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ABSTRACT Congider for instance thoe twe terms @
'hf = £(x)
and t, = A
A refutational system of logic for a language 2"
of order w ia presented. This langage is a where f is a {second-order) variable, x a
slight modification of Church's \-calculus with Variable and A & constant. The following sub-
types. The system is complete, in the sense stitutions ere two independent unifiers of t‘
that a refutation of a set of sentences exists and t2 H
if and only if this set does not possess a gene- a, ={ [ « Ausi]
ral Henkin model. The main rule of inference is
a generalization of Robinson's resolution to 52 ={f « Auru, X & A}
type theory, which allows us to get rid of the
substitution rule. We may even need to congider an infinity of
unifiers. Iet us say that substitution o is
less general than substitution p with respect
to & Finite set of variavles V, ifT there exists
INTRODUCTION n such that :
Oe¢X = N aPox for every x in V ,
During the last decade, a lot of effort in We chall denote this relation (which ies re-

automatic theorem proving has been devoted to
mechanizing first-order logic. The main achie-
vement has been the definition by J.A*Robinson14
of a now well-known refutational first-order
system. |Its unique rule of inference, called
resolution, is an elegant way of combining the
substitution and cut rules. The other familiar
rules of inference are implicitly taken care of
by Skolemization and the set representation
(clauses) of the conjunctive normal form of the
set of sentences one wants to refute. More pre-
cisely, resolution permits us to select just the
substitutions which are necessary for the cut of
two or more literals. Moreover, if this cut is
possible at all, only one such substitution is
sufficient, called the most general unifier of
the two literals. This existence of a most gene-
ral unifier between two terms in first-order lo-
gic is fundamental to the resolution method.

Many a theorem proving program was written based
on the resolution rule, embodying various heuris-
tics to speed up the search for a refutation.
However, results obtained sc far are still very
limited without human help. To remedy this situa-
tion, some workers in the field, notably
Robinsond have argued for the exploration of
more powerful systems of logic such as Church's
\-calculus.

HIGHER ORDER UNIFICATION

The situation in higher-order logic is quite
different from first-order. Most general uni-
fiers do not exist any more (Gould1).
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flexive and transitive) by : p € p-

Now we cell a complete generato¥ of wnifiers for
terms t, and t. (CGU in short) any set T of
substitu%ions sugh that :

1 1

¥ 0 €%t ¢ unif'ies y and t2.

29 vy a unifier of t, and t, : #pel such
that o P s whe}e V¥ contains all

variakles free in 1, and t..

1 2

has remorked thut certain pairs of
t, , t. do not poscess a finite CGU.

Gould"
texms

Gonsider1for ¢ instance @
t, = fi{x,4)
ty = £{x,B)

where X 16 a (variable) function and £ is a
{varigble) functional. Now let I = {Ui]i »01,
with ¢

o =tT + xuveh{u)}

G’n =lf - hw'gn(ulu(h?(ul'\fj)po
e-eulh (v} )}),
X + Au-z) (n > 0)

and let V=(xf} .

The proof can be sketched as follows :
Z.is e CGU for t, and t2

% € %449 ¥i>90
not o

10
20
yi=0

€ O,
i+1v i
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4 not {GO $ o; or ¢, % ﬁOJ v I 0.
5@ suppoae I' is a finite CGU for t1 ang t2
By 1°, thle implies that there existe IV ¢ F

finite CGU for t, and ..
Iradicts 3° and 49, (Gongid
k = max{ile, € I"|).

Thus, althaﬁgh eny finite subset of I can be
generated by only two elements (using 2°), we
carmot find a fivite set of genervtors for the
unifiers of t1 end t2.

This obviocusly con-
eT Ty g with

It seems therefors that an extension of re-
solution to type theory would reguire genersz-
ting & possibly infinite number of resolvents
at every application of the resociution rule.
One scluiion to this problem would be to order
these resolvents (for instance accerding to
some complexity of the unifier selected) and
to "dovetail" the genermtion of resclvents with
the refutation search algorithm. This method
has heen proposed and proved complete by Fietr-
zykowski and Jensen™ .

However the inefficiency of such dovetailing
progesses 1s well known and their practicsl im-
plementation seems difficult, We shall present
here g method which, although it ultimstely
legds to a double enumeration too, delays the
generation of unifiers as much as possible and
thus minimizes the mamber of irrelevant cheoices.

CONSTHAINTS

The idea is to represent the set of uniflers
of twe literale L, and L, as a condition tag-
£ing the resolvent obtaiﬁed by cutting L, and
12 in thelr respective clausen. Buch & céndi—
tion is expressed s B set of "constraints" of
the form [t1,t | where t, and %, are subterms
of L1 and L,. icre generélly, a"constraint will
be & 'set of terms which we want to unify, 4
clause tsgged by a set of constraints will be

represented as

11.L2, “omy Ih/01,02. cew 3 Gp

where the L.'s are the literals of the clause
and the C.'s"are constraints. Such a'tonstrai~
ned clausd® (CC in shori) represents the set
of all clauses oel,, cel, , v.. , 0oL 8uch
that o unifies sim&ltanegusly every eBustraint
Gy ¢ d.e., if Ci={e1, €or vors 1.} ?hen

er1 = Uaa2 = ess = doeqi (1t &1ip).

In many cases we will be able to deeide if a
constraint ig not unifilable at all, in which
cage the corresponding ¢€C is not generated.
We may also know a most general unifier o for
the constraint, in which cese ¢ is applied to
the correaponding resolvent, tagged with the
union of the constraints in the CCs resolved
upan, Otherwige we generate the 00 obtained by
tagging the resolvent with the union of the
perent's constraints plus the new one. In the
last two cases we check that the set of cons-
trainte i1s not obviously inconsistent. Iet us
novw give an example.
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We suppose that we have two basic typea
o for truth valuee and o+ for individuals. We
shall use the following atoms, indicated with

their type

W, A L

V¥, B0 (v=1)

X, E,U ({L=1) = 1)

£ (=) =) =)
P, R { v~ o)

qQ (vl L= )=o)

By convention, &ll lower cage letters deno-
te variebles, agll capitale denote constants.

(a1,a2,...,a - B) denoctes the type of functions
of n" argu Bents of types a1.....a and with
values of type g. We consider the se® 5 of
tlauses &

1e Pff{xJ}sQ(Z(c);c}.R(ffZ)}

2° TP(4)

3e TQ(X(.&)J'.\')

4° R(B(w))

We shall prove by constrained resolution
that this set is unsatisfiable (the preecise
gtatemaent of the rule of constrained resolution
will be given below).

Pirset we resolve the P's in 1° and 2°. W
gre trying to unify P(f{x)) and P(A), and this
implies the unifiecation of f£{x) and A. These
terma do not possese g moet general unifler, so
we generata a constraint [f(x),4 which is tag-
ged to the resplvent

50 @{z(€),C), R{f{e))/[T(x),4a.

Now we resclve the Q's in 5° and 3%, which
implies the simudtaneous unification of

y(4) and z(C}
¥y and O .

firstly
and secondly

Fortunately in the sscond pair {7 « C is a most

general unifier, This unifier transforms the
first condition intc the unification of C(4}
and z(C}. Here too there is mo MGU, sc we gene—
rate the resclvent :

R(£(2)) /{8 (x), 40 {CLA),2(0)}.

Finally we get the empty clause, resoiving 6°
and 4°, and generating one more constraint
(B{w),T(z)}

70 @/ f(x}, A, {ClA),2(C)}, {Blw),f(z}].
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Now, in order to validate our refutation,
we must find a unifier satisfying simultaneouns-
1y every congtraint in 7°. However any unifier
will do here, we do not need to generate a
complete set of them. Actuaslly, we just need o
cheok for the existence of a unifier. Unfortu-
nately there ia no decision procedure for this
task if we gllow quantification over third-or-
der functionsls, &s shown in Huet .



All we can do here is to use a semi-decision
algorithm of reasonable efficisncy developed
for this problem in Kuet™ . We shall not pre-
sent this algorithm here, but merely indicete
that for our exemple it would returnm an affir-
mative answer, with the unifiepr :

f « Au-u{B)
Z « Avev(a)
e A

X & hv-A

The readexr will check that this subatitution
{together with ¥ « C) applied 40 8 gives a
contradictory set of ground clauses.

The genersl case is a little more complice-
ted because, when Tresolving two 0OCs, each of
which has & hen-empty set of conatrainte, we
have to merge these two setfs.

Note slso that when we apply a substitution
to B CC we must apply it to. its comstraints
as well, which may induce some possible simpli-
fications, merging of constreints and rejece
tions.

A more gerious complication arises with the
use of predicete variasbles, A litersl whoge
predicate i® a variable may te ftrensformed in-
to geversl literals by substitution of a dis-
Junction feor the variable, For instance the
clause p(A), 8(B) becomes

gl4), r{a), 8(B)

after the substitution

p « Au<(glu)}vriu})
end passsge to normal form. Similarly, the
subetitution of & corresponding conjunction
would produce tweo clauwses :

q{4), B(B)
r(4), 8(B) .

and

Alao, subgtitvuting 3 quantified formula for
p would oblige us to Skolemize during the
vrocf.

For these reagons, we are oblisged to intro-
duce a second yule of inference, c¢alled split-
ting, which in effect simulates all poscible
weys of effecting these substitutions for pre-
dicate variables, using the mechanism of the
congtraints.

We shell now give a more precise formula—
tien of our rules of inference.

REFUTATICONS

We shall not state formally the definltions
of terms, literals, eic... The precige defini-
tione are stated in Huet'®" . Iet us just
recall that our language iz basicelly Church’s
A-caleulus with types (Church?). Bvery term
poasesses a normel form ;

hu1...un°d(e1,....ep)

where the w,'s are distinet varisblea, ¢ 18 an
atom(called the head of the term) and the e)'s

are terms (see Andrews' ). Punctional extensio-
nality is an option in the system. We shall
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distinguish three specisl constents NV sand =
of the appropriste types.They will dencte res-
pectively negetion, disjunction and universal
quantification. PFor the last one, we represent
v x«@ by w{hx+7). Actuslly for each type ¢
there 18 a % of type {{o - o)—= o), denoting
quantificatign over varisbles of type o .

We suppose morsover that the set of senten-
ced one wants to refute has been reduced to
clauge form. This means in particulsr that we
have Skolemized as much as we could., Of course,
it is forbidden to reduce propositions which
are hidden inside the arguments of some literal,
Qur Skolemization consists in replecing (at the
top level) :

- () by #{Xx) where X is a new varia-
¢ ble of type «

41waG¢) by'1d{Ea(d)) where E 1is a special
constent (called a parameter) of type ((ax =ol=al,

After reduction, every clause will be repre-
wnted as s finite set of literals, each literal
being of the foerm A or M4, where A 15 a term
P(e1,e2,....e } and P is an atom different
from 1“ Vv anf .

Iet us now give more preoisely the definition
of CC.
A constreint is any finite met {e,,2.,.-,0 |
terms of the seme type. 4 substitﬁtign s
said to unify this constraint if and only if
N e_. It 18 s=id

of
ie

¢ is a unifier for e seany

to unify 2 set of cons%ra nts {01? 0o, see 40 B
if apd only if it unifies every G4 %1 £Elc B .
A constrained clause B/C consists of = clause
E end of a finite set of constraints C .

If C =14 we have sn initiel CC, if E= ¢,
we have & terminal €C, O = ¢/¢ is the empty CC.

In order to refute a set of sentences 3 , we
first reduce it to ¢lause form as explained
above, then we tag 1o every clauss the empty
get of constraints ¢@.

A refutation is eny derivation from this set
of initial CCe, using the three rules of infe-
rence defined below and ending with the empty CC.
If such a refutation exiots, we pay that § is
refutable,

The first two rules of inference, c¢enstrai-
ned resclution and splitting, =apply to non-ter-
minel CCg whereas the third one, uwnification,
applies to terminal C0s. Constreined resclu-
tilon is binary, splitiing and unification are
unery rules,

1. Constreined resolution.

Iet 31 = 11/131 and E, = .42/132 be two

non-terminal CCs.

let [x,,% ....,xn} be a1l the variadles thet
appear free in both E, and E_,, and
{Wys Wopoeoe, Wb be new veriablds of the seme
tyﬁes %hich do not sppesr in either E1 or E2°
We define the substitution :

0 ={x; + W1 cien} .

Now we distinguish p pesitive litergls in A,
al ¢ negative litersls in A,. That is, using
lJ to dencte disjoint union :



ﬂ' = {m.!; Menol-n Hp} UA3 pe

A, = (K, IV, ..."INq} ) Ay q =1
Kow let

B3 =[ {H1’- “2| venp “p.e.N1l 90N2,...,90Nq”
We say that the CO 3

Ey = Ay | OoA4/B1 U BBy | By

follows by constrained resolution from CCs E1

and E.?'

2. Splitting.

Iet B, = 4/C be sny non-terminal Q¢, such
that A conteins a litersl 1 whose predicete
is & variable ; i.e, A = By {1}, We have the
following casem :

19 if L 1s a positive litersl s

-1 Deduce E, = B} {9, 21/C 1 J{{L, qVr}}

where
type

Deduce B, = By SEAVAAVEEE ™ “tE:
q i8 a new varipble of type
Ieduce E; = By talz)l/c ) [{L,‘ltuq}{

where 2 1is a new varisble of type
q a new yvariable of type (a - o).

q and r are new varimbles of

Q.

where 0.

e .

if L is a negative literal ; i.e. L ="M :
B U { T4} /¢,
and 85 = By [ Ir}/C,

where CU{iM, QVr}}, 3 &@nd 1 are
new varig\bles of type o,

Deduce B, = B Ufq]/C U{1%,7a]!
where ¢

Jeduce B, = B Y (Ma(E (@)} AU{IM, g}
where ¢ 18 a new variable of type (g - o).

=1

Beduce B2

=2
is a new variable of type o,
2-3

Any of the sbove 0Ce is said to be deducible
from B, by splitting.

Rulds 1-3 and 2-3 depend on scme erbitrary
type o . In practice we shall implement ithem
by restricting o« +to some small initial segment
of types.

3. Unification.
Jet B = ¢/C be 2 terminal CC. If C is
unifiable, we can deduce O from B.

Tis rule too is not directly mechanizeable,
since in the general case unification is net
declidable. ¥e can nmake it 2o by putting a bound
oh the mumber of steps of our wnification algo-
rithm. For this reason owr method may ultimate-
1y lead to & double enumersation.

SOUNDNES TENES

It is well known that higher-order logic 1s
not complete, under the usual semantic characte-
rizatien (GYdel models). However, Henkin® has

shown that a different characterization yields
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completencss in w-order logle. The trick is to
interpret predicate variablea of type (a -+ o)
{for instance) over domaine which may be proper
subsets of 2 “u , where B, 1s the domain of
interpretation of objecte of type o . We only
impese that these domaine be c¢losed under opera-
tions corrseponding to the different constructe
of the langusge (for instance complementation,
projection, ett...)s In the same way 3( )
mey be a proper aubset of ‘8:: - -9f3' o+ f

This enlarged semantic characterizaticn
(general Herkin medels) permits ws to restrict
validity to just those formulas which are deri-
vable in the logic.

In the following, we shall therefora use
satisflable asz an abbrevliation for "has a gene-
ral Henkin medel”.

Dafinition : A property T of finltie sets of
propositions is celled an analytic consistency
property if and only if, for any finite set A8
of propositions, we have (71) to (77) below.

if I'(3), then there ig nc litersl
such that £ € 8 and\z7 € 8.

it T(8 Wa}), tnen T(8 U [4'}), where
' is the kA normal form of 7.

if T(8 U [Mea)), then T(8 Uig}).

if I'(Slrl {¢vsl), then r(8 U{#}) or

T(a yisl).

if T(s y {"(#V8)}), then T{(z UV, B} ).
if I{z {‘ldd‘] }, then for every term 8
of type a, T{a U (%7 #(831).

if (8 U (1% @}), then T(8& UNZ(X)}) for
any constant or varizble X of type o
which doeg not occur free in & or %,

(vy)
(¥,)

(v5)
(vy)

(75)
(vg)

(77)

We are interested in analytic consistency proper=-
ties begause they provide s sufficient condition
for satisfiablility, as expressed by the follo-
wing lemme from Andrews’ s Which extends resulis
by Smullyan .

Lemma I, If T is any analytic consistency
proyerty and 8 1s s finite set of propositions
such that T'(8), then 8 is samiisfiable.

For any set € of proposificns, let &' be the
get of sentences (closed propositions) obtained
from & by replacing free variables by new cong—
tants in a one to one fashion. Chviously if 2
is wnsetisfisble then &' is unsatisfiable too.
How we define the following property TI' of sets
of propositions :

T{a) if and only if @' is not refutable.

lepma II. I’ is an analytic consistency property.
The proot of this lemma is given in Huet™ .

The idea is to prove eaxh of (y,) to {y.,) by
proving the contrapositive Btatément about refu=
tationn, For instance, 1o prove (11}, let us
gasume that there exists a literal & such that
7 €8 and” 1« € R« Thie implies that in the clause
form of 8' there are clauses {7'] and {21},
Therefore from 8' we can deduce CC @/{{z'.2'}].
from which we deduce D by triviel unification.

‘8! being refutable, we have not I'(%) by defini-

tion of T . Taking the contrapositive statement



we gzet (v.).

Now let’ 8 be any unsatiefiable set of sen-
tences., By Jemma I and Lemma IT : not I'(8) and
by definition of T, 8 is refutable.

This gives us the completensas of our system:

Theorem 1. let & be any finite set of penten—
eg. If R ip uneatisfiable then 1t is refuts-
le.

The soundnese is obtained by mapping refuta-
ticns in our system into refutatione in Andrews'
R syeten (Andrews?), which is known to be aound
if one assumes the axiom schema of cholee. Iet
us call axiom of choice for type

gi-vp.[(Ax-p(x)) > p(i{p))]

where the ityper of the variables are :

w(x) = a, tlp) = (e + o) and 7(1)=({n = o)~

Theorem 2. Iet 8 be any finite set of senten-
es., If 8 is refutable, then there existe a
inite szt @ of exiome of choice such that
B |~ is unsatisfiable.

In cur formal presentation of the rules of infe-
rence, we have supposed that we were not tryine
to unify st all when resolving, instead we just
generated constraints. The processing of the
literals whloh are candidates for umification
and the checking for consistency of the conse-
troints obtained is not necessary in theory, and
it was more convenient to use this formalism
for our proofs, However, az was ghown in our
example above, 1% is hipghly desirabls in prac-
tice to do some amount of processing when apply-
ing constreined rescolution. Of ccourse, this dopes
not affeet the soundness of completeness of the
modified system, as long as we suppress only
cleuses with ununifiable constraints. There io

a trade-off here between mary useless but fest
derivations and few useleas but elow ones, and
it is difficult to estimate how puch processing
of constraints should be done until the system
is impliemenied.

In the case where the set of initial clauses
is first-order, it is possible to process com-
pletely every constraint, and eplitting is ot
gpplicable., Our modified system reduces exactly
%0 resclution in this case,

It should be noted thst we have not assumed
extensionality so far since Henkin modela mey
net be extensionsl, as shown by Andrews?® .
However ws have in option a unification algo-
rithm which assumes the wesk extensionality
atiom ¢

f = Ax-f(x) .

We shell now present a few examples of
refutetions. We have replaced the cumbersone
existential parameters EB{(ix-&) by the usual
Skolem functions X{(y,ye..,¥ ), whers the y.,'s
are the free variablea of 7 %and X 4 a ndw

constant of the appropriate type.
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a the formula:

mapping from A to B.

EXAMPLRBS
Bremple 1.

Qantor'e theorem : NN is not denumerable.

Let « be the type "integerY, n,f and h be
variables, with types <(n) =, T{(£)=(=1}
gnd t(h) = (v, 1= 1),

We shall refute the negatien of Centor's theo-
rem : "it is poseible to enumerate the funciione
of integer to integer". 1i.e.

gh yf gn hin) = £ .

Af'ter reductiion to normal form we get, using
N and M as Skolem functions, T(N) = {({ 1=1i}=1),
T(H) = (b =1 2

1 HNf = £

We shall need the following property of equa-
lity ¢
2 =g, fneen [1(g) = (=)
and the existence of a suceessor funetion §
satisfying :

3 Tn=8n [t(8) = {1=)].
The refutation goes as follows :
R(1,2) & H(Nf,n) = fn
R(4,3) 5 @AM, SH{Nf, 1)}
uls) 6 U by aubstitution :

{f «Mu-BSH{u,u}, n «N{Au-5H(u,n))}
Note that the constraints coming from the
first constrained resolution cen be completely

processed, so0 that 04 = . This short proctf

(3 stepa} is due to a concise representation of
the problem. In particular, the use of type
for integers glves us Implicitly restricted
quantificetion over integers without having to
carry additionel litersls.

The pigeonhole principle 3 1f we distribute
m chjects into n holes, with m +» n , there
iz 8t lesst one nole which contains more than
one objiect.

We choose iype o for the set 4 of objectis
and type P for the set B of holes. The hypo-
thesis is :

|B| <|A[ < W
19 |B| < [A| : there exists a one-cne mapping
from B teo A, not onto.

2° |A] « w : every one-cne mapping from A to
4 is onto.

The conclueion is : there is no one-one

Using the following atoms :

w{F) = (B = a)

7(6) = (a =~ B)

w(h) = (« = u)

u) = t(v) = B

T(B) = 1(x) = t{y) = «

oX) = oY) = (a0 - a} - o)



7(8)
T{=J

{({a + a), a = a)

it

(o,o ~ 0} or (B,E -~ o} meccording to

the context, we get, after reduction to normal
form t
1 wu=vw, Puys Py }F ic one-cne B~ A
P Pug B net onto
3 Xh £ Yh, hi{h,x) = x(every one-one h
A= A
4 h¥h = hYh, hZ(h,x)= x}is onto
5 Xx=y¥, Gx £ Gy G 1s one-cne A+ B

We gat the followirng refutation =

R(3,2) 6 Xh ¢ W/{hE(h,EB),Pu'} = C;

R(4,2) 7Thin = mzh/c6

BR(7,1) 8 u=v/Cu+ (hXh,Fu} + {h¥h,Fv]

R(8,5) 9 x = y/Cc+ {hkh,Féx}+ {hih, Gy

R(9,6) 10 @¢/{L8(h,E),Pu'},{ndh, FoXh'},
{h¥h, F¢Th'}, [h'Z(h',B},Fu"}

(40} 11 O by substitution :

fh « Ax-Fex, u'e G2(Ax-FGx,E),
h' pame ms h , w" same as u'j}.

When the theorem prover gets a refutation, it
is triviel to give the user = more natursl
proof in Andrews aystem, chaining back the
gubstitutions,

We shall demonstrate this technique here ; now
5(n) means substitution in eclause n and C(n,m)

means cut of clause n and clauee m. H is an
ablbreviation for ix-Fex.

8(2} 6' FGZ(H,E) £ E

5(3) 7' XH £ ¥YH, PGZ(H,E) = E
cle, T8 XH#YH

8(4) 9' FGXH = FGYH, FGZ(H,E) = E
c{&', 910" FGXH = PGYH

8(1) 11' GXH = GYH, FGXH ¥ FGYH
cH0LI1N 12" GEH = 6YH

8(5) 13" XH = YH, GXH £ GYH
Chet13%14' XH = ¥H

c(g8n14M1s’ B

Bxaple 3.
We chell now give g completely deteiled refuta-
tion of a less triviel proposition. We are
going tc prove Xnaster-Terskil's theovrem @

"ainy function monotone over a complete dattice
pospesses a fiXpoint®, let (A,&) be the comple-
te lattice coneidered.

We wse the types 3 o JFfor truth velues

v for the elements of 4.

We represent e subset of A by its charecteria-
tie funetion, of type (i~ o). We use the follo-
wing axiomg

()lxwxa((zgyaevy€x)nx=y3) s

(gyseygz)>xc2)]
[ & 18 a partiel ordering]

(vxh)[(hXx 5 h g x} & ((y¥}(hy o x € ¥)=x €nh}]
[every subset h of A possesses a glv O hj

We want to prove :

) [(vx¥) (3 & = £x & T¥) = (g2)(fz = z)] .
The types of cur atoms are, respectively :

X, ¥s 2 3 1
h:{uv=0)
£ {v=>1)
= g: {1,L~+20)
Nt =0} ~t]),
We negate the theorem and put e¢ll the proposi-

tions in clause form. We use agein the usual
forn of Skolem functions, replacing

B (Ayhy 5 x g ¥} by Y{x,h) and

B UyxyHx &« v 2 £x & £¥) o (g2}{f2=2)))
hy P, where Y and F are new constanis of types
respectively (¢ (v=+ o) =) and (i},

This gives us the following set of clauses :

A 4
X gy, lyex, x=%
Txgy qy€s Xz
Thx, nh g x
h¥(x,h),xgn b

Ox g ¥x,u0),x €t
Tx <y, FxgFy
TPy = x

First we resolve 2 [on its last litersl) and 8.
As the constreint {x = y, F' ®'} possesser a
most general unifier {x « Fx', ¥ X'} we just
substitute without generating any constraint, to
pet :

D 1 O i o= W M -

R(2,8) 97IMx g x, x ¢ Fx

Similarly, resclving 4 on its second literal
with 9 on its second literal, we get :
R(4,9) 10 PRk, WWFA L
[The last literal is a shorthend forTh(Hn(n)})}
Next, we resolve the second literal of 7 with
the second of 10, Hers we do not know a most
general way of wnifying the two litersals, and a
congtraint is added to the resclvent :
R(7,10)11 PN h ¢ b, x € #{uP N b, M < Py
(Tis congtraint id obviouely unifiable, for
instance by {h + Au.Fx g Pyik
We shall now resalve both literals of 11 with
the second literal of 6. We have to wnify @

. Tirstly {Fn h, x,x"§

« gecondly {\ h, ¥y, Nh'} and again we know
a most general unifier :
X« P Rx' « F Ry B' ¢« by ¥ & ) b}
and therefore we gst ;



R(6,11) 12TF Nb < Y(PN h,h)/{ hFNh, Finhg F k.
Notice that the substitution hes been effected
in the constraint from 11 as well ag in the li-
tersls. e shall denote this new constraint by
G.

The rest of the refutation is preity straight-
forward, ho new constraints being generated @

R(3,12) 137}FN h g v,y < Y(F rp,h)/C
R(7,13} 14 N h <y 18 g Y(FAhh)/C
R{4,14) 15 T hy, TP « ¥(F b,h)/C

R(5,11) 16  h¥(P h,h}/C

Thig laat {0 is the analogue of 12, 5 and &

hoving one literal in common due to the initial
reduction to clause form.

Next we resolve bhoth literals of 15 with 16, ob-
taining therefore a terminal CC

E(16,15) 17 @/C' where C' consists of the
tfollowing constraints :

(RPN h, TP h g FOB] .,
fh'FA L', FFO ' « PN 0'Y,
(hy, Fy < Y(F M h,h), B'¥F N 'L ).

We then apply our unification process to C',
which terminates with answer "yes", correspon-
ding to the wnifier :

¢ = {h + AuFu g u,
hte Au-Pu g u,
¥ e Y(PMN Au'Fu § u, AacFu g ulj.

The refutation is now completed, and it is tri-
vial to go baek in the proof, substifuting o
and the substitutions derived from it by compo-
sition with the wunifiers already detected, 1o
get a ground refutation.

In particular, we shall substitute M AurFu g
for ¥ in 8.,which gives us explicitly a fixpoint
of T, namely N{{ulPu € u}}, which is precise-
1y ite lesst fixpoint.

Notice that splitting was not necessary here
either, and that the refutation is pretty short
and deoes not involve huge constraints.

CONCLUSION

It is difficult to make any efficiency
assertion from searchless examples. However,
one of the most important heuristic rules to
use in this system would be to throw out clauses
with constraints which are obviously not unifia-
ble. In practice of course most clauses will be
recognized as such, thereby reducing sharply the

number of possible derivations.

Types in this logic play a multiple role.
First, they permit us to have \ normal forms
for all terms. Second, they can be used to sort

objects of different nature, and so we get res-
tricted quantification without adding cumbersome
additional literals. Finally, as a consequence

they restrict the search for unifiers.

This system uses the constraints mechanism to
delay as much as possible the process of unifi-
cation. This has two advantages. First, the dee-
per we go in a refutation, the more information
we gather about the structure of the terms we
need to substitute. This reduces our search
space for unifiers (intuitively, the more argu-
ment-value pairs we know, the less functions
exist whose graphs contain these pairs).

Second, we just need to check for the exis-
tence of some unifier, we do not need most gene-
ral ones. This permits us never to consider the
unification of two terms whose heads are varia-
bles, such as

f(A1. AQ.---,An} and g(B1. Boieess BpJ
or
1(31. AE,...,Ah) and 1(01, 02,...,cn).

These cases are the most difficult ones to
consider for most general unification, but they
are trivial when we need only check for exis-
tence of unifiers (take any constant function).
Actually we need to compose only two elementary
unification processes (called imitation and
projection), whereas to get most general uni-
fiers Fietrzykowski and Jensen' need four, the
other two being the most prolific ones indeed.
This is because when we consider a pair such as
f(A1, Az,...,A) and F(B1,, Bs...... ,B ), we know
something definite about the structure of the
common instance (it must begin with an F) and
so we have a "handle" on the unification pro-
cess.

A disadvantage of the delaying of unifica-
tion is that we Diay generate clauses whose cons -
traints cannot be satisfied and this is why
some processing of these constraints is neces-
sary. In many cases we will know a most general
unifier of some constraint and this unifier
should be applied to the clause. In other cases
we may know that no substitution will unify the
constraints, and then we should delete the
clause. There is a trade-off here in the amount
of unifying while searching which should be done.

Automatic theorem proving is undoubtedly
more difficult here than in first-order logic.
However our higher-order language permits us
to state many theorems in a more concise way,
and refutations tend to be a lot shorter. For
instance, in our examples, we used set varia-
bles in a very natural way (using their charac-
teristic predicates). We could get all the

properties of E with application, of comple-
mentation with land of union with V Also the
abstraction mechanism of \-calculus replaces in

a nice way cumbersome comprehension axioms.

However we might still need use some axioms
of descriptions, to assert the existence of
certain functions

gt vp[(3!1% p(x)) o plilp))].

When we need to substitute non-atomic propo-
sitions for predicate variables (via splitting)
refutations tend to become messy and unnatural.
The system should be improved on this point,
maybe by replacing splitting by rules closer to
natural deduction. This would also allow us to
get rid of the initial reduction to clause form,
which is not always desirable, and to use well-
known techniques to decrease the complexity of
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