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ABSTRACT

An information processing model of some important
aspects of inductive reasoning is presented within the
context of one scientific discipline. Given a
collection of experimental (mass spectrometry) data
from several chemical molecules the computer program
described here separates the molecules into "well-
behaved" subclasses and selects from the space of all
explanatory processes the "characteristic" processes
for each subclass. The definitions of "well-behaved"
and "characteristic" embody several heuristics which
are discussed. Some results of the program are
discussed which have been useful to chemists and which
lend credibility to this approach.

INTRODUCTION

Induction in science has been understood to
encompass many different levels of tasks, from theory
construction as performed by Einstein to everyday
non-deductive inferences as made by scientists looking
for explanations of routine data. For the most part,
it is not well defined however one understands it (a
notable exception being statistical inference).
Although general statements can be made about
non-deductive inference, it is unlikely that there
exists one general "inductive method" that guides
scientific inference at all levels. Nor does it seem
likely that a method of scientific inference at any
one level can succeed without recourse to task-specific
information, that is, information specific to the
particular science. Within these assumptions we are
exploring an information processing model of scientific
inference in one discipline-

A unifying theme in our explorations is that
induction is efficient selection from the domain of all
possible answers. Previous papers on the Heuristic
DENDRAL Program have advanced this theme with respect
to hypothesis formation in routine scientific work.
Recently, we have been exploring this theme with
respect to the higher-order task of finding general
rules to explain large collections of data This
paper extends the previous work to the task of finding"
rules for subclasses of objects, given empirical data
for the objects but without prior knowledge of the
number of subclasses or the features that characterize
them.

THE TASK AREA

For reasons discussed previouslyz, the task area
is mass spectrometry, a branch of organic chemistry.
The rule formation task is to find rules that
characterize the behavior of classes of molecules in
the mass spectrometer, given the mass spectrometric
data from several known molecules.

The chemical structure of each molecule is known.
The data for each molecule are a) the masses of
various molecular fragments produced from the electron
bombardment of the molecule in the instrument and
b) the relative abundances of fragments at each mass.
The data for each molecule are arranged in a fragment-
mass table {FMT), or mass spectrum. Typically, there
are 50-100 data points in one FMT. The task is to
characterize the experimental behavior of the whole
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class of molecules.

Rules which characterize the behavior of the
molecules are represented as conditional sentences in
our system. The antecedent of a simple conditional
rule is a predicate which is true or false of a
molecule (or class of molecules); the consequent is a
description of a mass spectrometric action (henceforth
"process") which is thought to occur when that molecule
is in the experimental context. We have termed these
rules "situation-action rules" (or "S-A rules"). The
rule syntax has been described previously® and is not
critical to an understanding of the present paper.

An example of a rule, rewritten in English, is: "IF
the graph of the molecule contains the estrogen
skeleton, THEN break the bonds between nodes labeled
13-17 and 14-15." This process (the consequent of this
rule) is named BRK1OL in Table T. The graph of the
estrogen skeleton mentioned in the antecedent is shown
with the conventional node numbering in Figure 3.

The rules will be used in the Heuristic DENDRAL
performance program to determine the structure of
compounds, reasoning from the mass spectrometric data
of each. They are also of use to chemists interested
in extending the theory of mass spectrometry.

OVERVIEW OF METHOD

The rule formation program contains three major
sub-programs, which are described below under the
headings Data Interpretation, Process Selection, and
Molecule Selection. The control structure for the
overall program is described after the discussions of
the three major sub-programs. A brief overview of the
whole program will be given first, however, in order to
set the context.

The purpose of the program is to find the
characteristic processes which determine separable
subclasses of molecules given the experimental data and
molecular structure of each molecule. The overall flow
of the program, as described below, is shown in
Figure 1. The three major steps are to reinterpret the
experimental data as molecular processes, find the
characteristic processes for the given molecules, and
select the set of molecules that are "well behaved"
with regard to the characteristic processes. The
reinterpretation of the data is done once for each
molecule in the whole set, and the results are
summarized once. The second and third sub-programs are
called successively until they isolate a well-behaved
subclass of molecules and determine the processes which
characterize their behavior. The monitor then
subtracts the well-behaved subclass from the starting
class of molecules, and repeats the successive calls to
the second and third subprograms. The whole program
stops when there are N or fewer molecules not yet in
some well-behaved subclass. (For now, N=3.)

The data interpretation program has been described
previously with some aspects of the process selection
program3. The molecule selection program and class
refinement loop in the control sequence are new
additions.



DATA INTERPRETATION

As mentioned above, the purpose of the data
interpretation and summary program (INTSUM) is to
reinterpret the experimentally determined data, the
FMT, for each molecule and summarize the results.
Because the program has been described previously
details will be omitted here. It should be noted that
the successful apolication of this program to a sub-
class of estrogens has already been reported in the
chemical literature The INTSUM program is general
in that it will work on FMT's for any class of
molecules with a common skeletal graph and it is
flexible in that the knowledge used by the program is
easily changed and there are numerous optionr,
controlling the operation of the program.

The INTSUM program is called with the initial set
of molecules and their FMT's, It is also Riven the
graph structure of the skeleton common to all molecules
in the initial set. The first step is to search the
space of all possible processes which could explain
data points in the FMT of any molecule with the given
skeleton. The space of explanatory processes is
combinatorial; simple processes that cut the graph
into two fragments are generated first, followed by
pairs of simple processes, triples, and so on. The
heuristics listed below constrain the search:

Simplicity (Occam's Razor),

If two or more processes explain the same data
point, prefer the simpler one, i.e., the process
involving feWer simple steps.

Chemical Constraints.

(a) Break no more than NB bonds in any process,
whether simple or multi-step (NB=5 in our current
version); (b) Do not allow any process to break two
bonds to the same carbon atom; (c) Do not allow a
fragment to contain fewer than NA atoms (NA=5
currently); (d) Do not allow any process to contain
more than NP simple processes (NP=2 currently); (e)
Break only single bonds (no double or triple bonds).

The heuristic search produces a list of plausible
processes without reference to the data. The second
step of the INTSUM program is to determine for each
process and each FMT whether there is evidence for the
process in the FMT. If so, then that process can
explain the data point and the strength of the
evidence is saved. The final step is to summarize for
each process and all molecules the freauency, total
strength of evidence and number of alternative
explanations. (Freauency for a given process is the
percentage of all molecules that have evidence for the
process.) These statistics are passed to the process
selection program.

PROCESS SELECTION

The process selection program chooses the most
characteristic processes for the given class of
molecules from the list of a. priori plausible
processes that are output by the INTSUM program. It
assumes that the molecules given to it are all in one
well-behaved class. Thus, it can merely filter the
list of processes to find those which satisfy the
criteria for characteristic processes.

A process mentioned in a rule statement must
satisfy several criteria in order to be counted as a
characteristic process for the molecules under con-
sideration. The INTSUM program provides a summary of
statistics for the plausible processes it has chosen
from the space of all processes. The process
selection program applies heuristic criteria to sort
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out the most likely processes and to distinguish among
alternative explanations, when alternatives remain. It
uses the information from the data for filtering, in
contrast to the a priori filtering in the INTSUM program.
For example, an a priori simplicity criterion filters
out processes that break too many bonds. The criteria
for "most likely processes" — frequency, strength of
evidence, and degree of uniqueness — are discussed
below. To a large extent the choice of these criteria
and particularly the choice of parameter settings are
arbitrary. However, the following discussion provides
some rationale for our choices.

Frequency.

If nature presented clear and unambiguous data to
us we could expect all and only characteristic
processes for a class of molecules to occur 100% of the
time. This is what we would like to mean by 'char-
acteristic' process. However, the data contain noise
and, more importantly, we are forced to interpret the
data in terms of processes that we construct. Thus,
in the literature one finds discussions of exceptions
to rules together with presentation of the rules. A
low frequency threshold (60%) is used as a criterion
for plausible process instead of a high one because the
marginal processes which are included at one step can
be excluded at a later refinement step if they prove to
be uncharacteristic of a class of molecules.

Strength of Evidence.

The program considers the strength of evidence
found for each process, besides the frequency of
molecules that show the process. Associated with each
fragment mass in the experimental data is a measure of
the percent of total Jons (or ion current) contributed
by fragments of that mass. (The evidence from mass
spectrometry is not merely binary, i.e., yes/no,
although we have considered it that way in the past.)
The total ion current for any molecule can be visualized
as the sum of all y-values in a bar graph in which the
x-values represent fragment masses. The strength of
evidence for a process, then, is the percent of the
total of all ion currents (for all molecules) that can
be explained by the process. The present value of this
parameter is 0.005, i.e., 0.5% of the data must be
explained by any process that will be said to be
characteristic of the given molecules.

There may be much information in the weaker data
points, but until we can interpret the strong signals,
we do not want to start looking critically at the weak
ones. This is why we have a strength of evidence
threshold (although in our trials we have kept it
fairly low).

Degree of Unigueness.

The program will discard processes that cannot
uniquely explain at least n data points for each
molecule. The rationale behind this criterion is that
processes that are always (or often) redundant with
other processes have no explanatory power of their own.
In spite of the intuitive appeal of this criterion, it
was not used for the trials reported here in which
molecule selection is coupled with process selection.
For process selection alone, it is a useful filter.

These three criteria filter the processes to pro-
vide the characteristic processes for the molecules
given to the program. However, the processes may still
overlap in the data points that they explain. If two
(or more) processes are ambiguous, i.e., they explain
most of the same data points, the program tries to
resolve the ambiguity in favor of a single explanation.
This is not easy, for the competing explanations have
all passed the tests for "most likely processes" Just
discussed. Thus, they all appear good enough to be



rules on their own.

The resolution of ambiguities among processes is
made according to relative values of the criteria used
to Judge them likely in the first place. That is, the
values of frequency, strength of evidence and degree
of uniqueness are compared - in any order - to

determine which process is preferred, if any.
MOLECULE SELECTION
Molecule selection, by itself, is a simple

program whose purpose is to find a subclass of
molecules that are "well-behaved" with respect to a set
of processes. Its inputs are (a) a class of molecules
and (b) a set of processes that are characteristic of
those molecules {output of the process selection
program just described).

The processes that are chosen as roughly char-
acteristic of a class of molecules are used by the
molecule selection program to refine the extension of
the class. Several processes will each have a few
exceptions - the number permitted depending on the
frequency threshold used by the program. But if the
same molecules appear as exceptions over and over
again (for several processes) then they probably do
not belong in the same subclass with the molecules
whose behavior is characterized by those processes.

A molecule is said to be well-behaved with respect
to a set of processes (or well-behaved) if it shows
evidence for at least MP of the processes. The current
value of MP is 85% of the number of processes in the
set. Currently this is the only criterion used to
identify members of the subclass, although other
features of the molecules could also be used for
clustering. For example, the structural features of
chemical molecules could also help classify molecules
which "belong" together. The reason descriptive
features such as these are not used during molecule
selection is that they constitute a good check (by
chemists) on the adequacy of the results of the
molecule separation procedure.

CONTROL STRUCTURE OF THE RULE FORMATION MONTOR

The overall flow of control has been briefly
described and diagrammed in Figure 1, and the three
major components of the whole program have been
discussed. The interaction between process selection
and molecule selection is the last important detail in
the description of the program. It is shown
schematically in Figure 2 and selected portions of
intermediate output are shown in Table I1.

After the INTSUM program interprets and summarizes
the data for a set of molecules, the process selection
program is asked to find a set of processes that
characterize those molecules. However, process
selection starts with the assumption that the molecules
should be characterized all together, i.e., that the
molecules are homogeneous, or belong in one class with
respect to mass spectrometry. The purpose of the rule
formation monitor, and the molecule selection program
in particular, is to remove the necessity of working
within this assumption. Because a class of molecules
has a common skeleton, there is reason to believe that
they are homogeneous (with respect to mass spectrometry
processes). But this is not necessarily true. Many of
the molecules whose structures contain the graph
common to estrogens (e.g., the equilenins discussed
with Table Il in the Results section) fail to exhibit
behavior that is characteristic of most estrogens in
the mass spectrometer.
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The monitor begins with the Null Hypothesis that
the initial set M of molecules is homogeneous with
respect to all the relevant processes given as input.
With the process selection program it finds plausible
processes that roughly characterize the whole class of
molecules. It attempts to confirm the hypothesis by
finding the subclass S of molecules that are well-
behaved for those processes. |If this subclass S is
the same as the initial set M, then the assumption of
homogeneity is taken to be true. |In that case, there
is no proper subset to be separated.

When the subclass S is different from the starting
class M, however, the program loops back to process
selection as shown in Figure 2. This figure shows the
procedure for producing one homogeneous subclass of
molecules (and the characteristic processes for the
subclass); this procedure, rule formation, is itself
used repeatedly in the main program as shown in
Figure 1.

The inputs to the rule formation procedure are
(a) the set RP of relevant processes and statistics for
them, viz., the output of INTSUM, and (b) a class M' of
molecules, where M' is initially the same as the entire
class of molecules, M, given to INTSUM. M' is used to
keep track of the best refinement of M so far.

The process selection program selects a set of
processes P from RP in the manner described above.
characterizes the class M's insofar as M' can be
characterized at all. The criteria for characteristic
process can be made more restrictive if the class is
known to be homogeneous (e.g., frequency >95%) . In
this case, however, the loose criteria listed above are
used (e.g., frequency >60%) in order to allow many
exceptions to the "characteristic" processes.

=]

The molecule selection program selects a subclass
of molecules S, from M', that ere best characterized by
the processes in P. The subclass S includes molecules
that show evidence for most (85% or more) of the
processes in P, and excludes molecules that are
exceptions to many. Thus S is at least as well behaved
as M' with respect to P. And since the two measures of
selection are not perfectly complementary, S is likely
to be better behaved than M' with respect to P, (If
molecule selection uses less restrictive measures than
process selection, then S will be less well behaved
than M' and the procedure will fail except when the
initial set of molecules is homogeneous.)

One interesting part of the procedure is that after
processes are selected, ALL of the molecules are
reclassified with regard to the number of times they
appear as exceptions to the processes. This is shown
in Figure 2: at step 2 of each level all molecules in
the initial set, H (not M' or S), are tested against
the processes. Thus, a molecule can be excluded at one
level (because it is an exception to too many of the
processes at that level), but be included again at
another level for a slightly different set of processes.

The condition under which we want the program to
stop is that the subclass S of molecules after an
iteration is the same as the class M' from which the
iteration started (condition 1 in Figure 2). In other
words, under this condition the program has found an S
and a P such that P characterizes S (S=M') and S is
vell-behaved with respect to P. The subclass S is
taken to be homogeneous, and the processes in P can be
taken to be mass spectrometry rules for molecules in S.

The refinement level in Figure 2 is the number of
times the procedure has been invoked in trying to find



one homogeneous subclass of molecules. The second of
the stopping conditions tests whether the refinement
level is equal to an arbitrary maximum, which is
currently 3. This condition is necessary to avoid an
infinite loop in the case where the program can find
no subclass S that is homogeneous with respect to P.
The level 3 has been observed to produce fairly
acceptable results: after three iterations through
this loop, the subclass S is about as refined as it
will get. After more iterations the procedure appears
to oscillate in that molecules added to S in one
iteration are subtracted, from S in a later iteration.
Our experience is very limited. Because there is no
guarantee that the procedure converges, however, some
stopping condition like the maximum refinement level
is necessary.

The last stopping condition shown in Figure 2
tests whether there are enough molecules in the
subclass to warrant further refinement. If there are
fewer than an arbitrary minimum number (=3) of
molecules in S, then further refinements will be
unreliable. This minimum is not completely arbitrary,
since it depends to some extent on the frequency
measures used in process and molecule selection.
intuitively, when the number of molecules in G is
small there is little value in breaking S up into
subclasses anyway.

But,

As shown in the overall flow diagram, Figure 1,
after the first major subclass (S) has been defined,
all molecules in S are removed from any further
consideration by subtracting them from M. The entire
procedure is then repeated with the new M. It stops
only when there are so few molecules left in M (3 or
fewer) that process selection is unreliable and
molecule selection appears pointless.

The output of the whole program now is merely the
collected set of outputs from all iterations, viz.,
the collected S,P pairs, as shown in Figure 2. Future
work will focus on automatically generalizing the
descriptions of the molecules. This is now done by
hand, except when the initial class M is homogeneous -
then the generalized description is the common graph
structure.

RESULTS

The INTSUM program alone has already provided
useful new results for chemists, as reported in the
chemical literature The process selection program,
working with output from INTSUM (but without molecule
selection), has successfully found sets of character-
istic processes for a well-understood class of
molecules (estrogens, Figure 3) and for classes whose
behavior is still under investigation (e.g.,
equilenins, progesterones, amino acids). For 47
estrogens, which were assumed by both an expert and
the program to be in one class, rules found by the
program agree closely with rules formed by the expert
from the same data. (This result is not shown in a
table, but the comparison with the expert's rules
looks much like that shown in Table 1.) Expert
chemists have made suggestions for improvements, but
were generally in agreement with the processes
selected by the program.

The rule formation program with molecule

selection has been tested on several sets of molecules.

The results of running the program on a set of 15
estrogens (a subset of the 47 mentioned above) are
shown in Table I. The program separated two of the
15 compounds into a second class because they were not
as well behaved as the rest - they were exceptions to
about 20% of the characteristic processes. However,
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the chemist thought the separation was reasonable. The
processes selected by the program are shown with
indications of the discrepancies between the program's
choices and the chemist's. The discrepancies mostly
arose from the program's applying different criteria
to select one process from viable alternatives.

Table Il shows the success of the molecule separation
part of the program when rule formation was done on
data from 19 non-homogeneous estrogenic steroids.
major subclass of chemical interest is the set of 5
equilenins which are identified by common modifications
to the skeleton shown in Figure 3. The structural
properties were not used by the program although the
chemist did classify the compounds by such features.
By selecting well-behaved subclasses of molecules the
program grouped four or five "equilenins" (molecules
#4, 8, 10, 19) and all three "3-acetates" {#3, 11, 18)
in the first subclass. The fifth equilenin (#2) was
removed from that subclass on the last refinement
because it was an exception to 3 of 9 characteristic
processes used to determine the subclass.

The

In the third iteration shown in Table |1, the
program grouped three of the chemist's four
"3-benzoates" together (molecules #12, 13, 14). In
the fourth iteration it grouped together the chemist's
two "diacetates" and one "triacetate" (molecules #9,
15, 16). Two iterations produced subclasses with only
two members - when put together they encompass two
"17-acetates" (#1, 17), one "17-benzoate", and one
"gamma-lactone" (#5). The two molecules remaining
unclassified at the end of the procedure were the last
"equilenin" (molecule §2) and the last "3-benzoate"

CONCLUSIONS

Building an information processing model of
scientific reasoning in mass spectrometry, although not
completed, has already led to interesting and useful
results. The model incorporates heuristic search in
process selection. The procedure for selecting
molecules can be thought of as a planning procedure
insofar as it reduces the problem of formulating rules
for a class of diverse molecules to a number of smaller
subproblems, viz., formulating rules for smaller
classes of well-behaved molecules. However, the
molecule selection procedure is highly dependent on
process selection, as described in detail.

The incompleteness of the program as a model of the
entire rule formation procedure should be readily
apparent. We have not described anything that
approximates confrontation of rules with new data,
example. But as the results section indicates, the
program can separate subclasses of well-behaved
molecules and can find characteristic processes for the
subclasses with enough accuracy (on a few examples) to
gain preliminary acceptance by an expert in the field.
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Pigure 1. OVERALL FLOW OF RULE FORMATION FROGRAM

INPUT: List of Molecule = Data Palrs

FROGRAM: INTSIM - Data Interpretation and Summary

» Lizt of Molecules, M.
List of Relevant Processes, RP, with
Summary Stetistiecs for Each Process

PROGHAM: Rule Formation#*

y

Set of Characteristic Processes, P (P&RP).
Cless of Well-Beheved Moleecules, 5 (S@M).

SUBTRACTION STEP: FRemove all Molecules in 5
from M,

STOPPING CONDITION: M contains 3 or Fewer
N Mglecules,

Yen

STOP
OUTPUT = All 5-P mairs found.

* Details in Figure 2.
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Figure 2.

DETAILS OF INTERACTION BETWEEN FROCESS SELECTION AND
MOLECULE SELECTION IN THE RULE FORMATION PROGRAM

INITIALIZE:

INFUT:

SUB-PROGRAM:

SUR-PROGRAM:

Refinement Level = 0

M = Originel clasz of molecules.

MY =M,

RP = Relevant processges (from INTSUM) including evidence and
statistics for the processes.

)
M', RP

4

Process Belection {using the null hypothesis that all molecules
can be characterized by the same set of processes)

¢

Set of processes, P, that ere charscteristic of M' (P RP}

Malecule Selectlon

!

Subclass of Molecules, 5, selected from M such that every
molecule in 5 1s well-beheved with respect to the processes
in P

Increment Refinement Level

|

Test for Stopping Conditions:

1. S=M', or
2, ERefinement level = 3, or YES STOF.
3. Fewer than 3 melecules in 8 —*  ouTPUT=S,P

| (8]

lewse  SUBCLASS REFINEMENT: TReset M' to 5 (M'=s8},

Filgure 3.

GRAPH STRUCTURE OF THE ESTROGEN SKELETON

12 8 17

I5
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TABLE I.
PROCESSES SELECTED FOR 15 ESTROGENS
BELIEVED TO BE IN ONE WELL-BEHAVED CLASS

% OF ALL DATA

PROCESS LAHEL® PICTORIAL DESCRIPTION POINTS EXPLATNED
1. BRKO ; i: a0
2. BRKZL/19L 149

{preferred over
BRKTL and BRKZL/18L]J
3. BRKOL or BRESL/LTL ‘:E%l 11%
4. BRK10L ;[5} an
5. BRKLLL: or BREKLLL ]7/<| : e
6, ERKLTL 5%
7. BRK2L/10L g
preferred over
BRK14L)
B. EREML 3%
3. BBKSL or BRK13L & 29
10. BRKLOL/15H or BRKSH/20L ’j 2%
or BRELH/1OL
g

* The underlined processes are those selected by an expert chemist on the basis of data from 47 well-behaved
estrogens, including these 15-
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TABLE |, Page 2
% 07 ALL DATA
PROCESS LABEL* PICTORIAL DESCRIPTION POINTS EXPLAINED

11. BRK11L I\ on

g

12.  BRK2L/11L 2%

(preferred over - [

BRK20L

) a

13. BRK5H/10L o%
14.  BRK5H/12L 1%
15.  BRK12L/15H or 1%

BRK12L/14H

TOTAL, PERCENT OF DATA EXPLAINED BLY

*

The underlined processes are those selected by an expert chemist on the basis of data from 47 well-behaved
estrogens, including these 15.
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TABLE I
SUMMARY OF STEPS IN THE RULE FORMATION
PROCEDURE WITH 19 ESTROGENIC STEROIDS

ITERATION #1
Initial Set:

First Refinement:

Second Refinement:

Third Refinement:
= Subclass 1

ITERATION #2
Initial Set
[- Subclass 1,

Third Refinement
- Subclass 2

ITERATION #3

Third Refinement
= Subclass 3

ITERATION #4

Last Refinement:
= Subclass 4

Molecules

[1,2,3,...,19]

[2,3,4,5,8,10,11,19]

[2,3,4,8,10,11,18,19]

[3,4,8,10,11,10,19])

[1 DE I5869T!9!l2l13l
1l,15,16,17]

[5,17]

[11,12,13,14]

[9.15,16]
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Frocesses

BREOD

BRE10L
BRK11L
BRKZ20L,
BRKZL/15L
BRKSUBR3L/ 3L
BRKSUB3L/12L

RRKOD

BRK1OL

BRK11L

BRK20L
ERKOOC3*¥1L
BRKSUB3L/ 2L
BRKSUB3IL/23L
BRKSUBL8L/11L

RRKO

BRK10L

BRK11L

BEK 0L,
BRKOC3I*11./11L
BRKOOCI®1L
BRESUBIL/ 2T,
BRKSUB18L/11L
BRKSUE3L/23L

ERMe

BREO

BRELAL
BREKAL/15L
BRESUB3L/ 3L

BRKD
BREZL/19L
BRKOC3*1L/BL
BRKOC3*1L/17L
BRKOOC1T*1L

BRKO
BRKBT3*1H

PRKBTI*1L,/ 3L
BRKSUB3L/ 3L

ERKO
BRXOOCI®IL
BRKODC3I*LL/6L
BREOOCI*IL/TL
BRKODC3*1L/6L



ITERATION #5

Last Fefinement-
= Bubglass §

UNCLASSIFIED MOLECULES

TABLE || * Page 2

Molecules

11,7]

[2.6)
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Processes

ERKOOCI*AL/16L
BRKOOC3*1T,/1TL
BRKOOUC1T*1L

DRKD

BRKEL

BRETL

BRESL
BRK10L
ERK1L1L

BRI L1

HRK1 5L
BRK16%
BRE1TL
BRE2L/17L
BRK2L/19L
BREQOCIT*1L
BRESUELTL
BRESUELTL/1L



