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ABSTRACT: This paper describes a man-machine theorem 
proving system at the Un ivers i ty of Texas (Austin) 
which has been used to prove a few theorems in 
general topology. The theorem (or subgoal) being 
proved is presented on the scope in i t s na tu ra l form 
so that the user can eas i l y comprehend it and, by a 
series of i n t e rac t i ve commands, can help wi th the 
proof when he des i res . A feature ca l led DETAIL is 
employed which allows the human to i n te rac t only when 
needed and only to the extent necessary fo r the proof . 

The program is b u i l t around a modif ied form of 
IMPLY, a na tu ra l -deduc t ion - l i ke theorem proving 
technique which has been described e a r l i e r . 

A few examples of proofs are g iven. 

1 . I n t roduc t i on . 

Some workers in automatic theorem proving, i n 
c luding the authors, be l ieve that i t w i l l be many 
years ( i f ever) before machines alone can prove 
d i f f i c u l t theorems in mathematics. Thus some, who 
hope to see machines used as p r a c t i c a l assistants to 
pure mathematicians, have red i rected t h e i r a t t en t i on 
to man-machine theorem provers [3, 4, 5] and theorem 
proof checking [6 , 7, B ] . 

The present paper describes a man-machine theo
rem proving system at the Un ivers i ty of Texas which 
has been used to prove a few theorems in general 
topology. Our system is organized in the same general 
way as those of Guard [ 3 ] , Luckham [ 4 ] , and Huet [ 5 ] , 
but w i th many major d i f fe rences . For example, 
Luckham and Huet use va r ia t i ons of Resolut ion as 
t h e i r p r i n c i p a l ru les of inference whereas we use a 
modif ied form of IMPLY [ 1 ] , which is a natural-deduc
t ion - type method. 

Also our system displays formulas on the scope 
in a n a t u r a l , easy to read, manner and has avai lab le 
a v a r i e t y of i n te rac t i ve commands the user can employ 
to help w i th the proof . Among these is a feature 
ca l led DETAIL which allows the human to i n te rac t only 
when needed and only as much as is required fo r the 
proof . 

As yet t h i s system has proved no new theorem in 
topology. The program is s t i l l in the state of deve l 
opment and It w i l l be sometime before we can deter
mine whether It can ma te r i a l l y help a mathematician 
prove new theorems. 

This paper describes the f a c i l i t y , the i n t e r 
act ive commands avai lab le to the user mathematician, 
the modif ied vers ion of IMPLY which is used, and 
gives a few examples of proofs of theorems. 

2. The F a c i l i t y and I n t e r a c t i v e Commands. 

The f a c i l i t y consists of a Datapoint 3300 te r 
minal connected to the CDC 6600 computer v ia the UT 
i n t e rac t i ve ( t ime-shar ing) system TAURUS [11 ] . A 
mathematician (the user) s i t s at the te rmina l , types 
in a theorem to be proved and occasional ly helps the 
program w i t h the proof by p rov id ing in format ion he 
feels is needed and answering questions the program 
poses. 

The computer program consists of a large auto
matic theorem prover and a subroutine fo r i n te rac t i ng 

w i th the mathematician. The theorem prover, which is 
described in Section 3, is w r i t t e n in LISP and is 
based on IMPLY (see Section 4 of [ 1 ] ) and the methods 
given in [1] and [ 2 ] , I t has the a b i l i t y to prove 
theorems on i t s own; human in te rven t ion is used to 
increase i t s power and speed up proofs . 
The DETAIL Feature. 

One of the p r i n c i p a l d i f f i c u l t i e s w i th most man-
machine provers is in knowing when and how the man 
should in tervene. F i r s t l y the human may have t rouble 
in reading and comprehending the tex t on the scope, 
and secondly, he doesn' t know when the machine should 
be helped, and how much he should do. He does not 
want to make a l o t of unneeded en t r i es , and if he 
makes a mistake he wants to eas i ly recover. 

The f i r s t d i f f i c u l t y is solved in the system 
described here by employing the human or iented lan 
guage IMPLY and in d isp lay ing the theorem on the scope 
in a " p r e t t y - p r i n t " form. This is f u r the r described 
below. 

The second d i f f i c u l t y is handled by a procedure 
which allows the computer by i t s e l f to f i r s t t r y to 
prove the theorem (or subgoal). I f i t succeeds, then 
a l l i s w e l l , but i f i t f a i l s w i t h i n a prescribed t ime-
l i m i t , i t p r i n t s on the scope the statement of the 
theorem and the word "FAILURE" and awaits a command 
from the user. I f he commands "DETAIL" then it w i l l 
proceed (again) w i th i t s proof to the po in t where the 
current goal is s p l i t i n to subgoals. At that point i t 
p r i n t s on the scope the statement of the new subgoal 
fo r which it f a i l e d and stops, and the whole process 
can be repeated. 

At any of these stops the user can employ a 
v a r i e t y of other commands such as DEFN, PUT, USE, e tc . 
(which are described below) to help w i th the proof. 
In t h i s way he can eas i l y i so la te the d i f f i c u l t y and 
make only those ent r ies needed by the machine in i t s 
proof . Indeed he can s t a r t the machine on the proof 
of a theorem without enough hypotheses (reference 
theorems) and supply them only when and if they are 
needed in the proof . 

The fo l low ing is a symbolic example for exp la in 
ing the DETAIL process. Real examples are given in 
Section 4 . 
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The other subgoals of (3) are handled s i m i l a r l y , 
using other hypotheses from H. 

Thus the very d i f f i c u l t problem (1) has been re 
duced to a series of easier problems by the human 
act ion (2) and some machine manipulat ions. It is 
true that the mathematician is required to provide 
the most d i f f i c u l t step in the proof but then the 
computer does the res t , proving a series of smaller 
theorems and v e r i f y i n g tha t the mathematician's 
choice fo r G was indeed co r rec t , if he made a 
wrong choice at (2) he might want to intervene l a t e r , 
backup, and t r y a d i f f e r e n t value fo r G. 

The PUT feature, though qu i te simple, is a very 
powerful device. It alone makes a tremendous d i f f e r 
ence in the number of theorems the computer program 
can prove. 
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to be p r i n t e d . 
HISTORY. If commanded the program keeps a record 
(h is tory ) of each step it has taken in the proof of a 
theorem, inc lud ing steps where the human intervenes 
but excluding unproductive steps. This h i s to ry can 
be used by the mathematician l a t e r , upon the command 
"RUN HISTORY N", to rerun a l l or par t of the proof 
without i n t e r r u p t i o n , and to t r y i f desired a 
d i f f e ren t l i ne of proof at any step. 

3. The. Machine Prover 
The prover used by th i s system consists mainly 

of a modif ied form of IMPLY (Section 4 of [ 1 ] ) , w i th 
the add i t ion of REDUCE (see p. 57 of [ 2 ] ) , and other 
concepts from [2] and [ 1 7 ] . 

Two of the p r i n c i p a l d i f ferences in the present 
vers ion is that IMPLY is now the main rout ine ( instead 
of CYCLE), and REDUCE is now applied ins ide IMPLY. 
The SPLIT funct ions (p. 56 of [2 ] ) are an i n teg ra l 
part of IMPLY i t s e l f . Also IMPLY has been given a 
b r e a d t h - f i r s t search capacity (see below), and the 
back-up feature (see Footnote 11 of [ 1 ] ) has been 
removed and replaced by a human back-up capab i l i t y . 
IMPLY. IMPLY is a na tura l deduction type system which 
processes formulas in t h e i r " n a t u r a l " form (see also 
[9, 10 ] ) . I t consists p a r t i a l l y of a few rewr i te 
rules such as 

which convert the expression being proved from one 
form to another. I t s main funct ion is to s p l i t a 
goal in to subgoals 

backchain, subs t i tu te equals, and forward chain (new 
add i t i on ) . A fundamental part of IMPLY is a matching 
rout ine ( u n i f i c a t i o n ) : i f T is a most general 
u n i f i e r of A and A' then the subgoal 

is judged "TRUE" wi th T being returned to be applied 
to fu r the r subgoals. 
REDUCE. REDUCE consists whol ly of a set of rewr i te 
ru les which converts parts of formulas. I t contains 
special heu r i s t i c s fo r set theory, topology, e tc . 
For example 

REDUCE helps convert expressions in to forms which are 
more eas i ly provable by IMPLY. It also is a con
venient place to store facts that can be used by the 
machine as they are needed. For example REDUCE returns 
"TRUE" when applied to such formulas as (Closed C1ST 
A), (Open X), (Open (Open i n t e r i o r A) , 
e t c . 
Forward Chaining. It seems that unrestrained forward 
chaining is a poor idea in automatic theorem proving 
because it tends to produce an excessive number of 
useless hypotheses (lemmas). Consequently, our ea r l i e r 
versions of IMPLY r e l i e d heavi ly on backward chaining. 
However, the use of the man-machine system (especial ly 
the PUT feature) on theorems in topology has brought 
to our a t ten t i on the power of forward chaining in 
many proofs , espec ia l ly in cases where the chaining 
expression is a ground ( a l l constant) formula. We 
therefore have provided ground forward chaining as a 
new ru le in IMPLY. 
RULE (forward chain ing) . If PO is a ground expres
sion ( i . e . , contains no var iables) which is an instance 
of P ( i . e . , there is a subs t i t u t i on T for which 
PO = P T ) then the goal 

is converted to the new goal 

This ru le need only be applied at the time some
thing new is added to the hypothesis, such as when an 
expression (H (A B)) is converted to (H A B), 
or when another forward chaining step has jus t been 
completed. 

This ru le has been fu r ther extended in the system 
to provide for so-cal led "PEEK forward chain ing", 
which works as fo l lows: 
RULE (PEEK forward cha in ing) . If P is a ground 
expression, P. = A has the d e f i n i t i o n (P Q), 
then the goal 

is converted to the new goal 

Note that the machine "peeks" at the d e f i n i t i o n of 
A to see if forward chaining is possib le, but then 
returns A to i t s o r i g i n a l form. This v a r i a t i o n is 
very usefu l (see Example 2, (111 H1)) . Returning A 
to I t s o r i g i n a l form makes the theorem much easier to 
comprehend for the mathematician reading the display 
on the scope. 

Forward chaining s t i l l tends to c l u t t e r up the 
scope wi th useless hypotheses, and the user occasion
a l l y f inds It usefu l to remove some of them by the 
command DELETE. More important ly the user, when he 
gives the computer a theorem to prove, need not l i s t 
a l l required lemmas but can give them only as they are 
aeeded In the proof, and thereby can el iminate much 
i r re levan t forward chain ing. 
Breadth-First -Search. One of the d i f f i c u l t i e s wi th the 
previous vers ion of IMPLY was that i t s search was 
essen t ia l l y " d e p t h - f i r s t . " For example, in proving 

It would back chain o f f of *Since REDUCE is now ca l led from inside IMPLY, it (RE
DUCE) must e l iminate quan t i f i e rs and skolemize in the 
course of reducing formulas. As was explained in Sec
t i o n 2 under DEFN, the exact form of t h i s skolemization 
depends on the p o s i t i o n of the expression in the theorem. 
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and t r y to prove H(x ), before f i n a l l y ge t t ing 
around to the t r i v i a l proof (P(xO) -> P(x ) ) . 

A human, ac t ing more i n t e l l i g e n t l y , would 
casual ly glance across the hypotheses, and not ice 
P(xo.) before t r y i n g to es tab l i sh H(xO ) . 

A more serious d i f f i c u l t y is encountered in 
i n s t a n t i a t i n g d e f i n i t i o n s , in that not enough d i rec 
t i o n is provided as to which d e f i n i t i o n to i ns tan t ia te 
f i r s t . As a general r u l e , an expression such as " reg " 
should not be replaced by i t s d e f i n i t i o n unless it 
w i l l "do some good." Otherwise a g lu t of new symbols 
hamper both man and machine. Also it is usual ly 
be t te r to i ns tan t i a t e d e f i n i t i o n s in the conclusion 
before those in the hypothesis, and to i ns tan t i a t e 
d e f i n i t i o n s of "s t range" terms such as "paracompact" 
before those of ordinary terms such as "c losed" or 

We have attempted to remedy these two d i f f i 
c u l t i e s and have also added another feature ca l led 
"PAIRS" which t r i e s i f possible to apply that 
hypothesis which is l i k e the desired conclusion, even 
when a complete match cannot be made. 

The fo l low ing is a ra ther sketchy descr ip t ion of 
the revised IMPLY program, which gives only the 
f l avo r o f I t . A deta i led descr ip t ion is given in 
[ 12 ] . 

When a theorem (or subgoal) 

is given for IMPLY to prove, i t f i r s t ca l l s REDUCE, 
then applies i t s own rewr i te ru les , and SPLITS it i f 
appropr iate. Next it does a b r e a d t h - f i r s t search 
by t r y i n g the fo l low ing seven steps In the order 
ind ica ted . I f any step f a i l s i t goes to the nex t ; 
the success of a step usual ly resu l t s in another c a l l 
to the funct ion IMPLY. 

These are described in more d e t a i l below. With 
the exception of step 5 each of the steps l i s t e d 
involves a c a l l from IMPLY to a funct ion ca l led HOA. 
What bas i ca l l y happens is that IMPLY s p l i t s the 
theorem in to subgoals on the basis of the OR-AND 
s t ruc ture of C , and HOA attempts to use the hypo
theses to prove these subgoals. 

1. Try matching the conjuncts of H wi th C. 
That is if H is of the form H1 - H2 - H3 
i t t r i e s to match C w i th one or the H. . 

2. Same as 1 . , except that backchaining is 
al lowed. For example, in 
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4. Examples. 
The examples we have explored are mostly from 

Ke l ley ' s General topology [13], though in fac t any 
reasonably precise tex t would do. 

We have taken examples from various parts of the 
book. Example 2 is a theorem about paracompactness. 
The examples t r i e d so fa r have been about j us t one 
topology. This is convenient since i t allows f ixed 
symbols T and X for the topology T on the space 
X. The space X is assumed to be non-empty. The 
de f i n i t i ons used by the computer are stored (perma
nent ly) in i t s memory. 

The theorem labels used in the fo l low ing examples 
are also those used by the computer. They help inform 
the user where he is in the proof. For example, if a 
goal has theorem labe l (1 2) and it SPLITS, then the 
two parts w i l l be labeled (1 2 1) and ( 1 2 2 ) . If 
back chaining is used on a theorem labeled L, then 
the two steps are labeled (LB) and (LH). 

The presentat ion on the scope is always in the 
" p r e t t y - p r i n t " format depicted on page 11 . But to 
conserve space we have here shown our examples in a 
more compact form, and some l ines of the proof are 
omit ted. 

In t h i s presentat ion, an " h " at the l e f t i n d i 
cates a human input , an "Ed" indicates an e d i t o r i a l 
comment, and an "m" indicates machine output. The 
m's are omitted in our descr ip t ion a f t e r the f i r s t 
few l ines of each example. 

In the examples 
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Ed In t h i s wri teup we have denoted by GO 
the skolem expression G(F ' ) . The 
machine re ta ins i t s complete skolem 
expressions but p r i n t s only (G) on the 
scope for ease of reading. 

Ed Since the new entry [->] in the hypothesis 
is an imp l i ca t i on , and since F' has been 
given a value, the machine f i r s t t r i e s 
proving OcF' before proceeding. This is 
done in (111 H) below. If It succeeds 
i t w i l l then r e t a i n the hypothesis 

0 
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Many of the a b i l i t i e s which are b u i l t i n to th i s 
man-machine f a c i l i t y have been developed only a f te r a 
period of t r i a l and e r ro r . In fac t the reason for 
many of these is to provide for more ease in checking 
out and changing the program. We expect the program 
to continue to change as it is t r i e d on more and 
more examples, hopefu l ly evolv ing i n to a system which 
w i l l be usefu l to the researcher in topology. So far 
t h i s is not the case, we have handled only we l l known 
theorems. Our next step involves work on the system 
by some p rac t i c i ng topo log i s t . This should help 
determine whether such a system might have any p r a c t i c a l 
value in the near f u tu re . 

An i n te res t i ng point is t h i s - Even though the 
mathematician is able to intervene at any point in the 
proof, he is nevertheless very annoyed when he has to 
do so in a t r i v i a l way. When, fo r example, he PUTS 
the values for F' and G in Example 2, he feels he 
has done enough and r i g h t f u l l y expects the computer 
to do the r e s t . Thus even in a man-machine system, the 
theorems that the machine alone is required to prove 
are fa r from t r i v i a l . In fac t experience so far shows 
that they are on a par w i th the hardest theorems being 
proved today by automatic theorem provers. 

Therefore, i t is f e l t that any improvement in 
machine-alone programs is t r u l y worthwhile to the 
man-machine e f f o r t . 
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