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Abstract

In this paper we compute the distribution of several statistics on the set of rooted
ordered trees. In particular, we determine the number of boundary edges, the number
of singleton boundary edges, and the analogous values when edges may take on one of
k colors.

1 Introduction

In this paper we consider properties of trees. A rooted ordered tree is defined recursively
as having a root and an ordered set of subtrees. A tree with n edges necessarily has n + 1
vertices, so we may count trees according to either edges or vertices and obtain the same
results. Rooted ordered trees appear naturally as data structures in computer science, but
they may also appear as models for real-world objects such as river networks or family trees.
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In our investigation several sequences were found which were already in the Online En-
cyclopedia of Integer Sequences (OEIS) [13]; the A-numbers in this paper are from this
source.

Much enumerative work has already been done with ordered trees. The number of ordered
trees with n edges is Cn = 1

n+1

(
2n
n

)
, the nth Catalan number. Recall that the generating

function for the Catalan numbers is C(z) =
∑∞

n=0Cnz
n. It is well known that C(z) =

1 + zC2(z) = 1
1−zC(z)

and that

C(z) =
1−
√

1− 4z

2z
= 1 + 1z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + · · · (A000108).

We will denote C(z) by C when this causes no confusion. A companion generating function
is B(z) = B =

∑∞
n=0

(
2n
n

)
zn = 1 + 2zBC = 1

1−2zC = C
1−zC2 . Here,

B(z) =
1√

1− 4z
= 1 + 2z + 6z2 + 20z3 + 70z4 + 252z5 + 924z6 + · · · (A000984).

It turns out that B is the generating function for ordered trees with one marked vertex.
This is immediate since a tree with n edges has n + 1 vertices and

∑∞
n=0(n + 1)Cnz

n =∑∞
n=0(n + 1) 1

n+1

(
2n
n

)
zn =

∑∞
n=0

(
2n
n

)
zn = B. A related result is that the number of trees

with a marked leaf (outdegree 0) has the generating function B
C

= B+1
2

. A second companion
generating function is the one for the Fine numbers, defined by F (z) = F = C

1+zC
= 1

1−z2C2 =

1 + 1z2 + 2z3 + 6z4 + 18z5 + 57z6 + · · · (A000957) or equivalently C = F
1−zF . These three

sequences are known to count a number of different combinatorial objects. For example,
the Catalan numbers have over 200 different combinatorial interpretations [12]. The Fine
numbers also count many things, including ordered trees with even root degree and Dyck
paths with no hills [4]. These three sequences appear in relation to one another in several
contexts [3, 6, 7, 11], and they appear in results throughout this paper as we consider specific
characteristics of trees.

In particular, we are concerned with the boundaries of trees. The right boundary of
an ordered tree is the rightmost path that emanates from the root and terminates at the
rightmost leaf. The left boundary is defined similarly. The boundary of an ordered tree is
the union of the left and right boundaries. We measure the length of a boundary in terms
of its number of distinct edges. To illustrate the boundary, consider the ordered tree in
Figure 1. The vertices are labeled to make the description easier. The path a, b, e, h (the
leftmost path emanating from the root, a, and terminating at the leftmost leaf, h) is the left
boundary and the path a, d, g is the right boundary. Together they make up the boundary
of the tree. The left boundary has length 3, the right boundary has length 2, and the total
boundary has length 5.

In applications, the tree boundary may contain important information about the rest of
a system. If the ordered tree represents a family tree, the left boundary carries information
about the chain of oldest descendants. If the ordered tree represents a physical river system,
the boundary may be the most useful region to take measures preventing pollution from
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Figure 1: An ordered tree with 8 edges

outside sources. It is also natural to color boundary edges. For example, if the ordered tree
represents a river network a boundary edge might be clean, polluted, or very polluted. If we
are looking at supply lines, we might consider an edge as safe or vulnerable.

Another interesting subcase is to restrict such considerations to edges without siblings,
i.e. edges above a vertex of updegree 1. We call such edges singletons or single edges. In
Figure 1, edge (b, e) is the only single edge. All trunks are composed of single edges. In
Figure 2, tree (i) has three single edges, tree (ii) one, tree (iii) none, and trees (iv) and (v)
one. In applications, single edges may carry extra importance for the system. For example,
a single supply line or river branch may require extra fortification. We also consider the case
where only singleton edges on the boundary may be k-colored.

(i) (ii) (iii) (iv) (v)

Figure 2: The 5 trees with 3 edges

The trunk of a tree is a path from the root to the first vertex with updegree greater than
1 or to a leaf. For example, if we consider the 5 trees with 3 edges given in Figure 2, the
first two trees have trunks, while the others do not. Of course a trunk would be included in
the boundary. A canopy is the portion of the tree that is above the trunk. In Figure 2, tree
(i) has no canopy, tree (ii) has both a trunk and a canopy, while trees (iii), (iv), and (v) are
canopies with no trunk. We call a tree with no trunk a bush.

In Section 2 we focus on the left boundary. We compute the total number of left boundary
edges in the set of n-edge rooted ordered trees as well as the number of singleton edges on left
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boundaries. In Section 3, we generalize our results to the total number of edges on the (right
and left) boundary. In Section 4 we specialize our results to when the number of available
colors is either k = 1 or k = 2. Our computations enable us to determine the average values
of such statistics in an arbitrarily chosen tree with n edges. Finally, in Section 5 we present
bijections between trees and enriched Dyck paths that give alternate explanations for some
of the results of Section 2.

2 Left Boundary Edges

We start by examining the left boundary edges. Two questions occur naturally. If we allow
k colors for all left boundary edges how many trees do we have? Also how many edges are
on the left boundary of all such trees with n edges? The answers to these questions will
allow us to determine the average length of the left boundary and the average number of left
boundary singleton edges among all n-edge trees with k-colored left boundaries.

Theorem 1. Let Tk be the generating function counting all ordered trees with each left
boundary edge one of k colors. Then Tk = 1 + kzTkC = 1

1−kzC

Proof. In Figure 3, either we have the trivial tree, or there is a leftmost edge connected to
the root. C represents an arbitrary subtree emanating from the root. Converting the picture
to generating functions gives the proof.

⋃ Ckz

Tk

Figure 3: Marking trees with a k-colored left boundary

If k = 0, then T0 = 1, counting the trivial tree. If k = 1, then we are just counting
ordered trees and indeed T1 = 1

1−zC = C. If k = 2, then T2 = 1
1−2zC = B.

Now that we have counted trees with k-colored left boundary edges, we count the number
of edges on the left boundary.

Theorem 2. If Ek is the generating function for the number of boundary edges on the left
boundary, then Ek = kzCT 2

k .
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We present two approaches to compute Ek.

Proof 1. The first proof is to mark one of the left boundary edges with kz and use Figure 4
to determine the generating function.

Tk

Ckz

Tk

Figure 4: Marking left boundary edges

Proof 2. A second proof is to mark each edge on the left boundary with a ku. Then let
E(z, u) = E =

∑
t u

mtznt , where the sum is taken over all rooted trees t, mt is the number
of edges on the left boundary of t, and nt is the the number of edges of t. We get E =
1 + kzuEC = 1

1−kzuC . Note that E(z, 1) = Tk.
If there are m edges on the left boundary, we want a contribution of m so we differentiate

with respect to u to get

Eu =
∂E

∂u
=

kzC

(1− kzuC)2
= kzCE2

Note that Ek = Eu|u=1. This gives a second proof of the result.

By choosing particular values for k, we obtain the following corollaries.

Corollary 1. The generating function for the number of left boundary edges for uncolored
ordered trees is zC3 = z + 3z2 + 9z3 + 28z4 + 90z5 + 297x6 + · · · =

∑
n≥1

3
2n+1

(
2n+1
n−1

)
zn =∑

n≥1
3n
n+2

Cnz
n (A000245) and the average length of the left boundary is 3n

n+2
, which ap-

proaches 3 as n goes to ∞.

Proof. Let k = 1.
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Corollary 2. The generating function for the number of left boundary edges of ordered trees
with bicolored edges on the left boundary is 2zB2C = B(2zBC) = B(B − 1) = B2 − B =∑

n≥1(4
n−

(
2n
n

)
)zn = 2z + 10z2 + 44z3 + 186z4 + 772z5 + 3172z6 + · · · (A068551). Thus the

average length of the left boundary is
4n−(2n

n )
(2n

n )
∼
√
πn− 1 ∼

√
πn.

Proof. Let k = 2 and observe that
(
2n
n

)
∼ 4n√

πn
.

Next, we modify our work to count trees where the only edges that are k-colored are
singleton edges on the left boundary.

Theorem 3. Let T̃k be the generating function for the number of trees where the only edges
that are k-colored are singleton edges on the left boundary. Then,

T̃k = 1 + kzT̃k + zT̃k(C − 1) =
1

1− kz − z(C − 1)
=

1

1− kz − z2C2
.

Proof. There are three possible cases, the trivial tree, a tree with a trunk, or a bush. We
mark each singleton edge with a kz.

Using Figure 5 we get T̃k = 1 + kzT̃k + zT̃k(C − 1) = 1
1−kz−z(C−1) = 1

1−kz−z2C2 . As before,
1 is for the trivial tree, while C − 1 gives us a nontrivial subtree on the right so the leftmost
edge at the root is not a singleton.

⋃
kz

T̃k

⋃ C − 1z

T̃k

Figure 5: Marking k-colored singleton boundary edges

Here the case when k = 0 is nontrivial. T̃0 counts trees where there are no singleton
edges on the left boundary. The generating function is T̃0 = 1

1−z2C2 = F = 1 + z2 + 2z3 +
6z4 + 18z5 + 57z6 + · · · and we have the Fine numbers. This occurrence of the Fine numbers
appears to be new to the literature.

For other values of k, we obtain other nice generating functions.
When k = 1,

T̃1 =
1

1− z − z2C2
= C,
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which counts ordered trees, as expected.
When k = 2,

T̃2 =
1

1− 2z − z2C2
= C2 = zC,

which is the sequence of Catalan numbers with shifted indexing.
When k = 3,

T̃3 = BC =
∑
n≥0

(
2n+ 1

n+ 1

)
zn = 1+3z+10z2+35z3+126z4+462z5+1716z6+ · · · (A001700),

which is known the enumerate a variety of combinatorial objects ranging from ordered trees
to lattice paths [5, 8].

We give bijective explanations of these three results in Section 5.
Finally, we count the total number of singleton left boundary edges in n-edge trees

counted by T̃k. If we also mark each singleton edge with a u, we get

Ẽ(z, u) =
1

1− uz − z2C2
= 1+uz+(u2 +1)z2 +(u3 +2u+2)z3 +(u4 +3u2 +4u+6)z4 + · · · .

Arranging these coefficients in matrix form gives

1
0 1
1 0 1
2 2 0 1
6 4 3 0 1
18 13 6 4 0 1

. . .


.

The generating function for the kth column (k = 0, 1, 2, . . . ) is zkF k+1, counting the
number of trees with k singleton edges on the left branch. The row sums are the Catalan
numbers since every tree has some number of left edge singletons. We could multiply the
matrix by the column vector [1, 1, 1, . . . ]T to obtain the row sums. Also the total number of
left boundary singletons is Cn, for n ≥ 1 (i.e multiply by [0, 1, 2, 3, . . . ]T ). In Riordan group
terminology

(F, zF ) ∗ z

(1− z)2
=

FzF

(1− zF )2
= zC2 = C − 1.

If all ordered trees with n edges are equally likely, then there is one left boundary singleton
per tree on average.

As before we can compute Ẽk = kzT̃ 2
k by marking a singleton edge on the left boundary

and then looking at Figure 6.
For a second approach we mark each singleton boundary edge by kuz, then differentiate

with respect to u to find the number of singleton left boundary edges. Note that

Ẽu =
∂Ẽ

∂u
= −(1− kuz − z(C − 1))−2(−kz), and Ẽu|u=1 = kzT̃ 2

k .
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T̃k

kz

T̃k

Figure 6: Marking a singleton left boundary edge

For a third approach we note, briefly, that the corresponding Riordan group array would
be 

1
0 k
1 0 k2

2 2k 0 k3

6 4k 3k2 0 k4

18 13k 6k2 4k3 0 k5

. . .


= (F, zkF )

If k = 3 we have (F, 3zF ) ∗ 1
1−z = F

1−3zF = BC.
Thus, we have three different explanations of the following result:

Theorem 4. Let Ẽk be the generating function for the number of singleton edges on the left
boundary tree with k-colored singleton edges on the left boundary. Then Ẽk = kzT̃ 2

k .

3 Total Number of Boundary Edges

We now generalize from left boundaries to total boundaries of trees. Consider the set of
ordered trees where the boundary edges can be one of k colors. We denote the generating
function for the number of such trees according to number of edges as Hk. The companion
generating function where only the singleton boundary edges are colored will be denoted H̃k.
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Using Figure 7 we get the following defining equation for Hk.

Hk = 1 + kzHk + k2z2T 2
kC =

1

1− kz
(1 + k2z2T 2

kC).

⋃
kz

Hk

⋃
Ckz

Tk

kz

Tk

Figure 7: Marking left and right boundary edges

Using similar methods to find H̃k we get,

H̃k = 1 + kzH̃k + z2T̃ 2
kC =

1

1− kz
(1 + z2T̃ 2

kC).

The factor 1
1−kz is the generating function for the stem. On top of the stem is either the

trivial tree or a branch point. Note that H1 = H̃1 = C, as expected.
We now find a generating function counting the boundary edges. To do so, we can add

the left boundary edges to the dual right boundary edges. Since the stem would be counted
twice, we subtract the stem edges. We denote the generating function that counts k colored
boundary edges by Mk and the generating function counting k colored singleton boundary
edges by M̃k. Using Theorem 4, we get the following.

Mk = 2kzCT 2
k −

kz

(1− kz)2
(
1 + (kz)2T 2

kC
)

(1)

To find M̃k it is simpler to first find the stem contribution, S̃k, and the canopy contribu-
tion, Ṽk, and use the fact that M̃k = S̃k + Ṽk.

Now

S̃k =
kz

(1− kz)2

(
1 + 2z2ẼkCT̃

2
k

)
and Ṽk =

1

1− kz

(
2z2ẼkCT̃

2
k

)
.

Hence

M̃k = S̃k + Ṽk

=
kz

(1− kz)2
(

1 + 2z2ẼkCT̃
2
k

)
+

1

1− kz

(
2z2ẼkCT̃

2
k

)
.
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Going back to Figure 2, we note that only one edge is not a boundary edge. So, an
obvious question is, what proportion of edges are on the boundary in larger trees? We first
consider the case when k = 1. Lemma 1 can be proved using the Equation 1 and the fact
that T1 = C.

Lemma 1. M1 = zC
1−z + 2z2C4

1−z

For some of our asymptotic estimates we use the following result of Bender.

Lemma 2 (Bender’s Lemma [1, 9]). Let A(z) and B(z) be generating functions with radii α
and β respectively, with α > β. Let C(z) = A(z)B(z) and suppose further bn−1

bn
approaches

β as n→∞. If A(β) 6= 0, then cn ∼ A(β)bn.

Theorem 5. When k=1, let Rn be the proportion of boundary edges among all edges for
trees with n edges. Then

Rn ∼
17

3n
.

Proof. The total number of edges in the set of all trees with n edges is nCn. Using Lemma
1, the total number of boundary edges is

[zn]

(
zC

1− z
+

2z2C4

1− z

)
.

Using Bender’s Lemma, we obtain

[zn]

(
zC

1− z
+

2z2C4

1− z

)
∼

1
4
Cn

1− 1
4

+
2 ·
(
1
4

)2
1− 1

4

[zn]C4 =
1

3
Cn +

1

6
[zn]C4.

Now

[zn]C4 =
4

2n+ 4

(
2n+ 4

n

)
=

2

n+ 2

(2n+ 4)(2n+ 3)(2n+ 2)(2n+ 1)(2n)!

(n+ 4)(n+ 3)(n+ 2)(n+ 1)!n!
∼ 32Cn

Thus we get

[zn]

(
zC

1− z
+

2z2C4

1− z

)
∼
[

1

3
+

32

6

]
Cn =

17

3
Cn

Hence Rn ∼ 17
3n
.

For numerical reassurance we compare the two ratios, boundary edges to all edges, and
17
3n

when n = 100. The ratio of these two ratios is approximately 0.97805.
We can also count boundary edges exactly. The average length of the left (resp. right)

boundary is 3, as shown in Corollary 1. Similarly, to count edges in the stem, consider the
trees in Figure 8. Then we obtain

(C − zC)
(
0 + z + 2z2 + 3z3 + · · ·

)
= C(1− z)

z

(1− z)2
=

zC

1− C
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as the generating function counting the total number of stem edges in the set of ordered
trees with n edges. A quick computation shows that

[zn]
zC

1− C
=

n−1∑
i=0

Ci (A014137),

and therefore the average number of stem edges as n approaches infinity is

lim
n→∞

∑n−1
i=0 Ci
Cn

=
1

3
.

C − zC
z

C − zC

z

z

C − zC

2z2

z

z

z

C − zC

3z3

Figure 8: Counting stem edges

Putting these two enumerations together, the average size of the boundary approaches
3 + 3− 1

3
= 17

3
as n grows arbitrarily large.

4 Special Cases

In this section we look at the special cases when k = 1 and k = 2 and we find the proportion
of singleton boundary edges in these cases.

Theorem 6. Let M̃1 be the generating function for the number of singleton boundary edges
in all n-edge trees. Then,

(a) M̃1 = zC
1−z + 2z3C4

1−z = z+2z2 +6z3 +19z4 +61z5 +199z6 +661z7 +2234z8 + · · · (A228180).

(b) Let n be a positive integer, then the proportion of single edges that are on the boundary
among all single edges is asymptotic to 5

3n
.
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Proof. For (a), we consider the number of single boundary edges on a bush. The generating
function for a single edge is simply z. The generating function counting boundary edges of a
bush is 2z2C4. Hence, the number of single edges on the boundary of a bush has generating
function 2z3C4. If the tree has only a trunk, then the generating function is z

(1−z)2 . Hence

M̃1 =
1

1− z
(
2z3C4

)
+

z

(1− z)2
(
1 + z2C3

)
=

2z3C4

1− z
+

zC

1− z
.

For (b), there is a simple bijection for counting single edges. Any single edge can be con-
tracted to a vertex and conversely any marked vertex can be replaced by a single edge. Thus
the generating function counting all single edges is zB =

∑∞
n=0

(
2n−2
n−1

)
zn. The proportion

[zn]M̃1

[zn]zB
, by (a) and Bender’s Lemma, is asymptotic to 5

3n
. For related results see [2].

The proof of the following theorem is an application of Bender’s Lemma and is similar
to the proof of Theorem 6, hence it is omitted.

Theorem 7. The proportion of single boundary edges among all boundary edges in an n-edge
tree approaches 5/17 as n goes to ∞.

We now consider trees whose boundary edges are bicolored, i.e. k = 2. Recall that
T2 = B =

∑∞
n=0

(
2n
n

)
zn = 1√

1−4z = 1 + 2zCB = 1
1−2zC .

This is the generating function for the central binomial coefficients. Thus we have the
easily proven, yet possibly novel, result that the number of ordered trees with bicolored
boundary edges allowed on the left branch is

(
2n
n

)
for such trees with n edges.

Consider next trees where the boundary edges are bicolored and the root degree is at
least two. In other words, bushes.

C2z

T2

2z

T2

Figure 9: Marking edges in bushes
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Using Figure 9, the generating function for the number of bushes with bicolored boundary
edges is (2z)2T 2

2C = 4z2B2C = 4z2 + 20z3 + 88z4 + 372z5 + 1544z6 + 6344z7 + 25904z8 + · · · .
In the case that the root degree is one we have a stem, a maximal chain of vertices, each

of updegree 1, starting at the root. For this case the generating function is just 1
1−2z =∑∞

n=0 2nzn. Using the generating functions counting boundary edges on bushes and stems
we get the following theorem.

Theorem 8. Let H2 be the generating function for the number of trees where the boundary
edges are bicolored. Then,

H2 =
1

1− 2z
(1 + 4z2B2C)

=
1

1− 2z
(1− 2zB + 2zB2)

= 1 + 2z + 8z2 + 36z3 + 160z4 + 692z5 + · · · (A228197).

Finally, consider the case where only boundary singleton edges can be bicolored. The
computations in this case are slightly subtler but follow the same pattern. This situation is
illustrated in Figure 10. We have

T̃2 = 1 + 2zT̃2 + zT̃2(C − 1) =
1

1− 2z − z(C − 1)
=

1

1− z − zC
= C2.

2z

T̃2

⋃ C − 1z

T̃2

Figure 10: Marking singleton boundary edges

Thus using the same techniques as before, the bushes have generating function

z2(T̃2)
2C = z2C5 = z2 + 5z3 + 20z4 + 75z5 + 275z6 + 1001z7 + · · · (A000344).

The generating function for the stem is again 1
1−2z . Using these generating functions we

get the following theorem.
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Theorem 9. Let H̃2 be the generating function for the number of trees where the singleton
boundary edges are bicolored. Then,

H̃2 =
1

1− 2z
(1 + z2C5) = 1 + 2z + 5z2 + 15z3 + 50z4 + 165z5 + · · · (A228343).

There is much more that could be done along these lines. We could look at other related
classes of trees where the updegree of each vertex is 0, 1, or 2 (Motzkin trees) or updegree
must be even (even trees). We could change from left boundary to leftmost principal branch.
However, we conclude this section with a curiosity, answering a question that may not have
been bothering you. Where does the generating function C7 occur in a “natural” setting? If
we consider bushes (root degree ≥ 2) with bicolored singleton edges on the boundary, then
the generating function counting the number of singleton boundary edges is 4z3C7. The
factor z2C sets up the base of a bush. To count the number of left boundary edges, we have

Ẽk = 2zT̃ 2
k = 2zC4

and
T̃k = C2

possible trees on the right branch. This gives us

z2C(2zC4)C2

edges on the left side. And doubling this gives us

4z3C7 = 4z3 + 28z4 + 140z5 + 616z6 + · · · = 4z3
∞∑
n=0

7

2n+ 7

(
2n+ 7

n

)
zn.

5 Bijections

In this final section, we provide bijections to illustrate some of our previous results, namely
that T̃1 = C, T̃2 = C2, and T̃3 = BC. Recall from Section 2 that T̃k is the generating function
for the number of trees where the only edges that are k-colored are singleton edges on the
left boundary.

The first bijection relates the edges of the left boundary to subtrees connected to the
root, as shown in Figure 11. Here, for each edge E in the left boundary, let E∗ be the
subtree whose root is the lower vertex of E but not including edge E. If the original tree
has ` edges in the left boundary, we obtain a new tree with ` edges emanating from the root.
Each of these edges E is the stem for a subtree corresponding to E∗. Thus, T̃1 = C.

The second bijection is well-known, called such things as “the worm climbing the tree”,
“the glove bijection”, or “preorder transversal” [12]. As in the first bijection, edges on
the left boundary are converted the edges emanating from the root, but then we take the
transformation one step further, as shown in Figure 12. Now, edges emanating from the

14
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α

β

γ

α∗

β∗

γ∗

αβγ

β∗ = ∅

α∗γ∗

Figure 11: A bijection between left boundary edges and edges containing the root

root are mapped to steps touching the x-axis in a Dyck path. Singletons edges on the left
boundary in Figure 11 correspond to UD subpaths starting and ending on the x-axis in
Figure 12. We call such UD subpaths hills.

Now, towards understanding T̃2, suppose that singletons on the left boundary of a tree
are bicolored. This is equivalent to having bicolored UD hills in our Dyck paths. Suppose
each such UD hill is either green or red, and replace the red hills with DU, as in Figure 13.
We now have an “enriched” Dyck path that has the freedom to go as low as the line y = −1.
The number of such “enriched” Dyck paths has the generating function C2.

Finally, keeping this framework, we tricolor singleton boundary edges so that the hills
can now be green, red, or purple. Each time a purple hill is encountered we change UD to
UU. If there are ` purple hills, the final height of the path will be 2`. In Figure 14, the
purple hills are denoted by the double red lines.

Suppose now we have ordered trees where the singleton edges can be either green, red, or
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αβγ

β∗ = ∅

α∗γ∗

y = 0

γ β α

γ∗
α∗

Figure 12: The worm climbing the tree

y = 0

y = 0
y = −1

Figure 13: A bijection from bicolored left singletons to enriched Dyck paths

purple. Using the first two bijections, these trees correspond to Dyck paths with tricolored
hills. We traverse the path from left to right. When we encounter a green hill we do nothing.
When we encounter a red hill, we change the steps UD to DU. This gives us enriched Dyck
paths as in Figure 13. When we encounter a purple hill, we change UD to UU. Each purple
hill now gives a path that ends 2 units higher. If there are ` purple hills, the path ends at the
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y = 0

y = 0
y = −1

y = 4

Figure 14: A bijection from tricolored left singletons to paths

point (2n, 2`) and the number of such paths is 2`+2
n+`+2

(
2n+1
n−`

)
=
(
2n+1
n−`

)
−
(

2n+1
n−`−1

)
. Here, the last

equality is found by using the reflection principle of “good paths come from all paths minus
bad paths”. Now summing over ` gives the telescoping sum

∑n
`=0

(
2n+1
n−`

)
−
(

2n+1
n−`−1

)
=
(
2n+1
n

)
and

∑
n≥0
(
2n+1
n

)
zn = BC. Thus, T̃3 = BC.

An alternate proof using the Riordan group (see [10]) we have

(
C2, zC2

)
=


1 0 0 0 · · ·
2 1 0 0
5 4 1 0
14 14 6 1

· · · 1

 .
So by the Fundamental Theorem of Riordan Arrays, we have

(
C2, zC2

)
∗ 1

1− z
=

C2

1− zC2
= C

(
C

1− zC2

)
= BC.
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