
Toolkit Support for Developing and Deploying
Sensor-Based Statistical Models of Human Situations

James Fogarty
Computer Science & Engineering

University of Washington
Seattle, WA 98195

jfogarty@cs.washington.edu

Scott E. Hudson
Human Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213

scott.hudson@cs.cmu.edu

ABSTRACT
Sensor-based statistical models promise to support a variety
of advances in human-computer interaction, but building
applications that use them is currently difficult and potential
advances go unexplored. We present Subtle, a toolkit that
removes some of the obstacles to developing and deploying
applications using sensor-based statistical models of human
situations. Subtle provides an appropriate and extensible
sensing library, continuous learning of personalized models,
fully-automated high-level feature generation, and support
for using learned models in deployed applications. By
removing obstacles to developing and deploying
sensor-based statistical models, Subtle makes it easier to
explore the design space surrounding sensor-based
statistical models of human situations. Subtle thus helps to
move the focus of human-computer interaction research
onto applications and datasets, instead of the difficulties of
developing and deploying sensor-based statistical models.
Author Keywords
Toolkits, Subtle, sensor-based statistical models, machine
learning, context-aware computing.
ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces;
H1.2. Models and Principles: User/Machine Systems.
INTRODUCTION AND MOTIVATION
Context-aware computing promises applications that sense
an environment, model situations, and act appropriately [4].
For example, consider that traditional email clients with no
understanding of context often use an audio notification to
announce new email. Appropriate and useful when alone in
a private office, this can be disruptive and awkward during
a meeting with colleagues. While current applications are
generally unaware of such contexts or the impact of their
actions, context-aware applications could infer whether
such a notification is currently appropriate.

Many contextual cues are unambiguous (a sensor is either
activated or it is not), but the ultimate decision about how
an application should behave is often inherently ambiguous.
No single sensor directly maps to “an audio notification is
currently inappropriate” and it is unreasonable to expect
users to specify what actions should be taken in every
conceivable context. Sensor-based statistical models are
one solution to this problem. Developed and deployed, a
sensor-based statistical model can give an application
insight into the situation surrounding its usage, providing
guidance on what actions are likely to be appropriate.
Successfully deploying sensor-based statistical models is
currently difficult. The problem is typically not that models
are incapable of learning about human situations, as the
machine learning community has developed powerful
methods for learning from labeled datasets [30, 34].
However, the use of machine learning generally requires
significant specialized knowledge, particularly with regard
to bridging the gap between sensed context and high-level
features appropriate for use in machine learning algorithms.
Furthermore, existing tools are generally designed for use
with previously collected data, neglecting the requirements
of model deployment. The human-computer interaction
research community has the insights needed to develop
compelling applications of sensor-based statistical models,
but the barriers to working with them are currently high.
Potential advances therefore go unexplored.
This paper presents Subtle, a toolkit for Sensing User
Behavior To Learn about the Environment. By reducing the
barriers to model development and deployment, Subtle
makes it easier to explore the design space surrounding
sensor-based statistical models of human situations. For
example, we have used Subtle to build an application that
learns to automatically toggle whether a laptop’s audio is
muted. Each time a person manually toggles their audio, the
application provides Subtle with a label indicating the
preferred setting in the current context. Subtle then uses the
provided labels to learn a sensor-based statistical model
(considering such factors as a person’s location and what
applications they are using). Built with Subtle, this
application uses just 16 lines of code to collect appropriate
sensor data, learn a model, and obtain live estimates from
that model. This result, the ability to build an application

that can monitor, learn from, and respond to sensed context
with just a handful of code, represents an important
contribution. By reducing the barriers to using sensor-based
statistical models of human situations, Subtle makes it
easier for the human-computer interaction community to
explore the potential of such models in applications.
The next section details three specific difficulties in using
sensor-based statistical models and provides an overview of
how Subtle addresses each. We then review related work,
including a differentiation between Subtle and previous
toolkits for context-awareness or machine learning. We
next present Subtle’s implementation, showing how we
support the development and deployment of sensor-based
statistical models. We then discuss the validation of Subtle,
considering its performance on two previously published
datasets, giving two examples showing that Subtle enables
application development with very little code, and reporting
on other researchers using Subtle in their own work.
Finally, we present a short conclusion.
SENSOR-BASED STATISTICAL MODELS
Subtle supports supervised learning, wherein labels are
collected when a value is known for the concept being
modeled (as when a user indicates a preference). A model is
learned by extracting statistical relationships between the
values of labels and features of the sensed context at the
time of each label. Based on our experience developing and
deploying sensor-based statistical models of human
situations [9, 10, 11, 12, 22] and the experiences of others
[2, 3, 4, 6, 16, 17, 18, 19, 20, 24], at least three problems
must be addressed in a tool to support the development and
deployment of sensor-based statistical models.
Learning statistical models requires sensors that can
provide relevant context. If the available sensors are not
related to a concept being learned, no amount of processing
can extract a meaningful relationship. This can ultimately be
addressed only by an application designer, as it is the
application designer who chooses what concept will be
learned from what sensors. Subtle takes a two-pronged
approach to this problem. First, Subtle provides a library of
sensors that are useful in many applications. Targeted at a
typical laptop computer, this library currently includes
analyses of the desktop event stream, analyses of ambient
audio, and WiFi location sensing. Second, Subtle’s data
collection mechanisms are designed to support extensibility,
making it easy to add new sensors.
It is hard for a static model to account for individual
differences and unexpected situations. There are often
important differences in how people want an application to
behave. For example, our prior work found that researchers
who program are typically less interruptible when actively
working on their computer, while first-level managers are
typically more interruptible in the same situation [9]. If a
model cannot adjust to such differences, its utility will
suffer. Subtle addresses this by supporting continuous and
fully-automated learning of personalized models on an

end-user’s computer. Because Subtle can continuously learn
models from labels provided by an individual end-user,
applications can adapt to personal preferences.
It is hard to determine what aspects of available context will
be most useful in a model. Sensed context is rarely
appropriate for direct use in a machine learning algorithm,
and must instead be processed to extract high-level features
appropriate for learning. Non-experts can be very unsure
about what types of features are appropriate, and even
experts are unlikely to manually craft the best possible
features [29]. While this problem is important in many
applications of machine learning, Subtle’s need to learn
models in a background process on an end-user’s machine
makes this problem especially important, as no expert is
available to intervene in the automated model learning
process. Subtle is therefore based on a type-based approach
to iterative feature generation, applying operators to
automatically generate a large number of potential features
for consideration in a feature selection algorithm. This
approach promotes extensions of Subtle’s sensing and
learning mechanisms and removes the need for an
application designer to acquire significant specialized
knowledge of machine learning techniques.
RELATED WORK
Several groups in the human-computer interaction research
community have examined sensor-based statistical models
of human situations, with interruptibility and availability
being common topics of interest [1, 2, 15, 16, 17, 18, 19,
20, 23, 24, 31]. The transition from studying models of
human situations to deploying systems based on such
models introduces additional requirements and difficulties.
Horvitz et al. have deployed Priorities, Coordinate,
BusyBody, and BestCom, all of which use sensor-based
statistical models to reason about interruptibility and
availability [16, 17, 18, 19, 20]. Begole et al. deployed their
temporal models of availability in Awarenex [2]. We
deployed and evaluated a context-aware instant messaging
client that includes an availability model [12]. Because it is
currently difficult to deploy sensor-based statistical models
of human situations, evaluations of such deployments are
often focused on technical innovations or on analyses of
model reliability in deployed applications. This neglects

Figure 1. Whistle addresses the problem that people often
forget to mute or unmute laptop computers. It collects a label
each time a person manually toggles the mute flag, learning a
relationship between context and a person’s desired setting.

many compelling human-computer interaction research
questions, such as how a model can most improve an
interaction, how to design compelling applications despite
the inevitable errors made by statistical models, and what
impact models have on how people interact with computers.
By making sensor-based statistical models available to a
larger audience, Subtle encourages research into these types
of questions, which are fundamentally different from the
questions typically explored by people whose primary
interest lies in machine learning.
Two important categories of related toolkit work exist. The
first is work on toolkits to support context-awareness, the
most relevant example being Dey et al.’s Context Toolkit,
which supports the distributed collection, storage, and
retrieval of context [4]. Designed for non-ambiguous
context, the Context Toolkit has been enhanced to support
the mediation of ambiguity [3]. With mediation, an
application prompts a user to resolve ambiguity. For
example, Dey et al. present the Communicator application,
which uses context to choose among language models for a
word completion widget. If it is ambiguous which model
should be used, a prompt is displayed for the user to choose
a model. While mediation can support many applications, it
is clearly inappropriate for many others. In the case of
audio notifications, mediation could result in prompts
asking whether it is appropriate to deliver an audio
notification (an approach that is likely more disruptive than
the original notification). More importantly, the Context
Toolkit does not learn from mediation, so people may often
be asked to resolve identical or very similar situations.
Existing machine learning toolkits represent a second
important category of related work, with Weka being one of
the most widely known and used [34]. Designed by and for
machine learning researchers, Weka and similar toolkits
provide a variety of feature selection and machine learning
algorithms, but require significant specialized knowledge of
machine learning before they can be effectively used. Such
tools are intentionally agnostic to how input features were
computed, typically assuming that a researcher is analyzing
files that contain data previously collected and processed to
extract meaningful features. Because these tools assume
appropriate high-level features as input, they do not provide
support for helping to construct such features.

We note that Subtle’s research contributions go beyond an
aggregation of these two types of existing toolkits. Subtle
necessarily overlaps these tools, including both mechanisms
to collect, store, and retrieve sensed context as well as a set
of feature selection and machine learning algorithms. But
adding the capabilities of Weka to the Context Toolkit
would not provide a toolkit equivalent to Subtle, as neither
existing tool provides support for constructing appropriate
high-level machine learning features from low-level sensed
context. Subtle is unique in providing a type-based
approach to fully-automated feature generation, and its
abstractions are unique in allowing application developers
to develop and deploy sensor-based statistical models of
human situations without first acquiring extensive
specialized knowledge of machine learning.
The prior work most relevant to Subtle’s automated feature
generation is an iterative approach to automated feature
construction presented by Markovitch and Rosenstein [29].
Their approach is based in a formal grammar specifying
legal manipulations of a base feature set. Because their
approach is intended for machine learning researchers, the
manual creation of an appropriate grammar requires both
significant specialized knowledge of machine learning and
of the specific learning problem to be solved. In contrast,
Subtle’s automated feature generation is built upon a set of
abstractions that both enable non-expert use and are also
appropriate for learning a variety of concepts based on the
types of sensed context considered by Subtle.
SUBTLE ARCHITECTURE
Figure 2 presents an overview of Subtle’s architecture. We
will discuss each component of this architecture in detail as
this paper progresses, but this section provides a high-level
overview as a basis for future sections. Implemented in Java
with approximately 20,000 method lines of code, Subtle is a
service that, once started, runs in a separate process from an
application. Applications interact with Subtle using
XML-encoded remote procedure calls (a provided wrapper
makes this communication transparent to Java programs).
When Subtle is started, it spawns a variety of sensors, each
of which begins to generate XML-encoded readings. Each
reading is either an event or a state, where events occur in
an instant and states retain their value until either a new
value arrives or a timeout occurs. Collected readings are

Figure 2. Overview of Subtle’s runtime architecture.

subjected to a privacy policy before being stored in a
database. An application is then responsible for providing
timestamped labels, typically obtained when an end-user
provides an indication of the desired behavior of an
application. At regular intervals, the model learner
examines sensor logs and the collected labels to learn a new
statistical model. The learner uses generators to iteratively
examine potential features and automatically creates new
potential features by applying operators to transform
existing potential features. Once a model has been learned,
it can be evaluated against the database to provide live
estimates. Finally, a set of web services support the field
deployment and data collection from a Subtle application.
EXTENSIBLE SENSING LIBRARY
Subtle takes a two-pronged approach to addressing the
problem that learning statistical models requires sensors
that can provide relevant context. The first part of our
approach is to provide a library of generally useful sensors.
In building this library, our focus has been on sensors that
can be deployed in software on a typical laptop computer.
While custom hardware is clearly important to some
applications, focusing on software sensing maximizes
Subtle’s relevance to everyday use. Sensing is implemented
using standard Microsoft Windows libraries, so it works
with appropriate applications and hardware on a dominant
platform. Subtle currently provides desktop event stream
analyses, ambient audio analyses, and WiFi location
sensing. This library will grow as additional sensors are
developed for specific applications, and adding new sensors
to this library will make them available to every application
built with Subtle. Our provided sensing library addresses
the most common case, and Subtle’s extensibility addresses
the use of sensing infrastructure or custom hardware.
Provided Sensor Library
Our desktop event stream sensing library monitors several
indications of how a person is using their computer. For
each top-level window, Subtle logs the window title, type,
and executable name. Subtle differentiates between regular
top-level windows and popup windows (which are owned
by another top-level window) and notes when a user opens,
closes, moves, sizes, or switches between windows. Mouse
and keyboard input events are captured, as are focus-change
events (our prior work has found that focus-change events
can be an indicator of task engagement [11]). We also log
the overall CPU usage and the CPU usage of each process
(a somewhat general approach to differentiating between an
idle or active process, such as an idle media player versus
one that is currently showing a movie). We log the current
audio volume and whether or not audio output is muted.
Finally, we log whether a computer is plugged in, as this
seems likely to be an indicator of whether a person is in a
semi-permanent work area or a more temporary situation.
Subtle monitors the primary audio input device (typically a
small microphone built into the case of a laptop computer),
conducting several analyses of ambient audio. It seems

intuitive that certain applications should behave differently
in noisy environments, so we compute two volume-related
statistics, using them to sense the magnitude and variation
in the overall noise level. Our prior work on human
interruptibility has found that nearby conversation is an
indicator of social engagement [9, 10], so we compute
several features to detect nearby speech. The first is the
energy level in the frequency range of human voice. We
also compute features based on the high zero-crossing rate
ratio (HZCRR), the low short-time energy ratio (LSTER),
and spectrum flux (SF), all presented by Lu et al. in their
work on audio segmentation [28]. Lu et al. have shown that
these features are effective for recognizing the difference
between speech, music, and environmental sounds. They
have also proven effective in our deployment of a
context-aware instant messaging client [12].
WiFi-based location sensing is implemented using periodic
scans for nearby access points, an approach proven
effective by the Place Lab initiative [26]. Subtle logs the
MAC address, network name, and signal strength of each
detected access point. Subtle also logs which access point is
currently in use. The inclusion of a location sensor may
allow a model to be based on whether a person is in their
primary work area (the most common set of access points in
this person’s history), in some other location that they
frequent (a set of previously encountered access points), or
in an unusual or new location (a set of access points that has
not previously been encountered).
Sensor Extensibility Support
While the provided sensors should be sufficient for many
applications (they are a superset of those in our prior work
on human interruptibility), other applications may benefit
from custom sensing. Subtle supports two approaches to
this. The first is based in Subtle’s state and event readings.
If an application has context it wants to provide for
consideration by a model, or if a new sensor is being
developed, it can provide Subtle with an XML-encoded
reading. Subtle will treat this reading as if it were generated
by our provided sensors: parsing it, applying the privacy
policy, and storing it in our database for later analysis.
A second approach is appropriate when Subtle is integrated
with a large existing system. For example, consider if an
application has been built with the Context Toolkit [4], but
the developer wants to add Subtle’s support for model
development and deployment. To address this type of
situation, Subtle provides a level of abstraction surrounding
database queries. The primary implementation uses
timestamped name/value pairs stored in our database
illustrated in Figure 2, but custom implementations can
associate additional databases with Subtle. In the scenario
described, a developer would provide a custom
implementation that queries the existing Context Toolkit
database. Subtle queries for timestamped reading values
would then be routed through this implementation, allowing
Subtle to learn from and execute models against the data
contained in the Context Toolkit.

CONTINUOUS LEARNING OF PERSONALIZED MODELS
To address the problem that it is hard for a static model to
account for individual differences and unexpected situations,
Subtle supports continuous learning of personalized models
using labels collected from an individual end-user. Figure 3
presents the lifetime of Subtle models. The bottom timeline
represents the occasional collection of labels by an
application. When Subtle begins its fully-automated
learning process, it takes a snapshot of available labels
(represented by the vertical transition from the unshaded
circle). Subtle’s learning process is then executed against
that set of labels. When complete, the learned model begins
to be used for live sensor-based estimates (represented by
the second vertical transition). More labels will probably
have been collected in the time taken to learn the model, so
the process begins again with a new snapshot. When this
new model is learned, it is promoted into use. The lifetime
of the original model ends here, marked by a shaded circle.
The storage of sensor readings for later analysis by Subtle’s
model learner raises the important issue of potentially
sensitive data in sensor logs. To address this concern, Subtle
filters each sensor reading through a hash-based privacy
policy before storing it in Subtle’s database (as illustrated in
Figure 2). Subtle’s default privacy policy is based in the
application of a one-way cryptographic hash to potentially
sensitive strings. This masks the content of a string while
still allowing Subtle to learn about meaningful values of the
string (because the same string will always have the same
hash). Subtle’s default privacy policy decides whether a
string is potentially sensitive based on how it was obtained
(as opposed to being based on the content of a string). For
example, the default privacy policy considers window titles
to be potentially sensitive (because they could reveal logins
or other indicators of a person’s identity), but does not
consider the active executable filename to be potentially
sensitive. It therefore tokenizes and applies a one-way
cryptographic hash to window titles, but stores the actual
value of the active executable filename. This default policy
provides an end-user with appropriate protection without
requiring any effort of an application developer. Because
some applications will desire weaker or stronger privacy
policies, Subtle allows applications to define an arbitrary
privacy policy, either by changing what readings are hashed
or by providing a new implementation to apply an arbitrary
transformation to collected readings.

A second issue raised by continuous learning is that it would
be unacceptable to consume a large portion of a computer’s
processor while learning a model. Assigning the learning
process a low priority might prevent it from interfering with
other applications, but the process would still quickly drain
the battery of a laptop computer. Subtle therefore manages
its own processor usage. When a person is active on their
computer (indicated by mouse or keyboard activity in the
past 5 minutes) or when the computer is running from
battery, Subtle limits the model learner to approximately 15
percent processor utilization. When both plugged in and
idle, Subtle allows 80 percent processor utilization.
The final issue we discuss regarding continuous learning of
personalized models is how an application should behave in
the time before a reliable personalized model becomes
available (including the time to collect labels and to learn
the model). Based on our prior result that relationships with
some sensed context are predictive for a large variety of
office workers [9], we believe it will often be useful to
provide a generic model for use until a personalized model
is available. Subtle supports transitioning from a generic
model to a personalized model by exposing information
about the labels used to train each model and the estimated
reliability of a model. An application can use this
information to decide when it is appropriate to begin using
a personalized model. An application might also decide not
to use individual models, instead collecting labels to update
one or more generic models available to application users.
AUTOMATED FEATURE GENERATION AND SELECTION
While the collection of appropriate sensor readings is
necessary for learning a model, it is generally not sufficient.
Models instead need to be built from features that extract
higher-level concepts from sensed context. For example,
the exact value of a volume reading from an ambient audio
sensor is probably less predictive than a Boolean feature
capturing whether the reading is above a specific threshold.
This feature might in turn be less predictive than one that
captures whether the volume was above that threshold at
any point in the past 30 seconds. Creating appropriate
features is critical to successful machine learning, but it is
hard to determine what aspects of available context are
most useful in a model. Non-experts can be very unsure
about how to create appropriate high-level features, and
even experts are unlikely to manually craft the best possible
features [29]. Because Subtle learns personalized models in
a background process on an end-user’s computer, we have
the additional requirement that we generate appropriate
features without human intervention in the learning process.
Subtle addresses this problem using a fully-automated and
feature generation process based on each potential feature’s
type and history of values. Figure 4 shows an example of an
automatically-generated feature for whether a person has
been within range of a specific WiFi access point for 10 of
the past 15 minutes. Two major abstractions are involved in
the generation of such a feature. An operator creates a new
potential feature by applying a transformation to an existing

Figure 3. As additional labels are collected, Subtle

continuously learns updated sensor-based statistical models.

potential feature. Operators are added to features by a
generator, each of which examines the type and history of
values associated with existing potential features.
In the case of Figure 4, the low-level sensor reports a list of
detected WiFi access points. Subtle’s generators examine
this to consider what transformations are appropriate. The
List Contains generator matches features of type list, so it
examines the history of values reported for the list and
identifies list elements that occur with a frequency that may
warrant further examination. For each such element, a new
potential feature is generated by adding the List Contains
operator parameterized with the value of the potentially
interesting element. The resulting feature is Boolean, and so
different generators are appropriate for iterating upon it.
One such match is for Time Value Equals, which identifies
a potentially interesting value and a timespan over which to
check a feature’s equality with the value. This yields a
numeric feature, which is examined by a generator that
computes the optimal information-theoretic threshold.
Because this process is based on the type of each existing
feature and the history of values reported for that feature, as
opposed to manually-specified semantics about what types
of features should be explored based on what underlying
sensors are being considered, Subtle can automatically
apply existing operators to new sensors or apply new
operators to existing sensors. In contrast, an approach based
in defining what operators should be explored with what
sensor would require the manual re-examination of every
existing operator and sensor when creating a new operator
or sensor. For example, consider starting from a list of open
application executable names. Identifying wmplayer.exe as
an interesting element of the list, the same operators can
generate a feature capturing whether a person had Windows
Media Player open for 8 of the past 10 minutes.
Feature Generation
Subtle’s extensibility allows arbitrary transformations in an
operator and arbitrary exploratory processing of sensor data
in a generator, but we also provide a set of operators and
generators that efficiently explore features based on
Subtle’s current sensing library. We expect these operators
and generators will also be effective with new sensors
similar to those provided by Subtle. Our goal in providing
these operators and generators is not a general learning
algorithm (an extremely difficult artificial intelligence
problem), but to make the development and deployment of
sensor-based statistical models accessible to non-experts.

Subtle currently defines types for Booleans, numeric
values, unprocessed strings, strings hashed by Subtle’s
privacy policy (that are therefore represented as a
fixed-length byte sequence), strings containing an XML
document, and lists of values. New types can be defined by
implementing an interface with a comparison method and
with methods for storing and retrieving a value from an
XML stream. Space constraints prevent us from providing
an exhaustive list of operators and generators based on
these types, but this section presents some of the most
interesting operators and generators included with Subtle.
Numeric values are compared to thresholds by two different
generators, Discretize and Value Less Than. Both use the
information gain statistic to find the information-theoretic
optimal split point for numeric features. Value Less Than
generates exactly one split for every existing numeric
feature. Discretize uses Fayyad and Irani’s method,
recursively choosing split points according to information
gain with the minimum description length principle
(MDLP) providing a stopping criterion [7]. We use both of
these approaches because the MDLP criterion can be
somewhat difficult to satisfy. Value Less Than’s generation
of a single split allows every numeric feature an
opportunity to emerge as predictive. But a single split is not
always optimal, so Discretize allows multiple split points
when the MDLP criterion indicates that the result is very
likely to be useful in a statistical model.
The Value Equals generator is applied to all types, as it is
implemented using only the comparison method required of
every type. It examines the values of an existing feature at
the time of each label and creates a new Boolean feature for
each value that occurs with a frequency that might warrant
further examination. This generator, for example, can
identify WINWORD.EXE as a potentially interesting value
of Active Application. As discussed regarding Figure 4, the
List Contains generator takes a similar approach to
identifying potentially interesting elements of lists.
Several generators create potential features that examine the
recent history of values for an existing feature. The Most
Recent Value operator is useful with event-based sensors
(such as analyses of GUI desktop environments), because a
label is unlikely to occur in exactly the same instant as a
potentially predictive event and it is useful to be able to
look into the past for the most recent occurrence of an
event. Other generators based on a recent history of values
include Min, Max, Mean, Median, Value Change Count,

Figure 4. An automatically generated feature for “Within range of a specific WiFi access point for 10 of the past 15 minutes.”

Because new features are automatically generated based on a feature’s type and the history of values associated with that feature,
these same operators can be used to create a feature like “Windows Media Player was open for 8 of the past 10 minutes.”

Most Common Value, Time Value Equals, and Time Since
Value Equals. These and other history-based operators use
a utility operator, Recent Values, to collect the history of
values for a feature in a time interval (as seen in Figure 4).
They also ensure that they do not add a Recent Values
operator to a feature that already contains a Recent Values
operator, thus preventing the unnecessary examination of
features that are unlikely to be useful (such as the Max of
the Min of the Most Common Value in the past minute).
Feature Selection
Subtle’s feature generation yields many potential features,
most of which are not predictive and should not be used in a
model. Subtle currently applies two filters: a correlation
filter and an optimal subset filter.
The correlation filter uses computationally inexpensive
heuristics to quickly reduce the number of features under
consideration. Features that have too many different values
are filtered, as are features for which a value occurs in an
overly small percent of data. Filtering these features helps
to prevent overfitting, wherein models mistakenly treat
minor details of training data as important and therefore
have an unnecessarily low reliability when applied to new
situations. The filter then uses several measures of
correlation to select from the potential features. A machine
learning researcher manually crafting a solution could
experiment to determine what notion of correlation is best
for a particular dataset, but our fully-automated approach
leads us to use several in parallel. Subtle computes the
information gain, gain ratio, and symmetrical uncertainty of
each feature relative to the labels [30, 35]. The filter selects
the n best-correlated features for each measure (features are
selected if they are in the top n for any of the measures,
where the default n is 1000). Finally, the filter uses Yu and
Liu’s notion of predominance [35] to select a small number
of features that are not in the top n but still provide
predictive value distinct from the top features.
The optimal subset filter examines the remaining features
with a best-first search in a wrapper-based feature selection
process [25]. This search starts with an empty feature
subset, adding and removing potential features until no
change results in improvement (with limited support for
backtracking provided by the best-first strategy). The utility
of each feature subset is evaluated using a standard ten-fold
cross-validation (dividing the data into ten folds and using
each fold to test a model trained from the other nine) to
estimate the area under the ROC curve (the area under an
ROC curve is related to accuracy but avoids pitfalls of
optimizing directly for accuracy) [8, 13, 14].
Wrapper-based feature selection requires a computationally
inexpensive classifier. Subtle currently chooses between
naïve Bayes [5, 27] and decision tree [32] classifiers. The
decision is made during the wrapper-based selection of
optimal features, based on which type of model yields a
better score. This allows Subtle to adapt to the different
types of data for which these classifiers are appropriate.

Iterative Feature Generation and Selection
The feature generation and selection processes just
discussed are executed within an iterative process. Starting
from the unprocessed low-level sensors, Subtle applies
generators to create new potential features. These features
are filtered, with the final filter selecting an optimal subset.
Subtle then decides whether to continue creating new
potential features. Iteration terminates after a pass in which
generators do not create any new potential features or after
five passes without any improvement in the scoring of the
optimal features (based on the area under the ROC curve).
Figure 5 presents a summary of Subtle’s iterative model
development for a dataset presented later in this paper. We
have bolded the area under the ROC curve as a reminder
that iteration continues until it converges. This dataset
contains 97 low-level event-based sensors. While 96 of
these pass our correlation filter, they are too low-level to be
of any benefit in a model. Applying our generators to the 97
low-level sensors creates 1322 unique potential features. A
second iteration, applying generators to these 1322 features,
yields 8247 potential features. As the number of potential
features grows, the correlation filter quickly reduces the
number under consideration. In this case, learning ends
when the eighth iteration yields no new features.
SUBTLE DISCUSSION
As discussed in our introduction, Subtle enables the
development of applications that monitor, learn from, and
respond to sensed context with just a handful of code. While
we feel this is a clear demonstration that Subtle eases the
development and deployment of sensor-based statistical
models, a more formal evaluation is inherently difficult.
Subtle enables research that would have been extremely
difficult to pursue, but an evaluation based on a particular
application or dataset provides only indirect insight into
Subtle’s utility [6]. This section examines Subtle by
considering three issues. We first discuss Subtle’s learning
mechanisms with regard to two datasets collected in prior
work. We then present two demonstration applications
showing how little effort is required when using Subtle to
develop and deploy sensor-based statistical models. Finally,
we report on the adoption of Subtle by other researchers
pursuing their own work, including two examples of
deploying Subtle applications in field studies of how people
use applications that include sensor-based statistical models.

 Unique Correlate Optimal
Area Under
ROC Curve Accuracy

1 97 96 0 .500 . 585
2 1322 212 13 .633 .636
3 8247 1061 27 .714 .714
4 23952 1180 42 .751 .733
5 33227 1347 25 .779 .739
6 34801 1358 27 .787 .760
7 34805 1358 27 .787 .760 Ite

ra
tio

ns
 C

om
ple

ted

8 34805 - - - -

Figure 5. Summary of a model’s iterative development,
with how many features passed each filter in each iteration.

Model Learner Discussion
Subtle’s current set of operators and generators has been
informed by our work on sensor-based statistical models of
human interruptibility [9]. In that work, we deployed a set
of sensors in the offices of ten office workers with diverse
responsibilities (the sensors were a subset of those provided
by Subtle, plus motion detectors and contact switches). We
collected interruptibility self-reports with an experience
sampling method and found that participants considered
themselves to be interruptible for 67.9% of collected labels.
Using a traditional machine learning approach with manual
construction of appropriate high-level features, we created
and published a model with an accuracy of 79.5% [9].
We used this dataset, together with our experience in
applying a traditional machine learning approach to it, to
iteratively develop Subtle’s core operators and generators.
This provided a concrete dataset, with sensors similar to
those provided by Subtle, for use in informally determining
what types of operators yield good results. Applying
Subtle’s automated learner yields a model containing 40
automatically-generated features and an accuracy of 80.0%.
Subtle’s model is significantly better than human observers
(A' = .856 vs. A' = .724, Z = 7.13, p < .001) [10] and
performs as well as our previously published model based
on manually crafted features (χ2(1, 1981) = 0.09, p ≈ .77).
As a demonstration of these same operators working well
with another dataset, we have applied Subtle’s automated
model learner to data collected from programmers working
on a realistic programming task while responding to
interruptions [11]. This dataset is based on low-level events
logged within Eclipse, a modern development environment.
Applying the operators developed through experimentation
with our previous dataset, Subtle’s model learner created a
model with 27 automatically-generated features and an
accuracy of 76.0%, significantly better than the 58.5% base
for this data (A' = .787, Z = 14.1, p < .001). This provides
an example of Subtle’s operators working with well a
different dataset, and Figure 5 shows that the performance
of this model is due to the high-level features automatically
created by Subtle. As can be seen in Iteration 1 of Figure 5,
the 97 event-based sensors in the unprocessed dataset are
too low-level to provide useful information to a machine
learning algorithm. The machine learning algorithm does
not begin to perform well until later iterations, after Subtle
has automatically generated useful high-level features.
Application Development Discussion
Having discussed Subtle’s iterative feature generation, we
now turn to two applications that demonstrate how Subtle
eases the development of applications that use sensor-based
statistical models of human situations. Initially presented in
Figure 1, Whistle is an application that monitors when
people mute or enable the audio of a laptop computer. It
collects a label each time a person manually toggles their
audio, learning a sensor-based statistical model that it uses
to automatically mute and enable audio. This model is
based on Subtle’s provided sensors, so it can learn such

concepts as “mute audio when I am not at home” or “enable
audio when Windows Media Player is active.”
Implemented in Java with a native library for querying and
setting the operating system’s audio mute flag, Whistle has
265 lines of substantive code (including assignments and
invocations while excluding imports, variable declarations,
constant definitions, etc.). Of this code, 110 lines are
GUI-related (the system tray icon, its popup menu, and the
notification in Figure 1). Another 100 are native code for
querying and setting the operating system’s audio mute
flag. 27 lines are related to coordinating Java threading and
timing. Only 16 are directly related to the use of Subtle. Of
these, 6 are overhead (start and stop Subtle, classloader
configuration). Another 4 lines are invoked every time a
label is collected (connect to Subtle, create the label object,
and provide it to Subtle). The final 6 are invoked every time
the model is evaluated (connect to Subtle, obtain the model,
evaluate the model, compare the result to action thresholds).
Although Whistle is quite simple, its approach to learning
and the code it uses to employ Subtle are typical of many
potential applications. It is straightforward to envision a
similar application learning to select a person’s preferred
printer (perhaps based on location or the active application),
to reduce a laptop’s processor power consumption (scaling
back the processor in contexts that historically do not result
in a demand for processor time), or to adjust a computer’s
display resolution (perhaps because the projector in a
commonly-used room cannot handle the normal resolution).
Figure 6 shows AmIBusy Prompter, an application very
similar to BusyBody [19]. Implemented in 250 lines of
substantive code, primarily for its GUI, AmIBusy Prompter
collects interruptibility self-reports at random intervals.
These are used to learn a model of interruptibility, and an
application can then consider a personalized interruptibility
model with as little as 6 lines of code (2 for overhead, 1 to
connect to Subtle, 1 to obtain the model, 1 to evaluate the
model, and 1 to compare to a threshold). Subtle thus makes
sensor-based statistical models of human interruptibility
accessible to the larger human-computer interaction
research community, not just groups that have appropriate
sensing libraries and access to machine learning expertise.
Subtle Usage Discussion
Subtle is available at http://subtle.cs.washington.edu, and
we made early versions available to several researchers.
This section discusses two research projects conducted with
Subtle [21, 33]. Researchers were given access to both
Subtle and to the source code for example applications
(including Whistle and AmIBusy Prompter). Because we
were supporting real research, we responded to questions
about the best strategies for using Subtle. However, we did
not provide direct programming assistance. When preparing
this paper, we asked these researchers to share their code.
In the first project, Subtle has been used to study how users
develop mental models of intelligent systems [33]. These
researchers deployed AmIBusy Prompter for three months

with four participants, creating personalized models of each
participant’s interruptibility. They then used Subtle to
create continuously updating door-mounted displays of the
interruptibility of the four participants. These displays were
deployed for six weeks, and the researchers conducted a
series of interviews with colleagues of the participants to
study their mental models of the interruptibility estimates.
We consider this use of Subtle in a multi-month field study
to be an important validation of Subtle’s utility. Examining
the source code shared by these researchers and discussing
it with them, we found the expected pattern of copying code
snippets from the source code of our example applications
(such as a snippet for obtaining an estimate from a model).
We also found the researchers implemented a cross-entropy
algorithm for examining the importance of each individual
feature in a specific estimate, an algorithm that goes well
beyond the usage illustrated in our example applications.
This algorithm required the researchers implement a new
nil value type, iterate through the features contained in a
model, and examine how a substitution of nil for the actual
value of each feature affected the output of the model. This
is very different from any functionality in our examples,
and its implementation by these researchers is an interesting
case of going well beyond reusing example code.
In the second project we discuss here, Subtle has been used
in building a context-aware instant messaging client [21].
The instant messaging client developed by these researchers
can share a person’s interruptibility, location, and desktop
activity with interested colleagues. These researchers are
focused on privacy control and feedback mechanisms, so
using Subtle allowed them to focus on these mechanisms
rather than the sensing and machine learning algorithms. In
another example of the deployment of an application built
with Subtle, these researchers have deployed their instant
messaging client with ten participants for two weeks.
Examining the source code shared by these researchers and
discussing it with them, we again found a pattern of reusing
snippets from the example applications we provided. But
these researchers have also gone beyond the examples, in
this case by directly accessing Subtle’s stream of sensor
readings and extracting context (such as information about
the active window) for use by the instant messaging client.
They chose to directly access Subtle’s stream of sensor
readings because the information they were using is filtered
by the default privacy policy, as a history of active window
titles may contain logins or other sensitive information.
Subtle’s flexibility in giving the application access to the
underlying sensor stream allowed appropriate short-term
use of this information while maintaining the necessary
privacy policy in the logs collected by Subtle.
Limitations
Subtle currently cannot model continuous labels (such as
response times), and no support is currently provided for
more advanced users to choose between different machine
learning algorithms. We are currently addressing this

limitation by integrating Weka [34] into Subtle. Subtle will
then be able to automatically choose a regression-based
algorithm when given continuous labels. Advanced users
will also be able to provide parameters directly to Weka.
Learning a model from a hundred or more labels collected
by AmIBusy Prompter can currently take more than a day
of CPU time. Much of this is due to simple algorithmic
inefficiencies that we are currently addressing in a
refactoring of Subtle, but there also exists a fundamental
tension between exploring additional features and the time
needed to explore them. We have currently crafted our set
of operators to explore a meaningful space of potential
features, but a poorly-conceived extension could cripple
Subtle by introducing a computationally intractable set of
features. We are therefore investigating a more structured
approach to Subtle’s generators. By examining generators
that work well in Subtle, we hope to introduce additional
support for well-behaved generators while also removing or
at least detecting poorly-behaved or ineffective generators.
CONCLUSION
We have presented Subtle, a toolkit that removes many
obstacles to developing and deploying applications that use
sensor-based statistical models of human situations. Subtle
includes an extensible sensor library targeted at laptop
computers, provides continuous learning of personalized
models, and is based on a fully-automated approach to
iterative feature generation. We have discussed Subtle’s
model learner in the context of two datasets, presented two
examples of using sensor-based statistical models in
applications with just a handful of code, and discussed
some experiences with other researchers using Subtle in
their own work. By supporting the development and
deployment of sensor-based statistical models of human
situations, Subtle helps focus human-computer interaction
research on applications and datasets, instead of the
difficulties of collecting sensor data and learning statistical
models. Subtle thus enables future research into how
human-computer interaction can benefit from sensor-based
statistical models of human situations.
ACKNOWLEDGMENTS
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. NBCHD030010, and by the National Science Foundation
under grants IIS-0121560 and IIS-0325351.

Figure 6. AmIBusy Prompter learns a personalized model of
interruptibility that can be used with just 6 lines of code.

REFERENCES
1. Bailey, B.P., Adamczyk, P.D., Chang, T.Y. and Chilson, N.A.

(2006) A Framework for Specifying and Monitoring User
Tasks. Computers in Human Behavior, 22(4). 658-708.

2. Begole, J.B., Tang, J.C. and Hill, R. (2003) Rhythm Modeling,
Visualizations, and Applications. Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST
2003), 11-20.

3. Dey, A.K., Mankoff, J., Abowd, G. and Carter, S. (2002)
Distributed Mediation of Ambiguous Context in Aware
Environments. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2002), 121-130.

4. Dey, A.K., Salber, D. and Abowd, G.D. (2001) A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Human-
Computer Interaction (HCI) Journal, 16(2-4). 97-166.

5. Duda, R.O. and Hart, P.E. (1973) Pattern Classification and
Scene Analysis. John Wiley and Sons.

6. Edwards, W.K., Bellotti, V., Dey, A.K. and Newman, M.W.
(2003) Stuck in the Middle: The Challenges of User-Centered
Design and Evaluation for Infrastructure. Proceedings of the
ACM Conference on Human Factors in Computing Systems
(CHI 2003), 297-304.

7. Fayyad, U.M. and Irani, K.B. (1993) Multi-Interval
Discretization of Continuous Valued Attributes for
Classification Learning. Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1022-1027.

8. Fogarty, J., Baker, R.S. and Hudson, S.E. (2005) Case Studies
in the use of ROC Curve Analysis for Sensor-Based Estimates
in Human Computer Interaction. Proceedings of Graphics
Interface (GI 2005), 129-136.

9. Fogarty, J., Hudson, S. and Lai, J. (2004) Examining the
Robustness of Sensor-Based Statistical Models of Human
Interruptibility. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2004), 207-214.

10. Fogarty, J., Hudson, S.E., Atkeson, C.G., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J.C. and Yang, J. (2005) Predicting
Human Interruptibility with Sensors. ACM Transactions on
Computer-Human Interaction (TOCHI), 12(1). 119-146.

11. Fogarty, J., Ko, A.J., Aung, H.H., Golden, E., Tang, K.P. and
Hudson, S.E. (2005) Examining Task Engagement in Sensor-
Based Statistical Models of Human Interruptibility.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2005), 331-340.

12. Fogarty, J., Lai, J. and Christensen, J. (2004) Presence versus
Availability: The Design and Evaluation of a Context-Aware
Communication Client. International Journal of Human-
Computer Studies (IJHCS), 61(3). 299-317.

13. Hand, D.J. and Till, R.J. (2001) A Simple Generalisation of
the Area Under the ROC Curve for Multiple Class
Classification Problems. Machine Learning, 45(2). 171-186.

14. Hanley, J.A. and McNeil, B.J. (1982) The Meaning and Use of
the Area Under a Receiver Operating Characteristic (ROC)
Curve. Radiology, 143. 29-36.

15. Ho, J. and Intille, S.S. (2005) Using Context-Aware
Computing to Reduce the Perceived Burden of Interruptions
from Mobile Devices. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2005), 909-918.

16. Horvitz, E. and Apacible, J. (2003) Learning and Reasoning
about Interruption. Proceedings of the International
Conference on Multimodal Interfaces (ICMI 2003), 20-27.

17. Horvitz, E., Jacobs, A. and Hovel, D. (1999) Attention-
Sensitive Alerting. Proceeding of the Conference on
Uncertainty and Artificial Intelligence (UAI 1999), 305-313.

18. Horvitz, E., Kadie, C., Paek, T. and Hovel, D. (2003) Models of
Attention in Computing and Communication: From Principles
to Applications. Communications of the ACM, 46(3). 52-59.

19. Horvitz, E., Koch, P. and Apacible, J. (2004) BusyBody:
Creating and Fielding Personalized Models of the Cost of
Interruption. Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW 2004), 507-510.

20. Horvitz, E., Koch, P., Kadie, C.M. and Jacobs, A. (2002)
Coordinate: Probabilistic Forecasting of Presence and
Availability. Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI 2002), 224-233.

21. Hsieh, G., Tang, K.P., Hong, J.I. (2007) The Design and
Evaluation of Privacy Controls and Feedback Mechanisms for
Contextual Instant Messaging. Submitted for Review.

22. Hudson, S.E., Fogarty, J., Atkeson, C.G., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J.C. and Yang, J. (2003)
Predicting Human Interruptibility with Sensors: A Wizard of
Oz Feasibility Study. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2003), 257-264.

23. Iqbal, S.T., Adamczyk, P.D., Zheng, X.S. and Bailey, B.P.
(2005) Towards an Index of Opportunity: Understanding
Changes in Mental Workload During Task Execution.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2005), 311-230.

24. Kern, N. and Schiele, B. (2003) Context-Aware Notification for
Wearable Computing. Proceedings of the IEEE International
Symposium on Wearable Computing (ISWC 2003), 223-230.

25. Kohavi, R. and John, G.H. (1997) Wrappers for Feature
Subset Selection. Artificial Intelligence, 97(1-2). 273-324.

26. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J.,
Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F.,
Tabert, J., Powledge, P., Borriello, G. and Schilit, B.N. (2005)
Place Lab: Device Positioning Using Radio Beacons in the
Wild. Proceedings of the International Conference on
Pervasive Computing (Pervasive 2005), 116-133.

27. Langley, P. and Sage, S. (1994) Induction of Selected
Bayesian Classifiers. Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI 1994), 399-406.

28. Lu, L., Zhang, H. and Jiang, H. (2002) Content Analysis for
Audio Classification and Segmentation. IEEE Transactions on
Speech and Audio Processing, 10(7). 504-516.

29. Markovitch, S. and Rosenstein, D. (2002) Feature Generation
Using General Constructor Functions. Machine Learning,
49(1). 59-98.

30. Mitchell, T.M. (1997) Machine Learning. McGraw-Hill.
31. Nagel, K.S., Hudson, J.M. and Abowd, G. (2004) Predictors of

Availability in Home Life Context-Mediated Communication.
Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW 2004), 497-506.

32. Quinlan, J.R. (1993) C4.5: Programs for Machine Learning.
Morgan Kaufmann.

33. Tullio, J., Dey, A.K., Chalecki, J. and Fogarty, J. (2007) How it
Works: A Field Study of Non-Technical Users Interacting with
an Intelligent System. ACM Conference on Human Factors in
Computing Systems (CHI 2007), To Appear.

34. Witten, I.H. and Frank, E. (1999) Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann.

35. Yu, L. and Liu, H. (2003) Feature Selection for High-
Dimensional Data: A Fast Correlation-Based Filter Solution.
The International Conference on Machine Learning (ICML
2003), 856-863.

