Enhancing Locality Sensitive Hashing

with Peek-Probing and Nearest Neighbor Links

Aleksandar Stupar
Saarland University
Saarbriicken, Germany

astupar@mmoci.uni-saarland.de

ABSTRACT

In this work, we consider search in high dimensional data
and propose two optimization techniques for Locality Sen-
sitive Hashing (LSH). LSH has been successfully applied to
search in multi-media databases or to duplicate detection in
large Web or XML collections. LSH maps objects from a
high-dimensional feature space to a set of buckets, using a
hash function likely to cause hash collisions for similar ob-
jects. The first enhancement of LSH is based on additionally
introduced links for each point in the feature space. These
links refer to the exact nearest neighbor. The second ap-
proach is coined Peek-Probing, where LSH buckets are only
fully read if they indicate a certain amount of useful informa-
tion. The techniques are fully orthogonal and, hence, can be
used in a combined way for further improved performance.
We study the suitability of our approaches based on a se-
ries of experiments using high-dimensional image features of
different flavor. We report on performance numbers for our
algorithms and baseline competitors when tuned to provide
answers of a minimum accuracy.

1. INTRODUCTION

Searching for objects similar to a given sample (query)
object is a fundamental problem which occurs in a multi-
tude of scenarios. Among the most prominent examples is
the search for similar images or Web documents. Objects
are described by features, e.g., their words or word-stems in
case of text documents, or features describing the structural
content and color distribution of an image. What renders
similarity search difficult is the large number of features to
consider for semantically meaningful results. The result of
a search is a list of objects, ranked by their similarity to the
query object, in descending order. In most cases, only the
top portion of this result list is of interest and only in this
case, there is hope to devise means that inspect only a small
fraction of the full database for query answering. Restricted
to the best answers, the problem is to find the K Nearest
Neighbors (KNN) to a query object. The notion of neigh-
borhood is defined by the multi-dimensional space in which
points are aligned based on their feature representation. In
many scenarios, returning the approximate results instead of
the exact ones, suffices. Often, the approximate version is
even more desirable when the data dimensionality is high, as

*This work has been supported by the Excellence Cluster
on Multimodal Computing and Interaction (MMCI).

Copyright (C) is held by the author/owner.

WebDB 2012 Scottsdale, AZ, USA

Fifteenth International Workshop on the Web and Databases (WebDB
2012), May 20, 2012 - Scottsdale, AZ, USA. .

*

Sebastian Michel
Saarland University
Saarbriicken, Germany

smichel@mmoci.uni-saarland.de

similarity search is very expensive in such domains. Locality
Sensitive Hashing (LSH) [1] is such an approximate method
which has proven the ability to deal with high-dimensional
data in a robust and efficient way. The core idea is to map,
using a hash function, data objects to hash buckets. This
hash function should have the property of being locality sen-
sitive, that is, similar objects have a higher probability of a
hash collision than unrelated ones. At query time, the hash
bucket for the query object is determined and all objects in
that bucket are ranked according to their distance to the
query. To reach a high level of accuracy, i.e., how many of
the true K Nearest Neighbors have been identified, multiple
hash tables are used. There are dozens of follow up works
on LSH that aim at decreasing the runtime of the search
process, while still delivering at least as good results as the
original work. One of the most prominent extensions is the
work in [12] which devises an algorithm that determines a set
of additional hash buckets to look into. We use this Multi-
Probe LSH approach as the underlying core LSH technique,
but also report on performance results of the original LSH
algorithm.

In this work we propose two additional ways to accelerate
the performance of LSH. The first enhancement of LSH is
based on additionally introduced links for each point in the
feature space. These links refer to the exact nearest neigh-
bor. The second approach is coined Peek-Probing, where
LSH buckets are only fully read if they indicate a certain
amount of useful information. The nice property of our pro-
posed techniques is their orthogonality, hence, they can be
jointly applied, and their independence on the underlying
LSH method.

The paper is organized as follows. In Section [2] we discuss
the related work and give an introduction to the main princi-
ples behind Locality Sensitive Hashing, necessary to under-
stand the enhancements proposed. Section [3| presents the
enhancement based on the nearest neighbor links, coinded
Linked-LSH approach. The Peek-Probing approach is de-
scribed in Section @] The description of the experimental
setup together with the reported results on baselines and
proposed approaches is contained in Section Section [6]
concludes the paper.

2. RELATED WORK AND BACKGROUND

Being fundamental to many application areas searching
for the K Nearest Neighbors (closest points) in the multi-
dimensional space has received a lot of attention by re-
searchers in the past decades (cf., [13] for overview). When
the number of dimensions is relatively small, approaches
yielding the best results are the ones based on tree struc-
tures, such as X-Tree [4] and K-D tree [3]. However, with

the increasing number of dimensions we fall into a trap com-
monly known as the “curse of dimensionality” [5]. This has a
direct impact on the efficiency of the tree based data struc-
tures, rendering them applicable only for a small number of
dimensions.

Locality Sensitive Hashing (LSH) |1} 7,|10| is proposed as a
solution to this problem, rendering KNN processing efficient
in high dimensional space. The basic principle behind LSH
is the usage of locality preserving hash functions which map,
with high probability, close points from the high dimensional
space to the same hash value (i.e., hash bucket). Different
parameters of locality preserving functions together with the
number of hash function used, render LSH a parametric ap-
proach. Studies concerning LSH parameter tuning [8] [2]
have been performed providing an insight into LSH param-
eter tuning for optimal performance.

The idea of looking into, also called probing, neighbor-
ing LSH buckets with an aim of improving precision is the
key idea behind the Multi-Probe method, proposed in [12].
When the set of previously seen queries is available probing
multiple buckets can be done based on the learned proba-
bility distributions, as described in [11].

2.1 LSH Basics

The basic idea behind LSH is the usage of locality sen-
sitive hash functions for data indexing. A hash function is
said to be locality sensitive if it maps, with high probability,
neighboring points from the d-dimensional vector space to
the same hash value, i.e., related objects are more probable
to have the same hash value than distant ones. The LSH
index is built of several hash tables with each having mul-
tiple hash functions, to increase the probability of collision
for close points. At query time, LSH bucket is selected from
a hash table based on the hash values of the query point
for that table. The distance to all points contained in that
bucket is calculated and the closest K points are returned
as the final result.

In this work, we consider the family of LSH functions
based on p-stable distributions [7] which are most suitable
for I, norms. In this case, for each data point v, the hashing
scheme considers k independent hash functions of the form

a-v+ B

han(v) = 2752 M
where a is a d-dimensional vector whose elements are chosen
independently from a p-stable distribution, W € IR, and B
is chosen uniformly from [0, W]. Each hash function maps
a d-dimensional data point onto the set of integers. With &
such hash functions, the final result is a vector of length k
of the form g(v) = (hay,B, (V), ..., hay,B, (V)).

Reaching a higher precision, with the same number of hash
tables and the same runtime, has been achieved by probing
multiple buckets of the same LSH table, also known as the
Multi-Probe [12] method. At query time, several closest
buckets are selected for probing, based on the distance be-
tween query point and the bucket. The distance between the
query point and the neighboring bucket is given as a sum
of distances for each locality sensitive function of that hash
table, which is given as

a-v+ B

d(v,L) = (L —hg)* = (L — T

V,L>hr (2

a-v+ B

d(v,L) = (L+1—hg)* = (L+1— W

)%, L < hr (3)

where L is the label (the integer value) of the bucket, ob-
tained by hashing any point of the bucket with a given LSH
function, and hr is a real value. The other symbols are the
same as for the LSH approach above.

Since experiments showed that most of the real KNN are
contained in buckets where the distance between individual
labels equals one (+1,-1), the Multi-Probe method probes
only these buckets. An efficient algorithm based on pertur-
bations is used to find the closest buckets to a query point
from this restricted subset.

3. LINKED-LSH

Locality Sensitive Hashing (LSH) indexes data by comput-
ing the hash bucket labels of each object separately. That is,
indexing of an object is done completely independent from
the other data points contained in the same collection. The
key idea behind Linked-LSH is to use additional informa-
tion, obtained at indexing time from indexed dataset, with
the goal of obtaining an improved query processing perfor-
mance.

More precisely, we use the (first) nearest neighbor in the
indexed collection for all the data points as a global statistics
descriptor of that collection.

The intuition behind using the exact first nearest neighbor
as a descriptor is given by the triangle inequality d(g,p2) <
d(g,p1) + d(p1,p2), where g represents a query point, p; is
the point indicated by LSH and py is the point missed by
LSH and is the exact closest neighbor in the collection for
the point p1. As p2 is the exact closest neighbor for the
p1, there is a high probability that the distance between
these two points d(p1, p2) is small. If we make sure that the
distance between the query point ¢ and the point indicated
by LSH p; is small enough, the triangle inequality tells us
that distance between the query point ¢ and point ps is also
small and that there is high probability that the point p2 is
also in the exact top-K results for the given query.

Linked-LSH extends the LSH index by adding a pointer
to each indexed data point (feature vector) which points to
the closest neighbor in the indexed collection. Pointers for
data points are precomputed in the indexing phase and the
exact closest neighbor is used which is found through the
full scan of all of the data points. It is important to note
that this extension of the index results in a negligible in-
crease in index size as each data point contains values for
multiple dimensions and only one pointer value in addition.
Figure [T illustrates an LSH index with links introduced by
Linked-LSH in two dimensional space. The (red) rectangu-
lar data point represents a query point which after hashing
to LSH index retrieves a first neighbor. The (green) circu-
lar point represents the second exact neighbor to the query
point which is missed by LSH due to its approximate na-
ture. We see that following the link from the first retrieved
neighbor to its first neighbor results in retrieving the second
exact neighbor of the query point which would be lost if only
LSH was used.

Answering a query with Linked-LSH is done in two steps.
In the first step the query is answered using an existing LSH
approach, such as [12]. The obtained query results are then
used in the second step, in which the links between data
points are used for the retrieval and evaluation of additional
points.

As stated above, we need to assure that the distance
d(g,p1) is small enough. That is the reason why we use

only the top-k results from the first step as an input to the

y j o LSH
—

Figure 1: Linked-LSH

second step, as it guarantees that we are using the points
that have the smallest distance to the query point out of the
points indicated by LSH. The parameter K should depend
on the original K as specified in the query and can be exper-
imentally tuned for the best performances. It is important
to note, that K as well as the parameter n, introduced in the
following paragraph, are parameters that are set at runtime
and hence can be adjusted without index re-organization,
which is usually needed for the parameters in the raw LSH
approaches. _

The approximate top- K results from the first step provide
a starting point for further retrieval using links in the col-
lection. For each point in the top-K points, we recursively
retrieve the closest neighbors up to the depth n by con-
secutively following closest neighbor links. Depth n of the
consecutive retrieval is again a parameter of the approach.
The distance to each additionally retrieved data point is cal-
culated, in case it was not already calculated in the previous
step, and used to evaluate if the data point is in the top-K
result list. The pseudo code of the query answering with
Linked-LSH is shown in Algorithm

intermediate = LSH.eval(query, K)
knn.add(intermediate)
for (point in intermediate):
last = point
while (steps < depth):
last = last.getNeighbor()
knn.eval(last)
return knn.results

OO Ui WN =

Algorithm 1: Query answering with Linked-LSH

By design, Linked-LSH can be applied to any of the ex-
isting LSH approaches [10, 12| by simply using them in the
first step and following the links based on their results in
the second step.

4. PEEK-PROBING

The LSH index consists of multiple hash tables such that
each of them contains multiple buckets (cf., Section [2.1).
Each bucket contains a subset of the data points, assigned
by a hash function. In the query answering phase, multiple
buckets are selected based on the hash value of the query
or based on Multi-Probe techniques [12]. Our Peek-Probing
assumes that not all of the selected buckets have the same
importance to the query answering. We try to determine
that importance before evaluating all the data points from
all of the buckets. The idea is to use existing LSH tech-
niques to select buckets, and then to peek into each of these
buckets and to predict how important it is for answering
the given query. After the bucket importance values are
approximated we use only the data points from the most
important buckets and discard the rest. The key point here

is that the importance of the bucket is determined for each
specific query.

To approximate the importance of a bucket for the given
query, we perform a complete KNN evaluation over the data
points received from peeking into all of the buckets. Peeking
into a bucket means retrieving a first p elements from the
bucket where p is proportional to the bucket size (number
of data points in the bucket) and is given by

-]

where b is the size of the bucket and f is the bucket fraction
proportion (we used the value of f = 8 in all of the exper-
iments). During the evaluation of the peeked data points,
if the data point makes it in the peeked top-K results, we
remember the bucket that point came from. We show below
how we re-organize the bucket content to obtain a meaning-
ful overview of the bucket content, as otherwise the p first
points would represent a random sample.

After all the peeked data points are evaluated, we call a
bucket important if there is at least a single data point in
the top-K peeked results from that bucket. This approach
works well in practice as K is usually a small number. In
case K is very large number we would judge the importance
of the bucket as a total number of data points in the peeked
top-K results that come from that bucket, rather then to just
make a binary decision. In the following steps only the data
points from the important buckets are used for evaluation.
The querying algorithm is presented in Algorithm E

buckets = LSH.probe(query)
for (bucket in buckets):
for (point in bucket.peek):
knn.eval(point, bucket)

W N =

important = knn.getBuckets()
for (bucket in important):
for (point in bucket.rest):
knn.eval(point)
return knn.results

© 00 O ot

Algorithm 2: Query Answering with Peek-Probing

It is important to note that as there are by design multiple
hash tables in LSH, data points can be contained in mul-
tiple buckets originating from different hash tables. This
means that we need to store multiple buckets for a data
point at runtime, while evaluating peeked points. We have
experimented with different number of buckets saved per
data point and concluded that the best performances are
achieved when only one bucket (the first one encountered)
is saved for the data point. This small number is imposed
by the large overhead in bookkeeping all of the information
when multiple buckets are saved per data point.

Peeking into a bucket is performed to get an idea about the
content of that bucket, and as already mentioned is done on
the first p data points of the bucket. We can randomly select
any p points of the bucket and place them in the beginning
of the bucket. However, by doing this we may end up with a
bad description of the content based only on the first p data
points.

To avoid such situations we select first p points from the
bucket by clustering the bucket data in p clusters and then
selecting the medoid of each cluster to be put in the begin-
ning of the bucket. We use the expectation-maximization

LSH
bucket

Figure 2: LSH bucket organization

algorithm for k-means clustering to cluster the data con-
tained in the buckets. Figure [2| illustrates this process of
data points selection and their placement in the beginning
of the bucket.

The motivation behind this idea is given by the k-means
optimization criterion argming >.7_; ijeci llz; — |,
where Cj; is a cluster with centroid p; and z; are data points
from that cluster. This optimization criterion tells us that
the distance between the centroid and the data point in that
cluster is minimized, i.e., if the centroid is in the top-K re-
sults among the other centroids then there is a high prob-
ability that some other points from that cluster are also in
the final top-K results. We use medoids, the closest point
from the cluster to the centroid, instead of the centroids,
as centroids are non existent data points and would incur
additional computation.

As we mentioned earlier Linked-LSH and Peek-Probing
are orthogonal and can be both applied to any existing LSH
approach. We coin the name combined approach for the
approach where the Linked-LSH is applied on top of the
Peek-Probing approach, which is again applied on top of
the Multi-Probe approach from [12].

S. EXPERIMENTAL EVALUATION

We have implemented our two LSH enhancements as well
as the baseline approaches in Java 1.6 and use the 64-bit
variant of the Java VM to execute the code. The implemen-
tation is single threaded. The experiments are conducted on
a dual CPU Intel Xeon E55302.4 GHz and 47.9 GB of main
memory, running Microsoft Windows Server 2003 Enterprise
x64 Edition (Service Pack 2).

We compare the following five approaches.

e LSH: This is the implementation of the original work
on LSH presented in [10].

e Multi-Probe: We have implemented the Multi-Probe
algorithm presented in|12] and use it as the underlying
LSH method for our approach. While this method
outperforms LSH (in most cases), we still include the
original LSH method for completeness.

e Linked-LSH: Represents the implementation of the
enhancement of the LSH using the nearest neighbor
links of the data points in the dataset, together with
the recursive link traversal, as described in the Sec-
tion B

e Peek-Probing: Implementation of the Peek-Probing
strategy from Section[d where LSH buckets are probed
completely only if a certain amount of usefulness is
indicated.

e Combined: This is the implementation of the Peek-
Probing together with Linked-LSH, built on top of
Multi-Probe LSH buckets selection.

To evaluate the above approaches on real-world data, we
have obtained the CoPhIR dataset [6] . It consists of
MPEGT feature descriptors extracted from a large collection
of images obtained from Flickr.com [9]. Out of all available
images in the dataset, we have randomly selected 100,000
images to index. Additionally 10,000 images are randomly
selected and used as query images.

For each crawled image, the dataset contains MPEG7 fea-
ture vectors that are given in an XML based format together
with a URL of the source photo. We have transformed the
XML format in a convenient binary format before starting
the experiments.

We use the following subsets of MPEG7 feature descrip-
tors in the evaluation: color structure, scalable color, and
edge histogram. Scalable color and color structure descrip-
tors in CoPhIR are defined by 64 dimensional vectors, while
an edge histogram descriptor is a 80 dimensional vector. We
use these three different feature representations for deeper
insights on the performance of the algorithms under com-
parison. We will see below that due to their different char-
acteristics, the algorithms can behave quite differently.

Measured Values

As all LSH based approaches are by design approximate
methods, i.e., a returned KNN result might or might not
differ from the true K nearest neighbors, we measure the
precision in addition to runtime and inspected data portion.
The precision is measured as the percentage of the returned
approximate top-K results that are also found in the exactly
computed (using a naive full scan approach) top-K results.
The runtime was measured as the number of seconds (with
millisecond resolution) needed to answer all of the 10,000
queries. The measured inspected data portion represents
the percentage of the indexed 100,000 feature vectors for
which the distance to the query data point was calculated
while answering that query. Clearly, there is a correlation
between the inspected data portion and the total runtime,
as more distance calculations require more time. We report
an average precision and average inspected data portion for
10,000 queries, while the reported runtime is the total time
needed to answer all of 10000 queries.

LSH Setup

Locality Sensitive Hashing is a method that enables us to
index and search for close data points with the tradeoff be-
tween memory usage (index size) and the time needed to
answer a query with a certain precision. Trading off index
size against runtime is achieved by changing the number of
hash tables used for indexing. The more hash tables are
used, the less time is needed to answer a query with the
same precision.

LSH is a parametric method with a common practice of
tuning the parameters for each individual dataset. Having
multiple parameters, yielding multi dimensional parameter
space, usual practice is to fix all but one parameter and to
vary that parameter until the optimum is found. This pro-
cedure is repeated until a global (or local) optimum approx-
imation is found. To achieve the best results, we have per-
formed parameter tuning of each approach independently.

As we are interested in relative improvements, we fix the
number of hash tables to 32 for all described LSH approaches.

Achieving a certain precision at fixed number of hash tables
depends on the number of data points found in one LSH
bucket. This number, in turn, depends on the number of
hash functions per hash table as well as on the parameter
W of the each of the function, see Equation As Wis a
continuous variable it gives us more control over the bucket
size, so we fix the number of hash functions per table and
vary W to achieve certain precision values. Preliminary ex-
periments have shown that the best runtime, with 32 hash
tables, is achieved when using 8 hash functions per table.
Hence, in the following experiments, we use 8 hash function
per table.

Probing multiple buckets from the same hash table requires
an additional parameter that describes the number of addi-
tional probes. We have experimented with different number
of additional probes for each feature descriptor. It turns out
that for color structure and scalable color descriptors Multi-
Probe is not better than the original LSH and it achieves
the best results with only two additional probes per table.
However, for edge histogram descriptor Multi-Probe outper-
forms the original LSH, with the best performances at 30
additional probes per hash table. We have used the same
number of probes also for Linked-LSH, Peek-Probing, and
the combined approach.

Linked-LSH also introduced depth parameter which de-
fines the depth of the recursive nearest neighbor traversal.
Setting this parameter is easy as by intuition it has to have
a low value, as we saw in Section [2] By experimenting we
found out that best results are achieved when depth is two.
For Linked-LSH we also need to determine the value of K,
we do that by K = cx K, where c is determined experimen-
tally for the best performance. We used the value of ¢ = 3
when Linked-LSH was tested alone, and ¢ = 1.1 when tested
in the combined approach.

As the non-deterministic nature of LSH can result in slight
deviations of measurements obtained by the same parameter
setup, we perform each experiment for each parameter setup
10 times and report average results.

5.1 Experimental Results

For each of the approaches we have performed measure-
ments at three levels of precision: at 80%, 90%, and 95%.
As described, the parameter W in Equation is used to tune
each of the methods towards a certain precision. As we are
not able to ensure the exact precision wanted, the precision
is also measured and reported.

Table [1| contains the measurements for all approaches for
color structure descriptor. As we can see, using Multi-Probe
in the case of color structure descriptor does not result in
an improvement over the original LSH. The runtime and in-
spected data portion for Multi-Probe and original LSH are
almost the same, as we used small number (i.e., 2) of ad-
ditional probes. Increasing the number probes made the
results only worse for Multi-Probe in this case. We see that
Linked-LSH provides a constant improvement in both run-
time and inspected data portion over the baselines. The
best improvement in runtime is achieved for the precision
at 80%, reducing the runtime by 23.65% while the runtime
improvements for 90% and 95% precision are 17.44% and
19.57% respectively. Due to the relation between runtime
and inspected data portion, the improvements for inspected
portion are proportional to the runtime improvements. Even
higher improvement in runtime and inspected data portion
is achieved using Peek-Probing, which reduces runtime by
50.21% at 95% precision. Improvements using Peek-Probe

approach prec. (%) || time (s) | insp. (%)
80.746 34.138 7.810
LSH 90.384 61.504 13.659
95.268 103.279 21.949
80.530 34.873 7.473
Multi-Probe 90.493 69.012 14.496
95.153 105.864 21.640
80.151 26.062 4.915
Linked-LSH 90.237 50.773 10.118
95.155 83.065 16.705
80.489 19.646 1.934
Peek-Probing — 90.245 31.558 3.208
95.675 51.415 5.127
80.490 16.276 1.575
Combined 90.354 25.490 2.617
95.215 40.072 4.058

Table 1: Measurements for color structure descriptor

approach prec. (%) || time (s) | insp. (%)
80.617 116.042 23.020
LSH 90.287 183.178 35.243
95.327 272.212 48.001
80.364 125.184 20.996
Multi-Probe 90.046 174.275 29.282
95.200 222.560 36.597
80.578 106.495 16.348
Linked-LSH 90.135 160.724 25.703
95.519 223.370 34.787
80.468 58.399 6.088
Peek-Probing ~— 90.180 70.624 7.760
95.136 82.843 9.325
80.796 58.109 5.765
Combined 90.301 70.695 7.459
95.044 83.379 8.901

Table 2: Measurements for edge histogram descriptor

are seen over all measured precisions, with runtime improve-
ment of 42.45% at 80% precision and 48.68% at 90% pre-
cision. Combining Linked-LSH and Peek-Probe (i.e., Com-
bined algorithm) yields the best results, with more than a
factor of 2 improvement in runtime and more than a factor
of 4 improvement in inspected data portion.

Measurements for the edge histogram descriptor are shown
in Table 2] We see that Multi-Probe achieves a significant
improvement in runtime over the original LSH method, at
95% precision, but is slightly worse at 80% precision. In
the case of the edge histogram descriptor the benefit of
using Linked-LSH is quite small at 80% and 90% preci-
sion, with an improvement of 8.22% and 7.77% respectively,
and non-existent at 95% precision. However, using Peek-
Probe results in a significant improvement in runtime, with
62.77% improvement at 95% precision. Improvement for
Peek-Probing at 90% precision is 59.47% and at 80% preci-
sion is 49.67%. As there was no significant runtime improve-
ment in using Linked-LLSH there is no improvement in using
combined approach over only using Peek-Probing. The in-
spected data portion is still best for the combined approach,
but values are close the the Peek-Probing approach, show-
ing once again that Linked-LSH has no impact for the edge
histogram descriptor.

Table [B] shows measurements for the scalable color de-
scriptor. We can see that relative improvements for Linked-
LSH, Peek-Probing, and the combined approach are similar
to the improvements for color structure descriptor. This is
expected as both descriptors are based on the color distribu-
tion of the images. We can see that the combined approach
performs best, for both runtime and inspected data portion.
The best runtime improvement is achieved at 95% precision,

approach prec. (%) || time (s) | insp. (%)
80.647 13.563 2.993
LSH 90.563 25.562 5.741
95.596 41.651 9.278
80.180 15.726 2.978
Multi-Probe 90.318 27.254 5.631
95.032 43.226 9.041
80.805 13.620 2.078
Linked-LSH 90.849 22.418 4.063
95.132 34.406 6.685
80.283 10.032 0.725
Peek-Probing 90.977 14.948 1.264
95.215 20.107 1.850
80.294 8.975 0.622
Combined 90.650 12.451 1.029
95.107 16.809 1.477

Table 3: Measurements for scalable color descriptor

Runtime @95% precision

300 T
LSH
M Multi-Probe
. &0} Linked-LSH
0 - Peek-Probing
S 200 | Combined
@
< 150 |
[}
£
€ 100
3
x
50 | _
3 ﬂ’
S S

Eq,]) Sc, «
7 H'S’Ogranjor St “CtUrea/ab/e Color

Figure 3: Runtime measurements at 95% precision

reducing runtime for 59.64%.

Runtime measurement for all aproaches and all descrip-
tors at 95% precision are shown in Figure We can see
that searching for most similar image based on edge his-
togram descriptor takes a lot longer than based on the color
descriptors. Although the edge histogram descriptor uses
higher dimensional feature vectors (80 dimension) than for
the color descriptors (64 dimensions), the main runtime dif-
ference comes from the fact that more data points are used
in calculating the answer for edge histogram descriptor than
for color descriptiors, as shown in Figure[d which illustrates
inspected data portion for all approaches and all descrip-
tors at 95% precision. The difference in runtime and in-
spected data portion between given descriptors shows how
all of these approaches are highly depended on the distri-
bution of data points. Figure [3| and Figure @ show the im-
provement of proposed approaches over the baselines for all
three cases.

6. CONCLUSION

We presented two enhancements to the Locality Sensitive
Hashing (LSH) approach. Both approaches carefully inspect
potential K Nearest Neighbor (KNN) candidates and, thus,
enable the algorithm to achieve high accuracy results with
improved runtime performance by fewer data accesses. Our
techniques address two crucial points of the general LSH
concept. First, we introduced exact nearest neighbor links,
for each object in the index. These links help to explore
the right region of the high-dimensional space. Second, we
introduce a way to peek into an LSH hash bucket without
full access to the indexed data. Both approaches show im-
provements to the underlying LSH approach, for which we

Inspected part @95% precision

50 T T T
M LSH
45 Multi-Probe 1
40 Linked-LSH
g 35 Peek-Probing memms |
= Combined &S
g 30
o
B 25
S 20
@ 15
=
10
5
0

Figure 4: Inspected dataset portion at 95% precision

used the well-known Multi-Probe method. It is important
to stress, however, that the presented techniques are of gen-
eral nature and can also be applied to other LSH extensions
that act as the underlying index infrastructure. Our two
enhancements are also completely orthogonal to each other
and, hence, can be jointly applied to achieve an even larger
performance gain. We reported on the results of an exper-
imental evaluation which evaluated the presented approach
and baseline competitors using three different classes of fea-
tures, all from a real-world image database.

7. REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. FOCS, 2006.

[2] M. Bawa, T. Condie, and P. Ganesan. LSH forest:
self-tuning indexes for similarity search. WIWW, 2005.

[3] J. L. Bentley. K-d trees for semidynamic point sets.
Symposium on Computational Geometry, 1990.

[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-tree : An index structure for high-dimensional data.
VLDB, 1996.

[5] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is "nearest neighbor” meaningful?
ICDT, 1999.

[6] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese,

R. Perego, T. Piccioli, and F. Rabitti. CoPhIR: a test
collection for content-based image retrieval. CoRR,
20009.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. Symposium on Computational
Geometry, 2004.

[8] W. Dong, Z. Wang, W. Josephson, M. Charikar, and
K. Li. Modeling Ish for performance tuning. CIKM,
2008.

[9] Flickr photosharing — www.flickr.com.

[10] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. VLDB, 1999.

[11] A. Joly and O. Buisson. A posteriori multi-probe
locality sensitive hashing. ACM Multimedia, 2008.

[12] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. VLDB, 2007.

[13] H. Samet. Foundations of Multidimensional and
Metric Data Structures. The Morgan Kaufmann Series
in Computer Graphics, 2006.

	Introduction
	Related Work and Background
	LSH Basics

	Linked-LSH
	Peek-Probing
	Experimental Evaluation
	Experimental Results

	Conclusion
	References

