Session 2 Theory of Heuristic
Search

ADDITIVE ANDIOR GRAPHs

A. Martelli
Istituto di

and U. Montanari
Flaborazione dell 'Informazione

del Consigllo Nazionale delle Ricerche
Via s. Maria, 46 - 56100 - Pisa lItaly.

Abstract

Additive AND/OR graphs are defined as AND/
/ORgraphs without circuits, which can be con-
sidered as folded AND/OR trees; i.e. the cost
of a common subproblem is added to the cost as
many times as the subproblem occurs, but it is
computed only once. Additive AND/OR graphs are
naturally obtained by reinterpreting the dy-
namic programming method in the light of the
problem-reduction approach. An example of this
reduction is given.

A top-down and a bottom-up method are pro-
posed for searching additive AND/OR graphs.
These methods are, respectively, extensions of
the "arrow" method proposed by Nilsson for
searching AND/OR trees and Dijkstra's algo-
rithm for finding the shortest path. A proof
is given that the two methods find an optimal
solution whenever a solution exists.

1) introduction

In the literature on artificial intelli-
gence, AND/OR trees have proved to be a good
formalism for representing the problem-reduc-
tion approach to problem solving Usually,
the search is for any solution tree, but in a
paper by Nilsson the problem is presented of
finding the best solution tree, where arcs
have a given cost, and the cost of a tree is
simply the sum of the costs of the arcs.
Nilsson gives there an algorithm which as-
sumes available, for each node, an estimate of

the cost of the "optimal solution tree rooted
at that node.
An algorithm for searching AND/OR graphs

has been proposed by Chang and Slagle®. Here a
solution graph is defined in the usual way,
and, as for trees, the cost of a solution
graph is the sum of the costs of its arcs.

In this paper we introduce a new type of
AND/OR graphs called additive, which can be
considered as folded AND/OR trees, i.e. trees
where different nodes have been recognized to
be roots of equal subtrees and have been iden-

tified, thus generating AND/OR graphs without
circuits. However, the cost of a solution sub-
graph is defined as equal to the cost of the

unfolded equivalent tree. In other words, the
cost of a common subproblem is added to the

cost as many times as the subproblem occurs,
but it is computed only once.

Additive AND/OR graphs are naturally ob-
tained by reinterpreting the dynamic program-
ming method of optimization in the light of
the problem-reduction approach®.

For giving an idea of the technique of
reduction, we will consider here the well-
-known problem of halancing binary search
trees, solved by Knuth viith a (modified)
dynamic programming algorithm". Here a number
of ordered items (lexicographically ordered
words, for instance) are given, together with

probabilities of a new item occurence to
be any of the given items or to be a new item
located in any intermediate position. For
example, therdata
Fil 2 3 [5] =

hegin o] if

mean that there are 3 probabilities out of 31
that a new word will be "do" and 3 nrohahili-
ties that a new word will be any word between
lldoll and Ilifll-

A binary search tree for these data is a
tree of the type shown in Fig. 1. For instance

if the new word "array" is generated, its
proper location is found by means of three

tests, namely comparisons with the given words
"if" and "begin" respectively and a termina-
tion test.

Given a search tree, the average number of
tests M necessary for reaching a node, is then
given by summing up the products of the number
mj. of tests required for any node i and its
probability p4

Ti
M -Z m Py

i=1

For instance, the average number of tests
for the tree in Fig. 1 is

Moao(303 4 207 4 42 4 303 4 423 4 5 4 208)=

73

1

is to find a search tree with
the tree of Fig.1

The problem
minimal cost M. For instance,
is optimal for the data (1).

An equivalent formulation of the same
problem considers frequencies instead of pro-
babilities. In this case the cost is called
weighted path length.

Two properties allow the use of a dynamic
programming technique in this case. First, if
T = (a A 8)is an optimal tree rooted in A
and having a and 6 as subtrees, then both o
and B are optimal. Furthermore, the data for
a and S are disjoint substrings of the data

for T. Second, if fa ,fa ,fz '“a *“B are the
frequencies of A,o and 8 and the weighted

path langths of = and B8, then the value

) L-La+ fu-l- I..B-I- £ fh

is the weighted path langth of T. Fer in-
stance the laft and right subtrees of tha
+rea in Flg. 1 are the optimal trees for the

d
llm:iz[js

8
Furthermore, we have Lu L] 34,£u¢18, L. =8,

B
fs = B, f& = 5and L = 7).

and

In the dynamic programming algorithm, all
the subproblems of the given problem are
considered, whose data are substrings of the
given data. Such problems are divided in lev
els, according to the length of the data,
and solved in increasing order* A problem
at a level can be solved by picking up a
root in all possible ways™* (say JO and
thus decomposing the problem in k pairs of
subproblems at lower levels. The cost of
every decomposition is computed using (2)and
a best decomposition is chosen.

The optimal search tree problem de-
scribed above is a good example of the gener
al case where, at each stage, the computa-
tion of each alternative requires the sum of
the costs of one or more (in fact, two) sub
problems.

In this case, the structure of the problem
is conveniently reflected into an additive
AND/OR graph, whose AND nodes correspond to
subproblem cost sums, and OR nodes to alter-
native selections. For instance, the ANDOR
graph for the optimal search tree problem,
with data (1), is shown in Fig. 2. There,AND
nodes are marked with circles and OR nodes
(corresponding to subproblems) with squares.
The optimal solution graph, corresponding to
the search tree in Fig. 1, is blackened.

Reduction of dynamic programming to addit1
ve AND/OR graphs can imply several advan-
tages. First, the ANDIOR graph expresses the
structure of the problem in the form of a
partial ordering of subproblems. Dynamic pro
gramming solves all the subproblems bottom-
-up in some static order which respects the
partial orderings. However,in Section 4 of
this paper a bottom-up algorithm is descri-
bed, which solves every time the cheapest
available subproblem, thus considering, in
general, only a subset of subproblems in a

(*) Actually, Knuth® gives a modified dynamic
programming algorithm which excludes a
priori most of the decompositions, using
a particular monotonieity property.

dynamic order.

Second, in many cases estimates of the sub-
problem costs are available, which can be used
for directing a top-down search. In fact, in
Section 3 we give an extension of Nllsson's
tree algorithm to the additive graph case,
which, if the estimate is a lower bound of the
minimal cost, is guaranteed to find the opti-
mal solution graph. The algorithm is slightly
simplified if the estimate satisfies a "con-
sistency" constraint. Finally, various known
heuristic techniques can be applied to additi-
ve ANDIOR graphs,which can find a good solu-
tion where the exact dynamic programming algo-
rithm is too Expensive”.

We emphasize that this paper extends to
general dynamic programming a reduction tech-
nique which is well-known in the so called
"sequential" case’. There, each alternative
can be computed by summing a constant to the
cost of one simpler subproblem, thus reducing
an additive ANDIOR graph to an OR graph. In
this case, a solution tree reduces to a path
and thus shortest path algorithms apply, like
Dijkstra's algorithm8 in the uninformed case
and the algorithm by Hart, Nilsson, and
Raphael9 if an estimate is available.

Finally, note that in the shortest path
case no distinction between top-down and bot-
tom-up is needed, while it is suggestive in
the general case.

2) Additive ANDIOR Graphs
In this paper, we shall consider ANDIOR

graphs without cycles. An example is given in
Fig. 3. Node A is called the start node and
represents the problem to be solved. Node A

is called an OR node,(*) because a solution is
constructed by selecting either its successor
B or its successor C. Node B is called an AND
node, because all of the suboroblems represent
ed by its successors D and E must be solved in
order to solve problem B. An AND node is indi-
cate by a line across the arcs connecting it
to the successor nodes. Nodes G and H are cal-
led terminal nodes and correspond to problems
with known solution.

We assume that all the nonterminal nodes
are either OR nodes or AND nodes, that is,
there are no nodes corresponding to problems
which can be solved by solving some of their
successors.

We give here a definition of OR nodes and
AND nodes, which is opposite to the one
given by Nilsson'. We do so, because we
want each node to be either an OR node or
an AND node, instead, with Nllsson's
definition, we could have a node which is
at the same time an OR node because of one
parent and an AND node because of another
parent.

We shall be concerned with AND/OR graphs
-implicitly specified by a start node s and
a successor operator T.Application of r to
any node n qgenerates a finite number of
successors of n and a label snecifyino
whether the successors are AND nodes or OR
nodes,

A solution graph of an AND/OR granh G
with start node s is any suhoranh of P
containing s and havino the following
properties;

(1) Suppose node n of P is an OR node
and is included in the solution oraph.
Then one and only one of the successors
of n is also included in the solution
graph.

(2) Suppose node n of R is an AND node
and is included in the solution graph.
Then all of the successors of n are
also included in the solution oranh.

(3) The solution granh is finite, meanlno
that it ends in a set of terminal nodes,

Fig. 4 shows two solution oranhs of the
AND/OR qraph in Fig. 3.

In general, a cost is associated with
every arc of an AND/OR Grph. Let the func-
tion c¢(n ,n.) give the cost to he associated
with the are connecting node n; with one of
its successors nj. For additive AND/OR oranhs
the cost of a solution granh is recursively
defined as follows:

(1) The cost ¢ * 0 is associated with everv
terminal node in the solution oranh.

(2) Let c4,—,cx be the costs associated
with the k successors of node n in
the solution oranh. Then we associate
with n the cost ¢ oiven by(*)

(3) The cost associated with the start node
S is the cost of the solution oranh.

The cost of a solution oranh can alwavs be
obtained with the above definition, because
solution e/raphs do not contain cvcles.

The cost of a solution graph can also be
obtained by representing the solution nranh
as a tree by dunlicating the suboranhs rooted
at nodes with more than one incident arc and
taking the sum of all the arc costs of the
tree.

Note that both the AND and the OR case
are here included, since in a solution

graph OR nodes can have only one successor.

For example, let us consider the two
solution oranhs in Fig. 4, where we assume
unit arc costs. The cost of the first solu-
tion is 5 and the cost of the second one is
9, because the cost of the subtree rooted at
T is considered twice.

In the next sections, we shall oive two
aloorithms to find solution oranhs having
minimal cost for additive AND/OR oranhs.

3) Top-down Search Aloorithm

The algorithm oiven in this section finds
a solution oranh havino minimal cost, beoin-
nino with the start node s and using T- to
oenerate the oranh. At everv staoe in the
generation of the graph, a decision must be
made about which node should have Its suc-
cessors oenerated next. (Reneratino the suc-
cessors of a node hv r Is called expanding
a node.).

The aloorithm is an extension of the algo-
rithm nronosed hv Nilsson for AND/OR trees
and the two algorithms are practicallyv
identical for the narticular case of ANP/OR
trees. The search method uses a set of arrows
to ouide it from the start node down throuoh
the AND/OR oranh searched thus far to that
node to he exnanded next. Fach expanded node
has an arrow pointing to one and only one of
its successors based on evaluations of the
successors, when a node is oenerated for the
first time, its evaluation is an estimate,
which must be available on separate "rounds,
of the cost of a minimal cost solution graph
starting at this node. The network of arrows
is maintained bv updating the evaluations of
nodes that are ancestral to those exnanded
durino the process. The evaluation of a node
gives the estimate of the cost of an optimal
solution oranh havino that node as start node.

The aloorithm consists of the followinn
steps:

(1) Begin with the start node- s,

2) If s is not marked SOLVED, oo to (3);
otherwise exit with the solution graph,
This oranh is constructed by starting
at s and using the final directions
of the arrows to decide which successors
of OR nodes should be included,

(3) Trace down the arrows from s to a node
n and expand it. Suppose node n has
SUCCESSOrS Nqy..c...u... Ng.

(4) Undate the evaluations and arrow direc-
tions of node n and all nodes ancestral
to n, as follows:

Tf a successor ny of n has been oener-
ated before, it has already an evaluation
h(n;). If a successor n; is generated
for the first time, its evaluation

h(n;) is the estimate of the cost of a
minimal cost solution graph starting at
node nj. If a successor is a terminal
node, its evaluation is zero and it is
marked SOLVED.

If node n is an OR node, its undated

evaluation is

hi{n} = min (;[nij + cln,ngl).
i

The arrow is directed from n to the
successor ngy for which the minimum is
achieved and n is marked SOLVED if
and only if ny is marked SOLVED.

If node n is an AND node, its
updated evaluation is

ﬁ{n) - §-1 “;- (ni] + c(ﬂ;ni)’.

The arrow is directed from n to one
of its successors which is not marked
SOLVED, according to a given criterion.
A reasonable heuristic is the one of
directina the arrow to that successor
having the largest evaluation. If all
the successors are marked SOLVED, n is
marked SOLVED.

The procedure of undating evaluations
and arrow directions is then repeated
for all the ancestors of node n by
backing UP the granh to s.

(5) Go to (2)+

Note that during step (4), a node can he
updated several times, because there can be
several paths in the granh between a nair of
nodes. However, the procedure will alwavs
terminate, since in the graph there are no
cycles by hypothesis.

An example of search with the given alon-
rithm is shown in Tin. 5. The nranh to he
searched is shown in Fig. 5a. Arc costs are
assumed to be unity and terminal nodes are
marked. The numbers adjacent to every node
are the estimate of the cost of a minimal
cost solution araph starting at that node.
Fig. 5b through 5g show the parts of the
graph generated after each cycle of the
algorithm. The numbers attached to each node
are the updated evaluations and marked nodes
are SOLVED nodes. Finally, Fig. 5h qives
the solution graph found by the alnorithm.
Actually, this solution granh has minimal
cost, as we shall show below.

As in the case of the arrow algorithm of
Nilsson2 or the algorithm of Hart, Nilsson
and Raphael® for OR graphs, we can show
that, if the estimate function h(n) is a
lower bound on the cost of a minimal cost
solution graph, then the algorithm is
admissible, that is it will always find a
minimal cost solution araph.

Let a tin node be a node of the aranh
nenerated at a certain stage by the alnorithm
which has not vet been expanded. Let h(n) he
the cost of a minimal cost solution graph
starting at node n. we then have:

Lemma 1. If h(n) « h(n) for all tin nodes,
then at anv stane durinn the search process

we have h(n)< h(n) for all nodes n in the
graph. Moreover, if a node n is marked
SOLVED we have h(n) = h(n) and an optimal

solution aranh can he obtained hv tracing
down the arrows from n.

Proof. We shall prove the lemma by induction
on the stages of the algorithm. The lemma

is trivially true at staae 0. Let us assume
that it is true at a certain staae and let

us nrove that it is true at the next stane,
that is after the exnansion of a node (sav

node n).

in sten (A) of the alnorithm, We update
all the nodes which are ancestors of node n.
Therefore, let us consider the subgraph G
of the search aranh obtained un to this stage,
which consists of all the ancestors of node n.
Beinn the graph without cycles, an index can
be attached to each node of G; startina with

)

n° = n, in such a wav that all the naths from
node n' to node n° contain only nodes n
with i <i.

We shall nrove the lemma bv induction on
the index i. The lemma is certainly true for
node n. Tn fact, if anv of its succegsors n*
has been nenerated before, we have h{nylching)
bv induction and if the successor ni is =
generated for the first time, we have
h(nj) < h(n;) bv hypothesis. Therefore, bv
computing h(n) according to sten (4) of the
alnorithm, we have h(n)c h(n). Moreover, if
node n is marked SOLVED and is an OP node,
we know bv induction that for the successor
n.| pointed to bv the arrow we have h (n;) =h (ny)
and that an optimal solution for n4; can
he obtained bv tracina down the arrows from
n;, An optimal solution aranh for node n
will contain node n;, since anv other
solution nranh through another successor ny
would have a not smaller cost. Tn fact, from

hingd < hln1}
we have

h(n_‘} + c(n.nﬁ) = l;(ni) el ds

= hing) + efnen e hin) + c(nmli

Thus, if node n is marked SOLVED and is
on OR node, we have h(n) = h(n) and an
optimal solution graph can he obtained bv
tracing down the arrows from n. The same
holds if node n is marked SOLVED and is
an AND node.

Now, let us assume that the lemma is true
for all the nodes n' with j < 1; then the
lemma is true for node n' This can be
shown easily, by repeating for node n' the

above arguments for node n.
Q.E.D.

Now we can prove the following:

Theorem 1. If a solution graph exists, if
h(n) <. h(n) for all tip nodes n and if
all arc costs are larger than some small
positive amount 6 , then the top-down algo-
rithm is admissible.

Proof. We consider three cases:
Case 1. Termination without finding a solution
graph. This case is impossible. In fact,

termination can only occur at step (2) when
the start node is solved. But this can only
happen if a solution graph has been found.

Case 2. No termination. Let us examine the
algorithm at a certain stage. If we trace down
the arrows from node s, we obtain a path from

node s to the node n to be expanded next.
Let c(s,n) be the cost of this path, that
is the sum of the costs of its arcs. For each

are (nj,n;), belonging to this path, we have
h(ni)>c (ni,nj) +h(nj). Therefore, we have
h(s)> c(s,n). Let us assume now that, at a
certain stage, we expand a node n for which
c(s,n)>h(s). This is not possible because it
would imply h(s) > h<s> contradicting Lemma
1. Therefore, the algorithm can only expand
those nodes n for which c(s,n) <_ h(s).
The number of these nodes is finite because
every node has a finite number of successors
and the cost of every arc is greater than 6,
hence the algorithm must terminate.

Case 3. Termination with a solution oraph
having non minimal cost. When the alqorithm

terminates, node s is marked SOLVED and
we have h(s) = h(s) by Lemma 1. Moreover,
Lemma 1 states that an optimal solution graph

can be obtained by tracing down the arrows
from s. Therefore, the algorithm can only
terminate with an optimal solution graph.

Q.E.D.

Hart, Nilsson and Raphael introduced an
assumption, called the consistency assumption,
for the estimate h(n), which allows a
simplification of the algorithm for searching
OR graphs. Analogously, we can give the con-
sistency assumption for additive AND/OR graphs
as follows. Let h(n) be the given estimate
of the cost of a minimal cost solution graph
starting at n. Then the consistency assump-

tion is
if n is an OR node .

h(n) <_ hfn*) + c(n,nj) for each successor ny
if n is an AND node

h(n) < 1 (h(n1) + e(n.n))

With the consistency assumption, it is
easy to see that the evaluation of each node
can only increase at each stage of the
algorithm. Therefore, we can modify the
statement of step (4) of the algorithm as
follows. One step of the procedure of backing
up the graph of the ancestors of node n,
consists of updatino all the parents of a
certain node m. Assume that one of these
parents m; is an OR node. Since the evaluation
of each node can only increase, the evaluation
of node m; will be changed only if node m;
has the arrow pointing to node m. Therefore,
in the procedure of backing up the qraph of
the ancestors of node n, we can consider only
those OR parents of a certain node m, which
have the arrow pointing to m.Note that, even
in this case, a node can be undated several
times during step (4).

last

4) Bottom-up Search Algorithm.

This algorithm finds a solution graph
having minimal cost, starting from the termi-
nal nodes and expanding a node at each stage.
In this case, expanding a node means genera-
ting all the parent nodes of that node. The
algorithm does not use any estimate, thus it
can be considered as an extension of Dijkstra's
algorithm for OR graphs®. An evaluation
function is computed for each node and the
node whose evaluation function is minimal is
expanded. The evaluation function for a node
n gives the cost of a minimal cost solution
graph startina at node n, obtained so far.

The algorithm is based on the assumption
that we have a finite number of terminal
nodes and it consists of the following steps:

(1) Put every terminal node ti on a list
called OPEN and set h(ti) = 0 for every i

(2) Remove from OPEN that node whose h
value is smallest and put it on a list
called CLOSED. (Resolve ties arbitrarily).
Call this node n.

(3) If n is the start node, exit with
the solution graph obtained by tracing
back through the pointers, otherwise
continue.

(4) Expand node n, generating all of its
parents. For each parent n; do the
following:

If n;.
three cases
a) n; is neither on OPEN nor on CLOSED.

Associate with n; the value of the
evaluation function

is an OR node, we can have

k(ni) * B(n) + c(ni,n)

Put node n; on OPEN and direct a
pointer from it to n.

b) n; is on OPEN. Let h(ni) be the
evaluation associated with n;.
Associate with it a new value of the
evaluation function given by

h'(n,) = min {ﬁ(niJ.ﬂ:n; + ctn,,n))

If h(n;) has been changed, redirect
the pointer from n; to n.

c) n; is On CLOSED. Continue

If n; is an AND node, we can have two

cases

a) There is some successor of ; which
is not on CLOSED. Continue.

b) All of the successors of n; are on

CLOSED. Associate with node n; the
value of the evaluation function

h(ni) -i (h(nk) + ctni.nk)):
where the nodes ny are the succes-
sors of n; Direct pointers from n;
to all of its successors and put n;j
on OPEN.
(5) Go to (2).

This algorithm is closely related to the
dynamic programming method. In fact, the
latter can be seen as a bottom-up breadth-
-first search algorithm, which expands all
the nodes according to a fixed ordering.
Our algorithm, on the contrary, expands the
nodes according to their cost, thus expand-
ing, in general, fewer nodes.

An example of search with the given algo-
rithm is shown in Fig. 6. The graph to be
searched Is given in Fig. 5a. The estimates
attached to its nodes are not used by this
algorithm. Figs. 6a through 6j show the
parts of the graph generated after each cycle
of the algorithm. Marked nodes are the closed
nodes and the other nodes are the open nodes.
Arc costs are assumed to be unity and the
numbers adjacent to the nodes are the values
of h. Nodes without an adjacent number are
AND nodes which have some successor not yet
closed. Fig. 6k gives the solution graph.

Note that the graph generated by this algo-
rithm has a simpler structure than the one
generated by the top-down algorithm. In fact,
at every stage of the algorithm, an OR node
has only one pointer to one if its successors
whereas, at every stage of the top-down
algorithm, the complete structure of the
graph has to be retained.

We can show that the bottom-up algorithm
is admissible, that is, it will always
terminate in an optimal solution graph,

whenever a solution graph exists.

Lemma 2. If all arc costs are positive,

then, when a node n is closed by the
algorithm,wehaveh(n)=h(n)andtheoptimalsolutiongraphcan
tracing down the pointers from n. Moreover,

all the nodes m with h(m) < h(n) have

been closed before node n.

Proof. The lemma will be proved by induction
on the stages of the algorithm. The lemma

is trivially true at stage 0. Let us assume
it is true at a certain stage and let us
prove that it will still be true after the
next stage.

Let n be the open node whose h value
is smallest at this stage. This node is
closed by the algorithm. Let us assume
that a node m exists with h(m) <h(n),
which has not yet been closed by the
algorithm. Let G be an optimal solution
graph for node m. Certainly, there is an
open node of G, such that all of its
successors in_ G are closed. It is possible
to see that h(r) = h(r). In fact, if r is
an AND node all its successors are closed
and by the induction hypothesis their h
value is the cost of a minimal cost solution
graph, hence h(r) * h(r).

If r is an OR node, we have
!'-1(1-1 = min {h(ri] + c(r.ri})
i

where the nodes ri are the successors of
r which have been closed so far. But we
assumed that one of these successors belongs
to an optimal solution graph for r, there-
fore h(r) - h(r).

Moreover we have
him} > hir)

since the optimal solution graph for r s
a subgraph of G, and

hin) < hir)

since n is the open node whose h value

is smallest. Therefore we have
h(n) < hir) = hir) = h(m)

which contradicts our hypothesis that node
m has not yet been closed and we have
shown that all the nodes m with h(m)<h{n)
have already been closed.

Now, we can show that h(n) - h(n). If n
is a terminal node, this is obviously true.
If n is an OR node, we have shown above
that, for any successor ni of_ n which
is not closed, we have h(ni)> h(n). There-
fore, an optimal solution graph must contain
a closed successor, because any solution

graph through one successor which is not
closed would have a larger cost. The pointer
is directed from n to the closed successor
n for which (h(n;) + c(n,njl) Is minimal
and, by the induction hypothesis,h(n;)=h(nj).
Therefore, we have h(n) = h(n) and an
optimal solution graph for n can be ob-
tained by tracing down the pointers.

If n is an AND node, all of its succes-
sors are already closed. Since the lemma is
true for the successors by the Induction
hypothesis, it is also true for n.

Q.E.D,
Finally, we can prove:

Theorem 2. |If a solution graph exists and
if all arc costs are positive, then the
bottom-up search algorithm is admissible.

Proof. We prove the theorem by assuming the
contrary. There are three cases to consider:

Case 1. Termination without finding a
solution graph. This case is impossible
because the algorithm can only terminate at
step (3) with a solution graph.

Case 2. No termination. Assume that at a
certain Btage the algorithm closes node n
with h(n) > h(s). This is impossible, be-
cause, according to Lemma 2, node s must
have been closed before and when s s
closed the algorithm terminates. Therefore,
the algorithm can only close those nodes n
with h(n) <_ h(s). But the number of these
nodes is finite, since the arc costs are
positive, and the algorithm must terminate.

Case 3. Termination with a solution graph
having nonminimal cost. This is not possible,
because it would contradict Lemma 2.

Q.E.D.

Refefences.

1 Nilsson, N.J., Problem-Solving Methods in
Artificial Intelligence, Mc Graw-Hill,
New 'fork, 1971.

2 Nilsson, N.J., Searching Problem-Solving
and Game-Playing Trees for Minimal
Cost Solutions, Proc. IFIF Congress
1968, H, pp. 125-130.

3 Chang, C.L, and Slagle, J.R., An Admissible
and Optimal Algorithm for Searching
AND/OR Graphs, Artificial Intelligence,
Vol. 2, pp. 117- 128 (1971).

4 Martelli, A. and Montanari, u., Dynamic
Programming via AND/OR graphs, in
preparation.

5 Knuth, D.E., optimum Binary Search Trees,
Acta Informatica, Vol. 1, pp. 14-25
(1971).

6 Martelli, A,, Edge Detection Using
Heuristic Search Methods, Computer
Graphics _and Image Processing,Vol. 1,
N. 2, pp. 169-182, August 1972.

7 Kaufmann, A. and Cruon, R., Dynamic
Programming, Academic Press, 1967.

8 Dijkstra, E., A Note on Two Problems In
Connection with Graphs, Numerlsche
Mathematlk, Vol. 1, pp. 269-271 (1959).

9 Hart, P., Nilsson, N.J, and Raphael, B.,
A formal Basis for the Heuristic
Determination of Minimum Cost Paths,
I.E.E.E. Trans. SCC 4, N.2, pp.100-107,
July 1968.

Fig. 3 - An AND/CR graph without cycles

J K

Fig. 4 - Two solution graphs of the AND/OR graph in Fig, 3,

"

Fig. 3 - An example of search with the top-down algorithm.

10

! ! ‘//,
» 0 .a .a a Ca .a a 10

@) 2 (<)
7 ! / 2
H &
A
e)
4 J
J <
[
(%)
&
5
2
7
0

Fig. 6 « An example of search with the bottom-up algarithm.

11

