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Abstract— Since the early 2000’s, the Internet topology has
been an attractive and important research topic, either for
developing data collection mechanisms, and for analyzing and
modeling the network. Beside traditional aspects of the Inter-
net topology (i.e., IP interface, router, and AS levels), recent
researches focused on intermediate promising visions of the
topology, namely Point-of-Presence (PoP) and subnets (i.e., a set
of devices that are located on the same connection medium and
that can communicate directly with each other at the link layer).

This paper focuses on network subnet discovery by proposing
a new tool called TreeNET. One of the key aspects of TreeNET
is that it builds a tree representing the way subnets are located
with respect to each other. This tree allows TreeNET to obtain
additional information on the network, leading to better analysis
of the collected data. In this paper, we demonstrate the potential
of TreeNET through the evaluation of its key algorithmic steps
and the study of measurements collected from the PlanetLab
testbed.

I. INTRODUCTION

The Internet is made of a vast set of heterogeneous and

interconnected entities enabling the communication between

millions of machines. Typically, this network is described as

a graph where nodes refer to IP interfaces, routers, or au-

tonomous systems (ASes) and edges depict their relations [1].

For now fifteen years, advanced mechanisms have been devel-

oped to collect data revealing the topology of the Internet at

those different levels [2]. However, recent researches have sug-

gested to extend the view of the traditional Internet topology

to Point-of-Presence (PoP) [3], [4] and sub-networks [5], [6],

[7], [8]. This paper follows this line of research by proposing a

new tool named TreeNET dedicated to the Internet topology

discovery integrating sub-network information.

A sub-network (or, simply, subnet) refers to a set of devices

that are located on the same connection medium and that can

communicate directly with each other at the link layer [9].

The subnet level is a way to enrich router level maps with

subnet level connection information [5]. Subnet discovery

presents some similarities with alias resolution [10]. Indeed,

alias resolution follows the goal of aggregating several IP

addresses (appearing in various traces) of a router into a

single identifier. Similarly, subnet detection aims at identifying

multiple links (appearing to be separate) and at combining

them to represent their single hop connection medium (point-

to-point or multi-access) [7]. Considering subnet maps instead

of classical IP interfaces, routers, or ASes level maps is a

way to deepen our understanding of the Internet topology, in

particular topological features of ISP networks.

Previously, techniques have been proposed to obtain infor-

mation on subnets. One can cite for instance IGMP prob-

ing [11] that can be used to detect subnets [12]. But due to

filtering done by operators, it becomes less and less usable

in practice [13], making this inference technique outdated.

The most promising approach proposed recently relies on

TraceNET [5]. This tool works as traceroute [14] in the

sense that it detects subnets on a given path between a source

and a destination. Building on this tool, the same authors

developed ExploreNET [8] in order to improve TraceNET

by discovering individual subnets rather than subnets on an

end-to-end path. ExploreNET also presents techniques for

sampling subnets in a targeted domain and inferring their

global characteristics (such as mean subnet degree, subnet

prefix length distribution, etc.) [6]. However, ExploreNET

does not provide any guarantee on the soundness of the

inferred subnets or any metric to evaluate them. Furthermore,

it tends to fragment large subnets into several smaller (and

incomplete) ones.

In this paper, we introduce TreeNET, a new tool dedi-

cated to the collection and manipulation of subnet topology

information.1 This tool overcomes the issues mentioned above

by introducing a refinement phase and a classification of the

inferred subnets for qualitative evaluation purposes. Moreover,

TreeNET also introduces a tree-like structure able to show

how subnets are located with respect to each other with the

help of Paris traceroute [15]. Using specific interfaces

found in subnets and the way they are located in the network,

our tool is also able to achieve router inference through alias

resolution techniques, eventually leading to a complete router

– subnet representation of the targeted network.

In order to assess the performance of TreeNET, we thor-

oughly study a private academic ground truth network and sev-

eral ASes. All networks are analyzed with both TreeNET and

ExploreNET for the sake of comparison and we demonstrate

that TreeNET provides more accurate results than the state of

the art. In addition to this comparative study, we also assess our

alias resolution method on a publicly available dataset [16].

The remainder of this paper is organized as follows: Sec. II

describes in details TreeNET, our tool for discovering sub-

network topology of a targeted domain; Sec. III evaluates the

performance of TreeNET and compares it to the state of the

art tool (i.e., ExploreNET); finally, Sec. IV concludes this

paper by summarizing its main achievements and discussing

potential future research directions.

1Available at https://github.com/JefGrailet/treenet. Data
discussed in this paper is also available at https://github.com/

JefGrailet/treenet/tree/master/v2/Measurements



Fig. 1. Illustration of Contra-Pivot, Pivot, and Neighborhood notions.

II. TREENET

This section introduces TreeNET, our new tool for re-

vealing subnets. We first provide a broad overview of how

TreeNET works (Sec. II-A), before introducing the vocab-

ulary associated to the tool (Sec. II-B). We also detail in

the remaining sections the four different steps of TreeNET,

namely the network pre-scanning (Sec. II-C), the subnet in-

ference (Sec. II-D), the tree construction (Sec. II-E), and the

router inference (Sec. II-F).

A. Overview

TreeNET is a topology discovery tool that infers the

subnets of a targeted network and relies on them to infer

the whole topology (at the router and subnet level), or more

precisely the whole visible topology (i.e., containing all the

interfaces that are responsive to probes). To do so, it follows

four steps that we briefly describe in the next paragraphs.

First of all, TreeNET performs a network pre-scanning

which consists in listing every potential IP interface of the

targeted domain, using its IPv4 prefix as input. All listed

interfaces are then probed in order to only consider respon-

sive interfaces during the subsequent steps for the sake of

efficiency.

Then, TreeNET moves to the subnet inference step which

aims at identifying the subnets inside the targeted domain.

These subnets typically encompass all the IP interfaces which

were responsive during pre-scanning. To do so, TreeNET re-

lies on the inference mechanisms provided by ExploreNET

in order to list all potential subnets. In addition, TreeNET

performs refinements over the measured subnets in order to

ensure their soundness when they seem incomplete or partial.

Both approaches require additional probing, hence the need

for filtering only responsive IP interfaces in the first step. The

subnet inference step ends when all responsive IP addresses

from the previous step have been considered.

Next, during the tree construction step, TreeNET builds

a tree depicting the way subnets are located with respect to

each other. This tree is built using Paris traceroute [15]

towards every inferred subnet, as a set of traceroute paths

from a same vantage point typically forms a directed acyclic

graph (at worst) or a tree (at best). The tree is rooted at the

traceroute vantage point and the leaves are the inferred

subnets themselves.

Finally, the router inference step relies on the location

details obtained thanks to the tree structure to apply alias

resolution techniques [10], eventually leading to the discovery

of routers providing access to the measured subnets.

At the end, the tree with inferred routers describes

the full router – subnet topology discovered by

TreeNET when targeting the initial domain. The

code of TreeNET is freely available at https:

//github.com/JefGrailet/treenet.

B. Terminology

From the perspective of a single vantage point, a subnet

can be seen as a set of N responsive interfaces (all being

part of a continuous block of M hypothetical interfaces) made

of three important components, all of them being depicted in

Fig. 1. First, the Ingress router refers to the last router crossed

by a packet before reaching the subnet of interest. Second,

the Contra-Pivot interface is the IP interface belonging to

the subnet that is located on the Ingress router (black circles

on Fig. 1). Finally, the Pivot interface refers to any other IP

interface in the subnet, all located at the same hop count (gray

squares on Fig. 1).

By definition, the Contra-Pivot interface is located at the

hop count required to reach a Pivot interface minus one. As

such, the Contra-Pivot interface demarcates the subnet under

exploration. Finally, in order to ease the subnets location, we

introduce the notion of Neighborhood as a location bordered

by a set of subnets located at, at most, one hop from each

other. From a physical point of view, subnets bordering a same

neighborhood should be connected through one router or a

mesh of Layer-2/Layer-3 devices.

C. Network Pre-scanning

The very first step of TreeNET consists in listing all IP

addresses of the targeted domain, either provided as single

addresses, either as IPv4 prefixes. After a shuffling step, which

prevents TreeNET from probing consecutive addresses during

the next steps (to mitigate network delays), each listed address

is probed to check its liveness. Multi-threading is used to make

this step as fast as possible.

Due to networking issues, some addresses might not reply

during this first probing phase. This is why TreeNET con-

ducts a second pre-scanning phase during which the timeout

delay used in the first phase is doubled to get as many re-

sponsive addresses as possible. An optional third pre-scanning

phase can also be conducted.

When a probed address replies within the expected delay, it

is saved in a structure we will refer to as the IP dictionary. It

stores all responsive IP interfaces and related data, such as the

timeout delay which was used when it first replied. All next



probes targeting this interface will use this timeout delay to

guarantee new responses.

As unresponsive IP interfaces do not appear in the dictio-

nary, they will not be probed again during the next TreeNET

steps, such as subnet inference, where all potential IP in-

terfaces of a subnet under exploration are considered, one

at a time. Therefore, by listing only responsive IPs with

a preliminary multi-threaded step, TreeNET buys time for

subsequent algorithmic steps.

D. Subnet Inference and Refinement

After the end of the pre-scanning phase, TreeNET infers

all subnets containing the IP addresses in the IP dictionary

by relying on the subnet inference techniques implemented

in ExploreNET. The algorithm starts by probing a given

target address (with ICMP ECHO requests, naked or wrapped

in UDP or TCP) and estimating its distance from the vantage

point as a TTL value. Then, it builds a small subnet (/31 or /30)

which encompasses it, sending additional probes on close IP

addresses (e.g., which differs by one bit in the two last bits)

with the same TTL as the one required to reach the initial

target. This first step also considers adjustments of the TTL

value used while probing IP addresses other than the target in

case the initial target address was a Contra-Pivot interface.

The next step consists in growing the initial subnet by

iteratively decrementing its prefix length while checking that

the new addresses are indeed part of it. This verification

step involves additional probing during which the TTL of the

probe packets varies to confirm the position of the targeted IP

addresses. ExploreNET eventually stops growing a subnet

in two distinct scenarios. In the first scenario, ExploreNET

discovers that a new address is not part of the subnet (e.g.,

second Contra-Pivot interface, interface located at the Pivot

TTL plus one, etc.). In such a case, it increments the subnet

prefix length by one and returns it together with the list of its

responsive interfaces. The second scenario happens when, at a

given iteration, the total amount of responsive interfaces within

the new subnet is below a threshold value that depends on

the current prefix length. Then, ExploreNET stops iterating

and returns the subnet with its prefix length incremented by

one and the list of its responsive interfaces. Upon receiving

the final subnet as inferred by ExploreNET, TreeNET also

merges the result with previously inferred subnet(s) which

cover(s) the same address ranges to ensure the uniqueness of

each subnet at the end of the inference.

It is important to understand that, when a large subnet

lacks of responsive interfaces, ExploreNET tends to frag-

ment it into several smaller subnets containing groups of

responsive interfaces with only one of them containing a

valid Contra-Pivot interface, meaning that only this subnet can

be considered as sound. To overcome this issue, TreeNET

introduces a refinement phase which aims at ensuring any

inferred subnet features a valid Contra-Pivot interface. The

idea of the refinement phase is the following: TreeNET takes

subnets that miss a Contra-Pivot and adjusts their sizes in order

to find it. This consists in iteratively decrementing the prefix

Fig. 2. Topology from Fig. 1 seen as a tree – horizontal arrows highlights
the subnets acting as links between two routers.

length of the incomplete subnet and probing the new addresses

with the TTL that matches the hypothetical hop count of the

Contra-Pivot interface. This refinement by expansion stops as

soon as one or several Contra-Pivot candidates are found,

or when the subnet starts overlapping other measured sound

subnets whose TTL to reach Pivot interfaces is different from

the one to reach a Pivot in the subnet being expanded. It also

stops when the subnet becomes larger than a /20, as no /19

were observed with neither ExploreNET neither TreeNET.

The fact that a subnet can have several Contra-Pivot candidates

can be due to networking issues (e.g., redirections) or network

policies, such as routers having a back-up interface for a subnet

in case the first one failed. The absence of visible Contra-Pivot

interface is most probably due to networking issues. In a sense,

TreeNET applies a best effort policy while refining subnets.

The fact that a subnet can feature a single, several, or

no Contra-Pivot motivates the introduction of a classification

which can be used to assess the accuracy and soundness of

the measurements. It is worth noticing here that IP addresses

can respond with TTL that does not match the expected Pivot

TTL or Contra-Pivot TTL. We will refer to such addresses as

outliers and our classification takes into account such cases.

Each subnet is therefore labeled as Accurate (i.e., it features

a single Contra-Pivot interface and no outlier), Odd (i.e., it

features two or more Contra-Pivot interfaces and/or some

outliers), or Shadow (i.e., no valid Contra-Pivot interface could

be found, with or without outliers).

Furthermore, when a subnet is classified as Accurate, each

missing IP address that was responsive during pre-scanning is

added to this subnet in order to have a list of live interfaces as

complete as possible for each subnet. Finally, Shadow subnets

are expanded until they collide with sound (i.e., Accurate or

Odd) subnets at the very end of the subnet inference. The

purpose of this last refinement is to obtain an upper bound on

their size.

E. Tree Construction

Once the targeted domain has been completely analyzed,

TreeNET performs Paris traceroute measurements to-

wards each inferred subnet, using a Pivot interface as des-

tination.



Having routes to every subnet provides knowledge on how

they are located with respect to each other. Taking benefit

of such an additional information, TreeNET builds a tree

rooted at the vantage point and whose leaves are the measured

subnets. Each internal node of depth N is labeled with an

interface that appears at the N th position in one or several

traces. The immediate result of this construction is that internal

nodes actually represent Neighborhoods. Moreover, the labels

of internal nodes can be used to identify the subnets that act

as a link between two routers: one has simply to check that

a label belongs to a subnet occurring at the same depth. To

illustrate this construction, Fig. 2 shows the same topology

as shown in Fig. 1 but as a tree, with the horizontal arrows

highlighting the subnets acting as links between two routers.

In order to be faithful to the measured topology, the tree

should reduce the impact of routing issues caused by traffic

engineering (e.g., load balancing [17]). For example, several

subnets sharing the same Ingress router should have routes

of the same length with the same last replying interfaces,

but differences can still occur on the rest of the routes. As

a consequence, the tree could feature several branches for

these subnets and partial representation of their Neighborhood,

rather than having a single branch at the end of which one

can obtain a complete representation of the Neighborhood

bordering those subnets. To avoid this situation, TreeNET

allows internal nodes to have more than one label in such a

way that the Neighborhood information in deeper nodes is not

lost. As a result, internal nodes with multiple labels constitute

no longer a single Neighborhood but rather a superposition

of several Neighborhoods. For the sake of simplicity, we will

refer to these nodes as multi-label nodes. Post-processing of

the fully built tree can however isolate Neighborhoods of a

multi-label node from each other.

The process of the tree construction is fully described in

Algorithm 1. Starting with an empty tree, the algorithm inserts

sequentially new subnets in two steps. The first one consists

in finding the insertion point defined as the deepest internal

node that shares a common label (line 11). In TreeNET, this

step is efficiently implemented using additional data structures

to avoid visiting the whole tree. Once the insertion point has

been found, all missing internal nodes (if any) and the leaf

corresponding to the subnet are inserted (lines 3 – 10). The

second step consists in moving from the insertion point to the

root of the tree while inserting new labels whenever the route

differs from current information stored in the tree (lines 12

– 23). In particular, for each node, if the label from the route

of the new subnet already appears in another internal node of

the tree at the same depth, it is merged with the current node

(lines 19 – 21). The final result is a tree in which every label

should appear only once.

Fig. 3 illustrates the tree construction on a toy exam-

ple. Given the topology shown in Fig. 3(a), possible Paris

traceroute to subnets S1, S2, and S3 could be {1, 2, 4},
{1, 3, 5}, and {1, 3, 4, 6} respectively. The insertion of S1 and

S2 is then rather simple, as Fig. 3(b) shows. Fig. 3(c) and 3(d)

illustrates how the insertion of S3 occurs. The insertion point

Algorithm 1 Insertion of a subnet in the tree

Require: N , root node of the tree

1: procedure INSERT(Node N , Subnet S)

2: R ← S.getRoute()

3: if N .getNextChild(R[N .getDepth() + 1]) == ∅ then

4: Prev ← N

5: for i ← N .getDepth() : R.getLength() do

6: New ← new Node(R[i])

7: Prev.addChild(New)

8: Prev ← New

9: Prev.addChild(new Node(S))

10: return

11: I ← INSERTIONPOINT(N , R)

12: INSERT(I , S)

13: P ← I .getParent()

14: while P 6= ∅ do

15: L ← R[P .getDepth()]

16: if L 6= P .getLabel() then

17: P .addLabel(L)

18: set ← NODESATDEPTH(N , P .getDepth())

19: for M ∈ set do

20: if L ∈ M .getLabels() then

21: P .merge(M )

22: P ← P .getParent()

23: return

is obviously the node having the label 4. As the parent node

does not have the label 3, such a label is added; however, label

3 already appears in the tree, therefore the branch is merged

with the node containing both labels 2 and 3. In the final tree,

all non-null (i.e., not 0.0.0.0) labels appear only once.

As implied in the previous paragraph, the routes obtained

with Paris traceroute are not always complete, i.e., they

feature 0.0.0.0 interface(s) along the way. As TreeNET does

not consider these labels while looking for the insertion point,

this leads to one branch per distinct interface following a

0.0.0.0 interface. While this does not affect deeper internal

nodes, this can lead to splitting a large internal node into

several ones. Specially when the interface is labeled as 0.0.0.0

due to a delay or a black-listing of the vantage point by that

interface, preventing it from replying to any subsequent probe.

This typically occurs with the first hops to a remote network

(which are often common to all routes): some routes will

feature the proper interface(s) while others will not.

To mitigate this issue, TreeNET always starts building the

tree using only subnets that feature a complete route (i.e.,

with no occurrence of 0.0.0.0). Then, before inserting any

subnet with an incomplete route, TreeNET finds the most

similar route already stored in the tree and replaces 0.0.0.0

interface(s) of the incomplete route with the interface(s) at the

same index(es) in the selected route.

F. Router Inference

A fully built tree provides a good knowledge of the

topology, as it gives an idea of how many interfaces border



(a) Example topology (b) Insertion of S1, S2 (c) Insertion of S3 (d) Insertion of S3 (2)

Fig. 3. Example of the tree constructed by Algorithm 1 on a toy example.

an internal node, which is either a Neighborhood, either a

superposition of Neighborhoods. Given #L the amount of

labels of a node, #S the amount of children subnets, #I

the total amount of labels from child internal nodes, and #C

the amount of crossed subnets (i.e., subnets which contain the

label of a child internal node), the amount N of interfaces an

internal node is given by

N = #L+#I +#S −#C. (1)

The amount of labels #L can be assimilated to the number

of interfaces through which packets enter the Neighborhood(s),

while #I + #S − #C refers to the number of outgoing

interfaces.

Not only the tree provides an idea of the number of

interfaces of each internal node, but it also gives some of these

interfaces. The labels themselves are interfaces, but moreover,

subnets classified as Accurate during subnet inference feature

a valid Contra-Pivot interface which, by definition, is the

interface of a router. Odd subnets also feature at least one

valid Contra-Pivot. Therefore, for each internal node, one can

list all labels and each Contra-Pivot of each child Accurate or

Odd subnet. Then, one can use an alias resolution technique

on them to infer one or several routers. After that, internal

nodes do not need to be abstracted as Neighborhoods (or

superimpositions) any longer, and one can build a full router –

subnet topology of the measured network. The alias resolution

also helps to disambiguate multi-label nodes, as interfaces

of routers belonging to distinct (superposed) Neighborhoods

should never be associated together.

In TreeNET, the router inference consists in a combination

of three different alias resolution techniques: Ally [18], IP-

ID counter velocity check (which is reminiscent of Radar-

Gun [19]), and reverse DNS association.

For every interface of an internal node/Neighborhood,

TreeNET collects i IP-IDs (i is at least three) and evaluates

the wall clock time (in microseconds) between the acquisition

of each ID, leading to i - 1 delays. While the wall clock

time might not be necessarily faithful to the delay between

the generation of two IP-IDs on a remote device, it is a

Fig. 4. Schematic view of the data used for the velocity range technique.

reasonable and exploitable estimation. In addition to the IP-

IDs and delays, the reverse DNS for each IP address is also

retrieved when available.

Once all the aforementioned data has been collected for

every interface, the association process starts. When IP-IDs

and associated delays are available, TreeNET first considers

association by Ally. The idea of Ally is very simple: one

probes a first interface, retrieves an IP-ID x, then obtains

another IP-ID y from a second interface, and a third ID z

from the first one. If the inequality x < y < z with z - x

being reasonably small is verified, one can assume both probed

interfaces actually belong to the same router. Therefore, in the

context of TreeNET, one just has to find a triplet of IP-IDs

from two distinct interfaces which form a succession to use

Ally. To locate IP-IDs chronologically, each collected ID has

an associated token, an integer unique to each probe that is

given by a counter incremented each time a token is drawn.

However, the IP-ID counters can evolve quite fast, therefore

mitigating the efficiency of Ally in many cases. To overcome

this issue, the second technique implemented in TreeNET

rather estimates the velocity of each counter for each interface

(the three IP-ID mentioned above) and associates interfaces

together when their velocity is similar, which is the same idea

as RadarGun [19]. This is why delays between getting each

IP-ID are being collected.

However, the velocity of a counter is not constant and

fluctuates, and to model this, TreeNET does not compute

a single velocity per interface but rather a range of velocities,

with a velocity being computed for every pair of consecutive

IP-IDs. Moreover, as IP-ID counters are encoded on 16 bits,

they can rollover on a regular basis, and it is not unlikely to

have two or more rollovers for interfaces belonging to routers

dealing with large traffic. For every pair of consecutive IP-IDs

(denoted as i and i+1 and the delay between those IP-IDs is



denoted di), we consider a variable xi to model the amount of

rollovers. In Fig. 4, we illustrate the data involved in our alias

resolution technique based on IP-ID counter velocity and the

variables for each pair of consecutive IP-IDs.

To be able to compute coherent velocities, one must find a

value for every xi such that the velocities are reasonably close

to each other. Our approach consists in assigning a value from

0 to a maximum (e.g., 50) to x0 and, for each value, resolving

i − 2 equations to find every xi with i being greater than 0.

The equation is the following

i1 − i0 + 65535× x0

d0
=

ii+1 − ii + 65535× xi

di
. (2)

As it is possible to have the inequality ii+1 < ii due to a

rollover between the first IP-ID of the pair and the second one,

we replace−ii by +(65535−ii) when this occurs to accurately

express the amount of times the counter was incremented.

Since it is extremely rare to find an integer, non-zero

solution for every xi, we rather solve such equations in the real

domain and round the results afterwards. If all solutions are

positive and if the rounding error (i.e., the difference between

the rounded result and the real value) is below a threshold (e.g.,

0.35), the rounded solutions are kept, otherwise the next value

for x0 is being considered until the maximum. If the maximum

value is reached without finding a solution, we consider the

counter to have an infinite velocity, represented by the range

[0, 65535].

If an integer value is found for every xi, the velocities are

obtained with the following formula:

vi =
ii+1 − ii + 65535× xi

di
. (3)

Of course, if ii is greater than ii+1, the term −ii is again

replaced with +(65535− ii).

The final step consists in retrieving the maximum and

minimum velocity obtained for the IP addresses. Afterwards,

interfaces are associated if their respective ranges of velocity

overlap. As we observed several ranges being very close

to each other without overlapping, we added a tolerance

value (e.g., 0.3) which slightly extends the largest range such

that it overlaps close ranges. Finally, it is worth noting we

always associate together interfaces for which the velocity is

computed as infinite (i.e., [0, 65535]).

If neither Ally nor the velocity range technique can be used,

reverse DNS association is considered. It is worth noting that if

IP-IDs are available and if the two previous techniques rejected

the association, reverse DNS is not considered. In other words,

reverse DNS is the last resort technique. The technique itself is

very simple: splitting the DNS of two IP interfaces at dots, they

will be associated if and only if they have the same amount

of components and if only the first ones differ between both

IP addresses. We did not elaborate our reverse DNS technique

further because of the need for additional inputs, such as the

naming conventions found in a particular network.
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Fig. 5. Preliminary performance results for our alias resolution scheme.

III. EVALUATION

In this section, we evaluate the performance of TreeNET.

We first provide preliminary results for our three alias res-

olution scheme (Sec. III-A) and, next, we compare subnet

inference of TreeNET with ExploreNET (Sec. III-B) on

a ground truth and several ASes. We also mention some

preliminary results which could guide future study of the mea-

sured ASes (Sec. III-C). Subnets and aliases collected during

our measurement campaign are freely available: https://

github.com/JefGrailet/treenet/tree/master/

v2/Measurements

A. Alias Resolution

To assess our alias resolution scheme described in Sec. II-F,

we relied on a dataset provided by iPlane [16]. It is made of a

list of 57,806 routers with their aliases as observed in iPlane

traceroute. Aliases are determined by using standard IP-

ID technique and identical return TTLs when probed at the

same time. It should be noted that this dataset is updated

every two months and that our GitHub repository provides the

dataset which was available at the time of our measurements.

For each alias (given as a list of interfaces), we run our

resolution technique and define an accuracy rate, i.e., the size

(i.e., amount of interfaces) of the largest alias inferred by

TreeNET for this list divided by the number of responding

interfaces from that list. As a consequence, a value of 1 means

that we obtain the same results as iPlane with respect to

responsive interfaces. On the contrary, a value of 0 means that

we are not able to identify the listed interfaces as aliases at all.

Measurements were done on November 19th, 2015, collecting

four IP-IDs for each responsive interface.

On the set of 57,806 routers, 26% of them were not

responding to our probes. No accuracy rate has been computed

on those routers. The accuracy rate for the remaining 74%

of the routers is given, as a cumulative distribution function,

on Fig. 5. The most important result here is that, in 55% of

the cases, our alias resolution provides the same results as

the iPlane dataset. The second main result is that, for a bit

more than 70% of the dataset, we have an accuracy rate of

at least 50%. Those results are promising and we leave as a

future work a better characterization of our alias resolution

technique and potential improvements of it. In particular, we



plan to elaborate on the amount of collected IP-IDs and the

effects of other parameters of our velocity-based technique we

previously mentioned.

B. Subnet Inference

In order to evaluate the subnet inference proposed by

TreeNET with respect to ExploreNET, we implemented

a slightly edited version of ExploreNET using the same

input/output schemes as TreeNET and targeted different ASes

as well as a ground truth network (an academic network for

which we have access to the actual topology – access to

that network topology is, obviously, not allowed outside the

campus) with both of them.

We decided to conduct measurements on three ASes:

AS224, AS5400 and AS30781. The first two are comparable

regarding the amount of hypothetical IP addresses (a bit more

than one million in both cases) but have a different role in the

Internet topology: AS224 is a stub AS (i.e., all traffic coming

in and out of it goes through a single path) while AS5400 is a

transit AS (i.e., it acts as a link between other ASes). AS30781,

on the other hand, is another transit AS but of a much smaller

scale (with a maximum of 45,824 hypothetical IP addresses),

which is interesting for a comparison with AS5400. The

datasets we obtained from them are available on https://

github.com/JefGrailet/treenet/tree/master/

v2/Measurements. Additionnal datasets for other ASes

will be progressively added on the same page.

In the case of the ground truth, we were able to check the re-

sults with a network administrator, and discovered that 86.3%

of our measured subnets were correct in terms of prefix with

respect to the actual topology, the problematic results being

caused by very specific cases. These difficult cases notably

included loop-back interfaces from distinct subnets (sometimes

/32 subnets) whose TTL were similar and for which the IPv4

addresses were consecutives, and were therefore considered

to be on the same subnet. The inferred routers were also

confirmed by the actual network, therefore demonstrating the

relevancy of the tree structure and proving again the accuracy

of our alias resolution scheme.

To assess the soundness of subnets measured by TreeNET,

we introduce the notion of credibility of a subnet. A subnet is

considered as credible if less than 10% of its listed interfaces

are Contra-Pivot candidates and more than 70% of them are

Pivot interfaces, as we consider a subnet cannot be sound if

more than 20% of its interfaces are outliers. These numbers are

however arbitrary and could be adapted for specific networks

where the amount of outliers is assumed to be high. The

purpose of this metric is to evaluate if an Odd subnet is a

good measurement, an Accurate subnet being de facto credible

while Shadow subnets are never considered as credible.

Finally, we also use two additional metrics on datasets ob-

tained through ExploreNET: redundancy and encompassed

ratios. The redundancy ratio denotes how many subnets in the

datasets are equivalent with previously listed subnets, since

ExploreNET does not merge similar subnets like TreeNET

does. The encompassed ratio, on the other hand, quantifies how

many subnets inferred by ExploreNET are strictly smaller

than overlapping subnets obtained by TreeNET, in order to

check if the latter handles large subnets better than the former.

Our results are presented in Table I. One can immediately

notice a striking improvement due to TreeNET. It is indeed

remarkable how TreeNET is able to infer a smaller amount

of subnets than ExploreNET while covering much more ad-

dresses and having a high proportion of Accurate subnets. The

ratios of incomplete, redundant, and encompassed subnets for

each network further demonstrate that the refinements operated

by TreeNET over the results of ExploreNET drastically

improves the inferred subnets regarding both credibility (in

the broad sense) and coverage of the measured networks.

Furthermore, the introduction of Odd subnets in TreeNET

overcomes a limitation of ExploreNET: indeed, the latter

assumes that a subnet necessarily owns a single Contra-Pivot

interface. Therefore, ExploreNET can stop the inference

when it discovers two potential Contra-Pivot interfaces at

once. Unfortunately, this prevents it from properly inferring

a large subnet when there is, for example, a back-up Contra-

Pivot interface. It also tends to ignore outliers (e.g., an IP

interface located at the Pivot TTL + 1, which can occur due to

specific network policies), that could appear in measurements

conducted by TreeNET due to subnet merging. Thus, not

only the refinements help to find sounder subnets, but they

also relax the definition of a subnet to some extent and allows

the discovery of more exotic network configurations.

C. Preliminary results

Even if the focus of this paper is the description and

evaluation of TreeNET, we can already provide directions for

future analysis of the networks measured with it. In particular,

the datasets we collected can be analyzed to compute the

distribution of the subnet prefix lengths in each AS and our

ground truth. A first look at Fig. 6 already highlights an

interesting property: the proportion for each prefix length

varies from one network to another, and while /31 and /30

subnets are inevitably the most common ones (as already

observed with ExploreNET [8]), other prefix lengths are not

used in the same manner by each network.

For example, /24 subnets are particularly common in our

dataset from AS224, which is a stub AS. An interesting

perspective for future research would be to compare the results

obtained by TreeNET on several stub ASes to determine if

the proportion of /24 subnets is a common feature of stub

ASes or an AS224 specificity.

However, an in-depth analysis of the data would require

more metrics and modeling formalisms suited for router –

subnet topologies, which are left for future work.

IV. CONCLUSION

In this paper, we introduced TreeNET, a new tool collect-

ing and manipulating subnet topology information to discover

the router – subnet topology of a target network. Using as a

basis ExploreNET, a state of the art subnet inference tool,

TreeNET adds subnet refinement mechanisms along with a



AS224 AS30781 AS5400 Ground truth

TreeNET ExploreNET TreeNET ExploreNET TreeNET ExploreNET TreeNET ExploreNET

# hypothetical IPs 1,115,392 45,824 1,385,472 5,888

# inferred subnets 3,053 68,635 1,195 6,606 1,769 7,398 124 1,024
# covered IPs 446,750 200,021 21,408 8,228 104,468 11,055 3,956 1,818

Accurate subnets 69.9% 36.7% 76.1% 45.6% 74.0% 39.8% 75.8% 45.3%
Odd subnets 23.8% / 20.0% / 12.3% / 17.7% /
Shadow subnets 6.3% / 3.9% / 13.7% / 6.5% /

Credible subnets 88.2% 36.7% 88.0% 45.6% 79.8% 39.8% 84.7% 45.3%

Incomplete subnets / 63.3% / 54.4% / 60.2% / 54.7%
Redundant subnets / 56.3% / 57.7% / 42.8% / 49.9%
Encompassed subnets / 72.5% / 66.3% / 63.0% / 54.3%

TABLE I

Comparison between TreeNET and ExploreNET for several ASes and our ground truth.
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Fig. 6. Distribution of the subnet prefix length in the observed networks.

tree-like structure which not only gives an overview of the

network but also eases router discovery via alias resolution

techniques.

We were able to demonstrate the benefits of TreeNET

regarding subnet inference through a comparative study with

ExploreNET on a ground truth network and several ASes.

We also obtained promising results for the alias resolution

scheme currently implemented in TreeNET, both on our

private ground truth and a publicly available dataset provided

by iPlane. The datasets we obtained from the mentioned ASes

and the aliases list provided by iPlane we used are pub-

licly available on https://github.com/JefGrailet/

treenet along with the sources of TreeNET.

Future works involve in-depth evaluation of TreeNET (in

particular the efficiency of the pre-scanning phase and the alias

resolution scheme compared to RadarGun), large-scale mea-

surement campaigns and in-depth study of our datasets through

modeling formalisms suited for router – subnet topologies.

We are also planning to use TreeNET to elaborate Layer-2

devices inference techniques in the long term.
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