set
Min. Domination

Requirement
Min. Distinguishing

Requirement
LD Set 1-dominated 1-distinguished

Redundant LD Set 2-dominated 2-distinguished
Error-Detecting LD Set 2-dominated 2#-distinguished
Error-Correcting LD Set 3-dominated 3-distinguished

Table 1: Characterizations of fault-tolerant LD sets. Domination require-
ments apply to all vertices while distinguishing requirements apply to all
distinct pairs of vertices.

Next, we explore three fault-tolerant variants of locating dominating (LD) sets
on the infinite tumbling block graph (TMB).

3.1 Redundant LD sets on TMB

Notation 3.1. Given an LD set S ⊆ V (G) and a vertex v ∈ V (G), let dom(v) =
|NS[v]| denote the domination count of v.

Notation 3.2. Let Dk denote the set of vertices which are exactly k-dominated,
{v ∈ V (G) : dom(v) = k}, and Dk+ denote the set of vertices which are at least
k-dominated,

⋃
j≥kDj.

Notation 3.3. Let Vk denote the set of vertices of degree k, {v ∈ V : deg(v) = k}.
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Figure 6: RED:LD%(TMB) ≤ 4
9 .

Consider the set S of shaded vertices in Figure 6. It can be verified that every
vertex is at least 2-dominated and every distinct pair is 2-distinguished (as per Def-
initions 3.4 and 3.5, respectively), so S is a RED:LD set of G with density 4

9
. Thus,

we have an upper bound for the optimal density: RED:LD%(TMB) ≤ 4
9
. Next,

we will show 4
9

is also the lower bound density for a RED:LD set for TMB, that is
RED:LD%(TMB) ≥ 4

9
.

To construct a lower bound for RED:LD%(TMB), we will use a technique known
as a share argument [22]. In a share argument, instead of computing a lower bound
for RED:LD directly, we prove an upper bound for the amount of “sharing” of the
domination of the vertices in the graph. Specifically, for any LD variant, the share
of a detector vertex v ∈ S is

∑
w∈N [v]

1
dom(w)

. Each k-dominated vertex contributes
1
k

to the share of each of its k dominators, for a total share value of 1 per dominated
vertex. Because all LD variants are dominating sets, the sum of shares of all detectors
is equal to |V (G)|, implying that the inverse of the average share over all detectors

is equal to |S|
|V (G)| , i.e., the density of S in V (G). Thus, we will find an upper bound

for the average share of a detector vertex in S, and take the inverse to give a lower
bound for the density of S. For the proof that follows, we will use the following
shorthand notations introduced by Jean and Seo [10].

Notation 3.4. For a sequence of 1-digit natural numbers, abc . . ., let σabc... = 1
a

+
1
b

+ 1
c

+ · · · .

Notation 3.5. For a set of vertices, A = {u, v, w, . . .}, let sh[A] = sh[uvw . . .] =
1

dom(u)
+ 1

dom(v)
+ 1

dom(w)
+ · · · be the partial share of A.

Notation 3.6. Let sh(v) = sh[N [v]] be the (total) share of v.

Lemma 3.1. If x ∈ V3 ∩ S for a RED:LD set S on the TMB, then sh(x) ≤ 7
4
.

Proof. As illustrated in Figure 7 (where vertex k is denoted by vk), consider three
non-isomorphic configurations for N(x) of vertex x with deg(x) = 3.

Case 1: We require v5 ∈ S, as otherwise it cannot be 2-dominated. Thus,
vertices v2 and v3 have two common neighbors; in order to 2-distinguish them we
require sh[v2v3] ≤ max{σ33, σ24} = σ24. We now have an upper bound for the partial
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Figure 7: Three non-isomorphic cases for N(x) when deg(x) = 3. The
shapes �, �, and # represent detectors, non-detectors, and unknown ver-
tices, respectively.

share of v2 and v3; the other vertices in N [x] are at least 2-dominated, so we have
sh(x) ≤ σ2224 = 1

2
+ 1

2
+ 1

2
+ 1

4
= 7

4
and we are done.

Case 2: If {v4, v10}∩S = ∅, then v4 and v10 cannot be 2-distinguished, a contra-
diction; therefore, {v4, v10}∩S 6= ∅, so dom(v2) ≥ 3 and by symmetry dom(v3) ≥ 3.
Thus, sh(x) ≤ σ3233 = 3

2
< 7

4
and we are done.

Case 3: Immediately, we have that sh(x) ≤ σ4222 = 7
4
, completing the proof.

Next, we will show that the average share of all detectors is at most 9
4
. Lemma 3.1

demonstrated that the degree-3 vertices in TMB have share at most 7
4
. However, as

we will see, a bound of 9
4

cannot be proven for the degree-6 vertices directly as they
may have share exceeding this target. To handle the situation, we will use what is
known as a discharging argument [19] whereby we allow some of the excess share
(i.e., share exceeding 9

4
) to be transferred to its degree-3 detector neighbors. Each

degree-3 detector neighbor can accept at most 9
4
− 7

4
additional share value from its

neighboring degree-6 vertices. However, at most three degree-6 detectors may choose
to discharge into any given degree-3 detector. Thus, to be safe, we will only allow a
degree-3 detector vertex to accept at most 1

3
(9
4
− 7

4
) share from each of its detector

numbers. By accounting for the total amount of discharging allowed to neighboring
vertices, we can construct a larger adjusted target for the share of a degree-6 detector
vertex. It should be noted that discharging simply moves around total share values,
and so does not affect the sum of all shares or the average share we will prove.

Theorem 3.1. The average share of all detectors in a RED:LD set S on the TMB
graph is at most 9

4
.

Proof. As illustrated in Figure 8 (where vertex k is denoted by vk), consider twelve
non-isomorphic configurations for N(x) of vertex x with deg(x) = 6.

Case 1: Because there is only a single detector vertex, namely v6, adjacent to x
(with maximum share 7

4
), we can use the adjusted target 9

4
+1× 1

3
(9
4
− 7

4
) = 29

12
. We see

that {v12, v8} ⊆ S to 2-distinguish v1 and v2. Similarly, {v7, v9} ⊆ S to 2-distinguish
v2 and v3, and by symmetry {v10, v11} ⊆ S. Thus, sh(x) ≤ σ2333334 = 1

2
+ 1

4
+5× 1

3
= 29

12
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Figure 8: Twelve non-isomorphic cases for N(x) when deg(x) = 6. The
shapes �, �, and # represent detectors, non-detectors, and unknown ver-
tices, respectively.

and we are done.

For the next three cases, we can use the adjusted target 9
4

+ 2 × 1
3
(9
4
− 7

4
) = 31

12

since there are two detector vertices in N(x).

Case 2-1: To 2-distinguish v3 and v4 we require {v8, v10} ⊆ S, and similarly to
2-distinguish (v2, v3) and (v4, v5) we require {v7, v9, v11} ⊆ S. Thus, every vertex in
N [x] is at least 3-dominated, so sh(x) ≤ 7

3
< 31

12
and we are done.

Case 2-2: To 2-distinguish v3 and v4 we require {v8, v10} ⊆ S; similarly {v9, v11}
⊆ S to 2-distinguish v4 and v5. Thus, sh(x) ≤ σ3233333 <

31
12

and we are done.

Case 2-3: To 2-distinguish v1 and v2 we require {v8, v12} ⊆ S, and by symmetry
{v9, v11} ⊆ S. If v7 ∈ S then sh(x) ≤ σ3334224 <

31
12

and we will be done. Now we
can assume v7 /∈ S and by symmetry v10 /∈ S, and we will establish even stronger
adjusted target. Refer to Figure 9. If {α, β} ∩ S = ∅ then α and β cannot be
2-distinguished, a contradiction; therefore, {α, β} ∩ S 6= ∅, inducing v12 ∈ D3+ and
by symmetry v11 ∈ D3+. Thus, sh(v6) ≤ σ4333 = 5

4
, and by symmetry sh(v3) ≤ 5

4
.

Therefore, we can form a stronger adjusted target of 9
4

+ 2× 1
3
(9
4
− 5

4
) = 35

12
. We see

that sh(x) ≤ σ3224224 <
35
12

and we are done.

For the next three cases, we can use the adjusted target 9
4

+ 3 × 1
3
(9
4
− 7

4
) = 11

4
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Figure 9: Case 2-3.

since there are three detector vertices in N(x).

Case 3-1: Similar to the previous cases, we require {v8, v9, v10, v11} ⊆ S to 2-
distinguish non-detector pairs in N(x). Thus, sh(x) ≤ σ4233333 <

11
4

and we are
done.

Case 3-2: To 2-distinguish v4 and v5, we need {v9, v11} ⊆ S. If v7 ∈ S then
sh(x) ≤ σ4323223 = 11

4
and we are done; otherwise we can assume v7 /∈ S, so we

require v8 ∈ S to 2-dominate v2. If v12 ∈ S, then sh(x) ≤ σ4324224 <
11
4

and we are
done; otherwise we assume v12 /∈ S. By Case 2 of Lemma 3.1 we see that sh(v6) ≤ 3

2
;

thus, we can form a stronger adjusted target of 9
4

+ 2× 1
3
(9
4
− 7

4
) + 1× 1

3
(9
4
− 3

2
) = 17

6
.

We see that sh(x) ≤ σ4224223 = 17
6

and we are done.

Case 3-3: If {v2, v4, v6} ∩D3 = ∅, then to 2-dominate v1 we require v7 ∈ S or
v12 ∈ S; without loss of generality let v7 ∈ S, and v8 ∈ S because v2 /∈ D3. To 2-
dominate v5 we require v10 ∈ S or v11 ∈ S; without loss of generality let v10 ∈ S, and
v9 ∈ S because v4 /∈ D3. Then sh(x) ≤ σ4243422 <

11
4

and we are done. Now we can
assume {v2, v4, v6}∩D3 6= ∅, then without loss of generality let v2 ∈ D3 with v7 ∈ S
and v8 /∈ S; then by Case 2 of Lemma 3.1 sh(v2) ≤ 3

2
and we can use a stronger

adjusted target of 17
6

, as shown in Case 3-3. To 2-dominate v3 we require v9 ∈ S. To 2-
dominate v5 we require v10 ∈ S or v11 ∈ S; then sh[v4v5v6] ≤ max{σ422, σ333} = σ422,
so sh(x) ≤ σ4232422 = 17

6
and we are done.

For the next three cases, we know that x ∈ D5+, so for all v ∈ N(x), sh(v) ≤ σ5222.
Thus, we can use the adjusted target 9

4
+ 4× 1

3
(9
4
− σ5222) = 179

60
.

Case 4-1: To 2-distinguish v1 and v6 we require {v7, v11} ⊆ S; thus, sh(x) ≤
σ5232232 <

179
60

and we are done.

Case 4-2: To 2-dominate v1 and v5, we see that

sh[v1v2v4v5v6] ≤ max{σ33222, σ42222} = σ42222.

Thus, sh(x) ≤ σ5222224 <
179
60

and we are done.

Case 4-3: To 2-dominate v1 we find that sh[v1v2v6] ≤ σ322, and by symmetry
sh[v3v4v5] ≤ σ322 as well. Thus, sh(x) ≤ σ5322322 <

179
60

and we are done.

Cases 5 and 6: Because x ∈ D6+, we can strengthen our adjusted target
9
4

+ 5× 1
3
(9
4
− σ6222) = 29

9
. We see that sh(x) ≤ σ6222222 <

29
9

and we are done.
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From Theorem 3.1 we have a lower bound of 4
9

for RED:LD on TMB. We see that
the solution given in Figure 6 achieves this minimum value, yielding the following
tight bound.

Corollary 3.1. RED:LD%(TMB) = 4
9
.

3.2 Error-Detecting LD sets on TMB

Consider the set S of shaded vertices in Figure 10. It can be verified that every
vertex is at least 2-dominated and every distinct pair is 2#-distinguished (as per
Definitions 3.4 and 3.6, respectively), so from Table 1 we see that S is a DET:LD
set of G with density 2

3
. Thus, we have an upper bound for the optimal density:

DET:LD%(TMB) ≤ 2
3
.

Figure 10: DET:LD%(TMB) ≤ 2
3 .

Next, we will show that 2
3

is a lower bound of DET:LD%(TMB).

Observation 1. Let S be a DET:LD set for TMB and u, v ∈ V3 with u 6= v and
|N(u) ∩N(v)| = 2. Then, {u, v} ∩ S 6= ∅.

Proof. Suppose to the contrary that {u, v}∩S = ∅. Vertices u and v can be at most
3-dominated, but by hypothesis |N(u)∩N(v)| = 2. Thus, |(N(v)∩S)−(N(u)∩S)| ≤
1, and by symmetry |(N(u)∩S)−(N(v)∩S)| ≤ 1, contradicting that S is a DET:LD
set.

By partitioning the six vertices in N(w) for some w ∈ V6 into three disjoint
(u, v) pairs such that |N(v) ∩ N(u)| = 2 and applying Observation 1, we see that
|N(w) ∩ S| ≥ 3, which yields the following corollary.

Corollary 3.2. Let S be a DET:LD set for TMB. If w ∈ V6, then w ∈ D4+ for
w ∈ S, and w ∈ D3+ for w /∈ S.

Lemma 3.2. Let S be a DET:LD set for TMB. If x ∈ V3 ∩ S then sh(x) ≤ 16
15

.

Proof. As illustrated in Figure 7 (where vertex k is denoted by vk), consider the
three non-isomorphic configurations for N(x) of vertex x with deg(x) = 3.
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Case 1: dom(x) = 2; without loss of generality let N(x)∩S = {v1}. We require
v5 ∈ S, as otherwise v5 cannot be 2-dominated. If v4 /∈ S, we see that x and v4 can
be at most 2-distinguished, but not the required 2#-distinguished; therefore, we must
have v4 ∈ S. Similarly, we require v8 ∈ S and v12 ∈ S to 2#-distinguish (v4, v8) and
(v5, v12), respectively. By symmetry we need {v6, v18, v14} ⊆ S as well. Furthermore,
by Observation 1, we require {v10, v11} ∩ S 6= ∅ and {v15, v16} ∩ S 6= ∅. Therefore
sh(x) = σ2655 = 16

15
.

Case 2: dom(x) = 3; without loss of generality let N(x) ∩ S = {v2, v3}. We
require v5 ∈ S to 2#-distinguish x and v5. By Observation 1, {v4, v10} ∩ S 6= ∅ and
{v11, v12} ∩ S 6= ∅; therefore, dom(v2) ≥ 5 and by symmetry dom(v3) ≥ 5. And by
Corollary 3.2, dom(v1) ≥ 3. Thus, sh(x) ≤ σ3355 = 16

15
.

Case 3: dom(x) = 4, implying N(x) ⊆ S. By Corollary 3.2, N(x) ⊆ D4+.
Therefore, sh(x) ≤ σ4444 <

16
15

, completing the proof.
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Figure 11: Five non-isomorphic cases for N(x) where deg(x) = 6. The
shapes �, �, and # represent detectors, non-detectors, and unknown ver-
tices, respectively.

Theorem 3.2. Let S be a DET:LD set for TMB. The average share of all detectors
is no more than 3

2
.

Proof. Let x ∈ S. If x ∈ V3, then Lemma 3.2 yields that sh(x) ≤ 16
15
< 3

2
and we are

done; thus, we assume x ∈ V6. Unfortunately, the minimum value for sh(x) (when
B2(x) ⊆ S) is σ7444444 >

3
2
, so every possible sub-configuration will require the use of

adjusted targets. We know that N(x) ⊆ V3, and ∀u ∈ N(x) ∩ S, sh(u) < 3
2
. Thus,

where k = |N(x) ∩ S| and q = max{sh(u) : u ∈ N(x) ∩ S}, we can use the adjusted
target 3

2
+ k × 1

3
(3
2
− q). Corollary 3.2 yields that dom(x) ≥ 4, so we will consider

the five non-isomorphic sub-cases for dom(x) ∈ {4, 5, 6, 7}, as shown in Figure 11.

First, consider the case when dom(x) = 4; then by Observation 1 we can assume
that N(x) ∩ S = {v2, v4, v6}. We require v7 ∈ S to 2#-distinguish v2 and v3, and by
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symmetry {v8, v9, v10, v11, v12} ⊆ S. By Corollary 3.2, dom(v7) ≥ 4 and dom(v8) ≥ 4,
so sh(v2) ≤ σ4444 = 1 and by symmetry sh(v4) ≤ 1 and sh(v6) ≤ 1. Therefore, we
can use the adjusted target 3

2
+ 3× 1

3
(3
2
− 1) = 2. We see that sh(x) ≤ σ4343434 = 2

and we are done.

Next, consider the first case with dom(x) = 5, where N(x) ∩ S = {v2, v3, v4, v6}.
We require v8 ∈ S to 2#-distinguish v1 and v2, and by symmetry v9 ∈ S as well.
Similarly, we need v12 ∈ S to 2#-distinguish v5 and v6, and by symmetry v11 ∈ S
as well. Furthermore, to 2#-distinguish v1 and v5 we require v7 ∈ S or v10 ∈ S;
without loss of generality let v7 ∈ S. We see that ∀w ∈ {v2, v3, v6}, sh(w) ≤
σ4444 = 1 and by Lemma 3.2 sh(v4) ≤ 16

15
; thus, we can use the adjusted target

3
2

+ 3 × 1
3
(3
2
− 1) + 1 × 1

3
(3
2
− 16

15
) = 193

90
. We see that sh(x) ≤ σ5344324 <

193
90

and we
are done.

Now consider the other case with dom(x) = 5, which hasN(x)∩S={v2, v3, v5, v6}.
We require v8 ∈ S to 2#-distinguish v1 and v2, and by symmetry v11 ∈ S as well. To
2#-distinguish v1 and v4 we require {v7, v12} ⊆ S or {v9, v10} ⊆ S; without loss of
generality let {v7, v12} ⊆ S. In order to 2-dominate v4 we require {v9, v10} ∩ S 6= ∅;
without loss of generality let v9 ∈ S. From here, we find the same adjusted target
and bound for sh(x) as in the previous dom(x) = 5 case, and we are done.

Next, consider the case where dom(x) = 6 with N(x) ∩ S = {v1, v2, v3, v4, v5}.
By applying Lemma 3.2, we can use the adjusted target 3

2
+ 5× 1

3
(3
2
− 16

15
) = 20

9
. We

require v7 ∈ S to 2#-distinguish v1 and v6, and by symmetry v10 ∈ S as well. To
2-dominate v6 we need v11 ∈ S or v12 ∈ S; without loss of generality let v11 ∈ S, so
sh[v4v5] ≤ σ34. We require v12 ∈ S or v8 ∈ S to 2#-distinguish v1 and v2; in either
case we have sh[v3v6] ≤ σ23 and sh[v1v2] ≤ σ34. Therefore, sh(x) ≤ σ6233344 <

20
9

and
we are done.

Lastly, consider the case where dom(x) = 7, then N(x) ⊆ S. We can use the
adjusted target 3

2
+6× 1

3
(3
2
− 16

15
) = 71

30
. Let ∆1 = {v7, v9, v11} and ∆2 = {v8, v10, v12}.

We see that |∆1∩S| ≥ 2, to 2#-distinguish vertices in N(x), and by symmetry |∆2∩
S| ≥ 2. If N(x) ⊆ D3+, then sh(x) ≤ σ7333333 <

71
30

and we would be done; otherwise,
without loss of generality let v1 ∈ D2, implying (∆1∪∆2)∩S = {v8, v9, v10, v11}. We
see that sh(x) ≤ σ7234443 <

71
30

, completing the proof.

From Theorem 3.2, we have a lower bound density of 2
3

for DET:LD on TMB. We
see that the upper bound solution given in Figure 10 achieves this minimum value,
so we have the following tight bound.

Corollary 3.3. DET:LD%(TMB) = 2
3
.

3.3 Error-Correcting LD sets on TMB

From Table 1, we see that every ERR:LD set is also a DET:LD set, implying
ERR:LD%(TMB) ≥ DET:LD%(TMB) = 2

3
. Consider the set S of shaded vertices

in Figure 10. It can be verified that every vertex is at least 3-dominated and every
distinct pair is 3-distinguished (as per Definitions 3.4 and 3.5, respectively), so from
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Table 1 we see that S is an ERR:LD set for G with density 2
3
. Thus, S achieves the

minimum density on TMB, yielding the following tight bound.

Corollary 3.4. ERR:LD%(TMB) = 2
3
.
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