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ABSTRACT
Few-shot bioacoustic event detection is a novel area of research
that emerged from a need in monitoring biodiversity and animal be-
haviour: to annotate long recordings, that experts usually can only
provide very few annotations for due to the task being specialist and
labour-intensive. This paper presents an overview of the first eval-
uation of few-shot bioacoustic sound event detection, organised as
a task of the DCASE 2021 Challenge. A set of datasets consist-
ing of mammal and bird multi-species recordings in the wild, along
with class-specific temporal annotations, was compiled for the chal-
lenge, for the purpose of training learning-based approaches and for
evaluation of the submissions in a few-shot labelled dataset. This
paper describes the task in detail, the datasets that were used for
both development and evaluation of the submitted systems, along
with how system performance was ranked and the characteristics
of the best-performing submissions. Some common strategies that
the participating teams used are discussed, including input features,
model architectures, transferring of prior knowledge, use of pub-
lic datasets and data augmentation. Ranking for the challenge was
based on overall performance of the evaluation set, however in this
paper we also present results on each of the subsets of the eval-
uation set. This new analysis reveals submissions that performed
better on specific subsets and gives an insight as to characteristics
of the subsets that can influence performance.

Index Terms— Few-shot learning, bioacoustics, sound event
detection, DCASE challenge

1. INTRODUCTION

The task of bioacoustic event detection refers to the retrieval of ani-
mal vocalizations in terms of onset and offset times. Thus, it shares
a common methodology with other sound event detection (SED)
contexts, such as offices [1], homes [2], city streets [3], and high-
security spaces [4]. Yet, the application domain of bioacoustics is
particularly challenging for SED, in part because of the high di-
versity of possible recording conditions and of vocalisation types
[5]. For this reason, the field of machine learning for bioacoustics
remains divided into many subfields: birds [6], land mammals, ma-
rine mammals [7], and so forth.

Figure 1: Overview of the proposed few-shot bioacoustic event de-
tection task at the DCASE 2021 challenge. Green and purple rect-
angles represent labeled and predicted events, respectively.

The past decade witnessed the surge of deep convolutional net-
works (CNNs) in the time–frequency domain, which have the po-
tential to outperform feature engineering. However, a supervised
CNN for SED requires a predefined taxonomy of acoustic events as
well as hundreds of annotated examples per class. Yet, collecting
a large training set of animal vocalizations is not always feasible in
practice, because species are unequally abundant [8]; audio anno-
tation is costly and time-consuming [9]; and, more fundamentally,
the taxonomy may vary depending on the use case [10].

We address this problem by introducing few-shot bioacoustic
event detection as a new task to the DCASE 2021 challenge. In con-
trast to traditional deep learning approaches that use a large amount
of data to train models, the key idea behind few-shot learning is
to build accurate models with less training data [11]. More specifi-
cally, few-shot learning is usually studied usingN -way-k-shot clas-
sification, whereN denotes the number of classes and k the number
of known examples for each class. Figure 1 illustrates the function-

145



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

ing of the system in deployment. After being trained on the first
k = 5 occurrences of an event of interest, the system detects all the
remaining occurrences of the same event in the rest of the recording.

Diverse approaches have been used to address the few-shot
learning problem for classification, with no consensus on the best.
Some use prior knowledge about similarity between sounds by com-
puting embeddings (learnt representation spaces) while training and
discriminate between unseen classes [11], while others exploit prior
knowledge about the structure of the data by using augmentation to
synthesize new data [12]. Finally, some approaches can learn mod-
els with parameters that can be fine-tuned to smaller datasets [13].
All of the above approaches deal with classification tasks in a few-
shot learning setting and there is still much to be learnt in the field
of few-shot SED; especially in concern to bioacoustic events.

While typical SED models must be retrained from scratch for
each new use case, this few-shot formulation aims at learning
generic representations of bioacoustic sounds. We encourage the
community to develop an open-set SED system which bioacoustics
practitioners will use on their own data after a modest amount of an-
notation, i.e., identifying the first k examples for each sound type.

2. DATASETS

A development dataset was provided for the task when the challenge
was launched, consisting of predefined training and validation sets
to be used for system development.1 The development set consists
of datasets from multiple sources with audio recordings and associ-
ated reference annotations in a task-specific format. More specifi-
cally, for the training set multi-class temporal annotations were pro-
vided for each recording as: positive (POS), negative (NEG) and
unknown (UNK), while for the validation set single-class temporal
annotations (POS/UNK) were provided for each recording.

A separate evaluation set was kept for evaluating the perfor-
mance of the systems.2 It consists of datasets from multiple sources.
During the task five event annotations were provided for each of the
recordings for the class of interest. The developed systems had to
use those five annotated events and then learn to detect the same
type of events throughout the rest of the recording.

Table 1 presents an overview of all the datasets in the develop-
ment and evaluation sets, with information about the microphones
used during recording, number of audio files, total time duration of
the set, number of labels and number of annotated events.

BirdVox-DCASE-10h (BV): The BirdVox-DCASE-10h (BV)
contains five audio files from four different autonomous recording
units, each lasting two hours. These autonomous recording units
are all located in Tompkins County, NY, US. They follow the same
hardware specification: the Recording and Observing Bird Identifi-
cation Node (ROBIN) developed by the Cornell Lab of Ornithology
[14]. All recordings were acquired in 2015, during the fall migra-
tion season. An expert ornithologist, Andrew Farnsworth, has an-
notated flight calls from four families of passerines, namely: Amer-
ican sparrows, cardinals, thrushes, and New World warblers. The
annotator found 2,662 flight calls from 11 different species in total.
These flight calls have a duration in the range 50–150 milliseconds
and a fundamental frequency in the range 2–10 kHz.

Hyenas (HT, HV): Spotted hyenas are a highly social species
that live in “fission-fusion” groups where group members range
alone or in smaller subgroups that split and merge over time, us-
ing a variety of types of vocalizations to coordinate with one an-

1https://doi.org/10.5281/zenodo.4543504
2https://doi.org/10.5281/zenodo.4864755

other. Spotted hyena vocalization data were recorded on custom-
developed audio tags designed by Mark Johnson and integrated into
combined GPS/acoustic collars (Followit Sweden AB) by Frants
Jensen and Mark Johnson. Collars were deployed on female hye-
nas of the Talek West hyena clan at the MSU-Mara Hyena Project
(directed by Kay Holekamp) in the Masai Mara, Kenya as part of
a multi-species study on communication and collective behavior.
Recordings used as part of this task contain a variety of different
vocalisations which were identified and classified into types based
on the established hyena vocal repertoire [15]. The HT subset of the
hyena recordings and their accompanying annotations were used as
part of the development set, while the HV subset of recordings and
their annotations were used as part of the validation. There is no
overlap between the vocalisations annotated in the two sets. Field
work was carried out by Kay Holekamp, Andrew Gersick, Frants
Jensen, Ariana Strandburg-Peshkin, and Benson Pion; labeling was
done by Kenna Lehmann and colleagues.

Meerkats (MT, ME): Meerkats are a highly social mongoose
species that live in stable social groups and use a variety of dis-
tinct vocalisations to communicate and coordinate with one another.
The meerkat vocal repertoire has been well characterized based on
previous research, allowing calls to be reliably classified by hu-
man labellers [16, 17]. Recordings used in this task were acquired
at the Kalahari Meerkat Project (Kuruman River Reserve, South
Africa; directed by Marta Manser and Tim Clutton-Brock), as part
of a multi-species study on communication and collective behavior.
Recordings of the development set (MT) were recorded on small
audio devices (TS Market, Edic Mini Tiny+ A77, 8 kHz) integrated
into combined GPS/audio collars which were deployed on multiple
members of meerkat groups to monitor their movements and vocal-
isations. Recordings of the evaluation set (ME) were recorded by
an observer following a focal meerkat with a Sennheiser ME66 di-
rectional microphone (44.1 kHz) from a distance of less than 1 m.
Recordings were carried out during daytime hours while meerkats
were primarily foraging and include several different call types.
Field work was carried out by Ariana Strandburg-Peshkin, Bap-
tiste Averly, Vlad Demartsev, Gabriella Gall, Rebecca Schaefer and
Marta Manser. Audio recordings were labeled by Baptiste Averly,
Vlad Demartsev, Ariana Strandburg-Peshkin, and colleagues.

Jackdaws (JD): Jackdaws are corvid songbirds that usually
breed, forage and sleep in large groups, but form a pair bond with
the same partner for life. They produce thousands of vocalisa-
tions per day, but many aspects of their vocal behaviour remain
unexplored due to the difficulty in recording and assigning vocal-
isations to specific individuals. In a multi-year field study (Max-
Planck-Institute for Ornithology, Seewiesen, Germany), wild jack-
daws were equipped with small backpacks containing miniature
voice recorders (Edic Mini Tiny A31, TS-Market Ltd., Russia) to
investigate the vocal behaviour of individuals interacting with their
group and behaving freely in their natural environment. The JD
dataset contains a 10-minute on-bird sound recording (22050 Hz) of
one male jackdaw during the breeding season 2015. Field work was
conducted by Lisa Gill, Magdalena Pelayo van Buuren and Mag-
dalena Maier. Sound files were annotated by Lisa Gill, based on a
previously established video-validation in a captive setting [18].

Polish Baltic Sea bird flight calls (PB): The PB dataset con-
sists of six 30 minute recordings of bird flight calls recorded along
the Polish Baltic Sea coast. The recordings are the excerpt from
Hanna Pamuła’s project, focused on the acoustic monitoring of
birds migrating at night along the Polish Baltic Sea coast. Three
autonomous recording units were used with the same hardware set-
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Dataset mic type # audio files total duration # labels (excl. UNK) # events (excl. UNK)

Development Set: Training

BV fixed 5 10 hours 11 2,662
HT mobile 3 3 hours 3 435
MT mobile 2 70 mins 4 1,234
JD mobile 1 10 mins 1 355

Development Set: Validation HV mobile 2 2 hours 2 50
PB fixed 6 3 hours 2 260

Evaluation Set
ME handheld 2 20 mins 2 70
ML various 17 20 mins 17 1,035
DC fixed 13 105 mins 3 967

Table 1: Information on each dataset.

tings (Song Meters SM2, Wildlife Acoustics, Inc). They were de-
ployed close to each other (<100m) - near the lake, on the dune, and
on the forest clearing - to provide diverse acoustic background. The
recordings were acquired during the 2016, 2017 and 2018 fall mi-
gration seasons. The passerines night flight calls were annotated by
Hanna Pamuła. The PB dataset is part of the development set used
for validation. In each recording only one bird species is the tar-
get class: song thrush, Turdus philomelos (3 recordings); blackbird,
Turdus merula (3 recordings). Each recording contains 22–93 calls
in the 8–400 milliseconds range. The usual fundamental frequency
range for calls of the chosen species is 5–9 kHz.

Macaulay Library (ML): The Macaulay Library is a digital
archive of images, videos, and sounds from animals.3 As of 2021,
it contains 175k audio recordings from 10k species of birds and 2k
species of amphibians, fish, mammals and insects. These record-
ings are contributed by amateur and professional recordists around
the world, and the catalogue is maintained by the Cornell Lab of
Ornithology. For the DCASE 2021 challenge, one author (DB) cu-
rated 17 recordings from the Macaulay Library and annotated them
in terms of animal vocalizations. Each recording contains calls from
a different species: 14 terrestrial mammals (not including hyena or
meerkat) and 3 birds (not including passeriformes). The average
duration of each recording is of the order of one minute and the
number of calls per minute varies in the range 10–150.

BIOTOPIA Dawn Chorus (DC): Many bird species produce
vocalisations during the entire day, but their vocally most active pe-
riod by far usually occurs around dawn. This natural phenomenon
is called dawn chorus. The Dawn Chorus project is a worldwide cit-
izen science and arts project bringing together amateurs and experts
to experience and record the dawn chorus at their doorstep.The DC
dataset used as part of the evaluation set stems from dawn chorus
recordings, made using Zoom H2 recorders at 44100 Hz, at three
different locations in Southern Germany (Haspelmoor, Munich’s
Nymphenburg Schlosspark, and Nantesbuch), by Moritz Hertel and
Rudi Schleich. The vocalisations of three target species were an-
notated by LG (Common cuckoo, Cuculus canorus: 6 files, ca. 9
minutes, 543 labels; European robin, Erithacus rubecula: 3 files,
ca. 43 min, 381 labels; Eurasian wren, Troglodytes troglodytes: 3
files, ca. 50 min, 268 labels).

3. BASELINE METHODS

We propose two systems as baselines to measure submitted methods
performance with. One is an approach commonly used in bioacous-
tics based on spectrogram cross-correlation and the other is a deep
learning approach based on prototypical networks [11].

3Official website: https://www.macaulaylibrary.org/

3.1. Template Matching

Our first baseline is a spectrogram cross-correlation method, based
on scikit-image’s match template function that uses fast, nor-
malized cross-correlation to find instances of a template in an im-
age, returning values ranged between -1.0 and 1.0, with higher val-
ues corresponding to higher correlation. Our few-shot template
matching method computes cross-correlation across the time axis
between each of the events (shots) provided for a file and the rest of
the recording. A different detection threshold is set for each audio
file based on the max value of the cross-correlation results between
the shots provided. Peak picking is performed on the results of the
template matching algorithm, with any peak above the threshold
corresponding to the center of a detected event in that recording.
Borders of the predicted event are computed based on the length
of the shot it was correlated with. Predictions from all shots of a
recording are collapsed into a single binary prediction vector which
will produce the final events predicted for the class of interest.

3.2. Prototypical Network

Our second baseline is based on prototypical networks [11]. The
goal of prototypical networks and episodic training is to learn a
classifier which can adapt quickly to new classes with only a few
examples. Each episode of the training is configured as a N -way-
k-shot classification, where N denotes the number of classes and
k the number of known samples per class. A mini batch is sam-
pled from the training set and split into a support set consisting of
k labelled samples, S = {(x1, y1), (x2, y2), . . . , (xk, yk)} where
xi ∈ RD and yi ∈ {1, 2, . . . , N} is the corresponding label, with
the remaining samples comprising the query set Q. Prototypical
networks compute an M -dimensional class prototype cn ∈ RM ,
through an embedding function fφ : RD −→ RM with learnable
parameters φ. In our baseline D = 128 and M = 64.

We compute a prototype for each class as the mean of the em-
bedded support points belonging to it. Then, for each sample xq
from the query set, a distance function is used to calculate the Eu-
clidean distance of xq from each prototype, following which a soft-
max function over the distances produces a distribution over the
classes. Learning proceeds by minimizing the negative log prob-
ability J(φ) = − log pφ(yq = n|xq) over the true class k via
stochastic gradient descent.

During evaluation, we adopt a binary classification strategy in-
spired by [26]. The first 5 positive (POS) annotations are used for
calculation of positive class prototype and the rest of the audio file is
treated as the negative class, based on the assumption that the posi-
tive class is relatively sparse in the recording. We randomly sample
from the negative class to calculate the negative prototype. Each
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Rank Team name Evaluation set:
F-score % (97.5% confidence interval)

Validation set:
F-score %

DC
F-score %

ME
F-score %

ML
F-score %

1 Zou PKU [19] 38.4 (36.2 - 40.6) 55.3 20.6 68.0 67.3
2 Tang SHNU [20] 38.3 (36.1 - 40.5) 51.4 25.6 61.5 43.3
3 Anderson TCD [21] 35.0 (33.1 - 37.0) 26.2 19.9 56.6 56.8
4 Baseline TempMatch 34.8 (32.6 - 37.1) 2.0 32.2 47.1 29.5
5 Cheng BIT [22] 23.8 (21.9 - 25.7) 46.3 10.6 53.5 78.8
6 Baseline PROTO 20.1 (18.2 - 21.9) 41.5 8.5 72.7 55.7
7 Zhang uestc [23] 16.8 (15.5 - 18.2) 54.4 8.1 45.1 29.9
8 Johannsmeier OVGU [24] 15.2 (13.7 - 16.7) 58.6 6.5 64.3 35.8
9 Bielecki SMSNG [25] 8.4 (7.1 - 9.7) 51.8 3.1 56.3 51.4

Table 2: F-score results per team on evaluation and validation sets.

query sample is assigned a probability based on the distance from
the positive and negative prototype. Onset and offset predictions are
made based on thresholding probabilities at a value of 0.5 across the
query set. The prediction process for each file is repeated 5 times,
with the negative prototype created by random sampling each time.
The final prediction probability for each query frame is the average
of predictions across all iterations. Finally, post-processing is ap-
plied to the outputs in order to remove possible false positives. For
each audio file, predicted events with shorter duration than 60% of
the duration of the shortest shot provided for that file are removed.

4. EVALUATION AND RESULTS

For the evaluation of this task we employ an event-based F-measure
with macro-averaged metric. The main challenge is related to the
detection of a match between ground truth events and predicted
events. Traditional approaches use onset detection based metrics
and fixed-size evaluation windows. Given the great variation be-
tween datasets and characteristics of the events we want to detect
in this task, these approaches are not suitable. Instead, we use the
Intersection over Union (IoU), with 30% minimum overlap to pro-
duce a list of possible matches of the predictions. For each ground
truth event, a single best match is selected by applying the Hopcroft-
Karp-Karzanov algorithm for bipartite graph matching.

In a SED task we can define True Positives (TP) as predicted
events that match ground truth events, False Positives (FP) as pre-
dicted events that do not match any ground truth events, and False
Negatives (FN) as ground truth events that are not predicted. In
this task, ground truth events consist of POS events of the class and
UNK events that have some uncertainty associated to the assigned
class. The procedure we employ is:

1. Apply IoU and bipartite graph matching between predicted
events and ground truth POS events only, resulting in TP.

2. Apply IoU and bipartite graph matching between remaining
predicted events, that did not match with any POS event, and
ground truth UNK events only.

3. Compute FP as the number of predicted events that were not
matched to either POS or UNK events.

4. Compute FN as the number of POS ground truth events that
were not matched by any predicted event.

This is applied to each dataset in the evaluation set where we com-
pute the F-score metric. The reported results are the harmonic mean
over all the datasets, which is appropriate for combining percentage
results, and ensures that a system should perform well across all
datasets to achieve a strong score.

4.1. Results

DCASE 2021 task 5 had 7 teams participating with a total of
24 submitted systems. F-score results per team are presented in
Table 2. All submitted systems adopted prototypical networks.
Data augmentation was applied by the majority of the teams with
SpecAugment[27] being the most popular choice. All systems rely
on some sort of post-processing mechanism designed to removing
superfluous predictions and many teams report important improve-
ments in results due to it. Another popular choice was using Per-
channel Energy Normalization (PCEN) [28] as acoustic features.

The best ranked system [19] improved over the baseline pro-
totypical approach by applying a transductive inference method,
where supplemental information is used to convey more representa-
tive prototypes of each category. A mutual learning framework de-
signed to make the feature extraction network more task dependent
is also adopted. The system ranked in second place [20] also im-
proved over the prototypical baseline by using additional data from
Audioset to train a ResNet for the feature extraction part. They have
also adopted embedding propagation (EP) [29], with the objective
of smoothing the decision boundaries as a way of increasing the
generalisation capabilities of the few-shot system. The third ranking
system [21], follows the same approach as the prototypical network
baseline, with the main differences being the use of data augmen-
tation and reducing the size of the network. Interestingly, although
the results in the validation set are not on par with the other systems,
this system outperforms most systems in the evaluation set.

Also of note, the work in [22] uses i-vectors as input features;
both submissions in [23] and [24], explicitly create a negative class
to model background noise and construct a negative prototype; and
in [25], the team opted for combining the prototypical loss, with
knowledge distillation and attention transfer loss.

An important observation from Table 2 is the drop in F-score
from the validation to the evaluation set for the majority of the sys-
tems. This suggests that the systems are generally dataset sensi-
tive. To highlight this aspect further, we report the F-score results
per dataset in the evaluation set. Most systems tend to have a de-
crease in performance on the DC set, comprised of dawn chorus
recordings, while perform better on ME and ML that include mainly
mammal vocalisations. This leads to the conclusion that very com-
plex environments, such as dawn chorus, need further techniques to
be employed for robust SED. Our template matching baseline im-
proved performance from the validation set to the evaluation set.
This is mainly due to template matching not being trained over spe-
cific recordings, treating each audio file as a unique task without any
knowledge about the rest of the set with performance only depends
on the templates (shots) used for cross-correlation.
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