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Abstract

This paper proposes a new method to estimate the
class membership probability of the cases classified
by a Decision Tree. This method provides smooth
class probabilities estimate, without any modifica-
tion of the tree, when the data are numerical. It ap-
plies a posteriori and doesn’t use additional train-
ing cases. It relies on the distance to the deci-
sion boundary induced by the decision tree. The
distance is computed on the training sample. It
is then used as an input for a very simple one-
dimension kernel-based density estimator, which
provides an estimate of the class membership prob-
ability. This geometric method gives good results
even with pruned trees, so the intelligibility of the
tree is fully preserved.

1 Introduction

Decision Tree (DT) algorithms are very popular and widely
used for classification purpose, since they provide relatively
easily an intelligible model of the data, contrary to other
learning methods. Intelligibility is a very desirable property
in artificial intelligence, considering the interactions with the
end-user, all the more when the end-user is an expert. On the
other hand, the end-user of a classification system needs addi-
tional information rather than just the output class, in order to
asses the result: This information consists generally in con-
fusion matrix, accuracy, specific error rates (like specificity,
sensitivity, likelihood ratios, including costs, which are com-
monly used in diagnosis applications). In the context of de-
cision aid system, the most valuable information is the class
membership probability. Unfortunately, DT can only provide
piecewise constant estimates of the class posterior probabil-
ities, since all the cases classified by a leaf share the same
posterior probabilities. Moreover, as a consequence of their
main objective, which is to separate the different classes, the
raw estimate at the leaf is highly biased. On the contrary,
methods that are highly suitable for probability estimate pro-
duce generally less intelligible models. A lot of work aims at
improving the class probability estimate at the leaf: Smooth-
ing methods, specialized trees, combined methods (decision
tree combined with other algorithms), fuzzy methods, ensem-
ble methods (see section 2). Actually, most of these methods
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(except smoothing) induce a drastic change in the fundamen-
tal properties of the tree: Either the structure of the tree as a
model is modified, or its main objective, or its intelligibility.

The method we propose here aims at improving the class
probability estimate without modifying the tree itself, in or-
der to preserve its intelligibility and other use. Besides the
attributes of the cases, we consider a new feature, the dis-
tance from the decision boundary induced by the DT (the
boundary of the inverse image of the different class labels).
We propose to use this new feature (which can be seen as
the margin of the DT) to estimate the posterior probabilities,
as we expect the class membership probability to be closely
related to the distance from the decision boundary. It is the
case for other geometric methods, like Support Vector Ma-
chines (SVM). A SVM defines a unique hyperplane in the
feature space to classify the data (in the original input space
the corresponding decision boundary can be very complex).
The distance from this hyperplane can be used to estimate the
posterior probabilities, see [Platt, 2000] for the details in the
two-class problem. In the case of DT, the decision boundary
consists in several pieces of hyperplanes instead of a unique
hyperplane. We propose to compute the distance to this deci-
sion boundary for the training cases. Adapting an idea from
[Smyth et al., 1995], we then train a kernel-based density es-
timator (KDE), not on the attributes of the cases but on this
single new feature.

The paper is organized as follows: Section 2 discusses re-
lated work on probability estimate for DT. Section 3 presents
in detail the distance-based estimate of the posterior proba-
bilities. Section 4 reports the experiment performed on the
numerical databases of the UCI repository, the comparison
between the distance-based method and smoothing methods.
Section 5 discusses the use of geometrically defined subsets
of the training set in order to enhance the probability estimate.
We make further comments about the use of the distance in
the concluding section.

2 Estimating Class Probabilities with a DT

Decision Trees (DT) posterior probabilities are piecewise
constant over the leaves. They are also inaccurate. Thus they
are of limited use (for ranking examples, or to evaluate the
risk of the decision). This is the reason why a lot of work has
been done to improve the accuracy of the posterior probabili-
ties and to build better trees in this concern.
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Traditional methods consist in smoothing the raw condi-
tional probability estimate at the leaf p"(c|z) = £, where k
is the number of training cases of the class label classified by
the leaf, and n is the total number of training cases classified
by the leaf. The main smoothing method is the Laplace cor-
rection p” (and its variants like m-correction). The correction
pl(c|r) T’;%é, where C is the number of classes, shifts the
probability toward the prior probability of the class ([Cest-
nik, 1990; Zadrozny and Elkan, 2001]). This improves the
accuracy of the posterior probabilities and keep the tree struc-
ture unchanged, but the probabilities are still constant over the
leaves. In order to bypass this problem, smoothing methods
can be used on unpruned trees. The great number of leaves
allows the tree to learn the posterior probability with more
accuracy (see [Provost and Domingos, 2003]). The intelligi-
bility of the model is most reduced in this case, so specialized
building and pruning methods are developped for PET’s (see
for instance [Ferri and Hernandez, 2003]).

In order to produce smooth and case-variable estimate of
the posterior probabilities, Kohavi [1996] deploys a Naive
Bayes Classifier (NBC) at each leaf, using a specialized in-
duction algorithm. Thus the partition of the space in NBTree
is different from classical partition, since its objective is to
better verify the conditional independance assumption at each
leaf. In the same idea, Zang and Su [2004] use NBC to eval-
uate the choice of the attribute at each step. But the structure
of the tree is essentialy different.

Other methods obtain case-variable estimates of the poste-
rior probabilities by propagating a case through several paths
at each node (mainly fuzzy methods like in [Umano et al.,
1994] or in [Quinlan, 1993]; Or, more recently, [Ling and
Yan, 2003]). These methods aim at managing the uncertainty
both in the input and in the training database.

Smyth, Gray and Fayyad [1995] propose to keep the struc-
ture of the tree and to use a kernel-based estimate at each leaf.
They consider all the training examples but use only the at-
tributes involved in the path of the leaf. The dimension of
the subspace is then at most the length of the path. But the
resulting dimension is nevertheless far too high for this kind
of technique and the method cannot be used in practice.

We propose here to reduce the dimension to 1, since KDE
is very effective in very low dimensions. We preserve the
structure of tree, and our method theoretically applies as soon
as it is possible to define a metric on the input space.

3 Distance-based Probability Estimate for DT

3.1 Algebraic Distance as a New Feature

We consider an axis-parallel DT (ADT) operating on numer-
ical data: Each test of the tree involves a unique attribute.
We note I' the decision boundary induced by the tree. I" con-
sists of several pieces of hyperplanes which are normal to the
axes. We also assume that it is possible to define a metric on
the input space, possibly with a cost or utility function.

Let = be a case, c(x) the class label assigned to x by the
tree, d = d(x,T") the distance of = from the decision bound-
ary I'. The decision boundary I" divides the input space into
different areas (possibly not connected areas) which are la-
beled with the name of the class assigned by the tree.

By convention, in a two-class problem, we choose one
class (the positive class) to orient I': If a case stands in the
positive class area, its algebraic distance will be negative.

Definition 1 Algebraic distance to the DT (2-class problem)

The algebraic distance of x is h(x) = —d(z,T) if c(z) is
the positive class ¢ and h(zx) = +d(x,T") otherwise.

This definition extends easily to multi-class problems. For
each class ¢, we consider I';, the decision boundary induced
by the tree for class c: T'. is the inverse image of the class ¢
area. (We have I'. C I).

Definition 2 Class-Algebraic distance to the DT

The c-algebraic distance of x is h.(x) —d(z,T.) if
c(x) = cand he(x) = +d(z,T.) otherwise.

The c-algebraic distance measures the distance of a case to
class c area. Actually, algebraic distance is a particular case
of c-algebraic distance where c is the positive class.

These definitions apply to any decision tree. But in the
case of axis-parallel DT (ADT) operating on numerical data,
a very simple algorithm computes the algebraic distance
(adapted from the distance algorithm in [Alvarez, 2004]). It
consists in projecting the case x onto the set F' of leaves f
whose class label differs from ¢(z) (in a two class problem).
In a multi-class problem, each class c is considered in turn.
When ¢(x) = ¢, the set F' contains the leaves whose labels
differs from c; Otherwise it contains the leaves whose class
label is c. The nearest projection gives the distance.

Algorithm 1 AlgebraicDistance(x,DT,c)

0. d = ooy

1. Gather the set F of leaves f whose class c(f) verifies:
(c(f) Xor c(x)) = ¢

. Foreach f € F do: {

compute py(x) = projectionOntoLeaf{(x, f);

compute df(z) = d(z,pr(z));

if(dy(z) < d)thend = ds(x) }

. Return h.(x) = —sign(c(x) =c) xd

IR RN

=)

Algorithm 2 projectionOntoLeaf(x, f
l.y=ux
2. Fori=1to size(I) do: {
3. if y doesn’t verify the test T; then y,, = b }

where T} involves attribute u with threshold value b
4. Returny

(T3)ier)

The projection onto a leaf is straightforward in the case of
ADT since the area classified by a leaf f is a hyper-rectangle
defined by its tests. The complexity is in O(Nn) in the worst
case where IV is the number of tests of the tree and n the
number of different attributes of the tree.

The distance to the decision boundary presents two main
advantages, because it is a continuous function: it is relatively
robust to the uncertainty of the value of the attributes for new
cases, and to the noise in the training data, assuming that only
the thresholds of the tests are modified (not the attributes).

3.2 Kernel Density Estimate (KDE) on the
Algebraic Distance

Kernel-based density estimation is a non-parametric tech-
nique widely used for density estimation. It is constantly im-
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proved by researches on algorithms, on variable bandwidth
and bandwidth selection (see [Venables and Ripley, 2002] for
references).

Univariate KDE basically sums the contribution of each
training case to the density via the kernel function K. To
estimate the density f(x) given a sample M = {z},c(1 )0

one computes f(z) = 177 | LK (2720) where K is the
kernel function and b the bandwidth (b can vary over M).

Many methods could be used in this framework to compute
the distance-based kernel probability estimate of the class
membership. (We could also use kernel regression estimate).
We have used very basic KDE for simplicity.

We consider here the algebraic distance h(x) as the at-
tribute on which the KDE is performed. So we compute the
density estimate of the distribution of the algebraic distance,
from the set of observations h(z),z € S:

fra) =3 (h<>—bh<x>)

z; €S

In order to estimate the conditional probabilities, we con-
sider the set S of training cases and its subset .S, of cases such
that ¢(z) = c. We estimate the density of the two populations:

f the density estimate of the distribution of the algebraic
distance to the decision boundary;

fc, the density estimate of the distribution of the algebraic
distance of points of class c.

f is computed on S and f, on S,. We then derive from the
Bayes rule, if p(c) estimates the prior probability of class c:

X fe (h(x)) * B(c)
ch(x)) = ————F—F——
b (clh(x)) 7 (h(2)

Definition 3 Distance-based kernel probability estimate
P (c|h(x)) is called the distance-based kernel (DK) proba-
bility estimate

ey

2

The algorithm is straightforward. We note .S the training
set used to build the decision tree DT'.

Algorithm 3 DistanceBasedProbEst(x,DT,c,S)
1. Compute the algebraic distance
y = h(xz) = AlgebraicDistance(x, DT, c);
2. Compute the subset S(x) of S from which the probability
density is estimated: Default value is S(x) = S;
3. Select S¢(x) = {z € S(x),c(x) = c};

4. Compute f(y) = & Yres@ K (%(I)) :

5. Compute f.(y) = L Yees, K (%@0) :
6. Compute and Return p (c|h(z)) from equation (2)

Several possibilities can be considered for the set S(z)
used to compute the kernel density estimate, we discuss them
in section 5. The simplest method consists in using the whole
sample S. The algebraic distance is taken into account glob-
ally, without any other consideration concerning the location
of the cases. We call the corresponding conditional probabil-
ity estimate p, the global distance-based kernel (GDK) prob-
ability estimate. Figure 1 shows how the GDK probability es-
timate varies over a test sample, compared with the Laplace
probability estimate which is piecewise constant.

08

Laplace
Laplace {emors)
Global DK

Frobahility est.
0.6

0.4

0.2

00

Test sample

Figure 1: Variation of Laplace and GDK probability estimate over
a test sample from the wdbc database. DT errors are highlighted

4 Experimental Study

4.1 Design and Remarks

We have studied the distance-based kernel probability esti-
mate on the databases of the UCI repository [Blake and Merz,
1998] that have numerical attributes only and no missing val-
ues. For simplicity we have treated here multi-class problems
as 2-class problems. We generally chose as positive class the
class (or a group of class) with the lowest frequency in the
database.

For each database, we divided 100 bootstrap samples into
separate training and test sets in the proportion 2/3 1/3, re-
specting the prior of the classes (estimated by their frequency
in the total database). It is certainly not the best way to build
accurate trees for unbalanced datasets or different error costs,
but here we are not interested in building the most accurate
trees, we just want to study the distance-based kernel proba-
bility estimate. For the same reason we grow trees with the
default options of j48 (Weka’s [Witten and Frank, 2000] im-
plementation of C4.5) although in many cases different op-
tions would build better trees. For unpruned trees we disabled
the collapsing function. We used Laplace correction smooth-
ing method to correct the raw probability estimate at the leaf
for pruned trees and unpruned trees. We also built NBTree on
the same samples.

We used two different metrics in order to compute the dis-
tance from the decision boundary, the Min-Max (MM) metric
and the standard (s) metric. Both metrics are defined with the
basic information available on the data: An estimate of the
range of each attribute ¢ or an estimate of its mean F; and
of its standard deviation s;. The new coordinate system is
defined by (3).

Ii—Ei

Si

yMJW: l‘i—MZ.’fL,L'
¢ Max; — Min;

The parameters of the standard metric are estimated on each
training sample. (On each bootstrap sample for the Min-Max
metric, to avoid multiple computation when an attribute is

or

yi = 3)
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outside the range). In practice, the choice of the metric should
be guided by the data source. (For instance, the accuracy of
most sensors is a function of the range, therefore it suggests
to use an adapted version of the Min-Max coordinate system.)

To compute the kernel density estimate of the algebraic dis-
tance we choose simplicity and used the standard algorithm
available in R [Venables and Ripley, 2002] with default op-
tions, although the setting of KDE parameters (choice of the
kernel, optimal bandwidth, etc.) or specialized algorithms
(also available in some dedicated packages) would certainly
give better results. We systematically used the default option
except for the bandwidth selection, since it is inappropriate
for using the Bayes rule in equation (2): We used the same

bandwidth for f as for fc. We set it to a fraction 7 of the range
of the algebraic distance . This is the only parameter we used
to control the KDE algorithm. More sophisticated methods
could obviously be used but the Bayes rule in equation (2)
should be reformulated if variable bandwidths are used.

4.2 Results for the Global Distance-based Kernel
Probability Estimate

In order to compare our method with other methods of prob-
ability estimate, we used the AUC, the Area Under the Re-
ceiving Operator Characteristic (ROC) Curve (see [Bradley,
19971). The AUC is widely use to assess the ranking ability
of the tree. Although this method cannot distinguish between
good scores and scores that are good probability estimates, it
doesn’t make any hypothesis on the true posterior probability,
so it is useful when the true posterior probability are unknown
(since it is clear that good probability estimates should pro-
duce on average better AUC). We also used Mean Squared
Error and log-loss, although these methods make strong hy-
pothesis on the true posterior probability.

Table 1 shows the difference of the AUC from global
distance-based kernel (GDK) probability estimate and the
Laplace correction. Apart from a few cases, it gives better
values than Laplace correction (within a 95% confidence in-
terval). From the intelligibility viewpoint, it is interresting to
note that GDK probability estimate on pruned tree is gener-
ally better than smoothing method on unpruned tree (which is
better than smoothing method on pruned tree). We also per-
formed a Wilcoxon unlateral paired-wise test on each batch of
100 samples. The tests confirm exactly the significant results
from Table 1 (with p-values always < 0.01).

The choice of the metric has a limited effect on the result
in term of AUC. The difference is always of a different order
except for vehicle, pima and especially glass for which it can
reach 1072,

We used several bandwidths, with 7 from 5 to 15% of the
range of the algebraic distance: Results vary very smoothly
with the bandwidth, Table 1 would present completely similar
results.

Table 2 shows the comparison using Mean Squared-Error
(MSE) as a metric to measure the quality of the probability
estimate. The error at test point z is s.(z) = > .(p(c|z) —
p(z|c))?, where p(c|z) is the true conditional probability
(here p(c|x) is set to 1 when ¢(x) = ¢). s.(x) is then summed
over each test sample. The performance of the GDK proba-
bility estimate diminishes quickly when 7 increases, although

Both Both Normal vs DK vs.
Dataset  Red.-Error Normal  Unpruned NBTree
bupa 0.26+0.77 0.39+0.84 0.03+0.81 0.91+0.93
glass 1.894+0.85 -0.0+0.7 -1.25+0.67 -1.02£0.78
iono.  0.63+0.67 -2.24+0.53 -2.56+0.55 -3.02+0.64
iris 4.704+0.52 3.85+0.46 3.90+0.48 1.99+0.47
thyroid 4.35+0.71 2.98+£0.75 2.48+0.75 -0.57£0.75
pendig. 0.46+0.05 0.404+0.04 0.28+£0.03  0.65+0.05
pima 2.784+0.58 0.31+£0.41 0411044 0.69+0.54
sat 1.00£0.12  0.894+0.08 0.28+0.06  1.18+0.09
segment. 7.95+1.06 5.35+£0.86 5.34+0.89 3.77+0.71
sonar  2.66+£0.95 2.07£0.78 1.88+0.80 -2.53+1.03
vehicle 0.42+0.26 0.65+0.20 0.08+0.20 1.97+0.29
vowel  4.19£0.52 3.09£0.30 2.79+0.28 2.131+0.32
wdbc  3.75+£0.28 2.244+0.23 2.17+£0.23  2.20+0.21
wine 5.354+0.51 3.31+0.36 2.974+0.34 0.25+0.23

Table 1: Mean difference of the AUC obtained with global DK
probability estimate (standard metric, 7 = 10%) and with Laplace
correction. GDK on pruned tree versus Laplace on pruned or un-
pruned tree. (Mean values and standard deviations are x100. In-
significant values are italic. Bad results are bold)

the AUC remains better. This is easily comprehensible: when
T increases, the kernel estimate tends to erase sharp varia-
tions. As a consequence, probability estimate cannot reach
the extremes (0 or 1) easily. The Log loss metric is not shown
since it gives useless results (almost always infinite).

5 Local estimate: Partition of the Space

In order to get more local estimate, the first idea would be to
use the leaves to refine the definition of the sets S(z) used to
run the kernel density estimate (step 2 of algorithm 3). S(z)
would be simply the leaf that classifies x. However, we’ll ar-
gue on a simple example that this option shows severe draw-
backs, and that a definition based on the geometry of the DT
boundary should generally be preferred.

GD vs. Laplace GD vs. NBTree

Dataset MSE  p-value MSE  p-value
bupa -7.2940.59 3.9e-16 -1.68+0.88 0.006
glass 0.79£3.56  0.017 4.19+3.52 0.114
iono. 1.88+£0.27 2.2e-09 1.61+0.77 0.023
iris -1.544+0.37 53e-4 -0.84+0.65 0.088
thyroid 1.49+0.71 0.092 6.04+£0.82 1.3e-10
pendig. -0.08£0.01 1.9e-08 -0.19£0.03 2.0e-07
pima -5.044+0.30 3.2e-18 -1.394+0.53 0.008
sat -0.07£0.03  0.024 -0.20£0.05 5.0e-4
segment. 0.68+0.39 0.017 -1.46+0.76 0.071
sonar  -3.294+0.51 5.8e-09 0.34+1.52 0491
vehicle 1.994+0.50 5.7¢-04 1.63+0.56 0.007
vowel  -0.12+0.12 0.26 0.69+0.19 1.1e-4
wdbc  -2.63+0.22 3.8e-17 -2.00£0.40 4.6e-06
wine -1.724+0.31 6.2e-08 1.79+0.56 8.3e-4

Table 2: Mean MSE difference (and p-value of the corresponding
unilateral Wilcoxon paired test) between GDK probability estimate
(standard metric, 7 = 5%) and either Laplace correction (normal
pruned tree) or NBTree. (Values are X100 except p-values. In-
significant values are italic. Bad results for GDK are bold)
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5.1 DT Boundary-based partition

The rationale behind our partition is to consider the groups of
points for which the distance is defined by the same normal
to the decision surface, because these points share the same
axis defining their distance, and they relate to the same linear
piece of the decision surface.

Let {Hy, Ho, .., Hy } be the separators used in the nodes of
the tree, and .S the learning sample. To partition the total sam-
ple S, we associate with each separator H; a subset .S; of .S,
which comprises the examples x such that the projection of
onto the decision boundary I" belongs to H;. Generically, the
projection p(x) of = onto I is unique, but p(x) can belong to
several separators. In that case we associate to x the separator
H; defining p(z) with the largest margin. We define S(x) as
S;. The KDE is then run on the h(z;),z; € S, as explained
previously.

5.2 Advantage of our partition

We now illustrate on a simple example the advantage of our
partition compared with the partition generated by the leaves.
Suppose that the learning examples are uniformly distributed
in a square in a space x, ¥y, and that the probability of class 1
depends only on axis x, with the following pattern (Figure 2):

e For z growing from —0.5 to 0, the probability of class 1
grows smoothly from 0.1 to 0.9, with a sigmoid function
centered on —0.25.

e For x growing from 0 to 0.5, the probability of class 1
decreases sharply from 1 to 0 around x = 0.25.

A typical decision tree obtained from a sample generated
with this distribution is represented on figure 2 (top). It has
three leaves, two yield class -1 and are defined by a single
separation, and one yields +1 and is defined by both separa-
tions (the gray area on the figure). The partition defined by
the leaves thus generates 3 subsets.

Figure 2 (bottom) shows the partition obtained with our
method. It includes only two subset, one for each separation.
Figure 3 shows the results obtained with a kernel estimation
(a simple Parzen window of width 0.1) on the leaf partition,
and on our partition, compared with the actual probability
function which was used to generate the sample. One can
notice that our partition gives a result which is very close to
the one that would be obtained with a kernel estimation on
the x axis. This is not the case for the leaf partition, which
introduces strong deviations from the original probability.

The main explanation of these deviations is a side effect
which artificially increases the probability of 1 around the
border, in the case of the leaf partition. Actually, this is the
same bias as the one obtained when estimating directly the
probabilities on the leaves. Moreover, the leaf partition intro-
duces an artificial symmetry on both sides of the leaf, because
of the averaging on all the examples at similar distance of the
boundary. These problems are not met with our partition. We
claim that the problems illustrated in this example have good
chances to occur very frequently with the leaf partition. In
particular, the side effect due to the border of the leaf will al-
ways induce a distortion, which is avoided with our partition.
Artificial symmetries will always be introduced when a leaf
includes several separators.
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Figure 2: Top: Partition defined by the three leaves of the
tree. Bottom: Partition into 2 subsets (light gray and gray),
defined by the separators.

Table 3 shows the results of the comparison between local
distance-based kernel estimate and smoothing method at the
leaf for some databases. Because of the partition of the space,
the results from the AUC comparison and MSE are not nec-
essarily correlated, and MSE is globally better than for the
global DK probability estimate.
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Figure 3: Results with a kernel estimator of width 0.1 (Parzen
window). Top: With the leaf partition. Bottom: With the
separator partition. (In black the true probability, in gray the
estimate).

I[JCAI-07

658



Both Normal vs MSE -
Dataset Normal Unpruned  (Normal) value
bupa -2.8740.82 -3.23+0.80 -1.804+0.88 0.041
glass -1.26+0.93 -2.4240.90 0.384+0.4 0.090
iono. -1.7440.71 -2.07+£0.74 -0.42+ 0.43 0.134
iris 4.3140.52 4.37+£0.55 -4.09+0.45 2.e-13
thyroid 1.60£0.78 1.094+0.78 0.45+0.59 0.335
pendigits -1.65+1.09 -1.76+1.09 -0.10£0.01 5.e-8
pima -3.00+0.64 -2.91+0.64 -2.76+0.51 3.e-06
sat -0.731+0.74 -1.35£0.75 -0.1340.03 4.e-06
sonar 1.06+£0.79 0.87+0.80 -2.30+0.60 2.e-4
vehicle -6.04+1.52-6.61+1.51 2.02+0.45 9.e-07
vowel 0.94+0.91 0.63+0.89 0.00+0.15 0.537
wdbc 1.56+0.29 1.49+0.30 -2.154+0.28 1.e-10
wine 2.97+0.47 2.63+0.45 -1.63+0.45 5.e-06

Table 3: Comparison between local DKPE (standard metric, 7 =
5%) and smoothing method: AUC mean difference and MSE. (All
values expect p-values are x 100. Insignificant values are italic. Bad
results for Local DK are bold)

6 Conclusion

We have presented in this article a geometric method to es-
timate the class membership probability of the cases that are
classified by a decision tree. It applies a posteriori to every
axis-parallel tree with numerical attributes. The geometric
method doesn’t depend on the type of splitting or pruning
criteria that is used to build the tree. It only depends on the
shape of the decision boundary induced by the tree, and it can
easily be used for real multi-class problem (with no particular
class of interest). It consists in computing the distance to the
decision boundary (that can be seen as the Euclidean margin).
A kernel-based density estimator is trained on the same learn-
ing sample than the one used to build the tree, using only the
distance to the decision boundary. It is then applied to provide
the probability estimate. The experimentation was done with
basic trees and very basic kernel estimate functions. But it
shows that the geometric probability estimate performs well
(the quality was measured with the AUC and the MSE).

We also proposed a more local probability estimate, based
on a partition of the input space that relies on the decision
boundary and not on the leaves boundaries.

The main limit of the method is that the attributes are nu-
meric. It could be extended to ordered attributes, but it can-
not be used with attributes that have unordered modalities.
The methods could also be used with oblique trees, but the
algorithms to compute the Euclidean distance are far less ef-
ficient. Further work is in progress in order to improve the
local estimate. Another feature, linked to the nearest part of
the decision boundary, could be used to train the kernel den-
sity estimator (which are still very efficient in dimension 2).
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