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Abstract

The MAP (maximum a posteriori assignment)
problem in Bayesian networks is the problem of
finding the most probable instantiation of a set of
variables given partial evidence for the remain-
ing variables. The state-of-the-art exact solution
method is depth-first branch-and-bound search us-
ing dynamic variable ordering and a jointree up-
per bound proposed by Park and Darwiche [2003].
Since almost all search time is spent computing the
jointree bounds, we introduce an efficient method
for computing these bounds incrementally. We
point out that, using a static variable ordering, it is
only necessary to compute relevant upper bounds
at each search step, and it is also possible to cache
potentials of the jointree for efficient backtracking.
Since the jointree computation typically produces
bounds for joint configurations of groups of vari-
ables, our method also instantiates multiple vari-
ables at each search step, instead of a single vari-
able, in order to reduce the number of times that
upper bounds need to be computed. Experiments
show that this approach leads to orders of magni-
tude reduction in search time.

1 Introduction

The MAP (maximum a posteriori hypothesis) problem in
Bayesian networks is to find the most probable configuration
of a set of variables (the explanatory variables) given partial
evidence on the remaining set of variables (the observed or
evidence variables). MAP inference has received much at-
tention in Bayesian network research and has many practical
applications. For example, MAP can be used to diagnose a
system and determine the most likely state, in order to decide
whether the system is in an anomaly state, and, if so, whether
it needs repair, replacement, or further testing.

The state-of-the-art exact solution method for MAP is
depth-first branch-and-bound (DFBnB) search using a join-
tree upper bound proposed by Park and Darwiche [2003]. The
upper bound is computed using a modified jointree algorithm
in which the messages of the original jointree algorithm are
redefined so that the probabilities obtained in the end are not
marginal probabilities, but upper bounds on the probabilities

of consistent joint configurations. Although this provides ef-
fective bounds, its computation can be time-intensive. Our
experiments show that more than 95% of search time is de-
voted to computing these bounds.

In this paper, we introduce a combination of techniques for
efficient computation of jointree bounds. We first describe an
incremental bound computation scheme that only computes
relevant bounds at each step of the search. In the approach
of Park and Darwhiche [2003], a jointree is fully reevaluated
at each search step. We point out that, with a static variable
ordering, we only need to evaluate a very small portion of the
jointree at each step to get the necessary upper bounds for the
next search step. We also cache potentials of the jointree in-
crementally during the forward search and restore them in the
reverse order when backtracking, to further improve search
efficiency. Finally, we observe that the upper bound compu-
tation typically produces what we call joint bounds, that is,
bounds for joint configurations of groups of variables. Based
on this observation, we show how to further improve search
efficiency by instantiating multiple variables at each step of
the DFBnB search, instead of a single variable, which reduces
the number of times upper bounds need to be computed. The
use of joint bounds also reduces the extra memory require-
ments of our method of incremental bounds computation.

We demonstrate the effectiveness of these techniques in
solving a range of benchmark Bayesian networks. Experi-
mental results show an orders-of-magnitude improvement in
the efficiency of systematic MAP search, and this advantage
grows with the size of the problem.

2 Upper bounds for MAP search

The MAP (maximum a posteriori assignment) problem is de-
fined as follows. Let M be a set of explanatory variables in a
Bayesian network; from now on, we call these the MAP vari-
ables. Let E be a set of evidence variables whose states have
been observed. The remaining variables, denoted S, are vari-
ables for which the states are unknown and not of interest.
Given an assignment e for the variables E, the MAP problem
is to find an assignment m for the variables M that maximizes
the probability P(m, e) (or equivalently, P(m|e)). Formally,

mMAp:argmﬁx;P(M,S,E:e) , (1)
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Figure 1: An example jointree for upper bound computation.

where P(M,S,E = e) is the joint probability distribution
of the network given the assignment e. In the special case
in which S is empty, this is referred to as the Most Probable
Explanation (MPE) problem. Of the two problems, the MAP
problem is more difficult. The decision problem for MAP is
N PPP_complete [Park, 2002]; in contrast, the decision prob-
lem for MPE is only NP-complete [Shimony, 1994]. MAP is
difficult not only because the size of its search space is equal
to the product of the cardinalities of all MAP variables, but
because computing the probability of any instantiation of the
MAP variables is PP-complete [Roth, 1996].

Jointree upper bound In Equation (1), the maximization
and summation operators are applied to different sets of vari-
ables. The MAP variables in M can be maximized in dif-
ferent orders, and the variables in S can be summed out
in different orders. But the summations and maximiza-
tions are not commutable. As a result, the complexity of
variable elimination-based methods for solving MAP de-
pends on the constrained treewidth [Dechter and Rish, 2003;
Park, 2002]. Theoretically, a jointree satisfying the con-
strained ordering can be used to solve MAP problems exactly
using a modified jointree algorithm [Lauritzen and Spiegel-
halter, 1988]. However, the approach is typically infeasible
because such jointrees are often too large to be constructed
successfully.

If the orderings among the summations and maximizations
is relaxed, however, an upper bound on the probability of a
MAP solution can be computed. The following theorem is
due to Park and Darwiche [2003].

Theorem 1 Let $(M, S, Z) be a potential over disjoint vari-
able sets M, S, and Z. For any instantiation z of Z, the
following inequality holds:

XS:II}\%XQZ)(M,S,Z =z)> II}\;}XXS:QZ)(M,S,Z =1z).

Based on the result, Park and Darwiche [2003] compute up-
per bounds for MAP search using the jointree algorithm [Lau-
ritzen and Spiegelhalter, 1988] with redefined messages.
Figure 1 shows an example of a jointree. The oval nodes
denote clusters, the square nodes denote separators, and the
numbers indicate variables. Evidence can be entered to the
jointree by instantiating their values in associated clusters,
shown as the variables with strikethroughs. Then, the join-
tree can be used to compute upper bounds for MAP search by
passing redefined messages. For any two clusters C'1 and C'2
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with separator S, and let M1 be the MAP variables in C1,
the message sent from C'1 to C'2 is redefined as

> ey ]

C1\M1uUS ieNB(1)\{2}

where C'1\ S are the variables in C'1 but not in .S, and NB(1)
are all the neighboring clusters of C'1. Then, a full message
propagation throughout the jointree can be applied to eval-
uate the jointree. After the evaluation, each cluster can be
marginalized to get upper bounds for its associated MAP vari-
ables. For example, suppose X € M1, then

U(X) = > (). 3)

C1\M1

¢{L~>17 (2)

max
MI1\{X}

It can be shown that U(X) for any value « provides an up-
per bound for consistent joint configurations with X being x.
Note that a full jointree evaluation produces upper bounds for
all the MAP variables simultaneously.

Park and Darwiche use these upper bounds in a depth-
first branch-and-bound (DFBnB) search algorithm to solve
the MAP problem. The nodes of the search tree represent
partial instantiations of the MAP variables M. The root node
corresponds to the empty instantiation, and the leaves corre-
spond to different complete instantiations of the MAP vari-
ables. For each internal node of the tree, its successor nodes
are determined by instantiating a single variable that had not
previously been instantiated, and there is one successor node
for each possible value of that variable. Figure 2(a) shows an
example search tree for three MAP variables.

The simultaneous upper bounds for all MAP variables
computed by the jointree evaluation allows the use of dy-
namic variable ordering. To select the next MAP variable
to instantiate, Park and Darwiche select the variable whose
states have the most asymmetric bounds.

Related work Another approach to computing upper
bounds for MAP is mini-bucket elimination [Dechter and
Rish, 2003]. It tries to use variable elimination to solve the
original MAP problem, but if an elimination operation gener-
ates a potential that is too large, it generates a set of smaller
potentials that approximate the large potential. Experimental
results show that mini-bucket upper bounds are much looser
than jointree upper bounds [Park and Darwiche, 2003].

More recent work computes upper bounds by compiling
Bayesian networks into arithmetic circuits [Chavira and Dar-
wiche, 2005; Huang et al., 2006]. This approach is designed
for Bayesian networks that have a lot of determinism and
local structure; in this case, compilation can generate more
compact representations for upper bound computation. The
approach may not be as effective for other networks.

For difficult MAP problems that cannot be solved exactly,
DFBnB can often find good solutions without running to con-
vergence. There are also other search algorithms that can find
approximate solutions for MAP, including local search [Park
and Darwiche, 2001], genetic algorithms [de Campos et al.,
1999], simulated annealing [Yuan et al., 2004] and weighted
A* guided by a non-admissible heuristic [Sun er al., 2007].
In this paper, we focus on exact search algorithms.



3 Incremental jointree bounds

The systematic MAP search algorithm of Park and Dar-
wiche [2003] requires full evaluation of a jointree at each
node of the search tree in order to compute bounds. We next
describe a combination of techniques that allows efficient,
incremental computation of these bounds.

3.1 Incremental bounds computation

First, we observe that, if a static variable ordering is used in
MAP search, we can use an incremental bounds computation
scheme to compute only relevant upper bounds at each search
step. We illustrate the idea with an example. In Figure 1,
let the bold-face variables be the MAP variables, and let the
static search ordering be V'1,VV2,V0,V5,V6. After instantiat-
ing V'1, we need to compute bounds for V2 and instantiate it.
To achieve that, it is unnecessary to evaluate the whole join-
tree. Since V2 is in the same cluster as V'1, we only need to
enter the state of V'1 as evidence to the cluster and marginal-
ize it to get upper bounds for V2. After V1 and V2 are both
instantiated, their values are entered as evidence to the cluster.
Messages can then be sent to the other parts of the jointree to
get upper bounds for the remaining MAP variables. However,
since the next variable is V0, we only need to send messages
along the shaded path from cluster (1, 2, 3) to cluster (0,4, 7).
None of the other parts of the jointree need to be involved in
the propagation. Therefore, in our incremental bounds com-
putation scheme, we propose to perform only the necessary
message propagations to get upper bounds for the next in-
stantiating variable at each step. The incremental scheme re-
quires the DFBnB algorithm to use a static variable ordering
in MAP search. Although the dynamic ordering used in [Park
and Darwiche, 2003] can exploit asymmetry early, we expect
the savings from the incremental bounds computation to off-
set any additional search required.

A simple comparison of the time complexities of full and
incremental upper bound computation shows the advantage of
the incremental approach. Let N be the size of a jointree, let
K be the maximum number of MAP variables in any cluster,
let L be the maximum cluster size, and let D be the maxi-
mum distance between two neighboring clusters that need to
be searched in a chosen static ordering. The time complex-
ity of one iteration of bounds computation is on the order of
N x K * L for full bounds compared to D * L for incremental
bounds. Note that typically D < N * K.

3.2 Efficient backtracking

DFBnB search often needs to backtrack to a previously-
generated search node. This requires retracting the corre-
sponding jointree to its state when the node was generated.
Still using Figure 1 as an example, suppose we are at a search
node where V1, V2 and V0 are instantiated and we need to
backtrack to a search node where only V'1 and V2 are instan-
tiated, and the state of V2 has been entered as evidence to
the cluster (1,2, 3). The shaded path from cluster (1,2, 3) to
(0,4,7) has a new set of cluster and separator potentials as
a result of the incremental bounds computation. One way to
retract the jointree is to reinitialize it with correct evidence
and perform a full jointree evaluation, which is the full join-
tree bounds used in [Park and Darwiche, 2003]. Instead, our

incremental approach caches the cluster and separator poten-
tials of the jointree that are to be modified in the bound com-
putation in the order that they are changed. In the above ex-
ample, the changed parts are the potentials of the clusters and
separators in the shaded path from cluster (1, 2, 3) to (0,4, 7).
When backtracking, we simply restore the potentials in the
reverse order and roll back the changes, which retracts the
jointree to the previous state much more efficiently.

Our backtracking scheme requires caching potentials and
thus increases the size of the upper-bound jointree. However,
we can bound the extra memory it requires by bounding the
additional memory required by each cluster as follows.

Theorem 2 The maximum number of cached copies that a
cluster of the jointree may need is equal to the sum of three
numbers: the number of child branches of the cluster with
MAP variables to search; the number of MAP variables to
search on the cluster; and 1 if there exists any non-descendant
MAP variables to search on the jointree, O otherwise.

Proof: If a child branch of the cluster has MAP variables
to search, that branch may need to send message to the clus-
ter after being searched. The cluster potential needs caching
before being overridden by each incoming message. The po-
tential also needs caching before each MAP variable on the
cluster is searched and entered as evidence to the jointree.
Finally, non-descendant MAP variables may need to send a
message to this cluster through its parent. O

For example in Figure 1, cluster (3,4,7,9) has two child
branches containing MAP variables. But the cluster itself
contains no MAP variables. It is the root of the jointree and
has no non-descendant MAP variables. Therefore, the clus-
ter only needs enough extra memory for two cached copies
at most. Note that Theorem 2 considers the general case in
order to establish an upper bound. Depending on the search
order of the MAP variables, the actual memory requirement
could be less. For example, cluster (3,4, 7,9) only needs one
cached copy if the search order is 1,2,0,5,6. The bounded
memory requirement can be further reduced with several en-
hancements to be discussed in the next section.

There are many possible static variable orderings. We
choose the post-order traversal sequence of the jointree in or-
der to preserve locality in each branch of the jointree and
maximally make use of joint bounds to be defined in the
next section. In Figure 1, for example, the post-order traver-
sal sequence is 1,2,0,5,6, which reduces to two joint bounds
U(1,2) and U(0, 5, 6).

Combining the techniques of incremental bounds compu-
tation and efficient backtracking, we have a new method that
we refer to as incremental jointree bounds. The method is re-
lated to the query-driven message-passing technique defined
in [Huang and Darwiche, 1996], especially its evidence up-
date step. It can be viewed as repeated application of the
evidence update step for computing the bounds incremen-
tally. The major difference is that the evidence retraction step
of query-driven message-passing proposes to reinitialize the
jointree with new evidence and perform full reevaluation. By
contrast, our method of caching potentials for backtracking
avoids the expensive full reevaluations and is the key for en-
abling efficient backtracking search.
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3.3 Enhancements

The extra memory required by our incremental jointree
bounds can become an issue, especially for large Bayesian
networks. In this section, we discuss several techniques to
reduce the memory requirement.

First, after initial evidence is entered and propagated, only
parts of the jointree that contain MAP variables need to be
involved in further message passing. Therefore, only a small
fraction of the jointree needs caching in practice. Further-
more, we note that a cluster containing MAP variables can
be left out of the incremental message passing if these MAP
variables have already been searched somewhere else. In Fig-
ure 1, variable V0 also appears in cluster (0,4, 14). If we
search cluster (0,4, 7) first, variable V0 is already searched
before we come to (0,4,14). There is no need to involve
this branch in incremental bounds computation. We can use a
pre-processing step before the start of the search to mark the
clusters and branches that have MAP variables to search and
need to be involved in incremental bounds computation. In
Figure 1, these branches correspond to the shaded part.

Second, we note that the reason for caching the poten-
tials of the jointree is for backtracking. There is no need for
caching if backtracking is unnecessary. One such situation
is when the search stack has only one open search node, in
which case we do not need to perform any caching. Only
when the stack has more than one search node will we cache
potentials.

Third, the jointree method for computing upper bounds on
MAP probabilities has a property that can be leveraged to
further reduce the memory requirement. We introduce the
concept of a joint bound, which is a bound for a group of
variables.

Definition 1 In a MAP problem, a potential ¢(X) is a joint
bound for X if, for any instantiation x of X, the following
inequality holds

$(x) > ggg{ZSjHM ~-X,x,S,E=e).

At the end of message passing, each cluster on the join-
tree contains a potential ) over its maximization variables
X € M and summation variables Y € S. More importantly,
the potential has already factored in the cluster’s original po-
tential and all incoming messages. Now, if we only sum out
the variables in Y, we get a potential ¢ over X. We have the
following theorem for potential ¢.

Theorem 3 When message passing is over, for each cluster
on the jointree with final potential 1) over maximization vari-
ables X € M and summation variables Y € S, the following
potential is a joint bound for X.:

X)) = 0. )
Y

Proof: Without loss of generality, let us focus on the root
cluster (a jointree can be rearranged with any cluster as the
root). In computing the root potential, messages are com-
puted starting from the leaves of the tree and passed through
all the other clusters until reaching the root. This is equiva-
lent to recursively shifting maximizations inside summations.
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Figure 2: Search trees for a three-binary-variable MAP prob-
lem, where (a) shows the full search tree with one variable in-
stantiated at a time, (b) shows the search tree that results from
using a two-variable joint bound, and (c) shows the search
tree that results from using a three-variable joint bound.

In particular, the root cluster provides a way to shift the max-
imizations over M — X inside the summations over Y and
generate upper bounds according to Theorem 1. By simple
induction, M — X can be further mixed with S — Y accord-
ing to the jointree to relax the bounds further. After summing
out Y, the potential ¢(X) provides upper bounds for all the
configurations of X. ([l

If we continue to maximize variables from ¢, we get up-
per bounds for individual variables, which we call individ-
ual bounds to distinguish them from joint bounds. These are
the bounds used in the DFBnB algorithm of Park and Dar-
wiche. However, no further maximization is necessary; the
joint bounds can be directly used in MAP search.

To leverage joint bounds, we make a simple change to the
function that generates the successors of a node in the search
tree. Using individual bounds, the successor function instan-
tiates one variable at a time. To leverage joint bounds, we
modify the successor function so that it can instantiate multi-
ple variables at a time.

To illustrate the difference, we use a three-binary-variable
MAP problem with fixed variable ordering. Figure 2 shows
the search trees that are generated when different joint bounds
are available. When only individual bounds are available, one
variable is instantiated at a time and the search tree shown in
Figure 2(a) is generated. If joint bounds over the variables
A and B are available, these two variables can be instanti-
ated at the same time when generating the successors of the
root node. The result is the search tree shown in Figure 2(b).
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When joint bounds over all three variables are available, the
search tree shown in Figure 2(c) is generated.

The use of joint bounds can further reduce the bounded
extra memory requirement of incremental jointree bounds.
Since we search and instantiate all the MAP variables in a
cluster at once, we only need to cache the potential once be-
fore the instantiation. We have the following theorem.

Theorem 4 The maximum number of cached copies that a
cluster needs is the sum of three numbers: the number of child
branches of the cluster containing MAP variables to search;
1 if there are MAP variables to search in this cluster, 0 oth-
erwise; and 1 if there exist non-descendant MAP variables to
search, 0 otherwise.

It turns out there is another benefit from using joint bounds.
By allowing multiple variables to be instantiated at once when
generating the successors of a node, joint bounds allow re-
duction in the size of a search tree. Before the successors of a
node are generated, the jointree has to be entered with correct
evidence, and inference needs to be performed to compute
other bounds. This is very time-intensive, and the larger the
jointree, the more expensive it is. Joint bounds make it possi-
ble to reduce this overhead. For example, in order to expand
the search trees in Figure 2, we need to compute bounds once
for each internal node, which means 7 times in (a), 5 times
in (b), and only once in (¢). Moreover, computing the joint
bounds for the 8 successors of the root node in Figure 2(c) is
no more expensive — in fact, it is less expensive — than com-
puting the individual bounds for the two successors of the the
root node in Figure 2(a), because individual bounds over A
are derived from the joint bounds U (A, B, C).

In fact, if we expand the search tree using a static ordering,
we have the following theoretical result:

Theorem 5 If a static ordering is used in expanding a search
tree, using joint bounds will generate no more nodes than
using individual bounds.

Proof: First, note that as a search tree goes deeper, upper
bound values are monotonically nonincreasing. This is true
because instead of maximizing or summing over a variable,
we fix the variable to a particular value. Furthermore, the
heuristic values are the same for the same node in both search
trees using joint bounds and individual bounds, because the
same evidence has been instantiated for the node. Then, we
claim anode N expanded in the joint-bound search tree must
be expanded by the individual-bound tree. If not, there must
be an ancestor M of N that is pruned in the individual-bound
tree. Let the probability of the current best solution be fyr
at the moment of pruning. Since a fixed ordering is used,
the same set of potential solutions must have been visited or
pruned. Therefore, fn = far > has. However, since hyy >
hn, we have f > hy, which contradicts the assumption that
N is not pruned in the joint-bound search tree. ([l

With dynamic ordering, however, we cannot similarly
guarantee that use of joint bounds will not lead to generation
of more search nodes. Using joint bounds and instantiating
multiple variables at a time, some nodes may be generated
that would not have been generated if the search algorithm
instantiated a single variable at a time and applied bounds
earlier [Yuan and Hansen, 2008].

4 Experimental Results

We implemented our algorithm and the previous state-of-the-
art algorithm [Park and Darwiche, 2003] using the SMILE
Bayesian network package [Druzdzel, 1999]. Experiments
were performed on a 3.2 GHz processor with 4 gigabytes of
RAM running a 64-bit version of Windows XP.

Table 1 compares the performance of our algorithm, which
is DFBnB using incremental bounds and static ordering
(DFBnB+IS), to the performance of the Park and Darwiche
algorithm, which uses the full jointree bound and dynamic
ordering (DFBnB+FD). The Bayesian networks used as test
problems are divided into two groups. The first group con-
tains networks that are relatively easy to solve, while the sec-
ond group is much more difficult. For the first group, we
generated 50 random test cases with all root nodes as MAP
variables and all leaf nodes as evidence variables. For each
test case, the states for the evidence variables were sampled
from the prior distributions, which ensures their joint proba-
bility is non-zero. For the second group, we generated 10 test
cases with as many root nodes as MAP variables so that they
are solvable by both algorithms within 30 minutes. We still
use all leaf nodes as evidence variables for these cases.

Results for easy networks The first group of results in Ta-
ble 1 are for the easy networks. These results show that using
incremental instead of full jointree bounds significantly im-
proves the search efficiency of DFBnB for most networks. In
some cases, it makes DFBnB orders of magnitude faster.

For all the networks except CPCS360, the number of
search nodes generated by DFBnB+IS is smaller than the
number generated using DFBnB+FD. Since search using dy-
namic ordering usually generates fewer nodes than search us-
ing static ordering, this may seem surprising. For four of
these problems (Win95pts, CPCS179, Munin4, and Water),
note that the number of search nodes is less than or equal
to the number of MAP nodes, which indicates that the first
solution explored turned out to be an optimal solution. The
results for the fifth problem (Hailfinder) can be explained in
two ways. First, recall that using joint bounds reduces the
depth of the search tree and thus the number of search nodes.
More importantly, dynamic ordering is only an approximate
heuristic and it can sometimes lead to an order that results in
generation of more nodes.

The results show that network size alone is not a reliable
predictor of problem difficulty. Munin4 and CPCS360 are
large networks with hundreds of variables, but their MAP
problems are rather easy to solve. For these problems, the
first solutions explored turned out to be the optimal solutions.
By contrast, Barley and Mildew are small networks, but their
MAP problems are very hard to solve. Among the reasons
they are difficult to solve, Barley has one node with 67 states,
and Mildew has very little asymmetry in its CPTs. Both fac-
tors contribute to a very large search space.

In solving CPCS360, DFBnB+IS was slower than DF-
BnB+FD. This is possible for two reasons. First, because
incremental bounds require static variable ordering, more
search nodes can be generated than using dynamic ordering.
Second, incremental bounds incurs overhead for caching and
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Domain characteristics DFBnB+FD DFBnB+IS
network vars MAPs BF | time (ms) nodes memory (KB) | time (ms) nodes m-ratio
Win95pts 76 34 2 13 34 51 2 20 1.0
CPCS179 179 12 2.1 104 12 1,277 3 5 1.0
CPCS360 360 25 2 1,083 25 69,920 1,696 26 1.0
Water 32 8 3.6 1,344 8 128,512 920 5 2.1
Hailfinder 56 17 3.8 8,301 19,393 151 297 9,352 2.6
Munin4 1041 259 43 33,539 259 261,982 3,117 195 1.0
Barley 48 5(10) 124 225,687 155 414,141 27,922 337 1.2
Pigs 441 48(145) 3| 1,021,734 52,425 17,745 784,976 248,364 3.2
Andes 223 27(89) 2 | 1,033,211 80,145 8,903 44,617 32,592 3.1
Diabetes 413 12(76) 13 | 1,230,844 2,068 166,856 106,787 4,567 1.7
Mildew 35 10(16) 4.4 | 1,656,304 3,126 209,689 41,117 5,397 1.6

Table 1: Comparison of the average running times and memory requirements of DFBnB using full and incremental jointree
bounds in solving MAP problems for benchmark Bayesian networks. The column headings have the following meanings: ‘vars’
is the total number of variables; ‘MAPs’ is the number of MAP variables; ‘BF’ is the average branching factor; ‘time’ is the
time (in milliseconds) it takes the algorithm to converge to an exact solution; ‘nodes’ is the number of search nodes generated;
‘memory’ is the amount of memory in kilobytes used for the jointree of the algorithms; ‘m-ratio’ is the the amount of memory
needed in comparison to ‘DFBnB+FD’; ‘F’ stands for full jointree bounds; ‘D’ stands for dynamic ordering; ‘I’ stands for

incremental bounds; and ‘S’ stands for static ordering.

restoring potentials, especially when the jointree is very large.

We also empirically tested the extra memory requirements
of the incremental bounds computation method. Almost all
the main memory consumption of both DFBnB+FD and DF-
BnB+IS comes from the jointrees used for computing upper
bounds. Our experiments show that memory needed for stor-
ing search nodes is at most 2% of the size of the jointree
and is usually around 1073%. The column labeled ‘mem-
ory’ shows the total amount of memory in kilobytes needed
by the jointree in DFBnB+FD. Some of these jointrees, such
as those of Munin, Barley, and Mildew, are extremely large.
The column labeled ‘m-ratio” shows the ratio of the amount
of memory used for the jointree in DFBnB+IS compared to
DFBnB+FD. In most networks, the extra memory required is
relatively small, and no more than twice that of the original
jointrees. Although memory can potentially be an issue, we
did not have a network that is solvable by DFBnB+FD but not
DFBnB+IS because of memory.

Results for difficult networks For several benchmark
Bayesian networks, including Andes, Barley, Diabetes,
Mildew, and Pigs, the test cases with all root nodes as MAP
variables could not be solved exactly within a time limit of
30 minutes by DFBnB+FD. For these networks, we used as
many MAP variables as possible while still allowing the test
cases to be solved within the time limit. This is the second
group of results shown in Table 1. The column labeled MAPs
shows the actual number of MAP variables selected from the
total number of root nodes (which is shown in parentheses).
The results show that DFBnB+IS outperforms DFBnB+FD
by orders of magnitude, even when it generates more search
nodes. This shows that the improved speed from using incre-
mental bounds offsets the extra search required.

Jointree promotion We also implemented and tested the
jointree promotion technique proposed by Park and Dar-
wiche [2003], which was not evaluated separately in their pa-
per. The idea is to push MAP variables towards the root in
order to compute better upper bounds near the root, although
this technique may make the bounds worse close to the leaves.
Since we use static ordering, we can push the MAP variables
in a specific direction to get better bounds in the beginning
layers of the search tree.

Table 2 shows that the promotion technique has mixed re-
sults. For some networks, such as Pigs and Diabetes, it sig-
nificantly reduces running time. But for others, it leads to
increased running time, especially for Munin4. The worse
performance is due to the much larger jointree that results
from using promotion. For Munin4, the new jointree is al-
most 11.7 times larger than the original and much more time-
consuming to evaluate. Note that the promotion technique
increases the memory requirements of the search much more
than simply using incremental bounds. Another interesting
observation is that, in many cases, the extra memory required
by DFBnB+ISP in comparison to DFBnB+FD is only slightly
higher than DFBnB+FDP. The reason for this is that, after a
jointree is promoted, a smaller fraction of the jointree needs
to be involved in the incremental bounds computation.

In most cases, incremental bounds and static ordering (DF-
BnB+IS) outperforms full bounds enhanced by both dynamic
ordering and the promotion technique (DFBnB+FDP). The
improvement is even greater when we enhance DFBnB+IS
with the promotion technique (DFBnB+ISP).

Effect of number of MAP variables The results shown
in Table 3 demonstrate the improved scalability of our al-
gorithm. For the five difficult networks, we generated test
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Domains DFBnB+FDP DFBnB+ISP

net time (ms) nodes m-ratio | time (ms) nodes m-ratio
Win95pts 16 34 2.5 2 21 2.6
CPCS179 107 12 1.4 5 5 1.9
CPCS360 1,534 25 2.0 1,218 26 2.0
Water 1,619 8 2.8 636 5 3.8
Hailfinder 5272 17,561 1.8 295 7,996 34
Munin4 717,670 259 11.7 60,047 190 11.7
Barley 246,360 137 4.6 58,281 164 10.7
Pigs 6,762 49 6.1 12,331 731 8.4
Andes 316,476 12,242 2.7 80,734 10,925 5.1
Diabetes 336,281 40 6.6 42,687 34 7.0
Mildew 1,577,515 2,867 1.1 59,461 5,362 1.7

Table 2: Comparison of MAP search using full and incremental bounds when enhanced by the jointree promotion technique.
Note that ‘m-ratio’ is the amount of memory needed in comparison to ‘DFBnB+FD’, which is shown in Table 1, and ‘P’ stands

for the jointree promotion technique.

cases with an increasing number of MAP variables. Note
that the number of MAP variables affects not only the dif-
ficulty of the test cases, but the number of available joint
bounds. If there are very few MAP variables, a jointree may
only have individual bounds. The number of joint bounds in-
creases with the number of MAP variables. Table 3 shows
the effect of the number of MAP variables on the relative
benefit of using incremental bounds in solving the difficult
networks. DFBnB with incremental bounds clearly has bet-
ter scalability. It solved test cases with more MAP variables
for each of the networks within the time limit, especially for
Diabetes, Andes, and Mildew. On the Andes network, in-
cremental bounds could solve test cases with up to 35 MAP
variables, whereas full bounds could not handle more than
27 MAP variables. Incremental bounds also solved the test
cases with all root nodes as MAP variables for the Mildew
network, while DFBnB with full bounds ran out of time after
10 MAP variables. We also note that the promotion tech-
nique can sometimes make the algorithm much more scal-
able. For the Pigs network, for example, both DFBnB+ISP
and DFBnB+FDP solve much larger MAP problems.

5 Conclusion

We have developed a combination of techniques for in-
crementally computing jointree upper bounds in systematic
MAP search. These include an incremental bounds computa-
tion scheme that avoids full jointree evaluation at each step of
the search; a method for caching and restoring potentials of
the upper bound jointree for efficient backtracking; and the
use of joint bounds to further speed up the search. Experi-
mental results show that these techniques make it possible for
depth-first branch-and-bound search to find optimal solutions
to much more difficult instances of the MAP problem than
could be solved by the previous state-of-the-art algorithm.
Although our approach allows upper bounds to be com-
puted more efficiently, computing the upper bounds is still the
bottleneck of the algorithm. Further improvement of search

efficiency will require finding more efficient techniques for
computing these bounds. We are also interested in whether
similar techniques can be exploited for other search problems.
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