
Session 3 Theorem Proving and
Logic: I

A MAN-MACHINE THEOREM PROVING SYSTEM

W. W. Bledsoe and Peter B rue l l
Un ivers i ty of Texas, Aust in

ABSTRACT: This paper describes a man-machine theorem
proving system at the Un ivers i ty of Texas (Austin)
which has been used to prove a few theorems in
general topology. The theorem (or subgoal) being
proved is presented on the scope in i t s na tu ra l form
so that the user can eas i l y comprehend it and, by a
series of i n t e rac t i ve commands, can help wi th the
proof when he des i res . A feature ca l led DETAIL is
employed which allows the human to i n te rac t only when
needed and only to the extent necessary fo r the proof .

The program is b u i l t around a modif ied form of
IMPLY, a na tu ra l -deduc t ion - l i ke theorem proving
technique which has been described e a r l i e r .

A few examples of proofs are g iven.

1 . I n t roduc t i on .

Some workers in automatic theorem proving, i n
c luding the authors, be l ieve that i t w i l l be many
years (i f ever) before machines alone can prove
d i f f i c u l t theorems in mathematics. Thus some, who
hope to see machines used as p r a c t i c a l assistants to
pure mathematicians, have red i rected t h e i r a t t en t i on
to man-machine theorem provers [3, 4, 5] and theorem
proof checking [6 , 7, B] .

The present paper describes a man-machine theo
rem proving system at the Un ivers i ty of Texas which
has been used to prove a few theorems in general
topology. Our system is organized in the same general
way as those of Guard [3] , Luckham [4] , and Huet [5] ,
but w i th many major d i f fe rences . For example,
Luckham and Huet use va r ia t i ons of Resolut ion as
t h e i r p r i n c i p a l ru les of inference whereas we use a
modif ied form of IMPLY [1] , which is a natural-deduc
t ion - type method.

Also our system displays formulas on the scope
in a n a t u r a l , easy to read, manner and has avai lab le
a v a r i e t y of i n te rac t i ve commands the user can employ
to help w i th the proof . Among these is a feature
ca l led DETAIL which allows the human to i n te rac t only
when needed and only as much as is required fo r the
proof .

As yet t h i s system has proved no new theorem in
topology. The program is s t i l l in the state of deve l
opment and It w i l l be sometime before we can deter
mine whether It can ma te r i a l l y help a mathematician
prove new theorems.

This paper describes the f a c i l i t y , the i n t e r
act ive commands avai lab le to the user mathematician,
the modif ied vers ion of IMPLY which is used, and
gives a few examples of proofs of theorems.

2. The F a c i l i t y and I n t e r a c t i v e Commands.

The f a c i l i t y consists of a Datapoint 3300 te r
minal connected to the CDC 6600 computer v ia the UT
i n t e rac t i ve (t ime-shar ing) system TAURUS [11] . A
mathematician (the user) s i t s at the te rmina l , types
in a theorem to be proved and occasional ly helps the
program w i t h the proof by p rov id ing in format ion he
feels is needed and answering questions the program
poses.

The computer program consists of a large auto
matic theorem prover and a subroutine fo r i n te rac t i ng

w i th the mathematician. The theorem prover, which is
described in Section 3, is w r i t t e n in LISP and is
based on IMPLY (see Section 4 of [1]) and the methods
given in [1] and [2] , I t has the a b i l i t y to prove
theorems on i t s own; human in te rven t ion is used to
increase i t s power and speed up proofs .
The DETAIL Feature.

One of the p r i n c i p a l d i f f i c u l t i e s w i th most man-
machine provers is in knowing when and how the man
should in tervene. F i r s t l y the human may have t rouble
in reading and comprehending the tex t on the scope,
and secondly, he doesn' t know when the machine should
be helped, and how much he should do. He does not
want to make a l o t of unneeded en t r i es , and if he
makes a mistake he wants to eas i ly recover.

The f i r s t d i f f i c u l t y is solved in the system
described here by employing the human or iented lan
guage IMPLY and in d isp lay ing the theorem on the scope
in a " p r e t t y - p r i n t " form. This is f u r the r described
below.

The second d i f f i c u l t y is handled by a procedure
which allows the computer by i t s e l f to f i r s t t r y to
prove the theorem (or subgoal). I f i t succeeds, then
a l l i s w e l l , but i f i t f a i l s w i t h i n a prescribed t ime-
l i m i t , i t p r i n t s on the scope the statement of the
theorem and the word "FAILURE" and awaits a command
from the user. I f he commands "DETAIL" then it w i l l
proceed (again) w i th i t s proof to the po in t where the
current goal is s p l i t i n to subgoals. At that point i t
p r i n t s on the scope the statement of the new subgoal
fo r which it f a i l e d and stops, and the whole process
can be repeated.

At any of these stops the user can employ a
v a r i e t y of other commands such as DEFN, PUT, USE, e tc .
(which are described below) to help w i th the proof.
In t h i s way he can eas i l y i so la te the d i f f i c u l t y and
make only those ent r ies needed by the machine in i t s
proof . Indeed he can s t a r t the machine on the proof
of a theorem without enough hypotheses (reference
theorems) and supply them only when and if they are
needed in the proof .

The fo l low ing is a symbolic example for exp la in
ing the DETAIL process. Real examples are given in
Section 4 .

56

The other subgoals of (3) are handled s i m i l a r l y ,
using other hypotheses from H.

Thus the very d i f f i c u l t problem (1) has been re
duced to a series of easier problems by the human
act ion (2) and some machine manipulat ions. It is
true that the mathematician is required to provide
the most d i f f i c u l t step in the proof but then the
computer does the res t , proving a series of smaller
theorems and v e r i f y i n g tha t the mathematician's
choice fo r G was indeed co r rec t , if he made a
wrong choice at (2) he might want to intervene l a t e r ,
backup, and t r y a d i f f e r e n t value fo r G.

The PUT feature, though qu i te simple, is a very
powerful device. It alone makes a tremendous d i f f e r
ence in the number of theorems the computer program
can prove.

58

to be p r i n t e d .
HISTORY. If commanded the program keeps a record
(h is tory) of each step it has taken in the proof of a
theorem, inc lud ing steps where the human intervenes
but excluding unproductive steps. This h i s to ry can
be used by the mathematician l a t e r , upon the command
"RUN HISTORY N", to rerun a l l or par t of the proof
without i n t e r r u p t i o n , and to t r y i f desired a
d i f f e ren t l i ne of proof at any step.

3. The. Machine Prover
The prover used by th i s system consists mainly

of a modif ied form of IMPLY (Section 4 of [1]) , w i th
the add i t ion of REDUCE (see p. 57 of [2]) , and other
concepts from [2] and [1 7] .

Two of the p r i n c i p a l d i f ferences in the present
vers ion is that IMPLY is now the main rout ine (instead
of CYCLE), and REDUCE is now applied ins ide IMPLY.
The SPLIT funct ions (p. 56 of [2]) are an i n teg ra l
part of IMPLY i t s e l f . Also IMPLY has been given a
b r e a d t h - f i r s t search capacity (see below), and the
back-up feature (see Footnote 11 of [1]) has been
removed and replaced by a human back-up capab i l i t y .
IMPLY. IMPLY is a na tura l deduction type system which
processes formulas in t h e i r " n a t u r a l " form (see also
[9, 10]) . I t consists p a r t i a l l y of a few rewr i te
rules such as

which convert the expression being proved from one
form to another. I t s main funct ion is to s p l i t a
goal in to subgoals

backchain, subs t i tu te equals, and forward chain (new
add i t i on) . A fundamental part of IMPLY is a matching
rout ine (u n i f i c a t i o n) : i f T is a most general
u n i f i e r of A and A' then the subgoal

is judged "TRUE" wi th T being returned to be applied
to fu r the r subgoals.
REDUCE. REDUCE consists whol ly of a set of rewr i te
ru les which converts parts of formulas. I t contains
special heu r i s t i c s fo r set theory, topology, e tc .
For example

REDUCE helps convert expressions in to forms which are
more eas i ly provable by IMPLY. It also is a con
venient place to store facts that can be used by the
machine as they are needed. For example REDUCE returns
"TRUE" when applied to such formulas as (Closed C1ST
A), (Open X), (Open (Open i n t e r i o r A) ,
e t c .
Forward Chaining. It seems that unrestrained forward
chaining is a poor idea in automatic theorem proving
because it tends to produce an excessive number of
useless hypotheses (lemmas). Consequently, our ea r l i e r
versions of IMPLY r e l i e d heavi ly on backward chaining.
However, the use of the man-machine system (especial ly
the PUT feature) on theorems in topology has brought
to our a t ten t i on the power of forward chaining in
many proofs , espec ia l ly in cases where the chaining
expression is a ground (a l l constant) formula. We
therefore have provided ground forward chaining as a
new ru le in IMPLY.
RULE (forward chain ing) . If PO is a ground expres
sion (i . e . , contains no var iables) which is an instance
of P (i . e . , there is a subs t i t u t i on T for which
PO = P T) then the goal

is converted to the new goal

This ru le need only be applied at the time some
thing new is added to the hypothesis, such as when an
expression (H (A B)) is converted to (H A B),
or when another forward chaining step has jus t been
completed.

This ru le has been fu r ther extended in the system
to provide for so-cal led "PEEK forward chain ing",
which works as fo l lows:
RULE (PEEK forward cha in ing) . If P is a ground
expression, P. = A has the d e f i n i t i o n (P Q),
then the goal

is converted to the new goal

Note that the machine "peeks" at the d e f i n i t i o n of
A to see if forward chaining is possib le, but then
returns A to i t s o r i g i n a l form. This v a r i a t i o n is
very usefu l (see Example 2, (111 H1)) . Returning A
to I t s o r i g i n a l form makes the theorem much easier to
comprehend for the mathematician reading the display
on the scope.

Forward chaining s t i l l tends to c l u t t e r up the
scope wi th useless hypotheses, and the user occasion
a l l y f inds It usefu l to remove some of them by the
command DELETE. More important ly the user, when he
gives the computer a theorem to prove, need not l i s t
a l l required lemmas but can give them only as they are
aeeded In the proof, and thereby can el iminate much
i r re levan t forward chain ing.
Breadth-First -Search. One of the d i f f i c u l t i e s wi th the
previous vers ion of IMPLY was that i t s search was
essen t ia l l y " d e p t h - f i r s t . " For example, in proving

It would back chain o f f of *Since REDUCE is now ca l led from inside IMPLY, it (RE
DUCE) must e l iminate quan t i f i e rs and skolemize in the
course of reducing formulas. As was explained in Sec
t i o n 2 under DEFN, the exact form of t h i s skolemization
depends on the p o s i t i o n of the expression in the theorem.

59

and t r y to prove H(x), before f i n a l l y ge t t ing
around to the t r i v i a l proof (P(xO) -> P(x)) .

A human, ac t ing more i n t e l l i g e n t l y , would
casual ly glance across the hypotheses, and not ice
P(xo.) before t r y i n g to es tab l i sh H(xO) .

A more serious d i f f i c u l t y is encountered in
i n s t a n t i a t i n g d e f i n i t i o n s , in that not enough d i rec
t i o n is provided as to which d e f i n i t i o n to i ns tan t ia te
f i r s t . As a general r u l e , an expression such as " reg "
should not be replaced by i t s d e f i n i t i o n unless it
w i l l "do some good." Otherwise a g lu t of new symbols
hamper both man and machine. Also it is usual ly
be t te r to i ns tan t i a t e d e f i n i t i o n s in the conclusion
before those in the hypothesis, and to i ns tan t i a t e
d e f i n i t i o n s of "s t range" terms such as "paracompact"
before those of ordinary terms such as "c losed" or

We have attempted to remedy these two d i f f i
c u l t i e s and have also added another feature ca l led
"PAIRS" which t r i e s i f possible to apply that
hypothesis which is l i k e the desired conclusion, even
when a complete match cannot be made.

The fo l low ing is a ra ther sketchy descr ip t ion of
the revised IMPLY program, which gives only the
f l avo r o f I t . A deta i led descr ip t ion is given in
[12] .

When a theorem (or subgoal)

is given for IMPLY to prove, i t f i r s t ca l l s REDUCE,
then applies i t s own rewr i te ru les , and SPLITS it i f
appropr iate. Next it does a b r e a d t h - f i r s t search
by t r y i n g the fo l low ing seven steps In the order
ind ica ted . I f any step f a i l s i t goes to the nex t ;
the success of a step usual ly resu l t s in another c a l l
to the funct ion IMPLY.

These are described in more d e t a i l below. With
the exception of step 5 each of the steps l i s t e d
involves a c a l l from IMPLY to a funct ion ca l led HOA.
What bas i ca l l y happens is that IMPLY s p l i t s the
theorem in to subgoals on the basis of the OR-AND
s t ruc ture of C , and HOA attempts to use the hypo
theses to prove these subgoals.

1. Try matching the conjuncts of H wi th C.
That is if H is of the form H1 - H2 - H3
i t t r i e s to match C w i th one or the H. .

2. Same as 1 . , except that backchaining is
al lowed. For example, in

60

4. Examples.
The examples we have explored are mostly from

Ke l ley ' s General topology [13], though in fac t any
reasonably precise tex t would do.

We have taken examples from various parts of the
book. Example 2 is a theorem about paracompactness.
The examples t r i e d so fa r have been about j us t one
topology. This is convenient since i t allows f ixed
symbols T and X for the topology T on the space
X. The space X is assumed to be non-empty. The
de f i n i t i ons used by the computer are stored (perma
nent ly) in i t s memory.

The theorem labels used in the fo l low ing examples
are also those used by the computer. They help inform
the user where he is in the proof. For example, if a
goal has theorem labe l (1 2) and it SPLITS, then the
two parts w i l l be labeled (1 2 1) and (1 2 2) . If
back chaining is used on a theorem labeled L, then
the two steps are labeled (LB) and (LH).

The presentat ion on the scope is always in the
" p r e t t y - p r i n t " format depicted on page 11 . But to
conserve space we have here shown our examples in a
more compact form, and some l ines of the proof are
omit ted.

In t h i s presentat ion, an " h " at the l e f t i n d i
cates a human input , an "Ed" indicates an e d i t o r i a l
comment, and an "m" indicates machine output. The
m's are omitted in our descr ip t ion a f t e r the f i r s t
few l ines of each example.

In the examples

61

62

Ed In t h i s wri teup we have denoted by GO
the skolem expression G(F ') . The
machine re ta ins i t s complete skolem
expressions but p r i n t s only (G) on the
scope for ease of reading.

Ed Since the new entry [->] in the hypothesis
is an imp l i ca t i on , and since F' has been
given a value, the machine f i r s t t r i e s
proving OcF' before proceeding. This is
done in (111 H) below. If It succeeds
i t w i l l then r e t a i n the hypothesis

0

63

Many of the a b i l i t i e s which are b u i l t i n to th i s
man-machine f a c i l i t y have been developed only a f te r a
period of t r i a l and e r ro r . In fac t the reason for
many of these is to provide for more ease in checking
out and changing the program. We expect the program
to continue to change as it is t r i e d on more and
more examples, hopefu l ly evolv ing i n to a system which
w i l l be usefu l to the researcher in topology. So far
t h i s is not the case, we have handled only we l l known
theorems. Our next step involves work on the system
by some p rac t i c i ng topo log i s t . This should help
determine whether such a system might have any p r a c t i c a l
value in the near f u tu re .

An i n te res t i ng point is t h i s - Even though the
mathematician is able to intervene at any point in the
proof, he is nevertheless very annoyed when he has to
do so in a t r i v i a l way. When, fo r example, he PUTS
the values for F' and G in Example 2, he feels he
has done enough and r i g h t f u l l y expects the computer
to do the r e s t . Thus even in a man-machine system, the
theorems that the machine alone is required to prove
are fa r from t r i v i a l . In fac t experience so far shows
that they are on a par w i th the hardest theorems being
proved today by automatic theorem provers.

Therefore, i t is f e l t that any improvement in
machine-alone programs is t r u l y worthwhile to the
man-machine e f f o r t .

Acknowledgment.
Various people both at U.T. and elsewhere have

great ly inf luenced our th ink ing about automatic theorem
proving and i n te rac t i ve systems. We want to especia l ly
thank B i l l Hemneman, Robert Anderson, Dave Luckham,
Vesko Marinov, B i l l Bennett, Mike Bal lentyne, and
Howard Ludwig.

This work was supported in par t by NSF Grant
GJ-32269 and NIH Grant 5801 GM 157-69-05.

References

1. W. W. Bledsoe, R. S. Boyer, and W. H. Henneman,
Computer Proofs of L imi t Theorems,
A r t i f i c i a l In te l l i gence 3 (1972), 27-60.

2. W. W. Bledsoe, S p l i t t i n g and Reduction Heur is t ics
in Automatic Theorem Proving, A r t i f i c i a l
I n te l l i gence 2 (1971), 55-77.

3. J. R. Guard, F. C. Oglesby, J. H. Bennett, and
L. G. Se t t l e , Semi-automated Mathematics,
JACM 16 (1969), 49-62.

4. John A l len and David Luckham, An In te rac t ive
Theorem-Proving Program, Machine In te l l i gence
5 (1970), 321-336.

5. G. P. Huet, Experiments wi th an In te rac t ive Prover
fo r Logic wi th Equal i ty , Report 1106,
Jennings Computing Center, Case Western
Reserve Un ivers i t y .

6. John McCarthy, Computer Programs for Checking
Mathematical Proofs, Proc. Aroer ■ Math. Soc.
on Recursive funct ion Theory, held in
Ney York, A p r i l , 1961.

7. Paul W. Abrahams, Machine V e r i f i c a t i o n of Mathe
mat ical Proof, Doctoral D isser ta t ion in
Mathematics, MIT, May, 1963.

8. W. W. Bledsoe and E.J . G i lbe r t , Automatic Theorem
Proof-Checking in Set Theory: A Prel iminary
Report, Sandia Corp. Report SC-RR-67-525,
Ju ly , 1967.

9. Arthur J. Nevins, A Human Oriented Logic fo r
Automatic Theorem Proving, MIT AI Memo No.
268, October, 1972.

10. Raymond Rei ter , The Use of Models in Automatic
Theorem Proving, Dept. of Computer Science,
Un ivers i ty of B r i t i s h Columbia, September,
1972.

11 . TAURUS, described in Users Manual, Computation
Center, Un ivers i ty of Texas, Aus t in .

12. Peter B r u e l l , A Descr ip t ion of the Functions of
The Man-Machine Topology Theorem Prover,
(under preparat ion) .

13. John L. Ke l ley , General Topology, van Nostrand,
1955.

14. James R. S lag le , Automatic Theorem Proving w i th
B u i l t - i n Theories Inc luding Equa l i t y , P a r t i a l
Ordering, and Sets, JACM 19 (1972),
120-135.

15. Robert Boyer, Lock ing : A Res t r i c t i on on Resolut ion,
Ph.D. D i sse r ta t i on , Mathematics Dept. ,
Un ivers i ty of Texas, Aust in , 1971.

16. Dal las S. Lankford, Equal i ty Atom Term Locking,
Ph.D. D i sse r t a t i on , Mathematics Dept . ,
Un ivers i t y of Texas, Aus t in , 1972.

17. George Ernst , The U t i l i t y of independent subgoals
in Theorem Proving, Informat ion and Cont ro l ,
v o l . 18, 3, 1971.

65

