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Abstract 

This paper describes a theory formation system 
which can discover a p a r t i a l axiomization of a data 
base represented as extensional ly defined binary 
r e l a t i o n s . - The system f i r s t discovers a l l possible 
in tens ional d e f i n i t i o n s of each binary re la t i on in 
terms of the others. It then determines a minimal 
set of these re la t ions from which the others can be 
def ined. It then attempts to discover a l l the ways 
the re la t i ons of t h i s minimal set can in teract wi th 
each other, thus generating a set of inference ru les . 
Although the system was o r i g i n a l l y designed to explore 
automatic techniques for theory construct ion for 
question-answering systems, i t is current ly being 
expanded to funct ion as a symbiotic system to help 
soc ia l s c i en t i s t s explore cer ta in kinds of data bases. 

In t roduct ion 

For over a decade researchers in AI have been 
designing question-answering systems which are 
capable of der iv ing " i m p l i c i t " facts from a sparse 
data base. Whether these systems use an axiomatic 
theorem proving approach or a procedural ly or iented 
approach, they a l l must eventual ly face the problem 
of character iz ing the generic knowledge or s t ruc tu ra l 
redundancies of t h e i r pa r t i cu la r domain of discourse-
Even the simplest of such domains contains countless 
sublet ies which somehow must be captured before a 
complete character izat ion can be achieved. 

In t h i s paper we discuss the problem of automat­
i c a l l y construct ing such a charac ter iza t ion . Our 
research has not been di rected toward a theore t ica l 
i nves t iga t ion of t h i s general problem as in P lo tk in 
but rather towards construct ing and experiment-
ing w i th a prototype system which has been applied to 
large and s t r u c t u r a l l y r i ch domains. We w i l l provide 
numerous examples to show what is involved in forming 
conjectures about "apparent" s t ruc tu ra l redundancies 
in a given data base (model) and how such conjectures 
can be h e u r i s t i c a l l y va l ida ted . The search for 
s t ruc ture is inherent ly combinator ia l . We w i l l there­
fore discuss Borne ways to cont ro l the combinatorial 
explosion involved in forming and va l i da t i ng s t r uc t ­
u ra l conjectures. F i n a l l y , we w i l l discuss ways in 
which such a system might be used to help a soc ia l 
s c i e n t i s t discover s t r u c t u r a l theories about a set of 
observations over some "wor ld " . Indeed, our eventual 
aim is to expand t h i s system in to a too l for such 
uses . 

Problem D e f i n i t i o n 

Before descr ib ing our system, a d e f i n i t i o n of 
the vague term " s t r u c t u r a l redundancies" is in order. 
Let us consider a data base cons is t ing of the com­
p le te extensions of a co l l ec t i on of b inary re la t ions 
R - {R1......Rn} . That i s , f o r each Ri e R the data 
base contains a l l the t r i p l e s (x R i y) for each 
(x,y)€R1 . The s t r u c t u r a l redundancies of t h i s data 
base f a l l i n t o three basic categor ies. The f i r s t 
category occurs where one of the re la t ions is 
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The second kind of s t r u c t u r a l redundancy occurs 
where the existence of a path In the graph forms a 
s u f f i c i e n t but not a necessary condi t ion for some 
other arc to ex i s t . Tor example, suppose we augment 
our data base to Include the extensions of the Sib­
l i n g and Cousin re la t ions over the sane domain P. We 
would then discover that fo r every path of the form 
(x S ib l i ng z) and (z Cousin y) there was always an 
arc of the form (x Cousin y ) . Such a pat te rn would 
lead to the ru l e : 

Sibl ing/Cousin => Cousin 

The t h i r d and simplest k ind of s t r uc tu ra l 
redundancy occurs where the r e l a t i o n i t s e l f has cer­
ta in l o g i c a l proper t ies such as: 

Trans i t i ve 
Symmetric 
Reflexive 
I r r e f l e x i v e 

The f i r s t two kinds of redundancies cover how 
a given r e l a t i on in te rac ts w i th other re la t ions In R, 
whereas the las t k ind covers only how a re la t i on 
In teracts wi th i t s e l f . 

The s t r uc tu ra l patterns comprising a l l three 
categories form the basis of a l og i ca l theory (or 
axiomatic character izat ion) of the data base in the 
fo l lowing way: 

I n i t i a l l y , the data base consists of the com­
p le te extensional de f i n i t i ons of a l l the given r e l a ­
t i ons . Af ter our system discovers a l l the in tens ion-
al de f i n i t i ons of the r e l a t i o n s , then some subset of 
these re la t ione can be selected ( to be ca l led the 
atomic re la t ions) from which the extension of a l l the 
remaining re la t ions can be der ived. The extension of 
a non-atomic r e l a t i o n can be computed by knowing only 
i t s in tens iona l d e f i n i t i o n in terms of the selected 
atomic r e l a t i o n s . Consequently, the extensional 
de f i n i t i ons of a l l non-atomic re la t ions can be d i s ­
carded w i th no loss of in format ion. In add i t i on , 
the extensions of the atomic re la t ions can be pruned 
by using s t r u c t u r a l propert ies in the second and 
t h i r d categories. For example, i f an atomic r e l a t i o n 
is symmetric, then h a l f of i t s extension can be 
el iminated without loss of in format ion. With respect 
to the two s t r u c t u r a l redundancies: 

Parent = Spouse/Parent 
Spouse symmetric 

ha l f of the parent and spouse extensions can be l i k e ­
wise discarded. What remains a f te r a l l the redundant 
extensions have been el iminated is a kernel Bet of 
extensions. 

The s t r u c t u r a l rules defined by the set of I n ten ­
s ional d e f i n i t i o n s , the l o g i c a l proper t ies of the 
atomic re la t i ons and the imp l i ca t i ona l statements 
in conjunction wi th a kernel set of extensions 
su f f i ce to determine the complete extensions of a l l 
the r e l a t i o n s . These rules plus the kernel set of 
data form a l og i ca l theory of the o r i g i n a l extens­
iona l r e l a t i o n s . Note that the complete extensional 
set of delat ions is necessari ly a l o g i c a l model 
of the resu l tant " theory" . The fact that th i s model 
(or equlva lent ly — the extenaional ly defined r e l a ­
t ions) is f i n i t e , as fa r as our system is concerned, 

Techniques to select the atomic sets are not discuss­
ed here but arc discussed at length in Brown3. 

presents the i n te res t i ng s i t u a t i o n that our 
system w i l l of ten produce numerous rules that hold f o r 
t h i s f i n i t e co l lec t ion of data but which appear to be 
i d i osync ra t i c . That i s , i f the co l lec t ion o f data i s 
r ea l l y a sample from some p o t e n t i a l l y i n f i n i t e model, 
then of course numerous " ru les " may be found that 
might prove to be fa lse when the data base is enlarged. 

On Discovering In tens ional De f in i t i ons 

The basic idea underlying the discovery of i n ­
tensional de f i n i t i ons is qui te simple. Suppose we are 
t r y i n g to discover a l l the possible de f i n i t i ons of 
Ri e R. Since Ri ex is ts in the data base, it has a 
set of 2-tuples which represent i t s extension. We 
commence our process by a r b i t r a r i l y choosing one of 
these 2-tuples ( * i»y i ) and then searching for a l l 
possible simple d i rected paths that s ta r t at xi and 
end at yi We then delete the Intermediate nodes 
of each such path leaving only an ordered l i s t of the 
labels of the path which we w i l l c a l l a Labelled Path 
Sequence (LPS). The end resu l t of th i s process is a 
l i s t of d i s t i n c t LPS's, each stemming from at least 
one spec i f i c path from x± to y j . (Several xi yi 
paths can collapse onto one LPS,) 

Depending on storage l im i t a t i ons e tc . , we repeat 
t h i s process several t imes, choosing a d i f f e ren t 
2- tuple from Ri 's extensions fo r each r e p e t i t i o n . 
In th i s manner we construct a co l l ec t i on of l i s t s L: 

(Computing t h i s In te rsec t ion can be qui te cos t l y , so 
some care is required in choosing a good data s t ruc ­
ture for these l i s t s ) . I f t h i s i n te rsec t ion Is non-
empty, then the LPS's that l i e in th i s in te rsec t ion 
form the f i r s t set of conjectures and are therefore 
passed to the v e r i f y i n g procedures to determine i f 
there are any counter-examples to these conjectures. 
If an LPS survives t h i s check then it represents an 
in tens iona l d e f i n i t i o n for Ri. For example, suppose 
R1 - R2 - R3 is an LPS which is in common to a l l the 
Lxy ' s . It is then conjectured that R1 = R1/R2/R3. 
The intermediate nodes that were removed from the var­
ious paths underly ing t h i s LPS are possible bindings 
fo r the extensional var iables z 1 . z 2 in the expression: 

On the other hand, the v e r i f i e r determines whether f o r 
every x, y, and z1 and z2 that sa t i s f y the r ight-hand 
side of the above expression, the 2- tuple (x,y) is 
necessari ly contained in R i ' s extension- I f t h i s Is 
not true then the conjectured d e f i n i t i o n is consider­
ed to be "over-genera l " . 

A more i n te res t i ng case ar ises when the in te rsec­
t i o n of a l l the Lxy's is empty. In such s i tua t ions 
there is no simple compositional d e f i n i t i o n for Ri. 
Ins tead, i t s d e f i n i t i o n ( I f there is one) must involve 



a d i s j unc t . An obvious strategy to pursue Is to keep 
i n t e r sec t i ng the Lxy's u n t i l the In tersect becomes 
empty. At that p o i n t , undo the l a s t i n t e r sec t i on , 
leaving a non-empty i n te r sec t . Then, s t a r t i n g wi th 
t h i s removed l i s t , recommence forming the in te rsec t ion 
w i t h i t and the next l i s t and so on. For example, 
suppose we have L1,L2,L3,L4,L5,L6 as s ix l i s t s of 
LPS's wi th the fo l low ing p roper t ies : 

We are l e f t w i th three sets of non-empty intersec­
t i o n s , namely L12,L34,L56 The conjectured de f in i ­
t ions fo r Ri would then be of the form: 

Thus an in tensional d e f i n i t i o n of Ri would be a d i s ­
junc t of r e l a t i o n a l compositions. 

A moment's r e f l e c t i o n on the above in te rsec t ion 
process reveals that the outcome of these in te rsec­
t ions can be c r i t i c a l l y dependent on the order in 
which the l i s t s are in tersected. For example, the 
l i s t s L1,L2,L4 might very wel l form a non-void i n t e r ­
sect ion and l ikewise the l i s t s L3,L5,L6. I f t h i s were 
the case, we would then have unfolded a simpler set 
of conjectured de f i n i t i ons of the form: 

Given a moderately large data base of several 
hundred 2-tuples over t h i r t y k inship r e l a t i o n s , we 
were t r y ing to discover some de f i n i t i ons of "Parent". 
The resul tant in tersect ions computed wi th the 
o r i g i na l ordering of the LPS l i s t s (using a consider­
ably more sophist icated algori thm for choosing what 
l i s t to merge next) led to the d is junc t ive sets of 
conjectures found in Table l a . However, a fu r the r 
search revealed a s t i l l bet ter ordering y i e l d i ng the 
conjectures found In Table l b . 
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Having great f a i t h In Occam's Razor, we only 
attempt to v e r i f y conjectures that emerge from the 
minimal number of d i s junc t i ve i n te r sec t i ons . Finding 
an optimal grouping of the L l i s t s that lead to t h i s 
minimal property iB combinator la l ly equivalent to the 
c lass ica l covering problems , However, un l ike 
many covering problems, a f a i r l y simple h e u r i s t i c 
turns out to be qu i te sa t i s fac to ry (see Brown3 for 
more d e t a i l s ) . 

A grouping for these l i s t s which leads to the 
minimal number of non-nu l l in te rsec t ions induces a 
c lus te r ing of R i ' s extension ( i . e group together 
a l l the ( x , y ) ' s that generated the LPS's of each 
d i s j u n c t ) . Often th i s c lus te r ing can i n d i r e c t l y 
induce a c lus te r ing or even a p a r t i t i o n on e i ther 
RI'S domain or range. This c lus ter ing should r e f l e c t 
some " i n t e r n a l " s t ruc ture of the objects themselves. 
Considering the above Parent example reveals that the 
c lus te r ing of 2-tuples induced by the de f i n i t i ons of 
Table lb shared the property that the f i r s t component 
of each of them were female. L ikewise, the f i r s t 
component of the other 2-tuples were a l l male. But , 
as fa r as the system knew, no object in the domain 
had any d is t ingu ish ing charac ter is t i cs whatsoever. 
Thus, in some sense, the system had unfolded the 
necessary informat ion to conjecture two unary 
predicates theretofore completely unknown to i t . 
J u s t i f i c a t i o n of these predicates often requires 
support ing evidence which may be forthcoming i f , in 
considering other r e l a t i o n s , s im i l a r c luster ings 
are induced. 

Discovering Rules of Inference 

We w i l l concern ourselves only wi th discover ing 
inference rules of a very r e s t r i c t e d form. These 
rules w i l l be e i t he r of the form: 

1) 
(where R i t B e l f could be also on the l e f t ) 

or of the form: 

In the l a t t e r case, the re la t ione under the ver­
t i c a l bar denote a required context before th i s ru le 
can be appl ied. The s i m i l a r i t y of these rules to 
context free and context sens i t i ve grammars is not 
acc identa l . In f a c t , these inference ru les are 
d i r e c t l y usable bv the question-answering system 
deta i led in Brown. 

Discovering the f i r s t type of inference ru le 
would appear to be s t ra igh t - fo rward . We need merely 
locate a sequence of re la t ions whose compositional 
extension is contained w i t h i n the extension of R. 
The problem, however, l i e s not in f i nd ing such seq­
uences but In f i nd ing "use fu l " sequences. Although 
we have no way of making t h i s d i s t i n c t i o n p rec ise , 
we rea l i ze that in creat ing an axiom system for a 
question-answerer we o f ten want more than j u s t a 
minimal independent set of axioms. We want axioms 
that enable us to answer "usual " questions without 
undue in fe renc ing . Be l iev ing that t y p i c a l questions 
often re la te to subparts of the in tens iona l d e f i n i ­
t ions we Bought ways to use the s t ruc ture of the 
re la t ions themselves i n i s o l a t i n g p o t e n t i a l l y " use fu l " 
ru les . 

One way to i so la te these ru les would be to use 
the intenaional d e f i n i t i o n s themselves. S p e c i f i c a l l y , 
any, recursive d e f i n i t i o n is a p a r t i c u l a r l y good can­
didate , such as: 

Another way t« generate p o t e n t i a l l y usefu l ru les 
would be to discover de f i n i t i ons for a p a r t i c u l a r 
r e l a t i o n which turn out not to cover R's extension 
when t h e i r de f in ing subspace is enlarged. An example 
of such a d e f i n i t i o n might be: 

which could ar ise from a data base in which every 
fami ly had two ch i l d ren . But again, the key problem 
is f i nd ing ways that the s t ruc ture of a r e l a t i on can, 
i t s e l f , de l im i t " i n t e r e s t i n g " subsets of i t s own ex­
tensions so that we don' t have to re l y on chance f o r ' 
prov id ing such subspaces. 

Determining Subspaces for the Discovery of Inference 
Rules 

One way in which the s t ruc ture of a r e l a t i o n 
can induce a na tura l p a r t i t i o n on i t s extension is by 
possessing a d is junc t i ve d e f i n i t i o n . Th is , as men­
t ioned above, s p l i t s the r e l a t i o n ' s extension in to 
groups of 2-tuples covered by the p a r t i c u l a r d is junc­
t i v e terms. For example, using the Parent example, 
we are lead to form the t r i v i a l r u l es : 

However, the d is junc t i ve d e f i n i t i o n underlying these 
ru les has the property that the two d is juncts are 
d i s j o i n t . That i s , i f (x,y) is s a t i s f i e d by one of 
the d i s j unc ts , i t necessar i ly is not contained in the 
other . By searching for d is junc t i ve de f i n i t i ons 
whose d is juncts can over lap, and in which one of 
the d is juncts covers a maximal po r t ion of the given 
r e l a t i o n ' s extension, we discover such rules as: 

Another way to u t i l i z e the s t ruc ture of a r e l a ­
t i on in i s o l a t i n g subspaces stems from the co-occur­
rence of compositional seouences in a given d is junct 
of i t s d e f i n i t i o n . For example, in considering a 
data base of over f i v e hundred f ac t s , we discovered 
the standard d e f i n i t i o n of Brother- in-Law: 

Let us consider the l as t d is junct which asserts t h a t : 

Line 1 suggests that in the "context " of "Husband" the 
re la t ions "S i s te r " and " S i b l i n g " funct ion equivalent-
l y , or we could say t ha t : 

when condit ioned on the l e f t w i th "Husband". Clear­
l y , the not ion of "context " is qui te important f o r , 
although the ru le "S is te r => S ib l i ng " could be inde-
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On Checking for Over-Generality 

The resu l t of i n te rsec t i ng the LPS l i s t s is a 
co l l ec t i on of conjectural de f i n i t i ons for the pa r t ­
i cu la r r e l a t i on R under study. A property of any 
such conjectural d e f i n i t i o n i s : 

At f i r s t glance, the v e r i f i c a t i o n seems s t r a i g h t - f o r ­
ward: simply compute the extension of the conjectural 
d e f i n i t i o n and test f o r i t s inc lus ion in the extension 
of R. I f i t is inc luded, then the conjectura l d e f i n i ­
t i o n has been v e r i f i e d . The problem of e f f i c i e n t l y 
performing t h i s computation is the concern of associa­
t i ve memory processors l i k e TRAMP5 and, as such, 
w i l l not be discussed here. Such v e r i f i c a t i o n is 
obviously poss ib le , but I t is expensive for large 
data bases. 

We were p r imar i l y in terested in developing heur­
i s t i c techniques that could be used to e f f i c i e n t l y 
detect over-general conjectures. A f te r these heur­
i s t i c s were appl ied, exhaustive techniques could be 
applied to the few remaining d e f i n i t i o n s so as to 
remove any doubt about t h e i r v a l i d i t y . 

Our heur i s t i c procedures are baaed on the con­
cept of " the inverse image of x wi th respect to a 
b inary re la t i on R" in formal ly defined as the set of 
a l l y 's such that the range of x overlaps the range 
of y. 

Def: The inverse image of x wi th respect to a 
binary r e l a t i on R, denoted IR(x) , i s : 

(note that inverse images do not form equivalence 
re la t ions on the domain of the given r e l a t i o n ) . In a 
s im i l a r manner, we can define the inverse image of x 
w i t h respect to a conjectural d e f i n i t i o n of R. 
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Our h e u r i s t i c procedure picks an object x in 
the domain of the r e l a t i o n R being def ined and com-
putes both the sets IR(x) and I "Def " (x ) . It then 
checks to see if the set X"Def"(x) is equivalent to 
the set IR(x ) . I f n o t , i t re jec ts the "Def"; o ther­
wise It chooses a new x from R's domain and repeats 
th is procedure u n t i l the domain of R has been exhaust­
ed. A fas te r but less complete vers ion of t h i s 
h e u r i s t i c doesn't bother to exhaust R'e domain but 
chooses only one element from each inverse image 
c lass. These checkB are only h e u r i s t i c since they 
do not take i n t o considerat ion the l oca l connections 
of the re la t ions w i t h i n each inverse image c lass , but 
that is prec ise ly why they are f a s t ! 

An example of the power and l i m i t a t i o n s of th i s 
h e u r i s t i c may be seen from another date base (of over 
a hundred facta) analyzed by t h i s system. 

The de f i n i t i ons fo r the binary r e l a t i o n "Niece" 
were f i r s t explored. Table 2 l i s t s the conjectura l 
de f i n i t i ons r esu l t i ng from in te rsec t i ng the LPS l i s t s , 
These de f i n i t i ons were then subjected to the above 
h e u r i s t i c check which resul ted in the d e f i n i t i o n s 
given in Table 3. Of the o r i g i n a l f i f t e e n 
in tens iona l de f i n i t i ons eleven were re jec ted by 
our check and the remaining de f i n i t i ons were a l l 
cor rec t . 

The need fo r developing h e u r i s t i c s fo r speeding 
up the v e r i f i c a t i o n of conjectured de f i n i t i ons is 
be t te r appreciated whan we understand the complex 
in te rac t ions between the generation of conjectures 
and t h e i r subsequent v e r i f i c a t i o n . In f a c t , there 
is a constant sw i tch ing of con t ro l between these 
two phases. For example, suppose the f i r s t set of 
de f i n i t i ons conjectured were subsequently disproved 
in the v e r i f i c a t i o n phase. Then a l l the paths in 
the data graph that lead to these conjectures would 

have to be temporari ly "blocked" and a new set of 
conjectures would have to be invented. These new 
conjectures would then have to be v e r i f i e d , and so on, 
u n t i l a l l the conjectures passed the v e r i f i c a t i o n 
phase. 

Our experiments have revealed t h a t , fo r most of 
our tes t data , th i s process of con jec tur ing , v e r i f y ­
ing and b lock ing is of ten repeated a dozen or so 
times before a set of conjectures are formed which 
cannot be disproved w i t h i n the data i t s e l f . Conse­
quent ly , our system must t y p i c a l l y v e r i f y many more 
conjectures than appear in the f i n a l output . 

Some Experiences 

We have appl ied t h i s system (implemented in L on 
a 16-K PDP-9) to several types of data, the most 
common of which is k insh ip data. We p r imar i l y 
worked on k insh ip data because, although we know what 
to expect, the richness of i t s s t ruc ture can present 
many challenges. A lso, by choosing a domain that is 
i n t u i t i v e l y understandable, i t is easier to spot the 
more subt le re la t ionsh ips among the obvious. A l tho ­
ugh t h i s domain is t r i v i a l in many respects, it was 
a great surpr ise to us to take a reasonably laree 
data base, generated — fo r tes t purposes — from the 
fami ly t ree shown in Figure 3 below, and perform a 
search for a l l the s t r u c t u r a l re la t ionsh ips that 
might have passes unnoticed from our biased v iewpoint . 

Two types of pat terns could appear. On one hand, 
de f i n i t i ons might emerge that r e f l ec ted id iosyncracies 
of t h i s p a r t i c u l a r data which would "disappear" i f we 
considered more data. On the other hand, completely 
v a l i d de f i n i t i ons might appear which were l o g i c a l l y 
equivalent to ones we already knew, but which might 
be "s impler" r e l a t i v e to some c r i t e r i o n . Both types 
of unexpected patterns may be seen in the f i r s t set 
of d e f i n i t i o n s discovered for the Uncle r e l a t i o n 
on t h i s data base (see Table A). Clear ly the f i r s t 
two of these d e f i n i t i o n s r e f l e c t the idiosyncracy 
that every uncle is marr ied. The t h i r d d e f i n i t i o n 
which is complete yet involves no d is juncts and as 
such might be considered simpler than the standard 
two d is junct d e f i n i t i o n : 
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Uncle = Brother/Parent V Husband/Sibling/Parent 
Weaknesses 

It was not u n t i l these d e f i n i t i o n s were manually 
over-r idden and indeed a f a i r number more before our 
system came up w i t h the " t r a d i t i o n a l " d e f i n i t i o n . 

Appendices 1 and 2 give a fee l i ng for the sur­
p r i s i n g mul t i tude of s t r uc tu ra l d e f i n i t i o n s found 
on t h i s data base. For example, Appendix 1 contains 
some of the three hundred de f i n i t i ons of "Uncle"which 
were discovered j us t on the above data base. The 
second appendix reveals the f i r s t set of de f i n i t i ons 
discovered for some of the other k inship r e l a t i o n s . 
Note, f o r example, the seven un iversa l ly va l i d 
definit ions for "Cousin". 

Not a l l our experimenting has been l im i t ed to 
k inship r e l a t i o n s . Another domain that has been 
analyzed was made up of the extensional de f i n i t i ons 
of the a c c e s s i b i l i t y re la t ions between squares on a 
chess board for the various chess pieces. More pre­
c i se l y , the data base consists of a universe of 64 
objects — representing the squares of a chess board 
— and a co l l ec t i on of extens ional ly defined r e l a ­
t i o n s . Some of these re la t ions are geometric ( e .g . 
East, Just -East , Posi t ive-Diagonal) and the others 
are chess moves represented as binary r e l a t i o n s . For 
example, ( x , y ) € Knight means that a knight can move 
in one step from x to y. The task was to discover 
the d e f i n i t i o n s of the l ega l moves of the various 
chess pieces in terms of the other chess pieces and/ 
or in terms of the geometric r e l a t i o n s . Although 
space precludes a thorough descr ip t ion of our f i n d ­
ings , we ind ica te below some of the discovered 
d e f i n i t i o n s : 

*In t h i s system, the user has the freedom to re jec t 
d e f i n i t i o n s even if they have been accepted by the 
v e r i f i e r and thus search fo r add i t i ona l d e f i n i t i o n s 
which involve more d is junct ions than the current ones. 

There are several l i m i t a t i o n s to our system 
that deserve fu r ther a t t en t i on . The f i r s t concerns 
the d i f f i c u l t area of character iz ing when something 
cannot be t r ue . A l l the de f i n i t i ons and axioms i n ­
vented by our system express pos i t i ve assert ions. 
That i s , our system never discovers the c ruc ia l 
fact that s ib l ings can' t marry and hence a father 
cannot be an uncle to his own c h i l d . Of course, 
we can hedge th is problem by inc lud ing jus t the 
r i gh t addi t ional re la t ions which cover precisely 
what can' t hold over the o r ig ina l set but th i s 
quick ly gets us i n to a combinatorial explosion. 
For example, we could include the r e l a t i on "Non-
Uncle" whose extension is the complement of Uncle and 
then perhaps we could uncover: 

Father -> Non-Uncle. 

Somehow such a so lu t ion seems unpleasing since once 
the pos i t i ve assertions have been characterized one 
might hope that they could he combined wi th a few 
negative assertions to imply a l l the potent ia l 
negative assert ions. 

The second major l i m i t a t i o n is that nur system 
expects i t s sample data base to be complete, i . e . 
missing no data and containing no erroneous data. 
There are numerous wavs to circumvent th is l i m i t a t i o n , 
some of which have been implemented. For example, 
the v e r i f i c a t i o n phase not only checks a conjecture 
but I so la tes , fo r any r e j e c t i o n , the counter-examples. 
The user can then decide whether or not to over- ru le 
the v e r i f i e r by de let ing from the data hase these 
"counter-examples." However, a considerably more 
provocative approach to the problem should be 
possib le. Relying on Occam's Razor, we might consider 
the en t i re set of discovered de f i n i t i ons and see how 
a pa r t i cu l a r set of changes on the data base a f fec ts 
the complexity of not only the de f i n i t i ons of the 
re la t i on under Btudy, but also the co l l ec t i on of 
de f i n i t i ons for a l l the r e l a t i o n s . Since a l t e r i n g 
a given r e l a t i o n ' s extension af fects not only i t s 
own d e f i n i t i o n but also the d e f i n i t i o n s of a l l the 
other re la t ions def inable in terms of t h i s r e l a t i o n , 
we would expect a dramatic global s i m p l i f i c a t i o n for 
the "cor rec t " changes to the data. 

Further Plans 

In addi t ion to explor ing the above issues we 
plan to invest igate how to achieve more of a syner­
g i s t i c e f fec t between the user and the computer 
in seeking the underlying s t ructure of his data. 
The system is being re-implemented in LISP on a 
PDP-10 in hopes of having a f r i e n d l i e r environment 
fo r explor ing the symbiotic uses of th i s k ind of 
a theory formation system. 
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