Session 3 Theorem Proving and
Logic: |

A MAN-MACHINE THEOREM PROVING SYSTEM

W. W. Bledsoe and Peter Bruell
University of Texas, Austin

ABSTRACT: This paper describes a man-machine theorem
proving system at the University of Texas (Austin)
which has been used to prove a few theorems in
general topology. The theorem (or subgoal) being
proved is presented on the scope in its natural form
so that the user can easily comprehend it and, by a
series of interactive commands, can help with the
proof when he desires. A feature called DETAIL is
employed which allows the human to interact only when
needed and only to the extent necessary for the proof.

The program is built around a modified form of
IMPLY, a natural-deduction-like theorem proving
technique which has been described earlier.

A few examples of proofs are given.

1. Introduction.

Some workers in automatic theorem proving, in-
cluding the authors, believe that it will be many
years (if ever) before machines alone can prove
difficult theorems in mathematics. Thus some, who
hope to see machines used as practical assistants to
pure mathematicians, have redirected their attention
to man-machine theorem provers [3, 4, 5] and theorem
proof checking [6, 7, B].

The present paper describes a man-machine theo-
rem proving system at the University of Texas which
has been used to prove a few theorems in general
topology. Our system is organized in the same general
way as those of Guard [3], Luckham [4], and Huet [5],
but with many major differences. For example,
Luckham and Huet use variations of Resolution as
their principal rules of inference whereas we use a
modified form of IMPLY [1], which is a natural-deduc-
tion-type method.

Also our system displays formulas on the scope
in a natural, easy to read, manner and has available
a variety of interactive commands the user can employ
to help with the proof. Among these is a feature
called DETAIL which allows the human to interact only
when needed and only as much as is required for the
proof.

As yet this system has proved no new theorem in
topology. The program is still in the state of devel-
opment and It will be sometime before we can deter-
mine whether It can materially help a mathematician
prove new theorems.

This paper describes the facility, the inter-
active commands available to the user mathematician,
the modified version of IMPLY which is used, and
gives a few examples of proofs of theorems.

2. The Facility and Interactive Commands.

The facility consists of a Datapoint 3300 ter-
minal connected to the CDC 6600 computer via the UT
interactive (time-sharing) system TAURUS [11]. A
mathematician (the user) sits at the terminal, types
in a theorem to be proved and occasionally helps the
program with the proof by providing information he
feels is needed and answering questions the program
poses.

The computer program consists of a large auto-
matic theorem prover and a subroutine for interacting

with the mathematician. The theorem prover, which is
described in Section 3, is written in LISP and is
based on IMPLY (see Section 4 of [1]) and the methods
given in [1] and [2], It has the ability to prove
theorems on its own; human intervention is used to
increase its power and speed up proofs.

The DETAIL Feature.

One of the principal difficulties with most man-
machine provers is in knowing when and how the man
should intervene. Firstly the human may have trouble
in reading and comprehending the text on the scope,
and secondly, he doesn't know when the machine should
be helped, and how much he should do. He does not
want to make a lot of unneeded entries, and if he
makes a mistake he wants to easily recover.

The first difficulty is solved in the system
described here by employing the human oriented lan-
guage IMPLY and in displaying the theorem on the scope
in a "pretty-print" form. This is further described
below.

The second difficulty is handled by a procedure
which allows the computer by itself to first try to
prove the theorem (or subgoal). If it succeeds, then
all is well, but if it fails within a prescribed time-
limit, it prints on the scope the statement of the
theorem and the word "FAILURE" and awaits a command
from the user. If he commands "DETAIL" then it will
proceed (again) with its proof to the point where the
current goal is split into subgoals. At that point it
prints on the scope the statement of the new subgoal
for which it failed and stops, and the whole process
can be repeated.

At any of these stops the user can employ a
variety of other commands such as DEFN, PUT, USE, etc.
(which are described below) to help with the proof.
In this way he can easily isolate the difficulty and
make only those entries needed by the machine in its
proof. Indeed he can start the machine on the proof
of a theorem without enough hypotheses (reference
theorems) and supply them only when and if they are
needed in the proof.

The following is a symbolic example for explain-
ing the DETAIL process. Real examples are given in
Section 4.

Suppose the machine ig able to convert the

example (H + C} into two subgoals (H > D) and
(H+E) by defining C 88 (D ~E) and suppose it
cen prove (H + D) but not (H -+ E), but that it can
prove (H ~ 1-[2 + E). Then the dialogue would be aa
follows:
Human: (H*C)
Machine; (1) (H + C)

FAILED
Human: DETAIL
Machine: (H+D ~E)

(11) {H + D)

FROVED
Human ¢ GO
Machine: (12) (H + E)

FAILED
Human: DETAIL
Machine: {12) (H » E)

FAILED

Human : USE H2
{fote: here H2 it some lemma or axiom)
Machine: (12) (M ~ H, + E)
PROVED
Machine: 1) (0 - H2 + L)
FROVED'

Notice that the only real human interventlon was
at the step where he commanded (USE Hz), and that

help was given only when needed.
The Interactive Commands.

The following is 2 listing of some of the inter-
active commands avallable to the user. A few of
these are further explained below and in [12]. In
the follewing the word “theotem" ie sometimes used
to represent the current subgoal being proved.

NAME OF
CORMMAND

PUT

USER TYPES {THE MACHINE'S RESPONSE

PUT x= {) The wmachine replaces
each oceurrence
in the theorem being

proved by ().

DEFN It replares all cccurr-
coces of A by Its

(stored) definition.

It fetches theorem
number N from wemory
and adds it o the
hypothesis of the cur-
rent theorem,

It adds { } to the
hypothesis.

USE USE N

USE ()

LEMMA LEMMA () It filrst proves {)

and then calls USE ().

It proceeds with the
proof with no changes
by the uger.

PROCEED

DETAIL PETAIL {see explanation above)
1t finds the first sub-
goal of the current
goal, displays it on

the scope, and stops.

the time-
cutrTent
factor N.

CRT N It increases
limit on che

subgeal by a

It fails the current
subgoal (i.e., returns
NIL).

It assumes the current
subgoal to be proved
and proceeds.

FAIL F

ASSUME

It returns NIL and
backs up in the proof
to the previous goal.

BACKUF REJECT

REORDER It reorders the goel,
placing hypothesis

number N first and
conclusion nmumber M

firse.

(N > M)

DELETE It deletes hypotheses

numher N, M,...

DELETE N M ...

57

It prints the theorem
on the scope in a
easily readable form
{see Example below).

If PUTF={) has
been used earlier, i1t
prints the theorem on
the scope with each
occutrence of {) re-
placed by the symbol F.

PRETTY-PRINT TP

P F

TFFG ...
TPC ¥

Similarly for F, G, etc.

Similarly for conclu-
sion only.

TPH F Similarly for

thesis only.

hypo-
RUN HISTORY The machine redoes the
steps 1n the pryoof
down to the current
point, but eliminates
unproductive steps,

ADD-REDUCE {) ()} dis (permanently}
added to the REDUCE
table,

ADD-PAIRS () () is {permumently)
added to the PAIRS
Table

ADL-OEEN (A (3) () is added to the
definition table as
the definition of the
atom A,

Computation can also be stopped at any point by
the use nf an interrupt which will cause the program
to rerurn te rhe pepinping of the function TAPLY and
halt,

Most of the commands daseribed abowve are retrac-
table. 1f a command has changed the theorem in any
way the machine displays the changed version and then
asks "OK??77?" The program will then make the change
permanent only if the user types "OK."

The machine theorewm prover uscd in this system
has been revised (from [1]) to provide a more parallel
type of search. This is described below,

4s In [2] the presentation of the thecrem om the
scope is In its original nntural form for casy reading
by the mathematician. WNo unnatural cogversiens, such
as changing (A » B) to {~A v B), are made. Add-
itivnally, when a symbol, say ¥, has been replaced
by a long expression (), the mathematician can,
by typing TP F, cause rhe presentation on the screen
to be in terms of F instead of {), thus making it
easier fer him to comprehend,

Such ¢onveniences are necesgsary to make possible
real-time comunication between the mathematician and
the computer's prover.

Skolem functions are used to eliminate quantifiers
but the expresatons are leftr in their natural form
{gee p. 37 of [L] and p. 18 of |10]), ecssily readsblc
by the human. Printing of theorems and subgoals on
the scope ic donme with skolem arguments suppressed to
further improve readability.

PUI. One of the principal difficulties encountered jin

automatlc theorem proving (indeed in human theorem

proving) is the problem of instantiating & variable.

For example, It 13 essentially trivial to ingtantiate

the variable x a8 X in

IS TORY

*I-REDUCE
ADD-PAIRS

ATID-DETN

Gty e A¥dx e an”

*The quantifier " " 1a retained here for ease of
presentation. Such quantifiers are replaced by skolem

expressions in actual computer procfs,as indlcated zbove .

but it is far more difficult te find an acceptable
value for G in the expression

(G is » cloped cover -
{1) B -:-3(;‘ G is a locally finite ~
G 1s a refinement of 1?0),

where H iz a given hypothesls. In such a situacion
a machine prover might eventually find and verify a
gatisfactory G, depending on the nature of H, but
its work can be trememdpusly reduced If the mathe-
matician would imdicate a value for G. TFor example,
he might put

(2) G={6:Ja (Ae G ~C=Closure A)].

Then (1} becomes

H» ((C: A (Ae G' ~ C= Closure A)} ts a closed
cover

() ~[} 1s locally finpite

~f | i8 a refinement of FO),

which can now be split (by the computer) into three
gubgoals. The first subgoal of ¢(3) becomes

2+ ({ } is 2 closed cover)

which is converted to
H> (Ce [} € 18 closed
)

~0 } covers X) ,
This is agein split; the flrst subgoal becomes
1> (Ce [Cza A(Ae G' ~C = Closure 4)] + C is
closed) which is reduced by the computer to
H>7dA (A e G ~C=Closure A) + ¢ 1is closed
and then to
{%) H ~ & ¢ G" > Closure A i8 closed.

The subgoal (5) is now easily proved by the com-
puter referring to e REDUCE table {see p. 57 of (2]
snd Section 3) vhich shows that Closure A is always
cloaad.

Similarly, the second subgoal of (4) 1s reduced to

(6) H-~xeX+JA {Ae G - xe Closure A)

which again is essily proved if H contains the
hypothesois

G' 1s an open cover.

The other subgoals of (3) are handled similarly,
using other hypotheses from H.

Thus the very difficult problem (1) has been re-
duced to a series of easier problems by the human
action (2) and some machine manipulations. It is
true that the mathematician is required to provide
the most difficult step in the proof but then the
computer does the rest, proving a series of smaller
theorems and verifying that the mathematician's
choice for G was indeed correct, if he made a
wrong choice at (2) he might want to intervene later,
backup, and try a different value for G.

The PUT feature, though quite simple, is a very
powerful device. It alone makes a tremendous differ-
ence in the number of theorems the computer program
can prove.

DEFN. When the mathematician desires that a certain
expression, such as "Reg.", be definad, he types

D Reg

and the machine immediately replaces each occurrence
of "Reg" (in the subgoal being proved) by its defini-
tiom.

When an expression is replaced by its definition,
the particular skolemization of that definition will
depend on its position in the formula. For example,
the expression

(Reg > C)
would be replaced by
[x € & ~ apen A > open B{x,4) ~ x ¢ B{x, 4}
~ Clst B{x,4) © A] + C,
whereas

(B + Rep)
would be replaced by

"> [10 € A, ~ open A0-¥ open B ~ %, & B

4] 0

~ Cler B C Al

An option is provided so that DEFN can be applied
to only parts of the expression. Thus for example,
"Reg"” might be replaced by its definition in the
conclusion but not the hypothesis,

PRETTY-PRINT. The command TP causes the machine to
print the current theorem (subgoal) in a parsed, easy
to read form., For example, if the theorem is

{#(~(OC{F$P1)) (~(REG) {(GCLFR))) {~(CC G){~
{REF G(FSD1))}{F G})MN)

the command TP will cause to be printed on the scope:

(0C(F))

(REG)

N

(OCLEFR)

{ce 6)

~

(REF G(F))

~

{LF G}

Note that the skolem constant (FSD1) has been printced
as (F), though its complete form e retained by the
program.

How 1if the command

PUT & = {C: Closed C}

is used, the conclusicn of (1) Ls sltered accordingly.
The command TPC if issued now will cause

(cc{c: Closed C))

s

(REF{C: Closed ¢) (F))
" (LF{C: Closed €})

to be printed, whereas TPC G causas

(cc &)
(RE¥ G (F))
{LF &)

to be printed.

HISTORY. If commanded the program keeps a record
(history) of each step it has taken in the proof of a
theorem, including steps where the human intervenes

but excluding unproductive steps.
be used by the mathematician later, upon the command
"RUN HISTORY N", to rerun all or part of the proof
without interruption, and to try if desired a
different line of proof at any step.

3. The. Machine Prover

The prover used by this system consists mainly
of a modified form of IMPLY (Section 4 of [1]), with
the addition of REDUCE (see p. 57 of [2]), and other
concepts from [2] and [17].

Two of the principal differences
version is that IMPLY is now the main routine (instead
of CYCLE), and REDUCE is now applied inside IMPLY.
The SPLIT functions (p. 56 of [2]) are an integral
part of IMPLY itself. Also IMPLY has been given a
breadth-first search capacity (see below), and the
back-up feature (see Footnote 11 of [1]) has been
removed and replaced by a human back-up capability.
IMPLY. IMPLY is a natural deduction type system which
processes formulas in their "natural” form (see also
[9, 10]). It consists partially of a few rewrite
rules such as

This history can

in the present

H+@E>*>C))=(H~3+¢)
H> A=B))=(H ~A>B) ~(H~B >4

which convert the expression being proved from one
form to another. Its main function is to split a

goal into subgoals

H+a ~B)y=>(H+>AA) and (H>B)
backchain, substitute equals, and forward chain (new
addition). A fundamental part of IMPLY is a matching
routine (unification): if T is a most general
unifier of A and A' then the subgoal

4 »4a")

is judged "TRUE" with
to further subgoals.
REDUCE. REDUCE consists wholly of a set of rewrite

T being returned to be applied

rules which converts parts of formulas. It contains
special heuristics for set theory, topology, etc.
For example
{(te ANBY=>(teh ~tcB)
(te AUBY=(te A~ teB)
(toe 0F0)=>(ﬁe Fo - toe A
(same 88 JA (A€ Fp~

tOE A)

L]
or (to € CI'FD) =+ (Ao € FO ~ to € Ao)

(Cholce Ac A)=> (A # 8)

te [x: Px)}=E(t)

*Since REDUCE is now called from inside IMPLY, it (RE-
DUCE) must eliminate quantifiers and skolemize in the
course of reducing formulas. As was explained in Sec-
tion 2 under DEFN, the exact form of this skolemization
depends on the position of the expression in the theorem.
59

(range Ax px) = {y: (' x {y = px)}
etc.

REDUCE helps convert expressions into forms which are
more easily provable by IMPLY. It also is a con-
venient place to store facts that can be used by the
machine as they are needed. For example REDUCE returns
"TRUE" when applied to such formulas as (Closed C1ST
A), (Open X), (Open @), (Open interior A), (# C &),
etc.

Forward Chaining. It seems that unrestrained forward
chaining is a poor idea in automatic theorem proving
because it tends to produce an excessive number of
useless hypotheses (lemmas). Consequently, our earlier
versions of IMPLY relied heavily on backward chaining.
However, the use of the man-machine system (especially
the PUT feature) on theorems in topology has brought

to our attention the power of forward chaining in

many proofs, especially in cases where the chaining
expression is a ground (all constant) formula. We
therefore have provided ground forward chaining as a
new rule in IMPLY.

RULE (forward chaining).
sion (i.e.,
of P(i.e.,
Po = Pr)

If Po is a ground expres-
contains no variables)which is an instance
there is a substitution T for which

then the goal

(H

is converted to the new goal

~ (P*Q)"PO+C)

(H"(P*Q)“PD"QT*C)-

This rule need only be applied at the time some-
thing new is added to the hypothesis, such as when an
expression (H + (A » B)) is converted to (H ~ A * B),
or when another forward chaining step has just been
completed.

This rule has been further extended in the system
to provide for so-called "PEEK forward chaining”,
which works as follows:

RULE (PEEK forward chaining).
expression, P. = Pr,
then the goal

If P is a ground
A has the definition (P + Q),

~ 8~ P > 0)

@ 0

is converted to the new goal
(H"AAPGAQT+C).

Note that the machine "peeks" at the definition of

A to see if forward chaining is possible, but then
returns A to its original form. This variation is
very useful (see Example 2, (111 H1)). Returning A

to Its original form makes the theorem much easier to
comprehend for the mathematician reading the display
on the scope.

Forward chaining still tends to clutter up the
scope with useless hypotheses, and the user occasion-
ally finds It useful to remove some of them by the
command DELETE. More importantly the user, when he
gives the computer a theorem to prove, need not list
all required lemmas but can give them only as they are
aeeded In the proof, and thereby can eliminate much
irrelevant forward chaining.

Breadth-First-Search. One of the difficulties with the
previous version of IMPLY was that its search was
essentially "depth-first." For example, in proving

(H(x) > P(x)) ~ P(xn) > ?(xo}

It would back chain off of

(H(x) + P(x)}}

and try to prove H(x), before finally getting
around to the trivial proof (P(xo) -> P(x)).

A human, acting more intelligently, would
casually glance across the hypotheses, and notice
P(x,.) before trying to establish H(xo).

A more serious difficulty is encountered in
instantiating definitions, in that not enough direc-
tion is provided as to which definition to instantiate
first. As a general rule, an expression such as "reg"
should not be replaced by its definition unless it
will "do some good." Otherwise a glut of new symbols
hamper both man and machine. Also it is usually
better to instantiate definitions in the conclusion
before those in the hypothesis, and to instantiate
definitions of "strange" terms such as "paracompact"
before those of ordinary terms such as "closed" or
"C."

We have attempted to remedy these two diffi-
culties and have also added another feature called
"PAIRS" which tries if possible to apply that
hypothesis which is like the desired conclusion,
when a complete match cannot be made.

The following is a rather sketchy description of
the revised IMPLY program, which gives only the
flavor of It. A detailed description is given in
[12].

When a theorem (or subgoal)

H » C})
it first calls REDUCE,

even

is given for IMPLY to prove,
then applies its own rewrite rules, and SPLITS it if
appropriate. Next it does a breadth-first search

by trying the following seven steps In the order
indicated. If any step fails it goes to the next;
the success of a step usually results in another call
to the function IMPLY.

1. Match

2. Match and Backchain

3. PAIRS

4. PEEK

5. Define C

6. Define strange terms

7. Definme sny term.

These are described in more detail below. With
the exception of step 5 each of the steps listed

involves a call from IMPLY to a function called HOA
What basically happens is that IMPLY splits the
theorem into subgoals on the basis of the ORAND
structure of C, and HOA attempts to use the hypo-
theses to prove these subgoals.
1. Try matching the conjuncts of H with C.
That is if H is of the form Hy - Hy, - Hj;
it tries to match C with one or the H..
2. Same as 1., except that backchaining is
allowed. For example, in

-~ 1
H o~ (H, >C) > ¢

it would first try matching C and Hl’
and then if that failed, it would try “to
match € and C' and backchain.

3. Try PAIRS. If the main commective of
matches the main connective of a conjunect
Hi of H (but T and Hi do not match),

then consult the PAIRS table for conditions
which would yield

@, > 0,

60

and try to prove those conditions.
For example, given

(Ref G Fo) > (Ref H J,)

(here (Ref GOFO) means that G_ is a re-

1]
finement of Fo), PAIRS would comsult the

PATRS table and find
(Ret BOCo) ~ (Ref P T)

there. 1If it ¢an establish this wew subgaoal,
the proof i1s concluded. 1If that fails it
will look for another entry on the PAIRS
table concerning Ref.

4. PEEK gt definitions fn H. Hetre we do not
arbitrarily instantiate definitions of ex-
pressionz im H, but rather do s0 only if we
find in a conjunctive position of H a
possible match For C. Yor example, im

{(reg - open cover I, <+ cover GOJ

0
we first leook at the definition of reg and
find ne reference to "cover", so we leave
reg a8 1t was and try the definition of open
cover Fo, which 1is

0o "FpET

Since "cover" appears in 3 conmjunctive posi-
tion, we tetain this delinition, and our
theorem becomes

Cover F

0" Fo

Starting again at Step 1 we eventually con-
sider PAIRS (Step 3) on

{reg ~ (Cover F Z T) ¥+ Cover GDJ'

{Cover F. > Cover GU),

]
which may or may not succeed. 1If it fails,
the theorem is returned to its original form

(reg ~ Open Cover F_ + Cover GO)

o]
and Step 5 fs then tried.
5. Instantiate the definition of the wmain cou-
nective of C.
Ingtantiate the definition of the first
"strange" symbol in H.
7. Instantiate the definition of any sywmbol im C.
Equality Substitution. IMPLY employs a form of equal-
ity substitution whereby if given the goal

6.

fa=b ~a>C)
the program first tries to prove
@' »ch

where A' and C' are obtained from A and C by
replacing all occurrences of & by b, and then if
that fails, tries replacing b by a.

This has been sufficient for many applications,
but more sophisticated methods may be needed such as
those ugsed by Nevins in [9], Slsgle In [14]), or the
"equality-term-locking” of {16], or others, which proe
vide guidance for which of a or b ghould be te-
placed by the other.

4. Examples.
The examples we have explored are mostly from

Kelley's General topology [13], though in fact any
reasonably precise text would do.

We have taken examples from various parts of the
book. Example 2 is a theorem about paracompactness.
The examples tried so far have been about just one
topology. This is convenient since it allows fixed
symbols T and X for the topology T on the space
X. The space X is assumed to be non-empty. The
definitions used by the computer are stored (perma-
nently) in its memory.

The theorem labels used in the following examples
are also those used by the computer. They help inform

the user where he is in the proof. For example, if a
goal has theorem label (1 2) and it SPLITS, then the
two parts will be labeled (1 2 1) and (12 2). |If

back chaining is used on a theorem labeled L, then

the two steps are labeled (LB) and (LH).

The presentation on the scope is always in the
"pretty-print" format depicted on page 11. But to
conserve space we have here shown our examples in a
more compact form, and some lines of the proof are
omitted.

In this presentation, an "h" at the left indi-
cates a human input, an "Ed" indicates an editorial
comment, and an "m" indicates machine output. The
m's are omitted in our description after the first
few lines of each example.

In the examples

The expression Means

T The topology (family of open
sets) on the space X

Cover G Xoc U A

~ AeG

0c G 6= T~ Cover G

ee G G = €losed ~ Cover G

Reg The topology 15 regular (defined
below)

Lf G G is loeally finite

Ref G T G 1z a refinement of F

Delfr Every open cover of X has an
open locally finite refinement

Ocelfr Every open cover of X has a
closed 1lpeally finite refinement.

M N = N is a neighborhond of x

subsets A The zet of subsets of A

o U A
AeC

EXAMPLE 1. (Theorem 1, p. 38 of [13]). A set is

spen 1f and only 1f it contains a neighborhood of each
of its points.

DIALOGUE
h ©pen h¢ xe A >IN Nx . ~NCA)

Ed This is the statement of the theorem to be
proved.

Open A+ xc A > 38 (b K x ~WCA)
FAILED TIMELIMIT ..

(1)

Ed The twe dots, .., indicated that the mac-
hine has stopped for human imput. The
computer hag failed to prove (l) in ite
prescribed timelimit.

61

m {1l

(11

(111

(111

(111

(111

(L1

(1

1)

Ed

Ed

)

2)

Ly

3

2)

Ed

2)

Ed

Ed

DETAIL

> Nb N x

(Open A, 0 0

> (xo € A
FAYLED .,

The computer has taken the skolemized
expression (1 1) as the first half of
(1. Aa and x_ are skolem constants
and ¥ “is a varisble for which a value
must be found that sat{sfies the con-
¢lusion.

DETAIL
{Open .Ao ~ Xy € Ao + Nb N %o
€ ﬁo +Nb N xo)

~ N
g Ay

Open A, ~ %
FATLED 0, ©

DETAIL

It now defines “Nb".
{Qpen ‘l‘g »xue A > Open A~ ACH

0

- xo € A}
(Open ‘0‘0 ~ K E AG * Open A)
FROVED .. (AOJA)
GO
(Dpen AU "X E AO » AO C N}
(Open AO -~ xoc A0+ (toe A0+ toe H))

"

{ nty € Ay P by e H)
FROVED .. (ﬁO/N)
[e]
(Open Ay - X5 € Ay > Xy € hn)
PROVED ..
G0
{Open AO ~ Ry € AD » AO c AO)

PROVED ..

This was proved by REDUCE which knows

that A C A for amy A.

GO

{(x € AO > Wb N{x)x ~ N(x) = 30) + Open A
FAILED ..

This is the second half of (1). Rote
that the skolemization is different from
that in (1 1). .

DETAIL

The machine {at Step 5 of IMPLY}, "de-
fines" open. MNote that in this case a
ugeful characterization is given in
place of a bonafide definicion.

{((x ¢ AO » Nb N(x)x ~ N(x) C .&o} -

Tﬁ -
(Fc Ay = oF)

v Open B ~ Open D ~ A_ = B N D))

o

121

h

(121 1)

Ed

(121 1)

h

(121 2)

(121 21)

Ed

Ed

(121 211}

Ed

(() » F ST A,y = oF)
FAILED ..

DETAIL

(JrFCT)

FATLED ..

At this point the human user realizes
that he suet help the machine by giving
a valua for F.

PUT F =T 1 subsets &

[1]
({ y + T N subsets Ao) =T
L y+ B e (TN subsets &)
¢ 4+ Qpan 309‘)
()~ (")
+ Open BO))
{(y - (OpenBUABOEaO)
+ Open Bo))

{((x e AD > Nb N{x)x ~ N(x) € Ao)
¥ (TN subsgets Ao) <™
PROVED ..

GO

{{x ¢ Ay > Nb N(x)x ~ W(x) EAO) * A,

= g{T N subsets ao))

TAILED ..

DETAIL

«) > (A S o(T R subsets A)
~a() Ao])

{()+ Ay < a(T N subsets Ay))
{{)-“'[(toeAO)-i-toa al Y
« Yoe o€ A

o] 0
Tn
> E af subsets Ao))

t. e A, iz forward chained into the
egistng hypothesis to yield

Mb N{t)t ~ N(to) c Ao) which 1a added

te the Rypgthesis.

«) - Nb Ny £y - Ny S Ag

~ to £ Ac g e a(T N subsets Ao})

where N_ 12 written for the skolem

expressigu N(to).

« YA~ a™ A >Open A
~ACA At e A

« ©)~ Wb N £, - Ny S Ay

~ l:.o € Ao & Cpen A)

1t now "peeks” inte the definition of
“RL", findg "open" there, and hence uses
the definition of Nb.

0) ~ {(Open Ay~ 4y ENO
.I:olAl) ANOEAO

€ A_ + Open A)

A

62

h
(121 212)

Ed

h

IXAMPLE 2.

PROVED .. (AlfA)
GO
H - A“ ~
(() - AISNG NOEAO
> & S Ag)

This subgoal essily follows by the trans-
itivity of "C'. Such a rTule could be
build in as in [14}, or we could use a
locked axiom ae in Chapter 7 of [15].
Another possibility is to "forward chain"
(al = No) into (No < Ac) to get (Al EAO).

Seme such device will probably be uged in
future programe, but here we employed the
command "USE™, and the program easily
completed the proof,

USE ASB ~BSCH+ACSC)

{(Theorem 28{b + c), p. 156 of [13]). 1If

{ is a regulsr topcloglcal space and each open cover
»f X has a locally finite refinement, then each open

sover of X

m (1)

Ed

an

Ed

Ed

(111

Ed

has a closed locally finite refinement,
DIALOGUE
{Reg ~ Oclfr + Occlfr)
(Reg ~ Oclfr + Occlfr)
(FATLED TIMELTMIT ..

The computer has tried and falled to
prove {1} in its prescribed timelimit.

DETAIL

(Reg ~ Oelfr > (Oc FO > ec G - Ref &
~ Lf G))

(Reg ~ Qclfr -~ Oc Fo + cc G ~ Ref GFO
~Lf G)

{Reg ~ Oclfr - Oe F_ + cc G}

0
FAILED TIMELIMIT ..

The computer has defined Qcelfr, moved
the expression Oc F_ to the hypothesis,
and split the conclusion, giving (1 1)
as the first subgoal of (1) on which it
feiled,

Hete F_. 48 a skolem constant and G
iz =& va?iable which ia to be choren to
satisfy the theorem. The most important
and hardest thing the program has to do
is to find an acceptable G.

DETAIL

{Reg ~ Dclfr -~ Oc F
Cloged)

> -
0 Cover G G c

(Reg ~ Oclfr -~ Oc F, + Cover &}

FATLED ..

0

At this point the human cperator realizes
that he must help by gilving a value for
G. He does this in three steps below,

by first asking that the expression
Oclfr be defined, and chen giving values
for the variables F' and G.

D Delfr

Ed

Ed

{111 Ry -

Ed

(111 H}

Ed

(111 H)

(L1 1)

Ed

{111

m

(111 P)

Ed

Ed

~ Ref G, F' - a1y

{Reg ~ |Oc F' » Cover GO 0

Lf GOJ ~ De FO + Cover G)
FUT F' = [B":
Clsr B' < B))

Open B' -~ B (B ¢ Fg ~

In this writeup we have denoted by Go a1

the skolem expression G(F'). The
machine retains its complete skolem
expressions but prints only (G) on the
scope for ease of reading.

Ed
Since the new entry [->] in the hypothesis

is an implication, and since F' has been

given a value, the machine first tries

proving OcF' before proceeding. This is Ed
done in (111 H) below. If It succeeds

it will then retain the hypothesis

t
(Cover GO ~ Ref GOI-‘

instead of [+].

~ LE 6)
(11}

TRY FROVING HYPOTHESIS

(RegFDcFO-)-OcF') h

We are writing F' here but the machine a 2)
retains the value of F' given above.

(Reg - Oc Fo > Oc F')
FAILED TDMELTMIT ..

CNT & Ed

The pperstor has increased the timelimit
by a factor of 4 (for this goal only)
end this causes success. More details
of this part of the proof will be given
below.

a3

Ed
{(Reg - Oc F,* Oc F')

ESTABLISHED HYFOTHES1S o

J)
{(Reg - [Cover Gy * Ref GoF ' - Lf Gol
~ 0cF

(L2P)

+ Cover G)

0 Ed

It is now ready to continue with the proof
of (1 1 1), The hunan makes his final '
input. Bar G, dis the set of closures

of members of Gge

PUT G = Bar G

Q
1
(Reg ~ Cover Go - Ref GOF ~ Lf GO ~ De FO

+ Cowver (Bar GO)) (8 B3

TRY PAIRS (ecpver)

1
(Reg ~ Ref GUF ~ Lf GD - Qe Fo W

+ Ref Go(Bar GO))

When PATRS is presented with (COVER G, +
Cover G,) it suggests trying Ref G.G,. Ed
Ref clcz means that G, 1s & refinément
of G,,"il.e., each ma:nb%: of Gl ie a Ed

subsef of a member of Gz.

(111 P} is proved by BEDUCE which haz on

its table thet Ref F{(Bar F) for any F. (111 B}

63

~LE G, ~0OcF

(Reg - Cover Go o 0

~ Ref GOF'
+ Cover (Bar Go))

PROVED ..
[1]

~Lf G, ~0cF

(Reg ~ Cover Go ~ Ref GOF 0 0

+ (Bar GO) < Closed)

PRGVED ..

Note that the new value (Bar G.} is
given for G, and alsc the thred new hy=-

potheses cbtained for the proof of
{1 1 1) are retained in {1 1 2).

Again REDUCE proves (1 1 2) since it
knows that Bar F = Closed for any F.

oo

~ Oe F

' -~
{Reg ~ Covet GU - Ref GOF Lf GO ¢

* ¢co (Bar GO))
PROVED ..

GO

~ 0e F

(Reg ~ Cover G, - Ref G.F' ~Lf G, c

+ Ref (Bar GO)FO)

TRY PAIRS (Ref)

The machine uses PAIRS as before to easily
complete the proof of (1 2).

{Reg - Cover G
+ Lf (Bar GO))

. 'L ~ 0
o Ref GaF Lf GO c FO

This 1z the last subgoal of (1), Lf F
means the family ¥ is locally finite

TRY PAIRS
¢ "

When PAIRS tries (Lf F > Lf G} it suggests
trying to prove that {G = Bar F) because
it knows that (LE F + Lf Bar F). If
such an entry had not been on the FAIRS
table then the user might have inter-
vened with the command (DSE (Lf F >
Lf(Bar F)} vhich would have produced the
samg¢ resulr, The PAIRS table is a con-
venlent way to store such Lemmas.

{L1)

> =
(Bar CO Bar {:0))

(Reg ~ " » Lf(Bar GO))
PROVED ..
[E¢)

(Reg ~ Oclfr + Declfir)
FROVED ..

Q.E.D.

We now list some (but oot all) details of
the proof of {111 H)}., Recall the value
of F'.

(Reg ~ Oc Fo %+ 0c F')

(111 H1)
Ed
(%)
Ed
Ed
(k%)
Bd
£d
{111 ®1)
Ed

of RE

(Reg ~ Oc F, » Cover F'}
{Reg ~ Oc¢ Fo + X < gF')
Recall that ofF' = L) &
AcF!
(Reg ~ Oc Fo + (xoe X+x°e aF'))
{Reg ~ Oc FO ~ % € X+xoe oF')

When
over

the expression x, e X is switched
to the hypothesis, forward chaining

is performed by the machine {see Section 3).

It PEEKS into the definition of Q¢ F

1.3
aud finds 0
Oc Fy = Cover F, - Fy © T
=SKCaFy A Foe T
= (xeX *B(x) e F. ~ x e B(x))
A0 > opef D)

It therefore substitutes x for x and
obtains the additional hypSthesis
(B(xoj € Fu ~xg B(KD)). Thus {*) be=
comes (Reg ~ Oc FO ~ KO e X -B. eF

1 0
L% & B, *»x_ € gF')

o} 1 0
where B, is rhe gkolem expression B(xo).

The addition of B, € F_ to the hypothesis
causes further forward c¢haining into

(D e ¥, > open D} of (**) to yield open
B., which in turn, with x_e B_, is
forwvard chained into 0 1

Reg = {x e A ~ open A ¢ B{x,A)
- Open B(x,A) - Clsr B(x,A) < A)

to yileld three more hypotheses. Thus
writing B2 for B(xo,Bl), (111 H1) becomes

(Reg "OCFD »xoe}CmBleFOfxDeBl

~ Clsr B,CB

- %X, £ B 2 9

1 0 2

~>xoe oF ')

Which is now easily proved by the program

- Open B ~ Open B

The following example is given to show the use of
PUT, ADD-DEF, ADD-REDUCE, REDUCE, and the PEEK feature

DIUCE .

Many (most)} steps of the dialogue are cmitted

in the writeup.

EXAMPLE 3.

logy

T has a countable base.

(Th. 15, P. 49 of [B]).

Suppose the topo-
Then each open cover

of a set hag s countable subcover.

(e8]

(¢cbl F ~Base F} ~ACX -GC T ~ACOG
+#3H (S G -~ ebl H ~ A< ol
{ebl Fo ~ Base Fo »Aot_:)(- (';0(_:_ T~

A C oG
|« R o
»HCG ~¢chlH ~a < aqH)
=5, 5 =
DE TATL
(L F n .- »HCSG)
PETAIL
H&EG
- 0
FAILED

64

1

(11}

(PUT F, = (A’ e F:3B' ¢ 6 A CB'D)

(PUT £ = (b e F; cholce (8 e G,: & C B})
(PUT E = Range f)

{ + + » > Renge fEGOJ

FAILED

At this point the user realizes that the
computer does not heve the definition of
Range.

(ADD-DEF (Range g) {y: Jx ¢ dowain g
¥y = g(x}

-« «+ {y: - -]EGD)
-+« +
B elyr - - -1 »B €6
Reduce
(e o ﬁAledumainf ~B, = f(i‘-]_)
+*B e G)
o [

Here the machine knows nothing about A expressions
ao it can reduce neither domein f nor f(AI). Sc the
user gives the following information.

(ADD-REDUCE ((Ax € A EB) x) 3B),
A-conversion
(ADD-REDUCE (domain {(Ax ¢ A B) } A).

Now the machine in trying to reduce
"peeks” at the definition of f,
h-expreseion, and reduces

{domain f}
finds it to be &
(domain f) to Fl-

In converting £(A,) it sgain "peeks" at the

definition of
Al = B}).

™m

1 2)

(121

f to rediice f(Al) to (Choice {B e G‘D:

(" ~AeF B

= Choice [B e G : A< B) >3 e Gﬂ)
Sub =

(- - - A&laFl -t

+ Choice (B & G,* Al < R) e Go) etc.

ete,

FAILED

(ADD-REDUCE {choice A ¢ B) (A < B) }

[AaleFl'\ '

+{8eG:A CBlCG)

[L S (BZE Go "A]_EBZ

- BZ £ Go))

PROVED

GO

{(* «+ » > cbl Range f ~ AOE o Range f)

DETAIL

(- - + ¥+ chl Range f)

FAILED

Wse ¥Yf' (function £f' .. ckl domain £’
+ cbl Range f')

Back Chain

(¢bl Range £' » cbl Range f) £/£f°

{121 H) { * > funetion £ ~ cbl domain f£)
{121 Hl1} (+ » = > function f)
(¢ « « > function %A e F,
choice (B e Gt A Bi)
(USE (function Ax e A P))
m {- = +» % function RA ¢ F

1
choice {B e G i A CB})

PROVED

m
(121 H2) {+ « + > chl domain £}
{- + « - cbl domain (A € ¥ choice { 1))
(bl Fo A e o« o *cbl Fl)
h (ADD-PATIRS {(cbl F) {(c¢bl G) (G = F))
{121 HZPM) (++ > F SF)
Ed This is easily proved and finishes the
proof of (1 2 1),
(122) {chl Fo ~ Baze Po P Aa C o Range f)
FEOVED. .
QED
5. Remarks.

Many of the abilities which are built into this
man-machine facility have been developed only after a
period of trial and error. In fact the reason for
many of these is to provide for more ease in checking
out and changing the program. We expect the program
to continue to change as it is tried on more and
more examples, hopefully evolving into a system which
will be useful to the researcher in topology. So far
this is not the case, we have handled only well known
theorems. Our next step involves work on the system
by some practicing topologist. This should help
determine whether such a system might have any practical
value in the near future.

An interesting point is this- Even though the
mathematician is able to intervene at any point in the
proof, he is nevertheless very annoyed when he has to
do so in a trivial way. When, for example, he PUTS
the values for F' and G in Example 2, he feels he
has done enough and rightfully expects the computer
to do the rest. Thus even in a man-machine system,
theorems that the machine alone is required to prove
are far from trivial. |In fact experience so far shows
that they are on a par with the hardest theorems being
proved today by automatic theorem provers.

Therefore, it is felt that any improvement in
machine-alone programs is truly worthwhile to the
man-machine effort.

the

Acknowledgment.
Various people both at U.T. and elsewhere have

greatly influenced our thinking about automatic theorem
proving and interactive systems. We want to especially
thank Bill Hemneman, Robert Anderson, Dave Luckham,
Vesko Marinov, Bill Bennett, Mike Ballentyne, and
Howard Ludwig.

65

This work was supported in part by NSF Grant
GJ-32269 and NIH Grant 5801 GM 157-69-05.

References

1. W. W. Bledsoe, R. S. Boyer, and W. H. Henneman,
Computer Proofs of Limit Theorems,

Artificial Intelligence 3 (1972), 27-60.

W. W. Bledsoe, Splitting and Reduction Heuristics
in Automatic Theorem Proving, Artificial

Intelligence 2 (1971), 55-77.

J. R. Guard, F. C. Oglesby, J. H. Bennett, and
L. G. Settle, Semi-automated Mathematics,
JACM 16 (1969), 49-62.

John Allen and David Luckham, An Interactive
Theorem-Proving Program, Machine Intelligence
5 (1970), 321-336.

G. P. Huet, Experiments with an Interactive Prover
for Logic with Equality, Report 1106,
Jennings Computing Center, Case Western
Reserve University.

John McCarthy, Computer Programs for Checking
Mathematical Proofs, Proc. Arcerm Math. Soc.
on Recursive function Theory, held in
Ney York, April, 1961.

Paul W. Abrahams, Machine Verification of Mathe-
matical Proof, Doctoral Dissertation in
Mathematics, MIT, May, 1963.

W. W. Bledsoe and E.J . Gilbert, Automatic Theorem
Proof-Checking in Set Theory: A Preliminary
Report, Sandia Corp. Report SC-RR-67-525,
July, 1967.

Arthur J. Nevins, A Human Oriented Logic for
Automatic Theorem Proving, MIT Al Memo No.
268, October, 1972.

10. Raymond Reiter, The Use of Models in Automatic
Theorem Proving, Dept. of Computer Science,
University of British Columbia, September,
1972.

11. TAURUS, described in Users Manual, Computation
Center, University of Texas, Austin.

12. Peter Bruell, A Description of the Functions of
The Man-Machine Topology Theorem Prover,
(under preparation).

13. John L. Kelley,
1955.

General Topology, van Nostrand,

14. James R. Slagle, Automatic Theorem Proving with
Built-in Theories Including Equality, Partial
Ordering, and Sets, JACM 19 (1972),

120-135.

15. Robert Boyer, Locking: A Restriction on Resolution,
Ph.D. Dissertation, Mathematics Dept.,
University of Texas, Austin, 1971.

16. Dallas S. Lankford, Equality Atom Term Locking,
Ph.D. Dissertation, Mathematics Dept.,
University of Texas, Austin, 1972.

17. The Utility of independent subgoals

Information and Control,

George Ernst,
in Theorem Proving,
vol. 18, 3, 1971.

