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A b s t r a c t 

Th is paper desc r i bes a theorem p r o v e r , runn ing on 
a PDP-10-TENEX system, t h a t can prove some theorems 
whose statements I nvo l ve a r e l a t i v e l y l a rge number of 
d e f i n i t i o n s . Such theorems r e q u i r e spec ia l methods be­
cause (1) t h e i r s tatements c o n t a i n a l a rge number of 
c lauses and (2) t h e i r p roo fs are q u i t e long a l though 
s t r a i g h t - f o r w a r d . 

A theorem i s proven by f i r s t s u b d i v i d i n g i t i n t o 
" s i m p l e " subgoals and then us ing a s tandard r e s o l u t i o n 
theorem prover to prove the subgoals . The f i r s t p a r t 
o f t h i s process Invo l ves the s u b s t i t u t i o n o f d e f i n i ­
t i o n s f o r de f i ned q u a n t i t i e s and the use o f l o g i c a l 
s i m p l i f i c a t i o n . This process which i s more s i m i l a r to 
a n a t u r a l deduc t ion system than a r e s o l u t i o n sys tem, is 
shown to be complete when r e s t r i c t e d to f i r s t - o r d e r 
l o g i c . However, the theorem prover can deal w i t h some 
i n t e r e s t i n g h i g h e r - o r d e r theorems as is shown by an 
example. 

1 . I n t r o d u c t i o n 

The m o t i v a t i o n f o r t h i s research stems f rom our 
view of how theorem provers w i l l be used in s o l v i n g 
r e a l - l i f e problems. We b e l i e v e t h a t t h e f i r s t few ap­
p l i c a t i o n s o f theorem provers w i l l be man-machine 
o r i e n t e d because, a t the c u r r e n t s t a t e o f the a r t , 
theorem provers can on ly so lve r e l a t i v e l y easy problems 
and 1t w i l l p robab ly be q u i t e a w h i l e be fore they can 
so l ve t r u l y d i f f i c u l t problems on t h e i r own. 

I t a l so seems to us t h a t theorem provers w i l l be 
faced w i t h a l a r g e number o f p rob lem-o r i en ted p r e d i ­
cates due to d i v e r s i t y o f r e a l wor ld d a t a . Some of 
these p r e d i c a t e s w i l l be s u f f i c i e n t l y bas ic t h a t they 
w i l l o f n e c e s s i t y b e b u i l t i n t o the theorem p rove r . 
However, most o f them, due to t h e i r abundance, w i l l 
have to be d e f i n e d 1n terms of the basic p red i ca tes and 
l o g i c a l c o n n e c t i v e s . 

On the bas is of these assumpt ions, we f e e l t h a t 
the r o l e o f the machine w i l l be p r i m a r i l y a b i g data 
f i l t e r , do ing the r e l a t i v e l y s t r a i g h t - f o r w a r d p a r t o f 
the theorem p rov ing which might be q u i t e l e n g t h y . For 
the most p a r t , t h i s amounts to "wading" th rough d e f i n i ­
t i o n s and p r e v i o u s l y proven theorems (and perhaps meta-
theorems) , many of which are q u i t e long and t e d i o u s ; 
p rov ing the easy p a r t s and i s o l a t i n g the n o n - t r i v i a l 
p a r t s . The man then would s e l e c t a n o n - t r i v i a l p a r t to 
work on nex t and would g i v e t h e machine " h i n t s " on how 
to go about p r o v i n g i t . The h i n t s w i l l be o f va r ious 
f o rms , such as c o n j e c t u r i n g i n d u c t i o n hypo thes i s , 
lemmas, the va lue o f i m p o r t a n t v a r i a b l e s , e t c . 

Th is paper desc r i bes a theorem p r o v e r , T P I , t h a t 
can prove some l e n g t h y but s t r a i g h t f o r w a r d theorems 
whose s ta tement con ta i ns d e f i n e d q u a n t i t i e s . Al though 
TPI 1s a t o t a l l y mechan ica l , and not a man-machine 
theorem p r o v e r , the types o f problems f o r which 1 t i s 
des igned a re s i m i l a r to what we f e e l w i l l be the k ind 
of problems t h a t a machine should do 1n a man-machine, 
a p p l i c a t i o n o f theorem p r o v i n g . Since the approach o f 
TPI 1s somewhat d i f f e r e n t than a s tandard r e s o l u t i o n 

theorem prover, 1n the next section we w i l l give an 
example of how 1t proved a particular theorem. This 
w i l l motivate Sec. 3 which describes TPI 1n fa i r de­
t a i l . 

2. An Example of TPI 

In this section we give an example of how TPI 
proved the theorem that the direct product of 2 groups 
1s a group. The statement of this theorem 1s* 

The operator and inverse of the product group are ° 
and J, respectively, and are defined below. In the 
f i r s t l ine of (1) (G univ) Indicates that G is some 
element of the universe,and (+(FNG G G)) indicates that 
+ is a binary operator on 6. The remainder of the 
f i r s t l ine indicates that -:G G and 0 1s some element 
of G. The second l ine of (1) states the same things 
about H,*,I and E. Thus the f i r s t two lines univer­
sally quantify 8 variables subject to the restrictions 
that they must lie 1n certain domains. Gr 1s a de­
fined predicate having 4 arguments, a group, I ts oper­
ator, i ts Inverse and I ts Identi ty, respectively. Thus, 
the last l ine of (1) states that, If G and H are 
groups then so is GXH (cartesian product of G and H). 
The operator ° of the lat ter 1s 

In this expression is the usual operator of abstrac­
t ion. The meaning of (2) 1s that 1t 1s a two-place 
function. The string (u GXH) Indicates that the f i r s t 
argument which gets substituted for u must be 1n the 
set GXH. 1 (u) is the f i r s t element of the ordered 
pair u while 2nd(u) is the second element of u. The . 
1n (2) 1s the operator which takes two terms and makes 
an ordered pair out of them. An example of the use of 
(2) is a°b. This expression 1s defined 1f both a and 
b are 1n GXH and the term a°b evaluates to the ordered 
pair (1 s t (a)+1 s t (b) ,2 n d (a)2 n d (b) ) . Note that G, H, 
+, * are free variables 1n (2) which are quantified by 
the quantifiers 1n (1) because ° occurs in (1). 

The Inverse J of the product group 1s defined 1n a 
manner similar to (2) as 

(3) 

The Identity of the product group 1s given 1n (1) as 
the ordered pair (0,E). 

To prove {1)» TPI must know the def ini t ion of 
group, 1 s t , etc. TPI has a repertoire of definit ions 
and previously proven theorems which includes these 
definit ions and other def in i t ions, such as definit ion 
of homomorphlsm, that are not relevant to proving (1). 
We w i l l not state the definit ions because their con­
tent w i l l become clear by their use. 

First of a l l , TPI simplif ies (1) which 1n this 

•There are 3 differences between (1) and the formula given to TPI: An example of the f i r s t Is that 
Gr(G,+,-,0) 1s given to the machine as (Gr G + - 0). The second 1s that infix notation 1s used 1n (1) and thirdly 
parentheses are omitted in (1) if their omission causes no ambiguity. 
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case Involves putting Skolem functions 1n for the uni­
versally quantified variables in (1). For notational 
purposes we w i l l use the same names as the variables 
and thus (1) becomes 

In this formula G, +, etc. are constants and their 
domains are known because of the f i r s t 2 lines of (1), 
e.g. , + Is a binary operator on G. Next, TPI sees from 
the def in i t ion of group that 1t is suff icient to prove 
that o 1s associative; J is a r ight inverse; and (0,E) 
is a r ight ident i ty. The resulting formula is imme­
diately simplif ied and stated as the following three 
subgoals (or lemmas) which TPI w i l l work on separately: 

(5) 

(6) 

(7) 

In these formulae a, b, c, d, e are Skolem functions 
that are elements of GXH. (5), (6), (7) state respec­
t ively that (0,E) is a r ight ident i ty , J is a r ight 
inverse and ° Is associative. The reader w i l l note 
that (5), (6) and (7) are more complicated than text-
book formulae because they contain terms that can ob­
viously be simplif ied such as lst(0,E) which is just 0. 
However, these formulae were produced direct ly from the 
def ini t ion of a group and such simplif ication w i l l oc­
cur later in the proof. 

TPI next processes (5) 1n much the same way that 
it processed (1). It sees from the def in i t ion of an 
ordered pair that two ordered pairs are equal if their 
f i r s t components are equal and if their second compon­
ents are equal. Using this def ini t ion on (5), the 
following two new subgoals are produced: 

(8) 

(9) 

When TPI processes (8) it notes that (8) cannot 
be further divided into subgoals, and thus cal ls on a 
resolution-based theorem prover called the subgoal 
solver (SGS), to solve 1t. But f i r s t 1t replaces de­
fined quantities by their definit ions and then reduces 
the formula to normal form. Fig. 1 gives the result 
of processing (8) 1n this way. In Fig.1 the variable x 
is restricted to be 1n G. This information 1s checked 
impl ic i t ly in TPI whereas a standard resolution theo­
rem prover would append an to each clause contain­
ing an x, e.g. , the f i r s t clause in Fig. 1 would be 

V x+0=x. Similarly y 1s restricted to be 1n H 
while u and v are not restr icted. 

The def in i t ion of a group Indicates that + and * 
are associative. Instead of representing this Infor­
mation as clauses, the operators are "flagged" and the 
SGS processes them as n-ary operators. 

As the reader can easily see, F1g. 1 gives a 

contradiction in just two steps. From clauses 9 and 12 
in F1g. 1 we get l s t ( a ) + 0 = { a ) . From this and clause 
1 In F1g. 1 we get 1st{a)^ist(a) which 1s contradiction. 

TPI processes (9) almost identically to the way in 
which 1t processed (8). The normal form .of (9) 1s the 
f i r s t 11 clauses In Fig. 1 and 2nd(a)+2nd(O,E)=2nd(n) 
which also has a two-step contradiction. 

TPI then proceeds to (6) and uses the def in i t ion 
of ordered pair to divide (6) and Into the following 
two subgoals: 

(10) 

(11) 

(10) equates the f i r s t components of the l e f t and r ight 
sides of the = in (6) while (11) equates their 2nd com­
ponents. 

Since (10) cannot be divided into subgoals, it is 
reduced to normal form, which is just the f i r s t 11 
clauses in F1g. 1 and 

(12) 

This is passed to the SGS which easily solves 1t in 3 
steps. From (12) and clause 9 1n Fig. 1, ls t (b)+- ( ls t 
(b))=lst(o,E) 1s deduced. This and clause 3 1n F1g. 1 
gives O=1st(0,E) which by clause 9 in Fig. 1 implies 
0=0 which is a contradiction. 

TPI processes (11) in much the same way as (10) 
proving it also 1n three steps. Proceeding onto (7), 
TPI breaks it Into 2 subgoals by separately equating 
the two components of the l e f t and r ight of the = 1n 
(7). Since the generation of these subgoals is so sim­
i la r to the generation of the above subgoals we w i l l 
not state the subgoals 1n this paper. Also their 
proofs w i l l be omitted because they are just 3 steps 
apiece. 

This concludes the proof of (1). In summary then, 
TPI divides (1) into 6 terminal subgoals or lemmas and 
proves these 6 subgoals independently which constitutes 
a proof of (1). The purpose (5), (6) and (7), which 
are intermediate subgoals, is to fac i l i t a te the genera­
t ion of the 6 terminal subgoals; i . e . , (5), (6) and (7) 
are not direct ly proven by the SGS. 

3. Description of TPI 

The purpose of this section 1s to describe the in­
ternal mechanisms of TPI which is a LISP program cur­
rently running on a PDP-10 under TENEX. Due to space 
l imi tat ions, the description w i l l be very br ief . For 
this reason the Interested reader 1s referred to ! 
which is a f a i r l y detailed description of TPI. 

TPI operates from a repertoire of definit ions not 
a l l of which are needed in any particular theorem. Cur­
rent ly , there are over a dozen defined quantities 1n 
TPI's repertoire. Incorporated into the definit ions 
are also some previously proven theorems. Al l of this 
Information Is contained on two l i s t s BD (backward de­
f in i t ions) and FD (forward def in i t ions). 

Al l statements on BD are of the form Q(A-+B) while 
FD statements are of the form q(B=C). B 1s the defined 
quantity and Q 1s a string of restricted quanti f iers. A 
together with C comprises the def in i t ion of B. In ad­
d i t i on , certain previously proven theorems about B may 
also be Incorporated into these statements as described 
1n Sec. 4. As an example, consider the def in i t ion of a 
group on BD. In this case B 1s Gr(G,+,-,0) and A 1s 
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Most contemporary theorem provers have d i f f i cu l t y 
proving a theorem whose proof is relat ively long or 
whose statement is relat ively long ( i .e . , large number 
of clauses). The goal of our research 1s to develop a 
theorem prover which is somewhat insensitive to the 
length of the proof and the length of the statement of 
the theorem. 

The three main methods In TPI for achieving this 
goal are: (1) dividing the theorem into independent 
subgoals, (2) the special treatment of def in i t ions, 
and (3) Impl ic i t use of restricted quantif ication. The 
purpose of (1) is to make TPI sensitive to the length 
of the proof of the "longest" subgoal as opposed to the 
length of the total theorem. Empirical results Indi­
cate that (1) achieves this purpose quite wel l . 

The main purpose of (2) 1s to disregard those de­
f in i t ions that are not necessary for the proving the­
orem. Currently, TPI is given 14 definit ions and no 
theorem has used more than 4. Thus, the extraneous 
definit ions are considerably longer than the theorem 
and the pertinent def ini t ions. The processing of de­
f in i t ions also Interfaces very nicely with (1) , a l ­
lowing TPI to subdivide subgoals into Independent sub-
goals. 

The purpose of (3) is to give high pr ior i ty to in-
ferences which prove that variables are in the correct 
domain. This heuristic allows TPI to discover longer 
proofs because such Inferences are done Impl ic i t l y . Of 
course, the price paid for this ab i l i t y is an Increase 
in the amount of time for each expl ic i t Inference. 

The example 1n Sec. 2 shows that TPI has achieved, 
to some extent, I ts goal. The statement of the theo­
rem given to TPI (including extraneous definit ions) 1s 
48 clauses, and the shortest proof that we know of 1s 
27 binary resolutions. 

The methods of TPI form a complete system of 
f i rs t -order logic. Although TPI cannot process higher-
order terms 1n a complete way, its methods are su f f i ­
cient for some interesting theorems containing higher-
terms. I n i t i a l results indicate that the use of lambda 
notation and normal-form are very powerful theorem-
proving techniques. 

Other theorem provers have used methods which are 
quite similar to those of TPI. Subdividing a theorem 
into parts has been used by Bledsoe,1 Nivens,5 Norton,6 

and Slagle and Koniver,7 and probably others. Norton' 
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uses definitions In a way which 1s very similar to TPI 
and Bledsoe'sI use of definitions 1s somewhat similar. 
Although the overall characteristics of a l l these theo­
rem provers (Including TPI) are quite di f ferent, they 
a l l proved some relat ively impressive theorems. In 
particular, each can prove theorems that the others 
cannot prove. However, this author believes that 1n 
each case much of the power stems from the same few 
basic principles even though the methods of these theo­
rem provers were independently developed along quite 
different lines. 
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Figure 1 Subgoal (8) after negation and reduction to 
normal form. The domain of x is G and the domain of y 

is H whereas u, v and w are not restricted. 

Figure 2 The General Form of the AND/OR Tree 
Generated by TPI 

Figure 3 The consequents of 6 terminal sugboals whose 
conjunction 1s equivalent to (15). Al l of the symbols 
1n this figure are constants, f, g and h are homomor-

phlsms while a and b are elements of G. 
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