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Minimizing Trilateration Errors in the Presence of
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Abstract—Trilateration is a technique for position estimation
from range measurements which is often used in robot navigation.
Most applications assume that there is no error associated with
the landmarks used for trilateration. In cooperative navigation,
in which groups of robots use each other as mobile beacons
for position estimation, it is imperative to take the uncertainty
in the beacon position into account. In this paper, we model
the position uncertainty of a landmark using a multivariate
Gaussian distribution and show how the uncertain landmark
position translates to an uncertainty in the trilaterated position.
We provide insights into how the optimal trilateration point for
a fixed geometry of landmarks depends on the distribution of
the position error. This provides a metric for guiding the motion
of a robot to maintain favorable trilateration geometries when
navigating relative to other robots whose positions are imprecisely
known.

Index Terms—Trilateration, Cooperative Navigation, Mobile
Robots, Uncertain Landmarks

I. M OTIVATION

Trilateration is a technique where the unknown position
of an object is determined throughrange measurements to
landmarks at known locations, while triangulation usesangle
measurements to landmarks to obtain a position estimate.
Both techniques have been in use for many years, mostly
for geodesy and maritime navigation. Even today’s most
sophisticated navigation systems rely on their basic principles.
For example GPS-receivers estimate their positions through
trilateration to satellites at known positions and aircraft use
radio beacons for triangulation.

Mobile robots use a variety of sensors to obtain ranges or
angles (or both) to landmarks and then use trilateration and
triangulation to obtain a position estimate. Some sensors,such
as cameras, are able to provide accurate angle measurements
at high update rates while others, such as sonar sensors, pro-
vide range measurements. An increasing number of sensors,
such as stereo cameras or 2D-laser range finders are able to
provide both, range and angle. The size of a robot and the
environment in which it operates often constrain the type of
sensors used. Underwater vehicles which can usually not rely
on optical instruments (cameras and laser range finders) are
usually limited to range information provided by time-of-flight
measurements (figure1). This paper will focus on trilateration.

All geodesy applications and most early work in mobile
robotics used easily distinguishable features in the environ-
ment or fixed beacons as landmarks for triangulation. The
positions of these landmarks or beacons was assumed to be
error free. It was also significantly smaller than the error
associated with the range or angle measurement and could

Fig. 1. An Autonomous Underwater Vehicle (AUV), here surfaced (fore-
ground) uses and Autonomous Surface Craft (ASC) (background) as a
navigation aid. The GPS-derived position of the ASC is obtained by the
submerged AUV through an acoustic modem. Using time-stamped messages
and globally synchronized clocks on all vehicles the AUV is also able to
determine its range to the ASC through time-of-flight measurements.

therefore be ignored. Both assumptions do not hold once
groups of robots are introduced which use each other as
landmarks. Now a robot uses a landmark whose position has
an uncertainty associated with it which is too significant tobe
ignored. This uncertainty is now known, as the ”landmark”-
robot can use an error model which uses the distance traveled
and knowledge of the proprioceptive sensor noise to compute
a probability distribution of its position and can broadcast it to
other robots which can then use this information. Knowing the
uncertainty associated with the position of our landmarks,we
can now quantify how it affects the uncertainty of the position
derived from these landmarks through trilateration.

In this paper we will first introduce trilateration based on
two landmarks and then derive how uncertainty in the land-
mark position, modeled through a bivariate Gaussian distribu-
tion, affects the uncertainty of the obtained position. We then
show how the distribution of the landmark’s uncertainty not
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only affects the magnitude of trilaterated position uncertainty,
but also the robot’s position with respect to the landmarks
from which trilateration would lead to minimum position
uncertainty. Being able to determine the position which min-
imizes the trilateration error is important in a scenario where
some robots in a group are dedicated navigation beacons and
therefore have to adapt their position accordingly.

II. RELATED WORK

Trilateration has numerous applications, and has been the
subject of extensive research outside of the robotics commu-
nity. In particular, GPS navigation relies on trilateration to
satellites at known positions, and hence there is a large body of
work that addresses the uncertainty of trilateration fixes.The
metric most frequently employed is the Geometric Dilution
of Precision (GDOP), a single dimensionless number which
captures the influence of the geometry on the error of the
position estimate. Examples of work that investigates error
metrics for GPS trilateration includes Chaffee and Abel [1]
and McKay and Pachter [2]. This literature typically assumes
precise knowledge of the positions of satellites, and hencethe
impact of the beacon position error is not analyzed.

Early work in multi-robot localization, which used the
concept of ”portable landmarks”, where a stationary group
of robots would serve as landmarks to a moving group of
landmarks, did not take the trilateration and triangulation-
error into account [3]. Later, more dynamic scenarios were
investigated where all robots tried to improve their posi-
tion estimate through range or angle-measurements to other
robots [4]. Here the uncertainty estimate of the landmarks
(other robots) was used implicitly during the position estimate,
but no attempt was made to explicitly analyze its magnitude
and its dependence on the geometry.

Simultaneous Localization and Mapping (SLAM) gener-
alizes localization to include building a map of the envi-
ronment. In feature-based SLAM, the environment is typi-
cally represented in terms of discrete landmarks, and hence
in such a formulation uncertainty in the landmark location
is incorporated explicitly. Feature-based SLAM from range-
only measurements has been addressed by several authors,
including Djugashet al. [5], who developed SLAM algorithms
for range-only measurements using custom sensor nodes,
and Wijk and Christensen [6], who performed SLAM via
trilateration of range measurements from ultrasonic sensors.
In a SLAM formulation, the position estimate for the vehicle
implicitly accounts for the (correlated) uncertainty in the posi-
tion estimates of the landmarks. To our knowledge, however,
the range-only SLAM literature has not addressed the topic
of the effect of beacon position uncertainty on the solution
geometry, which is the topic of this paper.

Trilateration is a central component of methods to calibrate
the positions of networks of sensors with range-only measure-
ment capabilities. Moore [7] presents an algorithm which se-
lects landmarks for trilateration such that the geometry ensures
that the solution is unique in the presence of measurement
noise.

Work that specifically investigates the error of trilateration-
(or triangulation-) based localization techniques is fairly sparse
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Fig. 2. Robot triangulating its positionx using range measurementsr1 and
r2 to robots at known locationsx1 andx2.

when compared to their widespread use. Kelly [8] pro-
vides a good and intuitive insight into the relation between
robot/landmark-geometry and the resulting position accuracy,
but he does not take the uncertainty of the landmarks into
account. Easton and Cameron [9] explicitly assume noisy
landmarks for triangulation-based algorithms, but their method
does not consider the effects of strongly skewed error distri-
butions (as shown in figure2) and their effect on the optimal
triangulation geometry. As a result, the uncertainty of his
triangulated position is affected by the sensor noise, but the
point where triangulation leads to the smallest possible error
for given landmark uncertainties does not vary.

III. T RILATERATION

The trilateration problem for ranges to two landmarks,
shown in figure2, can be expressed in closed form and is posed
as follows. A robot tries to estimate its positionx = [x, y]T

using range measurementsr1 and r2 to landmarksl1 and l2
at known positionsx1 = [x1, y1]

T andx2 = [x2, y2]
T .

The intersection of the two range circles

X = F(x1,x2, r1, r2) (1)

leads to zero, one or two solutions

X = ∅ or X = x1 or X =

(

x1

x2

)

The equations representingF as well as the Jacobian (3)
can be found at

people.csail.mit.edu/∼abahr/publications/publicationsECMR2007 detail.htm

For the remaining discussion we assume that we obtained
one or two solutions. In the case of two solutions, further
information is necessary to break the ambiguity. This infor-
mation can be a previous estimate of the robot’s position
or a position tuple obtained using range measurements to
different landmarks. An algorithm for the computation of
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the position based on a series of range-measurement pairs
is described in [10]. We further assume that the landmarks
can be uniquely identified. This is a valid assumption in the
case where dedicated beacons or other robots are used for
trilateration which usually provide unique IDs.

IV. ERRORPROPAGATION

To model the error associated with the two landmarks, we
assume bivariate Gaussian distributions with meanx1 andx2

and associated covariance matricesΣ1 andΣ2.

Σn =

[

σxxn
2 σxyn

2

σyxn
2 σyyn

2

]

, n = [1, 2]

Graphically the error is represented by the error ellipse
which is typically the3σ bound which contains95% of all
realizations forx1 andx2. σ1 andσ2 are the semi-minor and
semi-major axis of the error ellipse which are the eigenvalues
of Σn.

The Gaussian assumption is not always a valid model for
the error distribution of a landmark, but it can be used to
provide a conservative estimate if the true error distribution
is only similar to a Gaussian. Furthermore many feature-
based maps describe the error associated with the features
as a bivariate Gaussian and in the case of a cooperative
navigation scenario, where robots use each other as landmarks,
the landmark positionsx1 andx2 are the estimated positions
of the cooperating robots. The robots often use a Kalman-
filter based navigation engine for dead-reckoning and sensor
fusion which also keeps track of the uncertainty associated
with the position estimate through a covariance matrix [11].
The positionsx1 andx2 and the associated uncertaintiesΣ1

andΣ2 are then retrieved from the local Kalman filter of the
cooperating robots and transmitted to the trilaterating robot.

The error associated with the computed position of the
trilaterating robot is represented by the covariance matrix

Σ =

[

σxx
2 σxy

2

σyx
2 σyy

2

]

which is given by

Σ = JGJ
T (2)

where J is the Jacobian of the intersection function
F(x1,x2, r1, r2) given by

J =

[

∂x
∂x1

∂x
∂y1

∂x
∂x2

∂x
∂y2

∂x
∂r1

∂x
∂r2

∂y
∂x1

∂y
∂y1

∂y
∂x2

∂y
∂y2

∂y
∂r1

∂y
∂r2

]

(3)

and

G =
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The above structure ofG assumes that the uncertainties
associated with the positionsx1 and x2 are independent,

which leads to zeros in the off-diagonal blocks. This can be
assumed if the landmarks are features on an a-priori map, but
one must be careful in the case of cooperating robots. The
following example illustrates the difficulties that arise in such
a scenario. A robotV 1 uses two other robotsV 2 andV 3 to
trilaterate its position and uses the obtained position to fully
reset its navigation engine or as an update step in the Kalman
filter. As a result the position estimate ofV 1 is now coupled
to the position estimate ofV 2 and V 3. If at a later time
robot V 3 uses robotsV 2 and V 1 to trilaterate its position,
the off-diagonal blocks ofG are non-zero as the position
estimatesx1 andx3 are now coupled. Extra steps must now
be taken to obtain the coupling terms and properly populateG.
Another possibility is the use of an estimation algorithm, such
as Covariance Intersection[12] which can fuse information
consistently without using the correlation which then leads to
more conservative but uncoupled position estimates.

A. Metrics

Two metrics are widely used to describe the error ellipse of a
bivariate Gaussian distribution with a single parameter [9]. The
areaA of the3σ-error ellipse which is related to the covariance
matrix Σ by A = π∗

√

det(Σ) and the ratio of the semi-minor
to the semi-major axis of the error ellipseρ = σ1

σ2

, (σ1 < σ2).
While the areaA is a useful parameter forρ ≈ 1, it does
not capture the error for elongated ellipses well.ρ describes
the elongation of the ellipse well, but does not provide any
information about its overall size.

As both metrics are not adequate to describe the error
ellipse we propose to use a variation of the Circular Error
Probability (CEP). Most of the literature defines the CEP
as the probabilityP (R) for which a single realization of a
mean-free, bivariate Gaussian distributionN(0,Σ) is within
a circle with radiusR around the origin [13]. A variation
which defines the CEP as the radiusR(P ) of the circle which
contains half the realizations (forP = 0.5) of N(0,Σ) is
described by Torrieri [14]. There is no closed form solution for
P (R) or R(P ), but Shnidman provides an efficient algorithm
to computeR(P ) [15]. Shnidman’s algorithm can also be
generalized forP 6= 0.5, but as R(P = 0.5) provides
a parameter with an intuitive understanding of an ”average
error”, all further references toR areR(P = 0.5). Forρ << 1
Shnidman’s algorithm can run into underflow problems, but as
in this case the bivariate is approaching a one-dimensional
Gaussian with varianceσ2, we can computeR using the
inverse error function.

R =
√

2 ∗ σ2 ∗ erf−1(P ) (4)

A function to evaluate the inverse error function is provided
in MATLAB or is described in [16].

B. Geometry

As the error of the position estimate obtained through trilat-
eration depends strongly on the relative position of the robot
to the landmarks, we want to pick an optimal position before
trilaterating. A position change which might be necessary
to obtain the trilateration result with the least amount of
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Fig. 3. Optimal trilateration positions for different errordistributions. green,
solid: σ1 = σ2 andΣ1 = Σ2. red, dashed:σ1 << σ2 andΣ1 6= Σ2

associated uncertainty can be done actively by moving the
robot to that point or passively by selecting the appropriate
pair of landmarks, in case more than two are available, such
that the optimal trilateration point moves closer to the robot’s.
In the case whereσ1 = σ2 the optimal position of the robot
is in the corner of a rectangular triangle with the landmarks
in the two other corners [8], but in case whereσ1 << σ2 for
Σ1 or Σ2 the optimal position strongly depends on the shape
and orientation (see figure3) of the error ellipses.

V. A NALYSIS

To analyze the effect of various uncertainty distributionsof
the landmarks, we choose the following setup for figures4-8:
We set up a1000 by 1000 point grid where landmarkl1 is fixed
atx1 = [300, 500]T and landmarkl2 atx2 = [700, 500]T . The
robot is placed at all grid pointsx(i, j) in 10 unit-increments.
We then compute the rangesr1 and r2 to l1 and l2. Using
these ranges we trilaterate our position using (1) and obtain
two positionsx1 and x2, one of which isx(i, j) and the
other one is its mirror solutionx

′

(i, ‖500−j‖). As we assume
that we have resolved the ambiguity we can selectx1 or x2

based on which one is equal tox(i, j). Knowing which one of
the two is the correct solution, we can select the appropriate
JacobianJ and can then computeΣ using (2). The variance
associated with the range measurementsr1 andr2 is fixed to
σ2

r1 = σ2

r2 = 32 for all cases, but the variancesΣ1 and Σ2

change.
First, we select a circular uncertainty distribution forl2 with

σ2

xx2
= σ2

yy2
= 52. The uncertaintyΣ1 for l1 is an ellipse with

σ2

1
= 52 andσ2

2
= 152 which is rotated by85◦. Figure4 shows

the uncertainty associated with the trilaterated positionfor
each grid point. Note how despite the symmetric setup of the
landmarks, the distribution of the uncertainty is not symmetric.
The results for the collinear case wherex = [x, 500]T were
clipped as the uncertainty is infinite.

Figure 5 shows the same setup. This time uncertainty for
all grid points was omitted and the covariance ellipses were
plotted for a selected number of grid points.
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Fig. 4. Error associated with trilateration represented bylog(A) for a given
set of two landmarks and their associated position uncertainty (white). The
position from which a trilateration would lead to a positionestimated with
the smallest associated uncertainty is marked by a cross (magenta).
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Fig. 5. Same setup as in figure4 (black: landmarks; magenta: optimal
trilateration position). Here the uncertainties associated with trilateration are
plotted for selected grid points (red). Note the large errorassociated with near
collinear settings.

Figures 6 and 7 show the evolution of the optimal tri-
lateration point as an ellipse forΣ1 with σ2

1
= 32 and

σ2

2
= 152 is rotated counter-clockwise by180◦ from its

original position (red:0◦; green:90◦). Σ2 remained unchanged
and is asymmetric in figure6 with σ2

xx2
= 32 andσ2

yy2
= 72

and symmetric in figure7 with σ2

xx2
= σ2

yy2
= 52.

For figure8 we choose circular distributions forΣ1 andΣ2.
While Σ2 remained constant the elements ofΣ1 changed from
σ2

xx1
= σ2

yy1
= 52 to σ2

xx1
= σ2

yy1
= 152. This affected the

magnitude of the uncertainty at every grid point, but did not
change the position of the optimal trilateration point which
forms a rectangular triangle with both landmarks opposite to
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Fig. 6. Trajectory of the optimal trilateration point as the error ellipse of
landmarkl1 is rotated by180◦. (red:0◦/180◦-position; green:90◦-position).
The crosses indicate the optimal trilateration point for selected angles. The
error distribution for landmarkl2 is elliptic.
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Fig. 7. Trajectory of the optimal trilateration point as the error ellipse of
landmarkl1 is rotated by180◦. (red:0◦/180◦-position; green:90◦-position).
The crosses indicate the optimal trilateration point for selected angles. The
error distribution for landmarkl2 is circular.

the perpendicular angle, just as in the case where the position
uncertainty of the landmarks is assumed to be0.

Note that throughout the previous discussion the notion of
an optimal trilateration point also has an important meaning
for trackingapplications which is the inverse to trilateration or
triangulation depending on what type of information (rangeor
angle) is used. If the two robots in figure3 at x1 andx2 with
corresponding position uncertaintiesΣ1 andΣ2 were to track
the ”target”-robot atx using nothing but the rangesr1 and
r2 while maintaining a fixed distancex1,x2, the positionsx1
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Fig. 8. Optimal trilateration point (magenta) for acircular error distribution
for landmarkl1 and l2. The size of the covariance ellipse forl1 grows from
σ2

xx1
= σ2

yy1
= 52 to σ2

xx1
= σ2

yy1
= 152 (red, green and blue circle

around l1). Note that while the uncertainty of the position estimate does
change, the optimal trilateration position does not. It remains at the corner of
a rectangular triangle as shown in figure3.

and x2 would be the optimal tracking positions for a target
robot atx.

VI. A PPLICATION

An example for cooperative navigation is the Moving Long
Baseline (MLBL)-concept presented in [17] where a ded-
icated group of Autonomous Underwater Vehicles (AUVs)
called Communication And Navigation Aids (CNAs) has very
sophisticated navigation sensors and broadcasts its position
over an acoustic modem. As all vehicles have access to
globally synchronized clocks, the time-stamped messages sent
over the acoustic modem can also be used to obtain range
information to the broadcasting vehicle through one-way travel
times. This way a large group of AUVs with poor navigation
sensors which is within communication range of the CNAs
can maintain high navigation accuracy. The modem we use
has been developed by the Acoustic Communications Group at
the Woods Hole Oceanographic Institution (WHOI) and is de-
scribed in [18]. As an intermediate step we used Autonomous
Surface Crafts (ASCs) — kayaks outfitted with propulsion,
a PC, GPS (Garmin GPS 18 5Hz) and an acoustic modem
— as CNAs. An AUV was then set up to run a U-shaped
trackline (figure9) while the following ASCs broadcasted their
GPS-derived position over the acoustic modem (picture1).
As only one range/position pair is obtained every10 seconds,
a combination of dead-reckoning and trilateration described
in [10] must be used to obtain a position estimate. Figure9
shows the navigation obtained by post-processing the dead-
reckoning information (blue). In the absence of GPS under-
water this post-processing result taking the GPS information
before the dive and after surfacing into account is considered
”ground-truth” here. Throughout the run the AUV received
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Fig. 9. MLBL experiment with two ASCs and one AUV showing ”ground-
truth” and trilaterated positions att = 5 (favorable geometry) andt = 15
(unfavorable geometry). Blue: trackline of the AUV using thepost-processed
dead-reckoning results. Red: trilaterated positions of the AUV with associated
uncertainty. Black: positions of the CNAs at the time of trilateration. Detail:
trilaterated solutions.

enough range/position pairs to trilaterate15 position estimates
together with their associated uncertainty. Two of them,x(5)
andx(15) are shown together with the associated uncertainty
ellipse (red) and the position of the CNAs at that time (black).
The position uncertainty of the CNAs was indicated by the
GPS receiver to beσ2

xx = σ2

yy = 32 for both vehicles and
did not change as the kayaks had a clear view of the sky
through the entire run. The variance for range measurements
was set toσ2

r1 = σ2

r2 = 32. The positionx(5), which was
obtained from the CNAs atx1(5) and x2(5) under a much
more favorable geometry thanx(15) using the almost collinear
geometry created by the CNAs atx1(15) andx2(15) leads to
a much smaller position uncertainty forx(5) than for x(15)
as indicated by the covariance ellipse. The detail in the upper
left corner shows a magnification of the trilaterated solutions
(red ”x”) together with the ”ground-truth” at the same pointin
time (blue ”x”) where the trilaterated positionx(5) is closer
to the ”ground-truth” thanx(15).

VII. C ONCLUSION AND FUTURE WORK

We derived a framework which allows us to compute the
uncertainty associated with a trilaterated position for the case
of landmarks with uncertain positions. We then showed how
the orientation and size of the error distribution associated with
the landmarks significantly affects the trilateration error and
how subsequently the point for optimal trilateration changes.

This analysis will be used in future work to develop an
algorithm which can control the motion of the AUVs to
optimize the trilateration geometry in real-time. The trajec-
tories presented here provide the insights to facilitate this
development. Being able to efficiently compute the optimal
trilateration point will enable us to use this point as a goal
for path planning strategies geared to optimize cooperative
navigation. We are also looking into the pairwise computation
of trilateration uncertainties in order to select an optimal set
of n, (n > 2) landmarks from a set ofm, (m ≥ n) landmarks

which will lead to an optimal trilateration result for a least-
square-based algorithm.
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