Session 5 Applications and
Implications of Artificial
Intelligence

SOME NECESSARY CONDITIONS FOR A MASTER CHESS PROGRAM *

Hans J. Berliner
Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania

Programs of this type typically evaluate between
5,000 and 50,000 bottom nodes in the trees they
generate. They do this by applying a static
evaluation function, which, since it must be invoked
so many times in the course of the three minutes
allowed for a tournament move, must of necessity be
restricted to a few milliseconds of computation.

Because programs exist which can compete in human
tournaments, and because of the annual computer
competition et the ACM meeting, there now exists
considerable interest all over the world in the future
of computer chess. In fact, there is a detectable
expectancy in the Al community that a Master level
chess program will exist before the end of the decade.

Abstract

Since 1967 there has again been great interest in
chess programming. This paper demonstrates that the
structure of today's most successful programs cannot
be extended to play Master level chess. Certain basic
requirements of a Master player's performance are
shown to be outside the performance limits to which a
program of this type could be extended. The paper
also examines a basic weakness in the tree-searching
model approach when applied to situations that cannot
be searched to completion. This is the Horizon

Effect, which causes unpredictable evaluation errors
due to an interaction between the static evaluation
function and the rules for search termination. The
outline of a model of chess playing that avoids the
Horizon Effect and appears extendable to play Master
level chess is presented, together with some results
already achieved.

It is the purpose of this paper to show that a
program with the structure of today's most successful
programs cannot be extended to play Master chess.
When one considers that much effort by several groups
has only succeeded in raising the 1968 standard of
performance of the Greenblatt program by a hardly
measurable amount, there is some reason to believe

KEYWORDS: Game playing, chess programming, heuristic that the present design is already near the assymptote

programming, Horizon Effect. of its potential. We will show that the domain in

which a Master level program has to operate could

Introduction never be subsumed in any domain to which the above

programs could be extended. We will also show that

Since 1967 chess programming has again been an certain features in the evaluation procedure used by

interesting subject for Artificial Intelligence current programs lead to basic errors that can not be

researchers. At that time Greenblatt [5] developed a tolerated in Master play. Finally, the outline of a

program which soon proved to play nearly as well as model of chess that could perform as required Is
the mid-range of registered human players in America. presented.

The basic structure of Greenblatt's program can
be historically traced through what Shannon [10] in
1950 called a Type B strategy, an initial effort by

We will draw examples from both human and machine
play. In order to minimize the chess knowledge
required of the reader, the examples have been chosen

Bernstein et al. (3l 'n. 1958, another ~more to be as obvious as possible, and we have endeavored
successful program documented in Kotok [6] 1962, and to remove all considerations from these, except those
finally ~ Greenblatt. Since then there have been pertinent to the discussion. We consider it extremely
several other programs of this type developed. of likely that the phenomena being considered here, are

these only the Northwestern University program [1] has
achieved a human Class C rating, which places it in a
unique position along with the Greenblatt program.

Briefly, the type of program being discussed
searches to a depth of five ply under tournament
conditions (in endgames with very few legal moves they
may search from one to three ply deeper). They do not
investigate every legal move, but restrict themselves
to a sub-set at each node. Moves are selected for
further search on the basis of a scoring function
which attempts to rank order the legal moves according

also artifacts in other types of artificial
intelligence programs.

Analysis of Evidence

When branches in a tree search must be terminated
prior to a legal termination point (according to the
rules of the game), it is necessary to assign a value
(an interim value other than win, lose, or draw) to
the terminal node, which then allows comparison with

) other terminal nodes. This is usually done by
to their good.nes.s. .The number of mpves selected for invoking a static evaluation function. In games where
further. examination is wusually a fun§t|onlof Ithe depth a search to legal termination is not possible, no
at which the node occurs. In special situations there other recourse appears possible. An interesting

are mechanisms which allow the search to be expanded
beyond this pruned set, in order to attempt to meet
unanticipated problems.

phenomenon arises from the interaction of the
artificial termination of the search and the fact that
all the terms in the static evaluation function are

evaluated at this terminal point. The result of this
combination is that for the game playing program,
* This work was supported by the Advanced Research reality exists in terms of the output of the static

Projects Agency, Department of Defence, under contract evaluation function, and

anything that is not
number F44620-70-C-0107.

detectable at evaluation time does not exist as far as

77

the program is concerned. This interesting fact is
present in all tree searches in any chess program that
we Know of, and causes interesting aberrations in
program behavior.

The class of aberrations defined above, we call

the Horizon Effect. Examples of the The Horizon
Effect have been observed by several researchers
[11,5,2,1] in game playing programs. However the

complete phenomemon has never received a name in the
literature nor has its causes and effects been
properly cataloged. The regimen of insisting on
evaluation at a prespecified point in the search
causes the following effects which seem peculiar to
human observers. When the Horizon Effect results in
creating diversions which ineffectively delay an
unavoidable consequence or make an unachievable one
appear achievable, we «call it an instance of the
Negative Horizon Effect. This is the phenomenon
previously reported in the literature. It can best be
shown by a typical example.

In Figure 1 it is White's turn to play, and for
the sake of this example let us suppose the search is
to be limited to three ply (we realize that the search
usually goes deeper, however it is relatively easy to
construct examples at any given depth, and we are
choosing our examples for their expository
simplicity). What will happen in the above position
is that the program will try to play 1. B-N3 and after
P-B5, 2. Anything, it is time to do a static
evaluation. This usually consists of a material
quiescence analysis, together with a calculation of
the other coefficients of the evaluation function.
The material quiescence analysis could consist of
trying all capture sequences and accepting the minimax
value if it is an improvement for the side starting
the sequence. Other quiescence procedures are also
possible, but in essence they should yield the same
value. Now at the end of the above 3-ply sequence,
the program will come to the conclusion that it will
lose the Bishop on N3, and will continue its search
for something better. It will eventually come upon
1. P-K5 and recognize that if now PxB, then 2. PxN is
good for White. Therefore it will consider as best
for Black to play PxP, after which White plays
2. B-N3. Since we are now at maximum depth, this
position will be evaluated using the standard
procedure. The quiescence analysis will show that
White has saved his Bishop since there is no sequence
of captures which will win the Bishop. Alas, it is
only after the next move that the program finds out
that the pon-caoture threat of P-B5 has not been met
by this diversion, and it then looks for other ways of
parting with material worth less than a Bishop in
order to postpone the inevitable day when the Bishop
will finally be trapped and captured. In this case
2. RxB would no doubt be tried next since after NxB,
3. B-N3, "saving" the Bishop by giving up the Rook for
the Black Bishop is preferred to losing it. We have
seen programs indulge in this type of folly for five
to six successive moves, resulting in going from a
position in which they are well ahead to one in which
they are hopelessly behind.

A clever device to prevent this behavior was
invented by Greeenblatt and is also used by the
Northwestern University group [5,1]. This consists
essentially of extending a new principal variation
another two ply, to see whether the reason it was
considered superior, will continue to obtain. In the
above example, this will result in finding that the

e N\DX
N

\S\\\\Q
N\

Ry

o N
[N

w "‘ Ay
%\\\% BN
AN
b
‘:n&&\\

rxg)

[
N
m\
N

N
N

-

w @éﬁ%%
%%%%%%%@

2% B »
% % %
7 7. 7 &

threat of P-B5 does not go away, and thus a potential
sequence of blunders is averted. However extending a
principal variation two ply can only discover whether
a one move threat has or has not been dissapated.
Threats requiring two or more moves can not be dealt
with effectively in this manner. This is usually not
noticed, since today's best programs perform at a
level of skill where two move threats are rare and far
from the major cause of, concern for their developers.

The Positive Horizon Effect is different in that
instead of trying to avert some unavoidable
consequences, the program grabs much too soon at a
consequence that can be imposed on an opponent at
leisure, frequently in a more effective form. This
phenomenon has been largely overlooked in the
literature, but is reported in a previous paper [2].
Figure 1l shows a flagrant example of the Positive
Horizon Effect.

In this position it is White to play and the
search is again to a depth of three ply. The program
notices that it can play 1. P-Q7 and if Black does not
now play NxP, 2. NxN, then it would get a new Queen.
It sees that in this way it can increase it's material
superiority. It may or may not notice that it will
then have to face the formidable task of mating with a
Bishop and Khnight. The interesting thing about this
position is that the maneuver 1. B-K5 followed by
2. B-Q4 cannot be prevented and results in forcing the
Pawn through to a Queen without letting Black give up
the Knight for it, thus simplifying the win greatly.
Here the important point is that there is a
consequence on the horizon, and the program insists on
realizing it within the horizon of the search as
otherwise It, does not exist. As a result, a
consequence which could have turned out to be very
beneficial, turns out to only have a small benefit.

It is possible to find examples where wins are "thrown
away" by such a premature cashing in. In fact, the
main reason for the demonstrated lack of tolerance of
complexity of today's chess programs is that their
evaluation function insists on maximizing, in terms of
a preconceived set of evaluation terms, anything that
it detects within the search horizon, and thus all too
frequently destroys an advantageous situation before
it really has a chance to bloom.

An example of the Positive Horizon Effect
illustrating a throwing away of a positional advantage

is shown in Figure |l Here, if the evaluation
function is aware of the beneficial effect of
controlling an open file, and if the search is again
being conducted to three ply, the most likely
continuation will be 1. PxP ch, PxP, 2. R-KR1 with
control of the open file and "some advantage". The

fact that on the next move Black can answer R-KR1,
after which White's advantage has Ilargely evaporated
is not recognized. Neither is the Key fact that Black
can do absolutely nothing to prevent White from
opening the file whenever he likes (for human players
there is the dictum "do not open a file until you are
ready to use it"). However today's programs would
almost certainly reject the correct 1. R-KR1 since
after Black plays R-KR1 and White plays 2. PxPch, it
is time to invoke the quiescence procedure which
produces PxP. Now in contrast to the earlier
variation, White does not control the open file. Nor
would he if any other 2nd move were played. Clearly,
a program could recognize the value of playing
1. R-KR] before J. PxP ch, only if it were secure in
the knowledge that the file can be Opened at a later
time by PxP and that if Black plays PxP, he will
merely incur an equally difficult problem in defence
of the KRP as he has now in defence of the KR-file.
In fact having once played i. R-KR1 and getting the
answer R-KR1, a program that has reasoned thus far
should have little difficulty in now playing 2. R-R2
since opening the file at the present moment is not
advantageous and making room for the other Rook could
help. It should be noted that incorporating the human
players' dictum appears extremely difficult as the
issue of "ready to wuse it" is one requiring dynamic
judgements, in which even good human players make
mistakes at times. However, we feel that the
construction of lemmas as explained in a later
section, will go a long way toward providing better
evaluation mechanisms at the search horizon.

Another basic problem, the need for a global
strategy, is shown in Figure V. Here everyone of
today's programs would conduct a 5-ply search and then
play 1. K-K3. A summary of its findings during this
tree search might run a follows: it decided that P-B7
would lose the pawn to K-K2, and therefore decided to
move the King to the most 'central location available
(this is a quantity recognized by the evaluation
function). On the next move, having already achieved
its "optimum" position, the program would be faced
with a problem that all hill climbers face when they
reach the top*. How to back down as little as possible?
Accordingly there would occur either K-Q2 or K-B3.
The point Of this whole example is to show the
hopeless hill-climbing characteristics of the present
program design. In the given position, even a poor
human player would recognize that there is nothing to
be gained by the above maneuvers. The real problem is
that today's programs mix their strategical and
tactical objectives during the search. Thus the above
position could be handled effectively if a tactical

%7 ‘g &
p %\? ,//:!Jy :5;{/ ,‘ﬁ'//:l
%, N AT
/:?///. e 7 5 P
/2_ % Y z@;wjx_«;

F|gure n
White 1o Play

w0, %, 7
07 /

/7_//.{/.&/ |

W, %A A #

é/

//"”?'7///
/////q%
//” /4/,;/
///,Z//

Figure IV
white {0 Play

search were first done and this came to the conclusion
that P-B7 only resulted in losing the Pawn. There
being no other tactical tries, control would then
revert to a strategical module which would try to
improve the position of any and all pieces. Since, in
this simplified situation, we only have the King as a
candidate, the next step would be to try to find an
optimum or near optimum position for the King and
determine if it could get there. Here we must not
rely solely on a static, preconceived notion of
centrality, although that certainly is a part of the
picture, but more importantly we seek a functional
optimum. This can be found by noting that the Black
KNP and KP are not defended by Pawns and could
possibly be attacked by the King, and also that our
own KBP could possibly benefit from having our King
near it. Next, a null move analysis could be carried
out, consisting of moving the White King around
without looking at intervening moves, to see if we can
find the optimum path to any of the desired squares.

This will then eventually vyield the correct idea of
infiltrating with the White King via QR3, which wins
easily. Admittedly the control structure that could

evoke such behavior would present some problems. Most
of the problems in chess are tactical (immediate)
problems and for this reason, the lack of global ideas
is frequently obscured in today's programs. However,
it is absolutely necessary to be able to generate
global goals in order to avoid hill climbing behavior.

We have above touched only on the relatively
simple problem of finding the correct way to proceed.
A far more difficult problem, which would also have to
be faced by the Master strength program, is to judge
whether the position can be won or is a draw. A
simple "pawn ahead" judgement is not enough. There
may be other endgames from which to choose, in which

the program is also a pawn ahead. In the position
being discussed, for instance, if a further White Pawn
were at QN4, and a Black Pawn at its QN4, the position
would be a draw. Clearly dynamic judgements of this
type are absolutely necessary.

In Figure V, we see a much better understood
problem than any of the above. It is the problem of
calculating in depth. Here White can execute a mating
combination requiring an initial Queen sacrifice and
nine further moves, a total o(19 ply as follows:
1. Q-R5ch, NxQ, 2. PxPch, K-N3, 3. B-B2ch, K-N4,
4. R-B5ch, K-N3, 5. R-B6ch, K-N4, 6. R-N6ch, K-R5,
7. R-K4ch, N-B5, 8. RxNch, K-R4, 9. P-N3, Any,
10. R-R4 mate. This combination was played by a
former World Champion while playing a total of 20
games simultaneously. The reason no program that
looks at 10 to 20 alternatives at every node can play
the correct move is that the principal variation to
justify the initial queen sacrifice extends much, much
further than the 5-ply depth that is about all that is
possible with a program that gets buried in the
exponential explosion of investigating 10 sprouts from
every node. Now it is quite possible to play Master
level chess without playing such long combinations.
However, in the author's experience one must at least
once a game be able to took 14 or more ply ahead. As
for as the above example goes, we believe that 992 of
all Masters would solve it as well as a high
percentage of Experts and Class A players. What is
really difficult about the example is not the simple
unravelling of the main line, which having few
branches is fairly linear, but the conception of the
position, and that such a solution involving chasing
the King up the board might exist in it.

One could argue that just because good players
can solve such problems, this does not show the
requirement for the program to see to such depths in
order to play at the Master level. What this would
mean is that the program would have to rely almost
exclusively on static, non-tree-search computations
for its moves. But we have already shown in examples

I and 1l that static notions must be combined with
dynamic tests in depth in order to yield correct
results. So a program that could not look 10 ply

ahead would be subject to any five move threat that
comes along. Even though the main thrust of most such
threats could no doubt be muted, it would be
inevitable that some concession would have to be made.
This type of thrust and parry is at the heart of
Master play. Even more importantly, a program that
cannot look 10 ply ahead could never conceive a five
move threat of its own which is dependent on adverse
action. The evidence is quite overwhelming.

Another interesting phenomenon, that of reality

or illusion, that afflicts all of today's best
programs can be seen in Figure VI. Here it is White's
turn to play. The first thing that the evaluation

function will discover is that White has both of his
Rooks "en prise" {captureble by the opponent under
favorable conditions). If this position has occured
at some node which s eligible for sprouting, then
moves that move either of the rooks to a "safer" place

will receive good recommendations. If the node is a
terminal node, then it will be considered as not
satisfactory for White, as it is presumed that at
least one of the Rooks will be lost. In actuality,

neither of the Rooks is in danger. If BlacK plays QxR
then R-B8 mate, and if PxR, then QxPch, K-NI, Q-R7ch,
K-B1, P-N7ch followed by P-N8-Qch wins quickly- Even
stranger is the fact that if this position occurs

N N N

74

Figure V1
White 1o Play

somewhere in the tree below the top node, and if, say,
two ply earlier White had played RxP(KB6) as a
sacrifice which it turns out could not have been
accepted, then in today's programs there would now be
no knowledge of the sacrifice at KB6 when the position
is tendered for evaluation two ply Ilater. Rather the
Rook would be considered en prise. Indirect defences
of this type are seen all the time in Master chess.
Clearly, if a program aspires to this level it must be
able to handle such problems. Part of the solution
consists in noting the functional overloading of the
pieces that are thought of as doing the * capturing.
Here the Black Queen is guarding a check on the back
rank apart from attacking the White Rook. Also the
Black KNP is guarding a Pawn and a check, while
attacking, the White Rook. However this is not enough,
since it is quite possible that the checks that are
being defended against are quite harmless, and it
would be folly to try to determine, without further
searching, the exact potency of every check on the
board.

Another problem, that of dynamic evaluation of
material, is depicted in Figure VI Here with either
side to play, White's pawn cannot be stopped from
queening, while Black's pawns are going nowhere fast.
Yet there is no doubt that every one of today's
programs, if playing Black would refuse a draw in this
position, and it is also very clear that only a very
weak human player would offer a draw with White. The
programs' rationale is that three passed pawns are

better than one. The problem here is one of
recognizing the dynamic potential of the White passed
pawn which cannot be caught. It is true that in this

case the job can be done statically be merely noting
the distances of the White Pawn and the Black King
from the queening square, however, if the Black Pawns

were ell advanced three squares, the computation would
have to be done dynamically, since there is a
possibility they may arrive first. Similar dynamic
ideas, which no program can at present handle well,
ere the notion of a defenceless King by reason of no
surrounding men of his own to help defend him, and the
notion of cooperation among various men rather than
only assessing the goodness of their individual

positions. Such notions require dynamic exploration
to determine the degree of their applicability in a
given position. However, in a program where terminal

evaluation must be done very quickly because of the
large number of nodes that must be evaluated, such
luxuries are not possible. We are here directly
confronted with a basic limitation of the generate and
test approach, when it does not allow enough time to
do a detailed evaluation of the nodes visited.

Our last two examples deal with situations that
present-day programs can handle. However, the method
by which they do this is terribly inefficient and
could not be used if one wanted to do tree searches
which could extend even a little deeper than the

current five ply. The first of these problems is the
problem of defence. It is relatively easy to
recognize attacks and develop criteria for judging the
value of most attacks. However, this is not so with
defence. The problem is that in order for a defence
to exist, a threat must first be known. All threats

are not of the simple type such as threatening a
capture, and it is precisely this other type of
threat, which shows up in the backed up value of the
current variation, that is not easy to counter because
we only know the magnitude of its effect. Figure VI

shows a position of this type. Here it is Black's
turn to play and the search is being conducted to a
depth of five ply. If Black plays a normal aggressive
move such as 1.— P-R7, he will find that after

2. Q-K8 ch, RxQ, 3. RxR he is mated. The search will
then eventually revert to the point where Black played
P-R7. Now in most of today's programs we would be
armed with the killer heuristic (which says that
against any new proposed move try the "killer" Q-K8ch

first). This would indeed result in the efficient
dismissal of the next 15 or so moves likely to be
tested. However the fact remains that each of these

alternatives is being served up in a generate and test
mode, and the program can consider itself fortunate if
it discovers the only defence (Q-K5) before it has
exhausted half the legal moves.

Our final example in Figure IX shows 'another
subtle consideration. In this position, programs that
look five ply deep have an excellent chance of finding
the mate in three moves; 1. BxPch, K-R1, 2. B-N6ch,
K-NI, 3, Q-R7 mate. If such a program, due to the
fact that White is behind in material, were only to
look at captures of pieces of greater or equal value
to the current deficit, and checks (an assumption
which requires some preprocessing) and to stop at five
ply depth (for which it would be difficult to

establish a logical reason), there would still be
about 100 bottom positions to examine before the mate
is found. Here any tournament caliber human player

would recognize the situation immediately as one of a
set of Queen and Bishop mates. He would only have to
determine the functional need to guard the King escape
square at KB2, to determine what the correct sequence
is and that it does lead to mate. The critical thing
here is not that a program couldn't find the mate once
the diagrammed position is reached, but that in
advanced chess play such situations occur frequently

R

%
7,
.M,’

// f///

Figure VII

B,
% %, A7 8

iy ,,/ 7
/; i A

/.

%%%//
s
ﬁ%;%%/%
,%’7“’%.&@
% % 7 7

Figure VIII
Black to Play

A7 i// 'ii:://
AL
7

.!.

27 7 7
/;/// p
%,/ s ”fg .

\3‘
%

Q-\

a 7. 'ff’// %
Figure IX
White to Play

in deep parts of a tree as a reason why some other
move fads. If a program spends 100 nodes
investigating such a well known pattern, then there is
a definite limit on the amount of work the program can
be expected to do. The answer here quite obviously is
to have a repetoire of frequently occurring patterns
available to the program together with some guidance
to determine the exact applicability of any particular
pattern. In the above case, recognition of the Queen
and Bishop functionally bearing on the undefended KR7
square, together with the position of the Black King
hemmed in by some of its own pieces is the basic

pattern. The dynamic analysis reveals that the King
could escape over KB2 if this were not kept under
continued guard. With these constraints, the number

of variations to be examined are very few.

ome Conclusions

Let us examine some potential models of computer
chess. All the complete models are clearly too time

or space consuming. Therefore, the most reasonable
course appears to be to rely upon models that
construct -« trees of possibilities but with some
limitations imposed upon the growth of the trees. Now
depending upon how we define these limits, we have a
tractable problem. The real question, and that
addressed by this paper, is how these Ilimits can be
defined and implemented in order to include the range
of performance exhibited by chess masters while still
keeping the problem tractable,
Let us summarize the requirements noted earlier:

1) In examples |-l we have seen the Horizon Effect
in operation. We have also seen that the two-ply
extension of each new principal variation is only
a stop-gap measure, which prevents one move
debacles (anyone who doesn't believe this is
invited to try Figure XI out on his program).
What can be done about the Horizon Effect?
Clearly the problem is due to the fact that some
term in the static evaluation function is
evaluated "prematurely". Prematurely here means
that a noticable'’ change in the value ot the term
can be forced, without any compensatory change in

any other term(s). From this, one can deduce
that there can be no arbitrary depth Ilimit
imposed on the search. The decision as to

whether to terminate the search at a node or
continue, has to be a function of the information
that exists at that node and how this relates to
the quiescence of each and every term in the
evaluation function. For instance, if we have an
evaluation function that would consider it bad to
have a bishop blocked in by its own pawns, then
some effort must be expended to determine the

permanency of such situations. In general what
is required is a procedure to determine the
quiescence of every term in the evaluation

function and in cases of non-quiescence, a
procedure for generating moves or applying some
static means of reaching a quiescence decision.
This should not be construed as meaning that
perfect knowledge of the future status of each
parameter in the evaluation function is required,
in fact some practical maximum depth or time

limits must exist. Thus only a finite set of
resourses can be expended to determine the true
future status, and some controlled error will no
doubt neve to be tolerated. However, the

resulting error by this method should be orders
of magnitude smaller (a -so-called judgement
error) than the errors produced currently by the
Horizon Effect. In present day programs,
quiescence is pursued only for the material
parameter. And even this frequently does not
work out satisfactorily, since usually only
captures are considered, while forks, mate
threats, etc. are ignored.

2) From example IV we see the need for having
global goals and being able to determine
something about the feasibility of such proposed
goals. This may involve procedures of
considerable complexity in order to answer basic
questions about the value of any node. All of
which adds to the potential evaluation time
required at a node.

3) From example V, the program must on occasion be
able to calculate precise variations to a depth

82

of 14-ply and possibly more. This in no way
means that every move should be calculated to
this depth nor that when a move is, that every
branch would go to this depth also. However, the
basic facility to allow probing to at least this
depth must exist.

4) From example VI we see the need to diagnose
certain dynamic properties of positions, and the
requirement to communicate such data to other
nodes in the tree. This need exists in order to
avoid faulty interpretation and the necessity of
otherwise "discovering America" over and over
again.

When conditions are detected that make a
statically calculated decision incorrect (in this
case that a rook is en prise), the variation that
discovers this fact must during tree back-up
assemble the conditions which are necessary for
this contradiction to remain true, This new
truth should then be stored as a lemma applicable
to all nodes in the tree below any node for which
it is discovered to be true. The lemma states
the conditions wunder which it remains true, and
at each succeeding node it is assumed true unless
something that counters one or more of the
conditions of the Ilemma has occurred. In that
case the validity of the lemma would Have to be
re-examined. It is important to express the
lemma in a language which is neither too detailed
nor too fuzzy. The former case would result in
continuous re-examination as changes in single
conditions, which by themselves do not upset the
validity of the lemma, have to be looked into.
The latter case could result in being unable to
define or detect a critical change in the truth
value of the lemma. It should of course be
apparent that lemmas can concern themselves with
other things than the material issues presented
in the example. For instance, it should be
possible to posit a lemma about the conditions
under which control of an open file is retained.

It is interesting to note that a key to
detecting that something may not be as it appears
statically, is the wuse of a functional analysis.
In example VI, the initial indication that
neither of the Rooks is capturable is that each
of their attackers is also defending something of
importance. Sometimes it is possible to resolve
such function conflicts statically by noting that
another piece can assume the required functional
role without itself becoming overburdened. When
this is not possible, the validity of a potential
function conflict must be established dynamically
by tree searching. A general discussion of the
use of functional relations in chess perception
and reasoning can be found in Newell and Simon
[71. A good discussion of paths and their
obstruction can be found in Botwinnik[4].

5) From the defence problem in example VI, we see
a need for some similar communication within a
search tree. A proper description of a set of
undesirable consequences can save tremendous
effort in finding problem solutions if such
exist, or moving on to more fruitful endeavors if
not. Again, the adequacy of the language is
important as it must be used to test whether the
set of consequences were caused by the latest
move, and to provide an input to move generators

that could find an appropriate answer to the
problem. For this purpose, functional relations
which describe attacks that occured, and path
information which describes paths traversed by
moving pieces and paths over which threats
Occurred, appear to be required elements of the
language.

6) The functional relations mentioned in the

previous examples are in a sense patterns
involving two pieces or a piece and a square.
Certain clues can be gained by searching these
patterns when they focus about a common square or
piece. However, from example IX we can see the
need for a still higher level of pattern
abstraction. Here we are looking for groups of
pieces which form a pattern around some
interesting focus. In the example cited, the KR7
square with the White Queen and Bishop attacking
it, and the Black King are the focal points which
should suffice to index into the correct pattern,
which will then produce a pointer to a routine
for deciding if we are confronted with an
exploitable instance of the pattern in question.

Above, we have assembled the beginning of a set
of requirements for a program that could have the
power to play Master level chess. It does not take
long to dismiss the possibility of extending the
current generation of chess program to meet the above
requirements. It is quite enough to realize that such
a program requires about a factor of 20 of additional
time for each additional two ply of depth that it
searches.

In 1958 Newell, Simon, and Shaw [8], argued that
"As analysis deepens, greater computing effort per
position soon pays tor itself, since it slows the
growth in number of positions to be considered". This
is well substantiated in the ACM tournaments which
have convincingly shown the superiority of programs
that search a subset of legal moves and evaluate a
moderate amount, over programs that search all legal
moves and evaluate little. Clearly it is time to move
again, and more substantially in the direction of more
evaluation and less search. The requirements

demonstrated in this paper show a need to do possibly
ten or more times as much processing at a node than is
currently done. This means that, for equivalent
computing power, we are faced with generating trees of
at most 5000 nodes distributed throughout the search

space. The Greenblatt and Northwestern University
programs have an effective branching factor (where
number of bottom nodes - BF X"") in excess of 6. If

it is assumed that the search is limited to 14-ply,
then the branching factor must be less than 1.9, if we
are to stay within 5000 nodes.

Actually this is a meaningful measure Only for
trees which have a maximum depth. In order for a tree
of no maximum depth to converge, a necessary and
sufficient condition is that for any arbitrary node
5 < i P[i]) < 1 (where P[i] is the probability of i
sprouts). Clearly the less | (i P[ij) is, the more
rapidly the tree will converge. One can achieve such
a decrease, with increasing depth of the tree, by
being able to compare the state at the present node
with the states of earlier nodes in the tree branch
being investigated. Comparisons involve how earlier
expectations are holding up, and whether moves that
are eligible for testing have appropriate thematic
relationships to what has gone before. The number of

such comparisons grows linearly with depth thus
providing ever more conditions for stopping the search
or not Investigating an arbitrary move.

To guide the search we need mechanisms which can
at linear cost provide analysis at a node so that the
exponential cost of discovery and/or verification due
to tree searching Is drastically reduced. It appears
reasonable that the more powerful (in the sense of
greater depth) the prediction mechanism, the better
the effect on program performance. Here the
functional analysis and pattern recognition mentioned
earlier clearly are destined to play a part, with the
former being an essential element of the latter. Also
the communication of defensive requirements appears
vitally necessary. In fact since dissatisfaction with
a result is a relative matter, one could consider
using backed-up descriptions to discover ways of
heightening the success of whatever is being attempted
at present.

Lastly, one can see the overriding importance of
quiescence of concepts being used in the evaluation
procedure. The evidence is quite overwhelming that
the attempt to drive all evaluations into a quiescent
state should be the major force that determines the
shape of the tree. Thus, while today's programs use
up nearly all their time trying to assure tactical
quiescence, this will now have to be done by less
complete methods in order to make way for the
additional facilities required. It is interesting to
compare this derived role of quiescence as the main
guiding force, with the control structure of the 1958
Newell, Simon and Shaw program [8] which was
apparently derived from a concern with human behavior.

The conditions and the model we have set forth
appear to be necessary for Master chess. However,
they are almost certainly not sufficient. Masters
Know a great deal of chess knowledge which has as yet
not been encoded in any program, and would probably
have to be placed in long-term memory for occasional
reference, We have avoided discussing what a minimum
quantity of such data might look like, since until the
necessary mechanisms for its use are in place, so that
it would be possible to do some experimentation, there

would be little scientific validity in such
speculation. There is also the problem of doing at
least some learning in order to avoid repeating
obvious errors in identical situations. However, an

organization ' which takes account of the conditions
noted here is almost certainly necessary to make
significant progress beyond the present state of the
art, and the model appears extendable to the problems
of learning and further pattern encodings, as these
prove necessary. In the immediate future, the major
problem appears to be how to produce a search of the
economy of that proposed while retaining at least the
same reliability as evidenced by today's programs
which use a more complete search strategy.

For those who feel that our simple examples would
not challenge their program design, we include Figures
X-XII' which are moderately more difficult. In Figure
X it is White to play and win. In Figure Xl it Is
Black to play and not do something foolish; and we are
not thinking of the obviously foolish 1. QxR, but of
other foolishness derived from this by the Horizon
Effect. In Figure XII it is White to play and win.
We expect that a human Class B player would have no
difficulty with any of these.

Progress To Date

Since July 1972 the author has had a program,
whose general objectives are those outlined above,
running at Carnegie-Mellon University. In this
section we wish to report the progress that has been
made. As vyet the program only concerns itself with
tactical {material) issues; however, it is felt that
the techniques being developed are general and
applicable to the other dimensions of chess
evaluation. The program notes, among others, the
relations of attack, defence, blocking functions and
paths along which such activities occur. Thus, it has
a language which is considerably more powerful than
the notions Of a legal move, which is the analytical
element of most of today's programs. Each chessboard
is described in this language. This characterization
greatly facilitates finding good "sacrificial" moves
and moves which disturb the defence relations among
pieces, while not hindering the evaluation of other
types of moves. The program has an expectation level
associated with every search it conducts, and there
are mechanisms for raising and lowering this when
results outside a range of acceptability from the
expectation can be forced. There is a general
causality facility which is used both for defence and
improving attacking ideas. This facility can always
detect whether a given set of consequences were not
caused by the last move tried and thus constitute a
problem inherited from higher in the tree. It does
this by comparing a description of the consequences
with a description of the move tried. However, it is
not nearly as adept at detecting causality relations
as an experienced chess player. Still, the facility
never deduces causality when causality does not exist,
end deduces non-causality about 607. of the time that
this is appropriate, putting it well ahead of
contemporary programs. No dynamic re-evaluations or
lemmas have been implemented as yet, but these are
planned for the near future. Higher level patterns
are planned for a stilt later stage.

The program is at present able to investigate an
average position for tactical quiescence to a depth of
9-ply, generating from 100 to 2000 nodes. The
tactical reliability of such searches is somewhat
better than that of the average program that
participates in the annual ACM tournaments. Most of
our effort in tree searching has been in an attempt to
improve the likely correctness of a proposed move.
This is achieved not only through the representation
we use, but also through some 15 stopping, pruning and
reordering rules. Thus the effective branching
factors of our trees vary between 15 for positions
where a clear-cut result is obtainable, and 3.0 in
positions where there is tactical complexity, but no
way of gaining an advantage exists. Although this
compares very favorably with the effective branching
factors of about 6 found in today's programs, we
consider branching factors of 3 to be still much too
high for our purposes. Thus, we occasionally grow a
tree of 20,000 nodes because the program gets
side-tracked in an inconsequential part of the tree.
However, there are still several tree control
algorithms we plan to implement, which should prevent
such behavior by selective jumping around in the tree.
We expect In the not too distant future to extend the
depth limit of the program significantly beyond its
present 9-ply. Even at its present depth, it is less
affected by the Horizon Effect than programs with less

Figure X
White to Play

~
pee ey

DAY
7 Y% % Y

Figure XI
Black to Play

S, %, 7,
., 4, %, A
7,0,2 %
% /f"e %, %
%/’/fo’/ %, 0
R B

Figure XII
White to Play

N

Sty

N

deep searches. For instance, it has no trouble at all
in Figure Xl, deciding that there are no diversions
which can lead to an ultimate capture of the White
Rook.

When the program is confronted with the defensive
problem of Figure VIII, after the initial variation
starting with 1.— P-R7 s tried, a description Of
what happened is backed up along with the value of the
position at branch termination. At each successive
node during backup, if the result is unsatisfactory,
the backed up description is compared with the
description of the move made. This is done to see if
what happened could have been caused by the latest

move tried at that node. If not, a defensive move
generator then generates the moves that can do
something about the description. The description

contains such information as the names of the pieces
involved in the action, the path (if any) that they
traversed, targets attacked when they arrived at their

destinations, etc. If no defensive moves are
generated and if no worthwhile aggressive moves remain
to be investigated, it is assumed that the problem
cannot be solved at this node of the tree. When the
search reverts to the point where 1.— P-R7 was tried
initially, an examination of the description reveals
that the threat could possibly be countered by moving
the King, guarding the K8 square, blocking the path of
the Rook from K2 to K8, capturing the Rook or the
Queen, or blocking or getting ready to block the KBS
square across which the check passes. From this
description six moves are generated: K-RI, N-Q2,
R-KB1, Q-K5, Q-K4ch, and Q-K6. It then does not take
the program very long to determine that Q-K5 is the
only defence (which in fact leaves Black in a winning
position).

The program has been tested extensively on
positions which one finds in chess books which teach

how to play good tactical chess. In such positions a
more Or less "hidden" series of moves allows the
player on move to achieve a decisive advantage. In

working on the first 200 examples in thr book "Win at
Chess" [9], the program solves about 607- of the middle
game problems in CPU times ranging from a fraction of
a second to eight minutes, with an average of about 80

seconds. This is despite the fact that the principal
variation sometimes extends to nine ply. Occasionally
the program finds forced mates in the absolute minimum
number of nodes. It also has found improvements on

the analysis contained in the book, which the
experimenter himself did not notice. The main reason
that the program is not able to solve 100% of these
problems is that several functional relations and many
analytical routines are not yet implemented.

On the basis of tests to date, we find that the

language of functions, paths, etc. is very useful for
passing messages of the kind described above. We
expect that it will also serve for the

characterization of thematic relationships which would
mitigate against a move being tried when it is "out of
context" with previous moves. However, there seems to
be little doubt that more powerful languages are
possible. These may be necessary to effectively
implement the lemma ideas, since the function language
may be so detailed that investigating lemmas expressed
in it will prove uneconomical. Further, we conjecture
that continuing progress in chess will be dependent on
the invention of ever higher level languages in which
chess concepts can be expressed. Each such language
level would then have an assymptote, defined by the
power of the language, beyond which it would not be
possible to improve the strength of the program, given
that only a certain amount of time was available to
compute a move. Also as concepts are agglomerated
into ever higher level concepts, we expect that they
would get to be more fuzzy and would require a more
complex control structure than used a present in order
to produce the same level of reliability as can be
obtained with less fuzzy concepts. We feel that this
increased conceptualization is evident in the history
of chess, and should make it possible ultimately to
equal and exceed the performance of the best human
players.

Acknowledge ment
The author wishes to acknowledge the roles of
Professors A. Newell and H. A. Simon in stimulating
his interest in functional analyses of chess
positions. The work reported herein was supervised by
Dr. Newell.

1. Atkin, LR

2. Berliner, H
and Testing

References

, et. al.,

J,
a Chess

"Chess 3.0 -

"Experiences Gained

An Experiment
in Heuristic Programming”, Unpublished. 1971.

in Constructing

Program", Proceedings
|IEEE Sysmposium on Systems Science and Cybernetics,

of the

October 1970.

3. Bernstein,
for the IBM

A., et.

704", Proceedings of

al., "A Chess

Playing Program

the Western Joint

Computer Conference, A1EE, March 1959, pp. 157-159.

4. Botwinnik,

M.M., Computers, Chess

and long-range

Planning, Springer Verlag, 1970.

5. Greenblatt,

R.D., et.

Program”, Proceedings
Computer Conference, pp. 801-810.

6. Kotok, A,

"A Chess

7. Newell, A.

al., "The Greenblatt
of the 1967 Fall Joint

Chess
Joint

Playing Program for the IBM
7090", Bachelors Thesis, MIT 1962.

and Simon, HA., Human Problem Solving.

"Chess Playing Programs and

Prentice-Hall, 1972
8. Newell, A., et. al.,
the Problem of Complexity", in

Thought, E.A.

McGraw-Hill,

1963.

Feigenbaum and J.

Computers and

9. Reinfeld, F., Win at Chess, Dover Books, 1958.

10. Shannon,

C.E., "Programming

Chess", Philosophy Magazine. Ser. 7

314, March 1950, pp. 256-275.

11. Strachey, C.Ss,

Programs",
pp. 46-49.

Proceedings

"Logical or
ACM National

Feldman (Eds.),
a Computer to Play
, Vol. 41, No.

Non-Mathematical

Meeting.

1952,

