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Abstract—Trilateration is a technique for position estimation
from range measurements which is often used in robot navigation.
Most applications assume that there is no error associated with
the landmarks used for trilateration. In cooperative navigation,
in which groups of robots use each other as mobile beacons
for position estimation, it is imperative to take the uncertainty
in the beacon position into account. In this paper, we model
the position uncertainty of a landmark using a multivariate
Gaussian distribution and show how the uncertain landmark
position translates to an uncertainty in the trilaterated position.
We provide insights into how the optimal trilateration point for
a fixed geometry of landmarks depends on the distribution of
the position error. This provides a metric for guiding the motion
of a robot to maintain favorable trilateration geometries when
navigating relative to other robots whose positions are imprecisely
known.

Index Terms—Trilateration, Cooperative Navigation, Mobile
Robots, Uncertain Landmarks

I. MOTIVATION

Trilateration is a technique where the unknown position
of an object is determined througlange measurements to
landmarks at known locations, while triangulation usegle
measurements to landmarks to obtain a position estimate.
Both techniques have been in use for many years, mostly

for gec_)desy and_ m,amlme havigation. EV?n to.da_ys mo§|tg_ 1.  An Autonomous Underwater Vehicle (AUV), here surfhdéore-
sophisticated navigation systems rely on their basic i@s. ground) uses and Autonomous Surface Craft (ASC) (backgjowsd a
For example GPS-receivers estimate their positions tHrougpvigation aid. The GPS-derived position of the ASC is otetdi by the

trilateration to satellites at known positions and aircrage submerged AUV through an acoustic modem. Using time-stamped gesssa
and globally synchronized clocks on all vehicles the AUV Isoaable to

radio beacons for triangulation. determine its range to the ASC through time-of-flight measurésnen
Mobile robots use a variety of sensors to obtain ranges or

angles (or both) to landmarks and then use trilateration and
triangulation to obtain a position estimate. Some sensoid) therefore be ignored. Both assumptions do not hold once
as cameras, are able to provide accurate angle measuremgasps of robots are introduced which use each other as
at high update rates while others, such as sonar sensors, fndmarks. Now a robot uses a landmark whose position has
vide range measurements. An increasing number of sensars,uncertainty associated with it which is too significanbéo
such as stereo cameras or 2D-laser range finders are abl@mored. This uncertainty is now known, as the "landmark’-
provide both, range and angle. The size of a robot and trabot can use an error model which uses the distance traveled
environment in which it operates often constrain the type ahd knowledge of the proprioceptive sensor noise to compute
sensors used. Underwater vehicles which can usually npt ralprobability distribution of its position and can broaddato
on optical instruments (cameras and laser range finders) atier robots which can then use this information. Knowirey th
usually limited to range information provided by time-af§fit uncertainty associated with the position of our landmawkes,
measurements (figutB. This paper will focus on trilateration. can now quantify how it affects the uncertainty of the positi

All geodesy applications and most early work in mobilelerived from these landmarks through trilateration.
robotics used easily distinguishable features in the envir In this paper we will first introduce trilateration based on
ment or fixed beacons as landmarks for triangulation. Thwo landmarks and then derive how uncertainty in the land-
positions of these landmarks or beacons was assumed tontsk position, modeled through a bivariate Gaussian Oistri
error free. It was also significantly smaller than the errdion, affects the uncertainty of the obtained position. Went
associated with the range or angle measurement and costidw how the distribution of the landmark’s uncertainty not




only affects the magnitude of trilaterated position uraietty,

but also the robot’s position with respect to the landmarks
from which trilateration would lead to minimum position
uncertainty. Being able to determine the position which-min
imizes the trilateration error is important in a scenariceveh
some robots in a group are dedicated navigation beacons and
therefore have to adapt their position accordingly.

Il. RELATED WORK

Trilateration has numerous applications, and has been the
subject of extensive research outside of the robotics commu
nity. In particular, GPS navigation relies on trilateratito
satellites at known positions, and hence there is a largg bbd
work that addresses the uncertainty of trilateration fiXdse
metric most frequently employed is the Geometric Dilution
of Precision (GDOP), a single dimensionless number which
captures the influence of the geometry on the error of the
position estimate. Examples of work that investigatesrerro
metrics for GPS trilateration includes Chaffee and AbBHl [ x, 3
and McKay and Pachte@]. This literature typically assumes Fig. 2. Robot triangulating its positio® using range measurementg and
precise knowledge of the positions of satellites, and héimee r, to robots at known locationg; and z2.
impact of the beacon position error is not analyzed.

Early work in multi-robot localization, which used the
concept of "portable landmarks”, where a stationary groughen compared to their widespread use. KelBj pro-
of robots would serve as landmarks to a moving group Mfdes a gOOd and intuitive InSIght into the relation between
landmarks, did not take the trilateration and triangulatio Fobot/landmark-geometry and the resulting position amcyr
error into accountg]' Later, more dynamic scenarios Weré)Ut he does not take the Uncertainty of the landmarks into
investigated where all robots tried to improve their posfccount. Easton and Camerof] [explicitly assume noisy
tion estimate through range or angle-measurements to otffgldmarks for triangulation-based algorithms, but thestimod
robots []. Here the uncertainty estimate of the landmarkdoes not consider the effects of strongly skewed erroridistr
(other robots) was used implicitly during the position estie, butions (as shown in figurg) and their effect on the optimal
but no attempt was made to explicitly analyze its magnitudéangulation geometry. As a result, the uncertainty of his
and its dependence on the geometry. triangulated position is affected by the sensor noise, bet t

Simultaneous Localization and Mapping (SLAM) generPoint where triangulation leads to the smallest possibterer
alizes localization to include building a map of the envifor given landmark uncertainties does not vary.
ronment. In feature-based SLAM, the environment is typi-
cally represented in terms of discrete landmarks, and hence [1l. TRILATERATION
in such a formulation uncertainty in the landmark location The trilateration problem for ranges to two landmarks,
is incorporated explicitly. Feature-based SLAM from rangeshown in figure2, can be expressed in closed form and is posed
only measurements has been addressed by several auth@Sollows. A robot tries to estimate its positian= [z, y]”
including Djugastet al.[5], who developed SLAM algorithms using range measurements and r, to landmarks/; and i,
for range-only measurements using custom sensor nodgsknown positionge; = [z1,11]7 andxs = [z, yo] .
and Wijk and Christensen6], who performed SLAM via The intersection of the two range circles
trilateration of range measurements from ultrasonic ssnso
In a SLAM formulation, the position estimate for the vehicle X = Flz1,22,71,72) 1)
implicitly accounts for the (correlated) uncertainty iethosi- |eads to zero, one or two solutions
tion estimates of the landmarks. To our knowledge, however,
the range-only SLAM literature has not addressed the topic X =0 or X =x1 or X = ( vl )
of the effect of beacon position uncertainty on the solution x2
geometry, which is the topic of this paper. The equations representing as well as the Jacobiar3)(

Trilateration is a central component of methods to calédratan be found at
the positions of networks of sensors with range-only mesasur people.csail.mit.edu/abahr/publications/publication§ECMR2007 detail. htm
ment capabilities. Moore7] presents an algorithm which se- For the remaining discussion we assume that we obtained
lects landmarks for trilateration such that the geometguezs one or two solutions. In the case of two solutions, further
that the solution is unique in the presence of measureménfbrmation is necessary to break the ambiguity. This infor
noise. mation can be a previous estimate of the robot's position

Work that specifically investigates the error of trilatégat or a position tuple obtained using range measurements to
(or triangulation-) based localization techniques islyasparse different landmarks. An algorithm for the computation of




the position based on a series of range-measurement pairsch leads to zeros in the off-diagonal blocks. This can be

is described in 10]. We further assume that the landmarksissumed if the landmarks are features on an a-priori map, but
can be uniquely identified. This is a valid assumption in thene must be careful in the case of cooperating robots. The
case where dedicated beacons or other robots are usedfddowing example illustrates the difficulties that ariseduch

trilateration which usually provide unique IDs. a scenario. A roboV; uses two other robot¥ > and V5 to
trilaterate its position and uses the obtained positionutly f
IV. ERRORPROPAGATION reset its navigation engine or as an update step in the Kalman

To model the error associated with the two landmarks, vifer. As a result the position estimate f, is now coupled

assume bivariate Gaussian distributions with mearandz, (© the position estimate oV, and V. If at a later time
and associated covariance matrid®s and X, robot V'3 uses robotsV, and V'; to trilaterate its position,

the off-diagonal blocks ofG are non-zero as the position
s _ [ Opan’  Oayn’ ] —— estimatesr; andzs are now coupled. Extra steps must now
T oyen? oy |7 be taken to obtain the coupling terms and properly populate
Graphically the error is represented by the error eIIipéAénOther possibility Is th? use of an estimation a!gorithmgrs
which is typically the3s bound which contain95% of all as C(_)vanance_ Intersec_tlomlz] which can fus_e information
realizations forz, andz. o, ando, are the semi-minor and consistently without using the correlation which then k&ad

semi-major axis of the error ellipse which are the eigertwsrxllumore conservative but uncoupled position estimates.
of X,,.
The Gaussian assumption is not always a valid model f6¢ Metrics
the error distribution of a landmark, but it can be used to Two metrics are widely used to describe the error ellipse of a
provide a conservative estimate if the true error distidout bivariate Gaussian distribution with a single parame@grThe
is only similar to a Gaussian. Furthermore many featurereaA of the3o-error ellipse which is related to the covariance
based maps describe the error associated with the featuresrix X by A = 7+ /det(X) and the ratio of the semi-minor
as a bivariate Gaussian and in the case of a cooperatigehe semi-major axis of the error ellipge= 2 (01 < 02).
navigation scenario, where robots use each other as lakdmawhile the aread is a useful parameter fos ~ 1, it does
the landmark positiong, andx, are the estimated positionsnot capture the error for elongated ellipses welldescribes
of the cooperating robots. The robots often use a Kalmatie elongation of the ellipse well, but does not provide any
filter based navigation engine for dead-reckoning and senseformation about its overall size.
fusion which also keeps track of the uncertainty associatedAs both metrics are not adequate to describe the error
with the position estimate through a covariance matfi&].[ ellipse we propose to use a variation of the Circular Error
The positionse; andxzz and the associated uncertaint®8g  Probability (CEP). Most of the literature defines the CEP
and X, are then retrieved from the local Kalman filter of theas the probabilityP(R) for which a single realization of a
cooperating robots and transmitted to the trilateratifgpto  mean-free, bivariate Gaussian distributidn(0,>2) is within
The error associated with the computed position of the circle with radiusR around the origin 13]. A variation
trilaterating robot is represented by the covariance matri  which defines the CEP as the radii¢P) of the circle which

P R contains half the realizations (faP = 0.5) of N(0,X) is
Y= [ U,xm2 0‘“’2 ] described by Torrieril4]. There is no closed form solution for
o e P(R) or R(P), but Shnidman provides an efficient algorithm
which is given by to compute R(P) [15]. Shnidman’s algorithm can also be
- generalized forP # 0.5, but as R(P = 0.5) provides
X=JGJ (2) a parameter with an intuitive understanding of an “average

where J is the Jacobian of the intersection functior®ror’, all furtherreferences & are (P = 0.5). Forp << 1
F(x1,22,71,72) given by Shnidman’s algorithm can run into underflow problems, but as

in this case the bivariate is approaching a one-dimensional

Oz 9z Oz Oz  OJx Oz Gaussian with variance,, we can computeR using the
=% W W W W W @ i
Oy Jdy Oy Jdy 9y Iy inverse error function.
oxq 8y1 Oxo ayz ory org
and R=+2x0yxerf !(P) 4
A function to evaluate the inverse error function is prodde
Opi1®  Ouyr” 0 0 0 0 in MATLAB or is described in 16].
Oye1? oy’ 0 0 0 0
G- 0 0 Umzz ny2z 0 0 B. Geometry
8 8 ‘7?/82 Uy(l)/? 0 5 8 As the error of the position estimate obtained throughttrila
0 0 0 0 061 5 eration depends strongly on the relative position of theotob
0r2

to the landmarks, we want to pick an optimal position before
The above structure off assumes that the uncertaintiesrilaterating. A position change which might be necessary
associated with the positiong; and x, are independent, to obtain the trilateration result with the least amount of
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Fig. 3. Optimal trilateration positions for different errdistributions. green,

solid: 01 = 02 and X1 = 3. red, dashedsr; << o2 and¥; # X2 Fig. 4. Error associated with trilateration representeddgy A) for a given
set of two landmarks and their associated position uncéytdwhite). The
position from which a trilateration would lead to a positiestimated with

. . . . he smallest associated uncertainty is marked by a cross en
associated uncertainty can be done actively by moving the Y y (123

robot to that point or passively by selecting the appropriat
pair of landmarks, in case more than two are available, sut
that the optimal trilateration point moves closer to theatsh

In the case where; = o5 the optimal position of the robot
is in the corner of a rectangular triangle with the landmark 800
in the two other cornersg], but in case wherer; << o for
31 or ¥, the optimal position strongly depends on the shap Iy
and orientation (see figur® of the error ellipses.
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V. ANALYSIS

To analyze the effect of various uncertainty distributiafs
the landmarks, we choose the following setup for figukés
We set up a000 by 1000 point grid where landmark is fixed
atx, = [300,500]7 and landmark, atzs = [700, 500]%. The 200
robot is placed at all grid points(s, j) in 10 unit-increments.
We then compute the ranges and r, to [; andly. Using
these ranges we trilaterate our position usihpgnd obtain
two positionsxz1 and 2, one of which isz(i,5) and the 0 200 400 600 800 1000
other one is its mirror solutiom' (4, [|500—j||). As we assume Local eastings [m]
that we have resolved the ambiguity we can sekettor x2

based on which one is equaIin,j). Knowing which one of Fig. 5. Same setup as in figure (bla}ck: Iandmark;; magenta: optimal
trilateration position). Here the uncertainties assedawith trilateration are

the th is the correct solution, we Ca.n select the appr‘mri%ﬁotted for selected grid points (red). Note the large eassociated with near
Jacobian/ and can then computg using @). The variance collinear settings.

associated with the range measurementandr, is fixed to
0% = 0%, = 32 for all cases, but the variancé$ and %,

Local northing

change. Figures 6 and 7 show the evolution of the optimal tri-
First, we select a circular uncertainty distribution fomith  lateration point as an ellipse foE; with ¢? = 3% and
02,5 = 02,, = 5°. The uncertainty>; for I, is an ellipse with 03 = 15° is rotated counter-clockwise by80° from its

0? = 52 ando? = 152 which is rotated by5°. Figure4 shows original position (red0°; green:90°). 3, remained unchanged
the uncertainty associated with the trilaterated posifion and is asymmetric in figuré with o2, = 3* ando; , = 7
each grid point. Note how despite the symmetric setup of thed symmetric in figur@ with o2, = o7, = 5°.
landmarks, the distribution of the uncertainty is not syrivine For figure8 we choose circular distributions far; and>;.
The results for the collinear case where= [r,500]7 were While ¥, remained constant the elementssaf changed from
clipped as the uncertainty is infinite. 02y = 0gy = H° 002, = 05, = 15°. This affected the
Figure 5 shows the same setup. This time uncertainty fanagnitude of the uncertainty at every grid point, but did not
all grid points was omitted and the covariance ellipses wechange the position of the optimal trilateration point whic
plotted for a selected number of grid points. forms a rectangular triangle with both landmarks opposite t
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Fig. 6. Trajectory of the optimal trilateration point as theoe ellipse of

landmarki; is rotated byl80°. (red:0°/180°-position; green90°-position).

The crosses indicate the optimal trilateration point foesedd angles. The

error distribution for landmark; is elliptic.
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Fig. 7. Trajectory of the optimal trilateration point as theoe ellipse of

landmarki; is rotated byl80°. (red:0°/180°-position; green90°-position).

The crosses indicate the optimal trilateration point foesedd angles. The

error distribution for landmarks is circular.
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Fig. 8. Optimal trilateration point (magenta) forcacular error distribution
for landmarki; and 12 The size of the covariance ellipse far grows from
o2, = 02 =5%2t002,, = 02 = 152 (red, green and blue circle
aroundll) Note that whlle the uncertamty of the position estimateglo
change, the optimal trilateration position does not. It remsait the corner of
a rectangular triangle as shown in figiBe

and x> would be the optimal tracking positions for a target
robot atz.

VI. APPLICATION

An example for cooperative navigation is the Moving Long
Baseline (MLBL)-concept presented il7 where a ded-
icated group of Autonomous Underwater Vehicles (AUVS)
called Communication And Navigation Aids (CNAs) has very
sophisticated navigation sensors and broadcasts itsigrosit
over an acoustic modem. As all vehicles have access to
globally synchronized clocks, the time-stamped messag@s s
over the acoustic modem can also be used to obtain range
information to the broadcasting vehicle through one-wayet
times. This way a large group of AUVs with poor navigation
sensors which is within communication range of the CNAs
can maintain high navigation accuracy. The modem we use
has been developed by the Acoustic Communications Group at
the Woods Hole Oceanographic Institution (WHOI) and is de-
scribed in [L8]. As an intermediate step we used Autonomous
Surface Crafts (ASCs) — kayaks outfitted with propulsion,
a PC, GPS (Garmin GPS 18 5Hz) and an acoustic modem
— as CNAs. An AUV was then set up to run a U-shaped

the perpendicular angle, just as in the case where the @ositirackline (figure9) while the following ASCs broadcasted their

uncertainty of the landmarks is assumed toObe
Note that throughout the previous discussion the notion 86 only one range/position pair is obtained evéfyseconds,

an optimal trilateration point also has an important megnira combination of dead-reckoning and trilateration desctib

for tracking applications which is the inverse to trilateration om [10] must be used to obtain a position estimate. Figlre

triangulation depending on what type of information (ralmge shows the navigation obtained by post-processing the dead-

angle) is used. If the two robots in figuBeat ; andx, with

corresponding position uncertaintigs and X, were to track

the "target”-robot atr using nothing but the ranges and
ro While maintaining a fixed distancey, x3, the positionse;

GPS-derived position over the acoustic modem (pictlye

reckoning information (blue). In the absence of GPS under-
water this post-processing result taking the GPS infoionati
before the dive and after surfacing into account is consiler
"ground-truth” here. Throughout the run the AUV received



which will lead to an optimal trilateration result for a I¢éas
1500*1220—&.@% x 'Ground-Truth’ (AUV) i square-based algorithm.
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Fig. 9. MLBL experiment with two ASCs and one AUV showing "gral:  [1]
truth” and trilaterated positions at= 5 (favorable geometry) and = 15
(unfavorable geometry). Blue: trackline of the AUV using fhast-processed
dead-reckoning results. Red: trilaterated positions efAblV with associated ~ [2]
uncertainty. Black: positions of the CNAs at the time of telation. Detail:
trilaterated solutions.

(3]

enough range/position pairs to trilaterateposition estimates 4]
together with their associated uncertainty. Two of therth)
andz(15) are shown together with the associated uncertaintpé]
ellipse (red) and the position of the CNAs at that time (b)ack
The position uncertainty of the CNAs was indicated by the
GPS receiver to be?, = o7, = 32 for both vehicles and
did not change as the kayaks had a clear view of the sky
through the entire run. The variance for range measuremerit$
was set too?, = 02, = 32. The positionz(5), which was
obtained from the CNAs at;(5) and x2(5) under a much
more favorable geometry thar(15) using the almost collinear [8]
geometry created by the CNAs af (15) andx2(15) leads to

a much smaller position uncertainty fax(5) than forz(15) [g]
as indicated by the covariance ellipse. The detail in thesupp
left corner shows a magnification of the trilaterated solusi

(red "x") together with the "ground-truth” at the same paiimt [10]
time (blue "x") where the trilaterated position(5) is closer
to the "ground-truth” thane(15). [11]

VIl. CONCLUSION AND FUTURE WORK [12]

We derived a framework which allows us to compute the
uncertainty associated with a trilaterated position fer ¢ase ;3
of landmarks with uncertain positions. We then showed how
the orientation and size of the error distribution assedatith
the landmarks significantly affects the trilateration eramd
how subsequently the point for optimal trilateration chaesg [15]

This analysis will be used in future work to develop an
algorithm which can control the motion of the AUVs toyg
optimize the trilateration geometry in real-time. The di@j
tories presented here provide the insights to facilitais tH17]
development. Being able to efficiently compute the optimal
trilateration point will enable us to use this point as a goals]
for path planning strategies geared to optimize cooperativ
navigation. We are also looking into the pairwise compatati
of trilateration uncertainties in order to select an optiset
of n, (n > 2) landmarks from a set oh, (m > n) landmarks
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