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ABSTRACT 
Sensor-based statistical models promise to support a variety 
of advances in human-computer interaction, but building 
applications that use them is currently difficult and potential 
advances go unexplored. We present Subtle, a toolkit that 
removes some of the obstacles to developing and deploying 
applications using sensor-based statistical models of human 
situations. Subtle provides an appropriate and extensible 
sensing library, continuous learning of personalized models, 
fully-automated high-level feature generation, and support 
for using learned models in deployed applications. By 
removing obstacles to developing and deploying 
sensor-based statistical models, Subtle makes it easier to 
explore the design space surrounding sensor-based 
statistical models of human situations. Subtle thus helps to 
move the focus of human-computer interaction research 
onto applications and datasets, instead of the difficulties of 
developing and deploying sensor-based statistical models.  
Author Keywords 
Toolkits, Subtle, sensor-based statistical models, machine 
learning, context-aware computing. 
ACM Classification Keywords 
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H1.2. Models and Principles: User/Machine Systems.  
INTRODUCTION AND MOTIVATION 
Context-aware computing promises applications that sense 
an environment, model situations, and act appropriately [4]. 
For example, consider that traditional email clients with no 
understanding of context often use an audio notification to 
announce new email. Appropriate and useful when alone in 
a private office, this can be disruptive and awkward during 
a meeting with colleagues. While current applications are 
generally unaware of such contexts or the impact of their 
actions, context-aware applications could infer whether 
such a notification is currently appropriate. 

Many contextual cues are unambiguous (a sensor is either 
activated or it is not), but the ultimate decision about how 
an application should behave is often inherently ambiguous. 
No single sensor directly maps to “an audio notification is 
currently inappropriate” and it is unreasonable to expect 
users to specify what actions should be taken in every 
conceivable context. Sensor-based statistical models are 
one solution to this problem. Developed and deployed, a 
sensor-based statistical model can give an application 
insight into the situation surrounding its usage, providing 
guidance on what actions are likely to be appropriate. 
Successfully deploying sensor-based statistical models is 
currently difficult. The problem is typically not that models 
are incapable of learning about human situations, as the 
machine learning community has developed powerful 
methods for learning from labeled datasets [30, 34]. 
However, the use of machine learning generally requires 
significant specialized knowledge, particularly with regard 
to bridging the gap between sensed context and high-level 
features appropriate for use in machine learning algorithms. 
Furthermore, existing tools are generally designed for use 
with previously collected data, neglecting the requirements 
of model deployment. The human-computer interaction 
research community has the insights needed to develop 
compelling applications of sensor-based statistical models, 
but the barriers to working with them are currently high. 
Potential advances therefore go unexplored. 
This paper presents Subtle, a toolkit for Sensing User 
Behavior To Learn about the Environment. By reducing the 
barriers to model development and deployment, Subtle 
makes it easier to explore the design space surrounding 
sensor-based statistical models of human situations. For 
example, we have used Subtle to build an application that 
learns to automatically toggle whether a laptop’s audio is 
muted. Each time a person manually toggles their audio, the 
application provides Subtle with a label indicating the 
preferred setting in the current context. Subtle then uses the 
provided labels to learn a sensor-based statistical model 
(considering such factors as a person’s location and what 
applications they are using). Built with Subtle, this 
application uses just 16 lines of code to collect appropriate 
sensor data, learn a model, and obtain live estimates from 
that model. This result, the ability to build an application 

 



that can monitor, learn from, and respond to sensed context 
with just a handful of code, represents an important 
contribution. By reducing the barriers to using sensor-based 
statistical models of human situations, Subtle makes it 
easier for the human-computer interaction community to 
explore the potential of such models in applications. 
The next section details three specific difficulties in using 
sensor-based statistical models and provides an overview of 
how Subtle addresses each. We then review related work, 
including a differentiation between Subtle and previous 
toolkits for context-awareness or machine learning. We 
next present Subtle’s implementation, showing how we 
support the development and deployment of sensor-based 
statistical models. We then discuss the validation of Subtle, 
considering its performance on two previously published 
datasets, giving two examples showing that Subtle enables 
application development with very little code, and reporting 
on other researchers using Subtle in their own work. 
Finally, we present a short conclusion. 
SENSOR-BASED STATISTICAL MODELS 
Subtle supports supervised learning, wherein labels are 
collected when a value is known for the concept being 
modeled (as when a user indicates a preference). A model is 
learned by extracting statistical relationships between the 
values of labels and features of the sensed context at the 
time of each label. Based on our experience developing and 
deploying sensor-based statistical models of human 
situations [9, 10, 11, 12, 22] and the experiences of others 
[2, 3, 4, 6, 16, 17, 18, 19, 20, 24], at least three problems 
must be addressed in a tool to support the development and 
deployment of sensor-based statistical models. 
Learning statistical models requires sensors that can 
provide relevant context. If the available sensors are not 
related to a concept being learned, no amount of processing 
can extract a meaningful relationship. This can ultimately be 
addressed only by an application designer, as it is the 
application designer who chooses what concept will be 
learned from what sensors. Subtle takes a two-pronged 
approach to this problem. First, Subtle provides a library of 
sensors that are useful in many applications. Targeted at a 
typical laptop computer, this library currently includes 
analyses of the desktop event stream, analyses of ambient 
audio, and WiFi location sensing. Second, Subtle’s data 
collection mechanisms are designed to support extensibility, 
making it easy to add new sensors. 
It is hard for a static model to account for individual 
differences and unexpected situations. There are often 
important differences in how people want an application to 
behave. For example, our prior work found that researchers 
who program are typically less interruptible when actively 
working on their computer, while first-level managers are 
typically more interruptible in the same situation [9]. If a 
model cannot adjust to such differences, its utility will 
suffer. Subtle addresses this by supporting continuous and 
fully-automated learning of personalized models on an 

end-user’s computer. Because Subtle can continuously learn 
models from labels provided by an individual end-user, 
applications can adapt to personal preferences. 
It is hard to determine what aspects of available context will 
be most useful in a model. Sensed context is rarely 
appropriate for direct use in a machine learning algorithm, 
and must instead be processed to extract high-level features 
appropriate for learning. Non-experts can be very unsure 
about what types of features are appropriate, and even 
experts are unlikely to manually craft the best possible 
features [29]. While this problem is important in many 
applications of machine learning, Subtle’s need to learn 
models in a background process on an end-user’s machine 
makes this problem especially important, as no expert is 
available to intervene in the automated model learning 
process. Subtle is therefore based on a type-based approach 
to iterative feature generation, applying operators to 
automatically generate a large number of potential features 
for consideration in a feature selection algorithm. This 
approach promotes extensions of Subtle’s sensing and 
learning mechanisms and removes the need for an 
application designer to acquire significant specialized 
knowledge of machine learning techniques. 
RELATED WORK 
Several groups in the human-computer interaction research 
community have examined sensor-based statistical models 
of human situations, with interruptibility and availability 
being common topics of interest [1, 2, 15, 16, 17, 18, 19, 
20, 23, 24, 31]. The transition from studying models of 
human situations to deploying systems based on such 
models introduces additional requirements and difficulties. 
Horvitz et al. have deployed Priorities, Coordinate, 
BusyBody, and BestCom, all of which use sensor-based 
statistical models to reason about interruptibility and 
availability [16, 17, 18, 19, 20]. Begole et al. deployed their 
temporal models of availability in Awarenex [2]. We 
deployed and evaluated a context-aware instant messaging 
client that includes an availability model [12]. Because it is 
currently difficult to deploy sensor-based statistical models 
of human situations, evaluations of such deployments are 
often focused on technical innovations or on analyses of 
model reliability in deployed applications. This neglects 

 
 

Figure 1. Whistle addresses the problem that people often 
forget to mute or unmute laptop computers. It collects a label 
each time a person manually toggles the mute flag, learning a 
relationship between context and a person’s desired setting. 



many compelling human-computer interaction research 
questions, such as how a model can most improve an 
interaction, how to design compelling applications despite 
the inevitable errors made by statistical models, and what 
impact models have on how people interact with computers. 
By making sensor-based statistical models available to a 
larger audience, Subtle encourages research into these types 
of questions, which are fundamentally different from the 
questions typically explored by people whose primary 
interest lies in machine learning. 
Two important categories of related toolkit work exist. The 
first is work on toolkits to support context-awareness, the 
most relevant example being Dey et al.’s Context Toolkit, 
which supports the distributed collection, storage, and 
retrieval of context [4]. Designed for non-ambiguous 
context, the Context Toolkit has been enhanced to support 
the mediation of ambiguity [3]. With mediation, an 
application prompts a user to resolve ambiguity. For 
example, Dey et al. present the Communicator application, 
which uses context to choose among language models for a 
word completion widget. If it is ambiguous which model 
should be used, a prompt is displayed for the user to choose 
a model. While mediation can support many applications, it 
is clearly inappropriate for many others. In the case of 
audio notifications, mediation could result in prompts 
asking whether it is appropriate to deliver an audio 
notification (an approach that is likely more disruptive than 
the original notification). More importantly, the Context 
Toolkit does not learn from mediation, so people may often 
be asked to resolve identical or very similar situations. 
Existing machine learning toolkits represent a second 
important category of related work, with Weka being one of 
the most widely known and used [34]. Designed by and for 
machine learning researchers, Weka and similar toolkits 
provide a variety of feature selection and machine learning 
algorithms, but require significant specialized knowledge of 
machine learning before they can be effectively used. Such 
tools are intentionally agnostic to how input features were 
computed, typically assuming that a researcher is analyzing 
files that contain data previously collected and processed to 
extract meaningful features. Because these tools assume 
appropriate high-level features as input, they do not provide 
support for helping to construct such features. 

We note that Subtle’s research contributions go beyond an 
aggregation of these two types of existing toolkits. Subtle 
necessarily overlaps these tools, including both mechanisms 
to collect, store, and retrieve sensed context as well as a set 
of feature selection and machine learning algorithms. But 
adding the capabilities of Weka to the Context Toolkit 
would not provide a toolkit equivalent to Subtle, as neither 
existing tool provides support for constructing appropriate 
high-level machine learning features from low-level sensed 
context. Subtle is unique in providing a type-based 
approach to fully-automated feature generation, and its 
abstractions are unique in allowing application developers 
to develop and deploy sensor-based statistical models of 
human situations without first acquiring extensive 
specialized knowledge of machine learning. 
The prior work most relevant to Subtle’s automated feature 
generation is an iterative approach to automated feature 
construction presented by Markovitch and Rosenstein [29]. 
Their approach is based in a formal grammar specifying 
legal manipulations of a base feature set. Because their 
approach is intended for machine learning researchers, the 
manual creation of an appropriate grammar requires both 
significant specialized knowledge of machine learning and 
of the specific learning problem to be solved. In contrast, 
Subtle’s automated feature generation is built upon a set of 
abstractions that both enable non-expert use and are also 
appropriate for learning a variety of concepts based on the 
types of sensed context considered by Subtle.  
SUBTLE ARCHITECTURE 
Figure 2 presents an overview of Subtle’s architecture. We 
will discuss each component of this architecture in detail as 
this paper progresses, but this section provides a high-level 
overview as a basis for future sections. Implemented in Java 
with approximately 20,000 method lines of code, Subtle is a 
service that, once started, runs in a separate process from an 
application. Applications interact with Subtle using 
XML-encoded remote procedure calls (a provided wrapper 
makes this communication transparent to Java programs). 
When Subtle is started, it spawns a variety of sensors, each 
of which begins to generate XML-encoded readings.  Each 
reading is either an event or a state, where events occur in 
an instant and states retain their value until either a new 
value arrives or a timeout occurs. Collected readings are 

Figure 2. Overview of Subtle’s runtime architecture.  



subjected to a privacy policy before being stored in a 
database. An application is then responsible for providing 
timestamped labels, typically obtained when an end-user 
provides an indication of the desired behavior of an 
application. At regular intervals, the model learner 
examines sensor logs and the collected labels to learn a new 
statistical model. The learner uses generators to iteratively 
examine potential features and automatically creates new 
potential features by applying operators to transform 
existing potential features. Once a model has been learned, 
it can be evaluated against the database to provide live 
estimates. Finally, a set of web services support the field 
deployment and data collection from a Subtle application. 
EXTENSIBLE SENSING LIBRARY 
Subtle takes a two-pronged approach to addressing the 
problem that learning statistical models requires sensors 
that can provide relevant context. The first part of our 
approach is to provide a library of generally useful sensors. 
In building this library, our focus has been on sensors that 
can be deployed in software on a typical laptop computer. 
While custom hardware is clearly important to some 
applications, focusing on software sensing maximizes 
Subtle’s relevance to everyday use. Sensing is implemented 
using standard Microsoft Windows libraries, so it works 
with appropriate applications and hardware on a dominant 
platform. Subtle currently provides desktop event stream 
analyses, ambient audio analyses, and WiFi location 
sensing. This library will grow as additional sensors are 
developed for specific applications, and adding new sensors 
to this library will make them available to every application 
built with Subtle. Our provided sensing library addresses 
the most common case, and Subtle’s extensibility addresses 
the use of sensing infrastructure or custom hardware.  
Provided Sensor Library 
Our desktop event stream sensing library monitors several 
indications of how a person is using their computer. For 
each top-level window, Subtle logs the window title, type, 
and executable name. Subtle differentiates between regular 
top-level windows and popup windows (which are owned 
by another top-level window) and notes when a user opens, 
closes, moves, sizes, or switches between windows. Mouse 
and keyboard input events are captured, as are focus-change 
events (our prior work has found that focus-change events 
can be an indicator of task engagement [11]). We also log 
the overall CPU usage and the CPU usage of each process 
(a somewhat general approach to differentiating between an 
idle or active process, such as an idle media player versus 
one that is currently showing a movie). We log the current 
audio volume and whether or not audio output is muted. 
Finally, we log whether a computer is plugged in, as this 
seems likely to be an indicator of whether a person is in a 
semi-permanent work area or a more temporary situation. 
Subtle monitors the primary audio input device (typically a 
small microphone built into the case of a laptop computer), 
conducting several analyses of ambient audio. It seems 

intuitive that certain applications should behave differently 
in noisy environments, so we compute two volume-related 
statistics, using them to sense the magnitude and variation 
in the overall noise level. Our prior work on human 
interruptibility has found that nearby conversation is an 
indicator of social engagement [9, 10], so we compute 
several features to detect nearby speech. The first is the 
energy level in the frequency range of human voice. We 
also compute features based on the high zero-crossing rate 
ratio (HZCRR), the low short-time energy ratio (LSTER), 
and spectrum flux (SF), all presented by Lu et al. in their 
work on audio segmentation [28]. Lu et al. have shown that 
these features are effective for recognizing the difference 
between speech, music, and environmental sounds. They 
have also proven effective in our deployment of a 
context-aware instant messaging client [12]. 
WiFi-based location sensing is implemented using periodic 
scans for nearby access points, an approach proven 
effective by the Place Lab initiative [26]. Subtle logs the 
MAC address, network name, and signal strength of each 
detected access point. Subtle also logs which access point is 
currently in use. The inclusion of a location sensor may 
allow a model to be based on whether a person is in their 
primary work area (the most common set of access points in 
this person’s history), in some other location that they 
frequent (a set of previously encountered access points), or 
in an unusual or new location (a set of access points that has 
not previously been encountered). 
Sensor Extensibility Support 
While the provided sensors should be sufficient for many 
applications (they are a superset of those in our prior work 
on human interruptibility), other applications may benefit 
from custom sensing. Subtle supports two approaches to 
this. The first is based in Subtle’s state and event readings. 
If an application has context it wants to provide for 
consideration by a model, or if a new sensor is being 
developed, it can provide Subtle with an XML-encoded 
reading. Subtle will treat this reading as if it were generated 
by our provided sensors: parsing it, applying the privacy 
policy, and storing it in our database for later analysis. 
A second approach is appropriate when Subtle is integrated 
with a large existing system. For example, consider if an 
application has been built with the Context Toolkit [4], but 
the developer wants to add Subtle’s support for model 
development and deployment. To address this type of 
situation, Subtle provides a level of abstraction surrounding 
database queries. The primary implementation uses 
timestamped name/value pairs stored in our database 
illustrated in Figure 2, but custom implementations can 
associate additional databases with Subtle. In the scenario 
described, a developer would provide a custom 
implementation that queries the existing Context Toolkit 
database. Subtle queries for timestamped reading values 
would then be routed through this implementation, allowing 
Subtle to learn from and execute models against the data 
contained in the Context Toolkit. 



CONTINUOUS LEARNING OF PERSONALIZED MODELS 
To address the problem that it is hard for a static model to 
account for individual differences and unexpected situations, 
Subtle supports continuous learning of personalized models 
using labels collected from an individual end-user. Figure 3 
presents the lifetime of Subtle models. The bottom timeline 
represents the occasional collection of labels by an 
application. When Subtle begins its fully-automated 
learning process, it takes a snapshot of available labels 
(represented by the vertical transition from the unshaded 
circle). Subtle’s learning process is then executed against 
that set of labels. When complete, the learned model begins 
to be used for live sensor-based estimates (represented by 
the second vertical transition). More labels will probably 
have been collected in the time taken to learn the model, so 
the process begins again with a new snapshot. When this 
new model is learned, it is promoted into use. The lifetime 
of the original model ends here, marked by a shaded circle. 
The storage of sensor readings for later analysis by Subtle’s 
model learner raises the important issue of potentially 
sensitive data in sensor logs. To address this concern, Subtle 
filters each sensor reading through a hash-based privacy 
policy before storing it in Subtle’s database (as illustrated in 
Figure 2). Subtle’s default privacy policy is based in the 
application of a one-way cryptographic hash to potentially 
sensitive strings. This masks the content of a string while 
still allowing Subtle to learn about meaningful values of the 
string (because the same string will always have the same 
hash). Subtle’s default privacy policy decides whether a 
string is potentially sensitive based on how it was obtained 
(as opposed to being based on the content of a string). For 
example, the default privacy policy considers window titles 
to be potentially sensitive (because they could reveal logins 
or other indicators of a person’s identity), but does not 
consider the active executable filename to be potentially 
sensitive. It therefore tokenizes and applies a one-way 
cryptographic hash to window titles, but stores the actual 
value of the active executable filename. This default policy 
provides an end-user with appropriate protection without 
requiring any effort of an application developer. Because 
some applications will desire weaker or stronger privacy 
policies, Subtle allows applications to define an arbitrary 
privacy policy, either by changing what readings are hashed 
or by providing a new implementation to apply an arbitrary 
transformation to collected readings. 

A second issue raised by continuous learning is that it would 
be unacceptable to consume a large portion of a computer’s 
processor while learning a model. Assigning the learning 
process a low priority might prevent it from interfering with 
other applications, but the process would still quickly drain 
the battery of a laptop computer. Subtle therefore manages 
its own processor usage. When a person is active on their 
computer (indicated by mouse or keyboard activity in the 
past 5 minutes) or when the computer is running from 
battery, Subtle limits the model learner to approximately 15 
percent processor utilization. When both plugged in and 
idle, Subtle allows 80 percent processor utilization.  
The final issue we discuss regarding continuous learning of 
personalized models is how an application should behave in 
the time before a reliable personalized model becomes 
available (including the time to collect labels and to learn 
the model). Based on our prior result that relationships with 
some sensed context are predictive for a large variety of 
office workers [9], we believe it will often be useful to 
provide a generic model for use until a personalized model 
is available. Subtle supports transitioning from a generic 
model to a personalized model by exposing information 
about the labels used to train each model and the estimated 
reliability of a model. An application can use this 
information to decide when it is appropriate to begin using 
a personalized model. An application might also decide not 
to use individual models, instead collecting labels to update 
one or more generic models available to application users. 
AUTOMATED FEATURE GENERATION AND SELECTION 
While the collection of appropriate sensor readings is 
necessary for learning a model, it is generally not sufficient. 
Models instead need to be built from features that extract 
higher-level concepts from sensed context. For example, 
the exact value of a volume reading from an ambient audio 
sensor is probably less predictive than a Boolean feature 
capturing whether the reading is above a specific threshold. 
This feature might in turn be less predictive than one that 
captures whether the volume was above that threshold at 
any point in the past 30 seconds. Creating appropriate 
features is critical to successful machine learning, but it is 
hard to determine what aspects of available context are 
most useful in a model. Non-experts can be very unsure 
about how to create appropriate high-level features, and 
even experts are unlikely to manually craft the best possible 
features [29]. Because Subtle learns personalized models in 
a background process on an end-user’s computer, we have 
the additional requirement that we generate appropriate 
features without human intervention in the learning process. 
Subtle addresses this problem using a fully-automated and 
feature generation process based on each potential feature’s 
type and history of values. Figure 4 shows an example of an 
automatically-generated feature for whether a person has 
been within range of a specific WiFi access point for 10 of 
the past 15 minutes. Two major abstractions are involved in 
the generation of such a feature. An operator creates a new 
potential feature by applying a transformation to an existing 

 
Figure 3. As additional labels are collected, Subtle 

continuously learns updated sensor-based statistical models. 



potential feature. Operators are added to features by a 
generator, each of which examines the type and history of 
values associated with existing potential features. 
In the case of Figure 4, the low-level sensor reports a list of 
detected WiFi access points. Subtle’s generators examine 
this to consider what transformations are appropriate. The 
List Contains generator matches features of type list, so it 
examines the history of values reported for the list and 
identifies list elements that occur with a frequency that may 
warrant further examination. For each such element, a new 
potential feature is generated by adding the List Contains 
operator parameterized with the value of the potentially 
interesting element. The resulting feature is Boolean, and so 
different generators are appropriate for iterating upon it. 
One such match is for Time Value Equals, which identifies 
a potentially interesting value and a timespan over which to 
check a feature’s equality with the value. This yields a 
numeric feature, which is examined by a generator that 
computes the optimal information-theoretic threshold. 
Because this process is based on the type of each existing 
feature and the history of values reported for that feature, as 
opposed to manually-specified semantics about what types 
of features should be explored based on what underlying 
sensors are being considered, Subtle can automatically 
apply existing operators to new sensors or apply new 
operators to existing sensors. In contrast, an approach based 
in defining what operators should be explored with what 
sensor would require the manual re-examination of every 
existing operator and sensor when creating a new operator 
or sensor. For example, consider starting from a list of open 
application executable names. Identifying wmplayer.exe as 
an interesting element of the list, the same operators can 
generate a feature capturing whether a person had Windows 
Media Player open for 8 of the past 10 minutes. 
Feature Generation 
Subtle’s extensibility allows arbitrary transformations in an 
operator and arbitrary exploratory processing of sensor data 
in a generator, but we also provide a set of operators and 
generators that efficiently explore features based on 
Subtle’s current sensing library. We expect these operators 
and generators will also be effective with new sensors 
similar to those provided by Subtle. Our goal in providing 
these operators and generators is not a general learning 
algorithm (an extremely difficult artificial intelligence 
problem), but to make the development and deployment of 
sensor-based statistical models accessible to non-experts. 

Subtle currently defines types for Booleans, numeric 
values, unprocessed strings, strings hashed by Subtle’s 
privacy policy (that are therefore represented as a 
fixed-length byte sequence), strings containing an XML 
document, and lists of values. New types can be defined by 
implementing an interface with a comparison method and 
with methods for storing and retrieving a value from an 
XML stream. Space constraints prevent us from providing 
an exhaustive list of operators and generators based on 
these types, but this section presents some of the most 
interesting operators and generators included with Subtle. 
Numeric values are compared to thresholds by two different 
generators, Discretize and Value Less Than. Both use the 
information gain statistic to find the information-theoretic 
optimal split point for numeric features. Value Less Than 
generates exactly one split for every existing numeric 
feature. Discretize uses Fayyad and Irani’s method, 
recursively choosing split points according to information 
gain with the minimum description length principle 
(MDLP) providing a stopping criterion [7]. We use both of 
these approaches because the MDLP criterion can be 
somewhat difficult to satisfy. Value Less Than’s generation 
of a single split allows every numeric feature an 
opportunity to emerge as predictive. But a single split is not 
always optimal, so Discretize allows multiple split points 
when the MDLP criterion indicates that the result is very 
likely to be useful in a statistical model. 
The Value Equals generator is applied to all types, as it is 
implemented using only the comparison method required of 
every type. It examines the values of an existing feature at 
the time of each label and creates a new Boolean feature for 
each value that occurs with a frequency that might warrant 
further examination. This generator, for example, can 
identify WINWORD.EXE as a potentially interesting value 
of Active Application. As discussed regarding Figure 4, the 
List Contains generator takes a similar approach to 
identifying potentially interesting elements of lists. 
Several generators create potential features that examine the 
recent history of values for an existing feature. The Most 
Recent Value operator is useful with event-based sensors 
(such as analyses of GUI desktop environments), because a 
label is unlikely to occur in exactly the same instant as a 
potentially predictive event and it is useful to be able to 
look into the past for the most recent occurrence of an 
event. Other generators based on a recent history of values 
include Min, Max, Mean, Median, Value Change Count, 

 
Figure 4. An automatically generated feature for “Within range of a specific WiFi access point for 10 of the past 15 minutes.” 

Because new features are automatically generated based on a feature’s type and the history of values associated with that feature,  
these same operators can be used to create a feature like “Windows Media Player was open for 8 of the past 10 minutes.” 



Most Common Value, Time Value Equals, and Time Since 
Value Equals. These and other history-based operators use 
a utility operator, Recent Values, to collect the history of 
values for a feature in a time interval (as seen in Figure 4). 
They also ensure that they do not add a Recent Values 
operator to a feature that already contains a Recent Values 
operator, thus preventing the unnecessary examination of 
features that are unlikely to be useful (such as the Max of 
the Min of the Most Common Value in the past minute). 
Feature Selection 
Subtle’s feature generation yields many potential features, 
most of which are not predictive and should not be used in a 
model. Subtle currently applies two filters: a correlation 
filter and an optimal subset filter.  
The correlation filter uses computationally inexpensive 
heuristics to quickly reduce the number of features under 
consideration. Features that have too many different values 
are filtered, as are features for which a value occurs in an 
overly small percent of data. Filtering these features helps 
to prevent overfitting, wherein models mistakenly treat 
minor details of training data as important and therefore 
have an unnecessarily low reliability when applied to new 
situations. The filter then uses several measures of 
correlation to select from the potential features. A machine 
learning researcher manually crafting a solution could 
experiment to determine what notion of correlation is best 
for a particular dataset, but our fully-automated approach 
leads us to use several in parallel. Subtle computes the 
information gain, gain ratio, and symmetrical uncertainty of 
each feature relative to the labels [30, 35]. The filter selects 
the n best-correlated features for each measure (features are 
selected if they are in the top n for any of the measures, 
where the default n is 1000). Finally, the filter uses Yu and 
Liu’s notion of predominance [35] to select a small number 
of features that are not in the top n but still provide 
predictive value distinct from the top features. 
The optimal subset filter examines the remaining features 
with a best-first search in a wrapper-based feature selection 
process [25]. This search starts with an empty feature 
subset, adding and removing potential features until no 
change results in improvement (with limited support for 
backtracking provided by the best-first strategy). The utility 
of each feature subset is evaluated using a standard ten-fold 
cross-validation (dividing the data into ten folds and using 
each fold to test a model trained from the other nine) to 
estimate the area under the ROC curve (the area under an 
ROC curve is related to accuracy but avoids pitfalls of 
optimizing directly for accuracy) [8, 13, 14]. 
Wrapper-based feature selection requires a computationally 
inexpensive classifier. Subtle currently chooses between 
naïve Bayes [5, 27] and decision tree [32] classifiers. The 
decision is made during the wrapper-based selection of 
optimal features, based on which type of model yields a 
better score. This allows Subtle to adapt to the different 
types of data for which these classifiers are appropriate. 

Iterative Feature Generation and Selection 
The feature generation and selection processes just 
discussed are executed within an iterative process. Starting 
from the unprocessed low-level sensors, Subtle applies 
generators to create new potential features. These features 
are filtered, with the final filter selecting an optimal subset. 
Subtle then decides whether to continue creating new 
potential features. Iteration terminates after a pass in which 
generators do not create any new potential features or after 
five passes without any improvement in the scoring of the 
optimal features (based on the area under the ROC curve). 
Figure 5 presents a summary of Subtle’s iterative model 
development for a dataset presented later in this paper. We 
have bolded the area under the ROC curve as a reminder 
that iteration continues until it converges. This dataset 
contains 97 low-level event-based sensors. While 96 of 
these pass our correlation filter, they are too low-level to be 
of any benefit in a model. Applying our generators to the 97 
low-level sensors creates 1322 unique potential features. A 
second iteration, applying generators to these 1322 features, 
yields 8247 potential features. As the number of potential 
features grows, the correlation filter quickly reduces the 
number under consideration. In this case, learning ends 
when the eighth iteration yields no new features. 
SUBTLE DISCUSSION 
As discussed in our introduction, Subtle enables the 
development of applications that monitor, learn from, and 
respond to sensed context with just a handful of code. While 
we feel this is a clear demonstration that Subtle eases the 
development and deployment of sensor-based statistical 
models, a more formal evaluation is inherently difficult. 
Subtle enables research that would have been extremely 
difficult to pursue, but an evaluation based on a particular 
application or dataset provides only indirect insight into 
Subtle’s utility [6]. This section examines Subtle by 
considering three issues. We first discuss Subtle’s learning 
mechanisms with regard to two datasets collected in prior 
work. We then present two demonstration applications 
showing how little effort is required when using Subtle to 
develop and deploy sensor-based statistical models. Finally, 
we report on the adoption of Subtle by other researchers 
pursuing their own work, including two examples of 
deploying Subtle applications in field studies of how people 
use applications that include sensor-based statistical models. 

  Unique Correlate Optimal 
Area Under 
ROC Curve Accuracy 

1 97 96 0 .500 . 585 
2 1322 212 13 .633 .636 
3 8247 1061 27 .714 .714 
4 23952 1180 42 .751 .733 
5 33227 1347 25 .779 .739 
6 34801 1358 27 .787 .760 
7 34805 1358 27 .787 .760 Ite
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8 34805 - - - - 
 

Figure 5. Summary of a model’s iterative development,  
with how many features passed each filter in each iteration. 



Model Learner Discussion 
Subtle’s current set of operators and generators has been 
informed by our work on sensor-based statistical models of 
human interruptibility [9]. In that work, we deployed a set 
of sensors in the offices of ten office workers with diverse 
responsibilities (the sensors were a subset of those provided 
by Subtle, plus motion detectors and contact switches). We 
collected interruptibility self-reports with an experience 
sampling method and found that participants considered 
themselves to be interruptible for 67.9% of collected labels. 
Using a traditional machine learning approach with manual 
construction of appropriate high-level features, we created 
and published a model with an accuracy of 79.5% [9]. 
We used this dataset, together with our experience in 
applying a traditional machine learning approach to it, to 
iteratively develop Subtle’s core operators and generators. 
This provided a concrete dataset, with sensors similar to 
those provided by Subtle, for use in informally determining 
what types of operators yield good results. Applying 
Subtle’s automated learner yields a model containing 40 
automatically-generated features and an accuracy of 80.0%. 
Subtle’s model is significantly better than human observers 
(A' = .856 vs. A' = .724, Z = 7.13, p < .001) [10] and 
performs as well as our previously published model based 
on manually crafted features (χ2(1, 1981) = 0.09, p ≈ .77). 
As a demonstration of these same operators working well 
with another dataset, we have applied Subtle’s automated 
model learner to data collected from programmers working 
on a realistic programming task while responding to 
interruptions [11]. This dataset is based on low-level events 
logged within Eclipse, a modern development environment. 
Applying the operators developed through experimentation 
with our previous dataset, Subtle’s model learner created a 
model with 27 automatically-generated features and an 
accuracy of 76.0%, significantly better than the 58.5% base 
for this data (A' = .787, Z = 14.1, p < .001). This provides 
an example of Subtle’s operators working with well a 
different dataset, and Figure 5 shows that the performance 
of this model is due to the high-level features automatically 
created by Subtle. As can be seen in Iteration 1 of Figure 5, 
the 97 event-based sensors in the unprocessed dataset are 
too low-level to provide useful information to a machine 
learning algorithm. The machine learning algorithm does 
not begin to perform well until later iterations, after Subtle 
has automatically generated useful high-level features. 
Application Development Discussion 
Having discussed Subtle’s iterative feature generation, we 
now turn to two applications that demonstrate how Subtle 
eases the development of applications that use sensor-based 
statistical models of human situations. Initially presented in 
Figure 1, Whistle is an application that monitors when 
people mute or enable the audio of a laptop computer. It 
collects a label each time a person manually toggles their 
audio, learning a sensor-based statistical model that it uses 
to automatically mute and enable audio. This model is 
based on Subtle’s provided sensors, so it can learn such 

concepts as “mute audio when I am not at home” or “enable 
audio when Windows Media Player is active.” 
Implemented in Java with a native library for querying and 
setting the operating system’s audio mute flag, Whistle has 
265 lines of substantive code (including assignments and 
invocations while excluding imports, variable declarations, 
constant definitions, etc.). Of this code, 110 lines are 
GUI-related (the system tray icon, its popup menu, and the 
notification in Figure 1). Another 100 are native code for 
querying and setting the operating system’s audio mute 
flag. 27 lines are related to coordinating Java threading and 
timing. Only 16 are directly related to the use of Subtle. Of 
these, 6 are overhead (start and stop Subtle, classloader 
configuration). Another 4 lines are invoked every time a 
label is collected (connect to Subtle, create the label object, 
and provide it to Subtle). The final 6 are invoked every time 
the model is evaluated (connect to Subtle, obtain the model, 
evaluate the model, compare the result to action thresholds). 
Although Whistle is quite simple, its approach to learning 
and the code it uses to employ Subtle are typical of many 
potential applications.  It is straightforward to envision a 
similar application learning to select a person’s preferred 
printer (perhaps based on location or the active application), 
to reduce a laptop’s processor power consumption (scaling 
back the processor in contexts that historically do not result 
in a demand for processor time), or to adjust a computer’s 
display resolution (perhaps because the projector in a 
commonly-used room cannot handle the normal resolution). 
Figure 6 shows AmIBusy Prompter, an application very 
similar to BusyBody [19]. Implemented in 250 lines of 
substantive code, primarily for its GUI, AmIBusy Prompter 
collects interruptibility self-reports at random intervals. 
These are used to learn a model of interruptibility, and an 
application can then consider a personalized interruptibility 
model with as little as 6 lines of code (2 for overhead, 1 to 
connect to Subtle, 1 to obtain the model, 1 to evaluate the 
model, and 1 to compare to a threshold). Subtle thus makes 
sensor-based statistical models of human interruptibility 
accessible to the larger human-computer interaction 
research community, not just groups that have appropriate 
sensing libraries and access to machine learning expertise. 
Subtle Usage Discussion 
Subtle is available at http://subtle.cs.washington.edu, and 
we made early versions available to several researchers. 
This section discusses two research projects conducted with 
Subtle [21, 33]. Researchers were given access to both 
Subtle and to the source code for example applications 
(including Whistle and AmIBusy Prompter). Because we 
were supporting real research, we responded to questions 
about the best strategies for using Subtle.  However, we did 
not provide direct programming assistance. When preparing 
this paper, we asked these researchers to share their code. 
In the first project, Subtle has been used to study how users 
develop mental models of intelligent systems [33]. These 
researchers deployed AmIBusy Prompter for three months 



with four participants, creating personalized models of each 
participant’s interruptibility. They then used Subtle to 
create continuously updating door-mounted displays of the 
interruptibility of the four participants. These displays were 
deployed for six weeks, and the researchers conducted a 
series of interviews with colleagues of the participants to 
study their mental models of the interruptibility estimates. 
We consider this use of Subtle in a multi-month field study 
to be an important validation of Subtle’s utility. Examining 
the source code shared by these researchers and discussing 
it with them, we found the expected pattern of copying code 
snippets from the source code of our example applications 
(such as a snippet for obtaining an estimate from a model). 
We also found the researchers implemented a cross-entropy 
algorithm for examining the importance of each individual 
feature in a specific estimate, an algorithm that goes well 
beyond the usage illustrated in our example applications. 
This algorithm required the researchers implement a new 
nil value type, iterate through the features contained in a 
model, and examine how a substitution of nil for the actual 
value of each feature affected the output of the model. This 
is very different from any functionality in our examples, 
and its implementation by these researchers is an interesting 
case of going well beyond reusing example code. 
In the second project we discuss here, Subtle has been used 
in building a context-aware instant messaging client [21]. 
The instant messaging client developed by these researchers 
can share a person’s interruptibility, location, and desktop 
activity with interested colleagues. These researchers are 
focused on privacy control and feedback mechanisms, so 
using Subtle allowed them to focus on these mechanisms 
rather than the sensing and machine learning algorithms. In 
another example of the deployment of an application built 
with Subtle, these researchers have deployed their instant 
messaging client with ten participants for two weeks. 
Examining the source code shared by these researchers and 
discussing it with them, we again found a pattern of reusing 
snippets from the example applications we provided. But 
these researchers have also gone beyond the examples, in 
this case by directly accessing Subtle’s stream of sensor 
readings and extracting context (such as information about 
the active window) for use by the instant messaging client. 
They chose to directly access Subtle’s stream of sensor 
readings because the information they were using is filtered 
by the default privacy policy, as a history of active window 
titles may contain logins or other sensitive information. 
Subtle’s flexibility in giving the application access to the 
underlying sensor stream allowed appropriate short-term 
use of this information while maintaining the necessary 
privacy policy in the logs collected by Subtle. 
Limitations 
Subtle currently cannot model continuous labels (such as 
response times), and no support is currently provided for 
more advanced users to choose between different machine 
learning algorithms.  We are currently addressing this 

limitation by integrating Weka [34] into Subtle.  Subtle will 
then be able to automatically choose a regression-based 
algorithm when given continuous labels.  Advanced users 
will also be able to provide parameters directly to Weka. 
Learning a model from a hundred or more labels collected 
by AmIBusy Prompter can currently take more than a day 
of CPU time.  Much of this is due to simple algorithmic 
inefficiencies that we are currently addressing in a 
refactoring of Subtle, but there also exists a fundamental 
tension between exploring additional features and the time 
needed to explore them.  We have currently crafted our set 
of operators to explore a meaningful space of potential 
features, but a poorly-conceived extension could cripple 
Subtle by introducing a computationally intractable set of 
features. We are therefore investigating a more structured 
approach to Subtle’s generators. By examining generators 
that work well in Subtle, we hope to introduce additional 
support for well-behaved generators while also removing or 
at least detecting poorly-behaved or ineffective generators.    
CONCLUSION 
We have presented Subtle, a toolkit that removes many 
obstacles to developing and deploying applications that use 
sensor-based statistical models of human situations. Subtle 
includes an extensible sensor library targeted at laptop 
computers, provides continuous learning of personalized 
models, and is based on a fully-automated approach to 
iterative feature generation. We have discussed Subtle’s 
model learner in the context of two datasets, presented two 
examples of using sensor-based statistical models in 
applications with just a handful of code, and discussed 
some experiences with other researchers using Subtle in 
their own work. By supporting the development and 
deployment of sensor-based statistical models of human 
situations, Subtle helps focus human-computer interaction 
research on applications and datasets, instead of the 
difficulties of collecting sensor data and learning statistical 
models. Subtle thus enables future research into how 
human-computer interaction can benefit from sensor-based 
statistical models of human situations.  
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Figure 6. AmIBusy Prompter learns a personalized model of 
interruptibility that can be used with just 6 lines of code. 
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