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Abstract

Though evaluation functions have been used in many
game-playing and problem-solving programs the aim has
generally been to construct suitable functions for
particular situations. A formal framework is outlined
in which general properties of evaluation functions
can be studied. An application of these concepts is
made to the study of when decision rules (as exhibited
by a players actual play) can be represented by
evaluation functions

1. Introduction.

When computers have been used to play games such
as chess, checkers etc., explicit use of evaluation
functions (most frequently linear in form) has usually
been made. They have also featured in the solution of
non-game problems’. In other cases a decision rule for
playing games (and solving problems) has been used, but
it is shown in 3 how decision rules are in many cases,
equivalent to the use of suitable EF's (from now on the
abbreviation EF will be used for evaluation function).
EF s have been used in many circumstances and in vary-
ing ways and lie at the heart of programming machines
to play games and solve problems, and their importance
was stressed as early as 1950 by Shannon?. However, on
the whole they have been introduced for specific
applications and their meaning and properties neglected
other than that a position or state with a higher value
is likely to be a better one.

It is the purpose of this paper to introduce a
formal framework in which a general study of EF's can
be made. The full length version of this paper shows
how this framework can be used when studying existing
techniques and how it is potentially useful for intro-
ducing new techniques. In this paper the basic concepts
of EF's are presented and then a single application
is choBen for further consideration, namely the study
of when a players actual play can be represented by
an EF. The main results are given in Theorems 3.1.3,
3.2.4 and 3.2.2.

2. Basic Properties of Evaluation Functions.

A game usually consists of a set of definite states
together with transitions between them. Consequently it
is natural to represent a game by means of a directed
grapht' (X, P) whose vertices correspond to the states
or position! and whose arcs correspond to the possible
transitions or moves. However, it may be of importance
to consider the development of a game (or the nature
of the solution path in problem-solving) in which case
the more usual formulation in terms of a (rooted) tree
(V, T) is likely to be advantageous. (V, T) can be
obtained from (X,P) by starting at the root (the start
position) and'growing' the tree according to the
successor mapping except that a vertex is never
identified with a previously considered one. (X, P)
will be used when the discussion concerns graphs (and

For graph-theoretic concepts see Berge®.
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alsc trees ns & specinl case) and (V, T) will ba used
if trees only are involved.

The gemes considered in this paper will be 2-person
games with a fixed start position between players whom
we wame MAX and MIN, Moreover, it will be assumed that
the games are finite in the sense that their game trees
have u finite pumber of vertices, that MAX always has
the first move, and thereafter every other move, Most
diacuswions will be in terms of the gawe as seen from
MAX*s point of view, Certain vertices of (X, ') will
correapord Lo w state in which the game iw over. These
vertices, called terminals, will have no successora,
and a final aet is defined by

F= [zl Mx = *],
In a game between two players there will, in general,
be weveral different pay-offs {(frequently "win®, *drav
and *loss’ ), that j» there is defined s function

1: F- L

where @ ia the pay-off sei. Nowever, once a terminal
ponition has be¢n reached the smituation is clear, and
what in really required is some means of assesying non-
terminal positions with rempect to the likely ocutcomen
from thowe positions,

A value can (in principle) be nsaigned to sny
vertex by backing-up from the terminal vertices uming
some suitable procedure. However, the moat commonly
used procedure (the minimax procedure cf. $2.1)
rejuirea maxise &md minima to be found over subwets of
=, and 80 & must possess an order structure, The
minimpe requirement, to avoid *inconsistencies?, is
that { should be weakly orderwd. Other backing-up
rules may involve the use of probability combinmtions
<ujp]¥> (representing the gamblie in whichk u is chosen
with probebility p amd v with prebability 1 - pl.
For such ceses it is sufficient for the von-Neumann-
Morgenstern sxioms® to be satinfied over the set of
gamhles @'.

It im pownible {0 find am corder-preserving
function @t —+R (or (P*-R) where R is the set of
real nuambers, and nothing is loat by replacing values
agf (or %) by the values @ (a ). In what follows
it will be aserumed that this transforsation ham been
made, and that all pay-offs are resl numbers.

2,1, Eyaluation tunctions,

Backing up procedures are used to obiein values st
nen-terninal verticea, that is to extend the mapping
A: F+ R tos mpping W: X =R witk rL'I?,.
It is cenvenieni at this point to define tao subaetia
of X as follown,

Definition 2.2.1. The maxset X' jg that eubset of
at which it is MAX’s turn to malke & move, The
minset K™ is that subaet at which it is MIN*s tarn

to male & move,

The following resnlt is immediate,

tiy X"uX"=X
(i1) X"aX"#¢ if (X.[) has 0o
cycles with an odd mmber of arcs,

Theorsm 2,1.1,



Por game graphs (X, ) matistying X", X" = ¢,
A* oan be extended as follows:

1. Xx) = A if xGF:

2. Suppose AXy) is lmown for all ya['x then
(1) M0 o pmr Wy it xex
Gi) Vo = min Ty if xeX

2™ formed in this will be called the minimax
extansion of A and will be denoted by L __Tn the
cast of game trees the above procedurs ia jumt the
familiar minimeax rule. However, with the above
formulation, it is easily seen that the minimax
extansion can be formad for any gawe graph satistying
X"a x™s . (Boftey* given a fuller discusmion of
the class of graphs over which ithe minimax rule ia
applicable), -

From now on it will be assumed that all graphe
satisfy the conditien x”nx'&p unlesn otherwise
wtated.

Although, in principle, such backing-up can alwaya
be performed over a game graph this is not, in general,
practically feasible. For example Good” catimates
that there mre about 10* possible chess positions
ard 30 the associated game graph will have 0%
vertices. In wuch cases estinates of the values of
pomifions encouniered may be considered. These lead,
in principle, to & function f3 X =R {where R is the
set of real rs} auch that f in some aense
approximatea Ay,

Definition 2.1.2, An cvaluation function (abbreviated
EF) over a game graph (X, {') is a single valued
function f : X =R,

It 2(x) > t(y)
y (under f),

then x is said to be better than

The merits of a particular EF will depend upon the
way it is to be used. If it is suspected that the EF
18 a good approximation to ARy (in a sense to be
wade more precise below) and the opponent im a *minimax
like' player then it is natural to use the lt.rntngyA.
where

Dofinition 2.1,3. 4,
a move xy*

is that strategy which leads to
being made from powition x where

"
f(y*) = m fiyy it xtX-,
and  f{y*) =;=§_2 f(y) if x€X.

Ties for y* are broken by some subaidiary rale,

Definition 2.1.4. EF*s
equivalent if
fix) > f(y) whenever gix) > g(y)

where x,y&Mw for some weX. f is locally perfect
if it in locally equivalent to Ay

f and g are locally

Theorem 2.1.2, Using strategy A, locally equivalent

i3 lsad to the aame play, provided the same subsid-
iary rule is used %o split tiss. A locally perfect EF
leads to optimal (minimax} play.

2.2, Probahilistic evaluation functions.

The shove discussion is relevant to the nitvation
in which a player always chooses the sams move from
a given poaition, However, in pructice this will
geerally not be the came, a player?s move depending
partly on his assessment of his cpponents ability and
tewperanent, partly on his frame of mind st the time
of the pame amd partly on other factors such as a draw
in tha lmst rount of a tournamsnt being aufficient to
wicure firat place. A Playsr will also wary his play
simply for the sake of variety. Although the definitien
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of o game could be extended to incorperate “environ-
mental® factors this will not be sttempied bere,
Instead o model im chosen which will allew players

to use wvariable strategies with the actual choices of
moves being governed by probability distributions, Such
a model provides e gemeralization of the usual concept
of a;te-ud goma=playing and will be discussed further
in 3.2,

It is now appropriate to relax the constraint that
each position mheuld have a single valur associnted
»ith it, and to Teplmce thizs by the condition that sach
position has a probability distribution attached to it,

Definition 2.2.1., A probabilistic evaluation function
TPEF) over » game graph (X, I°) is 2 bounded
function p; X x R 2R, with pin, w30,

Jrogmde a1

eutaide some finite range

snd pi(x, ) =0
nix) {r€rixd

p{x, r}r can be interpreted as the probability
that the walue of x, now denoted by vw(x),, lies in
the range r < v{x)p < r + dr. When required vi(x)
is obtained hy selecting, at random, a number from the
distribution p{x, ). Now jowt as for EF's, a PEF in
meaningless unless a sirategy for its use ia apecified,
¥e shall only consider sirategy .«d:, the analegue of

Defipition 2,2.2. ,4: is that strategy which leads t{o

& movs xy* bheing made from poxition x where
v(y*)y = -'“,xv(y)r it xex"
v(y'), - ‘:ﬁﬁ.'(’)' if zeXxX™

Netice how the succemsor positien y* welacted by
A: can vary from game to game due to the fact that
the v(y)p are atochastic variablea,

§3.2 is devoted to & atudy of how PEF's can be umed
to represent actusl play,

3, Decimion Rules,

Game graphs are usually very large and game trees
tend teo be even larger. It is therefore (as noted in
$2) not in general feasible to consider the whole of
(X,I") in order to derive values of ;{t,‘. Conna ider
for example the came where (X, J*) im a tree with a
conatant branching fector b and conwtant depth D
(ie, every path frowm the root of the tree to a leaf
contains D arce), Then the final aet F will contain

elements and mpre than vertices will have to
be conaidersd in order to obtain %‘;‘(SJ. On the other
hand » decision rule, which cen be applied at any
vertex, need only be appliad D times during the course
of & single guwe, Thus for a single game the ratioc of
the amounts of computation required by the two
approaches ia leas than kxD: W where k iza
measure of the affort involved in a single application
of the decimion rule, It follows that the decimion
rale requires much less computational effort teo apply
it k is net too large.

Sometimes a decision rule way he implicit, as ia the
case for exaxpls when one im observing the play of &
master (whether directly or from written records) with
a view to impreving ones own play. In this situation
it is relevant to pose the following question:~ how
can the underlying decision rule as sxemplified hy the
masters observed choicem of moves be characterized,
amd under what circumstances gan such s j.;ciuion rule
be repressnisd by an EF {(with strategy .fOg). Although
the manters play is likely to be observed over only a
emall subset of all powsible positions, the wore



constra Lkd problam of astablimning the sxistence of
an EF to represdnt a decision rula over the whole of
,M} will be tackled.

3.1. Representing the decision rule of a constant
playsr.

A mapter will in gameral not always play the same
move from a given porition (for axmmple a chese player
who liles to open P-4 1f liMely to vary his play
by somatlmes opaning P=it or P-4B4 atc,). Such play
wlll be termed variable nlay and is treated in §3.2,
in this mRection it will ha assued that at B given
poeiticl n playsr will always ma)e the same move.

Petinition 3,1.1. A (constant) decision rule or
prefersnce fuaction for HAX is a single valusd function

O X =X with dh(x}&x. x - g (x) is MAX"w
prefarrad mova from x.

A preference function O for MHIN can be defined
ta an AanAlogous way.

Refindtion 3,1.2 If 44 wKt 45 are prefarence

functions for MAX end MIN resnectively then
a = (o ,d%,) 1s termed a (congtant) prafereuce nair
on (X,P).

finition 3.4,3. [ w,ve€X wud & 13 p preference
pair oa (X, [P, then u B v il mud only if there exists
rn elemnt t & X such that

(1) u,v g Pt;

(11) u =gyu(t) or v =g (t).

Dafinition 3.1,4. AnEF f ovar (X,T) reproduces
n preferenca pair o (with respact to stratagy z.) if

£{x) » £{y} whanever x ). v.

It up.v then u may be salid to he directly
nraferrad to v. Howsver for consteant play mnd rapras-~
entation of a praference palr by an EF it i neceszary
to cons iler indirect preferviwes aikl this motivates
the followling definition,

Perianition 3.9.8, If u,v E X uiud & is & preforence

peir on (X,[1) then u % Vv if and only if there
18 & SOQUBNCE N = Wy, W ,ea., Wy =V such that
e, L=t 8

A preaferaince pair induces sn wrdering on the set
X. However, since jiot all pairs of vertices will be
comparan it i found that 1t ia sufficient for the
ordering to he nartinl as is shown hy the followiug
two thenraes.

Theoram N 4.9, Given g partinl order relation Q over
a finite set Y then thare exists a wanping 'f’: Y + K
such that

(€8]
(1i)

V) 2 Py 1t xy
'y(x) # '}V(y) 11 X # y.

Theorem 3.1,2. There exists an EF % over (X,I")
which renroiuces thm nrefersnce pair o 1 sand only
42 2% is @ vartial order relation on X. (u 3 v
aquivalant to {u v or u=v))

iE

Proof. The naceasity is claar.

The sulficieacy follows Irom Theorem 3.1.1. by
teking § to bm the relation 3% and f7 to bes the
functinn ?

Corollary. If o is e prefersnos pair over a tres
(¥, T} then there always exiets an BEF T which
reproduces .
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al"l(’(' u) = 0,

&(V, ¥y =40,

Proof. For a tree the relation pr Teduces to B, Wd
is always & partisl order relation.

Tiw sbove result is appropriste to the caae in which
the strategy ..J. 15 being used. Howsver, EiTategies
involving lookah®ad are frequently used and so we, turn
to tha problem of finding an BF f£* so0 that f:"'
reproducns the preference mair o .

Iheorem 3.1.3., If 6 is n preference pair over a tres
{V, T} then there sxists an BF 2" over (¥, T) s=such

that 1, reproduces o for each d > 0.
procf. Two functions
‘a-n:v"xv"‘-{u, 1}
&n: Vel i fo, 3.
asbociated with g~ are defined by
1t Ty x, Op(x)} = t
G (apty), vy =1,

u @y (x) and
1 v & q.(y). and

o is now defined Ly

() ) = 0; .
(11) ) = $7x) + GRix, w1 ue'x & V™ (.
(111) P70y = By) gy, ) 12 v efye vt

and clearly reosroduces O°.
In order to nrove thet 1% hes the desired
properties we firat show that for all x4V,

?J"(x) = ?"(x) it j = 2k (n')
=20+ (4 ag 3= 20 4t
where =& = U if xﬁ\’" and 1 1t x €V™. An tnductive
proof will be given, in which He donotes the

hypothesis thet the aquations (A) above are true
when k= r.

Piratly, Hy 35 true since 25 = 1% ana
¥ x) = max Py =Ty +1 i xev™
W) e min T =« oo -1 it xev™

It will now be shown that He 1implier Heyy,. If
xIV“_. then
P t) = o g 2500 = mip 7700 oy b
-~
= max (T7(u) - 1) = P00
and similar reasoning shows that T Lwa(x) = ™o

if xav™ By usinghl.lnilar arguments it is aleo
readily shown that f awy(x) = T9(x) + (4} &nd hence
Haoy) follows 1f He is true, 1t 15 coucluded thet
Hy is true for all r > O, -

reproduces ¢ and hence f g must aleoc reprod-
uce o~ if d is even. If d is odd S ana I
differ by & constant over V' and by n dif ferent
constant ovar V™ and so0 i raproduces & since
doas. The fact that f: and T gifier hy differant
constantg over V7 and V& iz immaterial since an
slemsnt of V™ 1s pever compared with mn element of
\*‘.

i

It has thus besn eetahlighed that there exists an

EF T€over {¥,T) puch that ?: reproduces ¢ for
all d = 0.
For a geme graph (X,[*} the situstion 1s more

rartinl
higher
Howaver,

complex since tha conditicn that 3% be &
ordear relation is no longer sufficient and

order consistency relations' mre raguired. if

T For any BF g, g, will denote the d-th derivad
EF, (that is the EF obtained by backing~up, using the
minimax ruls, ovar a lookahead tree of depth d).



the definition {F)} given in thu proof of Theorem 3.1.3
ragults in ?* Lelug defined unambiguously over X
thes 9% renroduces o over (X, P).

Sunposs @ is & prefereuca palr on a granh (X, M)
amnd let P lwm A& math from vertex x to vertex y amd
Cy be {(the number of mrcs nf X corresponding to
preferred wwwves for M nings the umber of ures of
corregnond Lig to preferrad javes by KIN)  then s
definltion of conEistency can he glven as follows,

Definktion 3.t. 4. o 16 fully consistant if Cx, = c«'l'n.
for any peir of paths W,m, with the same sndpointa.

haoram 3.1.4. £ & 18 a fully coasistent preferouce
pair on (X,J*) then thera exists an BF 27 ovar (%, )
Buch thwt ?"" rentraducas o Tor all  d » O

Proof. Since & is fully congistent it is eeslly sesn

that definition (F) of Theorem 3.1.3 with X replacing

Vv  lemds to an unambiguous definition for . Tha

rast of tha nroof closely follows theat of Theorem 3,1.3,
It may e uotad that tha condition that X™ax™=

ie aeE@.atiel £or thin proof.

3.2 Renreseuting the decislon rule of a varimble player,

As discusped in $2.2 & playjer tends in prectice
t0o vary 1ip play, Rud so attentioi is now concentrated
oo Rtudying Low variable play call he simulated by the
usé of PRF?s, First, variahle play iweds to be formal-
ized aml the following definition 18 presanted.

Pafinition 3.2.1, A (varinble} preferance function for
MAY i s aingle-valusd function Tut XTx 1‘)(" -1

where I is the unit interval
1= fx [0 <x < ‘l}
and
(i) Tpx, uy =0 it uw @ Px
(11} Tyuix, u) 2 @ i uelx
(1) ST, w =t
WM
THx, u) asn be thought of as the prohabllity that,

when i position x, WAL will chooss to move to
position u. A varialhle praferance function T for MIN
can be defined 1a an ADATOROUR way.

Definitlon 3.2.2. 1f T, anl Ty are variahle preference
functions for MAX and MIN remmectivaly then T = (T,,T,}
i& termad s (variable) preferance nair on (X.I" ).

Detinition 3.2,.3. A PEF ¥

preforence pair T if
FMix, u) =Tulx, w)  all %€X" and all v €lx;
Fix, u) = Bix, u) all x€X” maall uePx,

whare 7TU(x, u) denctas tha probability thet, using
pT, the move x*u will he selescted.

rencnduces & variable

Thaoram A 2. 1. For each preference pair T on A tree
(V, T) there oxists a PRF n* which reproduces T .

Proof. Let x&V™ apd Tk =fu .. , 4. Then
assuming the form of p%*(w, ), the distribution
Attaciwd to u,, hae bean decided unon it remains only
to smcify the means

™ :f-rr‘(u“'r)dn-
such that
: Frix, ug) = T lx, uyp) ()

The My will e fouwd by using an inductive nrocess.
iat Hy Do tiw hynothesis that My 1= t,.04y BE ORN
e fouwl such that

1=1,...,.,5.
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e, u) 8T (x, u) 1atf,...k
wl) 1= k,...,8

(B; )
(By)

By is sasily setiafied by setiing My, J >k tobe
fufficiantly small, end hy using continuity arguments
it is clear that Hz 25 trus, It remeins to bs shown
that Hy, impiies H,, .

Lat ‘:1'5 be chesen so that By is satisfied and let
M=y, combination of the distributions r*(u,, )
end T¥{u,, )} 1is e Tew distribution, p® say, which
satisfies the conditions of Definition 2.2.1, and 50 by
Hz:a’}"i:fﬂ?)’ i=3,,...,k# emn be chosen such
that

TR, up) = !"L'“(x, )
= 0

1=3,.000,kt )
1> ke,

Defining
POp) = (W, u) =My, u,))
- (1"(x| u') - Th(x; u‘))

than, ?(y} > U for sufficiently swmall b4 and
’(?) < U for sulfficiently lerge P, Since g in
clearly a continuous function of » it follows that

there exists & value of &uch that (™) = 0,
fhare e 7ot p % of

Xix, w} - 2{x, uy) =
and since the e lations

Tﬂ(xn \-l.} - TH(X, U')
(<)

(D)
are maintaived throughout

T(x, uy) + Tx, uy) = Tpix, u) + Tlx, u)  (E)

From (D) and {(E} 1t follows that

'Jt'(x, u‘) = T"(l, ut’ 1= ', 2
and this together with (C) establislws the truth of
Wpsy. It follows that Hyg 4is true, all k > 0,

A similar result holds for nocitions y &V™

thare exists g PEF  1n% which reproduces =T .

gnd 8o

Theoram 3.2._2. Far sach varipble nreforence peir G
over n tren (¥, T} there exists « PEF NT such that
By T reproduces <€ for all 4 O.

Eregl- The nroof will proceed inductively. Hw iE the
hypothasis that there exists a PEF T guch that 7%
raproduces € for 81l U < d < m, then by Theorem

3.2,f. Hp is trus and it remains to proof thet Hy,
implies Hpyy -
el
et ["x={u...“.., u,], U = u; And p be

a PEP satisfying Hs, . Then, if the transformation

p“f: r)=n (Yn re= "‘J
=p l{y, 1)

of alsc BRtiBfiss Hy, Damalz, )
ditfers from ., (2y r} for each wu_, but for no other
poeitions. The ©an now be chosen (in a way similar
to that used in the proof of Theorem 3.2.1) so that

Rx, w) = Tolx, w) (A)

where  '(x, y) 15 the probebility of meve X-»ug
being selacted whan using p'. A similar stetement for
noaitions x&V™ follows by anslogy, and hence the
result follows.

In tha sbove two theorsme the restrictions placed
unon the distributions attachsd 1o the veriices of the
trea were weak, and in practies it would probably be
roasonable to restrict onaself to the rectanguler

Yy & U
otherwise,
is applied,

t mt,,...,6

1' ‘$" denotes the d=th derived PEF of v,



distributions

plx, ) =1 I My~ 27 g ¥y
=0 otiwrvise,

For game graphs (X, T%) which are not trees the
situation is much more complex. It is not even clear
as to what constitutes a sufficient condition for the
existence of a PEF which will reproduce a preference
pair though It seem that it is heavily dependent on
the geometry of the graph.

4. Summary.

Evaluation functions and the more general probab-
ilistic evaluation functions were introduced in $ 2.
A single anpiication of these concepts, to the
representation of decision rules, was then considered
in detail. It was found that, to a large extent, the
use of an EF or PEF is equivalent to the use of a
decision rule.
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