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Abstract

This paper describes a theorem prover, running on
a PDP-10-TENEX system, that can prove some theorems
whose statements Involve a relatively large number of
definitions. Such theorems require special methods be-
cause (1) their statements contain a large number of
clauses and (2) their proofs are quite long although
straight-forward.

A theorem is proven by first subdividing it into
"simple" subgoals and then using a standard resolution
theorem prover to prove the subgoals. The first part
of this process Involves the substitution of defini-
tions for defined quantities and the use of logical
simplification. This process which is more similar to
a natural deduction system than a resolution system, is
shown to be complete when restricted to first-order
logic. However, the theorem prover can deal with some
interesting higher-order theorems as is shown by an
example.

1. Introduction

The motivation for this research stems from our
view of how theorem provers will be used in solving
real-life problems. We believe that the first few ap-
plications of theorem provers will be man-machine
oriented because, at the current state of the art,
theorem provers can only solve relatively easy problems
and 1t will probably be quite a while before they can
solve truly difficult problems on their own.

It also seems to us that theorem provers will be
faced with a large number of problem-oriented predi-
cates due to diversity of real world data. Some of
these predicates will be sufficiently basic that they
will of necessity be built into the theorem prover.
However, most of them, due to their abundance, will
have to be defined 1n terms of the basic predicates and
logical connectives.

On the basis of these assumptions, we feel that
the role of the machine will be primarily a big data
filter, doing the relatively straight-forward part of
the theorem proving which might be quite lengthy. For
the most part, this amounts to "wading" through defini-
tions and previously proven theorems (and perhaps meta-
theorems), many of which are quite long and tedious;
proving the easy parts and isolating the non-trivial
parts. The man then would select a non-trivial part to
work on next and would give the machine "hints" on how
to go about proving it. The hints will be of various
forms, such as conjecturing induction hypothesis,
lemmas, the value of important variables, etc.

This paper describes a theorem prover, TPI, that
can prove some lengthy but straightforward theorems
whose statement contains defined quantities. Although
TPl 1s a totally mechanical, and not a man-machine
theorem prover, the types of problems for which 1t is
designed are similar to what we feel will be the kind
of problems that a machine should do 1n a man-machine,
application of theorem proving. Since the approach of
TPl 1s somewhat different than a standard resolution

*There are 3 differences between (8 and the formula given to TPI:
r G + - 0). The second 1s that infix notation 1s used 1n (1) and thirdly

Gr(G,+,-,0) 1s given to the machine as

44106

theorem prover, 1n the next section we will give an
example of how 1t proved a particular theorem. This
will motivate Sec. 3 which describes TPl 1n fair de-
tail.

2. An Example of TPI

In this section we give an example of how TPI
proved the theorem that the direct product of 2 groups
1s a group. The statement of this theorem 1s*

vi(G univ) (+ (FN GG B)) {- (FN & GP Gg
H univ) (* (FN R H H} (I {FN H H)) {E H)
[6r(G,+,-,0) & Gr{H.*,1,E)+ Gr(GXH,>,J,{0,E})]

The operator and inverse of the product group are °
and J, respectively, and are defined below. In the
first line of (1) (G univ) Indicates that G is some
element of the universe,and (H{FNG G G)) indicates that
+ is a binary operator on 6. The remainder of the
first line indicates that -:G + G and 0 1s some element
of G. The second line of (1) states the same things
about H,*,| and E. Thus the first two lines univer-
sally quantify 8 variables subject to the restrictions
that they must lie 1n certain domains. Gr 1s a de-
fined predicate having 4 arguments, a group, Its oper-
ator, its Inverse and Its Identity, respectively. Thus,
the last line of (1) states that, If G and H are
groups then so is GH (cartesian product of G and H).
The operator ° of the latter 1s

M{u GKHM v 6xH)) (15T W)4158 (), 2" (u3e2™ (v)) (2)

In this expression A is the usual operator of abstrac-
tion. The meaning of (2) 1s that 1t 1s a two-place
function. The string (u G{) Indicates that the first
argument which gets substituted for u must be 1n the
set GXH. 1 (u) is the first element of the ordered
pair u while 2nd(u) is the second element of u. The
1n (2) 1s the operator which takes two terms and makes
an ordered pair out of them. An example of the use of
(2) is a°b. This expression 1s defined 1f both a and
b are 1n GH and the term a°b evaluates to the ordered
pair (1%'(a)+1°'(b),2"%(a)2"%(b)). Note that G, H,
+, * are free variables 1n (2) which are quantified by
the quantifiers 1n (1) because ° occurs in (1).

The Inverse J of the product group 1s defined 1n a
manner similar to (2) as

A ((u 6xH)) (- (158 w)), 1(2™W))). (3)

The ldentity of the product group 1s given 1n (1) as
the ordered pair (0,E).

To prove {1)» TPl must know the definition of
group, 1%t etc. TPl has a repertoire of definitions
and previously proven theorems which includes these
definitions and other definitions, such as definition
of homomorphlsm, that are not relevant to proving (1).
We will not state the definitions because their con-
tent will become clear by their use.

First of all, TPl simplifies (1) which 1n this

An example of the first Is that

parentheses are omitted in (1) if their omission causes no ambiguity.



case Involves putting Skolem functions 1n for the uni-
versally quantified variables in (1). For notational
purposes we will use the same names as the variables
and thus (1) becomes

6r{G,+,-,0) & Gr{H,»,I,E)> 6r(GXH,2,J,{0,E)). (4)

In this formula G, +, etc. are constants and their
domains are known because of the first 2 lines of (1),
e.g., + Is a binary operator on G. Next, TPl sees from
the definition of group that 1t is sufficient to prove
that o 1s associative; J is a right inverse; and (0,E)
is a right identity. The resulting formula is imme-
diately simplified and stated as the following three
subgoals (or lemmas) which TPl will work on separately:

Gr(G,+,~,0) & Gr{H,»,I1,E} -

(15%(a)+15%(0,E), 2" (a)+2"2(0,))=a (5)
Gr{G,+,-,0} & Gr{H,«,1,E) + (6)
(1™ - (150 b)),
1Ez"“(b))).z"“(b)*z"d(-{1st<b)1.r(z“dtb1})1
={0,E)
Gri{G,+,-,0) & Gr{H,*,I,E} +
D5 %t o5t a), 2" )2 (d) 1415 o), (7)

2001580 )n15t(d), 20 w2 (4} ) w2 (e)]
=[15%(c )15 (154 a)+15% (e}, 2" (a)#2™ (o)),
znd (c)*znd [-lst(d}ﬂst(e} ’zﬂd (d)*zl“ld (e}}]

In these formulae a, b, ¢, d, e are Skolem functions
that are elements of GXH. (5), (6), (7) state respec-
tively that (0,E) is a right identity, J is a right
inverse and ° Is associative. The reader will note
that (5), (6) and (7) are more complicated than text-
book formulae because they contain terms that can ob-
viously be simplified such as Ist(0,E) which is just O.
However, these formulae were produced directly from the
definition of a group and such simplification will oc-
cur later in the proof.

TPl next processes (5) 1n much the same way that
it processed (1). It sees from the definition of an
ordered pair that two ordered pairs are equal if their
first components are equal and if their second compon-
ents are equal. Using this definition on (5), the
following two new subgoals are produced:

Gr{6,+,~,0) & Gr{Hy,1,E) +

158 (2)#13%(0,E)=1% (a) (8)
Gr{G,+,~,0) & Gr(H,*»,I,E} +
2™ (a)+2(0,£)=2"9(a) 9)

When TPI processes (8) it notes that (8) cannot
be further divided into subgoals, and thus calls on a
resolution-based theorem prover called the subgoal
solver (SGS), to solve 1t. But first 1t replaces de-
fined quantities by their definitions and then reduces
the formula to normal form. Fig. 1 gives the result
of processing (8) 1n this way. In Fig.1 the variable x
is restricted to be 1n G. This information 1s checked
implicitly in TPl whereas a standard resolution theo-
rem prover would append an x¢5 to each clause contain-
ing an x, e.g., the first clause in Fig. 1 would be
x46 V x+0=x. Similarly y 1s restricted to be 1n H
while u and v are not restricted.

The definition of a group Indicates that + and *
are associative. Instead of representing this Infor-
mation as clauses, the operators are "flagged" and the
S35 processes them as n-ary operators.

As the reader can easily see, F1g. 1 gives a
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contradiction in just two steps. From clauses 9 and 12
in F1g. 1 we get Ist(a)+0={a). From this and clause
1 In F1g. 1 we get 1st{a)*ist(a) which 1s contradiction.

TPl processes (9) almost identically to the way in
which 1t processed (8). The normal form.of (9) 1s the
first 11 clauses In Fig. 1 and  2nd(a)+2nd(O,E)=2nd(n)
which also has a two-step contradiction.

TPl then proceeds to (6) and uses the definition
of ordered pair to divide (6) and Into the following
two subgoals:

Gr{G,+,-,0) & Gr(H,»,1,E) +
158 0)a1 5t - (154 (b)), 1(2™(b)))=15%(0,E)

Gr(6,+,-,0) & Gr(H,x,I,E) +
2" (032 (-5t (b)) 12 b)))=2M (0, E) (1)

(10) equates the first components of the left and right
sides of the = in (6) while (11) equates their 2nd com-
ponents.

Since (10) cannot be divided into subgoals, it is
reduced to normal form, which is just the first 11
clauses in F1g. 1 and

(10)

15BN (15 (b)), 12" (b} 1)15(0,E) (12)
This is passed to the SGS which easily solves 1t in 3
steps. From (12) and clause 9 1n Fig. 1, Ist(b)+-(Ist

(b))=Ist(0,E) 1s deduced. This and clause 3 1n F1g. 1
gives O=1st(0,E) which by clause 9 in Fig. 1 implies
0=0 which is a contradiction.

TPl processes (11) in much the same way as (10)
proving it also 1n three steps. Proceeding onto (7),
TPl breaks it Into 2 subgoals by separately equating
the two components of the left and right of the = 1n
(7). Since the generation of these subgoals is so sim-
ilar to the generation of the above subgoals we will
not state the subgoals 1n this paper. Also their
proofs will be omitted because they are just 3 steps
apiece.

This concludes the proof of (1). In summary then,
TPl divides (1) into 6 terminal subgoals or lemmas and
proves these 6 subgoals independently which constitutes
a proof of (1). The purpose (5), (6) and (7), which
are intermediate subgoals, is to facilitate the genera-
tion of the 6 terminal subgoals; i.e., (5), (6) and (7)
are not directly proven by the SGS.

3. Description of TPI

The purpose of this section 1s to describe the in-
ternal mechanisms of TPl which is a LISP program cur-
rently running on a PDP-10 under TENEX Due to space
limitations, the description will be very brief. For
this reason the Interested reader 1s referred to !
which is a fairly detailed description of TPI.

TPl operates from a repertoire of definitions not
all of which are needed in any particular theorem. Cur-
rently, there are over a dozen defined quantities 1n
TPI's repertoire. Incorporated into the definitions
are also some previously proven theorems. All of this
Information Is contained on two lists BD (backward de-
finitions) and FD (forward definitions).

All statements on BD are of the form QA-+B) while
FD statements are of the form q(B=C). B 1s the defined
quantity and Q 1s a string of restricted quantifiers. A
together with C comprises the definition of B. In ad-
dition, certain previously proven theorems about B
also be Incorporated into these statements as described
1n Sec. 4. As an example, consider the definition of a
group on BD. In this case B 1s Gr(G,+,-,0) and A 1s



ik 6)(y G} (z QY x+0ax & x+(-x)=0 &
(xty Jrzext (y42)] {13}

and Q s Y((G univ)(+(FN G G G)}(-(FN G 6))(0 B)). The
intent of these formulae should be clear from the dis-
cussion in the previous section. FN and umiv are pri-
mitives whose semantics are built into TPI. Although
the relationship between A and B in this example is '{f
and only 1f', in genera), A will only imply B for the
statements on BD.

Since the relationship is *if and only 1f' we
could use the same statement on FD, i.e., we could put
Q(B=zA) on FD. Note that our use of restricted quanti-
fication 1s somewhat non-standard. The restrictions
are processed as if they are conjuncts of the second
argument of 5. For example, ¥{{x a){y b))ESF is taken
to mean Vxy(F =.xca & yeb & F).

TP attempts to prove theorems by generating an
AND/OR tree of subgoals in much the same way as de-
scribed in 2. The root of the tree i5 the theorem tc
be proven. TPI processes a node in the tree by first
spplying some Vogical simplifications such as “X-
conversion,” transforming a theorem of the form D+(E-F)
into D&E+F, and removing quantifiers at the outermost
level by putting in Skolem functions. (Nete that,
since the thetrem has not been negated, the Skolem
funciions are put in for universally quantified vari-
ables instead of existentfally quantified varfables.)
Then, 1f the simplified theorem is of the form
E+(F{8Fod...). the subgoals E+F;, E+F»... are generated
prov}d that the F; have no variables 1n comman,

Next for each subgoal of the form G+F;, TPI gen-
erates the subgoals GwojjA;; where Qyj(Asj+843) are
statemenis on BD and o4j s the most gereral unifier of
Bij and F;. These are Subnodes of an OR node while the
abﬂve subgoals come from an AND node. Fig. 2 shows the
subgoal tree generated so far. Now the whole process
is repeated for the subgoals: logical simplificatien,
generation of AND subnodes, generation of OR subnodes
via BO.

Actually this picture is highly simplified. The
mest notable omission is that TPI checks that the re-
stricted quantification of Q;. is satisfied, Experi-
eénce has shown that most of lﬂe variables are known to
be in the right domain (this is always the case in the
example in Sec, 2% but for ihe others separate subgoals
must be generated to prove that they are in the correct
domafn. Examples of such subgoals are given in Sec. &,

TPI attempts to prove the terminal nodes in the
subgoal tree as follows: Each occurrence of a B in the
subgoal 1s replaced by o€ where Q{B'=C) s an element
of the FD 1ist and ¢ 15 the most general unifier of B
and B'. The restrictions on the variables specified by
¢ are checked and appropriate 1iterals are added to the
subgoals when the restrictions are not already known to
be satisfied. The replacement of defined quantities,
as specified by FD, is a recursive process since the
definition of a guantity may contain oiher defined
guant{ties, In addition, some defined quantities can-
rot be removed and the definitions of such quantities
are added to the subgeal. For example, the definition
of ordered pair was added to the subgoals of the ex-
ample of Sec. 2 because the » operator could not be
removed.

The above process s continued until all pertinent
definitions nave been incorporated fnto the subgoal.
Then it is converted inte clause form which s passed
to & resolution-based thecrem prover, called the sub-
cal solver (S65), for proof. Note that the SB5 never
vefers to TD and BD. Instead TPI, selects, via gener-
ating the tree of subgoals, the relevant elements of FD
and BD to be incorporated into the terminal subgoals
bafore they are passed to the 565. This is {mportant
betause most of FD and BD are not used in proving any
cne theorem.

It is quite easy to see the conditions under which
the TP) 1s complete, Suppose that for each defined
guantity B, there is an entry on both BD and FD and one
of the entries Q,{A4+B) on BD has the property that
Qi(B+A4) 1s also true. Then some subtree of the AND/OR
subgua{ tree will be equivalent to the original theorem,
in the sense that 1t is valid 1f and only {f all of the
terminal nodes f{n the subtree are valid. The reason fs
that each OR node has & subnode which is equivalent to
it by the above assumption. Since the elements on FD
all have = a5 a main connective, the clause form of a
terminal node which s passed to the 565, is equjvalent
to the node.

The above is a brief argument showing that TPI 1s
complete if the SGS fs complete and the unification al-
gorithm fs complete. Both of these conditfons are vi-~
alated by the current version of TPI. The $GS does not
process equatity in a compiete way -- a difftculty
which can easily be removed. The difficulty with the
unification algorithm can only be removed by removing
all h1?her—order varfables because there 5 no unifica-
tion algorithm for higher-order logic.* Although TPI
is not complete, its underlying approach (i.e., an AND-
OR tree of subgoals) s complete. We feel it is impor-
tant that we know in what ways TPl is incomplete and
what are the difficutties in the way of making TPI com-
plete.

4. Formulation of BD and FD

This section discusses certain pragmatic consider-
atfons in the formulating of FD and BD.

Consider modifying the definition af group fn Sec.
3 by "anding" right cancellatfon to (13}, Would this
make TPI's job easier or harder? If the definitfon on
B0 were modified this way TP1 would always have to do
more work, The reason fs that BD fs only used when
trylng to prove that something is a group, {1.e., when
Gr{...) is the censequent of some subgoal. It would be
ridiculous to try to prove right cancellation in addi-
tion to the 3 conjuncts of (13) since the latter are
sufficient. Thus, a statement on BD should be "minimal™
in the sense that removing any conjunct from its ante-
cedent causes the statement t¢ become invalid.

Adding right cancellation to the definition of
group on FD may be gquite useful because this statement
is used when TP1 is "given" that something 15 a group.
Thus, this modification will allow the 5G3 of TPI to
use right cancellation of the given group in proving a
subgoal. In general, for any definitfon Q{B=C) on FD,

a meviously proven theorem of the form Q(B+D} can be in-
corporated into FD by using the new definition

Q(B=CAD) on FD. Note that the Togical connective of
this new definition is stil11 =. Of course, if tooc many
previously proven theorems are incorporated into a de-
finftion on BD, TPI may become bogged down. But adding
a few carefully selected previously proven theorems can
be very beneficial.

Another beneficial way to express things is to re-
move certain existential quantifiers from definftions.
Although quantifiers cannot be "moved across" an =
{which statements on FD contain) extra parameters can
be added to definitions which allow the existential
quantifiers to be removed. For example, suppose we de-
fined group as a predicate with two arguments: set and
operator. Then the definiens would contain “there
exists an identity and an inverse such that..." Making
the identity and the inverse arguments to the predi-
cate, as tn Ssc. 3, removes these two existential gquan-
tifiers, This formulation allows one to ¢ive TPI iden-
tities and inverses in the statement of theorems as in
Sec. 2. But more importantly, 1t a1lows other defini-
tions to refer to these guantities. For example, the
predicate subgroup can be defined by
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$9(S.6,+.-,0) = Gr(G,+,-,0) & V(x S}(y &}

{-xc$ & x+yeS) (13}

If group werea 2-place predicate this definition would
not be pessible.

5. An Example with More Complex Higher-Qrder Terms

Although TPI processes higher-order variables
incompletely, 1t can still handle the example, below,
which 15 to prove that the set of homomorphisms from
one abelian group to ancther is a group. For readabi-
1ity quantifiers and domains of quantified varfables
will be omittted from the formulae balow. Rather we
will note 1n the text the domain of var{ables and con-
stants whenever this information is important.

Tha theoram 1s

Ab{G,+,-,0) & Ab{H,»,1,E) + Gr(homo(G,H,+,*},

a,B,Y) (15}
where
a 1s Auv){(dx{ulx)*v{x)}) (16)
B 1s Aulax{I{u{x)}})) (7
vy is AuE (18}

In the above, u and v are homomorphisms, xeG, and Ab is
the predicate stating its first argument fs an abelian
group with respect to its other 3 arguments. Similarly
Gr is the group predicate {see Section 2).

The definition of homomorphism (on both FD and BD)
states

fe homo(G,H,+,*} = ¥{(x G)(y G))f(xﬂ)-f(x)*f{ygm

where f:6 + H.

In {19) we have used for arguments of homo, the same
names as used in {15) for readability, but $n 80 and FD
the arguments of homo are universally quantified.

The theorem [15) 1s eventually broken into the 6
terminal subgoals shown in Fig. 3. Space only permits
us to describe the highlights of the generatien of
these subgoals.

The generation of 2 in Fig. 3 is typical of the
generation of the first 3 subgoals. From the defini-
gion of group we get the AND subnode whose consegquent

5

a{f,R{f)}=y {20}

where u 15 any homomorphism. This just states that g
1s the inverse, and by "X-conversion" fmmediately sim-
plifies to

AR{F{x)*T{f(x)) )=y (21)

Both the left and the right of Ez'l] are functions from
G to H; 1.e., their domatn are (FN G H). As mentioned
in Sec. 3, FN 1s a primitive built into TP]. To prove
that two functions are equal TPI invokes functional ex-
tensionality,

(¥xf(x}=g(x)) » fug, (22}
an axiom built dnto TPI. This produces the subgoal

(Ax(F{x}*1{f(x))))(a)=y(a) {23)
where & 15 a constant in G. (23} immedfately simpli-
fles to fla)*I{f(a}))=E.

Subgoals 4, 5, and 6 in Fig. 3 are generated be-
cause the terms substituted for the variables 1n the
definition of a group are not known to be in the re-

quired domain, We will describe the generation of sub-
goal 5, which 1s typical of the other two. The domain
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of 8 is required to be a function from homomorphisms
to homomorphisms according te the definition of a
group on BD, However, according to {17), TPI only
knows that the domain of g 15 (FN{FN & H){FN G H).Thus
the subgoal 8c{FN homo{G,H,+,*}homo(G,H,+,*)) 15 gen-
erated. TPI uses the built-in axiom, ¥x{xeA+f(x)eB) -+
fe(FN A B), to generats the subgoal,

B(f)ehomo(G WHyt %),

where f 15 a constant homomorphism,
with "A-conversion" we get

Ax{I(f(x}))ehomo(G,H,+,%)} (25)

Replacing homo by fts definition and simplifying we
get subgoal 5 im Fig. 3,

Currently, TPl cannot prove {15) bscause the com-
mutativity axioms glve rise to too many resolvants at
each step. Although this is no problem for the first
4 subgoals in Fig. 3, it prevents the 565 from proving
S and 6. We have included this example because the
emphasis in this work has been on the generation of
simple subgoals which TPI does in this example. We be-
lieve that existing resolution theorem provers can
prove 5 and & in Fig, 3 and thus 4f TP] had & more
sophisticated 5GS, it could prove (15).

(28)
Simplifying (24)

6. Conclusion

Most contemporary theorem provers have difficulty
proving a theorem whose proof is relatively long or
whose statement is relatively long (i.e., large number
of clauses). The goal of our research 1s to develop a
theorem prover which is somewhat insensitive to the
length of the proof and the length of the statement of
the theorem.

The three main methods In TPl for achieving this
goal are: (1) dividing the theorem into independent
subgoals, (2) the special treatment of definitions,
and (3) Implicit use of restricted quantification. The
purpose of (1) is to make TPl sensitive to the length
of the proof of the "longest" subgoal as opposed to the
length of the total theorem. Empirical results Indi-
cate that (1) achieves this purpose quite well.

The main purpose of (2) 1s to disregard those de-
finitions that are not necessary for the proving the-
orem. Currently, TPl is given 14 definitions and no
theorem has used more than 4. Thus, the extraneous
definitions are considerably longer than the theorem
and the pertinent definitions. The processing of de-
finitions also Interfaces very nicely with (1), al-
lowing TPl to subdivide subgoals into Independent sub-
goals.

The purpose of (3) is to give high priority to in-
ferences which prove that variables are in the correct
domain. This heuristic allows TPl to discover longer
proofs because such Inferences are done Implicitly. Of
course, the price paid for this ability is an Increase
in the amount of time for each explicit Inference.

The example 1n Sec. 2 shows that TPl has achieved,
to some extent, Its goal. The statement of the theo-
rem given to TPl (including extraneous definitions) 1s
48 clauses, and the shortest proof that we know of 1s
27 binary resolutions.

The methods of TPl form a complete system of
first-order logic. Although TPI cannot process higher-
order terms 1n a complete way, its methods are suffi-
cient for some interesting theorems containing higher-
terms. Initial results indicate that the use of lambda
notation and A-normal-form are very powerful theorem-
proving techniques.

Other theorem provers have used methods which are
quite similar to those of TPI. Subdividing a theorem
into parts has been used by Bledsoe,' Nivens,® Norton,®
and Slagle and Koniver,” and probably others. Norton'



uses definitions In a way which 1s very similar to TPI
and Bledsoe'sl use of definitions 1s somewhat similar.
Although the overall characteristics of all these theo-
rem provers (Including TPI) are quite different, they
all proved some relatively impressive theorems. In
particular, each can prove theorems that the others
cannot prove. However, this author believes that 1n
each case much of the power stems from the same few
basic principles even though the methods of these theo-
rem provers were independently developed along quite
different lines.
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Figure 1 Subgoal (8) after negation and reduction to
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is H whereas u, v and w are not restricted.
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Figure 3 The consequents of 6 terminal sugboals whose

conjunction 1s equivalent to (15). All of the symbols

1n this figure are constants, f, g and h are homomor-
phlsms while a and b are elements of G.



