Session 6 Theorem Proving and
Logic: I

STEPS TONARD AUTOMATIC THEORY FORMATION

John Seely Brown
Information and Computer Science Department

University of California

Irvine,

Abstract

This paper describes a theory formation system
which can discover a partial axiomization of a data
base represented as extensionally defined binary
relations.- The system first discovers all possible
intensional definitions of each binary relation in
terms of the others. It then determines a minimal
set of these relations from which the others can be
defined. It then attempts to discover all the ways
the relations of this minimal set can interact with
each other, thus generating a set of inference rules.
Although the system was originally designed to explore
automatic techniques for theory construction for
question-answering systems, it is currently being
expanded to function as a symbiotic system to help
social scientists explore certain kinds of data bases.

Introduction

For over a decade researchers in Al have been
designing question-answering systems which are
capable of deriving "implicit" facts from a sparse
data base. Whether these systems use an axiomatic
theorem proving approach or a procedurally oriented
approach, they all must eventually face the problem
of characterizing the generic knowledge or structural
redundancies of their particular domain of discourse-
Even the simplest of such domains contains countless
subleties which somehow must be captured before a
complete characterization can be achieved.

In this paper we discuss the problem of automat-
ically constructing such a characterization. Our
research has not been directed toward a theoretical
investigation of this general problem as in Plotkin
but rather towards constructing and experiment-
ing with a prototype system which has been applied to
large and structurally rich domains. We will provide
numerous examples to show what is involved in forming
conjectures about "apparent" structural redundancies
in a given data base (model) and how such conjectures
can be heuristically validated. The search for
structure is inherently combinatorial. We will there-
fore discuss Bome ways to control the combinatorial
explosion involved in forming and validating struct-
ural conjectures. Finally, we will discuss ways in
which such a system might be used to help a social
scientist discover structural theories about a set of
observations over some "world". Indeed, our eventual
aim is to expand this system into a tool for such
uses .

Problem Definition

Before describing our system, a definition of
the vague term "structural redundancies" is in order.
Let us consider a data base consisting of the com-
plete extensions of a collection of binary relations

R - {Ry...... R,} . That is, for each R, e R the data
base contains all the triples (x R; y) for each
(x,y)€R4. The structural redundancies of this data
base fall into three basic categories. The first

category occurs where one of the relations is

Irvine
California

intensionally definable in terms of other relations
in this data base. TFor example, suppote we have the
three relations of firandparent, Parent, and Spouse,
each extenaionally defined over some fixed universe
P of people. Then, assuming the extensions of each
relation are complete, we could discover the struct-
ural redundancy that for everv (x,v}€ frandparent
there exists a z such that:

{x,v) € Grandparent iff (x,2)EParent and (z,y)€ Parent

or Grandparent & Parent/Parent where "/" denctes
composition. 1f we represented the axtenszions of all
the relatdons as g directed labelled graph, then for
every arc of the form:

. Grandparent

o

there would be a path of the form "Parent — Parent"
brideing the triple (x {irandparent v) L.e.:

@(

Partent

e

In other words, if Crandparent = Parent/Parent helds,
then the data kase graph will alwayse have a path of
length two whoge lsbela are “"Parent™ and "Parent”
brideing every arc labelled "Grandparent”.

e
;]

S
-Crandp re-nft>\D

Parent

40 inteneional definition of a relation can mlso
be recursive ag would be the rase with the definition
of Parent In terms of Spouse, e.g.:

Parent = Spouse/Parent
In thia caase, for every arc of the form {x Parent y)
there are two other arca of the form (x Spouse z) and
{z Parent v}, i.e.:
~ Spouse

Parenr Parent

121



The second kind of structural redundancy occurs
where the existence of a path In the graph forms a
sufficient but not a necessary condition for some
other arc to exist. Tor example, suppose we augment
our data base to Include the extensions of the Sib-
ling and Cousin relations over the sane domain P. We
would then discover that for every path of the form
(x Sibling z) and (z Cousin y) there was always an
arc of the form (x Cousin y). Such a pattern would
lead to the rule:

Sibling/Cousin => Cousin

The third and simplest kind of structural
redundancy occurs where the relation itself has cer-
tain logical properties such as:

Transitive
Symmetric
Reflexive
Irreflexive

The first two kinds of redundancies cover how
a given relation interacts with other relations In R,
whereas the last kind covers only how a relation
Interacts with itself.

The structural patterns comprising all three
categories form the basis of a logical theory (or
axiomatic characterization) of the data base in the
following way:

Initially, the data base consists of the com-
plete extensional definitions of all the given rela-
tions. After our system discovers all the intension-
al definitions of the relations, then some subset of
these relatione can be selected (to be called the
atomic relations) from which the extension of all the
remaining relations can be derived. The extension of
a non-atomic relation can be computed by knowing only
its intensional definition in terms of the selected
atomic relations. Consequently, the extensional
definitions of all non-atomic relations can be dis-
carded with no loss of information. In addition,
the extensions of the atomic relations can be pruned
by using structural properties in the second and
third categories. For example, if an atomic relation
is symmetric, then half of its extension can be
eliminated without loss of information. With respect
to the two structural redundancies:

Parent = Spouse/Parent
Spouse symmetric

half of the parent and spouse extensions can be like-
wise discarded. What remains after all the redundant
extensions have been eliminated is a kernel Bet of
extensions.

The structural rules defined by the set of Inten-
sional definitions, the logical properties of the
atomic relations and the implicational statements
in conjunction with a kernel set of extensions
suffice to determine the complete extensions of all
the relations. These rules plus the kernel set of
data form a logical theory of the original extens-
ional relations. Note that the complete extensional
set of delations is necessarily a logical model
of the resultant "theory". The fact that this model
(or equlvalently — the extenaionally defined rela-
tions) is finite, as far as our system is concerned,

Techniques to select the atomic sets are not discuss-
ed here but arc discussed at length in Brown3.

presents the interesting situation that our

system will often produce numerous rules that hold for
this finite collection of data but which appear to be
idiosyncratic. That is, if the collection of data is
really a sample from some potentially infinite model,
then of course numerous "rules" may be found that
might prove to be false when the data base is enlarged.

On Discovering Intensional Definitions

The basic idea underlying the discovery of in-
tensional definitions is quite simple. Suppose we are
trying to discover all the possible definitions of
Ri e R. Since Ri exists in the data base, it has a
set of 2-tuples which represent its extension. We
commence our process by arbitrarily choosing one of
these 2-tuples (*i»yi) and then searching for all
possible simple directed paths that start at xi and
end at yi We then delete the Intermediate nodes
of each such path leaving only an ordered list of the
labels of the path which we will call a Labelled Path
Sequence (LPS). The end result of this process is a
list of distinct LPS's, each stemming from at least
one specific path from x+ to yj. (Several xi =* vyi

paths can collapse onto one LPS))

Depending on storage limitations etc., we repeat
this process several times, choosing a different
2-tuple from Ri's extensions for each repetition.

In this manner we construct a collection of lists L:

veal
3

®5¥5 n'n

L =L ,L
I *1%1

where each L v represents all the digtinet LPS's
174
bridging the 2-tuple (xi ,yi).

From these 1li6ta we create some conjecturea con-
cering Ry's intensional definition by forming the
intersection of all the Lx 14{pts, 1.2.:

i1

k
t=A L

1e1 *1%4
(Computing this Intersection can be quite costly, so
some care is required in choosing a good data struc-
ture for these lists). |If this intersection Is non-
empty, then the LPS's that lie in this intersection
form the first set of conjectures and are therefore
passed to the verifying procedures to determine if
there are any counter-examples to these conjectures.
If an LPS survives this check then it represents an
intensional definition for Ri. For example, suppose
R1-R2 - R3 is an LPS which is in common to all the
Lxy's. It is then conjectured that R7 = R1/R2/R3.
The intermediate nodes that were removed from the var-
ious paths underlying this LPS are possible bindings
for the extensional variablesz1.z2intheexpression:

(x,y)é’ﬁi => Try,29 P (X,29 R A (zl,zz)ész\ {z3,¥) € Ry

On the other hand, the verifier determines whether for
every x, y, and z71 and z2 that satisfy the right-hand
side of the above expression, the 2-tuple (x,y) is
necessarily contained in Ri's extension- If this Is
not true then the conjectured definition is consider-
ed to be "over-general".

A more interesting case arises when the intersec-
tion of all the Lxy's is empty. In such situations
there is no simple compositional definition for Ri.
Instead, its definition (If there is one) must involve



a disjunct. An obvious strategy to pursue Is to keep
intersecting the Lxy's until the Intersect becomes
empty. At that point, undo the last intersection,
leaving a non-empty intersect. Then, starting with
this removed list, recommence forming the intersection
with it and the next list and so on. For example,
suppose we have L1,L2,L3,L4,L5L6 as six lists of
LPS's with the following properties:

Lp = LA L,
L

1.123- L, A Ly =8
3% w L. AL

L 3 Nl
5= L Al D
Lig o by Nlg

We are left with three sets of non-empty intersec-
tions, namely L12,L34,L56 The conjectured defini-
tions for Ri would then be of the form:

R

4 = any LP3 from L

12 v sny LPE from L3ﬂ

V any LPS from 1’56

Thus an intensional definition of Ri would be a dis-
junct of relational compositions.

A moment's reflection on the above intersection
process reveals that the outcome of these intersec-
tions can be critically dependent on the order in
which the lists are intersected. For example, the
lists L1,L2,L4 might very well form a non-void inter-
section and likewise the lists L3,L5,L6. If this were
the case, we would then have unfolded a simpler set
of conjectured definitions of the form:

Ry ® any LFS from L Y any LPS from L

124 356

& dramatlc example of this effect follows,

Given a moderately large data base of several
hundred 2-tuples over thirty kinship relations, we
were trying to discover some definitions of "Parent".
The resultant intersections computed with the
original ordering of the LPS lists (using a consider-
ably more sophisticated algorithm for choosing what
list to merge next) led to the disjunctive sets of
conjectures found in Table la. However, a further
search revealed a still better ordering yielding the
conjectures found In Table Ib.

Sibling/Unecle

Parent = Spouse/Sibling/Uncle W

TABLE la

Coniectural Defintitions for Parent Under Initle) Ordering

Sibling/51ibling/Uncle
S$ibling/0ffepring/Grandmother
5ibling/Sen/Grandmother
S$ibling/Uncle/Cousin
51ibling/Uncle/Sibling
Sibling/0f fapring/Grandparent
Sibling/Offspring/Grandfather
S8ibling/Son/Grandparent
Sibling/Son/Grendfather

Grandparent /Nephew
Grandparent /Niece
frandparent /Cousin/Nephew
Grandpsarent /Cousin/Niece
Crandparent/Son/Sibling
Crandparent /Nephew/81ibling
Grandparent /Rephew/Brother
Grandparent /Brother/Niece
Grandparent /0ffepring/Sibling
Grandparent/Daughter/81ibling
Grandparent/Niece/Sibling
Crandparent fNiece/Brother
Crandparent /Sibiing/Niece
Grandparent /S1b1ing/Nephew
Grandparent /Sieter/Nephew
Spouge/Grandparent /Nephew
Spouse/Grandparent /Niece

TABLE 1b

Conjectural Definitions for Parent Under "Optimal" Ordering

Mother Father
Mother/Sibling Father/Sibling
Spouss/Father W Spouse /Mother

Parant = Wife/Father Husband/Mother
Mother/Daughter/Father Father/Deughter/Mother
Spouse/Father/Sibling Spouse/Mother/5ibling
Wife/Father/Sibiing Spouse /Mother /Sibling

123



Having great faith In Occam's Razor, we only
attempt to verify conjectures that emerge from the
minimal number of disjunctive intersections. Finding
an optimal grouping of the L lists that lead to this
minimal property iB combinatorlally equivalent to the
classical covering problems , However, unlike
many covering problems, a fairly simple heuristic
turns out to be quite satisfactory (see Brown3 for
more details).

A grouping for these lists which leads to the
minimal number of non-null intersections induces a
clustering of Ri's extension (i.e group together
all the (x,y)'s that generated the LPS's of each
disjunct). Often this clustering can indirectly
induce a clustering or even a partition on either
RI'S domain or range. This clustering should reflect
some "internal" structure of the objects themselves.
Considering the above Parent example reveals that the
clustering of 2-tuples induced by the definitions of
Table Ib shared the property that the first component
of each of them were female. Likewise, the first
component of the other 2-tuples were all male. But,
as far as the system knew, no object in the domain
had any distinguishing characteristics whatsoever.
Thus, in some sense, the system had unfolded the
necessary information to conjecture two unary
predicates theretofore completely unknown to it.
Justification of these predicates often requires
supporting evidence which may be forthcoming if, in
considering other relations, similar clusterings
are induced.

Discovering Rules of Inference

We will concern ourselves only with discovering
inference rules of a very restricted form. These
rules will be either of the form:

1) Ry/Ryf+ei/Rqo => R
(where R itBelf could be also on the left)
or of the form:

SRR SRR
Ri R_| Ri Rj

In the latter case, the relatione under the ver-
tical bar denote a required context before this rule
can be applied. The similarity of these rules to
context free and context sensitive grammars is not
accidental. In fact, these inference rules are
directly usable bv the question-answering system
detailed in Brown.

Discovering the first type of inference rule
would appear to be straight-forward. We need merely
locate a sequence of relations whose compositional
extension is contained within the extension of R.
The problem, however, lies not in finding such seq-
uences but In finding "useful" sequences. Although
we have no way of making this distinction precise,
we realize that in creating an axiom system for a
question-answerer we often want more than just a
minimal independent set of axioms. We want axioms
that enable us to answer "usual" questions without
undue inferencing. Believing that typical questions
often relate to subparts of the intensional defini-
tions we Bought ways to use the structure of the
relations themselves in isolating potentially "useful"
rules.

One way to isolate these rules would be to use
the intenaional definitions themselves. Specifically,

a recursiyve definition is a particularl ood can-
cﬂ’é’ate, suc¥1 as: P y e

Spouse/Parent > Parent

Another way t« generate potentially useful rules
would be to discover definitions for a particular
relation which turn out not to cover R's extension
when their defining subspace is enlarged. An example
of such a definition might be:

Cousin = Sibling/Cousin
(Sibling/Cougin > Cousin)

which could arise from a data base in which every
family had two children. But again, the key problem
is finding ways that the structure of a relation can,
itself, delimit "interesting" subsets of its own ex-
tensions so that we don't have to rely on chance for'
providing such subspaces.

Determining Subspaces for the Discovery of Inference
Rules

One way in which the structure of a relation
can induce a natural partition on its extension is by
possessing a disjunctive definition. This, as men-
tioned above, splits the relation's extension into
groups of 2-tuples covered by the particular disjunc-
tive terms. For example, using the Parent example,
we are lead to form the trivial rules:

Father => Parent

Mother => Parent
Husband/Mother =» Parent
Wife/Fathar »> Parent

However, the disjunctive definition underlying these
rules has the property that the two disjuncts are
disjoint. That is, if (x,y) is satisfied by one of
the disjuncts, it necessarily is not contained in the
other. By searching for disjunctive definitions
whose disjuncts can overlap, and in which one of

the disjuncts covers a maximal portion of the given
relation's extension, we discover such rules as:

Parant/Sibling => Parent
8ibling/Cffapring => Offspring
Offepring/Spouse => Offspring
Father/Cousin => Uncle

Another way to utilize the structure of a rela-
tion in isolating subspaces stems from the co-occur-
rence of compositional seouences in a given disjunct
of its definition. For example, in considering a
data base of over five hundred facts, we discovered
the standard definition of Brother-in-Law:

Husband/Sis/Spouse Hushand/Sister
Brother/Spouse V Husband/5ib/Spouse v Husband/Sib
Spouse/Sister/Spouse  Spouse/Sister

Let us consider the last disjunct which asserts that:

1) Husband/Sister = Husband/Sibling
2} Husband/Sister = Spouse/Siater
3} Husband/Sibling = Spouse/Sister

Line 1 suggests that in the "context" of "Husband" the
relations "Sister" and "Sibling" function equivalent-
ly, or we could say that:

4) Sister => Sibling
5) S4bling w> Sister,

when conditioned on the left with "Husband". Clear-
ly, the notion of "context" is quite important for,
although the rule "Sister => Sibling" could be inde-




pendently discovered from the definition "Sibling =
Sister W Brother"”, and hence would alwaya be true,

the rule "Sibling => Sister” 1s, in general, false.
Using the expanded form of this rule l.e., (x, Sib- hushand

ling, ¥y} => (x, Sister, ¥y} we see that the rule is

true whenever x is a female. One way to guarantee -

x's femininity 1s to require that x be in the

range of the "Hugband" relation. In other words, the sigter-n-law
Husband relation delimite a subset of the domain of

Ysister" and "Sibling". When restricted to this

subdomain, these relations coincide (we apain stress Figure 2

that the data base contains no such unary predicates

as Male or Female).

Flgure 1

brotherwir-low
A copnsiderably more subtle example of the powers
of contextual constraints is manifested in two defini. [ 1
tions for "Nephew' that emerged from one of our data
bases: v ]
a) Nephew = Brother/Hiasce oterandow

b) VNephew = Son/Parent/Niece

Q

The rule of inference which follows from this is:

Sm/Parent? => Brother
Nigce On_Checking for Over-Generality
At firgt glance, the right-hand contextual relaticn The result of intersecting the LPS lists is a
(Niece) seems quite wmnecessary, for a son of a collection of conjectural definitions for the part-
parent would seem to be a brother., However, in ex- icular relation R under study. A property of any
ploring the "Son" relation with our system no such such conjectural definition is:
rule emerges, This is becsuse the path seeking pro—
ceas underlying the construction of LP5's prevents P1: (x){y) [(x,¥)€ R => (x,y) € Coniectural Definition]
the forming of pathe with loops. Consequently, the
possibility nf the "son of a parent” being himself
18 necessarily prevented. However, In checking the As mencioned before, the problem of over-geperality
over-generality of this definition, the verifier lies in verifying the converse of this property:
chacks the entire extension of thia conjecture and
thus detects the need for an inequality predicate. 'P2: {x)(v) [{x,y) € Conjectural Definition =>(x,y)€R].
However, in the context of "Nlece', it does survive
because the reflexive (Belf-looping) cases of
"Son/Parent" are necessarily male and hence fall At first glance, the verification seems straight-for-
outside this context! ward: simply compute the extension of the conjectural
definition and test for its inclusion in the extension
The use of “context" can be more subtle than of R. If it is included, then the conjectural defini-
the twere delimitastion of the domains or ranges of tion has been verified. The problem of efficiently
relations. For example, when we were exploring s p_erforming this computa’gion is the concern of associa-
definitien for Uncle, two disjuncte always co-occur- tive memory processors like TRAVP® and, as such,
red (& strong hint of the existence of structural W|II_ not be dls_cussed here._ Such ve_rlflcatlon is
cause). The definitions were: obviously possible, but It is expensive for large
data bases.
Uncle = Brother-in-Law/Parent
Uncle ® Husband/Sister-in-lLaw/Parent ' We were primarily interested in developing heur-
istic techniques that could be used to efficiently
At firset glance, we might think char: detect over-general conjectures. After these heur-
" " istics were applied, exhaustive techniques could be
Husbapd/Sister-in-Law => Brother-in-Law applied to the few remaining definitions so as to
Conaidering Figure 1, we realize that although remove any doubt about their validity.
{y,2)€ Sister-in—Law, that (x,z)}f
Brother-in-Law. However, the correct rule of fnfer- Our heuristic procedures are baaed on the con-
ence requires a right context of I"Parent" {(i.e., cept of "the inverse image of x with respect to a
demanding that =z muat be & parent to someone): binary relation R" informally defined as the set of
all y's such that the range of x overlaps the range
Husband/Siscrer-in-Law| => Brother-in-law of .
Parent
Def: The inverse image of x with respect to a
Given the situation shown in Pigure 2, we pee that binary relation R, denoted IR(x), is:
if z 419 a parent to q then in fact 2z must alsc
have & spouse (say) w. Hence x would be & IR(x) = }y|aza(x,z) €R and (y,=)€R}
Brother—in+Law te w. In other words, the right
hand context of "Parent” forces z to have a spouse (note that inverse images do not form equivalence
v simply by assarting that z 19 the parent of g. relations on the domain of the given relation). In a

similar manner, we can define the inverse image of x
with respect to a conjectural definition of R.

128



Our heuristic procedure picks an object x in
the domain of the relation R being defined and com-
putes both the sets IR(x) and I|"Def"(x). It then
checks to see if the set X"Def"(x) is equivalent to
the set IR(x). If not, it rejects the "Def"; other-
wise It chooses a new x from R's domain and repeats
this procedure until the domain of R has been exhaust-
ed. A faster but less complete version of this
heuristic doesn't bother to exhaust R'e domain but
chooses only one element from each inverse image
class. These checkB are only heuristic since they
do not take into consideration the local connections
of the relations within each inverse image class, but
that is precisely why they are fast!

An example of the power and limitations of this
heuristic may be seen from another date base (of over
a hundred facta) analyzed by this system.

TABLE 2

Conjectured Definitions of "Niece"
Frior to Hauristie Check

Cousin/Daughter
Cousin/0ffepring
Cousin/Daughter/Spouse
Cousin/Counin/Taughter
Cousin/Cousin/0ffspring
Offepring/Uncle/0ffapring
Offmpring/Uncle/Daughcer
Daughter/Uncle/O0ffspring
Daughter/Uncle /Daughter
Of fapring/Aunt/0ffepring
Offspring/Aunt /Daughter
Daughter/Aunt/Offapring
Daughter/Aunt/Daughter
Cousin/Cousin/Nephew
Cousin/0ffapring/Spouse

The definitions for the binary relation "Niece"
were first explored. Table 2 lists the conjectural
definitions resulting from intersecting the LPS lists,
These definitions were then subjected to the above
heuristic check which resulted in the definitions
given in Table 3. Of the original fifteen
intensional definitions eleven were rejected by
our check and the remaining definitions were all
correct.

TABLE 3

Conjectured Definitione of "Hiece"
Remaining After Heuriatic Check

Daughter/Aunt /Daughter
Daughter/aunt /Offepring
Daughter/Uncle /Daughter
Daughter fUncle/Offapring

The need for developing heuristics for speeding
up the verification of conjectured definitions is
better appreciated whan we understand the complex
interactions between the generation of conjectures
and their subsequent verification. In fact, there
is a constant switching of control between these
two phases. For example, suppose the first set of
definitions conjectured were subsequently disproved
in the verification phase. Then all the paths in
the data graph that lead to these conjectures would

126

have to be temporarily "blocked" and a new set of
conjectures would have to be invented. These new
conjectures would then have to be verified, and so on,
until all the conjectures passed the verification
phase.

Our experiments have revealed that, for most of
our test data, this process of conjecturing, verify-
ing and blocking is often repeated a dozen or so
times before a set of conjectures are formed which
cannot be disproved within the data itself. Conse-
quently, our system must typically verify many more
conjectures than appear in the final output.

Some Experiences

We have applied this system (implemented in L on
a 16-K PDP-9) to several types of data, the most
common of which is kinship data. We primarily
worked on kinship data because, although we know what
to expect, the richness of its structure can present
many challenges. Also, by choosing a domain that is
intuitively understandable, it is easier to spot the
more subtle relationships among the obvious. Altho-
ugh this domain is trivial in many respects, it was
a great surprise to us to take a reasonably laree
data base, generated — for test purposes — from the
family tree shown in Figure 3 below, and perform a
search for all the structural relationships that
might have passes unnoticed from our biased viewpoint.

Flpure 3

Family Tree Underlying an Fxtenslonal Data Base of
Approximately 580 "Facts"

@—l—& |
©— A
°T
®

OoTh © A
-

H—O L—O @—m&é}s—@-l—ﬁs
@

Two types of patterns could appear. On one hand,
definitions might emerge that reflected idiosyncracies
of this particular data which would "disappear" if we
considered more data. On the other hand, completely
valid definitions might appear which were logically
equivalent to ones we already knew, but which might
be "simpler" relative to some criterion. Both types
of unexpected patterns may be seen in the first set
of definitions discovered for the Uncle relation
on this data base (see Table A). Clearly the first
two of these definitions reflect the idiosyncracy
that every uncle is married. The third definition
which is complete yet involves no disjuncts and as
such might be considered simpler than the standard
two disjunct definition:




Uncle = Brother/Parent V Husband/Sibling/Parent

TABLE 4
First Dafinitions of Uncle

1} Spouse/hunt
2} Husband/Aunt
*3) Brother~in-Lew/Farent
Uncle = 4) Spouse/Sister-in-law/Parent
5) Husband/Sister-in-Lew/Parent
8) Brother-in-lLaw/Spouse/Parent

It was not until these definitions were manually
over-ridden and indeed a fair number more before our
system came up with the "traditional" definition.

Appendices 1 and 2 give a feeling for the sur-
prising multitude of structural definitions found
on this data base. For example, Appendix 1 contains
some of the three hundred definitions of "Uncle"which
were discovered just on the above data base. The
second appendix reveals the first set of definitions
discovered for some of the other kinship relations.
Note, for example, the seven universally valid
definitions for "Cousin".

Not all our experimenting has been limited to
kinship relations. Another domain that has been
analyzed was made up of the extensional definitions
of the accessibility relations between squares on a
chess board for the various chess pieces. More pre-
cisely, the data base consists of a universe of 64
objects — representing the squares of a chess board
— and a collection of extensionally defined rela-
tions. Some of these relations are geometric (e.g.
East, Just-East, Positive-Diagonal) and the others
are chess moves represented as binary relations. For
example, (x,y)€ Knight means that a knight can move
in one step from x to y. The task was to discover
the definitions of the legal moves of the various
chess pieces in terms of the other chess pieces and/
or in terms of the geometric relations. Although
space precludes a thorough description of our find-
ings, we indicate below some of the discovered
definitions:

TABLE 5
Mscovered Geometric Definitione

{Abbreviations: oW = Just-West, JE = Just-Tast,
JN = Jugt-Nerth, J5 = Just=-5outh)

JW/WEST
WEST =JW v WEST /WEST
WEST/JW
Discovered Chess {Acceseibility) Relations
Queen = Bishop Yy Rook
¥night = JW/IN/IN v JE/IN/IN Vv JE/JE/IN

JWIW/IR v IW/JWS JW/IS/IS
JELIS/IS v JEJJESIS

*Inthis system, the user has the freedom to reject
definitions even if they have been accepted by the
verifier and thus search for additional definitions
which involve more disjunctions than the current ones.

127

Weaknesses

There are several limitations to our system
that deserve further attention. The first concerns
the difficult area of characterizing when something
cannot be true. All the definitions and axioms in-
vented by our system express positive assertions.
That is, our system never discovers the crucial
fact that siblings can't marry and hence a father
cannot be an uncle to his own child. Of course,
we can hedge this problem by including just the
right additional relations which cover precisely
what can't hold over the original set but this
quickly gets us into a combinatorial explosion.

For example, we could include the relation "Non-
Uncle" whose extension is the complement of Uncle and
then perhaps we could uncover:

Father -> Non-Uncle.

Somehow such a solution seems unpleasing since once
the positive assertions have been characterized one
might hope that they could he combined with a few
negative assertions to imply all the potential
negative assertions.

The second major limitation is that nur system
expects its sample data base to be complete, i.e.
missing no data and containing no erroneous data.
There are numerous wavs to circumvent this limitation,
some of which have been implemented. For example,
the verification phase not only checks a conjecture
but Isolates, for any rejection, the counter-examples.
The user can then decide whether or not to over-rule
the verifier by deleting from the data hase these
"counter-examples." However, a considerably more
provocative approach to the problem should be
possible. Relying on Occam's Razor, we might consider
the entire set of discovered definitions and see how
a particular set of changes on the data base affects
the complexity of not only the definitions of the
relation under Btudy, but also the collection of
definitions for all the relations. Since altering
a given relation's extension affects not only its
own definition but also the definitions of all the
other relations definable in terms of this relation,
we would expect a dramatic global simplification for
the "correct" changes to the data.

Further Plans

In addition to exploring the above issues we
plan to investigate how to achieve more of a syner-
gistic effect between the user and the computer
in seeking the underlying structure of his data.
The system is being re-implemented in LISP on a
PDP-10 in hopes of having a friendlier environment
for exploring the symbiotic uses of this kind of
a theory formation system.

Acknowledgement

| am deeply Indebted to Dr-. Robert K, Lindsay
for defining this research problem and for helping
me understand some of its ramifications.



3.
References
1. Plotkin, G. D. "A FPurther Note on Inductive
Generslization," in Machine Intelligence, Vol. 6 4,
New York, Rew York: American Elgevier Publishing,
1971.
5.
2. Lawler, E. L. "Covering Problems: Duality Rela-
tions and & New Method of Solution." J. SIAM
Applied Math, XIV (Sept. 1966), pp. 1115-1132,
Appendix 1

(1)

Uncle
(2)

Uncle
(N

Uncle
{1

Cousin

Brown J. 8. Unpublished Doctoxal Dissertstiom,
Univeraity of Michigan; or ICS TR #17, University

of Californis at Irvine.

Brown, J. 5, "Duestion Answering Through Parsing"
1CS TR #24, Univeraity of California at Irvine.

Ash, W., and Sibley, E. H. "TRAMP:

an Intervactive

Associative Processor with Deductive Capabilities?

Proceedings ACM Naripnal Conference.

August, 1958,

Definitions of Uncle Arranged in Order of Output

Spouse/Aunt

Husband/Aunt
Bro-in-Law/Parent
Spouse/Sim—in~Law/Parent
Husbaend/5is-in-Law/Parent
Bro=in-Law/Spouas/Parent

Bro-in-Law/Father

Bro=in-Lew/Spouse/Mother
Pro-in-Law/Hushand/Perent
Bro-in-Law/Husband /Mother

= Brother/Parent

Brother/Spouse/Parent

Synopais of Dlacovered Definitions for Data Base Underlying Figure 3

Offspring/Uncle
offapring/Aunt
Offapring/Spouse/Aunt

Of fapring/Husband/Aunt
offapring/Spouse/Uncle(*)
Of Eapring/Wife/Uncle (*)
Offapring/Sibling/Farent

Of fapring/Bro-in-Law/Parent
Of fepring/Sie~in-Lew/Parent

5ibling/Father
Brother/Father
Fath-in-Law/Huaband/Cousin
Sibling/Pather/Sibling
Brother/Father/5ibling

v 8ibling/Spouse/Mother
Siblinp/Husband/Parent
Sibling/Husband/Mother
Brother/Spouse/Mother
Brother/Husband /Parent
Brather/Husband /Mather
Sibling/Fath-in-Law/Spouse
Brother/Path-in-Law/Spouse

Spouse/Sister/Parent

Rusband/Sibling/Parent

Husband/Sister/Parent
Bro-in-Law/Sister/Aunt

Appendix 2

Las Vegas,

*
Starred deafinitions repressnt definitions rhat are not universally valid but ars valid for the given data base.

138



{2)

(3)

(4)

(%)

(6)

)]

(8)

Fath-in-Law

Grandchild

Parent

Cffapring

Grandparent

Grandfather =

Naphaw

Appepdix 2 (con't)

Father/Spouse Mother/Spouse
Spouse/Moth-1in-Law Spouse/Farth-in-law
Husband/Moth-in-Law Wife/Fath-in-Law
Father/Offspring/Moth=in=Law Mother/Sibling fSpouse
Fathar/Son/Moth=-in-Law Moth-in-Law = Wife/Father/Spouse
Fathar/Sibling/Spouse(*) Wife/Parant /Spoure
Husband/Mother/Spouse Spouse/Father/Spouse
Husband/Parent/Spouse Mother/Father/Fath-1n-Law
Husb and/Mother/Spouse Mother/Offepring/Fath-in-Law
Cffspring/Offepring

Offspring/Spouse/0ffepring
Offspring/Offspring/Spouse
Offepring/Sibling /0f fapring(*)

Father

Spouse /Mother v Mother

Husband/Mother Spouse fFarher
Wife/Father

Son v Daughter

Son/Spouse Daughter/Spouse

Parent /Perent

Parent /Spouse/Parent

Parent/Sibling/Parent

Spouse/Parent /Parent

Fath=in=Law/Parent

Father/Parent

Spouse/Grandmother

Husband /Grandparant

Husband/Grandmother
Fath=in-Law/Spouse/Parent
Father/Spouse/Parent
Father/Offepring/Grandparent
Father/COffspring/Grandmother
Father/Son/Grandparent
Father/Son/Grandmother
Father/Sibling/Parent
Spouse/Mother/Parent

Husband/Parent /Parent
Hugband/Mother/Parent
Spouse/Moth-in-Lmv/Parent
Husband/Moth-in=-Law/Parent
Fath-in-Law/Deughter=in-Law/Grandparent
Fath-in-Law/Daughter-in=-Law/Grandmother

Son/Sister

Son/Spouse/Siscer Vv Son/Sis-in-Law
Son/Husband/51ibling Son/Spouse/5is-in-Law
Son/Husband/Sister Son /Husband/Sis~in-La&w

129



