Session 2 Theory of Heuristic

THE AVOIDANCE OF (RELATIVE) CATASTROPHE,
HEURISTIC COMPETENCE, GENUINE DYNAMIC WEIGHTING AND

Search
COMPUTATIONAL ISSUES
Assistant Professor
Information Sciences,
Santa Cruz,
Abstract

To solve difficult problems heuristically,
requires detailed attention to computational
efficiency. This paper describes how a heur-
istic problem solving system, HPA, attempts
to find a near optimal solution to the trav-
eling salesman problem. A critical innova-
tion over previous search algorithms is an
explicit dynamic weighting of the heuristic

information. The heuristic information is
weighted inversely proportional to its depth
in the search tree--in consequence it pro-

duces a narrower depth first search than tra-
ditional weightings. At the same time, dy-

namic wei?hting retains the catastrophe pro-
teﬁtion of ordinary branch and bound algor-

i thms.

Key Words. Heuristic Search, Branch and
Bound, HPA, Traveling Salesman Problem, Bi-
nary Tree Sort, Dynamic Weighting, precon-
ditioning, Heuristic Combinatorics, Artifi-
cial Intelligence, Pruning.

Artificial intelligence can be defined as
the art of computational compromise. Pro-
blem spaces in artificial intelligence are
sizeable and are non-analytic in the sense
that smooth convergence to a solution is un-
available. Hence computational methods must
attempt to use their resources--space and
time--cleverly. This paper discusses a heu-
ristic search procedure for the Travel Sales-
man problem--n! in size, emphasizing computa-
tional efficiency and search organization.

The problem (symmetric costs)

There is a complete graph of n nodes.
Each edge of the graph has a non-negative
length. A tour is a path in the graph
visiting every node once and only once and
returning to the initial node. The length
of a tour is the sum of the lengths of the

edges of the tour. A tour is called optimal,
if among all possible tours, it is the
shortest. Since tours are cyclic, the in-
itial node can be fixed as node 1. The
space of all tours are the (n-1)! permuta-
tions of the nodes 2 through n.

It is well known (Lawler and Wood, 1966)
that ordinary operations research algorithms
require exponential time to solve the pro-
blem. Thus large (n>15) problems are either
solved by branch-and-bound methods or by lo-
cal-refinement methods (Shen Lin 1965) .
Branch-and-bound methods guarantee an optim-
al solution, if they terminate within their
allotted time (of course the method is guar-
anteed to terminate in exponential time).
Local-refinement methods generate solutions
in polynomial time which are not guaranteed
to be optimal.

Heuristic path Algorithm (HPA)

HPA is a general graph search algorithm

IN HEURISTIC PROBLEM SOLVING

Ira Pohl

University of California

12

California

that searches or-graphs using a merit order-
ing. It was developed by this author (Pohl
1969, 1970) to generalize the methods of
Doran and Michie (1966) and Hart, Nilsson and
Raphael (1968). The critical difference from
the latter's algorithm A* is the use of a
weighted merit function f(x) (I-w)g(x) + wh
(x), 0 <w < 1 (see Table 1). Suitable gener-
alizations of HPA have been used by Kowalski
(1969) and Michie (1972) for resolution theo-
rem proving. In this domain, Kowalski's
criticisms (Kowalski 1972) are especially
astute. He notes that "diagonal search
strategies" (his term for w ~ 0.5) have a
critical defect. They investigate all equally
meritorious alternative paths. In difficult
problem spaces where any solution path is de-

sired, this procedure is inappropriately
breadth first.
Computational Catastrophes

When a computational procedure is forced to
terminate having used up its time and space
resources without finding a solution--this
will be called a type 1 catastrophe.”

When a computationaT procedure terminates
with an insufficiently good solution—this
will be called a type 2 catastrophe. This
type 2 catastrophe can only occur in problems
tthat have an ordered set of feasible solu-
ions .

Examples: Type 1 catastrophe occurs all
the time in artificial intelligence research.

An early example was SAINT's failure on 2
integration problems (Slagle 1961). A typical
Type 1 catastrophe is the failure of a resolu-
tion search procedure to find a proof within
a preset level bound.

Type 2 catastrophe can only occur in pro-
blems that require "best" solutions. The
simplest local refinement strategy for the
Traveling-Salesman problem is the nearest-
neighbor rule (1-opt in Shen Lin's terminol-
ogy) . The rule is to select the nearest node
not yet included in the sub-tour. Using this
rule on the graph in figure 1 leads to a very
bad tour, a type 2 catastrophe.

Other examples of type 2 catastrophe are
not generating the only winning or drawing
move in a game playing program, or remaining
on a "heuristic plateau"” (Minsky 1961), which
is distinctly sub-optimal, in a problem space.

Over-relaxation,
weighting

When using HPA to solve various 15-puzzle
(see figure 2) problems, it was found that
values of w > 0.5 were most efficient. This
weighting of the heuristic function no longer

admissibility and dynamic

guaranteed "admissibility", i.e. a minimum
length solution. The overreliance on the heu-
ristic term is called overrelaxation because

of the analogous technique in the

*Space
uished

and time catastrophe will be disting-
as separate types in a later paper.

computational solution of partial differen-
tial equation problems. The weight w was set
to a constant using previous experience to
obtain an efficient setting. The 15 puzzle
experiments demonstrated the computational
utility of overrelaxation. However, these
solutions were rarely near the minimum length
solution. In the traveling salesman problem
this type of search would result in type 2
catastrophe.

To avoid a type 2 catastrophe, HPA
would like to retain admissibility or at
least be within a known percentage of error
(Pohl 1970). This can be accomplished by
using a technique to be called "dynamic
weighting". Dynamic weighting makes w a
function of the state. HPA now uses f(x) =
g(x) + w(x)h(x) where 1 < w(x) * «,

Let x be a state in the search for a tour.
Let the depth (x) = the number of edges in-
glufqed in the subtour represented by x and
efine

wix) = (1 + e - & * depth (x)).
n

8 =1, depth (=)

wis) =14+ e

if x is in [(s} then

X = . 1) depth (x) = 1
wis) = e -e

g(® = 11y {length of edge (1, i)}

The effect of having w decrease with depth
is to insure a depth first search, if and
only if the added cost decreases within ever
tighter bounds. If at some point in the
depth first search a type 2 catastrophe were
to occur, the search would revert to ordinary
branch-and-bound behavior. The dynamic
weighting provides incentive to proceed in a
depth first manner provided no unforseen in-
crease in cost occurs. The resulting solu-
tion is within (1 + e) of the optimal solu-
tion (see appendix for proof) .

~
-

Heuristic Estimators for the Traveling Sales-
man_Problem

There are several known bounds on the
Traveling Salesman Tour. One is the Assign-
ment Problem (Lawler and Wood 1966) , and
another is the Minimum Spanning One-tree
(Held and Karp 1971) .
in my experiments on symmetric distance pro-
blems (i.e. undirected graphs) is a variant
of the Little estimator (Little, et al 1963),
to be called the in-out estimator.

The Traveling Salesman Tour is the minimum
weight connected graph, whose nodes are all
of degree 2. The assignment problem is the
minimum weight graph whose nodes are all of

degree 2. The minimum spanning tree is the
minimum weight connected graph. A 1-tree is
a minimum spanning tree over nodes [2,...,n]

with the addition of the two shortest edges
out of node 1, In the case of the assignment
problem a solution graph may be a set of
cycles. In the case of the 1-tree a solution
may contain many nodes of degree not equal to
2. Each relaxes a constraint of the Travel-
ing Salesman Problem, hence each contains
many nodes of degree not equal to 2. Each
relaxes a constraint of the Traveling Sales-
man Problem, hence each contains the solution
of the Traveling Salesman Problem as a feas-
ible solution. (see Figure 3)

The

in-out estimator, due to the author,

A third estimator used,

13

is particularly simple to calculate. It is a
lower bound on the Assignment Problem, but
whege an assignment problem is calculated

this bound ia calculable
steps given that the edges are
in sorted order. The in-out estimator is cal-
culated by summing the 2 shortest edges out of
each node not already included in the subtour
and such that these edges are not connected to
interior nodes of the subtour. This sum is
added to the shortest edge out of each end
node of the subtour, and the total divided by

in

o0y spene

2. The in-out estimator is easily seen to be
a lower bound on the remaining length of a
tour from the given subtour.

Example:

let x be the subtopur
ABF
then A and F are end nodes and B is
an Internal node with
glx)= 2 + 3 =5
in-out (%) = 0.5 2+ 2+ 2+ 2+ 2+ 3+
c D E
1+ 1)
F A
FDCEA 1s the best remaining order for a true
cost of 10. The in-out heuristic like the
one-tree bound in computed in linear time
when the edge lengths e&re previously sorted.
Experiments, at this time, have been
carried out using a hybrid heuristic function
and dynamic weighting:
f(x) = g(x) + w(x)} *
if (x) > hy {x)} then hy (x) else hz(x),

where h1 is the in-out estimator and h2 is

the one-tree estimator. The experiments on a
20 node graph of known difficulty (Croes 1958)
showed clearly that dynamic weighting found
near optimal solutions relatively cheaply when
compared to ordinary branch-and-bound using
the same heuristic estimator (see table 2).

Additional Computational Techniques for

In-
creasing Search Efficiency "

The candidate set is kept as a sorted bi-
nary tree, where merit (left son) < merit
(parent) < merit (right son). The next node
to be expanded is always the left-most node of
this sorted candidate set. New nodes are en-
tered into the tree in approximately log, (m)

time, where m is the size of the candidate
set.

The bound on the tour is initially the
best nearest-neighbor tour. Such a nearest-
neighbor tour is generated using each node as
a starting subtour. During the execution of
HPA this may be updated by a tour found in the

course of expanding depth - n- 5 search nodes

The most important savings are obtained
from preconditioning the edge lengths. The

edges are sorted by length which requires

0 (n2 log, n) steps. Furthermore, the edges
are stored in completely sorted order and in
sorted order for each node.

1 rsortj points at a triple (j, k, m) and
means the edge (j, k) of length m is the
ith smallest edge in the graph

2 order (j, i) is an integer k where edge
(j, k) is the ith smallest edge originat-

ing at node j
The one-tree and in-out computations only re-
quire linear time when the edges are already
sorted by length. This reduces these compu-
tations from quadratic time; at the expense of

a single (n log, n) computation and extra
storage for the sorted lists. In all cases an
overall saving will occur because at least

9
0 (n) heuristic functions need to be calcu-
lated.

Summary

An important guiding principle in heuris-
tic programming is the avoidance of catas-
trophe. This principle overshadows its com-
petitor--the pursuit of the optimal solution—
as a pragmatic guideline in large search
spaces. The whole notion of min-max ration-
ality in game theory is an explicit axiomati-
zation of this conservative rule.

A dynamic weighting approach
computationally efficient in obtaining near
optimal solutions to the Traveling Salesman
Problem. It offers a highly depth first
search along with guarantees of avoiding type
2 catastrophes.

is proving

References

1. Lawler, E.L. and D.E. Wood
Branch-and-Bound Methods;
tions Research v.14, no.4,
July-August 1966.

Lin, S. (1965): Computer Solution of the
Traveling Salesman Problem, Bell System
Technical Journal, v.44 no.10 pp.2245-2269,
December 1965.

. Pohl, I, (1969): Bi-directional and Heur-
istic Search in Path Problem, SLAC report
no.104, May 1969.

Fohl, 1. (1970): Heuristic Search Viewed
as Path Finding in a Graph, Artificial
Intelligence v.l pp.193-204, 1970.

(1966):
A Survey, Opera-
pp.699-719,

Hart, P., Nilsson, N. and Raphael, B.,
(1968): A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, I|EEE
Trans. System Sci. Cybernetics v.4 no.2
pp.100-107, July 1968.

Kowalski, R. (1969):
for Theorem-Proving,
gence v.5 pp.181-202,

Search Strategies
in Machine Intelli-
1969.

. Michie, D., Ross, R.
(1972) G-deduction,
gence v.7 pp.141-165,

Kowalski, R., (1972): And-or Graphs,
Theorem Proving Graphs and Bi-directional

and G.J.
in Machine
1972.

Shannon
Intelli-

14

Search, Edinburgh School of Artificial In-

telligence Memo no.56, July 1972.

9. Slagle, J. (1961): A Computer Program for
Solving Problems in Freshman Calculus
(SAINT), Lincoln Laboratory Report 5G-001,
May 1961.

IO.Minsky, M. (1961): Steps Toward Artifi-

cial Intelligence, Proc. IRE 49, pp.8-30,
January 1961.
11.Held, M. and Karp, R. (1971): The Travel-

ing Salesman Problem and Minimum Spanning
Trees, Operations Research v.19, 1971.

12.Little, J., Murty, K., Sweeney, D. and C.
Karel (1963): An Algorithm for the Travel-
ing Salesman Problem, Operations Research,
v.ll pp.972-989, 1963.

13.Croes, G. (1958): A Method for Solving
Traveling Salesman Problems, Operation Re-
search v.6 pp.791-812 (1958).

14.Camerini, P.M., Fratta L., F. Maffioli
(1973): A Heuristically Guided Algorithm
for the Traveling Salesman Problem, Insti-
tuto de Elettrotechnica ed Elettronica del
Politecnico de Milano, Memo 73-1, 1973.

Appendix

The Heuristic Path Algorithm - HPA -

A problem space is a locally finite direct-
ed graph G.

G: X - (x,, x2, x3,..),
nodes and can be infinite
E: Axq, Xj) I xi [Xj ¢ X, Xj € T (xi)},

E is the set of edges and can be infinite
but locally must be finite, i.e. | T (x.)

I ¢« N - the integers.
{ is the successor mapping

f : X -» 2%, the mapping of X into its

power set.

In using directed graphs to specify pro-
blem domains, the nodes are interpreted as
problem states and the edges are operators for
transforming states. In the traveling sales-
man problem, a node may specify a sub-tour of
k cities, with the operators being the addi-
tion of a city not already contained in the
sub-tour. In game playing the edges are legal
moves, and in theorem proving allowable infer-
ences .

A problem consists of finding a terminal
(solution) node given some starting node. The
solution would be the explicit terminal node
together with the path from the starting node.
In certain cases the complete search tree gen-

X is the set of

erated in finding the solution path is a proof
that solution path is optimal. An algorithm
conducting such a search succeeds, if within
the limits of its computational resources, It
reaches a terminal node.

Heuristic Path Algorithm - HPA

s = start node, t = terminal node, x = any

node

- x -» RT (non-negative reals), the cost-
to-date of expanding a node x from s

h: x -> R , an estimate of the remaining
cost to a terminal node t - heuristic term
f(x) - (I-w)g(x)+w-h(x) , O w |
< <
- evaluation function

For each edge in the graph, there i8 an as-
sociated nen-negative real, its cost or lemgth
e

ij
4 dS = set of nodes already visited and expan-
=]

¥ - set of nodes one edge away from nodes
in 5, but not themselves in S--~the candidate
set,

1. Place & in 5 and calculate T (&), plac-
ing them in 8. If x ¢ 7 {s), then g(x) =
Cox? i.e. the cost of going from s to x.

2. Select n ¢ § such that f£(n) is & minimum
3. Place n in 5 and [(n) in 5, discarding
any nodes already in SUS. Calculate f for

each new member of S, If x ¢ I' {n), then g(x)
= g{n) + cnx'*

4. If n is the goal state, then halt other-
wise go to step 2.

Theorem: HFA with dynanic welghting func-
tion, f(x) = g(x) + w(x)h(x), where 1) h({x) is
a lower bound on remaining cost, 2) w(x) = (1
+ e - e * depth (X)), 0 < e <1, Ls @aranteed

n

ta find a solution within (1 + e) of the opti-
mum.

Proof: Note, when e = D we have the Hart,
Nilsscn, Raphael theorem.

Let m be the tour length found by HPA using
a given e. Let L be the length of an optimal
tour. We must show L{1 + e} > m.

Assume m is not the optimal length _znd that
node x 1s the leaf node, i.e. in set &, which
represented a subtour ¢f the optimal Ltour.
Then f({x)} < m, otherwise HPA would not have
quit.

£(x) mg(x)+(L+e-erdepth(x)) h{x)

)
f(2)<g(x)+(1+e) *h(x)
h(x)shp(x) where hP 1s the true remaining

cost
fQ@cg(x)+(1+e)*hP(x)

g(x)+hp(x)+e*hp(x)=L+e*hp(x)*
L+e*hp(x)<L(1+e)

som g £(x) < L(1l+e), hence
m is within (l+e) of the optimum.

*Admissibility 1s retained only when g(n) =
{n}, otherwlse cne must retain the minimum

length path from s to n.
*g(x)+hp(x) = L (see theorem 6, in reference &

FIGURE 1.
Type 2 Catastrophe
2
C
=X
=Y F

Nearest neighbor rule gives the tour ABGC FEDA,
length 513 instead of A EF C B D A, length 1B.

FIGURE 2.
15 Puzzle Searches by HFA

A7 {designation In Pohl 1969)

1 4 2 3| starting configuration

6 5 811

14 912 15

10 13 7

v nodes expanded | path length

0.5 1000 - Elves up
D15 iz ki

0.89 431 62

0.94 279 62

1.00 516 80

h (x) is the "P (x)" function described in Doran
and Michie 1966 or Nilsson 1971 pg. 66.

The minimal length solution 1s 32,

FIGURE 3,
Various bounds to the graph presented in the text.

minimm 1-tree solution
coet 12

minimum in-out solution
cost 12

{numbers in parentheSeS refer to how many times an edge 15 chosen
this estimator).

assignment problem solution
¢%C13

Traveling Salesman Tour - cost 13

TABLE |

Various Algorithms Classified in HPA Terms

Weight in HPA terms

w=(Moore

Algorithm

uniform edge lengths

Dijkstra arbitrary edge lengths

we=1l Doran-Michie Graph Traverser

w=k H. . N. R A
Branch-and-Bound algorithm
- when h is a lower bound

Ogwesl Poh1

Zos e <1 Poh1

HPA

Dynamic weighting

E(X) =g (x) + (L + e - e*depth) h (x)
n

TABLE I

Results of HPA

Croes graph (20 nodes)

Best solution from 20 different
nearest-neighbor solutions

HPA with dynamic weighting
e = 0.6

HPA with dynamic weighting
e =04

HPA without dynamic weighting
(same as A* or branch-and-bound)
Randomly generated complete
graph (32 nodes)

Best solution from 32 different
nearest-neighbor solutions

HPA with dynamic weighting
e - 0.6

17

knowi optimal length 246

length 308

length 260
nodes expanded 53

nodes expanded 474
length 253

nodes expanded 500
- gives up

length 270.09

length 217.34
nodes expanded 71

