
Session 5 Applications and
Implications of A r t i f i c i a l
Intelligence

SOME NECESSARY CONDITIONS FOR A MASTER CHESS PROGRAM *

Hans J. Berliner
Computer Science Department

Carnegie -Mellon University
Pi t tsburgh, Pennsylvania

Abstract

Since 1967 there has again been great interest in
chess programming. This paper demonstrates that the
s t r u c t u r e of today's most successful programs cannot
be ex tended to play Master level chess. Certain basic
requ i rements of a Master player's performance are
s h o w n to be outside the performance limits to which a
p rog ram of this t ype could be extended. The paper
also examines a basic weakness in the tree-searching
model approach when applied to situations that cannot
be searched to completion. This is the Horizon

Ef fect , which causes unpredictable evaluation errors
due to an interact ion between the static evaluation
func t i on and the rules for search termination. The
ou t l ine of a model of chess playing that avoids the
Hor izon Effect and appears extendable to play Master
leve l chess is presented, together wi th some results
a l ready achieved.

KEYWORDS: Game playing, chess programming, heuristic
p rogramming , Horizon Effect.

Introduct ion

Since 1967 chess programming has again been an
i n te res t i ng subject for Artificial Intelligence
researchers . At that time Greenblatt [5] developed a
p r o g r a m wh ich soon proved to play nearly as well as
t he mid- range of regis tered human players in America.

The basic s t ructure of Greenblatt's program can
be h is tor ica l ly t raced through what Shannon [10] in
1950 cal led a Type B st rategy, an initial ef fort by
Be rns te in et. al. [3] in 1958, another more
successfu l p rogram documented in Kotok [6] 1962, and
f ina l ly Greenblat t . Since then there have been
severa l o ther programs of this type developed. Of
these only the Nor thwestern University program [1] has
ach ieved a human Class C rat ing, which places it in a
un ique pos i t ion along wi th the Greenblatt program.

B r i e f l y , the type of program being discussed
searches to a depth of f ive ply under tournament
cond i t ions (in endgames wi th very few legal moves they
may search f rom one to three ply deeper). They do not
inves t iga te eve ry legal move, but restr ict themselves
to a sub-se t at each node. Moves are selected for
f u r t h e r search on the basis of a scoring function
w h i c h a t tempts to rank order the legal moves according
to the i r goodness. The number of moves selected for
f u r t h e r examinat ion is usually a function of the depth
at wh ich the node occurs. In special situations there
are mechanisms which allow the search to be expanded
b e y o n d this p runed set, in order to attempt to meet
unant ic ipa ted problems.

* This w o r k was suppor ted by the Advanced Research
P ro jec ts Agency, Department of Defence, under contract
number F 4 4 6 2 0 - 7 0 - C - 0 1 0 7 .

Programs of this type typically evaluate between
5 ,000 and 50,000 bottom nodes in the trees they
genera te . They do this by applying a static
eva lua t ion funct ion, which, since it must be invoked
so many times in the course of the three minutes
a l lowed for a tournament move, must of necessity be
r e s t r i c t e d to a few milliseconds of computation.

Because programs exist which can compete in human
tournaments , and because of the annual computer
compe t i t i on et the ACM meeting, there now exists
cons iderab le interest all over the world in the future
of computer chess. In fact, there is a detectable
expec tancy in the Al community that a Master level
chess p rogram will exist before the end of the decade.

It is the purpose of this paper to show that a
p rog ram w i t h the structure of today's most successful
p rog rams cannot be extended to play Master chess.
When one considers that much effort by several groups
has only succeeded in raising the 1968 standard of
per fo rmance of the Greenblatt program by a hardly
measurable amount, there is some reason to believe
that the present design is already near the assymptote
of i ts potent ia l . We wil l show that the domain in
wh ich a Master level program has to operate could
neve r be subsumed in any domain to which the above
p rograms could be extended. We will also show that
ce r ta in fea tures in the evaluation procedure used by
cu r ren t programs lead to basic errors that can not be
t o l e ra ted in Master play. Finally, the outline of a
model of chess that could perform as required Is
p resen ted .

We wi l l d raw examples from both human and machine
p lay. In order to minimize the chess knowledge
requ i red of the reader, the examples have been chosen
to be as obvious as possible, and we have endeavored
to remove all considerations from these, except those
pe r t i nen t to the discussion. We consider it extremely
l ike ly that the phenomena being considered here, are
also ar t i facts in other types of artif icial
in te l l igence programs.

Analysis of Evidence

When branches in a t ree search must be terminated
p r i o r to a legal terminat ion point (according to the
ru les of the game), it is necessary to assign a value
(an in ter im value other than win, lose, or draw) to
the terminal node, which then allows comparison with
o the r terminal nodes. This is usually done by
invok ing a static evaluation function. In games where
a search to legal termination is not possible, no
o the r recourse appears possible. An interesting
phenomenon arises f rom the interaction of the
a r t i f i c ia l terminat ion of the search and the fact that
all the terms in the static evaluation function are
eva lua ted at this terminal point. The result of this
combinat ion is that for the game playing program,
rea l i t y ex is ts in terms of the output of the static
eva lua t ion funct ion, and anything that is not
de tec tab le at evaluat ion time does not exist as far as

77

the program is concerned. This interesting fact is
present in all tree searches in any chess program that
we Know of, and causes interesting aberrations in
program behavior.

The class of aberrations defined above, we call
the Horizon Effect. Examples of the The Horizon
Effect have been observed by several researchers
[11,5,2,1] in game playing programs. However the
complete phenomemon has never received a name in the
literature nor has its causes and effects been
properly cataloged. The regimen of insisting on
evaluation at a prespecified point in the search
causes the following effects which seem peculiar to
human observers. When the Horizon Effect results in
creating diversions which ineffectively delay an
unavoidable consequence or make an unachievable one
appear achievable, we call it an instance of the
Negative Horizon Effect. This is the phenomenon
previously reported in the literature. It can best be
shown by a typical example.

In Figure I it is White's turn to play, and for
the sake of this example let us suppose the search is
to be limited to three ply (we realize that the search
usually goes deeper, however it is relatively easy to
construct examples at any given depth, and we are
choosing our examples for their expository
simplicity). What will happen in the above position
is that the program will try to play 1. B-N3 and after
P-B5, 2. Anything, it is time to do a static
evaluation. This usually consists of a material
quiescence analysis, together with a calculation of
the other coefficients of the evaluation function.
The material quiescence analysis could consist of
trying all capture sequences and accepting the minimax
value if it is an improvement for the side starting
the sequence. Other quiescence procedures are also
possible, but in essence they should yield the same
value. Now at the end of the above 3-ply sequence,
the program will come to the conclusion that it will
lose the Bishop on N3, and will continue its search
for something better. It will eventually come upon
1. P-K5 and recognize that if now PxB, then 2. PxN is
good for White. Therefore it will consider as best
for Black to play PxP, after which White plays
2. B-N3. Since we are now at maximum depth, this
position will be evaluated using the standard
procedure. The quiescence analysis will show that
White has saved his Bishop since there is no sequence
of captures which will win the Bishop. Alas, it is
only after the next move that the program finds out
that the pon-caoture threat of P-B5 has not been met
by this diversion, and it then looks for other ways of
parting with material worth less than a Bishop in
order to postpone the inevitable day when the Bishop
will finally be trapped and captured. In this case
2. RxB would no doubt be tried next since after NxB,
3. B-N3, "saving" the Bishop by giving up the Rook for
the Black Bishop is preferred to losing it. We have
seen programs indulge in this type of folly for five
to six successive moves, resulting in going from a
position in which they are well ahead to one in which
they are hopelessly behind.

A clever device to prevent this behavior was
invented by Greeenblatt and is also used by the
Northwestern University group [5,1]. This consists
essentially of extending a new principal variation
another two ply, to see whether the reason it was
considered superior, will continue to obtain. In the
above example, this will result in finding that the

Figure 1
White to Play

threat of P-B5 does not go away, and thus a potential
sequence of blunders is averted. However extending a
principal variation two ply can only discover whether
a one move threat has or has not been dissapated.
Threats requiring two or more moves can not be dealt
with effectively in this manner. This is usually not
noticed, since today's best programs perform at a
level of skill where two move threats are rare and far
from the major cause of, concern for their developers.

The Positive Horizon Effect is different in that
instead of trying to avert some unavoidable
consequences, the program grabs much too soon at a
consequence that can be imposed on an opponent at
leisure, frequently in a more effective form. This
phenomenon has been largely overlooked in the
literature, but is reported in a previous paper [2].
Figure II shows a flagrant example of the Positive
Horizon Effect.

In this position it is White to play and the
search is again to a depth of three ply. The program
notices that it can play 1. P-Q7 and if Black does not
now play NxP, 2. NxN, then it would get a new Queen.
It sees that in this way it can increase it's material
superiority. It may or may not notice that it will
then have to face the formidable task of mating with a
Bishop and Knight. The interesting thing about this
position is that the maneuver I. B-K5 followed by
2. B-Q4 cannot be prevented and results in forcing the
Pawn through to a Queen without letting Black give up
the Knight for it, thus simplifying the win greatly.
Here the important point is that there is a
consequence on the horizon, and the program insists on
realizing it within the horizon of the search as
otherwise It, does not exist. As a result, a
consequence which could have turned out to be very
beneficial, turns out to only have a small benefit.

It is possible to f ind examples where wins are " thrown
a w a y " by such a premature cashing in. In fact, the
main reason for the demonstrated lack of tolerance of
complex i ty of today's chess programs is that their
eva lua t ion funct ion insists on maximizing, in terms of
a p reconce ived set of evaluation terms, anything that
i t de tec ts w i t h i n the search horizon, and thus all too
f r equen t l y des t roys an advantageous situation before
it rea l ly has a chance to bloom.

An example of the Positive Horizon Effect
i l lus t ra t ing a th rowing away of a positional advantage
is shown in Figure III. Here, if the evaluation
func t ion is aware of the beneficial effect of
con t ro l l i ng an open f i le, and if the search is again
be ing conducted to three ply, the most likely
con t inua t ion wi l l be 1. PxP ch, PxP, 2. R-KR1 with
con t ro l of the open fi le and "some advantage". The
fact that on the next move Black can answer R-KR1,
a f te r wh ich White's advantage has largely evaporated
is not recognized. Neither is the Key fact that Black
can do absolutely nothing to prevent White from
open ing the fi le whenever he likes (for human players
t h e r e is the dictum "do not open a file until you are
r e a d y to use i t"). However today's programs would
almost cer ta in ly reject the correct 1. R-KR1 since
a f te r Black plays R-KR1 and White plays 2. PxPch, it
is time to invoke the quiescence procedure which
produces PxP. Now in contrast to the earlier
va r ia t i on , White does not control the open file. Nor
w o u l d he if any other 2nd move were played. Clearly,
a p rog ram could recognize the value of playing
1. R-KR] be fo re J. PxP ch, only if it were secure in
the knowledge that the fi le can be Opened at a later
t ime by PxP and that if Black plays PxP, he will
mere ly incur an equally difficult problem in defence
of the KRP as he has now in defence of the KR-file.
In fact having once played i. R-KR1 and getting the
answer R-KR1, a program that has reasoned thus far
should have l i t t le di f f icul ty in now playing 2. R-R2
since opening the fi le at the present moment is not
advantageous and making room for the other Rook could
help. It should be noted that incorporating the human
p l a y e r s ' dictum appears extremely difficult as the
issue of " ready to use i t" is one requir ing dynamic
judgements , in which even good human players make
mistakes at t imes. However, we feel that the
cons t ruc t ion of lemmas as explained in a later
sec t ion , wi l l go a long way toward providing better
eva luat ion mechanisms at the search horizon.

Another basic problem, the need for a global
s t r a t e g y , is shown in Figure !V. Here everyone of
t oday ' s programs would conduct a 5-ply search and then
p lay 1. K-K3. A summary of its findings during this
t r e e search might run a follows: it decided that P-B7
wou ld lose the pawn to K-K2, and therefore decided to
move the King to the most 'central location available
(th is is a quant i ty recognized by the evaluation
funct ion) . On the next move, having already achieved
i ts "op t imum" posi t ion, the program would be faced
w i t h a p rob lem that all hill climbers face when they
reach the top*. How to back down as l itt le as possible?
Accord ing ly the re would occur either K-Q2 or K-B3.
The po in t Of this whole example is to show the
hopeless hi l l -c l imbing characteristics of the present
p rog ram design. In the given position, even a poor
human p layer would recognize that there is nothing to
be gained by the above maneuvers. The real problem is
that today 's programs mix their strategical and
tact ical ob jec t ives during the search. Thus the above
pos i t ion could be handled effect ively if a tactical

sea rch w e r e f i rst done and this came to the conclusion
that P-B7 only resul ted in losing the Pawn. There
be ing no other tactical tr ies, control would then
r e v e r t to a strategical module which would t ry to
improve the posit ion of any and all pieces. Since, in
th is s impl i f ied situation, we only have the King as a
candidate , the next step would be to try to find an
op t imum or near optimum position for the King and
de te rm ine if it could get there. Here we must not
r e l y so le ly on a static, preconceived notion of
cen t ra l i t y , although that certainly is a part of the
p i c t u r e , but more important ly we seek a functional
opt imum. This can be found by noting that the Black
KNP and KP are not defended by Pawns and could
poss ib ly be attacked by the King, and also that our
o w n KBP could possibly benefit f rom having our King
near it. Next, a null move analysis could be carried
out , consist ing of moving the White King around
w i t hou t looking at intervening moves, to see if we can
f ind the opt imum path to any of the desired squares.
This wi l l then eventual ly yield the correct idea of
i n f i l t r a t i ng w i t h the White King via QR3, which wins
easi ly . Admit tedly the control structure that could
evoke such behavior would present some problems. Most
of the problems in chess are tactical (immediate)
p rob lems and for this reason, the lack of global ideas
is f r equen t l y obscured in today's programs. However,
it is absolute ly necessary to be able to generate
g loba l goals in order to avoid hill climbing behavior.

We have above touched only on the relatively
s imple p rob lem of f inding the correct way to proceed.
A far more dif f icult problem, which would also have to
be faced by the Master st rength program, is to judge
w h e t h e r the posi t ion can be won or is a draw. A
simple " p a w n ahead" judgement is not enough. There
may be o ther endgames from which to choose, in which

t he p rog ram is also a pawn ahead. In the posit ion
be ing discussed, for instance, if a further White Pawn
w e r e at QN4, and a Black Pawn at its QN4, the position
w o u l d be a draw. Clearly dynamic judgements of this
t y p e are absolutely necessary.

In Figure V, we see a much better understood
p rob lem than any of the above. It is the problem of
calculat ing in depth . Here White can execute a mating
combinat ion requ i r ing an initial Queen sacrifice and
nine fu r the r moves, a total o(19 ply as fol lows:
1. Q-R5ch, NxQ, 2. PxPch, K-N3, 3. B-B2ch, K-N4,
4. R-B5ch, K-N3, 5. R-B6ch, K-N4, 6. R-N6ch, K-R5,
7. R-K4ch, N-B5, 8. RxNch, K-R4, 9. P-N3, Any,
10. R-R4 mate. This combination was played by a
fo rmer Wor ld Champion while playing a total of 20
games simultaneously. The reason no program that
looks at 10 to 20 alternatives at every node can play
the co r rec t move is that the principal variation to
jus t i f y the init ial queen sacrifice extends much, much
f u r t h e r than the 5-p ly depth that is about all that is
possib le w i th a program that gets buried in the
exponent ia l explosion of investigating 10 sprouts from
every node. Now it is quite possible to play Master
level chess wi thout playing such long combinations.
However , in the author's experience one must at least
once a game be able to took 14 or more ply ahead. As
for as the above example goes, we believe that 992 of
all Masters would solve it as well as a high
percen tage of Experts and Class A players. What is
rea l ly di f f icul t about the example is not the simple
unrave l l ing of the main line, which having few
branches is fa i r ly linear, but the conception of the
pos i t i on , and that such a solution involving chasing
the King up the board might exist in it.

One could argue that just because good players
can solve such problems, this does not show the
requ i rement for the program to see to such depths in
o rder to play at the Master level. What this would
mean is that the program would have to rely almost
exc lus ive ly on static, non-tree-search computations
for i ts moves. But we have already shown in examples
II and III that static notions must be combined with
dynamic tests in depth in order to yield correct
resul ts . So a program that could not look 10 ply
ahead wou ld be subject to any f ive move threat that
comes along. Even though the main thrust of most such
th rea ts could no doubt be muted, it would be
inev i tab le that some concession would have to be made.
This t y p e of thrust and parry is at the heart of
Master p lay. Even more importantly, a program that
cannot look 10 ply ahead could never conceive a f ive
move threat of its own which is dependent on adverse
act ion. The evidence is quite overwhelming.

Another interest ing phenomenon, that of reality
or i l lus ion, that aff l icts all of today's best
p rograms can be seen in Figure VI. Here it is White's
t u r n to play. The f i rst thing that the evaluation
func t ion wi l l discover is that White has both of his
Rooks "en p r i se " {captureble by the opponent under
f avor able condit ions). If this position has occured
at some node which is eligible for sprouting, then
moves that move ei ther of the rooks to a "safer" place
wi l l rece ive good recommendations. If the node is a
te rmina l node, then it wil l be considered as not
sa t i s fac to ry fo r White, as it is presumed that at
least one of the Rooks wi l l be lost. In actuality,
ne i ther of the Rooks is in danger. If BlacK plays QxR
then R-B8 mate, and if PxR, then QxPch, K-Nl , Q-R7ch,
K - B 1 , P-N7ch fo l lowed by P-N8-Qch wins quickly- Even
s t ranger is the fact that if this position occurs

somewhere in the t ree below the top node, and if, say,
t w o p ly ear l ier White had played RxP(KB6) as a
sacr i f ice which it turns out could not have been
accepted , then in today's programs there would now be
no knowledge of the sacrifice at KB6 when the position
is t e n d e r e d for evaluation two ply later. Rather the
Rook wou ld be considered en prise. Indirect defences
of th is t ype are seen all the time in Master chess.
Clearly, if a p rogram aspires to this level it must be
able to handle such problems. Part of the solution
consists in not ing the functional overloading of the
p ieces that are thought of as doing the • capturing.
Here the Black Queen is guarding a check on the back
rank apart f rom attacking the White Rook. Also the
Black KNP is guarding a Pawn and a check, while
a t tack ing , the White Rook. However this is not enough,
since it is qui te possible that the checks that are
be ing defended against are quite harmless, and it
w o u l d be fol ly to t r y to determine, without fur ther
search ing, the exact potency of every check on the
b o a r d .

Ano the r prob lem, that of dynamic evaluation of
mater ia l , is depicted in Figure VII. Here with either
side to play, White's pawn cannot be stopped f rom
queen ing , while Black's pawns are going nowhere fast.
Yet t he re is no doubt that every one of today's
p rograms, if p laying Black would refuse a draw in this
pos i t i on , and it is also very clear that only a very
weak human p layer would offer a draw with White. The
p rog rams ' rat ionale is that three passed pawns are
be t t e r than one. The problem here is one of
recogn iz ing the dynamic potential of the White passed
p a w n wh ich cannot be caught. It is true that in this
case the job can be done statically be merely noting
the distances of the White Pawn and the Black King
f r o m the queening square, however, if the Black Pawns

w e r e ell advanced three squares, the computation would
have to be done dynamically, since there is a
poss ib i l i t y they may arr ive f irst. Similar dynamic
ideas, wh ich no program can at present handle well ,
e re the not ion of a defenceless King by reason of no
su r round ing men of his own to help defend him, and the
no t i on of cooperat ion among various men rather than
o n l y assessing the goodness of their individual
pos i t ions . Such notions require dynamic exploration
to de te rmine the degree of their applicability in a
g i v e n posi t ion. However, in a program where terminal
eva lua t ion must be done very quickly because of the
la rge number of nodes that must be evaluated, such
luxur ies are not possible. We are here directly
c o n f r o n t e d w i th a basic limitation of the generate and
tes t approach, when it does not allow enough time to
do a deta i led evaluation of the nodes visited.

Our last two examples deal wi th situations that
p r e s e n t - d a y programs can handle. However, the method
by w h i c h they do this is ter r ib ly inefficient and
could not be used if one wanted to do tree searches
w h i c h could extend even a little deeper than the
c u r r e n t f ive ply. The f irst of these problems is the
p r o b l e m of defence. It is relatively easy to
recogn ize attacks and develop criteria for judging the
va lue of most attacks. However, this is not so wi th
de fence . The problem is that in order for a defence
to ex is t , a threat must f i rst be known. All threats
are not of the simple type such as threatening a
cap tu re , and it is precisely this other type of
t h rea t , wh ich shows up in the backed up value of the
c u r r e n t var ia t ion , that is not easy to counter because
we on ly know the magnitude of its effect. Figure VIII
shows a posit ion of this type. Here it is Black's
t u r n to play and the search is being conducted to a
d e p t h of f ive ply. If Black plays a normal aggressive
move such as 1 .— P-R7, he will f ind that after
2. Q-K8 ch, RxQ, 3. RxR he is mated. The search will
t hen eventua l ly rever t to the point where Black played
P-R7. Now in most of today's programs we would be
armed w i t h the killer heuristic (which says that
against any new proposed move t ry the "kil ler" Q-K8ch
f i r s t) . This would indeed result in the efficient
dismissal of the next 15 or so moves likely to be
t e s t e d . However the fact remains that each of these
a l te rna t i ves is being served up in a generate and test
mode, and the program can consider itself fortunate if
it d iscovers the only defence (Q-K5) before it has
exhaus ted half the legal moves.

Our f inal example in Figure IX shows ' another
sub t le considerat ion. In this position, programs that
look f i ve p ly deep have an excellent chance of finding
the mate in three moves; 1. BxPch, K-R1, 2. B-N6ch,
K - N l , 3, Q-R7 mate. If such a program, due to the
fac t that White is behind in material, were only to
look at captures of pieces of greater or equal value
to t he cur rent def ic i t , and checks (an assumption
wh ich requi res some preprocessing) and to stop at f ive
p ly d e p t h (for which it would be difficult to
es tab l i sh a logical reason), there would still be
about 100 bottom positions to examine before the mate
is found . Here any tournament caliber human player
w o u l d recognize the situation immediately as one of a
set of Queen and Bishop mates. He would only have to
de te rm ine the funct ional need to guard the King escape
square at KB2, to determine what the correct sequence
is and that it does lead to mate. The critical thing
h e r e is not that a program couldn't f ind the mate once
t h e diagrammed posit ion is reached, but that in
advanced chess play such situations occur frequently

Figure VII

Figure VII I
Black to Play

Figure IX
White to Play

in deep par ts of a t ree as a reason why some other
move fads. If a program spends 100 nodes
invest igat ing such a well known pattern, then there is
a def in i te limit on the amount of work the program can
be expec ted to do. The answer here quite obviously is
to have a repeto i re of frequently occurring patterns
avai lable to the program together with some guidance
to de te rmine the exact applicabil i ty of any particular
p a t t e r n . In the above case, recognition of the Queen
and Bishop funct ional ly bearing on the undefended KR7
square , together wi th the position of the Black King
hemmed in by some of its own pieces is the basic
p a t t e r n . The dynamic analysis reveals that the King
could escape over KB2 if this were not kept under
con t inued guard. With these constraints, the number
of var ia t ions to be examined are very few.

gome Conclusions

Let us examine some potential models of computer
chess. All the complete models are clearly too time

or space consuming. Therefore, the most reasonable
course appears to be to rely upon models that
cons t ruc t • t rees of possibil it ies but wi th some
l imi tat ions imposed upon the growth of the trees. Now
depend ing upon how we define these limits, we have a
t r ac tab le prob lem. The real question, and that
addressed by this paper, is how these limits can be
d e f i n e d and implemented in order to include the range
of per fo rmance exhib i ted by chess masters while stil l
keep ing the problem tractable,

Let us summarize the requirements noted earl ier:

1) In examples l-lll we have seen the Horizon Effect
in opera t ion . We have also seen that the two-p ly
ex tens ion of each new principal variation is only
a s top -gap measure, which prevents one move
debacles (anyone who doesn't believe this is
i nv i ted to t r y Figure XI out on his program).
What can be done about the Horizon Effect?
Clear ly the problem is due to the fact that some
t e r m in the static evaluation function is
eva lua ted "premature ly" . Prematurely here means
that a noticable' change in the value ot the term
can be fo rced , without any compensatory change in
any o the r term(s). From this, one can deduce
that there can be no arbi t rary depth limit
imposed on the search. The decision as to
whe the r to terminate the search at a node or
cont inue, has to be a function of the information
that exists at that node and how this relates to
the quiescence of each and every term in the
eva lua t ion funct ion. For instance, if we have an
eva luat ion funct ion that would consider it bad to
have a bishop blocked in by its own pawns, then
some e f fo r t must be expended to determine the
permanency of such situations. In general what
is requ i red is a procedure to determine the
quiescence of every term in the evaluation
func t i on and in cases of non-quiescence, a
p rocedu re for generat ing moves or applying some
stat ic means of reaching a quiescence decision.
This should not be construed as meaning that
pe r fec t knowledge of the future status of each
parameter in the evaluation function is required,
in fact some practical maximum depth or time
l imits must exist. Thus only a f inite set of
resourses can be expended to determine the true
f u t u r e status, and some controlled error wil l no
doub t neve to be tolerated. However, the
resu l t i ng e r ro r by this method should be orders
of magnitude smaller (a -so-cal led judgement
e r r o r) than the e r ro rs produced current ly by the
Hor izon Effect. In present day programs,
quiescence is pursued only for the material
parameter . And even this frequently does not
w o r k out sat isfactor i ly , since usually only
cap tu res are considered, while forks, mate
t h rea t s , etc. are ignored.

2) From example IV we see the need for having
g lobal goals and being able to determine
someth ing about the feasibi l i ty of such proposed
goals. This may involve procedures of
cons iderab le complexi ty in order to answer basic
quest ions about the value of any node. All of
wh ich adds to the potential evaluation time
r e q u i r e d at a node.

3) From example V, the program must on occasion be
able to calculate precise variations to a depth

of 14-ply and possibly more. This in no way
means that every move should be calculated to
this dep th nor that when a move is, that every
branch wou ld go to this depth also. However, the
basic fac i l i ty to allow probing to at least this
d e p t h must exist.

4) From example VI we see the need to diagnose
cer ta in dynamic proper t ies of positions, and the
requ i rement to communicate such data to other
nodes in the t ree. This need exists in order to
avo id fau l ty in terpretat ion and the necessity of
o the rw ise "discover ing America" over and over
again.

When condit ions are detected that make a
stat ical ly calculated decision incorrect (in this
case that a rook is en prise), the variat ion that
d iscovers this fact must during tree back-up
assemble the condit ions which are necessary for
this contradic t ion to remain true, This new
t r u t h should then be stored as a lemma applicable
to all nodes in the tree below any node for which
it is d iscovered to be true. The lemma states
t he condit ions under which it remains t rue, and
at each succeeding node it is assumed true unless
someth ing that counters one or more of the
condi t ions of the lemma has occurred. In that
case the val id i ty of the lemma would Have to be
re -examined. It is important to express the
lemma in a language which is neither too detailed
nor too fuzzy. The former case would result in
cont inuous re-examinat ion as changes in single
condi t ions, which by themselves do not upset the
va l id i t y of the lemma, have to be looked into.
The la t te r case could result in being unable to
de f ine or detect a crit ical change in the t ru th
value of the lemma. It should of course be
apparen t that lemmas can concern themselves wi th
o ther th ings than the material issues presented
in the example. For instance, it should be
possible to posit a lemma about the conditions
under wh ich contro l of an open file is retained.

It is interest ing to note that a key to
de tec t ing that something may not be as it appears
s ta t ica l ly , is the use of a functional analysis.
In example VI, the initial indication that
ne i ther of the Rooks is capturable is that each
of the i r at tackers is also defending something of
impor tance. Sometimes it is possible to resolve
such funct ion confl icts statically by noting that
another piece can assume the required functional
ro le w i thou t itself becoming overburdened. When
th is is not possible, the validity of a potential
func t ion confl ict must be established dynamically
by t ree searching. A general discussion of the
use of funct ional relations in chess percept ion
and reasoning can be found in Newell and Simon
[7] . A good discussion of paths and their
obs t ruc t i on can be found in Botwinnik[4].

5) From the defence problem in example VIII, we see
a need for some similar communication within a
search t ree . A proper description of a set of
undes i rab le consequences can save tremendous
e f f o r t in f inding problem solutions if such
ex is t , or moving on to more f ru i t fu l endeavors if
not. Again, the adequacy of the language is
impor tan t as it must be used to test whether the
set of consequences were caused by the latest
move, and to prov ide an input to move generators

82

that could f ind an appropriate answer to the
p rob lem. For this purpose, functional relations
wh ich descr ibe attacks that occured, and path
in format ion which describes paths traversed by
moving pieces and paths over which threats
Occur red, appear to be required elements of the
language.

6) The funct ional relations mentioned in the
p rev ious examples are in a sense patterns
invo lv ing two pieces or a piece and a square.
Cer ta in clues can be gained by searching these
pa t te rns when they focus about a common square or
p iece. However, f rom example IX we can see the
need for a stil l higher level of pat tern
abs t rac t ion . Here we are looking for groups of
pieces which form a pat tern around some
in te res t ing focus. In the example cited, the KR7
square w i th the White Queen and Bishop attacking
i t , and the Black King are the focal points which
should suff ice to index into the correct pattern,
wh ich wi l l then produce a pointer to a routine
fo r deciding if we are confronted with an
exp lo i tab le instance of the pat tern in question.

Above , we have assembled the beginning of a set
of requ i rements for a program that could have the
p o w e r to play Master level chess. It does not take
long to dismiss the possibil i ty of extending the
cu r ren t generat ion of chess program to meet the above
requ i rements . It is quite enough to realize that such
a p rog ram requires about a factor of 20 of additional
t ime fo r each additional two ply of depth that it
searches.

In 1958 Newell , Simon, and Shaw [8] , argued that
"As analysis deepens, greater computing effort per
pos i t i on soon pays tor itself, since it slows the
g r o w t h in number of positions to be considered". This
is wel l substant iated in the ACM tournaments which
have convincingly shown the superior i ty of programs
that search a subset of legal moves and evaluate a
modera te amount, over programs that search all legal
moves and evaluate l i t t le. Clearly it is time to move
again, and more substantial ly in the direction of more
eva lua t ion and less search. The requirements

demons t ra ted in this paper show a need to do possibly
t e n or more times as much processing at a node than is
c u r r e n t l y done. This means that, for equivalent
compu t ing power , we are faced wi th generating trees of
at most 5000 nodes distr ibuted throughout the search
space. The Greenblatt and Northwestern University
p rog rams have an ef fect ive branching factor (where
number of bot tom nodes - BF K r , H) in excess of 6. If
it is assumed that the search is limited to 14-ply,
t hen the branching factor must be less than 1.9, if we
are to s tay w i th in 5000 nodes.

Actua l ly this is a meaningful measure Only for
t r ees wh ich have a maximum depth. In order for a tree
of no maximum depth to converge, a necessary and
su f f i c ien t condi t ion is that for any arbi t rary node
5 < i P[i]) < 1 (where P[i] is the probabi l i ty of i
sp rou t s) . Clear ly the less I (i P[i j) is, the more
r ap i d l y the t ree wi l l converge. One can achieve such
a decrease , w i t h increasing depth of the tree, by
be ing able to compare the state at the present node
w i t h the s tates of earl ier nodes in the tree branch
be ing invest igated. Comparisons involve how earlier
expec ta t ions are holding up, and whether moves that
are e l ig ib le fo r test ing have appropriate thematic
re la t ionsh ips to what has gone before. The number of

such comparisons grows linearly wi th depth thus
p r o v i d i n g ever more conditions for stopping the search
or not Invest igat ing an arb i t rary move.

To guide the search we need mechanisms which can
at l inear cost provide analysis at a node so that the
exponen t ia l cost of discovery and/or veri f icat ion due
to t r e e searching Is drastically reduced. It appears
reasonab le that the more powerful (in the sense of
g r e a t e r depth) the predict ion mechanism, the better
t he e f fec t on program performance. Here the
func t iona l analysis and pat tern recognition mentioned
ea r l i e r c lear ly are destined to play a part, w i th the
fo rmer being an essential element of the latter. Also
t he communicat ion of defensive requirements appears
v i t a l l y necessary. In fact since dissatisfaction wi th
a resu l t is a relat ive matter, one could consider
using backed-up descriptions to discover ways of
he igh ten ing the success of whatever is being attempted
at p resen t .

Last ly , one can see the overriding importance of
quiescence of concepts being used in the evaluation
p rocedu re . The evidence is quite overwhelming that
t he a t tempt to dr ive all evaluations into a quiescent
s ta te should be the major force that determines the
shape of the t ree. Thus, while today's programs use
up near ly all their time t ry ing to assure tactical
quiescence, this wi l l now have to be done by less
comple te methods in order to make way for the
addi t ional faci l i t ies required. It is interesting to
compare this der ived role of quiescence as the main
gu id ing fo rce , w i th the control structure of the 1958
Newe l l , Simon and Shaw program [8] which was
appa ren t l y der ived f rom a concern with human behavior.

The condit ions and the model we have set for th
appear to be necessary for Master chess. However,
t h e y are almost certainly not sufficient. Masters
Know a great deal of chess knowledge which has as yet
not been encoded in any program, and would probably
have to be placed in long-term memory for occasional
re fe rence , We have avoided discussing what a minimum
quan t i t y of such data might look like, since until the
necessary mechanisms for its use are in place, so that
i t w o u l d be possible to do some experimentation, there
w o u l d be l i t t le scientific validity in such
specu la t ion. There is also the problem of doing at
least some learning in order to avoid repeating
obv ious e r ro r s in identical situations. However, an
o rgan iza t ion ' which takes account of the conditions
n o t e d here is almost certainly necessary to make
s igni f icant progress beyond the present state of the
ar t , and the model appears extendable to the problems
of learn ing and fu r ther pat tern encodings, as these
p r o v e necessary. In the immediate future, the major
p rob lem appears to be how to produce a search of the
economy of that proposed while retaining at least the
same re l iab i l i ty as evidenced by today's programs
wh ich use a more complete search strategy.

For those who feel that our simple examples would
not chal lenge their program design, we include Figures
X-XII wh ich are moderately more difficult. In Figure
X it is Whi te to play and win. In Figure XI it Is
Black to p lay and not do something foolish; and we are
not th ink ing of the obviously foolish 1. QxR, but of
o t he r fool ishness der ived from this by the Horizon
Ef fect . In Figure XII it is White to play and win.
We expec t that a human Class B player would have no
d i f f i cu l t y w i t h any of these.

Progress To Date

Since July 1972 the author has had a program,
whose general objectives are those outlined above,
running at Carnegie-Mellon University. In this
section we wish to report the progress that has been
made. As yet the program only concerns itself with
tactical {material) issues; however, it is felt that
the techniques being developed are general and
applicable to the other dimensions of chess
evaluation. The program notes, among others, the
relations of attack, defence, blocking functions and
paths along which such activities occur. Thus, it has
a language which is considerably more powerful than
the notions Of a legal move, which is the analytical
element of most of today's programs. Each chessboard
is described in this language. This characterization
greatly facilitates finding good "sacrificial" moves
and moves which disturb the defence relations among
pieces, while not hindering the evaluation of other
types of moves. The program has an expectation level
associated with every search it conducts, and there
are mechanisms for raising and lowering this when
results outside a range of acceptability from the
expectation can be forced. There is a general
causality facility which is used both for defence and
improving attacking ideas. This facility can always
detect whether a given set of consequences were not
caused by the last move tried and thus constitute a
problem inherited from higher in the tree. It does
this by comparing a description of the consequences
with a description of the move tried. However, it is
not nearly as adept at detecting causality relations
as an experienced chess player. Still, the facility
never deduces causality when causality does not exist,
end deduces non-causality about 607. of the time that
this is appropriate, putting it well ahead of
contemporary programs. No dynamic re-evaluations or
lemmas have been implemented as yet, but these are
planned for the near future. Higher level patterns
are planned for a stilt later stage.

The program is at present able to investigate an
average position for tactical quiescence to a depth of
9-ply, generating from 100 to 2000 nodes. The
tactical reliability of such searches is somewhat
better than that of the average program that
participates in the annual ACM tournaments. Most of
our effort in tree searching has been in an attempt to
improve the likely correctness of a proposed move.
This is achieved not only through the representation
we use, but also through some 15 stopping, pruning and
reordering rules. Thus the effective branching
factors of our trees vary between 1.5 for positions
where a clear-cut result is obtainable, and 3.0 in
positions where there is tactical complexity, but no
way of gaining an advantage exists. Although this
compares very favorably with the effective branching
factors of about 6 found in today's programs, we
consider branching factors of 3 to be still much too
high for our purposes. Thus, we occasionally grow a
tree of 20,000 nodes because the program gets
side-tracked in an inconsequential part of the tree.
However, there are still several tree control
algorithms we plan to implement, which should prevent
such behavior by selective jumping around in the tree.
We expect In the not too distant future to extend the
depth limit of the program significantly beyond its
present 9-ply. Even at its present depth, it is less
affected by the Horizon Effect than programs with less

Figure X
White to Play

Figure XI
Black to Play

Figure XII
White to Play

deep searches. For instance, it has no trouble at all
in Figure XI, deciding that there are no diversions
which can lead to an ultimate capture of the White
Rook.

When the program is confronted with the defensive
problem of Figure Vlll, after the initial variation
starting with 1.— P-R7 is tried, a description Of
what happened is backed up along with the value of the
position at branch termination. At each successive
node during backup, if the result is unsatisfactory,
the backed up description is compared with the
description of the move made. This is done to see if
what happened could have been caused by the latest
move tried at that node. If not, a defensive move
generator then generates the moves that can do
something about the description. The description
contains such information as the names of the pieces
involved in the action, the path (if any) that they
traversed, targets attacked when they arrived at their

dest ina t ions , etc. If no defensive moves are
g e n e r a t e d and if no worthwhi le aggressive moves remain
to be invest igated, i t is assumed that the problem
cannot be solved at this node of the tree. When the
search reve r t s to the point where 1.— P-R7 was tr ied
in i t ia l ly , an examination of the description reveals
that the threat could possibly be countered by moving
the King, guarding the K8 square, blocking the path of
t h e Rook f rom K2 to K8, capturing the Rook or the
Queen, or blocking or gett ing ready to block the KB8
square across which the check passes. From this
desc r i p t i on six moves are generated: K-Rl , N-Q2,
R - K B 1 , Q-K5, Q-K4ch, and Q-K6. It then does not take
the p rog ram ve ry long to determine that Q-K5 is the
on ly defence (which in fact leaves Black in a winning
pos i t ion) .

The p rogram has been tested extensively on
pos i t ions which one finds in chess books which teach
h o w to p lay good tactical chess. In such positions a
more Or less "h idden" series of moves allows the
p layer on move to achieve a decisive advantage. In
w o r k i n g on the f i rst 200 examples in thr book "Win at
Chess" [9] , the program solves about 607- of the middle
game prob lems in CPU times ranging from a fraction of
a second to eight minutes, w i th an average of about 80
seconds. This is despite the fact that the principal
va r ia t i on sometimes extends to nine ply. Occasionally
the p rogram finds forced mates in the absolute minimum
number of nodes. It also has found improvements on
the analysis contained in the book, which the
expe r imen te r himself did not notice. The main reason
that the program is not able to solve 100% of these
p rob lems is that several functional relations and many
analyt ical rout ines are not yet implemented.

On the basis of tests to date, we find that the
language of funct ions, paths, etc. is very useful for
pass ing messages of the kind described above. We
expec t that it wil l also serve for the
charac te r i za t ion of thematic relationships which would
mi t igate against a move being tr ied when it is "out of
c o n t e x t " w i t h previous moves. However, there seems to
be l i t t le doubt that more powerful languages are
poss ib le . These may be necessary to effect ively
implement the lemma ideas, since the function language
may be so detai led that investigating lemmas expressed
in it wi l l p rove uneconomical. Further, we conjecture
that cont inuing progress in chess will be dependent on
the invent ion of ever higher level languages in which
chess concepts can be expressed. Each such language
leve l w o u l d then have an assymptote, defined by the
p o w e r of the language, beyond which it would not be
poss ib le to improve the strength of the program, given
that on ly a certa in amount of time was available to
compute a move. Also as concepts are agglomerated
in to ever higher level concepts, we expect that they
w o u l d get to be more fuzzy and would require a more
complex cont ro l s t ructure than used a present in order
to p roduce the same level of reliabil i ty as can be
ob ta ined w i t h less fuzzy concepts. We feel that this
inc reased conceptual izat ion is evident in the history
of chess, and should make it possible ultimately to
equal and exceed the performance of the best human
p laye rs .

Acknowledge ment
The author wishes to acknowledge the roles of

P ro fessors A. Newell and H. A. Simon in stimulating
his in te res t in functional analyses of chess
pos i t ions . The work repor ted herein was supervised by
Dr. Newel l .

References

1. A tk in , L.R., e t . al., "Chess 3.0 - An Experiment
in Heurist ic Programming", Unpublished. 1971.

2. Berliner, H.J, "Experiences Gained in Constructing
and Test ing a Chess Program", Proceedings of the
IEEE Sysmposium on Systems Science and Cybernetics,
October 1970.

3. Berns te in , A., et. al., "A Chess Playing Program
fo r the IBM 704" , Proceedings of the Western Joint
Computer Conference, A1EE, March 1959, pp. 157-159.

4. Botw inn ik , M.M., Computers, Chess and long-range
Planning, Spr inger Verlag, 1970.

5. Greenblat t , R.D., et. al., "The Greenblatt Chess
Prog ram" , Proceedings of_ the 1967 Fall Joint
Computer Conference, pp. 801-810.

6. Kotok, A., "A Chess Playing Program for the IBM
7 0 9 0 " , Bachelors Thesis, MIT 1962.

7. Newel l , A. and Simon, HA., Human Problem Solving.
Prent ice-Hal l , 1972

8. Newel l , A., et. al., "Chess Playing Programs and
the Problem of Complexity", in Computers and
Thought , E.A. Feigenbaum and J. Feldman (Eds.),
McGraw-Hi l l , 1963.

9. Rein fe ld , F., Win at Chess, Dover Books, 1958.

10. Shannon, C.E., "Programming a Computer to Play
Chess", Philosophy Magazine. Ser. 7, Vol. 4 1 , No.
314, March 1950, pp. 256-275.

1 1 . St rachey, C.S., "Logical or Non-Mathematical
Programs" , Proceedings ACM National Meeting. 1952,
pp . 4 6 - 4 9 .

