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Abstract AT to the power union) ve will assume that
The paper presents a set-theoretical definition of K“= g (4)

the classification problem, and then discusses and
illustrates by examples the application of the
variable-valued logic system VL. to the synthesis of
minimal (or simplest) classification rules under cost
(or simplicity) functionals designed by a user from
available criteria.

Introduction
Paper introduced a concept of a variable-valued
logic (VL) system and defined a particular VL system
called VL1 . One of the basic assumptions underlying
the concept of a VL system is that every proposition
(called a VL formula) and all the variables in the
proposition (used to represent any objects, e.g.,
other propositions) are allowed to accept their own
number of truth-values which are problem- and
semantics-dependent. From the viewpoint of formal
logic, the concept of a VL system is an extension of
the concept of a many-valued logic system.

One of the applications of the VL.
it can be used as an inductive system which when
supplied with 'numerical names' of objects, their
attributes, relations between the objects or their
parts, etc., can infer a description of objects or
object classes, which is Simplest in a well-defined

system is that

sense, and also which is a generalization of the
input information.
Important features of VL1 are that the formulas

of the system have very simple interpretation and can
be very easily handled and evaluated by a general
purpose computer (and, as well, by a human), especially
using parallel or pantllel-sequential techniques.
Also, the system ia well suited for classification
problems which are intrinsically nonlinear.

The paper presents a set-theoretic definition of
the classification problem and then discusses an
application of the system VL1 to the synthesis of
minimal classification rules under various cost
functionals. Two examples are given.

Statement of the Classification Problem
Let 0 denote a non-empty set of physical or

abstract objects, called the universe of objects. Let
K denote a finite non-empty (f.n.) set, called the
universe of representations of the objects o E 0. Let
K denote a f.n. set of subsets of 0, called the family
of object classes:

K~ U{l, xz,...,xml £1)

Ka. € 2’ are callsd object clmspes and are specifled ms:
KJ. = {ojl' 052.......}. %ig © P, k=0,1,2,... (2}

Accepting potatlon:

m
PR A SR 0 i O % (3)
1 it ;f*lé
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Thus, for each object o £ & there exists at least
one object class containing it. Index j of class K.
is called the numerical name of Kj. The set J indexing
classes AT; j
2
Jd = {j[xj e k} = {1,2,,..,m} (5)

is called the family of numerical class names.

In general, the index J can assume not only num-
erical values "but non-numerical names given to classes

Kj, and then J is called the family of class names.
As an example, consider the universe of objects,
0, to be a group of people. The universe of represen-

tations, R, can be, e.g., a set of pictures or voice
records of these people; a set of their fingerprints;
numerical data describing their height, sex, hair color,
medical test results, and so on; a set of statements
characterizing each individual, and, also, a set-
theoretical sum of any two or more of the previous sets.
The family of class names, J, can be, e.g., the set of
the names of people in the group or a set of lists with
names of those who are short with blue eyes, fat or
bald, have M.Sc. or Ph.D. degrees, etc. (In the second
example, sets of class names may not be disjoint.

Though the usual tendency is to classify objects into
disjoint classes, the case of not-disjoint classes is
also, in general, of interest.)
Let:
T denote a relation between ¢ and J, called the
reference relation:*
=7 (6)
¢ denote a relation between Ff and &, called the
representation relstion:
p: ¥ ~—~ R {7}
¢ dentte 4 relstion betvween R and J, called the
classifipation relstion:
: R —JF {9)

In the presant paper we will restrict oursslves
mly to the case where K consiste of disjoint sets and
v and ¢ are fuietions:

{(9)
{10}

F~J
w: R/

(that is, there exiets only one class related to eany

¥ Byt: S5 — 8., where 5. apd 5, are fets, {s meant

thet ¢ 1s & relatfon betweel S, and S, (that is,

RmeS. 45,.G%, G & S.x5.). Anhby &(8),8 ¢ 5., is
mean¥ tie Set o ele%nn from .'32 which mre ruin.‘ced by
l! to 8.



object end any representation). Figure 1 presents
achematically relations t, p, and k.

1tk is & relation petween sets Sl and SE:

L. 5. — 5

1 2
then by Ex(L) we denote ean expression for i, which is
s formula consisting of variables (whose valuas depend
on elements of 5. ), and different aperstions (e.g.,
logical, arithmefic, control), such that for any
8 € 5., Ex{t) computes elements of S related by
relatlon ¢ to element =, =

(11)

Suppose thuat for semantical restrictions {e.g.,
beceuse a mathematical formule cannot deml directly
with physical objects) or practical reasons (e.g.,
because sets @ end/or R are too lerge) it is not
feasible to specify relstions T and p completely and
to determine expressions Tor them. Suppose. however,
that T end p are specified for scme subsets @ ¢ # and
R ¢ R such thet @ Is the wilon of non-empty disjoint
sets g L ¢?|'°‘9 @ :

m

;;al_}.g {e] oeKj},j—-l,z,...m {12

and F is the union of non-empty disjolnt sets
Hl, R osnres Hm:

Rjg{r|rsp[o),oc¢4} (13)
o
such that for every ¢ e ¥,, there is in A, at least
one r £ plo)., Let 1 and J denote restricfions of
T and p:
T 2+ J {1k}
p: F— R (13)

Set F is called a disjolnt representation of the
set #. If it is not required thet sets A, must be
disjoint {for & certain K there mey not ekist a dis-
Joint representastion of @), then B is called 4 pon-
disjoint representation of @.

A non=disjolnt representation does not sllow to
claszify objects without error. In such a case the
following spproeches can be teken:

1. Evaluate probebility densities £ (r) of cbject
with representation r being from clags K., J=L,2,...,m
end then construet decision rules which,"e.g., give
the minimum expected error {auch methods ere studied
in statistical pettern reccgnition"' ).

2, Extend the universe of representations R, or ceek
a pew K such that it will provige & disjoint represen-
tation. {A general tendency here should be to seek &n
R such thaet sets £, are not only dis)oint but form in
R 'clusters'--cne br more per class.) Such a Tepre-
sentation R is called compact or clusiesred.

In the paper we are concerned only with the
second approech and, therefore, statistical methods
will not be considered.

Let « dencte & Tunction:

k: R~/ (16)

such that the compoelte relutlon g o « is equel to 1@
pex=r1T {17}
Note that in order te satiefy (17}, function x hes to

have mppropriate valuss only for elements of R ¢ R,
and, therefore, thare can be many functions of type
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{16) which satisfy (17}, Each of them has the property
that p o ¢ Is egual to T for objects o ¢ #, and for
oblects 0 ¢+ P may or mey not be equal 1O T-

Definition: An expression Ex{x) s crlled 8 classifi=
cation rule for the set & based on F into F, oOr

briefly, & classification rile Cl@, K, &)
Bome of the types of problems which arlse are:

1. How, glven v and o, to determine n clasailicetion
rule C{@, X, #) which {n} involves operations Irom sone
cpecified set, (b) is minimal wnder an assumed cost
Tunctionsl, or,generally,setlsfies certain criteris,

2.

How, given a classification rule C(@, K, ). to
eetimate Its performance for objects o ¢ & and/or
repregentations r¢ & (ssauming that T cen be specified

for some mdditiocnal objects).

3. How, given t and p, to determine a set of cpera-
tiona, such that classification rules involving mll or
some of these operations cen be made very simple {in &
specified sense).

b, How, given ¢ and 1, to speelfy a unlverse R which
will provide a disjoint {or clustered) representation
and will permit construction of very simple clessifica-
tion rules.

In the pbper, we copsider a problem of type 1,
where the universe aof repreasentations R is assumed to
be 8 set of vectors with discrete components, and
classiflention rules mre formulas of & variable-velued
lagic sysiem Yi,. Also, on the pasis of & concrete
example, we disfuss s problem of type L,

The Variable-Velued Logic System VI

Definition of VL.

The variable=vajued logle system, VL., which will
be used here to construct clmssification }ules, was
introduced in paper. For completeness we will include
here 1ts formal definition (slightly modified].

is an ordered

The varleble=valued lopic system ‘v’l.l

quintuple:

(X, Y. 85, Ry R;) (18}
where
L is e f.n. set of input variables

x

whose domains, called jmput or independent name sets,
are f.n. geta, respectively:

i, K H

1* 2
whers H, = [0,1,2,....Hi}, 121,000 4I0s
Hi-—a netursl number.

consiste of one output variable y, whose domain ie
a f.n., set called gutput or dependent neme aet:

H={0, 1, 2,..., ¥}, ¥=--3 natural number,

{Conatants in H represent truth-valuee which mey be
teken by statements {formulas) in the system.)

is the set of 11 improper symbols:
VA

= - R



ig & set of formstion or syntactic rules which
define well-formed formulas (wffs] in the system
(VLl formulas }:

1. A primitive constant from % standing slone is
& Wit

%, A form [Jliﬂfc], where i e{l,2,...,n}, # c{=,%¥],
¢--6 Sequence of elements of H, separated by ',' or
'1' and ordered by relation <, is a wif,

5 It V¥, V, and V¥, ere wifs or names® of Vi, formulas
then (V), =iV}, VA Y {¥ritten also ab vlue),
\fl\-' V, are alsu wifs.

L, IfV, is & vff or e neme* of & VL. formuls or =
single v%risble X, and V, is a wif or's ppme¥ of & VL
formule or sequepte ¢ or its name® than [‘Jlﬂv,,l,

# el=,¥#1, lg also & wif, c

1

Forme (% #c] and [V #v_] are cailed selectors;
the former rorm iz &lso Zalled & simple selector. In
the simple selector [xi#c], ¢ ie called the raference
of x..

-1

If ' Is '=', then the reference s called
Inclusive; otherwige, exclusive, The reference is
galg to be in extended form and celled an extended
reference if ell the constents in it are separsted
anly by ',". The reference is said to be in
compresded form and called & compressed reference ir
in the extended Treference, every mawximal [under
inclusion) seguence of conseputive ponstants uf length
sl least three ls replaced by a Jorm 'c :cE' where oo,
¢ are the first and lesl constants of %'he sequencea,
respectively.

R

I i6 & set of interprelation rulee Wwhich uselign to

any wif ¥ a value v{V}le H, depending on values of

the varishles xl, x,‘,,,.., xn:

1.
is

The value v(c)] of & constant ¢, ¢ ¢ H, i ¢, which
denoted vicl = o.

2. _ B, iT A He
W{lxpel) = {0 cthedvise

vwhere ¥ =¢ (% ¥e} is satiefied if the vblue of the
varisbld x. i3 (is not) one ol the elements in the
sequencve ¢, If two elements in ¢ are seperasted by
111, then the relation 18 alse setisfied 1f the value
of 2, is {is not] betweern the above two elemants. ke
seledtor [xié‘cl ig said to be satisfied if xi#c.

3. By it (Vo deviv,)
v{[vl#VE]] - {D, otherwise 2

vhere the meaning of # and the definitlen of &
selector being satisfied is the same s in 2,

b, wia(V)] = % « w(V]

-(¥} is celled the complement of V,
5. vV V) = mafelv ), v(v,)}

V)V, is called the product (er conjunctien )
of V. "ahd V.

1 2
6. vV AV} = mx{v{vl}. V{VZ}}

V.V v, 4s called the sun (or disjunction) of
Vl an%. ‘4‘2.

# This is sn sddition to the previcus definitidn
given in paper'.
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7. 1In the evalusticn of a \7]..1 formala, /A has higher
priority than V

8. Parenthesis { } have their usual meaning, i.e.,
they dencte = part of a formula which le to be
evalugted a5 a whole,

The following ia =n example of = VLl formule end

its interpretation:
h!xl=0:h.711x2#0.5]\/ 2[x3=D]V 1[x5=01h] (19)

The formula {19) is mssigned the velue U (briefly, has
value 4} if x pecepths velue between {inclusively) O
and 4, or val&e 7; and x secepts valus which is
neither O npor 5. The fobmule has velue 2 if the
previous condition does oot hold and X, accepts value
0. The formuls has veluwe 1 if both of“the previous
conditiens do not hold and x5 acoepts velue betwaen

andg &, If none of the sbove~conditiona hold, the
forml s has value 0.

Event Spaee wg a Universe of Representations

The iaterpretation rules R
yormile & velus Trom the set H
of variables %

assign to eny VL
aependin.g ot the v%luea
aveey X, teken from sets

Hy, Hp,... , iV Thus, theninterpretatiwn ruies
interpret ‘u’Ll Pormites as axpressioneg of a function:

H e - H

f: Ho xR, x..x B {20)

The funetions of the typs (20] are called VL fupctions,
The set B, x H, x...x & , i ={0,1,...,Hi}, I=1,2,. .0,
includss ¥12 pdesible siquefices ol values of input
varigbles and is called the universe of events or the

event spape. The event spuce is denoted by
Elb,, b, ,,,., b ),whera®* n, = c(HiJ = lii + 1, or,
erigfly; by B, “The functidn f in (20} Zen then be

denocted &s:

£ E(h]_, Byaesns hn] +H {o1)
The elements of an event space E, vectors {
%), where ¥, is a value of the veriaple %, , (E
e callegd eq?ents and dencted ty ej, ) = 01;1,2,...
where K = k-1, h = o(E} = hlh')'”hn' Thus, We can
wWrite: <

TEEE)
H L)

Hit L

g = thl‘hz,....hn]={{ii,f2,...,in)}a'cicﬁi A%1.2,,.. 0k

1yK (

420 az})

={e

It is assumed that velues of the index ] are given
by & one-to=one function:

vi E = {0, T,0.e, ¥} (23)
specified by the expression:
1 k+1
Jeyle)=x + > x {|n (21)
=n-1 i=n
yle) is celled the pumber of the event «. For exawple,

e
the nutber of the event & = (2,3,1,
E(5,b,2,5) is:

in the space

v{3) = L+ 125+ 325 ¢ 22205 = 119,

Assuming that the domainsof veriebles in the
formile (19) have cerdinslities: co(H,) = §, cfﬂe) z 6,

* 2(8), where 3 is a set, denvtes the cardinslity of 3



cH ) -2, c(H) 2, c¢(H5) = 5 and the cardinality
of H, c(H) = 5, the formula is interpreted as an
expression of a function;
f: E(8,6,2,2,5) + {0,1,2,3,4 (25)

In order to use VL1 formulas as classification
rules, the representations of objects should be in the
form of vectors whose components are discrete varia-
bles. Thus, if some variables used to characterize
objects are continuous, their ranges of variabilities
should be resolved into discrete units. The number of
these units should be selected as the minimum which
provides sufficient accuracy (to facilitate computa-
tions) and can be different for each variable.

Minimal VL1 .Formulas

In general, there can be a large number of VL1
formulas which express a given VL function.
a problem arises of how to construct a formula, which
is minimal under an assumed cost (or optimality)
functional,

Cost functionals are usually stated as a linear
function of certain parameters multiplied by weights
oeing real numbers. Such functionals can, however, be
inconvenient from the computational, and, as well, the
application viewpoint (they require multiplication and
addition operations, which can be a disadvantage when
a large set is searched, and it is often difficult to
state weights which reflect well the intuition,
usually guiding a designer of the functional), There-
fore, in program AQVAL/l (see next section) a. func-
tional A measuring minimality of VL1 formulas was
assumed to be in a different form, namely:

A = <a-list, T-list> {28)

where: a=list, cA&lled pttribute list, is a vector
a=(n 28oarees ), where the a, denote single- or

msn}r-v%lued sttributes used to characterize DVL
formulas; Tt-1iat, eelled a tolerance lipt, iz a“veetor
T2 {TulyereeaT, ), Where 0 1. £ 1, 321,2,..0.,0,

and th Ti ere cﬂé.lled toleranced for sttributes g, .

i

A DVL. formils V 1l said to be o minimal DVL
gxpressiop for f under functional A irfr

A(V)<A(VJJ [z27)
vhare alv) = (al("") » 8, (V) e, &, (v))
A("J } = (a {v Vs 32(\' Vaenas aktv N

8, (v}, & (v ) denote ‘t,he value of the stiribute a
for i‘omula v and V,, respectively

v,y ¥=1,2,3,... are all saible irredundant’ DVL

J expregsiong for f

EE denotes a relation called the lexicographlc order

1

with tolerance T , defined me
a{v) < A[v yif:
al(?J)—&ltv) >Tl
er 0 Q’I(va)'al{") £, and ag(vj)-gz(v)‘;. T,

or ...

EE TN

4
.

OF wrivesvarsencraranes &0d al(\'dﬁ-azf‘f)> T
ti{ai

8 max “S“{ai(v,j“' ®min -

ms.x-aimin) y I=1,2, 000,

m&n{a (‘1 )}

Therefore,

165

Note that if T = (0,0,...,0), then <denotes
the lexicographic order In the usual sense. In this
case, A will be specified just as A = <a-list>. The
T-list allows a designer to 'soften' the rigid

attribute priorities assuned in the a-list.

To specify a functional A one selects a set of
attributes, puts them in the desirable priority order
in the a-list, and sets values for tolerances in the
i-list. Thus, the functional is very simple to formu-
late, as well as to evaluate, and also it seems to be
well fitted to human intuition in many applications.

AQVAL/1

A PL/1 program, salled® AQVAL/L, hag been
developed at the University of Illinois for the
synthesis and minimization of VL, foermulas. It is &
complex program snd its descrlpt,'}on gnd theoretipal
background goss beyond the scope of the present paper,

AQVAL/1 mccepts the specification of the VL
function {(vhose VL expression lg to be synthesized
and minlmized) in One of the three forms:

1. By event sets: FH F‘M =1
P‘i={e— lxg,..,.:ig}]f{e)

2, By sets similar to those Iin 1, but with evente

specified not ms seguences of input varishles, but by

thelr gunbers (24), i.e., values v(e):
= {y(ellf(e) =

, F& where

k=3i ){"lua-,U [28)

(29}

3. By a dlsjunctive simple VL, formula** (D‘\’Lli
expressing £ (in this case the program is suppdsed to
simplify according to the assumed fynctionel, 1if
pogsible, the glven IJVLl).

As & result, AQVAL/L produces s guasi-minimal
DVL. formule (which is mipimal or approximately minimal)
under & functionnl A {P?€), where atiributes a in the
a-list can be chosen from seven presently imp!lemented
attribtutes, Among them there sre attributes such as:

1. t{V} - the number of terms in V,

2. s{V) = the number of pelectors in V,

3. 2{V) - the cost of ¥ specified ma Z z(xi
{el

z{xi) is the cost {specified in the input data) of

determining the value of variable x,; and variebles x_,

1, where

iel, sre those, mmong 81l % ..x apecified in the
lnput data, which actuslly &p;:gar 1n™the cutput
VL, formuls.
1
b, g(¥) = the 'depree of generalization' defined ss:
B
glv) = = f Ly ) (30)
o k=1 £31
where ef Lkﬁ )
gL, )= &
c(LkRﬂ )

¥ The neme AQVAL/1 was derived from ‘Algorithm ad
applied for the synthesis of Variable-Valued Logic
formutas'. The algorithm AT Which provides o VeTY), 5
simple mnd efficient scolution 1o covering problems *
hae been used es the baaia for VLl formale eynthesis.
*#* A DVL, formuia 1e a sum of simpla terms,where a
simple tetn g & product of a constent (from H) and
one or more simple aslectors.



L —the set of events which satisfy* the & -th tern in
the sequence of terms in V with the constant k

sk —number of terras . &,—total number of terras in V
with the constant k Fk = {ejf(e)= K)

(This attribute was designed to capture the 'size' of
generalization resulting from the formula as compared
to 'true facts'—events specified in the input data.)

VL1 Formulas as Classification Rules (Examples)

In this chapter ve illustrate, by two examples, an
application of the VL1 system to the synthesis of
classification rules. The examples are very simple;
their purpose is to provide an insight into the
principles, rather than to investigate the boundaries
of application possibilities.

Example 1

Suppose there is given a set of eight objects, as
shown in Figure 2, and it is known (relation T) that
those denoted ®. belong to the class with numerical
name 1 {briefly; class 1), and those denoted UO to
class 0.

The problem is to find the simplest (in some
specified sense) rule, which characterizes objects of
class 1 as opposed to objects of class 0.

(To make the problem clearly understood, Suppose
that objects were.mixed up. The rule, which is to be
found, could then be used to restore the original
classification with the minimum cost—according to
some cost functional.)

In order to apply the VL1 system to this problem,
all objects should be described by sequences of values
of certain variables, that is, by events or event sets
of some event space E(h1, h2... ,hn). Then the problem
becomes that of finding a VL1 expression for a function

f:  E(h1,h2,...,hn) - (0,1) (31)
such that f(e) = 0,1 for e E RO, R , respectively,
where;

0,1 - represent classes 0 and 1, respectively
RO,R1 - are event sets representing objects of
@0 and #,, respectively.

Suppose that some specialized procedures have been
developed which can identify in the objects such com-
ponents as rectangles, triangles, trapezoids, circles,
and ellipses.

A simple description of every object could then
be by specifying how many times each such component
appears in every object. Let us accept, as a first
trial, this kind of description as object representa-
tions.

Let x .x%....,xs be wvariahles essociated with
anl.

sach compof
- 3
X -- AN
w7

2 =~ O
-~ 7D

*

By set of events which satisfy the_ term T is meant
the set of all events which satisfy every selector in T.
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mnd let velues of %, = i-1,2,...,5, d=note numbers of
times & given compoilent appears in an object. To be

able to describe in this way eny object in ﬂl and ﬂo,
it is sufficlept to mssume:

Hy = {g,1]

HE = {0,1,2}

H, = {¢,1]

Hy = {0,1,2)

HS = 10,2}

Thus, relsting our problem to the definition of B
clageification rule, the gvent set E{2,3,2,3,2) is
considered as the universe of représentatlena R,
set #.U Z_ can ba coueidered ms F or g}, Let r(d,)
and r‘%‘@ ) @encte sets of events which are d.escript.gons
of objects o ¢ 60 end ¢ € &l, ragpectivaly., We hove

r[gllg{(otg llizsoj t(lna !0!2 ’0) ;(l lllo I2 ?0) 5(0 ’1)0!201}}
r{901={(0.1.l,2.0}.(1.0.0,1.11,(1.1.0,2.01 »(0,2,0,2,1)1

Event {1,1,0,2,0) appears in both r{d. ) and 7{Z. ).
Since this 15 the only event representing gh_}ec‘c 3 if'&
@0 snd objeet 3 in #., therefore, there does not exist
a-disjoint representitﬂon ReR UR,RMR =8,
where R, ¢ »{{ ) and R, ¢ r(al) and each objett of 60
and ¢, fas at Qeast ond reprebentation in Ry mnd £,
respectively.

Consequently, there does not exist a cimgsifica-
tion rule besed on & which can distinguish bDetween
object 3 in {3'0 and object 3 in ;'Jl.

To avold misclessificetion, let us introduce a new
gbject class celled undecidable object clasa and give
the nuwmerical name 7 to 1t., This 2lase can be charac—
terized ma: 'a glass ol objects which are equivalent
in the universe of representetions'., Let RD' Rl’ and
B denote event sets: K. = n{@ Nfe¥*},

K = n(g,Ni=%}, R, = {e¥} whers e* = (1,1,0,2,0).

1

Figure 3 praesenta the CZLD* representaticn of the
gpace E(2,3,2,3,2) and sets R, R, &nd R.. Cells in
the diagrem which correspond %o eVents t:rf'?R . .. 8nd
K, are merked by 0,1.2, respectively. The giag}a.m is
E'élf-explana.ton}; for the formel definition of GOLD and
details consult'.

fat f be a function

£ B(2,3,2,3,2) » {0,1,2} {32}
such that f(e} = 0,1,2 fore e R, R, R, respectively
(i.e., for e : R U R1 U R2 the value of f is not
restricted). Let us determine a classification rule
for 0 U 0 based on R into J- {0,1,2} as a VL1
formula expressing f, briefly, a VL1 expression for f.
A VL1 expression for f minimal under functional:

<t,z,s (33)
where t - number of terms, z - number of different
variables, s - number of selectors,(that is, an expres-

sion which has the minimum number of terms, the
minimum number of different variables for that number
of terms, and the minimum number of selectors for that
number of terms and variables) determined using the GD
representation of the function f, is;

20 mlx=1 ]V 1%,20,2][x=01 V 1(x,m1)(x;21] (34)
Figure 3 shows the sets of cells which correspond to

terras of the formula. The formula gives a rule: If
an object has one rectangle and one triangle, then it

* 'GLD' stands for Generalized Logic Diagram which is
a planar model of a space E(hf,........ ,hn).



belongs to undecidable class;
triangles and 0 ellipses, or 1 triangle and 1 ellipse,
then it belongs to class 1; if none of the previous
conditions holds, then it belongs to classQi (Bote
that the formula involves only three variables x1,x0,
and x5 out of five, i.e., requires measuring only the
number of rectangles, triangles, and ellipses.) The
formula has a disadvantage that it cannot classify
correctly all objects and also seems to be rather
complicated.

if it has 0 or 2

Let us now try to extend the universe of
representations to obtain a disjoint representation of
objects. An obvious way to do so seems to also
include in the object descriptions information about
spacial relationships between object parts. Suppose
that the specialized procedures not only can name the
object parts, but also can determine binary relations
such as 'on the left of, 'contains', 'on top of
between adjacent object components. New variables
have, therefore, to be introduced. Let x6, x7, and x8
be variables such that: X6, and x7, represent the left
and right elements (object components), respectively,
in a binary relation which relates any two adjacent
components. Their domains, H6 and H , are sets of
numerical names of all object components which can be
distinguished and uniquely named in any object:

H6 =H7 ={0,1,........... ,7), where O represents a rectangle,
1 - a triangle or a left triangle if there are two
triangles, 2 - a right triangle if there are two
triangles, 3 - a trapezoid, 4 - a circle, 5 - a left
or upper circle if there are two circles, 6 - the
right or lower circle if there are two circles, f -
an ellipse; X8 represents binary relations between the
values of x6 and x7, if these values are names of
adjacent components in an object. Its domain, Hn,
consists of numerical names of those relations (from
a universe of relations which specialized procedures
can detect), which actually appear between adjacent
components in any object: = [0,1,2 ,3], where O
represents 'none of the relations holds',1 - 'on the
left of', 2 - 'contains', 3 - "on top of.

Let uws see if thers exists a disjoint representa-
tion of the objects, if they are represcnted only by
relaticns which exist between cbject components, that
is, by vectors {k., 8)’ £ e H )La and
These vact TE Can treate

£ H a5 Zvents of
tBe spbue E(6,8,4). Ve nave:
rid. ) = {e e E(B,B,h} ee rio)], oc 90}

90] = {e e E{(6,8,4) | e ¢ vlo), o e @}, Sets

g

events‘ of set

E={e } (see right side of the
teble )} appear in both sets r(ﬂo) and r{# ). Howsver,
as opposed to the previcus situation, ea'&h cbhlect has
now more than one representetion. Therer‘ore. by

ﬂl) end 2’{@1) are specified in Table

ag ‘ta.'ble shnwa tha

removing events of E from »{¢ ) and. r{g we can
obtain = disjoint representation: & U R whars
= #(g NE and k) = r(al)\E. {35)

To find & claspificetion rule (for @2 U
based on R into J = {{,1]), we have to d.e%erm:l.ne an
expression for a function:
(36)

i: E(8,8,L) = {01}

such that fle] = 0,1 if e € R l' respectively.
The VLl expression for £, minimal under the

functiconal:

% Recall thet j in eJ i the event number yle) &s
defined by (24},
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<tg> (37)
where t - number of terms,
generalization (30),
of f, is:

and g - the degree of
found using the GLD representation

[%520, 3, T ;25,6 1{xge3] V [xgm2 Hxo=3xg=3]  <se>
Assuming the functional <t,g> means that we want
to minimize the number of 'rules' which are needed to
classify objects (terms in a formula), and also, with
secondary priority, we require a minimal 'degree of
generalization' resulting from these rules).
It can be observed

in Table 1 that the event

e = (2,3,3), which is the only event which satisfies
the second term of (38), can be removed from r{ﬂl)
and the resulting representation R will still be"a
disjoint representation of objects. Therefore, the
formula:

[%=0.3.7(x,=5,6 1 [x=3] (39)
(which is the formula (38) without second term) is also
a classification rule. (39) gives a rule: if a given

object has a rectangle, trapezoid or ellipse on top of
two or one (out of two) circles, then it belongs to
class 1, otherwise to class 0.

Comparing (38) and (39) we can say that (38),
though more complicated (in sense of functional <t>) ,
gives additional information, which, if appropriately

used, may speed up the classification process.

Let us now assume as a cost functional the

functional:
<t,a,2r {140)

where s is the number of selectors and z the number of
different variables. Assuming this functional means
that we want to obtain possibly simply description (in
the sense of <t,s,z>) while permitting a greater
generalization which may arise from it. Two minimal
VL1 expressions for f under <t,s,z> (assuming that
does not include the event (2,3,3)) exist:

[xr=h.5][x =3}
(x,=b,5 1 [xg¥2 ]

(41) gives a rule: if
(since x6 was dropped) is on top of two or
two) circles, then it belongs to class 1,
class 0. gives a similar rule: if, in a
object, there are two circles not

contained
then it belongs to class 1, otherwise

41)
(42)
in a given object, anything
one (out of
otherwise to
given

in _anything,
to class 0.

Considering all of the above formally found
it seems that they are close to what a human intuition
could support as classification rules. Also, comparing
(38,39) with (41.42), it seems that the measure of the
'degree of generalization', specified by g, is relevant

rules,

Since the obtained rules classify all objects
correctly, there is no need to consider descriptions
which use all eight variables.

Example 2

Figure 4 shows two sets of small 'pictures',
R1 and R , which represent certain objects from two
classes, 1 and 0, respectively. These 'pictures' are
graphical notations of vectors {x1,x2,. ,x9), where

variables x1, i=1,2,...,9,
elements as shown below:

correspond to picture



*1[%e[%
*6 %1%

x

51 %u[*3

Domains of variables are Hi = {10,1,2,3}.
Elements of Hi are graphically represented by
different shadows given to picture elements (as shown
in the lower part of Figure it). Sets R1 and RO are
disjoint, thus, R = RO U R1 is a disjoint representa-
tion of objects. The universe of representations is
here E(4,4,4,4,4,4,4,4,) or briefly E(4+9).

The problem is to find a classification rule
based on R into set {0,1), which Is the minimal
according to some assumed functional.

A classification rule based on R into {0,1} is an
expression for a function
e el + g)+ {0,1) (43)
such that f(e) = 0,1 for e RO, R1, respectively, We
will Seek a classification rule by synthesizing a VL1
expression for that function. As a cost functional
let us assume the functional:
A= <t,e,2> (44)
Program AQVAL/1 has been applied to this problem

and produced the following quasi-minimal formula under
the functional A:

3,711 [x=1,2 [ xgfo ][ xg#1] V

v[x.;o.l][x6=0,1][x3-2.31119#0] vV [x2=l][x5=3] (45)
Figure 5 shows a graphical representation of
individual terms in (45). means that the cor-
responding variable (in order to satisfy the approp-
riate selector) should have value equal to 2 or 3; \W\
means that the variable should have value not equal
to 0; * denotes irrelevant variables; the meaning of

the other cells is analogous.

As we can see, the formula depends in toto on
five variables out of nine. -

It can be of interest to compare this solution
with results obtained by other approaches to the
above problem.

The following four results were generously
supplied by Mr, T. J. Mueller (result A) and
Professor E. Gagliardo (results B, C, and D) of the
University of Oregon.

A, Veto logic Events e = {X ,x.,...,% e B.U R
are translated inte 23—cnmponen% binary véetors 0
yle} = {}'1'5’2 "”’yEB):

x_[, Xy x9 Y¥a¥y | Fi¥e¥g e

x6 ﬁ x2 rooa F ] .- v g

xs :h ﬁ .o a & 4 Yaﬂesye,r

Values of T Are repredented by sequences of values of
three (bineTry) variables ¥

(2) ~ {0,1,1)
{3) ~ (1,1,1)

Varisble ¥og is en sdditional varisble; its value wes
set to l.
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to

Thres weight vectors W R
clesslfy events from Rl and %0

L)

.09119226
20518258
20797055
09119226
. 3965925
05887045
. 18238452
L3h1gT09T
07118216
=0. 12630204
-0.012311'72
.043505]15
+ 15958645
. 3BLTREOL
23076862
-0.01231172
g2 BTO8T
.11229035
07622697
.1902172%
L249087Th
LOTEBB0LL
17007280
V15006271
.21301535
. 364520761
2262 8R67T
=1, 38314514

Jl.’TWr

¥

.C0619241
-0.31318312
-0, 14630878
-£.112 th"['3

. 1928kk32

.C62h3012

. 12295022

.23h01583

L0LBTELAS
-0.0803520k
-0.31748333
=0.03525636

J066B25L0

026566803

LO2B25318
=0, 01803480

.21287293

17750369
«0.21053121
=0.25610102

2933590
-0,23007723
=0, 33619246
-0.15315384

LP20R3GTO
=0. 15504804
=0, 07623062

. 30564728

and W, wvere cbtained
using 'veto' logle:

w3
03820991
-0, 26958540
=0.13027307
.03551009
L1790k 32
. 32208080
.01177088
. 15927808
-0.0T01TT5S
=0.02458h53
-0.13115018
L0BLLETLE
21784891
-08009393
L06EL031T
.1353123h
LhotTo1055
.27205511
=0._06775971
-0,23897380
1658097
L02731614
-0.07375359
.01180357
09723179
=0. 07507654
.01503365
-0.50508121

An oblect, vepresented by vecter yl{e), is classified as
& menmber of class 1 1if:

y(e)-wjg 0, for j=1,2,3

otherwise ag & merber of class O,

{L6)

B. GCeguentiasl Boolean Expression Events e ¢ Rlu .E‘O
g¥e represented in a similer way as In 'Veto Logitc',
except thet varlsble ya iz not wsed; that is, they are
represented by vectors ]?{e] = (¥ yFoerres¥ o). The
following result wes obtained hylhuﬁm e&lzcllations

{after & few hours of work).

An oblect, represented by vector yl(e), is
tlaggified as & member of: ¢lmss 1, ify__ =1,
class O, if y_ . = 0 where variable ¥ ia3gomputed
from the follgg'ing Boolean equaticns?’g

Y2 = Y2V Ty ¥y T ¥3aV Vig
Yog ® YoV ¥1g3 V45 " FgV Vs
¥ag = ¥ogV EET Fag = V35V Yop
Y " V5V ¥y Y3y T ¥y ¥y
Yyp = ¥3V ¥y Yap = Y37 Y3
Y33 T ¥V ¥ys Y3 TV ¥y

{, Segusntial Boolean Expression (Ancther Vergion
This result £ sjmilar to one ip B, execept that ii was
dbteined by & computer program. An object, Tepreaen-
ted by vector y[(e), ia classified me & member of:

class 1, 1f y_,. =1, claes 0, 1f y. . = O where variable
¥y 18 comput88 from the following Boolesn equetions:

Y33 = T3 Ty3

Yp =¥ Y1g

Yag = ¥14V Yop

Yp " ¥V Ty Va5 V3 Yoy
{continued)



Va6 * Y35 Yo ‘Y39 = }'QV ?21
T3~ Y36 ¥y g = Y38 Y3
Vig " Y3 V ¥gq h1 Ty ¥y

Yip = ¥ypV ¥y,

D. Sign-of-Folynemial Solution This result wug
wlag vbtuined by & computer pmgram(' . 1t uses sindler
(8s in the second and third examples) representation
of events e by vectors yle) = (¥ ,¥,se..a¥.,. 0, exeept
that y, teke values 1 ond -1 (inftekd of 1dnd o),

An object, represented by vector yile) is

classified as & member of: eclass 1, ify, = -1,
cless O, 1f p,, = l,where variable Yag 15 domuted
from the I‘_oJ_].o%‘ing expressions: -
Yo Yae Yy Y5 Yp You Ve
vpg = sie (- T - B F e
¥ ¥ ¥ Yo ¥ ¥ ¥
DO S~ N A~ - I SRt}
10 1 12 13 1h 15 1k
¥, ¥
==L -Jé- }
17 17
Yo Yoy Yos Yo Y1, Y3 Yop
Yo T ElE St T - T T o
y& 16
TS
. _ 1. ifapt
signla) = 1" 15 &y

It can be worth noting that pesults in all
examples regquire measuring different numbers of
uriginal wvarigbles: wall Y variubles, t variables,
& wvariebles, and & vurisbles, respectively.

Concluding Remarks

1. Presenter, concepts and the classificntiori
method are of general applicability. They can 'be
especially useful in solving deterministic classifi-
cation problems which are;

—intrinsically nonlinear (e.g., when each class
represented by a number of independent 'clusters'
in a representation space) or

—when variables are measured on nominal scale (i.e.,
values of variables are labels (‘numerical name?.")
of certain independent objects and, therefore,
arithmetic relationships between these values have =
no meaning) or ordinal scale (only order of variable
values has meaning). Thus, they can be applied
beyond the area of applicability of conventional
methods, such as linear (or nonlinear) discrimination
techniques or statistical methods,

is

2. The method automatically detects and
redundant variables.

reduces

3. Classification rules in the form of VL1
expressions are very easy to interpret by humans
at the same time very convenient to evaluate by

and

computers (especially using parallel or parallel-
sequential techniques).
4. Although the synthesis of minimal VL1

expressions is a complex combinatorial problem,
experimental results from program AQVAL/l prove
that the execution time and memory requirements
in solving 'average size' problems are quite
acceptable.

5. It is also worth noting that the method can
be extended to cover the case of not completely
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specified events,
missing (what
and, also,

i.e., when some measurements are
is a common situation in applications),
that the classification rules (obtained

based on some given data) can be easily modified if
new information is given which is contradictive to
the rule.
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