
Deduction in the Presence of
Distribution and Contradictions ∗

Serge Abiteboul
INRIA Saclay and ENS Cachan

fname.lname@inria.fr

Meghyn Bienvenu
CNRS and Université Paris-Sud

meghyn@lri.fr
Daniel Deutch

Ben Gurion University of the Negev; INRIA Saclay and ENS Cachan
deutchd@cs.bgu.ac.il

ABSTRACT
We study deduction, captured by datalog-style rules, in the
presence of contradictions, captured by functional depen-
dency (FD) violation. We propose a simple non-deterministic
semantics for datalog with FDs based on inferring facts one
at a time, never violating the FDs. We present a novel
proof theory for this semantics. We also discuss a set-at-a-
time semantics, where at each iteration, all facts that can
be inferred are added to the database, and then choices are
made between contradicting facts. We then build upon a
distributed datalog idiom, namely Webdamlog, to define a
semantics for the distributed setting. Observe that contra-
dictions naturally arise in such a setting, with different peers
having conflicting information or opinions. We study differ-
ent semantics for this setting.

1. INTRODUCTION
Our goal is to study how peers in a network exchange in-

formation and reason together to reach agreements. A dif-
ficulty is that the peers may state or infer conflicting facts,
where conflicts are captured here by violations of functional
dependencies. Peers can settle conflicts by choosing between
contradicting base or inferred facts. Such choices add to the
uncertainty already inherent in an asynchronous environ-
ment. We study the semantics of datalog-like languages and
query evaluation in this setting.
We introduce, as a basis for our work, a semantics for

datalog in the presence of functional dependencies (FDs for
short). We then extend that semantics to a distributed dat-
alog language, namely Webdamlog.

Datalog with FDs. As a starting point, we consider a cen-
tralized setting. We propose a nondeterministic semantics
for datalog in presence of FDs. The intuition behind this
semantics is that a fact is derived only if its introduction
into the database does not result in any FD violation (i.e., if
it is not in conflict with another existing fact). So, in a for-
ward chaining manner, we keep adding inferable facts, one
at a time, until any further addition would result in a de-

∗This work has been supported in part by the Advanced
European Research Council grant Webdam on Foundations
of Web Data Management.

pendency violation. Nondeterminism results from the order
in which inferable facts are added.

We refer to this semantics as non-deterministic fact-at-
a-time (nfat) semantics, and we also provide a novel proof
theory for the semabtics. We show that proving that a fact
necessarily or possibly holds is hard.

While the fact-at-a-time semantics is simple and intuitive,
for practical reasons, it may be preferable to derive sets of
facts at a time. We consider a nondeterministic set-at-a-
time semantics (nsat for short). We compare and contrast
it with nfat .

Note that semantics for datalog with functional depen-
dencies have already been considered, from a somewhat dif-
ferent perspective (see discussion in Sections 2 and 5). We
revisit the topic and present new results, such as the proof
theory. We then move to considering the management of
contradictions in a distributed setting.

Distribution and Webdamlog. Contradictions are very com-
mon in a distributed setting. As a simple example, consider
peers exchanging information about the location of other
peers. This can be captured using a binary relation IsIn,
where IsIn(p, c) means that a peer p is currently in city c.
Each peer knows a partial copy of this relation that re-
flects her personal knowledge. We will also include the FD
IsIn: 1 → 2 since a peer cannot be in two distinct cities
at the same time. Observe however that even if this FD
is respected locally (i.e., in the knowledge of a peer), dif-
ferent peers may associate different locations to the same
peer. Now, assume that facts are propagated in the net-
work. Clearly, a peer Bob may receive contradicting facts
about the location of Alice, if Bob has two friends who have
different opinions about her whereabouts. The semantics we
propose is meant to handle such contradictions.

For capturing knowledge inference in a distributed setting,
we use a recently proposed distributed datalog idiom called
Webdamlog [1]. We “marry” the centralized semantics for
datalog with FDs and the semantics of a positive fragment
of Webdamlog, and study the resulting semantics.

Paper Organization. The rest of this paper is organized
as follows. In Section 2, we study the nfat semantics for
datalog in presence of FDs. In Section 3, we study the nsat
semantics. In Section 4, we adapt the approach to a dis-
tributed setting. We provide an overview of related works
in Section 5, and conclude in Section 6. Due to space limi-

tations, proofs are omitted and can be found in [12].

2. DATALOG WITH FDS

In this section, we study the management of contradic-
tions arising from considering datalog together with func-
tional dependencies. We begin by presenting a semantics
based on fact inferences (forward chaining), and then present
a corresponding proof theory (backward chaining).

Model semantics
We introduce a semantics for datalog in presence of FDs. In-
tuitively, this semantics is based on forward chaining with
instantiated rules applied one at a time. Each rule appli-
cation generates a new candidate fact. This fact is added
to the database instance unless its addition violates an FD.
Note that this introduces non-determinism since the result
of the process possibly relies on the order of rule activation.
We consequently refer to this semantics as nfat , standing for
non-deterministic fact-at-a-time.
We next formally define the semantics, by re-defining the

immediate consequence and the consequence operators in
the presence of FDs. Note that we assume that the exten-
sional database does not violate the FDs. By construction,
the database instances that will be generated will also al-
ways be consistent with the FDs.

Definition 1. Let S be a database schema. Let F and P
be, respectively, a set of FDs and a datalog program over S.
Let I be an instance over S satisfying F . The (inflationary)
immediate consequence operator →nfat is defined as follows:
I →nfat I

∪
{A} if and only if there exists an instantiation

A :- A1, ..., An of a rule in P such that {A1, ..., An} ⊆ I
and I

∪
{A} satisfies the FDs. The consequence operator

→∗
nfat is the transitive closure of the immediate consequence

operator.

We now formally define possible worlds, which correspond
to the different ways of settling contradictions.

Definition 2. Given a schema S, an instance I, a set F
of FDs and a datalog program P over S, an instance J over
S is a possible world for (I, P, F) if J is a maximal instance
satisfying I →∗

nfat J . The set of possible worlds is denoted

pwnfat(I, P, F).

Example 1. Consider a database whose schema consists
of a ternary relation IsIn and a binary relation Friend. In-
tuitively IsIn($X, $Y, $P) means “The person $P thinks that
the person $X is in the city $Y ”, and so we impose the FD
IsIn : 1, 3 → 2. Now consider the following datalog program:

IsIn($X, $Y, $P) :- Friend($P, $P1), IsIn($X, $Y, $P1)
IsIn(carol, $Y, $P) :- IsIn(alice, $Y, $P)

The first rule states that each person believes his friends
about the whereabouts of people, whereas the second states
that it is general knowledge that Carol is in the same city as
Alice. Now assume that the initial database is as follows:

IsIn(alice, paris, peter), IsIn(carol, london, tom),
Friend(ben, tom),Friend(ben, peter)

There are two possible worlds for this program, containing:

1) IsIn(alice, london, ben), IsIn(carol, london, ben),
but not IsIn(carol, paris, ben).

2) IsIn(alice, paris, ben), IsIn(carol, paris, ben)
but not IsIn(carol, london, ben).

Certainty and possibility of facts can be defined in the
standard manner: a fact is said to be certain if it appears
in all possible worlds, and it is called possible if it belongs
to at least one possible world. The sets of all certain (resp.
possible) facts according to the nfat semantics is denoted
certnfat(I, P, F) (resp. possnfat(I, P, F)). The problem of
deciding whether a given fact is certain (possible) with re-
spect to nfat is denoted CERT nfat (POSSnfat).

Connection with negation. There is a strong connection
between FDs and negation (see e.g. [11, 14]). In particular,
using a construction similar to the one in [14] we can trans-
late a datalog program P with FDs to a datalog program
P ′ with negation, such that possible worlds for P according
to our semantics are exactly the stable models of P ′. The
exact translation appears in [12].

Proof theory
We next equip the previous semantics with a proof theory.

Definition 3. Given an instance I, a datalog program
P , and a set F of FDs, a proof tree for a fact A w.r.t.
(I,P,F) is a finite tree labelled with facts, such that the root
is labelled A and each node satisfies one of the following:

1. It is a leaf node labelled with a fact from I.

2. It is labelled B and its children have labels C1, ..., Cn,
n ≥ 0, where B :- C1, ..., Cn is an instantiation of a
rule in P .

Additionally, we require that no two facts that label nodes of
the tree, violate an FD.

The following theorem provides a simple characterization
of possible answers in terms of proof trees:

Theorem 1. For each input instance I, a program P and
a set F of FDs, A ∈ possnfat(I, P, F) if and only if there
exists a proof tree for A with respect to (I,P,F).

Example 2. Let I = {A,B}, P = {C :- R(a, 0), R(a, 1),
R(a, 0) :- A,R(a, 1) :- B}, and F = {R : 1 → 2}. There are
proof trees for both R(a, 0) (using A) and R(a, 1) (using B).
There is no proof tree for C since such a tree would require
the presence of two nodes labelled respectively R(a, 0) and
R(a, 1), which the definition forbids.

Now consider certainty. Proving a fact to be certain in-
volves showing that it is present in all possible worlds, or
in other words, that there is no possible world where this
fact is absent. This leads us to introducing the notion of a
refuting proof tree for A, defined as follows.

Definition 4. Given a database instance I, a datalog
program P , and a set F of FDs, a refuting proof tree for
a fact A w.r.t. (I,P,F) is a finite tree where each node is
labelled with a (possibly negated) fact, such that the root is
¬A and each node satisfies one of the following conditions:

1. It is a leaf node labelled with a fact from I.

2. It is labelled B and its children have labels C1, ..., Cn,
n ≥ 0, where B :- C1, ..., Cn is an instantiation of a
rule in P .

3. It is labelled ¬B and has children labelled ¬C1, . . . ,¬Cn,
n ≥ 0, where B ̸∈ I and each instantiation of a rule in
P that has B for head has some Ci in its body.

4. It is labelled ¬B and has a unique child labelled C such
that {B,C} violates some FD in F .

5. It is a leaf node labelled ¬B, and it has an ancestor
which is also labelled ¬B.

Additionally, we require that the set of positive facts in the
node labels satisfies the FDs F , and that the tree does not
contain as labels both a fact and its negation.

Example 3. Let I = {A}, P = {R(a, 0) :- R(a, 1), R(a, 1)
:- R(a, 0), R(a, 2) :- A,R(b, 1) :- A,R(b, 2) :- A}, and F =
{R : 1 → 2}. To show R(a, 1) is not certain, we can use the
refuting proof tree whose root node ¬R(a, 1) has a unique
child ¬R(a, 0) (according to rule 3 in the definition) which
in turn has a unique child ¬R(a, 1) (rule 3). To show that
R(b, 1) is not certain we can use a refuting proof tree whose
root node ¬R(b, 1) has a unique child R(b, 2) (rule 4) which
has a unique child A (rule 2, and the existence of A is due
to rule 1). To show that R(a, 2) is certain, we observe that
the existence of a refuting proof tree for R(a, 2) would either
imply the existence of a refuting proof tree for A (impossible
since A ∈ I) or the existence of a proof tree for R(a, c) for
some c ̸= 2 (also impossible).

We can show the following theorem.

Theorem 2. For each input instance I, program P , and
set F of FDs, a fact A is certain w.r.t. (I,P,F) if and only
if there exists no refuting proof tree for A w.r.t. (I,P,F).

While we have established a proof theory, we note that it
not surprisingly leads to computationally expensive decision
procedures, both for possibility and uncertainty.

Theorem 3. POSSnfat is NP-complete in the size of the
input instance. CERT nfat is coNP-complete in that size.

3. SET-AT-A-TIME SEMANTICS
In the previous section, we have considered a fact-at-a-

time semantics for datalog with FDs. We next consider an
alternative semantics based on inferring in one step all the
facts that are immediate consequences of the facts and the
rules, and then non-deterministically choosing a subset of
those new facts without causing an FD violation. We will re-
fer to this semantics as nondeterministic set-at-a-time (nsat)
semantics. The formal definition is as follows:

Definition 5. Consider a database instance I, a set F
of FDs, and a program P . Let Σ be the set of immediate
consequences of I and P (with the standard datalog seman-
tics). The immediate consequence operator for P w.r.t. F ,
denoted by →nsat, is defined by: I →nsat I

∪
Σ′ if and only

if Σ′ is a maximal subset of Σ such that I
∪

Σ′ satisfies F .
Let →∗

nsat be the reflexive transitive closure of this operator.
An nsat possible world for I is a maximal instance J such
that I →∗

nsat J .

Example 4. We apply the nsat semantics to Example 1.
At each iteration, all possible facts are derived, and then
contradictions are settled by adding a maximal subset of the

newly derived facts that is consistent with the FDs. In the
first iteration, the facts

IsIn(alice, paris, ben), IsIn(carol, london, ben)

are derived. In the next iteration, the derivation of IsIn(carol,
paris,ben) is blocked since it contradicts the fact IsIn(carol,
london,ben). In this particular example, there is only one
possible world under nsat semantics.

We use certnsat(I, P, F) (resp. possnsat(I, P, F)) to denote
the certain (resp. possible) facts with respect to the nsat
semantics. Similarly to the case of the nfat semantics, we
use POSSnsat and CERT nsat (resp.) to denote the problems
of deciding possibility and certainty with respect to the nsat
semantics.

Theorem 4. POSSnsat (resp. CERT nsat) is NP-complete
(resp. coNP-complete) in the size of the input instance I.

Comparing with nfat , the following theorem holds:

Theorem 5. For each input instance I, datalog program P ,
and set F of FDs: (i) each nsat possible world is an nfat pos-
sible world; and (ii) the converse does not hold in general.

Note that it follows that:

possnsat(I, P, F) ⊆ possnfat(I, P, F),
certnfat(I, P, F) ⊆ certnsat(I, P, F),

and the inclusions may be strict. Consequently, the proof
theory developed for nfat needs to be refined to account for
nsat ; developing a proof theory for nsat will be addressed
in future research.

Remark 1. In the following section, we will focus mainly
on the set-at-a-time semantics rather than on the fact-at-a-
time one (that is more logically founded). A main reason for
considering the set-at-a-time semantics is that it can be im-
plemented using a relational engine. Another reason is that,
for the distributed setting, we will use a previously introduced
language, namely Webdamlog, that relies on a set-at-a-time
semantics. However, for completeness, we revisit this choice
towards the end of the section to consider alternative seman-
tics, based on fact-at-a-time derivations.

4. THE DISTRIBUTED CASE
In this section, we move to a distributed setting, taking

as our starting point the distributed datalog dialect Web-
damlog recently introduced in [1]. We will consider a rele-
vant fragment of this language, referred to as s-Webdamlog
(for “simple”Webdamlog). We start with a simple example
to illustrate the language.

Example 5. Let us reformulate Example 1 using Web-
damlog syntax. Instead of a single relation IsIn($X, $Y, $P),
we have a separate IsIn relation for each peer p, which is de-
noted by IsIn@p($X, $Y). Each peer p has the FD IsIn@p :
1 → 2 and the following rules:

IsIn@$P ($X, $Y) :- Friend@p($P), IsIn@p($X, $Y)
IsIn@p(carol, $Y) :- IsIn@p(alice, $Y)
IsIn@p($X, $Y) :- baseIsIn@p($X, $Y)

Observe the use of variable $P that matches all the peers
that are friends of peer p. Intuitively the first rule says that

if you know where someone is, you let your friends know.
The initial database includes the following facts:

baseIsIn@peter(alice, paris) Friend@peter(ben)
baseIsIn@tom(carol, london) Friend@tom(ben)

s-Webdamlog
We consider only a subset of the Webdamlog language, re-
ferred to as s-Webdamlog. The semantics we propose may be
extended to the full language in a straightforward manner.
However, our results do not hold for the general language
(see [12] for discussion).

Alphabet. We assume the existence of two infinite disjoint
alphabets of sorted constants: peer and relation. We also
consider the alphabet of data that includes in addition to
peer and relation, infinitely many other constants of dif-
ferent sorts (integer, string, bitstream, etc.). Similarly we
have corresponding alphabets of sorted variables. An iden-
tifier starting by the symbol $ implicitly denotes a variable.
A term is a variable or a constant. It is because data in-
cludes peer and relation that we may write atoms such as
IsIn@$P ($X, $Y) (in the head of the first rule in Example
5) where the peer $P is a variable.
A schema is an expression (Π, E , I, σ) where Π is a set

of peer IDs; E and I are disjoint sets, resp., of extensional
and intensional names of the form R@p for some relation
name R and some peer p; and the typing function σ defines
for each R@p in E ∪I the arity and sorts of its components.

Facts and rules. A (p-)fact is an expression R@p(u) where
R@p is a relation and u is a vector of data elements of the
proper type, i.e., correct arity and correct sort for each com-
ponent. We consider that a peer of ID q has a finite set of
s-Webdamlog rules of the following form:

Mn+1@Q(U) :- M1@q(U1)...Mn@q(Un)

where each Mi is a relation term, Q is a peer term, and each
U i is a vector of data terms, and subject to the condition
that every variable in the head must occur in the body. Ob-
serve in particular that if Q is a variable then it must be
bound to a peer ID in the body so that we know which peer
the derived fact concerns.
Note that unlike in the general language of [1], we do not

allow negated atoms in the body, and we assume that all
the facts in the body of a rule concern the particular peer
that holds this rule. In the terminology of [1], the rules we
consider are positive and local. Also, in what follows, we
are interested in a setting where each peer has a fixed set of
extensional facts, and only the intensional predicates vary.
Concretely, we assume the peers’ rules are deductive 1, i.e.
only intensional predicates appear in the heads of rules.

Semantics. The philosophy underlying Webdamlog is that
we define a local semantics to be used at each peer, which
then induces a global semantics based on moves and runs.
When restricted to positive, local, deductive rules, and the

standard datalog semantics is chosen for the local semantics,
a move of a peer p consists in: (i) computing the fixpoint of

1Technically, Webdamlog requires persistence rules of the
form R@p(U) :- R@p(U) to make extensional facts persist
across states. For simplicity, we ignore this detail.

p’s program (its rules and its extensional facts) 2, and (ii)
alerting other peers of the derived facts that concern them
via delegations. Concretely, when p derives a fact R@q(u)
for some q ̸= p, it delegates the rule R@q(u):- to q. This
rule is now available to q for use during its computation.

We define a Webdamlog state as a 3-tuple (I,Γ, D), where
I assigns to each peer p a set I(p) of extensional p-facts, Γ
assigns to each peer a set of rules, and D assigns to each peer
p a set D(p) of rules that have been delegated to p. In the
special case that ∪pD(p) = ∅, we call the state a system and
refer to it by (I,Γ). A run of a system (I,Γ) is a sequence
of moves starting from (I,Γ) that satisfies fairness, i.e. each
peer p is invoked infinitely many times.

Semantics of s-Webdamlog with FDs
We now extend s-Webdamlog to account for FDs that con-
strain local relations. We must select a FD-sensitive se-
mantics to specify the local computation. For the reasons
mentioned in Remark 1 we will focus first on nsat ; we revisit
this choice towards the end of the section.

We require that the initial state I(p) of each peer p sat-
isfies its local constraints. Note that when it is a peer’s
turn to move, the FDs may force the peer to make choices
about which intensional facts to derive 3. According to the
semantics we propose, in a possible run, once a peer chooses
between two conflicting facts, the peer will not revise that
choice. This is illustrated by the following example.

Example 6. Suppose I(p) = {T (0, 0), T (0, 1)}, Γ(p) =

{R@p($X, $Y) :- T@p($X, $Y)

R@q($X, $Y) :- R@p($X, $Y)}

and F (p) = {R@p : 1 → 2}. Then when it is p’s turn
to move, his local nsat computation may generate either
{R@p(0, 0), R@q(0, 0)} or {R@p(0, 1), R@q(0, 1)}. In the
first case, R@q(0, 0) :- is delegated to q, whereas in the lat-
ter case, it is R@q(0, 1) :- that is delegated. Note however
that no changes are made to I(p), Γ(p), or its dependencies
F (p) to record the choice that is made. So, if p is called
again immediately, he will make the same choice.

The semantics we use guarantees that peers always make
consistent choices. This is achieved by endowing each peer
p with an inflationary set of facts M(p) (where M stands for
“memory”) that accompanies the peer p throughout the run.
Formally, a state of a peer p now consists of five components:
(I(p),Γ(p), F (p), D(p),M(p)), i.e., its extensional facts I(p),
its original set of rules Γ(p), its FDs F (p), the set D(p) of
rules that have been delegated to p, and its memory M(p).

Let us now define formally how the peer moves using the
nsat local semantics. In a given state (I(p), Γ(p), F (p),
D(p), M(p)), we use the nsat semantics to nondeterministi-
cally choose a fixpoint for the set of rules Γ(p)∪D(p) applied
to I(p)∪M(p) under the constraints F (p). This defines some
set H of new facts in the local intensional relations that are
added to M(p) and some new delegations that are sent to
other peers. Observe that only D and M evolve during the

2An alternative is to make a single step of derivations at
each move, in the spirit of the fact-at-a-time semantics. We
discuss this alternative towards the end of the section.
3Note that at the move of a peer p, it may cause contradict-
ing facts to be derived at a peer q. When q moves, it will
solve these contradictions

course of a run and that they grow monotonically. We are
thus guaranteed that each run converges:

Theorem 6. Let (I,Γ, F) be a s-Webdamlog system over
a finite set of peers. Then for each fair run σ0σ1σ2 . . . of
(I,Γ, F), there exists i such that for all k ≥ i, σi = σk.

We thus often identify a run with its finite prefix up to
convergence, and we speak of the final state of a run.

Possibility and certainty. Wemay again (as in the central-
ized case) consider possibility and certainty of presence of
facts in the final state of runs. The definitions for possibility
and certainty are as in Section 2, adapted to the distributed
setting. It is easy to show that the lower bounds (Thm. 4)
carry to the distributed case.

Comparison with the centralized case
We next compare the nsat semantics of s-Webdamlog that
we have just defined with some“natural” corresponding cen-
tralized semantics. In the absence of FDs, for a positive case
like the one considered here, it was shown in [1] that the dis-
tributed semantics is essentially identical to the centralized
one. An analogous result does not hold in the presence of
FDs for the nsat semantics, as demonstrated next.

Example 7. Consider the system (I,Γ, F) with peers p
and q, no extensional facts (i.e. I(p) = I(q) = ∅), a single
FD on the unary relation G@p, and the following programs:

Γ(p) = {A@p :- , B@p :- A@p, C@p :- B@p,

G@p(0) :- C@p,D@q :- , G@p(1) :- E@p}
Γ(q) = {E@p :- D@q}

Note that the first time peer p is called, the delegation E@p :-
is not present (since it is only produced once q receives D@q :-
from p), which means that the derivation of G@p(0) is not
blocked. There is thus a unique possible world for (I,Γ, F)
which contains G@p(0).
The corresponding centralized system intuitively includes

all relations, facts and FDs of the peers, keeping the peer
identifiers on the relation names to distinguish relations of
the same name originally residing at different peers (see [1]
for the formal definition). In the centralized system G@p(1)
can be generated in three steps, whereas G@p(0) requires four
steps, and so the unique possible world contains G@p(1).
Consequently the sets of possible worlds for the distributed
and centralized systems are different.

Simulation with Webdamlog
We can show that the semantics we have defined for s-
Webdamlog with FDs can be “simulated” in “almost” stan-
dardWebdamlog with negation (up to some non-deterministic
choices). We next provide the intuition for such simulation;
details can be found in the full version [12].
For each local intensional relation R@p, we use an exten-

sional relation Rm@p satisfying the same FDs as R@p, intu-
itively recording prior choices between contradicting facts,
made by the peer. The nsat simulation works as follows:
(i) for each R@p, a rule of the form R@p(u⃗) :- Rm@p(u⃗)
“loads” Rm in R to block the derivation of conflicting tu-
ples, (ii) we simulate the local rules, and (iii) for each R@p,
a rule of the form Rm@p(u⃗) :- R@p(u⃗) records the memory.
To block the execution of (ii) until (i) is performed, we add

a proposition wait in the program rules and use a rule wait
:- that unblocks the rules. To extract the set of facts from
the final state, we must take all facts in ∪pI(p), and then
translate every “memory” fact Rm@p(ū) to the fact R@p(ū)
it represents. We use the notation Facts(σ) to denote the
result of applying this procedure to a state σ.

A last difficulty is that the standard Webdamlog with
negation we have considered are deterministic whereas the
semantics of Webdamlog in presence of FDs, is not. To this
end, we non-deterministically choose a total ordering of the
tuples in each relation; this total ordering dictates a prefer-
ence relation, i.e. how to choose among conflicting facts, if
they are derived at the same time. See [12] for details.

Using fact-at-a-time semantics
As noted above, we have focused in the distributed case on
a set-at-a-time semantics. This choice affected the local se-
mantics of each peer, as well as the semantics of moves. For
local semantics we can also use a fact-at-a-time semantics,
and for moves we can use a “one step” semantics (i.e. use
→nfat or →nsat rather than →∗

nfat or →∗
nsat)

4. This leads to
4 different semantics. We next revisit our development and
consider the implications of such semantic choices.

Convergence. Since all proposed semantics are inflation-
ary, we can show that runs are guaranteed to converge, i.e.
a counterpart of Thm. 6 continues to hold.

Possibility and certainty. Since possibility and certainty
were shown to be NP-hard for both nfat and nsat , it is easy
to show that they remain NP-hard in the distributed case
even if we use nfat semantics. It is interesting to recall in this
context the connection to proof theory. Following Section 2,
showing possibility of a fact amounts to finding a proof for it,
and showing certainty amounts to showing the inexistence
of a refuting proof tree. In a distributed setting, showing
possibility or uncertainty can sometimes be done using a
proof that uses only the local facts of some peer. However,
in the worst case, the proof may require facts which are
distributed amongst the peers, in which case discovering the
proof may require broadcast communication.

Comparison with the centralized case. Recall that for
the nsat semantics we have shown that the sets of possible
worlds for the distributed and centralized systems may be
distinct. If we were to use nfat semantics locally, then the
obtained distributed semantics would generate some but not
all nfat possible worlds of the centralized program. This is
because when activating a peer, it runs until fixpoint before
releasing control. An exact correspondence between the dis-
tributed and the centralized case is obtained if we use the
“one step” semantics based on nfat (although, as mentioned
above, the practicality of this semantics is questionable).

Simulation with Webdamlog. Webdamlog (with no FDs)
is based on a set-at-a-time semantics. Simulating the nfat
semantics using Webdamlog is an open problem.

4This “one step” semantics is not satisfying from a practical
viewpoint as it requires communication after every inference
step. Nevertheless, we discuss it for completeness.

5. RELATED WORK
Different semantics have been proposed for datalog ex-

tended with negation including inflationary semantics, sta-
ble model semantics, and well-founded semantics (cf. Chap-
ters 14-15 of [2] for an introduction). We mentioned a con-
nection between the nfat semantics and stable model seman-
tics, similar to the one shown in [14].
Also relevant is the work on datalog extended with non-

deterministic witness [3] or choice constructs [11, 14]. At a
formal level, there are strong similarities between our nfat
possible worlds and the stable choice models of [14], and
between our nsat semantics and the eager dynamic choice
semantics of [11]. The motivations behind the two lines of re-
search are however quite different: our objective is to model
the inherent “don’t know nondeterminism” associated with
resolving contradictions, whereas work on nondeterministic
datalog aims at pruning the space of query answers, and thus
corresponds to “don’t care nondeterminism”. These differ-
ent motivations lead to the exploration of different issues:
certain answers, which are important in our setting, are not
considered in the work on nondeterministic datalog, which
instead focused on issues related to implementation and ex-
pressivity. Also, to the best of our knowledge none of the
works in this area have addressed distribution.
There is a large literature on consistent query answer-

ing (see [9, 10] for surveys) in the presence of integrity
constraints (typically FDs or inclusions dependencies). To
our knowledge, no study of consistent query answering has
been carried out for datalog programs, although logic pro-
gramming has been used as a tool for performing consis-
tent query answering for relational DBs [8]. Recent work
on the repair-checking problem [4] allows more expressive
rule-like integrity constraints (tgds), but these constraints
must be satisfied in every repair. By contrast, our data-
log rules are used for inference, rather than as constraints,
and as a result, possible worlds may not contain all tuples
which can be inferred given the rules. This also distin-
guishes our approach from the work on data exchange and
on inconsistency-handling for description logics [17].
Handling contradictions in a multi-agent environment was

recently studied in different lines of works [13, 16, 15], how-
ever the focus there was on data sharing or corroboration
of opinions, rather than on semantics for inference under
the presence of FDs. We also note that recent work on
distributed declarative systems [6, 5] have taken a differ-
ent approach, focusing on eventual consistency rather than
settling contradictions after every move, and thus have not
addressed the semantic issues studied here.

6. CONCLUSION
We have studied in this paper data management in the

presence of contradictions arising from violations of func-
tional dependencies. We have considered the problem first in
the centralized setting, where we introduced and studied two
different semantics, namely nfat and nsat . We have then ex-
tended the semantics to the distributed setting, where con-
tradictions play a crucial role. For both the centralized and
the distributed case, we have compared our semantics to
previously defined semantics for queries with negation.
The semantics introduced in this paper leads to uncer-

tainty. In the spirit of probabilistic databases (e.g. [18]),
we are working on “measuring” the uncertainty using proba-

bilities. Note that there are different sources of uncertainty
in our setting. In particular, uncertainty arises from choices
made to resolve conflicts, but is also inherent to a distributed
setting, due to the asynchronicity of the peers.

We also intend to extend the present work to general Web-
damlog programs (Recall that in Section 4 we have assumed
that the rules are all local, positive, and deductive.) We will
further explore other possible semantics for handling con-
tradictions. Finally, we intend to incorporate some of these
ideas in a system that is currently being implemented [7].

Acknowledgments. The authors are grateful to Emilien
Antoine, Bruno Marnette, Neoklis Polyzotis, Marie-Christine
Rousset, Julia Stoyanovich and Jules Testard for discussions
on this work.

7. REFERENCES
[1] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A

rule-based language for web data management. In PODS,
2011.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] S. Abiteboul and V. Vianu. Non-determinism in logic-based
languages. Ann. Math. Artif. Intell., 3(2-4):151–186, 1991.

[4] F. N. Afrati and P. G. Kolaitis. Repair checking in
inconsistent databases: algorithms and complexity. In
ICDT, pages 31–41, 2009.

[5] P. Alvaro, N. Conway, J. Hellerstein, and W. Marczak.
Consistency analysis in bloom: a calm and collected
approach. In CIDR, 2011.

[6] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking. In
PODS, 2011.

[7] E. Antoine, A. Galland, K. Lyngbaek, A. Marian, and
N. Polyzotis. Social networking on top of the
webdamexchange system. In ICDE, 2011.

[8] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for
consistent query answering in inconsistent databases.
TPLP, 3(4-5):393–424, 2003.

[9] L. Bertossi. Consistent query answering in databases.
SIGMOD Rec., 35:68–76, June 2006.

[10] J. Chomicki. Consistent query answering: Five easy pieces.
In ICDT, pages 1–17, 2007.

[11] L. Corciulo, F. Giannotti, D. Pedreschi, and C. Zaniolo.
Expressive power of non-deterministic operators for
logic-based languages. In Workshop on Deductive
Databases and Logic Programming, 1994.

[12] Full version.
http://www.cs.bgu.ac.il/~deutchd/WDLFull.pdf.

[13] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In
WSDM, 2010.

[14] F. Giannotti, S. Greco, D. Sacca, and C. Zaniolo.
Programming with non-determinism in deductive
databases. Annals of Mathematics and Artificial
Intelligence, 19, 1997.

[15] T.J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. In
VLDB, 2007.

[16] L. Kot and C. Koch. Cooperative update exchange in the
youtopia system. PVLDB, 2(1), 2009.

[17] R. Rosati. On the complexity of dealing with inconsistency
in description logic ontologies. In IJCAI, 2011.

[18] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Morgan & Claypool Publishers, 2011.

