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Abstract 

Since 1967 there has again been great interest in 
chess programming. This paper demonstrates that the 
s t r u c t u r e of today's most successful programs cannot 
be ex tended to play Master level chess. Certain basic 
requ i rements of a Master player's performance are 
s h o w n to be outside the performance limits to which a 
p rog ram of this t ype could be extended. The paper 
also examines a basic weakness in the tree-searching 
model approach when applied to situations that cannot 
be searched to completion. This is the Horizon 

Ef fect , which causes unpredictable evaluation errors 
due to an interact ion between the static evaluation 
func t i on and the rules for search termination. The 
ou t l ine of a model of chess playing that avoids the 
Hor izon Effect and appears extendable to play Master 
leve l chess is presented, together wi th some results 
a l ready achieved. 

KEYWORDS: Game playing, chess programming, heuristic 
p rogramming , Horizon Effect. 

Introduct ion 

Since 1967 chess programming has again been an 
i n te res t i ng subject for Artificial Intelligence 
researchers . At that time Greenblatt [ 5 ] developed a 
p r o g r a m wh ich soon proved to play nearly as well as 
t he mid- range of regis tered human players in America. 

The basic s t ructure of Greenblatt's program can 
be h is tor ica l ly t raced through what Shannon [10 ] in 
1950 cal led a Type B st rategy, an initial ef fort by 
Be rns te in et. al. [ 3 ] in 1958, another more 
successfu l p rogram documented in Kotok [6 ] 1962, and 
f ina l ly Greenblat t . Since then there have been 
severa l o ther programs of this type developed. Of 
these only the Nor thwestern University program [1 ] has 
ach ieved a human Class C rat ing, which places it in a 
un ique pos i t ion along wi th the Greenblatt program. 

B r i e f l y , the type of program being discussed 
searches to a depth of f ive ply under tournament 
cond i t ions (in endgames wi th very few legal moves they 
may search f rom one to three ply deeper). They do not 
inves t iga te eve ry legal move, but restr ict themselves 
to a sub-se t at each node. Moves are selected for 
f u r t h e r search on the basis of a scoring function 
w h i c h a t tempts to rank order the legal moves according 
to the i r goodness. The number of moves selected for 
f u r t h e r examinat ion is usually a function of the depth 
at wh ich the node occurs. In special situations there 
are mechanisms which allow the search to be expanded 
b e y o n d this p runed set, in order to attempt to meet 
unant ic ipa ted problems. 

* This w o r k was suppor ted by the Advanced Research 
P ro jec ts Agency, Department of Defence, under contract 
number F 4 4 6 2 0 - 7 0 - C - 0 1 0 7 . 

Programs of this type typically evaluate between 
5 ,000 and 50,000 bottom nodes in the trees they 
genera te . They do this by applying a static 
eva lua t ion funct ion, which, since it must be invoked 
so many times in the course of the three minutes 
a l lowed for a tournament move, must of necessity be 
r e s t r i c t e d to a few milliseconds of computation. 

Because programs exist which can compete in human 
tournaments , and because of the annual computer 
compe t i t i on et the ACM meeting, there now exists 
cons iderab le interest all over the world in the future 
of computer chess. In fact, there is a detectable 
expec tancy in the Al community that a Master level 
chess p rogram will exist before the end of the decade. 

It is the purpose of this paper to show that a 
p rog ram w i t h the structure of today's most successful 
p rog rams cannot be extended to play Master chess. 
When one considers that much effort by several groups 
has only succeeded in raising the 1968 standard of 
per fo rmance of the Greenblatt program by a hardly 
measurable amount, there is some reason to believe 
that the present design is already near the assymptote 
of i ts potent ia l . We wil l show that the domain in 
wh ich a Master level program has to operate could 
neve r be subsumed in any domain to which the above 
p rograms could be extended. We will also show that 
ce r ta in fea tures in the evaluation procedure used by 
cu r ren t programs lead to basic errors that can not be 
t o l e ra ted in Master play. Finally, the outline of a 
model of chess that could perform as required Is 
p resen ted . 

We wi l l d raw examples from both human and machine 
p lay. In order to minimize the chess knowledge 
requ i red of the reader, the examples have been chosen 
to be as obvious as possible, and we have endeavored 
to remove all considerations from these, except those 
pe r t i nen t to the discussion. We consider it extremely 
l ike ly that the phenomena being considered here, are 
also ar t i facts in other types of artif icial 
in te l l igence programs. 

Analysis of Evidence 

When branches in a t ree search must be terminated 
p r i o r to a legal terminat ion point (according to the 
ru les of the game), it is necessary to assign a value 
(an in ter im value other than win, lose, or draw) to 
the terminal node, which then allows comparison with 
o the r terminal nodes. This is usually done by 
invok ing a static evaluation function. In games where 
a search to legal termination is not possible, no 
o the r recourse appears possible. An interesting 
phenomenon arises f rom the interaction of the 
a r t i f i c ia l terminat ion of the search and the fact that 
all the terms in the static evaluation function are 
eva lua ted at this terminal point. The result of this 
combinat ion is that for the game playing program, 
rea l i t y ex is ts in terms of the output of the static 
eva lua t ion funct ion, and anything that is not 
de tec tab le at evaluat ion time does not exist as far as 
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the program is concerned. This interesting fact is 
present in all tree searches in any chess program that 
we Know of, and causes interesting aberrations in 
program behavior. 

The class of aberrations defined above, we call 
the Horizon Effect. Examples of the The Horizon 
Effect have been observed by several researchers 
[11,5,2,1] in game playing programs. However the 
complete phenomemon has never received a name in the 
literature nor has its causes and effects been 
properly cataloged. The regimen of insisting on 
evaluation at a prespecified point in the search 
causes the following effects which seem peculiar to 
human observers. When the Horizon Effect results in 
creating diversions which ineffectively delay an 
unavoidable consequence or make an unachievable one 
appear achievable, we call it an instance of the 
Negative Horizon Effect. This is the phenomenon 
previously reported in the literature. It can best be 
shown by a typical example. 

In Figure I it is White's turn to play, and for 
the sake of this example let us suppose the search is 
to be limited to three ply (we realize that the search 
usually goes deeper, however it is relatively easy to 
construct examples at any given depth, and we are 
choosing our examples for their expository 
simplicity). What will happen in the above position 
is that the program will try to play 1. B-N3 and after 
P-B5, 2. Anything, it is time to do a static 
evaluation. This usually consists of a material 
quiescence analysis, together with a calculation of 
the other coefficients of the evaluation function. 
The material quiescence analysis could consist of 
trying all capture sequences and accepting the minimax 
value if it is an improvement for the side starting 
the sequence. Other quiescence procedures are also 
possible, but in essence they should yield the same 
value. Now at the end of the above 3-ply sequence, 
the program will come to the conclusion that it will 
lose the Bishop on N3, and will continue its search 
for something better. It will eventually come upon 
1. P-K5 and recognize that if now PxB, then 2. PxN is 
good for White. Therefore it will consider as best 
for Black to play PxP, after which White plays 
2. B-N3. Since we are now at maximum depth, this 
position will be evaluated using the standard 
procedure. The quiescence analysis will show that 
White has saved his Bishop since there is no sequence 
of captures which will win the Bishop. Alas, it is 
only after the next move that the program finds out 
that the pon-caoture threat of P-B5 has not been met 
by this diversion, and it then looks for other ways of 
parting with material worth less than a Bishop in 
order to postpone the inevitable day when the Bishop 
will finally be trapped and captured. In this case 
2. RxB would no doubt be tried next since after NxB, 
3. B-N3, "saving" the Bishop by giving up the Rook for 
the Black Bishop is preferred to losing it. We have 
seen programs indulge in this type of folly for five 
to six successive moves, resulting in going from a 
position in which they are well ahead to one in which 
they are hopelessly behind. 

A clever device to prevent this behavior was 
invented by Greeenblatt and is also used by the 
Northwestern University group [5,1]. This consists 
essentially of extending a new principal variation 
another two ply, to see whether the reason it was 
considered superior, will continue to obtain. In the 
above example, this will result in finding that the 

Figure 1 
White to Play 

threat of P-B5 does not go away, and thus a potential 
sequence of blunders is averted. However extending a 
principal variation two ply can only discover whether 
a one move threat has or has not been dissapated. 
Threats requiring two or more moves can not be dealt 
with effectively in this manner. This is usually not 
noticed, since today's best programs perform at a 
level of skill where two move threats are rare and far 
from the major cause of, concern for their developers. 

The Positive Horizon Effect is different in that 
instead of trying to avert some unavoidable 
consequences, the program grabs much too soon at a 
consequence that can be imposed on an opponent at 
leisure, frequently in a more effective form. This 
phenomenon has been largely overlooked in the 
literature, but is reported in a previous paper [2]. 
Figure II shows a flagrant example of the Positive 
Horizon Effect. 

In this position it is White to play and the 
search is again to a depth of three ply. The program 
notices that it can play 1. P-Q7 and if Black does not 
now play NxP, 2. NxN, then it would get a new Queen. 
It sees that in this way it can increase it's material 
superiority. It may or may not notice that it will 
then have to face the formidable task of mating with a 
Bishop and Knight. The interesting thing about this 
position is that the maneuver I. B-K5 followed by 
2. B-Q4 cannot be prevented and results in forcing the 
Pawn through to a Queen without letting Black give up 
the Knight for it, thus simplifying the win greatly. 
Here the important point is that there is a 
consequence on the horizon, and the program insists on 
realizing it within the horizon of the search as 
otherwise It, does not exist. As a result, a 
consequence which could have turned out to be very 
beneficial, turns out to only have a small benefit. 



It is possible to f ind examples where wins are " thrown 
a w a y " by such a premature cashing in. In fact, the 
main reason for the demonstrated lack of tolerance of 
complex i ty of today's chess programs is that their 
eva lua t ion funct ion insists on maximizing, in terms of 
a p reconce ived set of evaluation terms, anything that 
i t de tec ts w i t h i n the search horizon, and thus all too 
f r equen t l y des t roys an advantageous situation before 
it rea l ly has a chance to bloom. 

An example of the Positive Horizon Effect 
i l lus t ra t ing a th rowing away of a positional advantage 
is shown in Figure III. Here, if the evaluation 
func t ion is aware of the beneficial effect of 
con t ro l l i ng an open f i le, and if the search is again 
be ing conducted to three ply, the most likely 
con t inua t ion wi l l be 1. PxP ch, PxP, 2. R-KR1 with 
con t ro l of the open fi le and "some advantage". The 
fact that on the next move Black can answer R-KR1, 
a f te r wh ich White's advantage has largely evaporated 
is not recognized. Neither is the Key fact that Black 
can do absolutely nothing to prevent White from 
open ing the fi le whenever he likes ( for human players 
t h e r e is the dictum "do not open a file until you are 
r e a d y to use i t"). However today's programs would 
almost cer ta in ly reject the correct 1. R-KR1 since 
a f te r Black plays R-KR1 and White plays 2. PxPch, it 
is time to invoke the quiescence procedure which 
produces PxP. Now in contrast to the earlier 
va r ia t i on , White does not control the open file. Nor 
w o u l d he if any other 2nd move were played. Clearly, 
a p rog ram could recognize the value of playing 
1. R-KR] be fo re J. PxP ch, only if it were secure in 
the knowledge that the fi le can be Opened at a later 
t ime by PxP and that if Black plays PxP, he will 
mere ly incur an equally difficult problem in defence 
of the KRP as he has now in defence of the KR-file. 
In fact having once played i. R-KR1 and getting the 
answer R-KR1, a program that has reasoned thus far 
should have l i t t le di f f icul ty in now playing 2. R-R2 
since opening the fi le at the present moment is not 
advantageous and making room for the other Rook could 
help. It should be noted that incorporating the human 
p l a y e r s ' dictum appears extremely difficult as the 
issue of " ready to use i t" is one requir ing dynamic 
judgements , in which even good human players make 
mistakes at t imes. However, we feel that the 
cons t ruc t ion of lemmas as explained in a later 
sec t ion , wi l l go a long way toward providing better 
eva luat ion mechanisms at the search horizon. 

Another basic problem, the need for a global 
s t r a t e g y , is shown in Figure !V. Here everyone of 
t oday ' s programs would conduct a 5-ply search and then 
p lay 1. K-K3. A summary of its findings during this 
t r e e search might run a follows: it decided that P-B7 
wou ld lose the pawn to K-K2, and therefore decided to 
move the King to the most 'central location available 
( th is is a quant i ty recognized by the evaluation 
funct ion) . On the next move, having already achieved 
i ts "op t imum" posi t ion, the program would be faced 
w i t h a p rob lem that all hill climbers face when they 
reach the top*. How to back down as l itt le as possible? 
Accord ing ly the re would occur either K-Q2 or K-B3. 
The po in t Of this whole example is to show the 
hopeless hi l l -c l imbing characteristics of the present 
p rog ram design. In the given position, even a poor 
human p layer would recognize that there is nothing to 
be gained by the above maneuvers. The real problem is 
that today 's programs mix their strategical and 
tact ical ob jec t ives during the search. Thus the above 
pos i t ion could be handled effect ively if a tactical 

sea rch w e r e f i rst done and this came to the conclusion 
that P-B7 only resul ted in losing the Pawn. There 
be ing no other tactical tr ies, control would then 
r e v e r t to a strategical module which would t ry to 
improve the posit ion of any and all pieces. Since, in 
th is s impl i f ied situation, we only have the King as a 
candidate , the next step would be to try to find an 
op t imum or near optimum position for the King and 
de te rm ine if it could get there. Here we must not 
r e l y so le ly on a static, preconceived notion of 
cen t ra l i t y , although that certainly is a part of the 
p i c t u r e , but more important ly we seek a functional 
opt imum. This can be found by noting that the Black 
KNP and KP are not defended by Pawns and could 
poss ib ly be attacked by the King, and also that our 
o w n KBP could possibly benefit f rom having our King 
near it. Next, a null move analysis could be carried 
out , consist ing of moving the White King around 
w i t hou t looking at intervening moves, to see if we can 
f ind the opt imum path to any of the desired squares. 
This wi l l then eventual ly yield the correct idea of 
i n f i l t r a t i ng w i t h the White King via QR3, which wins 
easi ly . Admit tedly the control structure that could 
evoke such behavior would present some problems. Most 
of the problems in chess are tactical (immediate) 
p rob lems and for this reason, the lack of global ideas 
is f r equen t l y obscured in today's programs. However, 
it is absolute ly necessary to be able to generate 
g loba l goals in order to avoid hill climbing behavior. 

We have above touched only on the relatively 
s imple p rob lem of f inding the correct way to proceed. 
A far more dif f icult problem, which would also have to 
be faced by the Master st rength program, is to judge 
w h e t h e r the posi t ion can be won or is a draw. A 
simple " p a w n ahead" judgement is not enough. There 
may be o ther endgames from which to choose, in which 



t he p rog ram is also a pawn ahead. In the posit ion 
be ing discussed, for instance, if a further White Pawn 
w e r e at QN4, and a Black Pawn at its QN4, the position 
w o u l d be a draw. Clearly dynamic judgements of this 
t y p e are absolutely necessary. 

In Figure V, we see a much better understood 
p rob lem than any of the above. It is the problem of 
calculat ing in depth . Here White can execute a mating 
combinat ion requ i r ing an initial Queen sacrifice and 
nine fu r the r moves, a total o( 19 ply as fol lows: 
1. Q-R5ch, NxQ, 2. PxPch, K-N3, 3. B-B2ch, K-N4, 
4. R-B5ch, K-N3, 5. R-B6ch, K-N4, 6. R-N6ch, K-R5, 
7. R-K4ch, N-B5, 8. RxNch, K-R4, 9. P-N3, Any, 
10. R-R4 mate. This combination was played by a 
fo rmer Wor ld Champion while playing a total of 20 
games simultaneously. The reason no program that 
looks at 10 to 20 alternatives at every node can play 
the co r rec t move is that the principal variation to 
jus t i f y the init ial queen sacrifice extends much, much 
f u r t h e r than the 5-p ly depth that is about all that is 
possib le w i th a program that gets buried in the 
exponent ia l explosion of investigating 10 sprouts from 
every node. Now it is quite possible to play Master 
level chess wi thout playing such long combinations. 
However , in the author's experience one must at least 
once a game be able to took 14 or more ply ahead. As 
for as the above example goes, we believe that 992 of 
all Masters would solve it as well as a high 
percen tage of Experts and Class A players. What is 
rea l ly di f f icul t about the example is not the simple 
unrave l l ing of the main line, which having few 
branches is fa i r ly linear, but the conception of the 
pos i t i on , and that such a solution involving chasing 
the King up the board might exist in it. 

One could argue that just because good players 
can solve such problems, this does not show the 
requ i rement for the program to see to such depths in 
o rder to play at the Master level. What this would 
mean is that the program would have to rely almost 
exc lus ive ly on static, non-tree-search computations 
for i ts moves. But we have already shown in examples 
II and III that static notions must be combined with 
dynamic tests in depth in order to yield correct 
resul ts . So a program that could not look 10 ply 
ahead wou ld be subject to any f ive move threat that 
comes along. Even though the main thrust of most such 
th rea ts could no doubt be muted, it would be 
inev i tab le that some concession would have to be made. 
This t y p e of thrust and parry is at the heart of 
Master p lay. Even more importantly, a program that 
cannot look 10 ply ahead could never conceive a f ive 
move threat of its own which is dependent on adverse 
act ion. The evidence is quite overwhelming. 

Another interest ing phenomenon, that of reality 
or i l lus ion, that aff l icts all of today's best 
p rograms can be seen in Figure VI. Here it is White's 
t u r n to play. The f i rst thing that the evaluation 
func t ion wi l l discover is that White has both of his 
Rooks "en p r i se " {captureble by the opponent under 
f avor able condit ions). If this position has occured 
at some node which is eligible for sprouting, then 
moves that move ei ther of the rooks to a "safer" place 
wi l l rece ive good recommendations. If the node is a 
te rmina l node, then it wil l be considered as not 
sa t i s fac to ry fo r White, as it is presumed that at 
least one of the Rooks wi l l be lost. In actuality, 
ne i ther of the Rooks is in danger. If BlacK plays QxR 
then R-B8 mate, and if PxR, then QxPch, K-Nl , Q-R7ch, 
K - B 1 , P-N7ch fo l lowed by P-N8-Qch wins quickly- Even 
s t ranger is the fact that if this position occurs 

somewhere in the t ree below the top node, and if, say, 
t w o p ly ear l ier White had played RxP(KB6) as a 
sacr i f ice which it turns out could not have been 
accepted , then in today's programs there would now be 
no knowledge of the sacrifice at KB6 when the position 
is t e n d e r e d for evaluation two ply later. Rather the 
Rook wou ld be considered en prise. Indirect defences 
of th is t ype are seen all the time in Master chess. 
Clearly, if a p rogram aspires to this level it must be 
able to handle such problems. Part of the solution 
consists in not ing the functional overloading of the 
p ieces that are thought of as doing the • capturing. 
Here the Black Queen is guarding a check on the back 
rank apart f rom attacking the White Rook. Also the 
Black KNP is guarding a Pawn and a check, while 
a t tack ing , the White Rook. However this is not enough, 
since it is qui te possible that the checks that are 
be ing defended against are quite harmless, and it 
w o u l d be fol ly to t r y to determine, without fur ther 
search ing, the exact potency of every check on the 
b o a r d . 

Ano the r prob lem, that of dynamic evaluation of 
mater ia l , is depicted in Figure VII. Here with either 
side to play, White's pawn cannot be stopped f rom 
queen ing , while Black's pawns are going nowhere fast. 
Yet t he re is no doubt that every one of today's 
p rograms, if p laying Black would refuse a draw in this 
pos i t i on , and it is also very clear that only a very 
weak human p layer would offer a draw with White. The 
p rog rams ' rat ionale is that three passed pawns are 
be t t e r than one. The problem here is one of 
recogn iz ing the dynamic potential of the White passed 
p a w n wh ich cannot be caught. It is true that in this 
case the job can be done statically be merely noting 
the distances of the White Pawn and the Black King 
f r o m the queening square, however, if the Black Pawns 



w e r e ell advanced three squares, the computation would 
have to be done dynamically, since there is a 
poss ib i l i t y they may arr ive f irst. Similar dynamic 
ideas, wh ich no program can at present handle well , 
e re the not ion of a defenceless King by reason of no 
su r round ing men of his own to help defend him, and the 
no t i on of cooperat ion among various men rather than 
o n l y assessing the goodness of their individual 
pos i t ions . Such notions require dynamic exploration 
to de te rmine the degree of their applicability in a 
g i v e n posi t ion. However, in a program where terminal 
eva lua t ion must be done very quickly because of the 
la rge number of nodes that must be evaluated, such 
luxur ies are not possible. We are here directly 
c o n f r o n t e d w i th a basic limitation of the generate and 
tes t approach, when it does not allow enough time to 
do a deta i led evaluation of the nodes visited. 

Our last two examples deal wi th situations that 
p r e s e n t - d a y programs can handle. However, the method 
by w h i c h they do this is ter r ib ly inefficient and 
could not be used if one wanted to do tree searches 
w h i c h could extend even a little deeper than the 
c u r r e n t f ive ply. The f irst of these problems is the 
p r o b l e m of defence. It is relatively easy to 
recogn ize attacks and develop criteria for judging the 
va lue of most attacks. However, this is not so wi th 
de fence . The problem is that in order for a defence 
to ex is t , a threat must f i rst be known. All threats 
are not of the simple type such as threatening a 
cap tu re , and it is precisely this other type of 
t h rea t , wh ich shows up in the backed up value of the 
c u r r e n t var ia t ion , that is not easy to counter because 
we on ly know the magnitude of its effect. Figure VIII 
shows a posit ion of this type. Here it is Black's 
t u r n to play and the search is being conducted to a 
d e p t h of f ive ply. If Black plays a normal aggressive 
move such as 1 .— P-R7, he will f ind that after 
2. Q-K8 ch, RxQ, 3. RxR he is mated. The search will 
t hen eventua l ly rever t to the point where Black played 
P-R7. Now in most of today's programs we would be 
armed w i t h the killer heuristic (which says that 
against any new proposed move t ry the "kil ler" Q-K8ch 
f i r s t ) . This would indeed result in the efficient 
dismissal of the next 15 or so moves likely to be 
t e s t e d . However the fact remains that each of these 
a l te rna t i ves is being served up in a generate and test 
mode, and the program can consider itself fortunate if 
it d iscovers the only defence (Q-K5) before it has 
exhaus ted half the legal moves. 

Our f inal example in Figure IX shows ' another 
sub t le considerat ion. In this position, programs that 
look f i ve p ly deep have an excellent chance of finding 
the mate in three moves; 1. BxPch, K-R1, 2. B-N6ch, 
K - N l , 3, Q-R7 mate. If such a program, due to the 
fac t that White is behind in material, were only to 
look at captures of pieces of greater or equal value 
to t he cur rent def ic i t , and checks (an assumption 
wh ich requi res some preprocessing) and to stop at f ive 
p ly d e p t h ( for which it would be difficult to 
es tab l i sh a logical reason), there would still be 
about 100 bottom positions to examine before the mate 
is found . Here any tournament caliber human player 
w o u l d recognize the situation immediately as one of a 
set of Queen and Bishop mates. He would only have to 
de te rm ine the funct ional need to guard the King escape 
square at KB2, to determine what the correct sequence 
is and that it does lead to mate. The critical thing 
h e r e is not that a program couldn't f ind the mate once 
t h e diagrammed posit ion is reached, but that in 
advanced chess play such situations occur frequently 

Figure VII 

Figure VII I 
Black to Play 

Figure IX 
White to Play 

in deep par ts of a t ree as a reason why some other 
move fads. If a program spends 100 nodes 
invest igat ing such a well known pattern, then there is 
a def in i te limit on the amount of work the program can 
be expec ted to do. The answer here quite obviously is 
to have a repeto i re of frequently occurring patterns 
avai lable to the program together with some guidance 
to de te rmine the exact applicabil i ty of any particular 
p a t t e r n . In the above case, recognition of the Queen 
and Bishop funct ional ly bearing on the undefended KR7 
square , together wi th the position of the Black King 
hemmed in by some of its own pieces is the basic 
p a t t e r n . The dynamic analysis reveals that the King 
could escape over KB2 if this were not kept under 
con t inued guard. With these constraints, the number 
of var ia t ions to be examined are very few. 

gome Conclusions 

Let us examine some potential models of computer 
chess. All the complete models are clearly too time 



or space consuming. Therefore, the most reasonable 
course appears to be to rely upon models that 
cons t ruc t • t rees of possibil it ies but wi th some 
l imi tat ions imposed upon the growth of the trees. Now 
depend ing upon how we define these limits, we have a 
t r ac tab le prob lem. The real question, and that 
addressed by this paper, is how these limits can be 
d e f i n e d and implemented in order to include the range 
of per fo rmance exhib i ted by chess masters while stil l 
keep ing the problem tractable, 

Let us summarize the requirements noted earl ier: 

1) In examples l-lll we have seen the Horizon Effect 
in opera t ion . We have also seen that the two-p ly 
ex tens ion of each new principal variation is only 
a s top -gap measure, which prevents one move 
debacles (anyone who doesn't believe this is 
i nv i ted to t r y Figure XI out on his program). 
What can be done about the Horizon Effect? 
Clear ly the problem is due to the fact that some 
t e r m in the static evaluation function is 
eva lua ted "premature ly" . Prematurely here means 
that a noticable' change in the value ot the term 
can be fo rced , without any compensatory change in 
any o the r term(s). From this, one can deduce 
that there can be no arbi t rary depth limit 
imposed on the search. The decision as to 
whe the r to terminate the search at a node or 
cont inue, has to be a function of the information 
that exists at that node and how this relates to 
the quiescence of each and every term in the 
eva lua t ion funct ion. For instance, if we have an 
eva luat ion funct ion that would consider it bad to 
have a bishop blocked in by its own pawns, then 
some e f fo r t must be expended to determine the 
permanency of such situations. In general what 
is requ i red is a procedure to determine the 
quiescence of every term in the evaluation 
func t i on and in cases of non-quiescence, a 
p rocedu re for generat ing moves or applying some 
stat ic means of reaching a quiescence decision. 
This should not be construed as meaning that 
pe r fec t knowledge of the future status of each 
parameter in the evaluation function is required, 
in fact some practical maximum depth or time 
l imits must exist. Thus only a f inite set of 
resourses can be expended to determine the true 
f u t u r e status, and some controlled error wil l no 
doub t neve to be tolerated. However, the 
resu l t i ng e r ro r by this method should be orders 
of magnitude smaller (a -so-cal led judgement 
e r r o r ) than the e r ro rs produced current ly by the 
Hor izon Effect. In present day programs, 
quiescence is pursued only for the material 
parameter . And even this frequently does not 
w o r k out sat isfactor i ly , since usually only 
cap tu res are considered, while forks, mate 
t h rea t s , etc. are ignored. 

2) From example IV we see the need for having 
g lobal goals and being able to determine 
someth ing about the feasibi l i ty of such proposed 
goals. This may involve procedures of 
cons iderab le complexi ty in order to answer basic 
quest ions about the value of any node. All of 
wh ich adds to the potential evaluation time 
r e q u i r e d at a node. 

3) From example V, the program must on occasion be 
able to calculate precise variations to a depth 

of 14-ply and possibly more. This in no way 
means that every move should be calculated to 
this dep th nor that when a move is, that every 
branch wou ld go to this depth also. However, the 
basic fac i l i ty to allow probing to at least this 
d e p t h must exist. 

4) From example VI we see the need to diagnose 
cer ta in dynamic proper t ies of positions, and the 
requ i rement to communicate such data to other 
nodes in the t ree. This need exists in order to 
avo id fau l ty in terpretat ion and the necessity of 
o the rw ise "discover ing America" over and over 
again. 

When condit ions are detected that make a 
stat ical ly calculated decision incorrect (in this 
case that a rook is en prise), the variat ion that 
d iscovers this fact must during tree back-up 
assemble the condit ions which are necessary for 
this contradic t ion to remain true, This new 
t r u t h should then be stored as a lemma applicable 
to all nodes in the tree below any node for which 
it is d iscovered to be true. The lemma states 
t he condit ions under which it remains t rue, and 
at each succeeding node it is assumed true unless 
someth ing that counters one or more of the 
condi t ions of the lemma has occurred. In that 
case the val id i ty of the lemma would Have to be 
re -examined. It is important to express the 
lemma in a language which is neither too detailed 
nor too fuzzy. The former case would result in 
cont inuous re-examinat ion as changes in single 
condi t ions, which by themselves do not upset the 
va l id i t y of the lemma, have to be looked into. 
The la t te r case could result in being unable to 
de f ine or detect a crit ical change in the t ru th 
value of the lemma. It should of course be 
apparen t that lemmas can concern themselves wi th 
o ther th ings than the material issues presented 
in the example. For instance, it should be 
possible to posit a lemma about the conditions 
under wh ich contro l of an open file is retained. 

It is interest ing to note that a key to 
de tec t ing that something may not be as it appears 
s ta t ica l ly , is the use of a functional analysis. 
In example VI, the initial indication that 
ne i ther of the Rooks is capturable is that each 
of the i r at tackers is also defending something of 
impor tance. Sometimes it is possible to resolve 
such funct ion confl icts statically by noting that 
another piece can assume the required functional 
ro le w i thou t itself becoming overburdened. When 
th is is not possible, the validity of a potential 
func t ion confl ict must be established dynamically 
by t ree searching. A general discussion of the 
use of funct ional relations in chess percept ion 
and reasoning can be found in Newell and Simon 
[ 7 ] . A good discussion of paths and their 
obs t ruc t i on can be found in Botwinnik[4]. 

5) From the defence problem in example VIII, we see 
a need for some similar communication within a 
search t ree . A proper description of a set of 
undes i rab le consequences can save tremendous 
e f f o r t in f inding problem solutions if such 
ex is t , or moving on to more f ru i t fu l endeavors if 
not. Again, the adequacy of the language is 
impor tan t as it must be used to test whether the 
set of consequences were caused by the latest 
move, and to prov ide an input to move generators 
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that could f ind an appropriate answer to the 
p rob lem. For this purpose, functional relations 
wh ich descr ibe attacks that occured, and path 
in format ion which describes paths traversed by 
moving pieces and paths over which threats 
Occur red, appear to be required elements of the 
language. 

6) The funct ional relations mentioned in the 
p rev ious examples are in a sense patterns 
invo lv ing two pieces or a piece and a square. 
Cer ta in clues can be gained by searching these 
pa t te rns when they focus about a common square or 
p iece. However, f rom example IX we can see the 
need for a stil l higher level of pat tern 
abs t rac t ion . Here we are looking for groups of 
pieces which form a pat tern around some 
in te res t ing focus. In the example cited, the KR7 
square w i th the White Queen and Bishop attacking 
i t , and the Black King are the focal points which 
should suff ice to index into the correct pattern, 
wh ich wi l l then produce a pointer to a routine 
fo r deciding if we are confronted with an 
exp lo i tab le instance of the pat tern in question. 

Above , we have assembled the beginning of a set 
of requ i rements for a program that could have the 
p o w e r to play Master level chess. It does not take 
long to dismiss the possibil i ty of extending the 
cu r ren t generat ion of chess program to meet the above 
requ i rements . It is quite enough to realize that such 
a p rog ram requires about a factor of 20 of additional 
t ime fo r each additional two ply of depth that it 
searches. 

In 1958 Newell , Simon, and Shaw [8] , argued that 
"As analysis deepens, greater computing effort per 
pos i t i on soon pays tor itself, since it slows the 
g r o w t h in number of positions to be considered". This 
is wel l substant iated in the ACM tournaments which 
have convincingly shown the superior i ty of programs 
that search a subset of legal moves and evaluate a 
modera te amount, over programs that search all legal 
moves and evaluate l i t t le. Clearly it is time to move 
again, and more substantial ly in the direction of more 
eva lua t ion and less search. The requirements 

demons t ra ted in this paper show a need to do possibly 
t e n or more times as much processing at a node than is 
c u r r e n t l y done. This means that, for equivalent 
compu t ing power , we are faced wi th generating trees of 
at most 5000 nodes distr ibuted throughout the search 
space. The Greenblatt and Northwestern University 
p rog rams have an ef fect ive branching factor (where 
number of bot tom nodes - BF K r , H ) in excess of 6. If 
it is assumed that the search is limited to 14-ply, 
t hen the branching factor must be less than 1.9, if we 
are to s tay w i th in 5000 nodes. 

Actua l ly this is a meaningful measure Only for 
t r ees wh ich have a maximum depth. In order for a tree 
of no maximum depth to converge, a necessary and 
su f f i c ien t condi t ion is that for any arbi t rary node 
5 < i P[ i ] ) < 1 (where P[ i] is the probabi l i ty of i 
sp rou t s ) . Clear ly the less I ( i P[ i j ) is, the more 
r ap i d l y the t ree wi l l converge. One can achieve such 
a decrease , w i t h increasing depth of the tree, by 
be ing able to compare the state at the present node 
w i t h the s tates of earl ier nodes in the tree branch 
be ing invest igated. Comparisons involve how earlier 
expec ta t ions are holding up, and whether moves that 
are e l ig ib le fo r test ing have appropriate thematic 
re la t ionsh ips to what has gone before. The number of 

such comparisons grows linearly wi th depth thus 
p r o v i d i n g ever more conditions for stopping the search 
or not Invest igat ing an arb i t rary move. 

To guide the search we need mechanisms which can 
at l inear cost provide analysis at a node so that the 
exponen t ia l cost of discovery and/or veri f icat ion due 
to t r e e searching Is drastically reduced. It appears 
reasonab le that the more powerful (in the sense of 
g r e a t e r depth) the predict ion mechanism, the better 
t he e f fec t on program performance. Here the 
func t iona l analysis and pat tern recognition mentioned 
ea r l i e r c lear ly are destined to play a part, w i th the 
fo rmer being an essential element of the latter. Also 
t he communicat ion of defensive requirements appears 
v i t a l l y necessary. In fact since dissatisfaction wi th 
a resu l t is a relat ive matter, one could consider 
using backed-up descriptions to discover ways of 
he igh ten ing the success of whatever is being attempted 
at p resen t . 

Last ly , one can see the overriding importance of 
quiescence of concepts being used in the evaluation 
p rocedu re . The evidence is quite overwhelming that 
t he a t tempt to dr ive all evaluations into a quiescent 
s ta te should be the major force that determines the 
shape of the t ree. Thus, while today's programs use 
up near ly all their time t ry ing to assure tactical 
quiescence, this wi l l now have to be done by less 
comple te methods in order to make way for the 
addi t ional faci l i t ies required. It is interesting to 
compare this der ived role of quiescence as the main 
gu id ing fo rce , w i th the control structure of the 1958 
Newe l l , Simon and Shaw program [8 ] which was 
appa ren t l y der ived f rom a concern with human behavior. 

The condit ions and the model we have set for th 
appear to be necessary for Master chess. However, 
t h e y are almost certainly not sufficient. Masters 
Know a great deal of chess knowledge which has as yet 
not been encoded in any program, and would probably 
have to be placed in long-term memory for occasional 
re fe rence , We have avoided discussing what a minimum 
quan t i t y of such data might look like, since until the 
necessary mechanisms for its use are in place, so that 
i t w o u l d be possible to do some experimentation, there 
w o u l d be l i t t le scientific validity in such 
specu la t ion. There is also the problem of doing at 
least some learning in order to avoid repeating 
obv ious e r ro r s in identical situations. However, an 
o rgan iza t ion ' which takes account of the conditions 
n o t e d here is almost certainly necessary to make 
s igni f icant progress beyond the present state of the 
ar t , and the model appears extendable to the problems 
of learn ing and fu r ther pat tern encodings, as these 
p r o v e necessary. In the immediate future, the major 
p rob lem appears to be how to produce a search of the 
economy of that proposed while retaining at least the 
same re l iab i l i ty as evidenced by today's programs 
wh ich use a more complete search strategy. 

For those who feel that our simple examples would 
not chal lenge their program design, we include Figures 
X-XII wh ich are moderately more difficult. In Figure 
X it is Whi te to play and win. In Figure XI it Is 
Black to p lay and not do something foolish; and we are 
not th ink ing of the obviously foolish 1. QxR, but of 
o t he r fool ishness der ived from this by the Horizon 
Ef fect . In Figure XII it is White to play and win. 
We expec t that a human Class B player would have no 
d i f f i cu l t y w i t h any of these. 



Progress To Date 

Since July 1972 the author has had a program, 
whose general objectives are those outlined above, 
running at Carnegie-Mellon University. In this 
section we wish to report the progress that has been 
made. As yet the program only concerns itself with 
tactical {material) issues; however, it is felt that 
the techniques being developed are general and 
applicable to the other dimensions of chess 
evaluation. The program notes, among others, the 
relations of attack, defence, blocking functions and 
paths along which such activities occur. Thus, it has 
a language which is considerably more powerful than 
the notions Of a legal move, which is the analytical 
element of most of today's programs. Each chessboard 
is described in this language. This characterization 
greatly facilitates finding good "sacrificial" moves 
and moves which disturb the defence relations among 
pieces, while not hindering the evaluation of other 
types of moves. The program has an expectation level 
associated with every search it conducts, and there 
are mechanisms for raising and lowering this when 
results outside a range of acceptability from the 
expectation can be forced. There is a general 
causality facility which is used both for defence and 
improving attacking ideas. This facility can always 
detect whether a given set of consequences were not 
caused by the last move tried and thus constitute a 
problem inherited from higher in the tree. It does 
this by comparing a description of the consequences 
with a description of the move tried. However, it is 
not nearly as adept at detecting causality relations 
as an experienced chess player. Still, the facility 
never deduces causality when causality does not exist, 
end deduces non-causality about 607. of the time that 
this is appropriate, putting it well ahead of 
contemporary programs. No dynamic re-evaluations or 
lemmas have been implemented as yet, but these are 
planned for the near future. Higher level patterns 
are planned for a stilt later stage. 

The program is at present able to investigate an 
average position for tactical quiescence to a depth of 
9-ply, generating from 100 to 2000 nodes. The 
tactical reliability of such searches is somewhat 
better than that of the average program that 
participates in the annual ACM tournaments. Most of 
our effort in tree searching has been in an attempt to 
improve the likely correctness of a proposed move. 
This is achieved not only through the representation 
we use, but also through some 15 stopping, pruning and 
reordering rules. Thus the effective branching 
factors of our trees vary between 1.5 for positions 
where a clear-cut result is obtainable, and 3.0 in 
positions where there is tactical complexity, but no 
way of gaining an advantage exists. Although this 
compares very favorably with the effective branching 
factors of about 6 found in today's programs, we 
consider branching factors of 3 to be still much too 
high for our purposes. Thus, we occasionally grow a 
tree of 20,000 nodes because the program gets 
side-tracked in an inconsequential part of the tree. 
However, there are still several tree control 
algorithms we plan to implement, which should prevent 
such behavior by selective jumping around in the tree. 
We expect In the not too distant future to extend the 
depth limit of the program significantly beyond its 
present 9-ply. Even at its present depth, it is less 
affected by the Horizon Effect than programs with less 

Figure X 
White to Play 

Figure XI 
Black to Play 

Figure XII 
White to Play 

deep searches. For instance, it has no trouble at all 
in Figure XI, deciding that there are no diversions 
which can lead to an ultimate capture of the White 
Rook. 

When the program is confronted with the defensive 
problem of Figure Vlll, after the initial variation 
starting with 1.— P-R7 is tried, a description Of 
what happened is backed up along with the value of the 
position at branch termination. At each successive 
node during backup, if the result is unsatisfactory, 
the backed up description is compared with the 
description of the move made. This is done to see if 
what happened could have been caused by the latest 
move tried at that node. If not, a defensive move 
generator then generates the moves that can do 
something about the description. The description 
contains such information as the names of the pieces 
involved in the action, the path (if any) that they 
traversed, targets attacked when they arrived at their 



dest ina t ions , etc. If no defensive moves are 
g e n e r a t e d and if no worthwhi le aggressive moves remain 
to be invest igated, i t is assumed that the problem 
cannot be solved at this node of the tree. When the 
search reve r t s to the point where 1.— P-R7 was tr ied 
in i t ia l ly , an examination of the description reveals 
that the threat could possibly be countered by moving 
the King, guarding the K8 square, blocking the path of 
t h e Rook f rom K2 to K8, capturing the Rook or the 
Queen, or blocking or gett ing ready to block the KB8 
square across which the check passes. From this 
desc r i p t i on six moves are generated: K-Rl , N-Q2, 
R - K B 1 , Q-K5, Q-K4ch, and Q-K6. It then does not take 
the p rog ram ve ry long to determine that Q-K5 is the 
on ly defence (which in fact leaves Black in a winning 
pos i t ion) . 

The p rogram has been tested extensively on 
pos i t ions which one finds in chess books which teach 
h o w to p lay good tactical chess. In such positions a 
more Or less "h idden" series of moves allows the 
p layer on move to achieve a decisive advantage. In 
w o r k i n g on the f i rst 200 examples in thr book "Win at 
Chess" [ 9 ] , the program solves about 607- of the middle 
game prob lems in CPU times ranging from a fraction of 
a second to eight minutes, w i th an average of about 80 
seconds. This is despite the fact that the principal 
va r ia t i on sometimes extends to nine ply. Occasionally 
the p rogram finds forced mates in the absolute minimum 
number of nodes. It also has found improvements on 
the analysis contained in the book, which the 
expe r imen te r himself did not notice. The main reason 
that the program is not able to solve 100% of these 
p rob lems is that several functional relations and many 
analyt ical rout ines are not yet implemented. 

On the basis of tests to date, we find that the 
language of funct ions, paths, etc. is very useful for 
pass ing messages of the kind described above. We 
expec t that it wil l also serve for the 
charac te r i za t ion of thematic relationships which would 
mi t igate against a move being tr ied when it is "out of 
c o n t e x t " w i t h previous moves. However, there seems to 
be l i t t le doubt that more powerful languages are 
poss ib le . These may be necessary to effect ively 
implement the lemma ideas, since the function language 
may be so detai led that investigating lemmas expressed 
in it wi l l p rove uneconomical. Further, we conjecture 
that cont inuing progress in chess will be dependent on 
the invent ion of ever higher level languages in which 
chess concepts can be expressed. Each such language 
leve l w o u l d then have an assymptote, defined by the 
p o w e r of the language, beyond which it would not be 
poss ib le to improve the strength of the program, given 
that on ly a certa in amount of time was available to 
compute a move. Also as concepts are agglomerated 
in to ever higher level concepts, we expect that they 
w o u l d get to be more fuzzy and would require a more 
complex cont ro l s t ructure than used a present in order 
to p roduce the same level of reliabil i ty as can be 
ob ta ined w i t h less fuzzy concepts. We feel that this 
inc reased conceptual izat ion is evident in the history 
of chess, and should make it possible ultimately to 
equal and exceed the performance of the best human 
p laye rs . 
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