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Chapter 1

Introduction

The objective of the digital communications systems is to design a reliable and secure
transmission of digital information over a noisy channel. The channel might be any physi-
cal medium, such as air, optical fiber, powerline or optical disks. Information sent through
the channel has a source from which the information originates, and a destination to which
the information is delivered. Typically, errors occur during the transmission. In order to
reduce the error probability, the sequence of binary digits from the source is passed to the
channel encoder. The channel encoder adds redundancy to the bit sequence in a controlled
way, such that errors can be detected and corrected by a receiver. On average, q informa-
tion bits are translated into n channel symbols. Then, a digital modulator is used at the
output of the channel encoder, which serves as an interface to the communication channels.
The modulator produces signal waveforms that carry information. A simple example may
be given by on-off keying, where the presence of a carrier for a channel symbol duration
represents a binary one, while its absence for the same duration represents a binary zero.

Throughout this thesis, the digital data are considered as a sequence of symbols in time.
The transmission time of the sequence of channel symbols is written as T . Then, the in-
formation rate can be defined as q/T , i.e., bit per transmission time. In the treatment
of channel coding as a separate operation independent of the modulation, the coded set
of sequences generally has a smaller channel symbol duration than the uncoded set of se-
quences for the same information rate. Accordingly, the power spectrum density (PSD) of
the channel signals changes essentially. On the other hand, if the modulation is designed in
conjunction with the channel coding, error correction can be achieved without leading to
any essential changes in the PSD, see [1–4].

In this thesis, two combined coding and modulation schemes are studied. Narrowband
powerline communication (PLC) is considered as a practical application. Selection of mod-
ulation and coding schemes for narrowband band PLC is a difficult problem. According
to the CENELEC standards [5], the frequency allowed for communication ranges from 3
to 148.5 kHz, and the maximum allowed transmitter output voltage is specified as follows.
The maximum allowed peak voltage at the frequency band from 9 to 95 kHz is equal to 5
V for the broad-band transmitters (i.e., a 20-dB bandwidth of more than 5 kHz in width).
For the frequency band 95 to 148.5 kHz, it should not exceed 0.63 V. As a consequence, the
transmitters are output voltage limited and bandwidth limited. Modulation schemes, such
as frequency shift keying (FSK) and orthogonal frequency division multiplexing (OFDM)
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are currently considered as appropriate choices for the applications in the narrowband PLC,
see [6]. Depending on the target application, each modulation technique has certain advan-
tages. The FSK modulation is suited for the CENELEC standards, where the transmission
of only one frequency per time unit leads to a constant envelope signal, and it is an at-
tractive solution for the implementations that are oriented to low data rates. However,
narrowband noise brings a serious difficulty to the system design. On the other hand, the
OFDM modulation is a promising choice, because it provides high data rates, spectral effi-
ciency and frequency diversity, which is effective against the narrowband noise. However,
impulsive noise leads to a significant performance loss.

The thesis can be divided into two parts. In the first part, Chapters 3 and 4, combined
coding and modulation scheme based on the single carrier modulation is proposed. An RLL
encoder is introduced between the channel encoder and the constant envelope modulator to
control the minimum channel symbol duration (the minimum duration in which the channel
symbol stays constant) of a set of block waveforms defined in a constant time. As a single
carrier modulation, noncoherent FSK and PSK are considered. Accordingly, it is shown
that high coding gains can be achieved at the same information rate without leading to an
essential change in the PSD. The maximum-likelihood (ML) receiver structures are derived
and investigated for the additive white Gaussian noise (AWGN) and the impulsive noise
channel models.

In the second part of the thesis, Chapters 5 and 6, OFDM modulation is considered. If
the discrete Fourier transform (DFT) of the transmitted OFDM symbol contains a small
number of zeros or known data, there is a similarity between the inverse DFT (IDFT) and
RS encoder. In practice, not all subcarriers are used to carry information. Some sub-
carriers are set to zero or known data (pilot symbols) for different purposes, that include
channel estimation, synchronization or cancelation of the DC value. An iterative impul-
sive noise suppression algorithm is proposed, which exploits the impulsive noise structure
in the time and frequency domain and uses the existing redundancy to decode the errors.
The simulation results show that the influence of impulsive noise can be essentially reduced.

1.1 Thesis Outline

The outline of this thesis is as follows.

Chapter 2 Channel Models

The channel models required for the next chapters are introduced in this chapter. The
AWGN and impulsive noise channel models are studied.

Chapter 3 RLL Coded Modulation with a Constraint on the Minimum Channel
Symbol Duration

In this chapter, a combined coding and modulation scheme based on single carrier modula-
tion is presented. After analyzing the power spectrum characteristics of the channel signals,
the evaluation of the code performance and the receiver design for the AWGN channel are
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studied. It is shown that large coding gains can be achieved by a serial concatenation of
Reed-Solomon (RS) code with an RLL code. Following a discussion of a non-binary RLL
coded modulation scheme, ML block receiver for the noncoherent FSK transmission over
the impulsive noise channel is derived and investigated.

Chapter 4 Runlength-Limited Code Construction Based on Minimum Hamming
Distance

In this chapter, we describe construction algorithms for RLL codes with one-bit look-ahead
encoding techniques having a minimum Hamming distance larger than one. The codes en-
able soft information to be available at the RLL decoder. Hence, a soft decoding can be
used to improve the error rate performance of the system. We present several new high rate
RLL codes and provide efficient bounds on the code sizes. The constructed codes are used
in the combined coding and modulation scheme, which is described in Chapter 3.

Chapter 5 OFDM Modulation for Impulsive Noise Error Correction

In this chapter, we show that if the DFT of the transmitted OFDM symbol contains some
redundant data, such as consecutive zeros or pilot symbols, in a circular way, there exists
a similarity between the IDFT and Reed-Solomon encoder. We introduce a scheme for
correcting the impulsive noise errors by first locating the possible impulsive noise errors by
a threshold detector and then decoding the identified erasures based on the least-squares
estimation.

Chapter 6 Iterative Impulsive Noise Suppression in OFDM

The analysis in Chapter 5 shows that the performance of the least-squares estimator re-
ceiver is limited. Therefore, an iterative impulsive noise decoding scheme is proposed in
this chapter. The iterative scheme is an extension of the iterative noise suppression al-
gorithm given in [15]. The extensions include 1) a clipping and nulling technique at the
input of the iterative algorithm 2) a novel low complexity syndrome decoder which uses
the redundancy that is transmitted for synchronization or other purposes. The decoder
applies a successive impulsive noise error decoding instead of decoding all errors jointly.
This approach has the advantage that the non-consecutive zeros or pilot tones can also be
used in the decoding. Simulation results are provided to show the improvement in error rate.

Chapter 7 Summary

A summary of all investigated results can be found in this chapter.

Remark: The results in Chapters 3, 4, 5 and 6 have been published in [36–41].
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Chapter 2

Channel Models

In this chapter, we introduce the basic channel models required for the next chapters.

2.1 Additive White Gaussian Noise Channel Model

A communication system affected by thermal noise is often modeled as an AWGN channel.
In this model, the only impairment is a linear addition of white noise with a constant
spectral density. AWGN may also be caused by other interferences, and due to the central
limit theorem [7], a large amount of summarized random variables results in Gaussian
distribution. The discrete time memoryless AWGN channel is depicted in Fig. 2.1. At
time instant k, the channel accepts one sample ck and maps it onto a sample rk. The value
gk added by the channel is independent of the channel input. It can be considered as a
Gaussian distributed random variable with zero mean and variance σ2

g . Its one dimensional
probability density function (PDF) is given as

p(gk) =
1√
2πσg

e

(

− g2
k

2σ2
g

)

. (2.1)

The signal-to-noise (SNR) is defined by

SNR :=
ε

N0
=

E{|ck|2}
E{|gk|2}

, (2.2)

where ε := E{|ck|2} is the average power of the transmitted samples, and N0 := E{|gk|2} :=
2σ2

g is the single sided noise power spectral density.

ck

gk

rk

Figure 2.1: AWGN channel model.
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2.2 Impulsive Noise Channel Model

In many communication channels, interference produced by man-made machinery are much
more structured or impulsive than AWGN [8, 9]. In PLC, the noise includes both back-
ground and impulsive components [10]. Background noise is typically Gaussian, and its
effects on the communication system are well understood. In the case of impulsive noise,
however, a statistical model is needed to design a reliable communication. The impulsive
noise is primarily caused by all kinds of switching operations in electrical devices [11]. By
on/off switching, the capacitor in the electrical device suddenly connects/disconnects to the
power circuit. It leads to large transient voltages on the circuit depending on the size of
the capacitor. The generated impulses have durations of some microseconds up to a few
milliseconds with random occurrence.

Within this thesis, the Middleton’s additive white class A noise (AWCN) model is considered
as a statistical model for the impulsive noise, see [8, 9]. In this model, Middleton classifies
the impulsive noise into three general classes, i.e., class A, B and C. Among these three
classes, class A is often used to model PLC noise environment [12,15]. In the class A model,
the noise bandwidth has approximately the same size as the receiver’s bandwidth, and so
transient effects in the analog receiver stages can be ignored. The model covers both the
impulsive and background noise. At the output of the channel, the received sample rk at
time instant k is given by

rk = ck + ik + gk, (2.3)

= ck + wk, (2.4)

where ck is the transmitted sample, ik and gk are the complex impulsive and Gaussian
background noise samples, and wk represents the complex channel noise sample that consists
of the impulsive noise and the background noise samples. In particular, gk’s are independent
and identically distributed (i.i.d.) complex Gaussian random variables with variance σ2

g and
with PDF for the real variables given in Eq. (2.1). The complex impulsive noise samples ik’s
are also i.i.d. with variance σ2

i . The ratio between the variance of the Gaussian background
noise and the variance of the impulsive noise is defined as

Γ =
σ2
g

σ2
i

. (2.5)

The discrete time memoryless AWCN channel model is depicted in Fig. 2.2. The model
can be interpreted as an infinite number of parallel AWGN channels each with variance

σ2
sk

= σ2
g +

σ2
i sk
A

, (2.6)

where sk is the channel state indicating which channel is selected at time instant k, and
A is the impulsive noise index. Since the channel is memoryless, the channel state sk is
an independent random variable not depending on any previous or succeeding states. Each
channel at time instant k is selected with the Poisson distribution

P (sk) = e−AAsk

sk!
, (2.7)
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AWGN,

AWGN,

AWGN, σ2
0

σ2
1

σ2
2

ck rk

Figure 2.2: AWCN channel model.

where sk ≥ 0. In the case of sk = 0, only background noise is present with a probability
P (0) = e−A and variance σ2

0 = σ2
g .

The impulsive noise index A is given by the product of the average number of impulses per
unit time and the mean duration of the emitted impulses entering the receiver. For small
A, the noise has an impulsive character. For an impulse duration of 10−4 seconds and on
average 100 impulses per second, we have A = 10−2. Table 2.1 shows the three channel
scenarios of the AWCN channel model. It can be seen that the channel is heavily disturbed
for A = 0.1, since 1− e−A ≈ 9.5% of the samples are hit by the impulsive noise.

Table 2.1: The three channel scenarios depending on the impulsive noise index A.

Channel A P (sk > 0) = 1− e−A

heavily disturbed 0.1 0.0952

medium disturbed 0.05 0.0488

weakly disturbed 0.01 0.01

Fig. 2.2 indicates that the PDF of the complex noise sample wk is given by a weighted sum
of the infinitely many Gaussian PDFs with increasing variance σ2

sk
and probability P (sk).

Hence, the PDF can be written as

p(wk) =

∞∑

sk=0

P (sk)p(wk|sk)

=
∞∑

sk=0

e−AAsk

sk!

1

2πσ2
sk

e

(

− |wk |2

2σ2
sk

)

. (2.8)

It can be observed in Eq. (2.8) that the real and the imaginary parts of the complex noise
sample wk are statistically dependent. This is due to the fact that at each time instant
k, one channel with a complex Gaussian PDF p(wk|sk) is selected. Thus, the real and the
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imaginary parts of wk have the same variance. On the other hand, the complex PDF of wk

is not equal to the product of the real and imaginary parts PDF’s. Therefore, both parts
are uncorrelated, but dependent, see [13].

Table 2.2 shows the calculated probabilities and channel noise variances for the first three
states of AWCN channel model. It can be observed that as sk increases, the probability
P (sk) of selecting the skth channel decreases rapidly. Hence, truncating the infinite sum of
Eq. (2.8) to a small number of states only leads to a small error.

Table 2.2: The probability P (sk) and the channel noise variance σ2
sk

for A = 0.01 and
Γ = 0.01.

Channel state m P (sk) = e−AAsk

sk!
σ2
sk

=
σ2
i sk
A + σ2

g

sk = 0 0.99 σ2
g

sk = 1 0.0099 104σ2
g + σ2

g

sk = 2 4.9502 × 10−5 2× 104σ2
g + σ2

g

If the channel state sk is known at the receiver, then the additive channel noise sample wk is
a complex Gaussian distributed random variable with its PDF conditioned on the channel
state

p(wk|sk) =
1

2πσ2
sk

e

(

− |wk |2

2σ2
sk

)

. (2.9)

Applying Eq. (2.4) yields the channel transition PDF as

p(wk = rk − ck|sk) =
1

2πσ2
sk

e

(

− |rk−ck|2

2σ2
sk

)

. (2.10)

Equations (2.8) indicate that the error probability Pe for an uncoded transmission over the
AWCN channel is a weighted sum of the error probabilities of the uncoded transmissions
over the AWGN channel with variance σ2

sk
, i.e.,

Pe =
∞∑

sk=0

P (sk)P
AWGN
e (σ2

sk
), (2.11)

where PAWGN
e (σ2

sk
) is the error probability for the uncoded transmission over the AWGN

channel with variance σ2
sk
. By calculating the average noise variance σ2

w of the AWCN
model as

σ2
w = E{σ2

sk
} = σ2

g +
σ2
i

A
E{sk}, (2.12)

the expected error probability E{Pe} for an uncoded transmission over the AWCN channel
can be written as

E{Pe} = PAWGN
e (σ2

wk
). (2.13)
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2.2.1 Two-state Impulsive Noise Channel Model

The AWCN channel model can be simplified to two-state impulsive noise channel model by
considering only two states, namely sk = 0 and sk = 1. The model is shown in Fig. 2.3.
For sk = 0, only background noise is present with probability P (sk = 0) = e−A ≈ 1 − A
and variance σ2

0 = σ2
g . For sk = 1, the background noise and impulsive noise are together

present with variance σ2
1 = σ2

i /A+ σ2
g . The probability of having sk = 1 can be calculated

as P (sk = 1) = 1− e−A ≈ A. The PDF of the channel noise sample wk is given by

p(wk) = (1−A)
1

2πσ2
0

e

(

− |wk |2

2σ2
0

)

+A
1

2πσ2
1

e

(

− |wk|2

2σ2
1

)

. (2.14)

If we consider binary modulation signals, the probability of error for binary phase shift
keying (BPSK) is then given by

Pe = (1−A)Q

(√
Eb

σ2
0

)
+AQ

(√
Eb

σ2
1

)
, (2.15)

where Eb is the transmitted signal energy per bit. For binary FSK, an additional loss of 3
dB should be included, additionally.

The average noise variance σ2
w of the two-state impulsive noise channel model is calculated

as

σ2
w = E{σ2

sk
} = σ2

g +
σ2
i

A
A,

= σ2
g + σ2

i , (2.16)

where we expect A impulses (sk = 1), on the average. Thus, the SNR of the two-state
impulsive noise channel model is defined by

SNR :=
E{|ck|2}
2σ2

w

=
E{|ck|2}

2(σ2
g + σ2

i )
. (2.17)

In some communication channels, such as in PLC channel, the impulsive noise variance σ2
i

may not be dependent on the background noise variance. Hence, instead of using the ratio

gk

gk i
k

ck r
k

s  =0k

s  =1k

Figure 2.3: Two-state impulsive noise channel model
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Γ in Eq. (2.5), we can also relate the impulsive noise power to the signal power. In that
case, the ratio between the variance of the signal and the variance of the impulsive noise
can be defined as

∆ = σ2
c/σ

2
i . (2.18)

For ∆ = 10−3, the impulsive noise variance is 30 dB larger than the signal variance.

Using the average signal-to-impulsive noise power ratio ∆, Eq. (2.15) can be rewritten as

Pe = (1−A)Q
(√

2SBNR
)
+AQ

(√
A∆

2SBNR

SBNR+A∆

)
, (2.19)

where SBNR=Eb/2σ
2
g is the signal-to-Gaussian background noise ratio. In Eq. (2.19), for

small values of SBNR, the first term is dominant. Then, with increasing SBNR, the first
term decreases, and the second term starts to dominate the error probability depending on
the factors A and ∆.
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Chapter 3

RLL Coded Modulation with a

Constraint on the Minimum

Channel Symbol Duration

Coding for bandwidth limited channels has been a very dynamic research area, since multi-
level coding and trellis-coded modulation were introduced, see [1–4]. The principle of coded
modulation is the interpretation of coding and modulation as a single entity to save trans-
mitter power on a data-bit basis without changing the minimum channel symbol duration
(the minimum duration in which the channel symbol stays constant) as it was shown by
Ungerboeck [1]. The scheme in [1] is based on the set partitioning principles. The key
point is finding subsets of the constellation in such a way that the signal points inside each
partition are maximally separated. With M = 2m different signal points one can transmit
m information bits per channel symbol without coding. In trellis coded modulation (m−1)
information bits are transmitted, and a (m−1)/m trellis code is used to generate sequences
with high Euclidean distances. The uncoded system with constellation size of 2(m−1) is used
as a reference system transmitting at the same information rate. Note that the minimum
channel symbol duration in the uncoded system is kept the same as for the coded system.

In this chapter, we propose to combine the design of coding and modulation by controlling
the minimum channel symbol duration of a set of block waveforms defined in a constant
time. We show that high coding gains can be achieved at the same information rate without
leading to an essential change in the PSD of the channel signals. As a practical application,
we consider PLC channel, where there is a limitation on the output voltage and bandwidth.

The rest of the chapter is organized as follows. After a brief review of the basics of RLL
codes, the look-ahead encoding technique is explained in Subsection 3.1.2. In section 3.2,

Channel
Coding Coding

RLL
Modulation

one integrated system

Digital Data
Constant Envelope

Channel

Bandwidth Limited

Figure 3.1: Block diagram of the coded modulation scheme based on RLL encoding.
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the combined coding and modulation scheme based on RLL coding is presented. This is
followed by the power spectral characteristics of channel signals. Section 3.4 illustrates the
communication system under investigation and the design of the ML receiver for the AWGN
channel. The evaluation of the code performance is also presented in this section. In Section
3.5, the concatenation of the RS code with the RLL code is studied. Following a discussion
of an M -level RLL coded modulation scheme, the ML block receiver for the noncoherent 2-
FSK transmission over the AWCN channel is derived and investigated in Section 3.8. Section
3.9 addresses the influence of the narrow band noise on the ML receiver structure. Finally,
Section 3.11 concludes the chapter by possible modifications and remaining problems of the
RLL coded modulation scheme.

3.1 Introduction to RLL Codes

In RLL coding, the data sequences are encoded into a restricted set of sequences that comply
with the prescribed channel constraints. Runlength-limited simply means that the number
of symbols (runs) in the intervals, where the signal stays constant, are bounded from below
by the parameter d and from above by the parameter k̂. These bounds are called RLL
constraints. The (d, k̂)-constraint binary RLL sequence is characterized as follows.

• d-constraint: Each run of zeros or ones must have a length of at least d+ 1.

• k̂-constraint: Each run of zeros or ones must have a length of at most k̂ + 1.

An example of a sequence satisfying the (d, k̂) = (1, 5) constraint is

0 0 1 1 1 1 1 1 0 0 1 1 0 0.

In this thesis, no upper bound on the run of zeros or ones is considered. Thus, the parameter
k̂ is omitted in the next sections. Fig. 3.2 illustrates a possible graph representation of the
d-constraint. Any path through the graph defines an allowed sequence. Each sequence
containing runs of zeros or ones less than (d+ 1) is a forbidden sequence.
RLL code has wide applications in the field of magnetic and optical disk technology, mag-
netic tape and fiber optic channels. A large number of related references can be found
in [19,26].

d+1

d+1 1
1

2

0 0
1 2

0 0

11 1

0 1

Figure 3.2: Graph representation of the d-constraint.
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3.1.1 Asymptotic Information Rate of RLL Sequences

Let the source data be grouped into blocks of m symbols, and let a constraint encoder be
used to translate these blocks into RLL codewords of length n symbols. The rate (efficiency)
of the constraint coding is calculated as Rr = m/n. Shannon showed in his work [17] that
the rate Rr = m/n of an RLL encoder that satisfies the given d-constraint cannot exceed a
quantity, which can be referred to as the asymptotic information rate of RLL sequences. It
is given as

Cd = lim
n→∞

1

n
log2N(n, d), (3.1)

where N(n, d) is the number of RLL sequences of length n that satisfy the d-constraint.
The asymptotic information rate of RLL sequences determines the number of information
bits per channel bit that can maximally be carried by a constrained sequence. It was shown
in [18] that the number of RLL sequences N(n, d) of length n > 0 can be calculated by the
enumeration of all sequences satisfying the d-constraint, and it is given as

(i) N(n, d) = 2n, 1 ≤ n ≤ (d+ 2),

(ii) N(n, d) = N(n− 1, d) +N(n− d− 1, d), n > d+ 2. (3.2)

Table 3.1 lists the number of RLL sequences as a function of the sequence length n and the
parameter d. It can be seen that N(n, d) depends on d, that is, the smaller d, the larger
N(n, d), and the larger information rate. Immink [26] shows that a characteristic equation
of the form

z(d+1) − zd = 1 (3.3)

can be obtained by assuming a solution of N(n, d) = czn to Eq. (3.2). It also follows that
if λ is the largest real root of Eq. (3.3), the maximum value of Rr that can be attained for
values of d is

Cd = lim
n→∞

1

n
log2 N(n, d) = log2 λ. (3.4)

Example 3.1. For d = 1, the characteristic Eq. (3.3) can be written as z2 − z = 1 with
solutions λ1 =

1
2 (1 +

√
5) and λ2 =

1
2(1−

√
5). The largest real root is λ1, and the Cd=1 is

Cd=1 = log2
(1 +

√
5)

2
≃ 0.694.

Table 3.1: The number of RLL sequences as a function of the sequence length n and the
parameter d.

d\n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 6 10 16 26 42 68 110 178 288 466 754 1220 1974 3194 5168

2 6 8 12 18 26 38 56 82 120 176 258 378 554 812 1190

3 6 8 10 14 20 28 38 52 72 100 138 190 262 362 500

4 6 8 10 12 16 22 30 40 52 68 90 120 160 212 280
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It can be observed in Table 3.1 that the ratio N(n, d)/n increases as n increases. Since the
asymptotic information rate Cd can only be approached from the left side, any RLL code
can be measured by the proximity of its rate to the asymptotic information rate. Table 3.2
shows Cd as a function of d.

Table 3.2: Cd as a function of d

d=0 d=1 d=2 d=3 d=4 d=5

Cd 1 0.6942 0.5515 0.4650 0.4057 0.3620

3.1.2 Block-Decodable RLL Codes with Look-Ahead Encoding Technique

An important RLL encoding technique documented in the literature [20–25] is called the
look-ahead encoding technique. A block-code is said to be look-ahead if the encoding is done
as a function of not only the present and past inputs, but also of a finite number of inputs
yet to come. The advantage of this type of encoding is that codes with higher rates can be
constructed without a need of merging bits during the concatenation of the RLL codewords.
At the decoder side, the RLL codewords can be decoded independently, which does not lead
to an error propagation between the decoded codewords. In this chapter, we consider one-
bit look-ahead encoding technique. The encoder makes a decision on the present word
on the basis of the m-bit word itself, as well as the upcoming bit, and depending on the
code construction, the last bit of the RLL codeword, see Fig. 3.3. The following example
illustrates the one-bit look-ahead RLL encoder.

Example 3.2. The code table of (d = 1)-constraint RLL code at a rate Rr = 3/5 is
shown in Table 3.3. It can be observed that the source words with indices {1, 2, 5, 6}
are uniquely represented by a single codeword. These codewords can be concatenated
freely without violating the runlength constraint, that is, solitary ”ones” or ”zeros” will
never occur. The remaining four source words with indices {0, 3, 4, 7} are represented by
two codewords. The choice depends on the first bit of the upcoming source word. If for
example, the present source index is 7, and if the first bit of the upcoming source word is 1,

m bitsm bits m bits

one symbol look−ahead
encoder

n bitsn bitsn bits

�����
�����
�����
�����m bits

�����
�����
�����

�����
�����
�����

n bits

last bit of the
past output

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������

��������
��������
��������
��������

present
input

present output

n bits

m bits
first bit of the

next input

not always needed

Figure 3.3: Schematic of look-ahead encoding.
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then 11001 will be selected as the codeword of index 7. Thus, depending on the observed
input, the encoder can decide on one alternative codeword, which maintains the (d = 1)-
constraint in concatenation. At the receiver side, the received codewords can be decoded
block-wise, which avoids the error propagation between the decoded codewords. Hence,
we can conclude that the introduced code demonstrates a simple encoding and decoding
structure. Note that the rate of the illustrated code is Rr = 3/5 = 0.6 < Cd=1 = 0.6942
where Cd=1 is the asymptotic information rate of the (d = 1)-RLL code.

Table 3.3: Code table of the Rr = 3/5 (d = 1)-constraint RLL code.

Next source bit

index Source word 0 1

0 000 00110 00001

1 001 00011 00011

2 010 00111 00111

3 011 01111 10011

4 100 10000 01100

5 101 11000 11000

6 110 11100 11100

7 111 11110 11001

In [20,21], Hollmann proposed a one symbol look-ahead code construction in terms of princi-
pal state-sets. The proposed construction is proved to be very efficient, and the rates of the
constructed codes are close to the theoretical maximum. In his work, Hollmann described
a rate 8/12, (d = 1)-constraint RLL code with a Hamming distance one, i.e., dmin = 1. The
code rate 8/12 is highly attractive as it is just 0.4% below the asymptotic information rate
Cd=1.

In Chapter 4, we generalize the Hollmann’s look-ahead RLL code construction algorithm to
construct many novel block-decodable RLL codes with minimum Hamming distance larger
than one. The constructed codes have several advantages in terms of the achievable code
rate, minimum distance, and simple encoding and decoding structure. Table 3.4 shows some
constructed RLL codes required for the rest of this chapter.
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Table 3.4: Selected RLL codes

d Rr dmin Cd

1 2/3=0.66 1 0.6942

1 8/12=0.66 1 0.6942

1 6/11=0.5455 2 0.6942

1 8/14=0.5714 2 0.6942

1 12/19=0.6316 2 0.6942

1 9/18=0.5 3 0.6942

2 7/13=0.5385 1 0.5515

2 8/15=0.53 1 0.5515

2 6/13=0.4615 2 0.5515

2 8/17=0.4706 2 0.5515

2 10/21=0.4762 2 0.5515

2 6/16=0.375 3 0.5515

2 7/18=0.3839 3 0.5515

2 8/21=0.3810 3 0.5515

2 6/18=0.3333 4 0.5515

2 7/20=0.35 4 0.5515

3 3/7=0.4286 1 0.465

3 8/18=0.444 1 0.465

3 6/16=0.375 2 0.465

3 7/18=0.388 2 0.465

3 8/20=0.4 2 0.465

3 5/17=0.2941 3 0.465

3 6/19=0.3157 3 0.465

3 7/22=0.3181 3 0.465

3 5/18=0.2778 4 0.465

3 6/20=0.3 4 0.465

3 6/24=0.25 5 0.465
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3.2 RLL Coded Modulation Principle

The key idea of the proposed RLL coded modulation scheme is to map the uncoded set
of block waveforms into the set of RLL coded block waveforms such that the minimum
Euclidean distance in the set is increased. This goal can be achieved by increasing the num-
ber of block waveforms over the corresponding uncoded system to be able to select block
waveforms with desirable minimum Hamming distance. Note that the parameter (d+ 1) is
used to keep the minimum channel symbol duration (the minimum duration in which the
channel symbol stays constant) the same. We describe this principle in the following.

Without loss of generality, we consider an uncoded system with BPSK modulation, where
the information has a bit duration of τ seconds. We transmit q information bits in time
T = qτ with a total energy qEb, where Eb is the energy per bit. This corresponds to the
set of 2T/τ block waveforms. The information rate is defined as bit per transmission time
and written as q/T = 1/τ . If a binary RLL encoder with an efficiency Rr = q/n is applied,
the set of all possible sequences which the RLL encoder can generate satisfies the (d + 1)
constraint. The time interval T is partitioned into RLL symbols with duration τ ′ seconds.
This corresponds to the set of 2TRr/τ ′ sequences or block waveforms in a binary RLL code
of length n, see Fig. 3.4. Since the comparisons are made on the basis of the same minimum
channel symbol duration, we choose

τ ′ =
τ

(d+ 1)
. (3.5)

Hence, the number of RLL sequences of length n is given by

2TRr/τ ′ = 2TRr(d+1)/τ . (3.6)

Here, we can consider two cases.

(1) If we apply an RLL code with Rr(d+1) > 1, then the number of RLL block waveforms
is larger than the number of uncoded block waveforms. Thus, we can increase the informa-
tion rate, i.e., Rr(d+ 1)/τ > 1/τ .

(2) If we apply an RLL code with dmin > (d+1) and Rr(d+1) = 1, then coding gain can be
achieved within the same minimum channel symbol duration and for the same information
rate. Accordingly, the energy per RLL symbol is calculated as Es = Eb/(d + 1), and the
total energy in time T is equal to qEb.
In the following sections, we consider the second case where we keep the information rate
constant.

Example 3.3. In Table 3.4, we summarized some constructed RLL codes that satisfy
Rr(d + 1) ≥ 1. Let us consider the (d = 1)-constraint RLL code with Rr = 9/18 and
dmin = 3. Since the condition

2TRr(d+1)/τ = 2T/τ (3.7)

is satisfied for Rr(d + 1) = 1, we can map a set of 29 uncoded information blocks to the
set of 29 RLL coded blocks within the same block transmission time T = 9τ and the same
minimum channel symbol duration τ ′ = τ

2 . The minimum Euclidean distance is increased
from 2

√
Eb to

√
6Eb. Hence, coding gain can be expected.
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Figure 3.4: Binary waveforms of a set of uncoded and RLL coded sequences, d = 1.

3.3 Spectral Analysis of Transmitted Sequences

The PSD function of a signal shows the distribution of the average signal power versus
frequency (power per Hz), and it offers a measure of the frequency occupation. In this
section, we first study the PSD of the maxentropic (with maximum information content)
RLL sequences. Later, we are concerned with the estimation of the spectral characteristics
of RLL coded signals using BPSK modulation.

3.3.1 Spectral Density of Maxentropic RLL codes

RLL sequences with maximum information contents are defined as maxentropic RLL se-
quences. In a maxentropic RLL sequence, the runlength of length Lj has probability of
occurrence [26]

Pr(Lj) = λ−j, j = (d+ 1, ...), (3.8)

where λ is the largest real root of the characteristic equation given in Eq. (3.3). The proof
of Eq. (3.8) can be found in [26]. It was shown in [42] that the calculation of the power
spectra for the transmitted sequence of binary symbols, whose run-lengths Ll ∈ (d+ 1, ...)
are independently emitted with probability Pr(Ll), is written as

H(w) =
1

Lsin2w/2

1− |G(w)|2
1 + |G(w)|2 , (3.9)
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where G(w) =
∞∑

l=d+1

Pr(Ll)e
jwl and L =

∞∑
l=d+1

lP r(Ll). Truncating the infinite sum to

large values only leads to minor errors. Using the run-length probability distribution for
the maxentropic RLL sequences, the power spectra of baseband RLL sequences for various
values of (d+1) can be calculated. In Subsection 3.1.1, we showed that the rate of an RLL
encoder that satisfies the given d-constraint cannot exceed a quantity, which can be referred
as the asymptotic information rate of RLL sequences, Cd. If a number of (d+ 1) code bits
is transmitted in τ seconds, then the maximum information content for the RLL codes is
expressed as (d + 1)Cd bits/τ . In magnetic recording, the quantity (d + 1)Cd is called as
packing density.

In Fig. 3.5, we normalize the frequency scale so that the information rate stays constant,
in which case the maxentropic RLL sequences with different d parameters have different
minimum channel symbol duration. The power spectra of the baseband BPSK modulation
is represented as d = 0. As d increases, the frequency occupation of the main lobe and
the spectral density at zero frequency decreases. Furthermore, the peak in the spectrum
increases and shifts in the direction of lower frequencies.

For the magnetic recording systems, Wolf [34] discussed how the factor (d+1)Cd influences
the recording density. He stated that, in the absence of noise, for increasing (d+1) a larger
amount of information can be stored at a minimum channel symbol duration, see Table 3.5.
This observation is used in this thesis in a different way. In our case, increasing (d + 1)
enables the RLL encoder to use an RLL code in which the Hamming distance between the
RLL codewords is larger than (d + 1). This leads to a combined RLL encoder-modulator
that establishes a correspondence between the information bits and the channel symbols
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Figure 3.5: Spectral density of maxentropic RLL codes (same information rate).
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without changing the minimum symbol duration. The receiver then performs a ML soft
decoding at the demodulator output.

Table 3.5: Cd and (d+ 1)Cd as a function of d

d=0 d=1 d=2 d=3 d=4 d=5

Cd 1 0.6942 0.5515 0.4650 0.4057 0.3620

(d+ 1)Cd 1 1.388 1.654 1.860 2.028 2.172

3.3.2 Spectral Density Estimation of RLL coded modulation

We consider the estimation of the spectral characteristics of RLL coded signals by using
Welch’s method, see [43]. Welch’s method involves the following main steps.

• First, the sequence is subdivided into successive data segments, where we allow that
the data segments can overlap.

• The data segments are windowed with a specified window, such as a Hamming window,
see [44]. The length of the window is chosen as the segment length.

• The periodogram is computed for each segment. It converts the signal from the time
domain to the frequency domain applying the fast Fourier transform (FFT), and then
computes the squared magnitude of the result.

• The expected value of the periodogram over the set of periodograms is calculated to
form the estimate of the spectral density.

Fig. 3.6 compares the simulated power spectra of RLL coded BPSK modulation with the
uncoded BPSK modulation for the same minimum channel symbol duration. Table 3.6
shows the parameters of the selected RLL codes with dmin = d + 2. To ensure that each
transmitted BPSK symbol contains an integral number of cycles of the carrier wave, the
carrier frequency is chosen multiple of 1/τ ′ = (d + 1)/τ . We conclude from Fig. 3.6 that
the PSD stays almost unchanged for the same minimum channel symbol duration.

In Fig. 3.7, we present the PSD of the uncoded 2-FSK modulation with d = 0 and (d = 1)-
constraint RLL coded 2-FSK modulation for the same minimum channel symbol duration.
Note that the minimum frequency separation between two frequencies for orthogonality is
(d+1)/τ for noncoherent reception. It can be seen that the proposed coded FSK modulation
scheme does not lead to any additional frequency occupation in PSD.

Table 3.6: Selected RLL codes for dmin = d+ 2.
d Rr dmin Rr(d+ 1)

1 9/18 3 1
3 6/24 5 1
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Figure 3.6: Simulated spectral density of RLL coded (dmin = d + 2) and uncoded BPSK
modulation with the same minimum channel symbol duration.

Figure 3.7: Simulated spectral density of RLL coded (dmin = d + 2) and uncoded 2-FSK
modulation with the same minimum channel symbol duration, τ is normalized to one.
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3.4 Communication System

The communication system is depicted in Fig. 3.8. At the transmitter, one RLL symbol ck
is generated every τ ′ seconds, where the symbol length is written by τ ′ = τ

(d+1) , see Section
3.2. The generated symbols are passed through a transmit filter and sent through an AWGN
channel. Throughout the thesis, we assume intersymbol interference (ISI)-free transmission
over an ideal rectangular channel of bandwidth B. At the receiver, the matched-filter
samples at the signaling rate 1/τ ′ = (d+1)/τ samples/s. If the integrate-and-dump circuit
is used for the implementation of the matched filter, the integrator should be restored
to its initial condition every τ ′ seconds. The sampling clock in the proposed RLL coded
modulation scheme runs (d + 1) times faster than the clock in the uncoded modulation.
With perfect timing and carrier-phase synchronization, the output of the sampling at time
instant k can be written as

rk = ck + gk, (3.10)

where gk denotes an i.i.d. Gaussian noise sample with zero mean and noise spectral density
N0. The SNR is defined by

SNR =
Es

N0
=

Eb

N0(d+ 1)
, (3.11)

where Es is the channel symbol energy in a symbol duration τ ′. Since τ ′ = τ/(d + 1), the
information bit energy in a bit duration τ is calculated as Eb = Es(d+ 1).

3.4.1 The Maximum-Likelihood Receiver

The RLL encoder translates the information block into RLL codeword c ∈ C of length n,
where c = (c1, ..., cn). We assume that every RLL codeword is transmitted equally likely
with the probability P (c) = 1/|C|, where |C| is the cardinality of C. The set of all possi-
ble code symbols ck depends on the modulation scheme adopted. For BPSK modulation,
we obtain ck ∈ {−1,+1}. After the transmission over the AWGN channel, soft-decision
decoding can be applied. It means that the decoder operates on unquantized soft output
samples r = (r1, ..., rn) of the matched filter. We wish to design a receiver that maximizes
the conditional PDF p(r1, ..., rn|c). Such a receiver is called the ML receiver.

Since the channel noise is assumed to be white and Gaussian with the PDF p(rk|ck) = p(gk)
as given by Eq. (2.1), the joint PDF of p(r1, ..., rn|c) may be expressed as a product of n
marginal PDFs, i.e.,

p(r1, ..., rn|c) =

n∏

k=1

p(rk|ck), (3.12)

Transmit
FilterRLL symbols

t

Matched
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Figure 3.8: Communication system for the RLL coded BPSK modulation.
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=
n∏

k=1

1√
2πσg

e

(

− (rk−ck)2

2σ2
g

)

, (3.13)

=

(
1√
2πσg

)n

e

(

−
n
∑

k=1

(rk−ck)2

2σ2
g

)

. (3.14)

By taking the logarithm and neglecting all the factors independent of c, the ML decoding
rule for BPSK modulation can be written as

max
c∈C

p(r|c) = min
c∈C

n∑

k=1

(rk − ck)
2. (3.15)

In Eq. (3.15),
n∑

k=1

(rk − ck)
2 is the Euclidean square distance between the vectors r and c.

In other words, the ML decoder finds the closest signal to r in Euclidean space.

3.4.2 RLL Codeword Error Probability

The performance of the RLL coded modulation scheme is evaluated with respect to the RLL
codeword error probability, PRLL. It is defined as the probability PRLL = P (c′ 6= c) that
the decoded RLL codeword c′ is different from the transmitted codeword c. In general,
exactly calculating PRLL is a difficult task. Hence, the union bound is employed which
yields an asymptotically tight upper bound on PRLL, and it is given as

PRLL := P (c′ 6= c) ≤
∑

c∈C
P (c)

∑

c′ ∈ C

c′ 6= c

P (c → c′), (3.16)

where P (c) is the probability that the RLL codeword c is transmitted, and P (c → c′) is the
pairwise error probability (PEP). The PEP is the probability that, in the decision between
two RLL codewords cǫC and c′ǫC, c′ is erroneously decoded given that c was transmitted.
We assume that every RLL codeword is transmitted equally likely with the probability
P (c) = 1/|C|. Intersymbol interference-free signaling with transmission over the AWGN
channel is assumed. After a matched filter detector, we apply ML decoder. Using the fact
that the codewords having the minimum distance dmin have the highest two codeword error
probability P (dmin), we write the PEP as

P (c → c′) ≤ P (dmin),

≤ Q(

√
dmin2Es

N0
), (3.17)

where the Q-function is defined as Q(α) = 1/
√
2π

∞∫
α
e−

x2

2 dx, and Es is the RLL bit energy

in a duration τ ′. BPSK modulation is considered, and since the system is designed such
that Rr(d+1) = 1, the information bit energy Eb in a symbol duration τ can be calculated
as Es = EbRr = Eb/(d+ 1). Thus, Eq. (3.17) can be rewritten as

P (c → c′) ≤ Q(

√
dmin

(d+ 1)

2Eb

N0
). (3.18)
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Note that compared with uncoded BPSK modulation, the same amount of information is
transmitted within the same block transmission time T = qτ . Since the total energy in
a block time T does not change, there is no efficiency loss compared with uncoded BPSK
modulation in Eq. (3.18). The asymptotic coding gain Gasy for large SNR is given by

Gasy = 10 log10(
dmin

d+ 1
). (3.19)

It can be seen that the PEP of the RLL coding is dependent on the parameters dmin and
(d+1). Large values of d could give larger improvement in (d+1)Cd, see Table 3.5. However,
codes with larger values of d can be constructed at the expense of a lower efficiency and
an increased complexity due to the increased RLL code length. Furthermore, the loss due
to the parameter (d+ 1) can be compensated by using higher minimum distance dmin > 1.
However, codes with desired dmin leads to a lower efficiency, see Table 3.4. From Eq. (3.16),
the RLL codeword error probability can be upper bounded as

PRLL ≤ |C|Q(

√
dmin

(d+ 1)

2Eb

N0
). (3.20)

Fig. 3.9 depicts the simulated RLL codeword error probability as a function of Eb/N0

for varying d and dmin. The transmission over the AWGN channel is assumed for the all
curves. As we discussed, the RLL codeword error probability depends mainly on the code
parameters dmin and (d+ 1). The error performance is driven by the expected coding gain
10 log10(

dmin
d+1 ).
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Figure 3.9: RLL coded BPSK transmission with varying d and dmin (the same minimum
channel symbol duration).
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3.5 RS-RLL Concatenated Coding Scheme

It can be observed in Table 3.4 that for dmin < (d + 2), high rate codes can be selected
such that the product Rr(d + 1) is larger than one. In this case, larger coding gains can
be achieved by a serial concatenation of an error control code (ECC) with an RLL code.
Accordingly, since a single bit error can cause a burst error at the RLL decoder, the outer
ECC code must have the capability of correcting burst errors. A suitable example for this
type of a code is RS code.

The basic transmitter is shown in Fig. 3.10. An advantage of this scheme is that since there
is no error propagation between the RLL blocks, we can efficiently use the RS code error
correction capability. The explanation of the modified scheme is as follows.

Without loss of generality, we again consider an uncoded system with BPSK modulation,
where the information has a bit duration of τ seconds. We transmit q information bits in
time T = qτ with a total energy qEb. This corresponds to the set of 2T/τ block waveforms.
If RS coding is used with a rate RRS = q/m, we transmit m RS symbols with a minimum
code symbol duration of τ̂ = τ q

m seconds in the same time T . The energy per RS symbol
is ERS = q/mEb. A binary RLL encoder with Rr = m/n is applied after the RS encoder.
The set of all possible sequences which the RLL encoder can generate satisfies the (d + 1)
constraint. The time interval T is partitioned into RLL symbols with duration τ ′ seconds.
This corresponds to the set of 2TRRSRr/τ ′ block waveforms for q information bits. Since
the comparisons are made on the basis of the same minimum channel symbol duration, we
choose τ ′ = τ

(d+1) seconds, see Fig. 3.11. Thus, a number of TRRSRr(d+1)/τ input symbols

can be mapped onto the set of 2TRRSRr(d+1)/τ block waveforms. For RRSRr(d + 1) = 1,
the same amount of information with channel coding can be transmitted within the same
minimum channel symbol duration compared with the uncoded modulation. The energy
per RLL symbol is reduced to Es = Eb/(d + 1), and the total energy in time T is equal to
qEb. The design criteria for the coded modulation scheme can be summarized as

RRSRr(d+ 1) =
q

m

m

n
(d+ 1) = 1. (3.21)

If Eq. (3.21) is satisfied, we can conclude that the essential PSD of the coded BPSK
modulation scheme is almost the same as essential PSD of the uncoded BPSK modulation.
Furthermore, the rate of the RS code can be lower bounded as

RRS ≥ 1

(d+ 1)Cd
, (3.22)

see Table 3.5 for the quantity (d+ 1)Cd as a function of d.

RS encoder RLL encoder

constant envelope
modulation

d+1minimum 
same symbols

Source channelModulator
(PSK, FSK)

Figure 3.10: Block diagram of a basic transmitter for the concatenated encoding.
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Figure 3.11: Illustration of the binary waveform of the RS-RLL coded sequences.

3.5.1 Design Example of the RS-RLL Concatenated Coding Scheme

A conventional RS code is a non-binary block code with code parameters (2p−1, 2p−1−2t),
where p is the number of bits in a symbol, 2p−1 is the block length in symbols, 2p−1−2t is
the number of information symbols in the message, and 2t is the number of parity symbols.
Thus, the rate can be calculated as RRS = q/m = (2p − 1 − 2t)/(2p − 1). The code is
capable of correcting any combination of t or fewer errors. In the construction of RS codes,
2p symbols are formed by the Galois field of 2p, shortly GF(2p). For more information on
RS codes, we refer to [58].

Example 3.4. Let us consider Fig. 3.12 for the design example using RS code over GF(28).
It can be seen that a RS(255,223) code with 8 bits per symbol is used as an outer code.
This means that symbols are arranged in words of 255 symbols, of which 223 symbols are
information and the other 32 are parity. Whenever the RS decoder detects 16 or fewer
symbol errors, it can correct these errors. Each RS symbol is encoded further by a (d = 2)-
constraint RLL code with dmin = 3. The number of bits per RS symbol is chosen as the
length of the input block of the RLL encoding. The rates of the RS and RLL codes are
selected such that

RRSRr(d+ 1) =
223

255

8

21
3 ≈ 1.

Moreover, a concatenated decoding scheme with a soft RLL block-wise decoding followed
by a hard RS decoding can be applied. In that way, a combination of RS and RLL code
may be quite advantageous.

It should also be noted that the additional complexity introduced by the RLL encoder can
be reduced by selecting small RLL codeword lengths, see Table 3.4.
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Figure 3.12: Bit allocation in the encoding of RS(255,223) and (d = 2)-constraint RLL
codes.

3.5.2 The Performance of the RS-RLL Coded BPSK and Coherent 2-FSK

Modulation

The RS codes are particularly useful for the burst error correction. The RS decoded symbol
error probability, Psym, in terms of the RLL codeword error probability, PRLL is written

Psym = 1−
t∑

j=0

(
2p − 1

j

)
P j
RLL(1− PRLL)

2p−1−j , (3.23)

where
(2p−1

j

)
denotes the binomial coefficient, and it is evaluated as

(2p−1
j

)
= (2p−1)!

j!(2p−1−j)! . An

upper bound on the PRLL for BPSKmodulation is given in Eq. (3.20). A performance trade-
off can be observed between the coding gains achieved by the RS code and the RLL code.
For dmin

(d+1) = 1, no coding gain can be achieved from the RLL code, since 10 log10
dmin
(d+1) = 0.

Thus, the performance is driven by the RS coding gain. Table 3.7 illustrates some of the
constructed RLL codes for dmin

(d+1) = 1.

Table 3.7: Selected RLL codes for dmin = d+ 1.

d Rr dmin Rr(d+ 1) RRS

1 8/14 2 8/7 223/255

2 8/21 3 8/7 223/255

3 6/20 4 6/5 53/63

Fig. 3.13 depicts the bit error rate (BER) as a function of Eb/N0 for the transmission over
the AWGN channel. The code efficiencies are chosen according to Table 3.7. It is apparent
that the transmission with the concatenation of RS and RLL coding has a significant BER
advantage over the uncoded BPSK transmission within the same minimum channel symbol
duration. The improvement achieved by the proposed system is 4 dB at BER of 10−5.
Large coding gains are obtained by using a RLL code as an inner ECC. The RS(255,223)-
RLL(d + 1 = 3) with dmin = 3 shows a slightly better performance due to its distance
profile in the code. Note that since RRSRr(d + 1) = 1, the PSD of the RS-RLL coded
BPSK modulation stays almost the same compared to the uncoded BPSK modulation.
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Figure 3.13: RS-RLL coded BPSK transmission with varying d and dmin (the same minimum
channel symbol duration).

For the RLL codes having dmin = 1, RLL block-wise soft decoding cannot be applied. In
this case, a concatenated decoding scheme with a RLL block-wise hard decoding followed
by a hard RS decoding can be applied. Table 3.8 illustrates some of the constructed RLL
codes for dmin = 1.

Table 3.8: Selected RLL codes for dmin = 1.

d Rr dmin Rr(d+ 1) RRS

1 8/12 1 8/6 191/255

2 8/15 1 8/5 159/255

3 8/18 1 6/(4.5) 145/255

Fig. 3.14 illustrates the BER performance for varying dmin parameters. The performance
trade-off between the coding gains achieved by the RS and the RLL code is quite apparent.
The curve with dmin = (d + 1) has the best BER performance. The RLL codewords are
decoded using soft decision decoding. The uncorrectable errors can be decoded by the RS
decoder using hard decision decoding.

In Fig. 3.15, we plotted the BER performance of coherent 2-FSK transmission. In all curves,
the minimum channel symbol duration is kept constant. Since the FSK transmission has a
constant envelope modulation, RS-RLL coded FSK modulation scheme can be suitable for
the PLC, where there is a limitation on the maximum transmitted power and bandwidth.
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Figure 3.14: RS-RLL coded BPSK transmission with varying dmin for (d+1) = 3 (the same
minimum channel symbol duration).
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3.5.3 Bliss Encoding Scheme

It has been proposed in [28] and [27] to revert the order of application of the RS code and
the RLL code to avoid the error propagation introduced by the RLL decoding. In Bliss
encoding, the source data are first encoded into a long RLL codeword. This leads to a
construction of long RLL encoded data stream using a high rate RLL encoder. Then, the
RLL codewords are grouped into bytes, and they are encoded by the RS encoder. Since the
parity bytes that are generated by the RS encoder do not obey the d-constrained, a second
RLL encoder is applied to encode the parity bytes. The rate of the second RLL encoder is
lower than the first RLL encoder. The basic block diagram of the encoder can be illustrated
as in Fig. 3.16.

����������������
����������������
����������������
����������������RLL sequence

Long RLL codeword
with a high code rate

channel

parity

bits

����
����
����

����
����
����

RS code 2nd RLL encoder

Source data 1st RLL encoder

Figure 3.16: Basic block diagram of the Bliss encoding scheme.

The disadvantage of this scheme is that since no soft decoding is possible at the decoder
side, large coding gains cannot be achieved. The second RLL decoder has to perform a
hard decision decoding on the received parity bits. Afterwards, the RS decoder performs
hard decision on symbols with a reduced symbol energy. Then, the first decoder delivers
the source sequence. The advantage of the Bliss scheme depends on the construction of
high rate RLL code which is applied in the first RLL encoder. In our proposed RLL code
construction algorithm, we show that the constructed RLL code rates with dmin = 1 are
already very close to their theoretical limits, see Table 3.4.

3.6 The Performance of RS-RLL Coded Noncoherent FSK

Modulation

In this section, we discuss the performance of the RS-RLL coded FSK modulation scheme
over the AWGN channel with noncoherent reception. The basic system under investigation
is shown in Fig. 3.17. Without loss of generality, we consider coded 2-FSK modulation,
where the transmitter encodes the information using a block code C of length n with
codewords c = (c1, ..., cn) and code symbols ck ∈ {0, 1}. The 2-FSK modulator maps each
symbol ck onto one of the corresponding frequencies f0 and f1. The frequencies are chosen
such that they are multiple of 1/τ ′ in order to satisfy the orthogonality, where τ ′ denotes
the duration of the one RLL symbol. Hence, the minimum frequency separation between
the frequencies is 1/τ ′ = (d+ 1)/τ , where τ is the bit duration of the uncoded system. We
note that the transmission of only one frequency per time unit automatically leads to a
constant envelope modulator output.
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Figure 3.17: Basic block diagram of RS-RLL coded noncoherent 2-FSK transmission over
AWGN channel.

3.6.1 Demodulation and ML Block Decoding of FSK symbols

Let us assume that the code symbols are transmitted over a memoryless AWGN channel.
The receiver consists of a demodulation unit and of a maximum-likelihood block decoding
unit. As a demodulation unit, a noncoherent correlation receiver is used [61]. For a trans-
mitted codeword c ∈ C, the two correlators outputs, namely in-phase I and quadrature Q
components at the transmitted frequency ck and the time instant k are

rck,k,I =
√

Es cosφ+ gck,k,I , (3.24)

rck,k,Q =
√

Es sinφ+ gck,k,Q, (3.25)

where Es = Eb/(d+1) is the channel symbol energy, φ is an arbitrary phase introduced by
the channel, and the noise samples gck,k,{I,Q} are complex Gaussian random variables with
variance σ2

g . For the frequency l 6= ck, the signal components vanish independent of the
values of the phase shift φ. In such a case, the other correlator outputs consist of complex
Gaussian noise only, i.e.,

rl,k,I = gl,k,I , rl,k,Q = gl,k,Q, l 6= ck. (3.26)

Furthermore, using Eq. (2.1), the joint PDF for rck,k,I and rck,k,Q conditioned on φ is

p(rck,k,I , rck,k,Q| phi) =
1

2πσ2
g

e−[(rck,k,I−
√
Es cos φ)2+(rck,k,Q−

√
Es sinφ)2]/2σ2

g (3.27)

and for l 6= ck, we have

p(rl,k,I , rl,k,Q) =
1

2πσ2
g

e−(r2
l,k,I

+r2
l,k,Q

)/2σ2
g . (3.28)

ML Block Decoding of Noncoherent 2-FSK modulation for the AWGN channel

The decoding of the transmitted RLL codeword is based on the received vector r =
(r1, ..., rn). We assume that every RLL codeword is sent with equal probability P (c) =
1/|C|. The ML receiver chooses the codeword c that maximizes the conditional PDF
p(r1, r2, ..., rn|c). The decoding metric ϕ(c, r) can be written as

ϕ(c, r) = max
c∈C

p(r|c). (3.29)
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The PDF p(r|c) can be obtained by averaging the PDFs p(r|c, φ) over the PDF of the
random carrier phase, i.e.,

p(r|c) =
2π∫

0

p(r|c, φ)p(φ)dφ, (3.30)

where we assume that the phase shift φ stays constant in the interval 0 ≤ φ ≤ 2π for a
block length n, and it has a uniform distribution, i.e., p(φ) = 1/2π. We neglect the factors
independent of the codeword c, since they do not affect the maximization. As the channel
is memoryless, Eq. (3.29) can be rewritten as

ϕ(c, r) = max
c∈C

2π∫

0

n∏

k=1

p(rk|ck, φ)dφ. (3.31)

The joint PDF of rk = [r0,k,I r0,k,Q r1,k,I r1,k,Q] is a product of the marginal PDFs, i.e.,

p(rk|ck, φ) = p(rck,k,{I,Q}|ck, φ)p(rl,k,{I,Q}|ck). (3.32)

Using Equations (3.27) and (3.28), Eq. (3.32) can be rewritten as

p(rk|ck, φ) = (
1

2πσ2
g

)2e
−

[(rck,k,I
−
√

Es cos φ)2+(rck,k,Q
−
√
Es sinφ)2]

2σ2
g e

−
(r2

l,k,I
+r2

l,k,Q
)

2σ2
g ,

= (
1

2πσ2
g

)2e
−

r2
ck,k,I

+r2
ck,k,Q

+r2
l,k,I

+r2
l,k,Q

+Es

2σ2
g e

√
Es(rck,k,I

cos φ+rck,k,Q
sinφ)

σ2
g . (3.33)

Substitution of this result in Eq. (3.31) and neglecting all factors independent of the
codeword c yields ML decoding metric as

ϕ(c, r) = max
c∈C

2π∫

0

n∏

k=1

e
√
Es(rck,k,I cosφ+rck,k,Q sinφ)dφ, (3.34)

= max
c∈C

2π∫

0

e

n
∑

k=1
(
√
Es(rck,k,I cosφ+rck,k,Q sinφ))

dφ, (3.35)

= max
c∈C

I0


n
√
Es

√√√√
(

n∑

k=1

rck,k,I

)2

+

(
n∑

k=1

rck,k,Q

)2

 dφ, (3.36)

where I0(x) is the modified Bessel function of order zero. Note that maximizing P (r|c) is
equivalent to maximizing lnP (r|c). By applying logarithmic maximization and the steepest-
descent approximation I0(x) = exp(x2/4), the ML decoding metric can be written as

ϕ(c) = max
c∈C



(

n∑

k=1

rck,k,I

)2

+

(
n∑

k=1

rck,k,Q

)2

 , (3.37)

see Fig. 3.18 for the block diagram of the receiver.

32



()
2

()
2

r

cos(2πf0(t−kτ ′))

cos(2πf1(t−kτ ′))

sin(2πf0(t−kτ ′))

sin(2πf1(t−kτ ′))

(k+1)τ ′
∫

kτ ′
() dt

(k+1)τ ′
∫

kτ ′
() dt

(k+1)τ ′
∫

kτ ′
() dt

(k+1)τ ′
∫

kτ ′
() dt

r0,k,I

r1,k,I

r0,k,Q

r1,k,Q

n∑
k=1

rck,k,I

n∑
k=1

rck,k,Q

max
c

Figure 3.18: Block diagram of the block-wise noncoherent ML receiver for the AWGN
channel.

Fig. 3.19 depicts the simulation results of noncoherent FSK transmission for the AWGN
channel. In all curves, the minimum channel symbol duration is kept the same. It is
apparent that the concatenation of RS and RLL coding has a significant advantage over
the uncoded 2-FSK without changing the essential PSD of the channel symbols, see Fig.
3.7. The improvement achieved by the proposed system is 3 dB at BER of 10−3 and 5
dB at BER of 10−5. Large coding gains are obtained by using the RLL code as an inner
code, which can apply block-wise soft decision decoding. The RS(255,223)-RLL(d = 2) with
dmin = 3 has the best performance. The RLL code corrects single bit errors, whereas the
RS code corrects the remaining symbol errors.
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Figure 3.19: RS-RLL coded 2-FSK with varying dmin for the AWGN channel.
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3.7 M-level RLL Coded M-ary FSK modulation

So far, we have discussed the use of binary RLL coded modulation schemes. For an M -level
or M -ary symbol alphabet {0, 1, ...,M − 1}, an M -ary d-constrained RLL sequence has the
property that each run of symbols must have a length at least d+1. Extension of the binary
RLL coded modulation scheme to M -ary RLL coded modulation scheme is as follows. We
consider a concatenated coding scheme with RS coding in the outer stage and RLL coded
FSK modulation in the inner stage, see Fig. 3.20. Each RS symbol with m bits per symbol
is encoded by the M -ary d-constrained RLL encoder which translates the RS symbols of m
bits into RLL codewords of n M -ary symbols. The rate of the RLL coding is calculated as
Rc = m/n bits per symbol. Afterwards, an M -ary FSK modulation scheme can be applied
by assigning a transmission frequency for each M -ary symbol. The design criteria for the
coded modulation scheme can be rewritten as

RRSRr(d+ 1) = log2 M. (3.38)

If Eq. (3.38) is satisfied, we can conclude that the same amount of information with channel
coding can be transmitted within the same minimum channel symbol duration compared
with the uncoded modulation. Thus, the PSD of the M -ary RLL coded modulation scheme
is almost the same as the PSD of the uncoded M -ary modulation scheme.

Table 3.9 shows the parameters of constructed ternary (M=3) and quaternary (M=4) RLL
codes for dmin = 2 and d = 1. We also added the rate of the RS encoder that we can
accommodate without changing the minimum channel symbol duration.

Table 3.9: Selected multi-level RLL codes.

M d Rr dmin RRS

3 1 10/12=0.83 (Cd = 1) 2 0.95

4 1 11/10=1.1 (Cd = 1.2) 2 0.91

It should be noted that as M increases, the lower bound on the rate of the RS code also
increases which decreases the RS coding gain. For the M -ary RLL coded modulation
scheme, the lower bound on the rate of the RS code can be written as

RRS ≥ log2 M

(d+ 1)Cd
. (3.39)

RS encoder RLL encoder
M −arySource

symbols

binary

d+1minimum 
same symbols

constant envelope
modulation

symbols
M −ary

FSK

channel

Figure 3.20: Block diagram of the M -ary RLL coded modulation scheme.
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Table 3.10 shows log2 M
(d+1)Cd

as a function of M . A significant loss in the minimum achiev-
able RS code rate can be observed. This implies a limitation on the M -level RLL coded
modulation.

Table 3.10: The lower bound on the rate of the RS code for d = 1 and varying M .

M
log2 M
(d+1)Cd

2 0.7203

3 0.7925

4 0.8333

Fig. 3.21 illustrates the BER performance of the M -ary RLL coded noncoherent M -FSK
transmission over the AWGN channel. The code rates are chosen according to Table 3.9.
The minimum channel symbol duration is the same for the M -FSK transmission curves,
and the frequencies are chosen so that they are multiple of 1/τ ′ in order to satisfy the
orthogonality, where τ ′ denotes the duration of the one RLL symbol. As expected, the
4-ary RLL coded FSK system outperforms the binary and the ternary coded FSK systems.
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Figure 3.21: M -ary RLL coded noncoherentM -FSK with RS coding for the AWGN channel.
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3.8 ML Block Decoding of Noncoherent 2-FSK Modulation

for the AWCN Channel

In this section, the performance of the RS-RLL coded FSK modulation scheme for the
block transmission over the AWCN channel is discussed. We also consider the influence
of the narrow band noise on the receiver. Fig. 3.22 shows the basic block diagram of the
communication scheme under investigation.

Let us first assume that the code symbols are transmitted over a memoryless AWCN channel,
see Section 2.2 for the channel definition. The receiver consists of a demodulation unit and
of a ML block decoder. As a demodulation unit, a noncoherent correlation receiver is
used [61]. For a transmitted codeword c ∈ C, the two correlators outputs, namely in-phase
I and quadrature Q components at the transmitted frequency ck and the time instant k are

rck,k,I =
√

Es cosφ+ wck,k,I, (3.40)

rck,k,Q =
√

Es sinφ+ wck,k,Q, (3.41)

where Es is the channel symbol energy, φ is an arbitrary phase introduced by the channel,
wck,k,{I,Q} are the channel noise symbols at time instant k that consist of the impulsive
noise and the background noise symbols, see Section 2.2. For the frequency l 6= ck, the
signal components vanish independent of the values of the phase shift φ. Hence, the other
two correlator outputs consist of only noise.

The idea behind the decoder is to estimate the channel state vector s = (s1, ..., sn) based
on the received vector r = (r0,1,{I,Q}, r1,1,{I,Q}..., r0,n,{I,Q}, r1,n,{I,Q}). Then, given s, the
receiver chooses the codeword c which maximizes the conditional PDF p(r|c, s).

3.8.1 Estimation of Channel State Information

In this subsection, we design an channel state estimator based on the received vector r.
Since the real and the imaginary part of the impulsive noise have the same variance and
PDF, the estimation unit calculates

Rk = (r0,k,I + jr0,k,Q) + (r1,k,I + jr1,k,Q),

=
√

Es(cosφ+ j sinφ) + ŵk, (3.42)
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Figure 3.22: Basic block diagram of RS-RLL coded noncoherent 2-FSK transmission over
AWCN channel.
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where Rk is the complex value which is the sum of the correlator outputs for one symbol
observation at time instant k, and ŵk is the complex noise symbol with zero-mean and
variance 2σ2

sk
. Using the following relations

|Rk| ≤
√

Es + |ŵk| (3.43)

and Eq. (2.8), the estimator selects the channel state sk that maximizes the following

ϕ(sk) = max
sk=0,1,2

Ask

sk!σ2
sk

e
(− (|Rk |−

√
E)2

4σ2
sk

)
, (3.44)

where we neglected all factors independent of the maximization and truncated the number
of channel states to three. In Eq. (3.44), P (sk) = e−AAsk

sk!
is the probability of selecting

channel sk with the channel noise variance σ2
sk

= σ2
g +

σ2
i sk
A . In estimating the vector s, Eq.

(3.44) must be computed for every signal interval k, where k = 1, ..., n. Fig. 3.23 shows the
block diagram of the channel state estimator.

3.8.2 ML Decoding Rule

For a given channel state information vector s, the ML decoder maximizes the conditional
PDF p(r|c, s). It can be obtained by averaging the PDFs p(r|c, s, φ) over the PDF of the
random carrier phase, i.e., it holds that

max
c

p(r|c, s) = max
c

2π∫

0

n∏

k=1

p(rk|ck, sk, φ)p(φ)dφ, (3.45)

where sk is the channel state while transmitting the code symbol ck at time instant k.
Moreover, we assume that the phase shift φ stays constant in the interval 0 ≤ φ ≤ 2π for a
block length n, and it has a uniform distribution, i.e., p(φ) = 1/2π. We neglect the factors
independent of the codeword c, since they do not affect the maximization. As the channel
is memoryless, Eq. (3.45) can be rewritten as

max
c∈C

2π∫

0

n∏

k=1

p(rk|ck, sk, φ)dφ. (3.46)

In−phase
Channel

Quadrature
Channel

j

rk

r{0,1},k,Q

r{0,1},k,I

max
sk=0,1,2

ϕ(sk)Rk

Figure 3.23: Block diagram of the channel state estimator for the noncoherent 2-FSK
transmission over the AWCN channel.
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The joint PDF of rk = [r0,k,I r0,k,Q r1,k,I r1,k,Q] may be expressed as a product of the
marginal PDFs, i.e.,

p(rk|ck, sk, φ) = p(rck,k,{I,Q}|ck, sk, φ)p(rl,k,{I,Q}|ck, sk); l 6= ck. (3.47)

Using Equation (2.10), Eq. (3.47) can be rewritten as

p(rk|ck, sk, φ) = (
1

2πσ2
sk

)2e
−

[(rck,k,I
−
√

Es cosφ)2+(rck,k,Q
−
√

Es sinφ)2]

2σ2
sk e

−
(r2

l,k,Q
+r2

l,k,I
)

2σ2
sk ,

= (
1

2πσ2
sk

)2e
−

r2
ck,k,I

+r2
ck,k,Q

+r2
l,k,I

+r2
l,k,Q

+Es

2σ2
sk e

√
Es(rck,k,I cos φ+rck,k,Q

sinφ)

σ2
sk .(3.48)

Substitution of this result in Eq. (3.45) and neglecting all factors independent of the
codeword c yields ML decoding metric as

max
c

p(r|c, s) = max
c∈C

2π∫

0

n∏

k=1

e

√
Es(rck,k,I

cos φ+rck,k,Q
sinφ)

2σ2
sk dφ, (3.49)

= max
c∈C

2π∫

0

e

n
∑

k=1

(
√

Es(rck,k,I cosφ+rck,k,Q
sinφ))

2σ2
sk dφ, (3.50)

= max
c∈C

I0


n
√
Eb

√√√√
(

n∑

k=1

rck,k,I
2σ2

sk

)2

+

(
n∑

k=1

rck,k,Q
2σ2

sk

)2

 dφ, (3.51)

where I0(x) is the modified Bessel function of order zero. Note that maximizing P (r|c) is
equivalent to maximizing lnP (r|c). By applying logarithmic maximization and the steepest-
descent approximation I0(x) = exp(x2/4), the ML decoding metric can be written as

max
c

p(r|c, s) = max
c∈C



(

n∑

k=1

rck,k,I
σ2
sk

)2

+

(
n∑

k=1

rck,k,Q
σ2
sk

)2

 , (3.52)

where the channel state sk is estimated using Eq. (3.44). Fig. 3.24 shows the block diagram
of the block-wise noncoherent ML receiver for the AWCN channel.

In the following simulation results, the BER is plotted as a function of the signal-to-Gaussian
background noise ratio, i.e.,

SBNR = Eb/2σ
2
g (3.53)

where Eb = Es(d + 1) is the energy in a bit duration τ . Furthermore, the impulsive noise
duration is chosen as channel symbol duration τ ′, and the impulsive noise index is selected
as A = 0.1. With this, a heavily disturbed impulsive channel is described. The ratio be-
tween the variance of the Gaussian background noise and the variance of the impulsive noise

is chosen as Γ =
σ2
g

σ2
i

= 10−3.

In Fig. 3.25, the BER for the uncoded (no RS-RLL encoding) noncoherent 2-FSK trans-
mission over AWCN channel is depicted. ML block decoder is applied at the receiver. The
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Figure 3.24: Block diagram of the block-wise noncoherent ML receiver for the AWCN
channel.

block length n is chosen as eight. All curves obtained by the the uncoded 2-FSK transmis-
sion. Additionally, the noncoherent 2-FSK transmission over AWGN channel is plotted for
comparison. A significant improvement can be observed by the noncoherent block decoding
with channel state estimation. The AWCN performance with the proposed decoder follows
the AWGN performance till 10 dB. In the region between 15-35 dB, the BER increases as
the SBNR increases. This is due to the fact that, for increasing SBNR, the impulsive noise
can hardly be distinguished, i.e., the estimator loses more and more information about the
channel state and, therefore, approaches the performance of the receiver without channel
state information.

Fig. 3.26 shows the AWCN performance of the RS-RLL coded 2-FSK system for the same
minimum channel symbol duration. The code parameters are chosen according to Table
3.11. As a lower bound, the curves for the transmission over the AWGN channel are also
presented. Since impulsive noise is expected to occur in every block, a large dmin in the
RLL code can lead to an efficient use of the RS code. Therefore, RLL coding with dmin = 3
can provide large coding gains without leading to an essential change in the PSD of the
channel symbols. At a BER of 10−4, we can observe only a 1 dB gap from the AWGN
channel performance.

Table 3.11: RS and RLL code parameters for the noncoherent 2-FSK with ML block decoder
for the AWCN channel.

d Rr dmin RRS

2 8/15 1 159/255

2 8/17 2 181/255

2 8/21 3 223/255
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Figure 3.25: Uncoded noncoherent 2-FSK with ML block decoder for the AWCN channel
(A = 0.1,Γ = 10−3).
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Figure 3.26: RS-RLL coded noncoherent 2-FSK with ML block decoder for the AWCN
channel (A = 0.1,Γ = 10−3).
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3.9 ML Block Decoding of Noncoherent 2-FSK modulation

for the Narrow Band Noise

The transmission quality of the powerline communication suffers heavily from the narrow
band noise. Often, this type of noise is caused by television sets or computer terminals [14],
and it can be permanent over a long period of time. We assume that when the narrow band
noise exists, the SNR drops dramatically for one transmission frequency, i.e., one frequency
is corrupted during the entire transmission, see Fig. 3.27. In the following analysis, a
simple channel model is used. Non-white Gaussian noise η is added to the signal, where the
variance of the noise at frequency f0 and f1 are σ2

η0 and σ2
η1 , respectively. Moreover, the

SNR at frequency f0 and f1 can be defined as SNR0 =
Es

2σ2
η0

and SNR1 =
Es

2σ2
η0

, respectively.

Under the assumption that the noise is Gaussian, the ML decoding metric can be calculated
in the same way for the AWGN channel. However, the factors related with the SNR can
not be neglected. Using Eq. (3.33), the ML decoding metric can be rewritten as

max
c

p(r|c) = max
c∈C

2π∫

0

n∏

k=1

e
− Es

2σ2
ηck e

√
Es

σ2
ηck

(rck,k,I cosφ+rck,k,Q sinφ)

dφ. (3.54)

By applying logarithmic maximization and the steepest-descent approximation I0(x) =
exp(x2/4), the ML decoding metric can be written as

max
c

p(r|c) = −
n∑

k=1

SNRck,k +

(
n∑

k=1

√
2SNRck,k

rck,k,I
σηck

)2

+

(
n∑

k=1

√
2SNRck,k

rck,k,Q
σηck

)2

.

(3.55)
where SNRck,k represents the SNR at the transmitted frequency ck for the time instant
k. However, in the presence of severe narrow band noise, the energy of the interference
surpasses the energy of the modulator, i.e., the demodulator will always have a large metric.
Hence, no information can be extracted from the disturbed frequency. In that situation,
the narrow band noise can be detected by a threshold detector, and the receiver ignores
the disturbed frequency in the detection. Hence, in the case of 2-FSK, the decision is made
observing the other frequency which can be seen as on-off keying (OOK). Consequently, the
Euclidean distance between two signal points in the modified detection is reduced with a
factor of

√
2.

f0 f1 frequency

narrow band
noise

Figure 3.27: 2-FSK modulation and narrow band noise.
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In Fig. 3.28, the simulated BER for the non-white Gaussian background noise is depicted.
The x-axis denotes the SNR level at the frequency without narrow band noise. The results
are obtained by assuming that the phase shift stays constant during a block transmission
of 8 symbols. It can be seen that the OOK receiver has a good BER performance when the
SNR-ratio between two frequencies exceeds 2 dB. The reduced Euclidean distance between
two signal points gives rise to a loss of around 3,5 dB at BER 10−5 compared to the 2-FSK
system with SNR0/SNR1 = 0 dB (AWGN channel).
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Figure 3.28: Uncoded noncoherent 2-FSK with ML block decoder for the narrow band noise
channel.

3.10 RS-RLL Coded On-Off Keying for the AWCN Channel

As we discussed in Section 3.9, in the presence of narrow band noise, one transmission
frequency is corrupted for a long period of time. Obviously, the optimum strategy can
be to ignore the disturbed frequency in the detection. Then, the decision is made based
on a single frequency, which can be considered as an OOK transmission. However, for
the impulsive noise channel, the performance of block decoded OOK drops badly due to
the dependency of the decision threshold on the signal amplitude and SNR. In order to
overcome this problem, we simply declare a symbol erasure when the symbol is hit by the
impulsive noise. In other words, the corrupted symbol is ignored in the block decoding.
Since the impulsive index A is assumed to be 0.1, the impulse occurs once every 10 channel
symbols, on the average. As a result, in a RS-RLL concatenated coded modulation during
a transmission of one block or 21 RLL symbols, 2 erasures can be expected. Therefore, for
a RLL block with dmin = 3, a soft decision based RLL decoding can be expected to be able
to correct the erasures for the high SBNR.
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Fig. 3.29 illustrates the BER performances of the RS-RLL coded OOK and 2-FSK trans-
missions over the AWCN channel. For all curves, the ML block decoding is applied at the
receiver. The BER performances over the AWGN channel are also added for comparison.
At a BER of 10−4, a 4.5 dB difference can be observed between the coded 2-FSK and
the coded OOK transmission. In the OOK block decoding, noncoherent detection is done
symbol-wise due to the threshold decision. Hence, this leads to a combination loss in block
decoding. It can be also observed in Fig. 3.29 that erasure decoding for the symbols hit by
impulsive noise performs quite well. Compared to the coded OOK Gauss bound, only a 1
dB gap can be observed.

3.11 Conclusion

A combined coding and modulation scheme was described which improves the error per-
formance of constant envelope data transmission. RLL encoder is introduced between the
RS encoder and the constant envelope modulator to control the minimum channel symbol
duration. It was shown that the same amount of information can be transmitted within the
same minimum channel symbol duration with coding gains of 4 and 5 dB at BER of 10−5

compared with the uncoded BPSK and 2-FSK modulation, respectively. Since the PSD of
the signals is related to the minimum channel symbol duration, the PSD stays almost the
same compared with the uncoded modulation. Furthermore, the scheme can be generalized
to a multilevel transmission. However, a loss in the RS code rate can be observed as the
symbol alphabet increases, see Section 3.7. It should also be noted that the additional com-
plexity introduced by the RLL encoder can be reduced by selecting small RLL codeword
lengths, see Table 3.4.
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As an application of the proposed scheme, we considered low frequency range PLC, where
the output voltage and the bandwidth of the transmitters are limited. The performance of
the PLC system is severely degraded by the permanent frequency disturbances and impul-
sive noise. We gave the derivation of the receiver structure using the Middleton Class-A
model and showed that by estimating the channel state information, performance improve-
ment can be obtained. Moreover, we addressed the effect of the narrow band noise on the
2-FSK transmission scheme. Simulation results showed that under a strong frequency dis-
turbance, the decisions can be made based on a single frequency.

In addition to the points mentioned above, the following open problems remain for further
research:

• The synchronization problem has not been studied in this chapter. As the parameter
d of the RLL code increases, the sampling speed also increases which can be a limiting
factor as in magnetic recording.

• Soft decision decoding of Reed Solomon codes might be introduced in the concatenated
coding scheme so that soft information can be passed into the RS decoder.

• Instead of RS codes, convolutional codes might be used in the concatenated coding
scheme. Since convolutional codes are not suitable for burst error correction, an
interleaver can be used between the convolutional encoder and the RLL encoder.
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Chapter 4

Runlength-Limited Code

Construction Based on Minimum

Hamming Distance

The number of bits between two consecutive transitions is called runlength. A sequence of
0’s and 1’s which satisfies a particular set of rules on the placement of symbols is called a
constraint sequence. The d-constraint runlength-limited sequence is characterized as follows.

• d-constraint: Each run of zeros or ones must have a length of at least d+ 1.

A variety of approaches to construct RLL codes is available in the literature. These include
methods for constructing fixed and variable length codes and techniques which employ look-
ahead encoding. A construction algorithm for the fixed length RLL codes with a one-symbol
look-ahead encoding technique was proposed by Hollmann [20,21]. This algorithm has the
advantage that the constructed RLL codes have high rates, simple encoder tables and a
block-wise decoder. They are highly suitable in conjunction with symbol error correcting
codes, such as Reed-Solomon (RS) codes.

In this chapter, we describe construction algorithms for RLL codes with one-symbol look-
ahead encoding techniques having a minimum Hamming distance, shortly dmin, larger than
one. The designed codes enable soft information to be available at the RLL decoder. Hence,
a soft decoding can be used to improve the error rate performance of the system. Our pro-
posed constructions are based on Hollmann’s code construction algorithm. We present
several new high rate RLL codes with specified d-constraint, dmin and code rate. We also
provide efficient bounds on the code sizes. The constructed codes are used in the RLL coded
modulation scheme which is described in Chapter 3.

The rest of the chapter is organized as follows. In Section 4.1, we describe and generalize
the RLL code construction approach given in [20,21]. The RLL code construction methods
for dmin > 1 are proposed in Section 4.2. The final section summarizes the main results
obtained in this chapter.
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4.1 Look-Ahead RLL Code Construction In Terms of Prin-

cipal State-Sets

In this section, the look-ahead RLL code construction in [20] is described for d = 1 and
generalized for d = 2 and d = 3. For ease of presentation, we will first focus on the design
of RLL codes with d = 1.

4.1.1 One-Bit Look-Ahead RLL Code Construction For d = 1

Suppose that we want to design a block-decodable look-ahead RLL code at a given rate of
Rr = m/n. Since the RLL encoded block complies with the d-constraint, the binary strings
in Table 4.1 can not occur at the output of the encoder. As an example, the forbidden strings

Table 4.1: Forbidden strings.

{010} · · · {01d0}
{101} · · · {10d1}

for d = 1 can be written as {010}, {101}. Hollmann [20, 21] showed that a classification
of codewords can be done according to their begin and end types, where they are defined
according to the forbidden strings and labeled by the number of initial and final zeros (or
ones). The begin and end types together constitute the type of the codeword. Consider the
following example.

Example 4.1. The begin and end types for the (d = 1)-constraint are shown in Tables
4.2 and 4.3. Since the forbidden strings for d = 1 can be written as {010} and {101}, it is
enough to consider four begin and four end types.

Table 4.2: The begin types for d = 1.
Begin type Initial part of the codeword

z1 01

z2 00

o1 10

o2 11

Table 4.3: The end types for d = 1.
End type Final part of the codeword

z1 10

z2 00

o1 01

o2 11

The type of codeword can be represented as begin-end. For example, the codeword (01100)
is represented as z1-z2. We now show that codeword types can be used to formulate suc-
cessor rules, principal state-sets and code classes.

Successor relations: In the one symbol look-ahead code, encoding is done such that
the concatenation of two RLL codewords also satisfies the given d-constraint. Such a con-
catenated sequence of length 2n is called admissible. If a concatenated sequence cc′ of a
codeword c with a codeword c′ is admissible, then the codeword c′ is a successor of the
codeword c. For example, since the concatenation (01100 − 01110) is admissible for the
(d = 1)-constraint, the codeword (01110) is a successor of the codeword (01100). The suc-
cessor relations of a code can be described by the type of the codewords. For example a
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codeword with end type o1 can be only followed by the codewords that have begin types
of o1 or o2, while codewords that end with z2 can be followed by three begin types with-
out violating the (d = 1)-constraint. Table 4.4 summarizes the successor relations of the
(d = 1)-constraint.

Table 4.4: Successor relations of (d = 1)-constraint.

End type begintype

z1 z1 z2 - -

z2 z1 z2 - o2

o1 - - o1 o2

o2 - z2 o1 o2

Principal state-sets and cover lists: The principal state-sets and the cover lists can be
designed using the successor relations. The principal state-sets are described in terms of
end types, and the cover lists are described in terms of begin types. They are chosen such
that each list from the cover lists can be concatenated freely to any state from the principal
states. Let us consider Table 4.5 which illustrates the cover lists and principle state-sets
for the (d = 1)-constraint. It can be seen that the begin type z2 forms a cover list, i.e.,

Table 4.5: Cover list and principal state-sets.

Cover lists Principal state-sets

z2 z2

o2 o2

z1 & o1 z1 & o1

z2 is a successor to each principal state-set. In other words, each of the principal state-set
contains at least one end type which can be concatenated freely with the begin type z2.
This describes a look-ahead assignment. One of the end type is chosen depending on the
upcoming begin type in the cover list.

Potential codeword class types: The next step is to obtain the set of potential codeword
class types by forming codewords with respect to the cover lists and principal state-sets.
Each cover list is combined with the principal state-sets. For example, the set {(z2-z1), (z2-
o1)} is a potential codeword class type, since we cascaded the cover list z2 with the principal
state-set (z1 & o1). After listing the potential codeword class types, the total number of
available classes, i.e., Nc(n, d), should be verified by calculating the number of codeword
classes of each type. Table 4.6 illustrates the potential codeword class types according to
the principal state-sets and cover lists together with the number of codeword classes of each
type of length 5, see also Table 3.3. It can be seen that there are 10 codeword classes of
length 5. Thus, a rate log2(10/5) look-ahead code is possible with the above construction.
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Table 4.6: Code class types

Index Code class type Code multiplicity

1 (z2-z2) 00000 1

2 (z2-o2)
00011

2
00111

3 (o2-z2)
11100

2
11000

4 (o2-o2) 11111 1

5 (z2-z1) or (z2-o1) 00110 or 00001 1

6 (o2-z1) or (o2-o1) 11110 or 11001 1

7 (z1-z2) or (o1-z2) 01100 or 10000 1

8 (z1-o2) or (o1-o2) 01111 or 10011 1

In Table 4.6, some codewords can uniquely identify the source word, while some codewords
have alternatives. The ability of looking one bit ahead and back enables the encoder to
decide on an alternative codeword which maintains the (d = 1)-constraint in the concatena-
tion. Therefore, each decoding is done block-wise, which simplifies the decoding complexity
and avoids the propagation between the blocks. Note that not all the possible code class
types are shown in Table 4.6, since their multiplicities are equal to zero. In general, (d = 1)-
constraint RLL code can be constructed using the potential codeword class types as given
in Table 4.7.

Table 4.7: Code class types for the construction of (d = 1)-constraint RLL code.

Subset Code class types

1




(z2-z2)

(z2-o2)

(o2-z2)

(o2-o2)




2


 (z2-z1)

(o2-z1)


 or


 (z2-o1)

(o2-o1)




3


 (z1-z2)

(z1-o2)


 or


 (o1-z2)

(o1-o2)




4 (z1-z1) or (z1-o1) or (o1-z1) or (o1-o1)
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The Total Number of Codeword Classes For d = 1

A recursive expression without a proof is given in [26] to calculate the number of codeword
classes, Nc(n, 1). In this subsection, we obtained the same result using Table 4.7. It can
be observed that the set of (d = 1)-constraint RLL code class types can be divided into
four subsets. The total number of codeword classes, Nc(n, 1), can be found by counting the
number of codewords in each subset. For n > 2, Nc(n, 1) can be calculated by the relation

Nc(n, 1) = N(n− 2, 1) +N(n − 3, 1) + ⌊N(n − 4, 1)/4⌋, (4.1)

= N(n− 1, 1) + ⌊N(n − 4, 1)/4⌋,

where N(n < 0, 1) = 0, N(0, 1) = 2 and see Eq. (3.2) and Table 3.1 for N(n > 0, 1). The
proof of Equation (4.1) is as follows.

Subset-1. Each class type in subset-1 in Table 4.7 consists of one codeword starting and
ending with 00 or 11. For n > 2, the codewords of length n can be constructed by repeating
the first and the last bit of the (d = 1)-constraint RLL codeword of length n − 2. Thus,
there are N(n − 2, 1) codewords and N(n − 2, 1) classes of such. For example, there are
altogether six codewords of length five starting and ending with 00 or 11. They can be
formed by the RLL codewords of length three, i.e., {(00000), (00011), ..., (11111)}.

Subset-2. Each class type in subset-2 consists of two codewords starting with 00 or 11
and ending with 01 or 10. For n > 3, the codewords of length n can be constructed by
repeating the first bit and appending 01 or 10 (depending on the last bit) at the end of the
(d = 1)-constraint RLL codeword of length n − 3. Thus, there are N(n − 3, 1) codewords
and N(n − 3, 1)/2 classes of such. For example, there are altogether four codewords of
length five starting with 00 or 11 and ending with 01 or 10. They can be formed by the
RLL codewords of length two, i.e., {(00001), (00110), (11001), (11110)}.

Subset-3. Each class type in subset-3 consists of two codewords starting with 01 or 10
and ending with 00 or 11. For n > 3, the codewords of length 5 can be constructed by
appending 10 or 01 at the beginning and repeating the last bit of the (d = 1)-constraint
RLL codeword of length n − 3. Thus, there are N(n − 3, 1) codewords and N(n − 3, 1)/2
classes of such. For example, there are altogether four codewords of length five starting
with 01 or 10 and ending with 00 or 11. They can be formed by the RLL codewords of
length two, i.e., {(01100), (01111), (10000), (10011)}.

Subset-4. Each class type in subset-4 consists of four codewords starting and ending with
01 or 10. For n > 4, the codewords of length n can be constructed by appending 01 or 10
at the beginning and at the end of the (d = 1)-constraint RLL codeword of length n − 4.
Thus, there are N(n − 4, 1) codewords and ⌊N(n − 4, 1)/4⌋ classes of such. For example,
there are altogether two codewords of length five starting and ending with 01 or 10. They
can be formed by the RLL codewords of length one, i.e., {(10001), (10110)}.
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Rate efficiency: The rate efficiency is defined with respect to the asymptotic information
rate of the code, and it is given by

E(n, d) =
Rr

Cd
, (4.2)

see Table 3.2 for Cd as a function of d.

Table 4.8 shows Nc(n, 1) and the source word length m of the RLL code as a function
of codeword length. The source word length is calculated by truncating the number of
codewords to the smallest power of two. Since the rate Rr = m/n cannot exceed the
asymptotic information rate Cd, the upper bound on the maximum source word length m,
defined as ⌊nCd⌋, is also added. It can be observed in Table 4.6 that the smallest rate 2/3,
(d = 1)-constraint RLL block-decodable code has a codeword length n = 3 with a very
high rate efficiency E(3, 1) = 0.9603. The code rates can achieve the upper bound on the
maximum source word length m, except in the case of n = 13.

Table 4.8: The code size Nc(n, 1) and the source word length m for (d = 1)-constraint RLL
block codes of length n.

n Nc(n, 1) m = ⌊log2Nc(n, 1)⌋ ⌊nCd=1⌋
3 4 2 2

4 6 2 2

5 10 3 3

6 17 4 4

7 27 4 4

8 44 5 5

9 72 6 6

10 116 6 6

11 188 7 7

12 305 8 8

13 493 8 9

14 798 9 9

4.1.2 One-bit Look-Ahead RLL Code Construction For d = 2

In this subsection, we generalize the one-bit look-ahead code construction algorithm to the
(d = 2)-constraint. The begin and end types can be illustrated as in Tables 4.9 and 4.10.
Using the codeword types, the cover lists and the principal state-sets can be formed as in
Table 4.11. Then, the potential codeword classes can be obtained by forming the codewords
with respect to the cover list and principal state-sets, see Table 4.12.
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Table 4.9: The begin types for d = 2.
Begin type Initial part of the codeword

z1 01

z2 001

z3 000

o1 10

o2 110

o3 111

Table 4.10: The end types for d = 2.
End type Final part of the codeword

z1 10

z2 100

z3 000

o1 01

o2 011

o3 111

Table 4.11: Principal state-sets and cover list.

Cover lists Principal State-sets

z3 z3

o3 o3

z1 & o1
z1 & o2

z1 & o2
z2 & o1

z2 & o1

z2 & o2

The Total Number of Codeword Classes For d = 2

Due to the tedious calculations, Eq. (4.1) can only be generalized to d = 2 by considering
the classes that are formed by one or two codewords. The number of codeword classes for
d = 2 can be lower bounded as

Nc(n, 2) ≥ N(n− 4, 2) + (N(n− 5, 2) +N(n− 6, 2))/2 +N(n− 6, 2), (4.3)

≥ N(n− 3, 2) + (N(n− 5, 2) +N(n− 6, 2))/2,

where N(n < 0, 2) = 0, N(0, 2) = 2, and see Eq. (3.2) and Table 3.1 for N(n > 0, 2). The
proof of Eq. (4.3) is as follows.

Subset-1. Each class type in subset-1 in Table 4.12 consists of one codeword starting and
ending with 000 or 111. For n > 4, the codewords of length n can be constructed from the
(d = 2)-constraint RLL codeword of length n− 4 by repeating the first and the last bit two
times. Thus, there are N(n− 4, 2) codewords and N(n− 4, 2) classes of such.

Subset-2. Each class type in subset-2 consists of two codewords. For n > 5, the code-
words of length n starting with 01 or 10 can be constructed by appending three bits to the
beginning and repeating the last bit two times at the end of the (d = 2)-constraint RLL
codeword of length n − 5. For n > 6, the codewords of length n starting with 001 or 110
can be constructed by appending four bits to the beginning and repeating the last bit two
times at the end of the (d = 2)-constraint RLL codeword of length n−6. Thus, there are al-
together N(n−5, 2)+N(n−6, 2) codewords and (N(n−5, 2)+N(n−6, 2))/2 classes of such.
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Table 4.12: Code class types for (d = 2)-constraint.

Index Code class types

1




(z3-z3)

(z3-o3)

(o3-z3)

(o3-o3)




2




(z1-z3)

(z1-o3)

(z2-z3)

(z2-o3)




or




(o1-z3)

(o1-o3)

(o2-z3)

(o2-o3)




3

(
(z3-z2)

(o3-z2)

)
or

(
(z3-o1)

(o3-o1)

)

4

(
(z3-z1)

(o3-z1)

)
or

(
(z3-o2)

(o3-o2)

)

5

(
(z3-o1)

(o3-o1)

)
or

(
(z1-z2)

(z2-z2)

)
or

(
(o1-z2)

(o2-z2)

)

6

(
(z3-z1)

(o3-z1)

)
or

(
(z1-o2)

(z2-o2)

)
or

(
(o1-o2)

(o2-o2)

)

7

(
(z1-z1)

(z2-z1)

)
or

(
(z1-o2)

(22-o2)

)
or

(
(o1-z2)

(o2-z2)

)
or

(
(o1-o1)

(o2-o1)

)

8

(
(z1-z2)

(z2-z2)

)
or

(
(z1-o1)

(z2-o1)

)
or

(
(o1-z1)

(o2-z1)

)
or

(
(o1-o2)

(o2-o2)

)

Subset-3. Each class type in subset-3 consists of two codewords starting with 000 or 111
and ending with 100 or 01. For n > 5, the codewords of length n ending with 01 can be
constructed by appending two bits to the beginning and three bits to the last bit of the
(d = 2)-constraint RLL codeword of length n − 5. For n > 6, the codewords of length
n ending with 100 can be constructed by appending two bits to the beginning and four
bits to the last bit of the (d = 2)-constraint RLL codeword of length n − 6. Thus, there
are N(n − 5, 2)/2 + N(n − 6, 2)/2 codewords. Since N(n − 6, 2) ≤ N(n − 5, 2), there are
N(n− 6, 2)/2 classes of such.

Subset-4. Each class type in subset-4 consists of two codewords starting with 000 or 111
and ending with 011 or 10. For n > 5, the codewords of length n ending with 10 can be
constructed by appending two bits to the beginning and three bits to the last bit of the
(d = 2)-constraint RLL codeword of length n − 5. For n > 6, the codewords of length n
ending with 011 can be constructed by appending two bits to the beginning and four bits
to the last bit of the (d = 2)-constraint RLL codeword of length n − 6. Thus, there are
N(n−5, 2)/2+N(n−6, 2)/2 codewords, and since N(n−6, 2) ≤ N(n−5, 2), N(n−6, 2)/2
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classes of such.

Table 4.13 illustrates the number of codeword classes calculated with the help of a computer
search. We also add the lower bound (LB) given in Eq. (4.3), the source word length
m = ⌊log2Nc(n, 2)⌋ and the upper bound on the source word length, i.e., ⌊nCd=2⌋.

Table 4.13: Code size, Nc(n, d), versus n for d = 2-constraint.

n LB Nc(n, 2) m ⌊nCd=2⌋
4 2 4 2 2

5 5 6 2 2

6 8 8 2 3

7 11 12 3 3

8 17 19 4 4

9 25 28 4 4

10 36 41 5 5

11 53 60 5 6

12 78 88 6 6

13 114 129 7 7

14 167 189 7 7

15 245 277 8 8

16 359 406 8 8

17 526 595 9 9

18 771 872 9 9

Table 4.13 reveals that the code rate Rr = 7/13 is highly attractive as it has a code rate
efficiency of E(13, 2) = 0.9764. The next higher code rates are 8/15 and 9/17 with code
rate efficiencies of 0.9671 and 0.9599, respectively.

4.1.3 One-bit Look-Ahead RLL Code Construction For d = 3

Tables 4.14 and 4.15 illustrate the begin and end types for the (d = 3)-constraint. The
code construction procedure as described in Subsection 4.1.1 can be applied to find the
principal state-sets and the cover lists, see Table 4.16. Since, there is a large number of
potential codeword class types with respect to the cover lists and principal state-sets, Table
4.17 considers only the codeword class types that consist of one or two codewords.
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Table 4.14: The begin types for d = 3.
Begin type Initial part of the codeword

z1 01

z2 001

z3 0001

z4 0000

o1 10

o2 110

o3 1110

o4 1111

Table 4.15: The end types for d = 3.
End type Final part of the codeword

z1 10

z2 100

z3 1000

z4 0000

o1 01

o2 011

o3 0111

o4 1111

Table 4.16: Principal state-sets and cover list.

Cover lists Principal State-sets

z4 z4

o4 o4

z1 & o2
z1 & o3

z1 & o3

z2 & o1
z2 & o2

z2 & o2

z2 & o3 z2 & o3

z3 & o1 z3 & o1

z3 & o2 z3 & o2

z3 & o3 z3 & o3

The Total Number of Codeword Classes For d = 3

Due to the tedious calculations, Eq. (4.1) can be only generalized to d = 3 by considering
the classes that are formed by up to two codewords, see Table 4.17. The number of codeword
classes for d = 3 can be lower bounded as

Nc(n, 3) ≥ N(n− 5, 3) +N(n− 8, 3) + (N(n − 7, 3) +N(n− 9, 3))/2, (4.4)

where N(n < 0, 3) = 0, N(0, 3) = 2 and see Eq. (3.2) and Table 3.1 for N(n > 0, 3). The
proof of Eq. (4.4) is similar to the proof of Equations (4.1) and (4.3).

Table 4.18 illustrates the number of codeword classes that is calculated with the help of a
computer search. We also add the lower bound (LB) given in Eq. (4.4), the source word
length m = ⌊log2 Nc(n, 3)⌋ and the upper bound on the source word length, i.e., ⌊nCd=3⌋.
Table 4.18 for d = 3 reveals that the rates 8/18, 7/16 and 3/7 are suitable candidate rates
for the creation of high rate codes. The code of rate 8/18 has a code rate efficiency of
0.9558.
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Table 4.17: Code class types for (d = 3)-constraint.

Index Code class types

1




(z4-z4)

(z4-o4)

(o4-z4)

(o4-o4)




2


 (z1-z4)

(z1-o4)


 or




(o2-z4)

(o2-o4)

(o3-z4)

(o3-o4)




3




(z2-z4)

(z2-o4)

(z3-z4)

(z3-o4)




or




(o1-z4)

(o1-o4)

(o2-z4)

(o2-o4)

(o3-z4)

(o3-o4)




4


 (z4-z1)

(o4-z1)


 or


 (z4-o3)

(o4-o3)




5


 (z4-z2)

(o4-z2)


 or


 (z4-o2)

(o4-o2)




6


 (z4-z3)

(o4-z3)


 or


 (z4-o1)

(o4-o1)




4.1.4 Discussion

Fig. 4.1 shows the code rate efficiency E(n, d) of block-decodable look-ahead RLL codes of
length n as a function of Nc(n, d). The code efficiency was calculated by the total number
of available classes, i.e., no truncation to a power of two. The efficiency approaches to unity
with increasing codeword length n.
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Table 4.18: Code size, Nc(n, d), versus n for d = 3-constraint.

n LB Nc(n, 3) m ⌊nCd=3⌋
4 - 2 1 1

5 2 4 2 2

6 2 5 2 3

7 5 8 3 3

8 9 10 3 3

9 13 13 3 4

10 18 19 4 4

11 26 29 4 5

12 36 42 5 5

13 49 55 5 6

14 67 75 6 6

15 93 107 6 6

16 129 151 7 7

17 178 212 7 7

18 245 289 8 8
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Figure 4.1: Code rate efficiency for dmin = 1.
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4.2 Block-Decodable RLL Codes with dmin > 1

In this section, we describe the construction of block-decodable look-ahead RLL codes with
dmin > 1. Several new codes, with specified d-constraint and dmin are presented. The
designed codes enable soft information to be available at the RLL decoder. Hence, a soft
decoding can be used to improve the error rate performance of the system. Codes with
dmin = 2 are obtained from a simple construction which partitions the admissible RLL
codewords into two subsets having even and odd parities, respectively. For dmin > 2, two
constructions are described and compared. The first construction is based on Gilbert Type
Code Construction. The second construction is an extension of the first one, where the look-
ahead code classes are considered for the code search. Note that, the topic of combined
error correction and RLL coding has been studied in several papers, see [29–33].

4.2.1 One-bit Look-Ahead RLL Codes with dmin = 2

Given the number of input bits, m, and an RLL constraint d, a rate m/n code with dmin = 2
can be constructed as follows. The admissible d-constraint RLL codewords are partitioned
into two subsets Be and Bo, where both satisfy the constraint and have even and odd
parities, respectively. Thus, for two different codewords in Be or Bo, the Hamming distance
is greater than or equal to two, i.e., dmin(Be) = 2 and dmin(Bo) = 2. The total number
of codeword classes in a code with dmin = 2 is equal to N(n, d, dmin = 2) = max(Ne, No),
where Ne and No are the numbers of classes in even and odd subsets, respectively. Thus,
the code rate of the proposed code is

Rr =
⌊N(n, d, dmin = 2)⌋

n
. (4.5)

Lower bound on the number of classes

A lower-bound can be calculated by considering the classes that are formed by only one
codeword. Thus, the number of codeword classes for dmin = 2 can be lower bounded as

N(n, 2, dmin = 2) ≥ N(n− 2d, d)/2, (4.6)

where N(n < 0, d) = 0, N(0, d) = 2 and see Eq. (3.2) and Table 3.1 for N(n > 0, d).
The proof of Eq. (4.6) is as follows. Each class type that consists of one codeword starts
and ends with (d + 1) zeros and ones. For n > 2d, there are N(n − 2, d) codewords and
N(n − 2, d) classes of such. After partitioning into even and odd subsets, one subset must
have ≥ N(n− 2d, d)/2 classes.

Tables 4.19, 4.20 and 4.21 tabulate the code size N(n, d, dmin = 2) as a function of n for
d = 1, d = 2 and d = 3, respectively. The lower bound (LB) given in Eq. (4.6) and the
source word length calculated as m = ⌊log2 N(n, d, dmin = 2)⌋ are also depicted in the table.
For d = 1, see Table 4.19, the rates 6/11, 7/12, 8/14, 9/15, 10/16, 11/18 and 12/19 are
suitable candidates for dmin = 2. Efficiency-wise speaking, the code of rate 12/19 looks more
attractive with rate efficiency E(19, 1, dmin = 2) = 0.9098, but the code is too complex for
an implementation. For d = 2, see Table 4.19, it is possible to construct codes with rates
6/13, 7/15, 8/17, 9/19, 10/21. The rate efficiency of the rate 6/13 code is 0.8396, which
reveals that we can still have good rate efficiencies with less complex codes (only 64 classes).
For d = 3, see Table 4.21, a rate 8/20 code can be constructed with a rate efficiency of
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0.8602. The code rate efficiency, E(n, d, dmin = 2) = ⌊log2N(n, d, dmin = 2)⌋/Cd, of various
codes versus codeword length is plotted in Fig. 4.2. Examination of the curves shows that
construction of one-bit look-ahead RLL codes with an efficiency above 0.85 is possible with
a realizable codeword length.

Table 4.19: Code size N(n, d = 1, dmin = 2).
n LB N(n, d = 1, dmin = 2) m

5 3 4 2
6 5 10 3
7 8 11 3
8 13 25 4
9 21 32 5
10 34 62 5
11 55 88 6
12 89 159 7
13 144 236 7
14 233 410 8
15 377 629 9
16 610 1062 10
17 987 1664 10
18 1597 2764 11
19 2584 4383 12
20 4181 7209 12

Table 4.20: Code size N(n, d = 2, dmin = 2).
n LB N(n, d = 2, dmin = 2) m

6 2 4 2
7 3 6 2
8 4 10 3
9 6 13 3
10 9 22 4
11 13 29 4
12 19 46 5
13 28 64 6
14 41 96 6
15 60 138 7
16 88 203 7
17 129 296 8
18 189 438 8
19 277 637 9
20 406 940 9
21 595 1371 10
22 872 2015 10

Table 4.21: Code size N(n, d = 3, dmin = 2).

n LB N(n, d = 2, dmin = 2) m

10 4 11 3

11 5 13 3

12 7 23 4

13 10 26 4

14 14 42 5

15 19 50 5

16 26 80 6

17 36 100 6

18 50 152 7

19 69 191 7

20 95 284 8

21 131 370 8

22 181 544 9

58



4 6 8 10 12 14 16 18 20 22 24
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RLL codeword length n

C
o
d
e

ra
te

effi
ci

en
cy

,E
(n

,d
)

 

 

d=1

d=2

d=3

Figure 4.2: Code rate efficiency for dmin = 2.

4.2.2 One-bit Look-Ahead RLL Codes with dmin > 2

We discuss two construction methods of look-ahead RLL codes with dmin > 2. Construc-
tion 1 is based on the Gilbert type code construction. The principle of Gilbert type code
construction can be summarized as follows.

1. Select a codeword from the set of all admissible d-constraint RLL codes of length n.

2. Remove all codewords at distance < dmin from the set.

3. Subsequently go to the first step and continue until the complete set of codewords has
been found by purging the original set of all d-constraint RLL codes of length n.

At every iteration, one codeword is chosen randomly in the remaining subset. Since, it is
desirable to remove less number of codewords at distance < dmin from the set, Construction
1 can be obtained by extending the algorithm.

Construction 1 for dmin > 2

A block-decodable look-ahead RLL code with a desirable dmin can be formed as follows.

1. Select the codeword which has the largest subset after removing all codewords at
distance < dmin from the main set. In this case, we calculate for each codeword the
size of the remaining subset. Then, we select the codeword with the largest subset.

2. Remove all codewords at distance < dmin from the set.

3. Subsequently go to the first step and continue until the complete set of codewords has
been found by purging the original set of all d-constraint RLL codes of length n.
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At the last step, the total number of available classes N(n, d, dmin) should be verified by
calculating the number of codeword classes of each type in the remaining subset. In that
way, the blocks of a look-ahead RLL code can be characterized by the minimum distance.
Table 4.22 tabulates the code size N(n, d, dmin = 3) as a function of n and d. As we may
observe, for d = 1, it is possible to construct a rate 9/18 code with dmin = 3 with a rate
efficiency of 0.72. The rate 8/21 for d = 2 and the rate 6/20 for d = 3 are the suitable
candidate rates for dmin = 3.
Construction 1 has the drawback that not all the selected codewords can form classes. In
principle, some codewords may not contribute to the number of codeword classes. The
codeword selection process can be improved by considering the codeword class types.

Table 4.22: Code size N(n, d, dmin = 3) based on Construction 1.

n N(n, d = 1, dmin = 3) N(n, d = 2, dmin = 3) N(n, d = 3, dmin = 3)

8 8 4 2

9 14 8 4

10 17 7 4

11 29 12 7

12 39 16 8

13 70 24 10

14 94 35 15

15 158 44 21

16 223 62 26

17 354 89 32

18 529 126 47

19 845 171 61

20 1232 238 82

21 - 329 105

Construction 2 for dmin > 2

A block-decodable look-ahead RLL code with a desirable dmin can be formed as follows.

1. The admissible d-constraint RLL codewords are partitioned into subsets depending
on the number of codewords in their class types. We collect the class types formed by
one codeword in the first subset, class types formed by two codewords in the second
subset and so on.

2. Select a codeword in the first subset which yields the largest number of codewords
after removing all codewords in the main set at distance < dmin.

3. Remove all codewords at distance < dmin from the main set.
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4. Subsequently go to the second step and continue until the complete set of codewords
in the first subset has been purged. Here, since each codeword in the first subset
defines a class type, we try to select as many codewords in the first subset as possible.

5. Go to the next subset and select the codewords which can together form a class type
and yields the largest number of codewords after removing all codewords in the main
set at distance < dmin to the selected codewords.

6. Remove all codewords at distance < dmin from the main set.

7. Subsequently go to the fifth step and continue until the complete set of codewords in
all subsets has been purged.

The total number of available classes N(n, d, dmin) can be found by adding up the number
of codeword classes of each type. Table 4.23 lists the code size N(n, d, dmin = 3) for d = 1, 2
and 3. For comparison purposes, Fig. 4.3 compares the code rate efficiencies calculated by
Construction 1 and Construction 2 for dmin = 3. It may be noticed from Table 4.23 that
there is an improvement in the code efficiencies obtained by Construction 2. When d = 3,
a large number of codeword class types has to be considered for the code construction. As
a result, Construction 2 yields a clear improvement for d = 3.

Table 4.23: Code size N(n, d, dmin = 3) based on Construction 2.

n N(n, d = 1, dmin = 3) N(n, d = 2, dmin = 3) N(n, d = 3, dmin = 3)

8 9 5 4

9 14 8 4

10 21 10 4

11 32 13 8

12 47 20 11

13 70 27 13

14 107 35 18

15 173 51 24

16 245 69 30

17 385 93 41

18 574 134 54

19 902 184 71

20 1335 248 87

21 - 359 119

22 - 496 158

Table 4.24 shows N(n, d, dmin = 4) as a function of codeword length n for d = 2 and
3. The results are obtained using Construction 2. The table reveals the feasibility of the
construction of rates 5/16, 6/18 and 7/20 d = 2-constraint RLL block codes. For d = 3 and
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Figure 4.3: Code rate efficiencies for dmin = 3.

dmin = 4, we can construct codes with rates 5/18 and 6/20. Obviously, as dmin increases,
the feasible rate of the code decreases. Since the code rates are less attractive, some values
of d and dmin, such as d = 1 and dmin = 4, are not considered. Table 4.24 shows that a rate
6/24 (d = 3)-constraint RLL code can be constructed for dmin = 5.

4.3 Conclusion

The look-ahead RLL code construction algorithm as introduced in [20] was discussed and
generalized for d = 2 and d = 3. In addition, we presented many novel block-decodable
RLL codes having a minimum Hamming distance larger than one. The constructed codes
have several advantages in terms of the achievable code rate, the minimum distance and
simple encoding and decoding.
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Table 4.24: Code sizes N(n, d, dmin = 4) and N(n, d, dmin = 4) based on Construction 2.

n N(n, d = 2, dmin = 4) N(n, d = 3, dmin = 4) N(n, d = 3, dmin = 5)

12 14 10 4

13 17 10 6

14 23 12 6

15 30 14 9

16 47 24 13

17 54 26 15

18 81 35 17

19 115 38 22

20 157 68 29

21 198 75 40

22 287 104 48

23 — 120 60

24 — 190 77
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Chapter 5

OFDM Modulation for Impulsive

Noise Error Correction

OFDM is a form of multi-carrier modulation scheme used in many data transmission systems
such as digital video broadcasting (DVB), digital audio broadcasting (DAB) and wireless
local area networks (WLANs). It is also a strong candidate as a modulation scheme in
high data rate (up to 1 Mbps) narrowband (9-500 kHz) PLC modems, see [45] and [46]. In
narrowband PLC, the reliability of transmission is strongly influenced by the non-Gaussian
impulsive noise. In OFDM, the IDFT is used for modulating a block of n information sym-
bols on n subcarriers [47]. The time duration of an OFDM symbol is n times larger than
that of a single-carrier system. This longer duration of OFDM symbol provide an advantage
that the impulsive noise energy is spread among the n subcarriers due to the DFT operation.
This spreading causes less interference over all n subcarriers [49]. However, when the impul-
sive noise energy exceeds a certain threshold, a significant performance loss can occur due
to the higher level of interference at each subcarrier [48]. It was shown in [15] that impul-
sive noise leads to an enormous loss in the capacity, as well as in the error rate performance.

In this chapter, we study the similarity between the IDFT and the RS encoder. If the DFT
of the transmitted OFDM symbol contains some amount of consecutive zeros appended
to the information, the OFDM modulator can be seen as a RS encoder [34]. In practice,
not all subcarriers are used to carry information. Some subcarriers are set to known data
(pilot symbols) or zeros for different purposes, such as DC cancelation, synchronization
or channel-estimation. It will be shown that this redundancy can be used to correct the
impulsive noise errors.

The relationship between the DFT and RS codes was examined by Wolf [35] to correct the
impulsive noise errors. He showed that when a frequency domain sequence containing two
consecutive zeros is modulated by the IDFT, one impulsive noise error can be corrected by
examining the frequency components that should be zero. An algebraic scheme based on
BCH decoding is applied to estimate the position and the amplitude of the impulsive noise
error. However, the scheme was only presented for a single impulsive error correction, and
it was not generalized for multiple errors.

Kumaresan [54] investigated RS and BCH codes in real and complex fields to correct impul-
sive noise errors in the presence of additional minor errors. He proposed several strategies
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using least squares techniques and singular value decomposition to decode the location and
the corresponding amplitudes of the impulsive noise errors.

The similarity between the IDFT and RS encoder was further investigated by Redinbo
in [55]. He presented an error correcting procedure for real number codes which also have
consecutive zeros in the frequency domain. The procedure is divided into two parts. The
first part is the large activity detection to locate the position of impulsive noise errors,
and the second part is the minimum mean-squared error estimator coupled with activity
detection.

The proposed procedures in [54] and [55] consider that the DFT of the transmitted sequence
contains a large number of consecutive zeros. In practice, however, only a limited number
of consecutive zeros is available. In [56], the impulsive noise error correction procedure
based on the similarity between the DFT and RS codes is generalized to the case when the
redundant data (zeros or known data) are scattered among the DFT of the transmitted
sequence. The main drawback is that the correction capacity is conditioned by the position
of the redundant data (2 impulsive noise errors can be corrected using five redundant data).

In this chapter, we propose to separate the error correcting procedure into two parts, thresh-
old detector followed by an erasure decoding. The first part determines if large amplitudes
are present in the received vector, declaring their locations as erasures, while the second
part decodes the identified erasures. The threshold detector determines locations of the
large amplitudes by applying Bayes hypothesis.

The paper is organized as follows. After a brief introduction to the OFDM encoding pro-
cedure, the similarity between the IDFT and RS encoder is explained in Section 5.3. The
proposed decoder is discussed in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.1 OFDM Modulator

We assume in general that the input vector u ∈ Um to the OFDM modulator consists of
m ≤ n information symbols with a symbol energy Es and a zero vector of length n − m
appended to the information, i.e., u = (u1, ..., um, 0, ..., 0)T . The symbol alphabet U is a set
of |U| discrete points in the complex plane depending on the modulation scheme adopted. As
an example, for 4-ary quadrature amplitude modulation (4-QAM), U = ±(1 + j);±(1 − j)
is obtained with j :=

√
−1. The transformed symbol vector c ∈ C defined by the linear

mapping
c = V−1u, (5.1)

where

V−1 =
1√
n




1 1 · · · 1

1 α · · · α(n−1)

...
...

. . .
...

1 α(n−1) · · · α(n−1)(n−1)


 , α = e

j2π
n . (5.2)

The IDFT or DFT matrix is a Vandermonde unitary matrix [50], where α is a root of unity,
i.e., |αk(l−1)| = 1. Unitary means that VV−1 = I holds, where I is the identity matrix, and
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V is the DFT matrix. The transmitted OFDM samples ck’s are complex variables with

E{Re{ck}2} = E{Im{ck}2} =
1

2
σ2
ck

=
m

n

Es

2
; k = 1, ..., n, (5.3)

and Re{} and Im{} denote the real and imaginary part of the complex signal, respectively.
We assume that every transformed OFDM symbol vector c ∈ C is transmitted equally
likely with the probability P (c) = 1/|C|, where |C| is the cardinality of C. The vector c
is transmitted over the two-state impulsive noise channel model, see Section 2.2.1 for the
channel definition. The received vector r = (r1, ..., rn)

T can be expressed as r = c + w,
where w = (w1, ..., wn)

T is the channel noise vector, which consists of the complex noise
samples.

5.2 The ML Decoding Rule

The ML decoder selects the most likely transmitted vector c, which maximizes the condi-
tional PDF p(r|c). If the channel state vector s is known at the receiver, the ML decoding
rule can be simplified to

max
c

p(r|c, s) = max
c

n∑

k=1

|rk − ck|2
σ2
sk

, (5.4)

see Eq. 2.10. The above equation can be solved by searching through all possible code-
words c ∈ C. However, this results in a very high decoding complexity depending on the
cardinality of C. For complexity reasons, ML decoding rule for OFDM transmission is not
considered in this thesis.

5.3 OFDM as an Error Correcting Code

If the positions of zeros (or known data) at the input vector u are consecutive in a circular
way, there is a similarity between the RS encoder and IDFT. In the following, the simi-
larity is further explained by deriving some properties based on the Vandermonde matrix
structure.

Property 5.1. Any submatrix of V−1, which contains m consecutive columns (rows), has
rank m.

Property 5.1 easily follows from the fact that any submatrix containing m consecutive
columns also has the form of a Vandermonde matrix. Since all m columns and rows are
independent, the resulting matrix has rank m.

Definition 5.1. The RS encoder performs the inner product of an information vector u
of length m with a n × m matrix V−1

sub. The resulting vector c is a code vector. We can
represent V−1

sub as the submatrix of V−1 containing its firstm columns, where α is taken as a
primitive element of the Galois field [58]. It can be followed from Property 5.1 that no linear
combination of columns can give a code vector with m zeros. Hence, the minimum nonzero
weight of any code vector is n − m + 1. Since RS codes are linear codes, the minimum
weight of the code is identical to the minimum Hamming distance.
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The IDFT matrix V−1 can be seen as a RS encoder by defining RS code over the complex

number field with α = e
j2π
n .

Property 5.2. There exists an (n −m)× n matrix of rank (n −m), denoted by HH , the
Hermitian transpose of the parity-check matrix H, which satisfies

HHV−1
sub = 0. (5.5)

For the IDFT matrix V−1, the matrix HH can be written as

HH =
1√
n




1 α(n−m) · · · α(n−1)(n−m)

...
...

. . .
...

1 α2 · · · α2(n−1)

1 α · · · α(n−1)


 , α = e

j2π
n . (5.6)

In Eq. (5.6), we again have the structure of the Vandermonde matrix. Thus, HH has rank
(n−m).

At the input of the OFDM modulator, the last n−m positions are set to zero. Hence, the
syndrome vector Ssyn can be defined as

Ssyn = HHr, (5.7)

where r = (r1, ..., rn)
T is the received vector after transmission over the impulsive noise

channel. Let us assume no background noise to simplify the explanation of the decoding.
Then, the received vector can be written as r = c+ i, where i = (i1, ..., in)

T is the impulsive
noise vector. Using Property 5.2 and from Equations (5.7) and (5.1), the syndrome vector
Ssyn directly follows

Ssyn = HHV−1u+HH i, (5.8)

= HH i. (5.9)

In Eq. (5.8), the vector Ssyn depends only on the impulsive noise components, not on the
transmitted OFDM samples, see Fig. 5.1.

RS
encoder

H
Hn

( )
T

0..0Info

n−m

impulsive
noise

( )
T

0..0Info

syndrome

=

( )
T

n

n−m ...
+

IDFT DFT

m

Figure 5.1: Illustration of the OFDM encoding and syndrome forming.
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Property 5.3. Any ≤ (n−m) erasures in the vector c can always be corrected.

Suppose that we write the information vector u as a degree m− 1 polynomial u(x). Then,
from the theory of Lagrange interpolation [57], we know that at least m points of evaluation
are needed to specify a polynomial of degree m−1. This implies that in the case of ≤ (n−m)
erasures, the information vector u can be reconstructed from the ≥ (n−m) values of c with
the knowledge of their locations.

Property 5.4. Any ≤ (n−m)/2 errors in the vector c can always be corrected.

This property follows from Definition 5.1 that a code with a minimum Hamming distance
n − m + 1 can correct ≤ (n − m)/2 errors [58]. However, the decoding problem is the
estimation of the positions and the values of the errors from the syndrome values. Therefore,
for ≤ (n−m)/2 errors, the algorithms for decoding RS codes can be adapted, see [35,54–56].

Example 5.1. Let us consider 4-OFDM transmission with two zeros appended to the in-
formation. After applying IDFT transformation, the impulsive noise vector i is added to
the transformed vector c, see Fig. 5.2. Suppose the vector i has only one non-zero com-
ponent at the second position. Due to Property 5.4, we expect to correct (4−2)/2 = 1 error.

At the receiver side, given the received vector r, we calculate the syndrome vector as

Ssyn =

(
i2α

2/2
i2α/2

)
, (5.10)

where α = e
j2π
n . Using the algebraic scheme introduced by Wolf [35], the location of errors

can be calculated by the equation

location = j
n

2π
ln
Ssyn(2)

Ssyn(1)
+ 1 = j

4

2π
ln

i2α/2

i2α2/2
+ 1 = 2 (5.11)

and the complex amplitude of error can be given as

amplitude =
√
n
Ssyn(2)

2

Ssyn(1)
= 2

(i2α/2)
2

(i2α2/2)
= i2. (5.12)

The algebraic scheme presented by Wolf was not generalized for multiple errors. In that
case, well-known decoding algorithms for RS codes can be adapted for the complex field
[35, 54–56]. The algorithms are based on the polynomial representation of RS codes, and
the general steps can be summarized as follows.

IDFT

Syndrome former

=




c1
c2
c3
c4




(
0 i2 0 0

)T

1
2

(
1 α2 α4 α6

1 α α2 α3

)

α = e
j2π
n

(
i2α

2/2
i2α/2

)



u1
u2
0
0




c = V−1u

Ssyn = HHr

Figure 5.2: Example of the OFDM encoding and syndrome forming.

69



• Computation of the syndrome.

• Determination of an error locator polynomial, whose roots provide an indication of
where the errors are.

• Finding the roots of the error locator polynomial.

• Calculating the error values.

In practice, after filtering operation, only a small part of consecutive known data or zeros
can be used for the error correction. Furthermore, the transmitted vector c is also corrupted
by the background noise. Hence, the performance of the error decoding procedure is quite
limited for the impulsive noise channels.

5.4 OFDM as an Erasure Correcting Code

In this section, we propose to separate the error correcting procedure into two parts, thresh-
old detector followed by an erasure decoding. The first part determines if large amplitudes
are present in the received vector r, declaring their locations as erasures, while the second
part decodes the identified erasures. The threshold detector determines locations of the
large amplitudes by applying Bayes hypothesis. To simplify the explanation of the pro-
posed algorithm, let us first assume an impulsive noise channel with perfect channel state
information (CSI), i.e., the location of impulse noise errors is known at the receiver.

5.4.1 Channel with Perfect CSI

After the transmission over two-state impulsive noise model, the received vector r =
(r1, ..., rn)

T can be expressed as
r = c+ i+ g, (5.13)

where g is the Gaussian background noise vector. The corresponding syndrome vector Ssyn

directly follows
Ssyn = HH i+HHg. (5.14)

From Ssyn, the whole vector i has to be reconstructed and subtracted from the vector r to
correct the impulsive noise errors. Suppose that the impulsive noise vector i = (i1, ..., in)

T ,
has t ≤ (m − n) non-zero samples (positions where the channel state sk > 0). Then, the
factor HH i can be rewritten as

HH i = Hsubisub, (5.15)

where isub consists of t non-zero samples of i, and the (n−m)× tmatrix Hsub is constructed
by selecting t columns of HH that are at the position of impulsive noise errors, see Fig. 5.3.
Using Eq. (5.15), Eq. (5.14) can be rewritten as

Ssyn = Hsubisub +HHg. (5.16)

Since all entries of HH are on the normalized unit circle with |αk(l−1)| = 1, the sum term
HHg in Eq. (5.16) adds n background Gaussian random variables with variance σ2

g/n.
Hence, the sum term also yields a Gaussian random variable with variance σ2

g . Therefore,
Eq (5.16) can be simplified as

Ssyn = Hsubisub + g. (5.17)

70



=C
S

I

C
S

I

C
S

I

C
S

I




i1
0
i3
0




HH

(
i1
i3

)

(n
−

m
)

(n
−

m
)

tn

HH
sub

Figure 5.3: Illustration of the factor HH
subisub.

The decoding problem is now reduced to the estimation of the vector isub in the presence
of the Gaussian background noise vector g.

If t = (n −m), i.e., the number of impulses is equal to the number of zeros, then HH
sub is

a square matrix of rank (n −m), see Property 5.1. Hence, Hsub is invertible, and there is
only one solution for the inverse H−1

sub. We can then obtain the estimate ĩsub of the vector
isub as

ĩsub = H−1
subHsubisub +H−1

subg,

= isub +H−1
subg. (5.18)

If t < (n −m), there is not a unique solution for Eq. (5.17). In that case, a least-squares
solution can be applied.

Least-Squares Estimation

The least-squares estimator fLSE outputs the best fit between the syndrome values Ssyn and
the values Hsubisub in its least-squares sense, i.e.,

fLSE = (Ssyn −Hsubisub)
H(Ssyn −Hsubisub). (5.19)

Expanding the multiplication in Eq. (5.19), we find for the least-squares

fLSE = SH
synSsyn − iHsubH

H
subSsyn − SH

synHsubisub + iHsubH
H
subHsubisub. (5.20)

Considering a scalar computation, we differentiate with respect to isub, and set the result
equal to zero, obtaining

−ST
synHsub + iTHT

subHsub = 0,

iTHT
subHsub = ST

synHsub,

i = (HT
subHsub)

−1HT
subSsyn. (5.21)

After writing the scalars in matrix form, a least square solution to Eq. (5.17) is given by

ĩsub = (HH
subHsub)

−1HH
subSsyn,

= (HH
subHsub)

−1HH
subHsubisub + (HH

subHsub)
−1HH

subg,

= isub + (HH
subHsub)

−1HH
subg. (5.22)
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The inverse (HH
subHsub)

−1HH
sub is known as Moore-Penrose pseudoinverse of Hsub [59].

The estimated impulsive noise vector ĩ contains the values of the computed vector ĩsub at
the positions of impulsive noise errors, otherwise it contains zero. The vector ĩ is then sub-
tracted from r. After that conventional OFDM receiver can be applied, that is, the resulting
vector r− ĩ is transformed into the frequency domain by means of DFT, and the ML detec-
tor maps each frequency samples on a signal domain in the QAM-constellation, see Fig. 5.4.

As it can be seen from Eq. (5.22), an estimation of the vector isub can be obtained by mul-
tiplying the Moore-Penrose pseudoinverse of Hsub with the syndrome vector SH

syn. However,

the power of the least-squares estimation noise (HH
subHsub)

−1HH
subg may be more than the

power of the original background noise g. The covariance of the estimation noise can be
calculated as

Φsyn = E{(̃isub − isub)(̃isub − isub)
H},

= E{(HH
subHsub)

−1HH
subgg

HHsub(H
H
subHsub)

−1},
= H−1

sub(H
H
sub)

−1HH
subN0HsubH

−1
sub(H

H
sub)

−1,

= N0(H
H
subHsub)

−1, (5.23)

where E{ggH} = N0. Clearly, the estimation noise is correlated and enhanced with the am-
plification factor (HH

subHsub)
−1. Small eigenvalues of HH

subHsub will lead to large estimation
error. Since Hsub has dimensions (n−m)×t, an increase in (n−m) leads to a better perfor-
mance by reducing the amplification factor. However, it can be shown for t = (n−m) → ∞
that, the noise amplification factor tends to infinity [59]. Furthermore, dependency on the
location of impulsive noise errors can be also observed in the amplification factor.

Minimum Mean-Squared Error Estimation

As we discussed before, the least-squares estimation enhances the background noise. An-
other approach is to apply the mean-squared error estimation (MMSE), which minimizes
the mean square error, i.e.,

fMMSE = E{(̃isub − isub)
H (̃isub − isub)}. (5.24)

Ssyn

DFT ML
Detection

r
HH

~
i

−

output

CSI

Least−Squares
Estimation

Figure 5.4: Block diagram of the receiver with perfect CSI
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After solving the above equation, the MMSE estimate of isub can be written as

(HH
subHsub +

σ2
g

σ2
i

It)
−1HH

subSsyn, (5.25)

where It is the t×t identity matrix. Unlike the least-squares estimator, the syndrome vector
is multiplied by a matrix that is a function of σ2

g/σ
2
i . However, since σ2

i ≫ σ2
g , the MMSE

estimation converges to the least-squares estimation.

Nulling

If the number of impulses is larger than the number of zeros, i.e., t > (n−m), the observation
of (n−m) zero frequency components in the syndrome vector Ssyn is not sufficient to estimate
the values of impulsive noise errors. Therefore, we propose to use the procedure below.

1. The t− (n −m) components of r that are at the positions of impulsive noise errors,
are nulled, that is, we set it to zero. Here, we select the t− (n−m) components that
have the smallest magnitudes.

2. The resulting vector r̃ is used to calculate the syndrome vector Ssyn = HH r̃. Here,
the additional noise introduced by setting t− (n−m) components of r is spread over
the frequency domain, and it is treated as background noise in the algorithm.

3. The (n−m)× (n−m) matrix Hsub is constructed by selecting the (n−m) columns
of HH that are at the position of non-zero impulsive noise errors.

4. By calculating the Moore-Penrose pseudoinverse of Hsub, a least squares solution is
obtained, see Eq. (5.22).

5. The estimated impulsive noise vector ĩ contains the values of ĩsub at the positions of
non-zero impulsive noise errors, otherwise it contains zero.

6. The vector ĩ is then subtracted from r̃. After that conventional OFDM receiver can
be applied.

5.4.2 Channel without CSI

The block diagram of the receiver without CSI is depicted in Fig. 5.5. After the transmission
over two-state impulsive noise model, the received vector r is processed by the threshold
detector to estimate the channel state vector s. For k = 1...n, the detector must decide
every time instant k whether there is an impulsive noise or not, that is,

sk =

{
1 for |rk| ≤ Th,
0 for |rk| > Th,

(5.26)

where Th represents the threshold. For the calculation of the threshold Th, two hypotheses
can be considered.

H0 : rk = ck + gk, 1 ≤ k ≤ n, (5.27)

H1 : rk = ck + ik + gk, 1 ≤ k ≤ n, (5.28)
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i.e., the received sample rk may consist of background noise or it may consist of the sum of
background noise and impulsive noise.

Approximation 5.1. For n → ∞, due to the central limit theorem [7], the transmitted
samples ck’s of the vector c = V−1u are marginally complex Gaussian distributed random
variables with zero mean, variance σ2

c and statistically independent real- and imaginary
parts.

Using Approximation 5.1, the transmitted OFDM samples ck’s are approximated as a com-
plex Gaussian distribution variables with zero mean, variance σ2

c and statistically inde-
pendent real- and imaginary parts. Hence, the received sample rk under hypothesis H0

is approximated as a complex Gaussian distributed random variable with zero mean and
variance σ2

H0
= σ2

c + σ2
g , and the received sample rk under hypothesis H1 is also approx-

imated as a complex Gaussian distributed random variable with zero mean and variance
σ2
H1

= σ2
c + σ2

i + σ2
g .

Assuming that the real- and imaginary parts of rk’s are independent, the PDF of |rk| follows
a Rayleigh distribution [7]. Therefore,

p(|rk| | H0) =
|rk|
σ2
H0

e
−|rk|2/2σ2

H0 (5.29)

and

p(|rk| | H1) =
|rk|
σ2
H1

e
−|rk|2/2σ2

H1 . (5.30)

Applying the likelihood ratio test of the Bayes criterion [60], we decide for hypothesis H1 if

p(|rk| | H1)

p(|rk| | H0)
>

P (H0)

P (H1)
, (5.31)

where P (H0) is the probability that the impulsive noise is not present, and P (H1) is the
probability that the impulsive noise is present. Since we consider two-state impulsive
channel model, the probabilities can be written as P (H0) = P (sk = 0) = (1 − A) and
P (H1) = P (sk = 1) = A, see Subsection 2.2.1.
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r
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Figure 5.5: Block diagram of the receiver without CSI
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After canceling common terms and taking logarithm, we decide for hypothesis H1 if

ln
σ2
H0

σ2
H1

+ |rk|2
(σ2

H1
− σ2

H0
)

2σ2
H0

σ2
H1

> ln
(1−A)

A
. (5.32)

The quantity on the left is monotonically increasing. Hence, an optimal threshold can be
calculated by setting

ln
σ2
H0

σ2
H1

+ |Th|2
(σ2

H1
− σ2

H0
)

2σ2
H0

σ2
H1

= ln
(1−A)

A
, (5.33)

so that the threshold Th is obtained as

Th =

√√√√ 2σ2
H0

σ2
H1

(σ2
H1

− σ2
H0

)

(
ln

(
1−A

A

)
− ln

(
σ2
H0

σ2
H1

))
. (5.34)

Figures 5.6, 5.7 and 5.8 show the QAM symbol error probability (SER) as a function of
Es/2σ

2
g for the 64-OFDM transmission over the two-state impulsive noise channel model.

The SER for the uncoded (no least-squares estimation) 64-OFDM transmission over the
AWGN channel is also plotted for comparison.

Fig. 5.6 shows that, for A = 0.1, a small gain can be achieved in the error rate performance.
This is due to the fact that since 8 zeros are available for the least-squares solution, error
probability for the high SBNR is mainly influenced by the probability of having more than
8 impulses in an OFDM symbol. This probability can be halved by assuming that half of
the QAM symbols are in error, i.e.,

1

2
P (number of impulses per OFDM symbol > 8) =

1

2
(1−

8∑

i=0

(
64

i

)
Ai(1−A)64−i) = 0.0933,

(5.35)

where
(64
i

)
denotes the binomial coefficient, and it is evaluated as (64)!

i!(64−i)! . It should also
be noted that if the number of impulses is larger than the number of zeros, we are still able
to correct some errors due to the nulling, see Subsection 5.4.1. For A = 0.05 and A = 0.01,
large gains in error rate performance can be observed. The halved probability of having
more than 8 impulses in an OFDM symbol can be calculated as ≈ 2 · 10−3 for A = 0.05 and
≈ 8 · 10−9 for A=0.01.

In Fig. 5.7, we vary the ratio ∆ = σ2
c/σ

2
i to evaluate the performance of the threshold

detector. It can be seen that, for ∆ = 1, the impulsive noise can hardly be distinguished,
i.e., the estimator losses information about the channel state. The SER for the least-squares
estimator with perfect CSI is also added for comparison.

Fig. 5.8 illustrates the role of the number of zeros (n − m) in the SER performance of
the decoder. Increasing (n − m) leads to a large gain, whereas, for small (n − m), the
performance improvement is quite limited.
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Figure 5.6: SER of the iterative 64-OFDM transmission using 4-QAM over the two-state
impulsive noise channel with 8 zeros and ∆ = 10−2.
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noise channel with A=0.05 and ∆ = 10−2.

5.5 Discussion

Based on the above results, it can be observed that the SER performance of the decoder
is quite poor for the small SBNR. This is mainly due to the amplified background noise in
the least-squares estimator. Additionally, the parameter A has a strong influence on the
decoder’s performance. For A = 0.1, a small gain can be observed. Hence, from a practical
point of view, applying simple pre-processing techniques, such as clipping and nulling, may
lead to a better SER performance with the less complexity in the receiver design, see Fig.
6.7.
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Chapter 6

Iterative Impulsive Noise

Suppression in OFDM

Simple iterative impulsive noise suppression algorithms can improve the performance by
exploiting the noise structure in the time and frequency domain, see [15] and [51]. In these
algorithms, the number of subcarriers, n, plays an important role. For large n > 256, the
convergence speed is fast, whereas, for n ≤ 256, the algorithms converge slowly or even not
at all. This is mainly due to the Gaussian approximation used in the algorithms for the
distribution of the transformed random variables after DFT or IDFT. As n increases, the
approximation becomes more accurate.

The analysis in the previous chapter showed that the error rate performance of the least-
squares estimator receiver is limited. Therefore, the iterative algorithm as given in [15] is
investigated in this chapter. We first show that using a clipping and nulling technique at
the input of the algorithm significantly improves the error rate performance, and it enables
a fast convergence for n > 64. Furthermore, we extend the iterative algorithm with a novel
low complexity syndrome decoder to improve the error rate performance for n ≤ 64. The
decoder applies a successive impulsive noise error decoding instead of decoding all errors
jointly. This approach has the advantage that the non-consecutive zeros or pilot tones can
also be used in the decoding. Simulation results are provided to show the improvement in
error rate.

This paper is organized as follows. In section 6.1, the impulsive noise spreading in OFDM
is explained. It is followed by the iterative impulsive noise suppression algorithm, which is
discussed in Section 6.2. The clipping and nulling technique is introduced in Section 6.3.
Section 6.4 presents the extension of the iterative algorithm by a simple syndrome decoder.
Finally, a conclusion is given in Section 6.5.

6.1 OFDM and Impulsive Noise Spreading

We assume in general that the input vector u ∈ Um to the OFDM modulator consists of
m ≤ n information symbols with a symbol energy Es and a zero vector of length n − m
appended to the information, i.e., u = (u1, ..., um, 0, ..., 0)T . The symbol alphabet U is a set
of |U| discrete points in the complex plane depending on the modulation scheme adopted.
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The transformed symbol vector c ∈ Cn defined by the linear mapping

c = V−1u, (6.1)

where

V−1 =
1√
n




1 1 · · · 1

1 α · · · α(n−1)

...
...

. . .
...

1 α(n−1) · · · α(n−1)(n−1)


 , α = e

j2π
n . (6.2)

The OFDM symbol vector c is transmitted over the two-state impulsive noise channel
model, see Section 2.2.1 for the channel definition. The received signal rk of the received
vector r = (r1, ..., rn)

T can be expressed as rk = ck + wk, where wk is the complex channel
noise sample at time instant k that consists of the impulsive noise and the background
noise samples. At the receiver, the received vector r is multiplied with the DFT matrix V
yielding R = (R1, ..., Rn) = Vr. Hence, the Rk’s are given by

Rk =
1√
n

n∑

l=1

αk(l−1)rl = uk +
1√
n

n∑

l=1

αk(l−1)wl, (6.3)

where uk = 0 for k > m.

Approximation 6.1. For n → ∞, due to the central limit theorem [7], the sum term

1√
n

n∑
l=1

αk(l−1)wl is a Gaussian distributed random variable with zero mean and variance σ2
w,

where σ2
w is the average noise variance of the channel noise, see Eq. (2.12).

This indicates that, for large n, the noise after DFT can be approximated to be AWGN.
Moreover, the impulsive noise which is added to the transmitted signal is multiplied with
the DFT matrix only; therefore, each impulse is spread in time so that its effect in the
frequency domain may be considerable reduced. In general, the power of the impulsive
noise is reduced by a factor of n. For n = 1024, the power is reduced by more than 30 dB,
compared to the original signal power, see Fig. 6.1.

Since the noise components after DFT are approximated as Gaussian random variables, the
conventional type of OFDM demodulator designed for the AWGN channel can be applied.
This means that a ML detector makes an estimation of the information symbol uk in
each time instant k = 1, ...,m based on the component Rk. However, the drawback of
this detection is the reduced reliability of information, since the energy concentrated in
one impulse is distributed over all information symbols. Hence, independently applying
a detector to each component of R neglects the statistical dependency between the noise
components after DFT, and results in a huge performance degradation. It was also shown
in [16] that spreading can lead to an enormous loss in the capacity.

80



0 512 1024
channel noise samples

am
pl

itu
de

0 512 1024
channel noise samples

am
pl

itu
de DFT

Figure 6.1: Impulsive noise spreading after DFT.

6.2 Iterative Noise Suppression Algorithm

An iterative impulsive noise suppression algorithm was proposed in [15] and [51] to increase
the performance of the OFDM transmission scheme by exploiting the dependency of the
noise in the frequency domain (after DFT). In this section, we review the algorithm as given
in [15]. The block diagram of the receiver is depicted in Fig. 6.2. The algorithm performs
the following steps.

1. After transmission over the impulsive noise channel, the received vector r is multiplied
by the DFT matrixV, yielding the transformed received vectorR(0) = Vr. The vector
R(0) represents the input of the ML detector at iteration zero.

2. The ML detector maps the first m elements of R(0) on a signal point in the QAM
constellation, and the last n−m elements are set to zero. The estimated input vector
u(l), l ≥ 0, represents the result of the lth iteration in the iterative algorithm.

3. u(l) is then converted back into the time domain c(l) and subtracted from the received
vector r. The result w(l) = r−c(l) denotes the estimated channel noise at lth iteration.

4. w(l) is processed by the threshold detector to estimate the complex amplitudes at the
positions of the impulsive noise, i.e.,

w̃
(l)
k =

{
0 for |w(l)

k | ≤ Thr,

w
(l)
k for |w(l)

k | > Thr,
(6.4)

where Thr represents the threshold defined in [15], and k = 1, ..., n.

5. The vector w̃(l) is subtracted from r. The result is then converted back into the time
domain, yielding R(l) = V(r − w̃(l)). The iterative process continues from Step 2
using R(l).

If u(l+1) = u(l) for the first time, the iteration stops.
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Figure 6.2: Block diagram of the Haering’s iterative receiver.

The threshold Thr is calculated under the assumption that the vector u − u(l) (the con-
tribution of the wrong decisions made by the ML detection) is Gaussian distributed after
the IDFT operation. Thus, the threshold detector given in Eq. (6.4) decides whether the

amplitudes |w(l)
k | belong to the impulsive peaks or to the underlying Gaussian noise. In Fig.

6.3, the calculated threshold is shown versus SNR, where the SNR is calculated as σ2
c/2σ

2
w,

see Eq. (2.17).

Fig 6.4 shows the SER as a function of the SBNR, Es/2σ
2
g , for the 1024-OFDM transmis-

sion using 4-QAM over the two-state impulsive noise channel. For simplicity, we assume
that n = m, i.e., no zeros are appended to the information. The SER for the uncoded
transmission over the AWGN channel is also plotted for comparison. We observe that the
algorithm converges within five iterations.

−50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR

T
hr

es
ho

ld

Figure 6.3: Calculated threshold values versus SNR.
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In the previous section, it was approximated for large n that the multiplication with the
DFT matrix converts the impulsive noise channel into an AWGN channel, see Approxima-
tion 6.1. However, for small n, the performance should be evaluated in a different way.

Let us consider the sum term 1√
n

n∑
l=1

αk(l−1)wl in Eq. 6.3. Since all entries in V are on the

normalized unit circle with a radius |αk(l−1)| = 1, the sum term adds n class A random vari-
ables with variance σ2

w/n and parameters A and ∆. It was proved in [16] that the addition
of the two class A random variables with parameters A, ∆ and variance σ2 is also a class

A variable with parameters 2A, ∆ and variance 2σ2. Hence, the sum term 1√
n

n∑
l=1

αk(l−1)wl

yields a class A random variable with parameters Asum = nA, ∆sum = ∆ and the total
variance nσ2

w/n = σ2
w.

Since, for small n, the noise components after DFT has a Class A distribution, the error
probability achieved by the OFDM transmission over the AWCN channel is the same as the
error probability achieved by the single carrier transmission over the AWCN channel with
parameters Asum, ∆sum and variance σ2

w. In general, for n ≤ 256, the impulse energy after
DFT is not spread evenly over all the information symbols, and consequently, the reliability
of the first noise estimation w(0) is low. In this case, the algorithm’s convergence behavior
is also poor, see Fig. 6.8. To maximize the SNR, impulsive noise mitigation techniques can
be applied before the DFT.
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6.3 Iterative Noise Suppression Algorithm with Pre-processing

Techniques

The block diagram of the modified iterative receiver is depicted in Fig. 6.5. We consider
two simple pre-processing techniques at the input of the iterative algorithm to increase the
reliability of the first noise estimate w(0) by reducing the impulsive noise energy.

a) Clipping [52]: Due to its simplicity, clipping technique is often used in practical ap-
plications. It can be applied to the received vector r to reduce the power of the impulsive
noise by limiting the maximum signal value. For the received signal rk, the decision regions
are given as

r̃k =

{
rk for |rk| ≤ Tclip

Tclipe
j arg rk for |rk| > Tclip,

where Tclip = 2.2σ2
c is the clipping threshold, see [52] and Fig. 6.6.

b) Clipping and nulling [53]: Since the mean value of the transmitted signal is zero,
additional to the clipping, the amplitudes at the positions that are most likely hit by an
impulse are set to zero. For the received signal rk, the decision regions are given as

r̃k =





rk for |rk| ≤ Tclip

Tclipe
j arg rk for Tclip < |rk| ≤ 1.4Tclip

0 for |rk| > 1.4Tclip

(6.5)

where Tclip = 2.2σ2
c is the clipping threshold and 1.4Tclip ≈ 3σ2

c is the nulling threshold.
It should be noted that the probability that the OFDM samples ck’s are above the nulling
threshold 3σ2

c can be calculated as 2 · 10−3.

The pre-processed vector r̃ = (r̃1, ..., r̃n)
T is only used for the first estimation of the input

vector c(0), see Section 6.2. The input for the lth iteration is given by r− w̃(l).

Fig. 6.6 shows the SER as a function of the clipping threshold for the 64-OFDM transmis-
sion using 4-QAM over the two-state impulsive noise channel. For all curves, clipping and
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Figure 6.5: Block diagram of the iterative receiver with clipping and nulling.

84



0 0.4 0.8 1.2 1.6 2 2.4 2.8 3
10

−2

10
−1

10
0

clipping threshold values normalized to σ2
c
 

S
E

R

SBNR=20 dB

SBNR=15 dB

SBNR=10 dB

SBNR=5 dB
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nulling technique is applied followed by the conventional OFDM receiver, i.e., l = 0. It can
be observed that the SER reaches the minimum value around 2.2σ2

c .

Fig. 6.7 shows the SER as a function of Es/2σ
2
g for the 64-OFDM transmission using 4-

QAM over the impulsive noise channel model. The SER for the uncoded transmission over
the AWGN channel is also plotted for comparison. For all curves, we consider no iteration,
i.e., l = 0. We observe that using a clipping and nulling technique leads to a large improve-
ment in the performance.

Fig. 6.8 shows the SER as a function of Es/2σ
2
g for the 128-OFDM transmission using the

iterative receiver. The performance results illustrate that SER decreases significantly using
a low complexity clipping and nulling technique at the input of the iterative algorithm.
The algorithm converges within two iterations, whereas no convergence is observed in the
iterative algorithm described in Section 6.2.

Fig. 6.9 shows the SER as a function of Es/2σ
2
g for the 256-OFDM transmission using the

iterative receiver. It can be observed that after only two iterations, the performance of the
uncoded transmission over the AWGN channel is almost achieved.
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Figure 6.9: SER of the iterative 256-OFDM transmission using 4-QAM over the impulsive
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6.4 Iterative Receiver with ‘Clipping and Nulling’ and Syn-

drome Decoding

In this section, a syndrome decoder is included in the iterative receiver, located at the
position as given in Fig. 6.10. At each iteration l ≥ 0, w(l) is processed by a modified
threshold detector. The complex amplitudes after the threshold are defined as

w̃
(l)
k =

{
w

(l)
k for |w(l)

k | > Thr or |rk| > Tclip,
0 otherwise.

(6.6)

One approach to a lower complexity design of the syndrome decoder is to use a successive
decoding strategy instead of decoding all noise components jointly. The syndrome decoder
decodes the channel noise components one by one in descending order of magnitude of
the obtained vector, w̃(l), see Fig. 6.11. First, the algorithm decodes the strongest noise
component in w̃(l). Then, after removing the decoded noise component, the algorithm
detects the next strongest noise component, and it continues until all components in w̃(l)

are decoded. Decoding of each channel noise component essentially involves four steps.

1) Masking: The component of w̃(l) with the largest magnitude is masked, that is, we set it
to zero. The resulting vector, w̃unmasked, is then subtracted from r. In this step, we want to
cancel the channel noise in r, except for the noise at the position of the masked component.
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Figure 6.10: Block diagram of the proposed iterative receiver

2) Syndrome former: The last n − m consecutive positions at the input of the OFDM
modulator are set to zero. Hence, the syndrome vector Ssyn can be calculated by an (n−m)×
n matrix HH , the Hermitian transpose of the parity-check matrix H, where HHV−1u = 0.
The vector Ssyn depends only on the noise components, not on the transmitted OFDM
symbol. Thus,

Ssyn = HH(r− w̃unmasked) = HH(w− w̃unmasked). (6.7)

3) Decoding of the noise at the masked position: We want to estimate the channel noise

component, wmasked, at the position of the masked component of w̃(l). Given that position,
the syndrome vector Ssyn can be rewritten as

Ssyn = Hsubwmasked +HHe, (6.8)

where Hsub is the (n−m)×1 sub-matrix of HH containing its column at the position of the
masked component. The contribution HHe follows from (w − w̃unmasked) at the positions
of the unmasked components. By applying the Moore-Penrose pseudo-inverse of Hsub, a
least square solution to Eq. (6.8) is given by

ŵmasked = (HH

subHsub)
−1HH

subSsyn,

= wmasked + (HH

subHsub)
−1HH

subH
He. (6.9)

(6.10)

4) Removing the decoded noise component: The computed ŵmasked is added to w̃
(l)
unmasked

at the position of the masked component. Then, in the result, the complex amplitude
at the position of the next largest magnitude of w̃(l) is masked. It can be observed that
the estimation error in (6.9), (ŵmasked − wmasked), propagates to the decoding of the next
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(l)

Figure 6.11: Block diagram of the syndrome decoder

component. The covariance of the estimation error can be calculated as

Φsyn = E{(ŵmasked − wmasked)(ŵmasked − wmasked)
H}

= Ne(H
H

subHsub)
−1,

=
n

n−m
Ne, (6.11)

where NeIn = E{eeH}, Ne denotes the power of e and In is the identity matrix of size n×n.
In Eq. (6.11), small eigenvalues of HH

subHsub will lead to a large estimation error. Since
Hsub has dimensions (n−m)× 1, the amplification factor, (HH

subHsub)
−1, can be calculated

as n/(n −m). Hence, an increase in n−m leads to a better error rate performance of the
receiver. It can also be observed that successive decoding of the noise components has the
advantage that the non-consecutive zeros or pilot tones can also be used in the decoding.
Since the matrix Hsub has rank 1, there is no condition on the position of zeros or known
data. Instead of decoding the noise components one by one, the alternative way is to decode
up to n−m noise components jointly. However, in this case, there are two main disadvan-
tages.

• A large amplification factor can be expected, see Subsection 5.4.1.

• The non-consecutive zeros or pilot tones cannot be used, see Property 5.2.

At each iteration l ≥ 0, the algorithm continues until all positions in w̃(l) are estimated.
The output vector ŵ(l) contains the complex noise amplitudes of the lth iteration that are
successively decoded by the syndrome decoding. The iteration process continues by sub-
tracting the vector ŵ(l) from r. The complexity of the syndrome decoding depends on the
number of masked positions at each iteration. On the average, An impulses occur during
the transmission of one OFDM symbol, where A denotes the probability of having an im-
pulsive noise sample. For small σ2

g , A = 0.1 and n = 32, it corresponds to a successive
decoding of about 3 impulses on average.
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Fig. 6.12, Fig. 6.13 and Fig. 6.14 show the SER as a function of Es/2σ
2
g for the transmis-

sion over the two-state impulsive noise channel model. We consider four zeros in 32-OFDM
and eight in 64-OFDM, respectively. We observe in Fig. 6.12 that using syndrome decoding
at the iterative receiver results in a lower SER beyond 12 dB. A large gain can be obtained
after only two iterations. Since more iterations improve the results slightly, they are not
shown in the figure. For n = 64, the performance gain due to the syndrome decoding is
significant with decreasing σ2

g , see Fig. 6.13 and Fig. 6.14. For ∆ = 10−2, the SER drops
to 10−6 at 27 dB and for ∆ = 10−3 at 18 dB, respectively.

Based on the above results and numerous other simulations employing different values for
n, m, A and ∆, the following characteristics can be identified.

• The codeword n plays an important role for the algorithm. For n > 64, the syndrome
decoder is not needed, since iterative noise suppression algorithm with clipping and
nulling technique converges after two iterations. For n ≤ 64, the syndrome decoder
can be applied to decrease the SER for an increased complexity in the receiver design.

• Increasing (n −m) leads to a better SER performance since the amplification factor
in (6.11) decreases. Thus, an additional gain can also be achieved by adding zeros to
the information for the decoding of impulsive noise errors only.

• A determines the number of impulsive noise errors in an OFDM block. Hence, de-
creasing A increases the convergence speed, whereas increasing A has the opposite
effect.
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Figure 6.12: SER of the iterative 32-OFDM transmission using 4-QAM over the impulsive
noise channel with A=0.1 and ∆ = 10−2.
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Figure 6.13: SER of the iterative 64-OFDM transmission using 4-QAM over the impulsive
noise channel with A=0.1 and ∆ = 10−2.
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Figure 6.14: SER of the iterative 64-OFDM transmission using 4-QAM over the impulsive
noise channel with A=0.1 and ∆ = 10−3.
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• The parameter ∆ = σ2
c/σ

2
i has an influence on the iterative receiver’s performance.

As σ2
i increases, the impulsive noise magnitudes can be clearly distinguished by the

threshold detector in the frequency domain. Hence, the SER of the iterative receiver
also decreases, see Fig. 6.13 and Fig. 6.14.

• Finally, the non-consecutive zeros or pilot tones can be used in the syndrome decoding.

6.5 Conclusion

The performance of the iterative impulsive noise suppression algorithm depends on the
number of subcarriers in OFDM. In this chapter, we first show that applying the clipping
and nulling technique at the front of the iterative algorithm decreases the SER significantly,
and it leads to a fast convergence for n > 64. Furthermore, we demonstrate a novel syndrome
decoder which uses the zeros or pilot tones that are transmitted for synchronization or other
purposes. Instead of decoding all noise components jointly, a successive decoding is applied
to achieve a low SER.
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Chapter 7

Summary

7.1 Summary of the thesis

This thesis can be divided into two parts. In the first part, Chapters 3 and 4, a combined
coding and modulation scheme based on the single carrier modulation has been proposed.
Accordingly, it has been shown that high coding gains can be achieved at the same infor-
mation rate without leading to an essential change in the power spectral density (PSD). In
the second part of the thesis, Chapters 5 and 6, OFDM modulation has been considered.
If the DFT of the transmitted OFDM symbol contains a small number of zeros or known
data, there is a similarity between the IDFT and RS encoder. It has been shown that the
similarity can be used to correct the impulsive noise errors. In this section, the main results
obtained in the different chapters are summarized.

After a short introduction, the channel models have been introduced in the second chapter.
The Middleton’s AWCN model has been considered as a statistical model for the impulsive
noise channel. The model covers both impulsive and background noise, and it can be inter-
preted as an infinite number of parallel AWGN channels with increasing variances. It was
also shown that the AWCN channel model can be simplified to a two-state impulsive noise
channel model by considering only two channels.

In the third chapter, it has been proposed to combine the design of coding and modulation
by controlling the minimum channel symbol duration (the minimum duration in which the
channel symbol stays constant) of a set of block waveforms defined in a constant time.
An RLL encoder has been introduced between the channel encoder and the constant en-
velope modulator. In RLL coding, the data sequences are encoded into a restricted set
of sequences. Runlength-limited simply means that the number of symbols in the inter-
vals, where the signal stays constant, are bounded from below by the parameter d. The
parameter d can be used to control the minimum channel symbol duration and the power
spectrum characteristics of the block waveforms. The key idea of the proposed RLL coded
modulation scheme is to map the uncoded set of block waveforms into the set of RLL coded
block waveforms such that the minimum Euclidean distance in the set is increased. Hence,
a soft decision decoding can be applied to obtain high coding gains at the same information
rate without leading to an essential change in the PSD. The concatenation of a RS code
with the RLL code has been studied. In this case, the number of bits per RS symbol is
chosen as the length of the input block of the RLL encoding. It has been shown for BPSK
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and 2-FSK modulations that the same amount of information can be transmitted within
the same minimum channel symbol duration with coding gains of 4 and 5 dB at BER of
10−5 compared with the uncoded BPSK and 2-FSK modulations, respectively.

As a practical application of the proposed RLL coded modulation scheme, we consider PLC
channel, where there is a limitation on the output voltage and bandwidth. FSK modu-
lation is suited for the PLC, where the transmission of only one frequency per time unit
leads to a constant envelope signal, and it is an attractive solution for the implementations
that are oriented to low data rates. For the RLL coded 2-FSK modulation, noncoher-
ent maximum-likelihood block decoding scheme has been investigated for the AWGN and
Middleton’s AWCN channel models. It was shown that by estimating the channel state
information, performance improvement can be obtained for the heavily disturbed impulsive
noise channel. Additionally, receiver performance has been improved by making a nonco-
herent decision over a block length, so that the combination loss due to the squaring in
the envelope detection is avoided. Furthermore, the effect of the narrow band noise on the
2-FSK transmission scheme has been addressed. Simulation results showed that under a
strong frequency disturbance, the decision can be made based on a single frequency.

In the third chapter, we have described construction algorithms for RLL codes with one-bit
look-ahead encoding techniques having a minimum Hamming distance larger than one. A
block-code is said to be look-ahead if the encoding is done as a function of not only the
present and past inputs, but also of a finite number of inputs yet to come. The advantage
of this type of encoding is that codes with higher rates can be constructed without a need
of merging bits during the concatenation of the RLL codewords. At the decoder side, the
RLL codewords can be decoded independently, which does not lead to an error propagation
between the decoded codewords. We have presented several new high rate RLL codes with
the specified d-constraint and the minimum Hamming distance. We also provide efficient
bounds on the code sizes and code rates. The constructed codes are used in the RLL coded
modulation scheme.

In the forth chapter, OFDM modulation has been considered. Impulsive noise may lead to a
significant performance loss in a conventional OFDM receiver designed for the AWGN chan-
nel. The reason for this is that the DFT at the OFDM receiver spreads the impulse energy
over a portion of information symbols. It has been shown that if the DFT of the transmitted
OFDM symbol contains some amount of consecutive zeros or known data appended to the
information, the OFDM modulator can be seen as a RS encoder. An impulsive noise error
correction algorithm has been proposed in this chapter. First, the number and position of
impulsive noise errors are estimated by a threshold-based procedure. Then, the detected
impulsive noise errors are corrected by using least-squares estimation. The analysis on the
least-squares estimation noise showed that the error rate performance of the least-squares
estimator receiver is limited.

In the fifth chapter, an iterative decoder scheme has been proposed. Simple iterative im-
pulsive noise suppression algorithms can improve the performance by exploiting the noise
structure in the time and frequency domain. In these algorithms, the number of subcarriers,
n, plays an important role. For large n > 256, the convergence speed is fast, whereas, for
n ≤ 256, the algorithms converge slowly or even not at all. This is mainly due to the Gaus-
sian approximation used in the algorithms for the distribution of the transformed random
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variables after DFT or IDFT. As n increases, the approximation becomes more accurate. In
this chapter, it has been shown that applying the clipping and nulling technique at the front
of the iterative algorithm decreases the SER significantly, and it leads to a fast convergence
for n > 64. Furthermore, a novel syndrome decoder has been proposed in the iterative
impulsive noise suppression algorithm to improve the error rate performance for n ≤ 64.
The decoder uses the zeros or pilot tones that are transmitted for synchronization or other
purposes. Instead of decoding all noise components jointly, a successive decoding has been
applied to achieve a low SER. This approach has the advantage that the non-consecutive
zeros or pilot tones can also be used in the decoding algorithm.
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List of Abbreviations and Symbols

Abbreviations

AWCN Additive White Class-A Noise

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CSI Channel State Information

DFT Discrete Fourier Transform

ECC Error Control Code

FFT Fast Fourier Transform

FSK Frequency Shift Keying

IDFT Inverse Discrete Fourier Transform

i.i.d. Independent and Identically Distributed

LSE Least-Squares Estimation

ML Maximum-Likelihood

MMSE Minimum Mean-Squared Error

OFDM Orthogonal Frequency Division Multiplexing

OOK On-Off Keying

PEP Pairwise Error Probability

PDF Probability Density Function

PLC Powerline Communications

PSD Power Spectral Density

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

RLL Runlength-Limited

RS Reed-Solomon

SER Symbol Error Rate

SBNR Signal-to-Gaussian Background Noise Ratio

SNR Signal-to-Noise Ratio
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Symbols

k time instant

n codeword length

c = (c1, ..., cn) channel input vector

C set of channel input vectors

r = (r1, ..., rn) channel output vector

w = (w1, ..., wn) channel noise vector

g = (g1, ..., gn) background noise vector

i = (i1, ..., in) impulsive noise vector

s = (s1, ..., sn) channel state vector

Γ the ratio between the background noise variance and the impulsive
noise variance

∆ the ratio between the signal variance and the impulsive noise vari-
ance

A the impulsive noise index

dmin minimum Hamming distance

d constraint on the maximum run of zeros or ones

τ the duration of one information bit

τ ′ the duration of one RLL channel symbol

φ arbitrary phase introduced by the channel

V DFT matrix

αkl entries of V

Ssyn syndrome vector

H parity-check matrix

t number of non-zero components in i

Rr the rate of the RLL coding

Cd the asymptotic information rate of RLL sequences

N(n, d) The number of RLL sequences of length n that satisfy the d-
constraint

σ2 variance of a random variable
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