Control and Cybernetics
vol. 38 (2009) No. 1

How to improve efficiency of analysis of sequential data?*f

by
Witold Andrzejewski, Zbyszko Krolikowski and Tadeusz Morzy

Institute of Computing Science, Poznan University of Technology,
Piotrowo 2, 60-965 Poznan, Poland
e-mail: {wandrzejewski,zkrolikowski,tmorzy}@cs.put.poznan.pl

Abstract: Many of todays database applications, including
market basket analysis, web log analysis, DNA and protein se-
quence analysis utilize databases to store and retrieve sequential
data. Commercial database management systems allow to store se-
quential data, but they do not support efficient querying of such
data. To increase the efficiency of analysis of sequential data new
index structures need to be developed. In this paper we propose an
indexing scheme for non-timestamped sequences of sets, which sup-
ports set subsequence queries. Our contribution is threefold. First,
we describe the index logical and physical structure, second, we pro-
vide algorithms for set subsequence queries utilizing this structure,
and finally we perform experimental evaluation of the index, which
proves its feasibility and advantages in set subsequence query pro-
cessing.

Keywords: sequential data, indexing, market basket analysis.

1. Introduction

Many of current database applications process complex data types such as: sets,
sequences, time series, objects, semistructured data and graphs. Such applica-
tion domains include, but are not limited to: bioinformatics, market basket
analysis, web server event logging or stock price analysis. In bioinformatics
strings of symbols representing either DNA or protein sequences are processed.
The analysis is based on finding sequences or subsequences similar to the query
sequences. Market basket analysis is based on analysis of either sets of bought
items or sequences of sets of items bought by a single customer in some period of
time. Queries issued in market basket analysis are in most cases subset queries
or set subsequence queries. Web server logs are sequences of timestamped events

*The paper is sponsored by The Polish Ministry of Science and Higher Education, grant
no. N206 011 32/1221.
TSubmitted: June 2008; Accepted: October 2008.

108 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

which may be analysed in order to find frequent user behaviour habits or suspi-
cious user activities. Logically web logs are sequences of items, where each item
represents some event. Histories of stock prices are represented as time series,
sequences of timestamped real values. Analysis of such histories is based on
retrieval of subsequences of stored time series whose shape is similar to the user
specified shape. Notice that most of the aforementioned data types are sequen-
tial and their processing is not trivial. Commercially available object-relational
database management systems allow to store such sequences (strings, sequences
of items, sequences of sets of items and time series), but they do not support
efficient querying of such data. Thus, the processing of queries for databases
storing sequences is very costly.

Several indexing schemes for sequences have been developed. Most of in-
dexes for sequences were designed either for time series (see Agrawal, Faloutsos
and Swami 1993, and Faloutsos, Ranganathan, and Manolopoulos, 1994), DNA
and protein sequences (strings) (see Ukkonen, 1992, 1995, Weiner, 1973, Mc-
Creight, 1976, and many more) or sequences of items (see Wang et al., 2003,
and Mamoulis and Yiu, 2004). However, the aforementioned solutions can only
be used to index sequences of atomic values (items, real values or symbols of
either amino acid or nucleotides). Almost nothing has been done with regard
to more general indexing of sequences of sets. According to our knowledge, the
only solutions for sequences of sets developed so far, were proposed by us in
Andrzejewski, Morzy and Morzy (2005), and Andrzejewski and Morzy (2006).
However, the Generalized ISO-Depth Index (Andrzejewski et al., 2005) was de-
signed to support sequences of sets with timestamps, which is different type
of sequences from the one considered in this paper, the SEQ-Trie index (An-
drzejewski and Morzy, 2006) is not incrementally updatable, whereas the AISS
index (Andrzejewski and Morzy, 2006) is an approximate index and, depending
on the physical database structure, may require a costly verification phase.

The original contribution of this paper is the proposal of a new indexing
scheme, capable of efficient retrieval of sets and sequences of non-timestamped
sets based on sequence containment. Our contribution is threefold. First, we
propose the logical and physical structure of the index which may be easily
implemented over existing database management systems. Second, we provide
algorithms for set subsequence queries, utilizing this structure, as well as al-
gorithms for incremental updates of the index, and finally we perform experi-
mental evaluation of the index, which proves its feasibility and advantage in set
subsequence query processing.

2. Related work

Most of research on indexing of sequential data is focused on three distinct
areas: indexing of time series, indexing of strings (DNA and protein sequences),
and indexing of web logs. Indexes proposed for time series support the search
for similar or exact subsequences by exploiting the fact that the elements of the

How to improve efficiency of analysis of sequential data? 109

indexed sequences are numbers. This is reflected both in index structure and in
similarity metrics. Popular similarity metrics include Minkowski distance (see
Keogh et al., 2001, and Yi and Faloutsos, 2000), compression-based metrics (see
Keogh, Lonardi and Ratanamahatana, 2004) and dynamic time warping metrics
(see Vlachos et al., 2003). Often, a technique for reduction of dimensionality
of the problem is employed, such as discrete Fourier transform (see Agrawal,
1993, and Faloutsos and Swami, 1994). String indexes usually support search
for subsequences based on identity or similarity to a given query sequence. Most
common distance measure for similarity queries is the Levenshtein distance (see
Levenshtein, 1965), and index structures are built on suffix tree (see Ukkonen,
1992, 1995, Weiner, 1973, and McCreight, 1976) or suffix array (see Manber and
Myers, 1990).

Indexing of web logs data differs significantly from indexing of strings. The
main difference is that each element in such a sequence is assigned a timestamp
that must be taken into consideration when processing a query. Several different
approaches have been considered so far. The first one used a special transfor-
mation technique to transform the original problem into the well-researched
problem of indexing of sets (see Nanopoulos et al., 2002). Other approaches
include ISO-Depth index (see Wang et al., 2003), which is based on a trie struc-
ture, and SEQ-Join index (see Mamoulis and Yiu, 2004), which uses a set of
relational tables and a set of BT-tree indexes.

Indexing of sets is a well researched subject. Many indexes were developed
including, but not limited to: S-Tree (see Deppisch, 1986), Signature File (see
Faloutsos and Christodoulakis, 1984), Partial Order Tree (see Goczyta, 1997),
RD-Tree (see Hellerstein and Pfeffer, 1994), Hierarchical Bitmap Index (see
Andrzejewski et al., 2003) and Inverted File (see Helmer and Moerkotte, 1999).

Recently, works on sequences of categorical data were extended to sequences
of sets. The Generalized ISO-Depth Index proposed in Andrzejewski, Morzy
and Morzy (2005) supports timestamped set subsequence queries and times-
tamped set subsequence similarity queries. Construction of the index involves
storing all of the sequences in a trie structure and numbering the nodes in depth
first search order. Final index is obtained from such trie structure. The SeqTrie
index, presented in Andrzejewski and Morzy (2006b), is based on an idea sim-
ilar to the Generalized Iso-Depth Index, however it was designed to support
non-timestamped set subsequence queries. The AISS Index proposed in An-
drzejewski and Morzy (2006a) was designed to support non-timestamped set
subsequence queries on sequences of sets and subset queries on multisets, and
uses a structure based on the inverted file.

3. Basic definitions and problem formulation

Let I = {iy,49,...,i,} denote the set of items. A non-empty set of items is called
an itemset. We define a sequence as an ordered list of itemsets and denote it:
S = (s1,82,...,5n), where s,, p=1,2,...,n are itemsets. Each itemset in the

110 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

sequence is called an element of a sequence. Given an element s, we say that
this element has a position p. Given two elements s, and s, where p < r we say
that element s, has a lower position than element s,. Conversely, we say that
element s, has a greater position than s,. Each element s, of a sequence S is
denoted {z1,x2,...,2,}, where z;, i € (1,n) are items. We define the length
of a sequence as a number of elements in the sequence, and denote it |S|. We
also define the size of the sequence as the number of items in the sequence and
denote it ||S||. Given the item = and a sequence S we say that the item z is
contained within the sequence S, denoted = € S, if there exists any element in
the sequence such that it contains the given item. Given sequences S and 7,
the sequence 7 is a subsequence of S, denoted 7 C S, if the sequence 7 may
be obtained from sequence S by removing some of items from the elements, and
removing empty elements, if such occur. We also say that if, and only if 7 C S,
the sequence 7 is contained within the sequence S. Conversely, we say that the
sequence S contains the sequence 7 and that S is a supersequence of 7T .

We define a database, denoted DB, as a set of sequences, called database
sequences. Each database sequence in the database has a unique identifier.
Without the loss of generality we assume those identifiers to be positive inte-
gers. A database sequence identified by the number id is denoted S*. Let
the support of the item x, denoted supp(z), be the number of sequences that
contain the item. Formally, supp(x) = |{S' € DB : x € S*}|. Given the
query sequence Q, the set subsequence query retrieves a set of identifiers of all
sequences from the database, such that they contain the query sequence, i.e.
{id : 8" € DB A Q C S}, Such sets are called result sets. Our problem
is to design an auxiliary structure (an index) for database tables storing se-
quences of sets, and an algorithm utilizing this structure, which allows efficient
set subsequence query processing.

4. The FIRE index
4.1. Logical index structure

In this section we present our new index for sequences of non-timestamped sets.
The idea of the index is based on the well known inverted file index. The new
index may be used to increase performance of set subsequence queries.

The basic inverted file structure, which may be used for indexing databases
of itemsets, is composed of two parts: dictionary and appearance lists. The
dictionary is the list of all the items that appear at least once in the database.
Each item has an appearance list associated with it. Given the item z, the ap-
pearance list associated with item =z lists identifiers of all the sets from database,
that contain that item. Inverted file index is particularly efficient in supporting
subset queries. Such queries are performed by reading appearance lists of all of
the items from the query set, and finding their intersection.

How to improve efficiency of analysis of sequential data? 111

In order to be able to store sequences of sets, we propose a straightforward
modification. On appearance lists associated with items, we store sequence
identifiers id, as well as element position r in this sequence. We also require that
the entries on appearance lists be ordered first by the identifier of the sequence,
and next by the element position. Notice that such modification allows us to
store full information about sequences of sets. We denote the appearance list
of the item x as L*. By (id,r) € £* we denote the fact that the entry (id,r) is
stored on the appearance list of the item x. Exemplary database and index are
shown in Table 1(a) and 1(b), respectively.

Table 1. Examples

(a) Exemplary database (b) FIRE index for an exemplary database
Id | Sequence Dictionary (items support)
T (0. (15,30 TEREBEMEO]E 6
2. ({1,2},{1,2,3},{3},{4}) Appearance lists
3. | ({5,6},{1,3},{2,5}) (L,2) | (1,1)] (1,2) | (2,4) | (1,2) | (1,1

(3,1
(

))
)| (3,1)
3,3)

4.2. Algorithms

We present two algorithms, utilizing the FIRE index structure to process set
subsequence queries (the so-called recursive and non-recursive algorithms), as
well as an algorithm for incremental updates of the index.

The main idea for the recursive set subsequence query algorithm is based
on the following observations. Let us consider the appearance list £*, where x
is any of the items in the query sequence. It is easy to notice that the set of
different sequences, which are referred to by the entries on this list, i.e. the set
{id : (id,r) € L}, is the upper bound on the result set (because supersequences
must contain all of the items from the query sequence). Such upper bound
may be obtained for any item such that € Q, however, the best (smallest)
upper bound may be obtained from the appearance list £* of the item with
the lowest support. Any further processing of the query should just narrow
the first estimate of the result set. Therefore, the next step of the algorithm
should be to analyze the entries on the remaining appearance lists, to check
if the sequences from the previously obtained upper bound fulfill the query
conditions. Notice that though the upper bounds for each appearance list £”,
x € Q, may be different, identifiers of supersequences of the query sequence must
be on all of them. Consequently, processing of the consecutive appearance lists
should involve checking if they contain entries corresponding to the currently
verified sequence from the first upper bound. If we assume that there is no
correlation between the items, then the best pruning may be obtained if the

112 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

next analysed appearance list is the list corresponding to the next item with
the lowest support, as the number of common sequence identifiers would be
the smallest. Therefore, we should process the items from the query sequence
in the order of their support. To obtain the proper order of processing of the
items, we should transform the query sequence Q to the sequence of pairs (x, p),,
where x is an item, and p is the position of the element in the query sequence.
These pairs should be ordered by the increasing support of the items. If an item
appears more then once in the query sequence, we should use the position of the
element for disambiguation. We shall denote this transformed query sequence
as QT

Let us now consider the main loop of the algorithm. The main loop should
iterate through all of the entries on the appearance list corresponding to the item
with the lowest support. For each of the entries (id, r) on this list, the algorithm
should verify, if the sequence identified by id is indeed a supersequence of the
query sequence. Let us consider a situation, in which the item with the lowest
support appears a number times in a single sequence. In such a case, the main
loop would have to verify several times the same sequence, whether it is a
supersequence of the query sequence. Such behaviour is necessary, because the
algorithm which verifies each sequence (described in the next paragraph) will
detect the supersequence of the query sequence only when the position r from the
analysed appearance list entry refers to the element from the database sequence,
which is a superset of the query sequence element at position p. However, if the
verification algorithm detects that the analysed database sequence is already in
the result set of the query, then the consecutive entries referring to the same
sequence may be omitted.

In the previous discussion we omitted the problems associated with the order
of the items in the query sequence. We shall address them now. Consider a
situation in which the item z from the query sequence, which has the lowest
support, is in the element s, of the query sequence. Let the S be any sequence
such that Q@ £ S. Because Q C S, the sequence S must contain an element s/,
such that s, C s/.. It is easy to notice that there must exist such s/. that r > p.
Therefore, during processing of the appearance list of the item with the lowest
support we should only verify entries such that r» > p.

Let us now consider the sequence verification algorithm. As was stated
briefly before, this algorithm checks if there are entries on all of the consecutive
appearance lists, which refer to the verified sequence. To work correctly, this
algorithm must take into account the information about order of the elements,
as well as the fact that the item may appear in the sequence more than once.
Therefore, this algorithm should try to assign all of the items from the query
sequence to some entries on the appearance lists, referring to the verified se-
quence in such a way that the order of the items in the query sequence and the
items corresponding to the appearance list entries in the database sequence are
the same. To achieve this we suggest the following, recursive, appearance list
processing schema.

How to improve efficiency of analysis of sequential data? 113

Let id’ be the identifier of the sequence which is to be verified. For each
entry (id’,r2) on the appearance list £*2 such that (22,p2), € Q7 and 72 does
not disturb the order of the items, find entries (id’,r3) on the appearance list
£%3 such that (23,p3)3 € QT and r3 does not disturb the order of the items.
For each of the entries found on the appearance list £%3 find the entries (id’, 74)
on the appearance list £%* such that (z4,p4)s € QT and 74 does not disturb
the order of the items. Perform such search until you find an entry for all of
the pairs in Q7. If the entry for the last pair of the sequence Q7 is found, then
the sequence id’ should be included in the result set and further verification of
this sequence may be aborted. In order to be able to find such r values in the
appearance list entries, which respect the ordering of the items, we propose the
following solution. We allocate an auxiliary table called M AP of the size equal
to |Q|. We use this series to “map” the query sequence elements to database
sequence elements. The value r stored at the index number p in the table M AP
means that we have mapped the pth query sequence element to the rth element
of the database sequence. If M AP[p|] = null then the query sequence element
at the position p is not mapped. Initially, this series is filled with nulls. Given a
pair (x,p) of the converted query sequence QT and an identifier id of the verified
sequence, if we find an entry (id,) on the appearance list £*, we map the query
sequence element at position p to the rth database sequence element, by storing
the value r in M AP[p]. The auxiliary table M AP may be utilized in two ways.
First, if during recursive scanning of the appearance list we start processing of
the pair (z,p) from the sequence QT such that M AP[p] # null we know that
the only entry on the appearance list £%, which does not disturb the order of the
items, is the entry (id’, M AP[p]). Second, if during recursive processing of the
appearance list we start processing of the pair (z,p) from the sequence Q7' such
that M AP[p] = null, we may find the lower and upper bound on the position r,
which does not disturb the order of the items. Let us start with the calculation
of the lower bound. Two cases, which must be addressed during the calculation
of this bound are presented by Figs. 1 and 2. The first case (Fig. 1) represents a
situation, in which there are no mappings of the query sequence elements to the
database sequence elements for query elements, which have a lower position than
the currently analyzed element. In such a case the database sequence element
should have the position at least equal to the position of the query element
(this is the same situation as in the main loop of the set subsequence query
algorithm). The second case (Fig. 2) represents a situation, in which there are
mappings of the query sequence elements to the database sequence elements for
query elements which have a lower position then the currently analyzed element.
In such a case, we must find among these mappings, the one that corresponds
to the query element that is the nearest to the analysed query element. The
lower bound is equal to the value stored in the found mapping plus the number
of elements located between the two analysed query sequence elements. Steps
for calculating the lower bound are given by the algorithm 3. The algorithm
for calculating the upper bound is very similar. As before, there are two cases,

114 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

which are illustrated by Figs. 3 and 4. In the first case (Fig. 3), there are no
mappings for any of the query sequence elements, which have position greater
than the analysed element. In such a case, there is no upper bound, so the
algorithm should return co. In the second case (Fig. 4) there are mappings
for some of query sequence elements, which have a position greater than the
analysed query sequence element. In such a case we must find among these
mappings, the one that corresponds to the query element that is the nearest
to the analysed query element. The upper bound is equal to the value stored
in the found mapping minus the number of elements located between the two
analysed query sequence elements. Steps for calculating the upper bound are
given by the algorithm 4.

Concluding, the data stored in the table M AP enables the sequence verifying
algorithm to respect the order of the items in the sequence as it allows for
determining which elements of the database sequence may be mapped to the
given query sequence element. The above discussion is summarized by the
algorithms 1 and 2.

- -
MAP: [0 |0 ..|o| .. | MAP:| .. [X |..|¢ 0| .. |
Figure 1. Lower bound, case 1 Figure 2. Lower bound, case 2

—_— —
vap:[.. [ol.[o]o] MAP:| .. [9]0]..[X]..|
Figure 3. Upper bound, case 1 Figure 4. Upper bound, case 2

This concludes the description of the recursive algorithm for set subsequence
queries. We shall now demonstrate an exemplary execution of the presented
algorithm using an exemplary database and index (see Table 1).

EXAMPLE 1 Let us consider the following query sequence:

Q= <{17 3} ’ {4}> .

The first step is to convert this query sequence to a sequence of pairs of item
identifier and its position in the query sequence, ordered by the support of the
items. After conversion, we obtain the following sequence:

Q" = ((4,2)(1,1)(3,1)).

Nezxt, we retrieve the first (and, in this case, only) entry from the appearance list
of the item 4. This entry refers to the fourth element of the second database se-
quence. Because item 4 comes from the second element from the query sequence,

How to improve efficiency of analysis of sequential data? 115

Algorithm 1 An algorithm for set subsequence queries

INPUT: Query sequence Q.
OUTPUT: Result set results.

1. Allocate auxiliary table called M AP of size equal to |Q| and fill it with NULLs.

2. lastld «— —1

3. Transform the query sequence Q into the sequence of pairs (z, p),, denoted QT where z is
an item, and s is the number of the element in the query sequence. These pairs should be
ordered by the increasing support of the items and element positions.

4. For each of the entries (id,r) on the appearance list of the item z from the pair (z,p),
(corresponding to the item with the lowest support), such that » >= p and id > lastld,
perform the following steps:

(a) MAP[p] < r

(b) Call function checkSub(2,id) (algorithm 2).

(c) If the result of the last call to the checkSub function is TRUE, then:
i. lastld <+ id
ii. Store id in the result set results.

(d) MAP[r] < null

Algorithm 2 Function checkSub used by the algorithm 1, which verifies
whether the candidate sequence is indeed the supersequence of the query se-
quence.

ASSUMPTIONS: We assume that the transformed query sequence QT result set results and aux-
iliary table M AP are globally accessible.

INPUT: Recursion level level, candidate sequence identifier id.

OUTPUT: TRUE, if the sequence id is the supersequence of the query sequence, FALSE if not.

1. If level > ||Q]| then return TRUE. If the condition is not satisfied, then perform the following
steps:

2. Retrieve the pair (z,p),,,., from oT.

3. If MAP[p] # NULL then perform the following steps:

(a) Check on the appearance list of the item x if it contains the entry {id, MAP[p]}.
(b) If it does not, return false.
(c) If it does, return the value returned by the function call: checkSub(id, level + 1).

4. If MAP[p] = NULL then perform the following steps:

(a) 1« lowerBound(p) (algorithm 3)
(b) w < upper Bound(p) (algorithm 4)
(¢) For each of the entries (id,r) on the appearance list of the item z, such that r >
I A r < u perform the following steps:
i. MAP[p] — r
ii. If the value returned by the call to the function checkSub(id, level + 1) is TRUE
then return TRUE.

iii. MAP[p] — NULL

(d) Return FALSE.

we map the second element from the query sequence to the fourth element of the
database sequence by storing 4 under the second entry of the M AP table. Now,
we need to analyze item 1 from the query sequence, which comes from the first
element of the query sequence. By analysing the M AP table (algorithms 3 and
4) we obtain lower and upper bound on the position of the database element cor-
responding to the first element of the query sequence. The obtained lower bound

116 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

Algorithm 3 Function lower Bound, calculating the smallest possible element
mapping for the given element position in the query sequence.

ASSUMPTIONS: We assume that the auxiliary table M AP is globally accessible.

INPUT: Query sequence element number p.

OUTPUT: The least element position in the database sequence, which may be analysed as a poten-
tial superset of the element p.

1. Find the largest index in the table MAP, which is smaller than p, and the value stored in
the table under this index is not NULL.

2. If such index does not exist, return p.

3. If such index exists, store it in the variable 7.

4. Return MAP[i] + p — 4.

Algorithm 4 Function upperBound, calculating the largest possible element
mapping for the given element position in the query sequence.

ASSUMPTIONS: We assume that the auxiliary table M AP is globally accessible.

INPUT: Query sequence element number p.

OUTPUT: The greatest possible element position in the database sequence, which may be analysed
as a potential superset of the element p.

1. Find the smallest index in the table M AP, which is larger than p, and the value stored in
the table under this index is not NULL.

2. If such index does not exist, return oo.

3. If such index exists, store it in the variable 7.

4. Return MAP[i| +p — i.

is equal to 1, and the upper bound is equal to 3 (see Fig. 5(a)). Because we
analyse the second database sequence, we now search the appearance list of item
1 for entries referring to first, second or third element of the database sequence.
There are two such entries: (2,1) and (2,2) (see Fig. 5(b)). We start processing
these entries with the entry (2,1). This entry refers to the first element of the
database sequence, which means that we need to map the first element of the
query sequence to the first element of the database sequence. We assign 1 to the
first entry of the M AP table. We now process the third item from the query se-
quence. This item comes from the first element of the query sequence. Because
we analyse the second database sequence, and the first element of the query se-
quence is mapped to the first element of the database sequence, we search for the
entry (2,1) on the appearance list of the item 3. There is no such entry, there-
fore, we now need to retract to analysis of the second item of the query sequence
(see Fig. 5(c)). We now choose the second entry retrieved from the appearance
list of the item 1 (entry (2,2)). We map the first element of the query sequence
to the second element of the database sequence by assigning value 2 to the first
entry of the M AP table and analyse the appearance list of item 3. Because we
analyse the second database sequence and the first element of the query sequence
is mapped to the second element of the database sequence, we search for the
entry (2,2) on the appearance list of the item 3. There is such an entry (see
Fig. 5(d)). Because entries on appearance lists have been found for all of the

How to improve efficiency of analysis of sequential data? 117

<4,2>

(2.4)

Figure 5. Illustration for Example 1

items from the query sequence, the second database sequence identifier should be
stored in the result set. Because there are no more entries on the appearance list
of the item 4, we terminate the algorithm. The result set stores only identifier
of the second database sequence.

Though algorithm 1 offers very good performance (as it will be shown in
Section 5) there are some special cases, in which it could perform poorly. Let
us consider a database composed only of the following database sequence: S! =
({1,2,3},{1,2,3},{1,2,3},{1,2,4}) and a query sequence Q = ({1,2,4}). The
index for such a database is shown in Table 2.

Table 2. FIRE index for a database composed only of the sequence S' =
<{1,2,3},{1,2,3},{1,2,3},{1,2,4}>

Dictionary (items support)

T2 [30[40)

Appearance lists

OO (LY | (L)] (1,4)
(1,2) | (1,2) | (1,2)

(1,3) | (1,3) | (1,3)

(1,4) | (1,4)

Assume that after the transformation of the query sequence, we obtain the
following sequence of pairs: ((1,1)(2,1)(4,1)). Processing of this query will start
with the analysis of the appearance list of item 1. First, the only element of the
query sequence will be mapped to the first element of the database sequence.

118 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

Next, we process item 2. Because the element of the query sequence has been
mapped we only need to check if the entry (1, 1) exists on the appearance list of
item 2. Because such entry exists we now need to check if the same entry exists
on the appearance list of item 4. Unfortunately, there is no such entry. Because
of this, we will need to retract to the first step of the algorithm, and choose
the second entry from the appearance list of item 1. Obviously, once again we
will need to retract for this and even the third entry on the appearance list
of item 1, each time performing almost complete verification of the database
sequence. The database sequence will only be verified for the last entry on
this list. To remedy this problem, we propose another, non-recursive, algorithm
for set subsequence queries, which is based on the algorithm for solving subset
queries using simple inverted file.

Consider an itemset Q. If we read from the index appearance lists of all of
the items from the set and find their intersection, we obtain all the supersets of
the set Q. We extend this algorithm to include information about the order of
the elements in the query sequence. Given the query sequence Q, we find all of
the supersets of the element ¢;. For the sake of simplicity, let us assume that
each sequence in the database contains at most one such superset. Database
sequences storing the supersets found in this step form the first approximation of
the result set, because such sequences are supersequences of a prefix of the query
sequence composed of a single element. Next, we search for all of supersets of the
element g2, but discard all of the elements that do not belong to the sequences
which were found in the previous step or their position in the database sequence
is smaller than the position of the previously found superset from the same
sequence. Once again, assume that each sequence in the database stores at most
one superset of the element go. Next approximation of the result set is a set of
sequences storing supersets found in this step (it is a set of sequences which are
supersequences of the prefix of the query sequence composed of two first elements
of the query sequence). We repeat the last step for the rest of the elements from
the query sequence, obtaining more accurate approximations of the result set.
The last approximation is equal to the result set. While this procedure allows
us to find all of the supersequences of the query sequence, it will only work
properly under the assumption that each sequence in the database stores at
most one superset of each of the query sequence elements. If at one of the steps
more than one superset in a single database sequence is found, there is a problem
of choosing which supersets position should be used as input for the next step
of the algorithm. For the algorithm to work properly, we need to chose the
superset with the lowest position. Clearly, if any other superset had been chosen,
a superset of one of the next elements in the query sequence could be pruned,
resulting in a false dismissal of the database sequence which could possibly be a
result of the query. The above discussion is summarized by the algorithm 5. This
basic algorithm may be optimized thanks to the following observation. Notice
that in the loop iterating through the query sequence elements, in each iteration
whole appearance lists are read and their intersections found. As can be clearly

How to improve efficiency of analysis of sequential data? 119

seen, we need to read only parts of these lists, as we are only interested in entries
referring to the elements in sequences, which were found in the previous step.
Furthermore, the interesting entries should have the position greater than the
position of the previously found element from the same sequence. Retrieval of
such entries requires a more complicated access to the physical index structure
which, for big candidate sets, could result in poor performance. However, after
several iterations, when the candidate sets are smaller, it may be beneficial for
the algorithm to use this optimization. The optimizations discussed above are
included in the algorithm 6.

Algorithm 5 Basic non-recursive algorithm for set subsequence queries

INPUT: Query sequence Q.
OUTPUT: Result set results.

1. Read appearance lists of all of the items from the element ¢; and find their intersection. The
obtained set of entries will be denoted E.
2. E « {(id,r): (id,r) € EA A(id,r') € E:r' <r
3. For each of the elements g;, where i = 2,...,|Q| perform the following steps:
(a) Read appearance lists of all of the items from the element g; and find their intersection.
The obtained set of entries will be denoted E’.
(b) T — {(id,r): (id,r) € E' A3(id,r') € E:r' <71}
(c) E«—{(Gid,r): (id,r) € TA A(id,r') €T : 7' < r}

4. results «— {id: (id,r) € E}

Algorithm 6 Improved non-recursive algorithm for set subsequence queries

INPUT: Query sequence Q.
OUTPUT: Result set results.

1. Read appearance lists of all of the items from the element ¢; and find their intersection. The
obtained set of entries will be denoted E.
2. E « {(id,r): (id,r) € EA A(id,r') € E:r' <r
3. For each of the elements g;, where i = 2,...,|Q| perform the following steps:
(a) If the set F is small enough then

i. Read appearance lists of all of the items from the element g; and find their
intersection. Retrieve only entries (id,r) such that 3(id,r’) € E : v > r’ The
obtained set of entries will be denoted E’.

ii. E« {(id,r): (id,r) € E'A A(id,r") € E' : 7' < r}

i. Read appearance lists of all of the items from the element ¢; and find their
intersection. The obtained set of entries will be denoted E’.

iil. T «— {(id,r): (id,r) € E' A3(id,r') € E:r' <7}
ili. E«— {(id,r): (id,v) € TA A(id,r') € T : 7" < r}
4. results «— {id: (id,r) € E}

EXAMPLE 2 Let us mow demonstrate an exemplary ezecution of the non-
recursive set subsequence query processing algorithm. Our example will use the
algorithm 6. We assume that the first approzimation of the result set is “small

120 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

13 5 5
(1,2)][(1,2) 1,1][(1,2)

(1,2)] 422
eojea) | 02 g @ en E={(3,3ﬂ>
(2,2)|(2,3) (3,2)) ©>221(2,2)]/(3,3) ‘
(3.2)/|32) (3,3) Result=(3}

Figure 6. Illustration for Example 2

enough” to use this optimization. Consider the following query sequence:

Q= <{17 3}) {27 5}> :

As a first step, we retrieve appearance lists of items 1 and 3, and calculate
their intersection. The computed intersection consists of entries: (1,2), (2,2)
and (3,2). Normally, as a next step, we would remove all entries such that
there exists another entry referring to the element of the same sequence, but
with lower position, however, in this intersection there are mo such entries.
Therefore, the set E stores all of the obtained entries. Next, we start analysing
the second element from the query sequence. Because we use optimization, we
iterate through all of the entries stored in set E and for each such entry we
retrieve from the appearance lists of items 2 and 5 entries referring to the same
sequence, but with higher position. We calculate intersections of the obtained sets
of entries. For entries (1,2) and (2,2) from the set E the obtained intersections
are empty. For entry (3,2), the obtained intersection is composed of a single
entry (3,3). Therefore, the new set E stores only one entry (3,3). Because we
finished analysing all of the elements from the query sequence, we obtain the
result set from the last set E. The result set stores the identifier of the third
sequence in the database. This example is illustrated by Fig. 6.

The index FIRE is easily updatable. The algorithm for incremental updates
of the index is straightforward. To reflect changes in database, just remove
entries on the appearance lists, which correspond to the removed items, and add
new entries, which correspond to the added items. Detailed steps for updating
the sequences are presented by the algorithm 7.

Algorithm 7 An algorithm for incremental updates of the index

INPUT: Sequence identifier id, old version of the sequence Si¢, (if inserting ||Si%,|| = 0), new
version of the sequence Sf;iw (if deleting |\s;{;w|| =0).

OUTPUT: Modified index.

Let O = {(z, r):z € 8’ Ar is the element position of an item a:}

Let N = {(z,r) : x € S"®" A r is the element position of an item z}.

For each (z,7) € O\ N delete from the appearance list of the item x entry (id, r).
For each (z,7) € N \ O insert into the appearance list of the item z entry (id, r).

i R s

How to improve efficiency of analysis of sequential data? 121

4.3. Physical index structure

We shall now discuss the physical structure of an index. It is easy to notice that
the recursive algorithm for query execution reads the index in three different
ways: scans the whole appearance list, scans the appearance list entries referring
to a single sequence and only a given interval of elements, and reads a single
entry on the appearance list (check whether a given entry is on the list, or not).
The non-recursive algorithm either scans the whole appearance list or finds (on
the appearance list) entries referring to elements from a single sequence, which
have a position greater than the given value.

Our physical structure of the index should support such access methods
and furthermore, it should allow us to easily insert, delete and sort entries
on the appearance lists. Let us consider the slightly modified Bt tree which
stores only keys (no data are associated with them). Let keys be the triples
(x,id,r), where x is the item identifier, id is the identifier of a sequence, and
r is the position of the element in the sequence id, in which the item x is
contained. Let the order imposed on those triples be the lexicographic one, first
by item, then by sequence identifier and finally by the element position. Such
BT tree has all of the required properties. All of the aforementioned index access
types can be represented as either range or point queries to the BT tree index.
Notice that such implementation has other advantages: very simple insertion,
deletion and modification of entries, as well as “automatic” removal, or insertion
of appearance lists (each list exists only, if there is at least one entry from it
stored in the tree).

5. Performance tests

We have performed three different experiments, testing the impact of: the num-
ber of sequences, the average sequence length and the average element size on
the index performance. For each of the experiments we built 20 databases, 10 of
which were built using uniform distribution and the other 10 were built using the
zipfian distribution for element generation. For each of the databases we ran-
domly built 40 queries. During experiments these sets of queries were executed
10 times. The obtained query processing times were averaged. We compare the
performance of the FIRE index to the performance of the only other incremen-
tally updatable index for sequences of sets, the AISS index. Table 3 summarizes
the experiment parameters.

The first experiment tested the impact of the number of sequences stored in
database on the index performance. Fig. 7 presents the performance of the FIRE
index for zipfian and uniform distributions in comparison to the performance of
the AISS index and full scan of database. Analysing the Fig. 7 one may notice
a few things. First, the query processing times of both the AISS index and the
FIRE index depend linearly on the number of sequences stored in the database.
Second, for the uniform distribution of the items the query processing times of

122 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

Table 3. Experiment parameters

Experiment number:
Parameter

1 2 3
number of different items 150000 150000 | 150000
item distribution zipfian and uniform
minimal element size [items] 1 1 5-95
maximal element size [items] 30 30 15-105
minimal sequence size [elements] 1 5-95 5
maximal sequence size [elements] 10 15-105 15
number of sequences 10000-100000 | 10000 10000
page/node size [bytes] 4096B 4096B | 4096B

the recursive algorithm for the FIRE index are smaller than those of the AISS
index, while the non-recursive algorithm is comparable with the AISS index
algorithm. Third, for the index AISS and the recursive algorithm of the index
FIRE, the query processing times do not depend significantly on the distribution
of items. However, for the non-recursive algorithm, distribution of items has
a great impact on the index performance. For the uniform distribution, the
non-recursive algorithm is comparable with AISS index, whereas for skewed
distribution, performance of this algorithm is worse by more than two orders
of magnitude when compared to other algorithms. Fourth, when we compare
query processing times when using index, to times obtained during a full scan
of database, we may notice that they are three orders of magnitude smaller.
The second experiment tested the impact of the average length of sequences
stored in the database on the index performance. Fig. 8 presents the perfor-
mance of the FIRE index for zipfian and uniform distributions in comparison
to the performance of the AISS index and the full scan of the database. Let
us consider the results presented in Fig. 8. Once again we may observe linear
dependency of query processing times on the average length of sequences stored
in the database. The recursive algorithm of the FIRE index processes queries
faster then the AISS index. We may also notice that query processing times
(using the recursive algorithm) for databases with the zipfian distribution are a
bit smaller than the query processing times for the uniform distribution. This
may be explained by the following observations. When the zipfian distribution
is used, some appearance lists are very long, but there are also multiple very
short appearance lists. Because we start query processing with the items with
the lowest support (and probably with the shortest appearance lists), we ob-
tain smaller sets of sequences to verify in the main loop of the query processing
algorithm, which improves the performance of the index. One may also make
another interesting observation: the trend of growth of query execution times,
when the zipfian distribution is used, is not as stable as in experiments with
uniform distribution. This is particularly apparent for the average query execu-

How to improve efficiency of analysis of sequential data?

123

0,01

Time [s]

0,001

0,0001

0,00001

10§ 20000 30000 40000 50000 60(2_00_7_0209_8_OQ.DQ_SDQDDJO(D00

P

BEE LS &=

—4—FIRE, Uniform, Recursive —&—FIRE, Uniform, Non-recursive

—m-AISS, Uniform —e—Full scan, Uniform
—&= FIRE, Zipf, Recursive —&- FIRE, Zipf, Non-recursive
—- AISS, Zipf —e- Full scan, Zipf

Number of sequences

Figure 7. Number of sequences

=
o
g
=
£
0,001
0,0001 —e—FIRE, Uniform, Recursive —&—FIRE, Uniform, Non-recursive
~B-AISS, Uniform —e—Full scan, Uniform
—&~ FIRE, Zipf, Recursive —&- FIRE, Zipf, Non-recursive
0,00001 —- AISS, Zipf —@- Full scan, Zipf
Average sequence length
Figure 8. Average sequence length
1
fl 20 30 40 50 60 70 80 90 100
01 ke ———k———k -k k- k - A -y -4
-
=
> 0,01
g
=
£
0,001
0,0001
—e—FIRE, Uniform, Recursive —&—FIRE, Uniform, Non-recursive
—-AISS, Uniform —e—Full scan, Uniform
—&~ FIRE, Zipf, Recursive —&- FIRE, Zipf, Non-recursive
0,00001 ~- AISS, Zipf —@~ Full scan, Zipf

Average set size

Figure 9. Average element size

124 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

tion times on databases with sequences of average length equal to 100. In this
case, one of the randomly generated queries was very short, and composed of
only frequent items. As was pointed out in Andrzejewski and Morzy (2006a),
this is a very bad case for the AISS index, as it requires to retrieve and analyze
a large part of the database. As we can clearly see, the recursive algorithm of
the FIRE index behaves much better in this case. The non-recursive algorithm,
as in previous experiment, behaves differently depending on the distribution of
the items. For uniform distribution, its performance is comparable with that
of the AISS index, whereas for zipfian distribution its performance is by more
than two orders of magnitude worse. When we compare query processing times
using index to those obtained using full scan of the database, we may notice
that they are by more than three orders of magnitude smaller.

The third experiment tested the impact of the average size of elements in the
database on the index performance. Fig. 9 presents the performance of the FIRE
index for zipfian and uniform distributions in comparison to the performance
of the AISS index and full scan of the database. Let us analyse Fig. 9. The
dependency of the query execution times on the average size of elements is also
linear. As in previous experiments, FIRE index is faster than the AISS index,
for the recursive algorithm query processing times are a little bit shorter for the
databases with the zipfian distribution of items, whereas for the non-recursive
algorithm query processing times on databases with the zipfian distribution are
by more than an order of magnitude worse than for the rest of the algorithms.
Finally, when we compare query processing times using index to those observed
during a full scan of the database, FIRE index is by three orders of magnitude
faster than the full scan of database.

6. Conclusions and future work

We have proposed a new indexing scheme, capable of retrieving sequences of
sets based on sequence containment. We have proposed the logical and physical
structure, and we have developed the algorithms for index construction, set
subsequence query processing and incremental updates of the index. Our index
is capable of storing full information about indexed sequences and therefore it
does not need any assumptions as to the physical and logical structure of the
database. As we have experimentally shown, the FIRE index is faster than the
AISS index and processes set subsequence queries by three orders of magnitude
faster than the full scan of database. Query processing times are also almost
independent of the distribution of items (they may be even shorter when the
items have skewed distribution).

In future we plan to design algorithms for other classes of queries for se-
quences of sets as well as performing extensive performance tests on real world
data to determine more of the possible application domains of our index. We
also plan to design compression schemes of our index, to lessen the number of
disk accesses required to process the queries.

How to improve efficiency of analysis of sequential data? 125

References

AcGrawaL, R., FaLouTsos, C. and SwaMmi, A.N. (1993) Efficient similarity
search in sequence databases. Proceedings of the 4th International Con-
ference on Foundations of Data Organization and Algorithms, Chicago.
Springer Verlag, 69-84.

ANDRZEJEWSKI, W., GAERTIG, P., RaADOM, M. and ANTONIEWICZ, M.
(2003) Opracowanie i analiza wydajnosciowa indeksu dla przyblizonego
wyszukiwania podzbiorow danych (Development and efficiency analysis of
an index for the approximate retrieval of data subsets; in Polish). Diploma
Thesis. Poznan University of Technology.

ANDRZEJEWSKI, W. and MoRrzy, T. (2006a) AISS: An index for non times-
tamped set subsequence queries. Proceedings of the 8th International Con-
ference on Data Warehousing and Knowledge Discovery, Cracow. Springer
Verlag, 503-512.

ANDRZEJEWSKI, W. and MoORzy, T. (2006b) SeqTrie: An index for data min-
ing applications. Proceedings of the 2nd ADBIS Workshop on Data Mining
and Knowledge Discovery, 13-25.

ANDRZEJEWSKI, W., MoORzY, T. and MoRzy, M. (2005) Indexing of se-
quences of sets for efficient exact and similar subsequence matching. Pro-
ceedings of the 20th International Symposium on Computer and Informa-
tion Sciences, Istanbul. Springer Verlag, 864-873.

DEeppIsCH, U. (1986) S-Tree: a dynamic balanced signature index for office
retrieval. Proceedings of the 9th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, Pisa. ACM
Press, 77-87.

FaLouTsos, C. and CHRISTODOULAKIS, S. (1984) Signature files: an access
method for documents and its analytical performance evaluation. ACM
Transactions on Information Systems (TOIS) 2 (4), 267-288.

FaLoutsos, C., RANGANATHAN, M. and MANOLOPOULOS, Y. (1994) Fast
subsequence matching in time-series databases. Proceedings of the 199/
ACM SIGMOD international conference on Management of data, Min-
neapolis. ACM Press, 419-429.

Goczyra, K. (1997) The Partial-Order Tree: A New Structure for Indexing
on Complex Attributes in Object-Oriented Databases. Proceedings of the
23rd Euromicro Conference, Budapest. IEEE, 47-54.

HELLERSTEIN, J. M. and PFEFFER, A. (1994) The RD-Tree: an index struc-
ture for sets. Technical Report 1252. University of Wisconsin at Madison.

HELMER, S. and MOERKOTTE, G. (1999) A study of four index structures
for set-valued attributes of low cardinality. The VLDB Journal — The
International Journal on Very Large Data Bases 12 (3), 244-261.

KEOGH, E., CHAKRABARTI, K., PAzzANI, M. and MEHROTRA, S. (2001)
Locally adaptive dimensionality reduction for indexing large time se-
ries databases. Proceedings of the 2001 ACM SIGMOD international

126 W. ANDRZEJEWSKI, Z. KROLIKOWSKI, T. MORZY

conference on Management of data, Santa Barbara. ACM Press, 151-162.

KEOGH, E., LONARDI, S. and RATANAMAHATANA, C.A. (2004) Towards pa-
rameter free data mining. Proceedings of the 2004 ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, Seattle.
ACM Press, 206-215.

LEVENSHTEIN, V.I. (1965) Binary codes capable of correcting deletions, inser-
tions and reversals. Doklady Akademii Nauk SSSR 163 (1), 845-848.

Mawmoutis, N. and Yiu, M.L. (2004) Non-contiguous sequence pattern
queries. Proceedings of the 9th International Conference on Extending
Database Technology. LNCS 2992, Springer Verlag, 783-800.

MANBER, U. and MYERS, G. (1990) Suffix arrays: a new method for on-line
string searches. Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia. Society for Industrial and Applied
Mathematics, 319-327.

McCREIGHT, E.M. (1976) A space-economical suffix tree construction algo-
rithm. J. ACM 23 (2), 262-272.

NANOPOULOS, A., MANOLOPOULOS, Y., ZAKRZEWICZ, M. and MoORzyY, T.
(2002) Indexing web access-logs for pattern queries. Proceedings of the
4th international workshop on Web information and data management,
Virginia. ACM Press, 63-68.

UKKONEN, E. (1992) Constructing suffix trees on-line in linear time. Informa-
tion Processing 92, Proceedings of IFIP 12th World Computer Congress,
volume 1. Elsevier Sci. Publ., 484-492.

UKKONEN, E. (1995) On-line construction of suffix trees. Algorithmica 14 (3),
249-260.

VLACHOS, M., HADJIELEFTHERIOU, M., GUNOPULOS, D. and KEOGH, E.
(2003) Indexing multidimensional time-series with support for multiple
distance measures. Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, Washington. ACM
Press, 216-225.

WanNg, H., PERNG, C.-S., FAN, W., PARK, S. and Yu, P.S. (2003) Index-
ing weighted-sequences in large databases. Proceedings of International
Conference on Data Engineering, Bangalore. TEEE Computer Society,
63-74.

WEINER, P. (1973) Linear pattern matching algorithms. Proceedings of the
14th IEEE Annual Symposium on Switching and Automata Theory, lowa.
IEEE, 1-11.

Y1, B.-K. and FaLouTsos, C. (2000) Fast time sequence indexing for arbi-
trary L, norms. Proceedings of the 26th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers Inc., 385-394.

