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Abstract
An adaptive-control procedure is described
which is intended to improve both acoustic

analysis and linguistic decoding in automatic
recognition of continuous speech by bringing
into agreement data available at each of
these stages. Specifically, hypotheses are
formed by the decoder concerning the phonetic
transcription derived during acoustic
analysis. The procedure then accesses and
utilizes relevant acoustic data in an attempt
to verify or reject these hypotheses.
Depending on the success of such attempts,
actions are taken to constrain the decoding
in subsequent processing iterations.
Preliminary results are presented
discussed.

and

Introduction

here concerns
the objective

The work to be described
one aspect of a larger effort,
of which is to make inroads toward pragmatic
solutions for the very difficult problems
involved in Automatic Recognition of
Continuous Speech (ARCS) (1,2,3,4). The
strategy which has been employed is one in
which no attempt is made to model human
processing in true analog form (5). The
model generated consists of hierarchically
arranged, essentially independent stages
concerned with signal quantization, subword
segmentation, acoustic classification and
linguistic decoding.

The present topic is an adaptive-control
mechanism intended to improve both the
acoustic analyzer and linguistic decoder
outputs by bringing into agreement data
available at each of these stages. In our
work the automatic mechanism which performs
this verification task is referred to as the
linguistic-processor feedback stage (or
adaptive controller) of an automatic speech
recognition system. Earlier work concerned

with  this particular utilization of adaptive
control has been reported previously
(3,4,6,7). The use of adaptive control in
the interaction of successive stages in
systems of this sort is certainly not new,
and has also been tentatively studied in this
system relative to the segmentation and

classification stages (8).

data presented here represent
of utterances than hitherto
processed by the Ilinguistic decoder, the
results are more representative than those
previously reported. This was made possible
primarily by the increased processing speed
of an IBM/360, Mod 91 as compared to a Mod
40, on which the system was developed. Also,

Since the
a larger set

for purposes of clarity, relevant processing
performed on an example utterance will be
presented. This should enable readers who

to obtain at
ideas behind the

are unfamiliar with this system
least an overview of the
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main processing stages. The procedures
particularly related to this study are
described in detail, whereas other procedures
are described only briefly. Obviously,
length restrictions preclude the possibility

of giving a detailed description of all
aspects of the system. Further descriptive
information on the most recent version of

this speech recognition system can be found
in Ref. 4.
Procedures

A block diagram of the speech
recognition system under consideration here
is presented in Fig. 1. The acoustic
processor performs signal quantization,
subword segmentation and acoustic
classification. The input to the acoustic

classifier consists of a sequence of digital
Spectral Time Samples (STS), one every 10 ms,

with time-aligned phonetic-class boundary
indicators (Fig. 2). These boundary
indicators generally fall within what are
usually considered the apparent phonetic

states (nodes).

Acoustic Classifier

Classification consists of
and dynamic
consolidation and
Spectral correlations
STS (Fig. 2);
five highest
that STS with

steady-state
classification, node
anchor-point placement.

are performed for each
for any STS they are simply the
correlations (in percent) of

each of a set of referent
classes. This set roughly corresponds to the
broad phonetic classes of General American
English. For boundary STS, steady-state
classification consists of the spectral
correlations at that point in time. Dynamic
classification is concerned with labeling the
inter-boundary regions relative to a set of
stored classes. The subword segments so
defined relate to the transition from
phonetic state to neighboring phonetic state,
and are referred to as "transemes." The
dynamic-classification output is represented
as a rank-ordered, five-deep choice table.
Node consolidation combines, by rule,
steady-state and dynamic classification at
the boundaries into a single phonetic
transcription. Additional procedures are
employed at this point to delete or insert
boundaries based on time-domain information.
Anchor-point procedures place symbols
immediately following the segmentation
indicators, marking the certainty with which
the boundary is placed and/or the preliminary
name is assigned. A bar (!) indicates a
definite segmentation point and a plus (+)
indicates a definite boundary name.

a

The output of the classification stage,

which serves as input to the linguistic
decoding stage, is Dbasically a string of
machine-derived phonetic symbols. Using
standard phonetic notation (International



Phonetics Association, an essentially broad”
transcription of the example utterance was
aurally determined to be

[wanthaced?atsafargatdapharth?andalokhave]
alphaphonetic,

method of
corresponding

Using our machine-related,
two-character-per-node
transcription the
representation would be

MXUHNXTXTOQAA! XERDX? X AWF XSY.ERFXAMRXGXAATX

DHYHPXPQAARXTX TQ? XKUHNXD XUHDHUHKXKQUHVXER,

string actually obtained
from the acoustic classifier for a particular
utterance can be considered a noisy version
of some acceptable phonetic transcription.

The alphaphonetic

Linguistic Decoder

linguistic decoding is
that

The function of
that of phoneme-to-grapheme translation,

is, the ~conversion of this noisy phonetic
sequence from a phonetic representation of
speaker performance into a
standard-orthographical representation of
speaker intention. Linguistic decoding
utilizes a speech-oriented, graph-search
technique based on the Fano algorithm (9),
Sentence production is modeled by a 250-word
command language** capable of producing

approximately 14 million different sentences.

The average length of a sentence is eight
words. For each word entry the lexicon
contains a description of phonetic paths
corresponding essentially to the reasonable
pronunciations of the word. These
pronunciation variations were generated
automatically by a set of phonological rules
operating on "ideal" or "standard"
pronunciations (10). Since the lexicon

describes approximately 100 speaker-dependent
phonetic paths per word, the tree to be
searched contains about
ten-to-the-sixteenth-power phonetic paths per
sentence, not including paths to account for
machine error. The decoder output consists
of time-aligned, hypothesized phonetic-symbol
and word strings with indications of the
types of hypotheses which are necessary to
arrive at these strings from the input data.

*

stop aspiration we have used
transcription in this work.
Broad phonetic transcription roughly
approximates phonemic transcription. On
occasion, however, we have experimented with
certain allophonic variations, such as light
versus dark [ I]. The restriction to
essentially broad transcription has been due
largely to computer considerations involving
acoustic classification.
**  The command language is
context-free grammar
by which our choice
language was made are
mentioning. The primary
i) the grammar must be easily implementable
by machine, ii) the statistical properties
must be such that phonetic decoding could be

Except for
broad phonetic

specified
(4).

of a command
perhaps worth
criteria were that

by a
simple The

criteria

controlled and studied independently of
syntax and semantics, and iii) it should be
of such a complexity that system performance
is neither too good nor too poor, so that
system improvements can be easily seen.
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For the example utterance this output s
shown in Fig. 3. These hypotheses are
concerned with two types of noise: that
considered to originate from the speaker
(Dependent, D) and that from the system
(Independent, ). Within each type, the
noise is further categorized as Substitution
(S), Omission (0) or Insertion (1) of
phonetic events relative to the hypothesized
string. Thus, in the example utterance, the
"IS" at the fourth node represents the
hypothesis that the input node was a

speaker-independent (machine-related)

substitution of one sound [ p] for another
[t], Anchors are utilized to restrict the
types of hypotheses allowed at the node
level. Thus, | does not permit insertion
hypotheses and + does not permit substitution
or insertion hypotheses, relative to the
hypothesized string.

Adaptive Controller

mechanism is to
made in
output so

of the control

reject the hypotheses
the linguistic-decoder
as to improve subsequent processing.
Feedback is made at the sentence level; the
control-mechanism procedures may modify the
phonetic and/or anchor information which, in
turn, may lead to —changes in subsequent
decoder output. The procedures make use of
information available at the
acoustic-classifier level. Specifically,
sequential spectral-correlation, ranked
dynamic-segment classification and a general
"word-fit" criterion are employed. The
word-fit «criterion concerns the degree to
which an hypothesized word requires
hypothetical change from the noisy input
string.

The aim
verify or
arriving at

results of on the

utterance

The
example
The only

adaptive control
are presented in Fig. 4.
portion of the example utterance
changed by feedback was the prepositional
phrase. For the first and second passes the
hypothesized word output for that portion was
"...between those camps."” On the third and
fourth passes the output became ...over the
cover" and then "...on the cover,"
respectively, never reaching the intended
"...under the cover." It might be noted that
of these four passes the alignment of input
and hypothesized nodes is considered most
accurate (relative to speaker performance)
for pass three, due to the proper alignment
of "the."

On
may be

of hypotheses which
point in the
insertion
mechanism

the three types
made at a particular
string substitution, omission or
— the action taken by the control
may be positive, negative or neutral. For
substitution hypotheses the positive or
negative action is to change to, or prohibit
change to, the hypothesized name. For
omission hypotheses, the positive or negative
action is to insert, or prohibit insertion
of, the hypothesized name. For insertion
hypotheses, the positive or negative action
is to delete, prohibit deletion of, the

or

name originally inputted to the linguistic
decoder. For all three hypothesis types,
neutral action leaves the original input

unaltered. The procedure is as follows.



First, the word-fit criterion is applied
in terms of information at the word level
within the adaptive controller. An
hypothesized word is considered in "poor fit"
if i) every node in the word required
hypothetical change, i) a gross class
substitution was hypothesized (e.g., a vowel
hypothesized as a stop) and/or iii) the ratio
of independent omission and insertion
hypotheses to hypothesized-word length
exceeded a threshold. The word-fit criterion
is used either to allow or disallow the use
of the hypothesized word and corresponding
components to direct the attempt to verify an
hypothesis; that is, positive action can only
be taken if the word-fit criterion is met,
whereas negative action can be taken

independently.

Second, substitution hypotheses are
tested using as confirming or rejecting
criteria the classification information at
the node (boundary correlation and transeme

names) level. Confirmation takes place by
changing an input node to the hypothesized
node when there is sufficient information to

takes the
placement if the

support the hypothesis. Rejection
form of i) plus (+) anchor
original name is detected to a high degree in
the classification information or ii) if no
evidence of the hypothesized name is found,
that name is suppressed in subsequent
linguistic decoding. Since all actions are
cumulative, more than one name could be
prohibited as a substitution for a node after
several passes. For the example utterance,
all rejections were of the suppression
variety.

Third, omission hypotheses are tested
using as confirmation or rejection criteria
the classification information at the
inter-node level that is, correlations
between boundaries.* For example, a vowel[i]
was hypothesized as having been omitted
between the eleventh[fland the twelfth [s]
nodes of the original string. This was an
hypothesis of dependent omission (DO). Since
the "word-fit" criterion was met, the
adaptive controller accessed the information
between these boundaries, looking for a
sequence of five successive |X[i] names in
the correlations within three percent of
first-choice ~correlation (Fig. 2). This
would have been sufficient to confirm the
hypothesis, inserting into the string for
subsequent linguistic decoding. However,
since such a search did not produce
sufficient evidence of the hypothesized
sound, no action was taken. For an
independent omission (10), if there is no
evidence of the hypothesized sound found in
the classification data, a dot anchor {.) is
placed after the indicator immediately
following the hypothesized omission,
disallowing omission hypotheses at this point
in the string during subsequent linguistic
decoding.

Fourth,
searching

insertion
the

hypotheses are tested

by correlations between the

transemes were also used

of procedures (3).

*Medial names in
in an earlier set

for
the
state.

preceding and following boundaries
confirmatory information, treating
original boundary as a non-boundary
The general procedure for eliminating nodes
hypothesized as insertions is to test the
hypothesis that an extra segmentation
boundary was adventitiously inserted. The
test employed attempts to find a string of
names, within a specified percent correlation
and corresponding to either the left or right
boundary, which will noninterruptedly bridge
with the node hypothesized as inserted. If
bridgeable, the node hypothesized as inserted
is deleted for subsequent processing. On the
other hand, if bridging does not occur for an
independent insertion, and if strong evidence
indicates that the node in question s
actually present, a bar (1) anchor is placed
so that in-subsequent processing an insertion
hypothesis cannot be made.

Plosive-aspiration states (such
handled by special procedures
goal is to eliminate plosive aspiration as
adventitious, relative to the
broad-transcription representation in the
lexicon used by the linguistic decoder.
These states are identified and generally
retained in early stages of processing
because of the acoustic-phonetic fact that a
low-energy fricative following a stop
consonant at a word boundary is essentially
indistinguishable from plosive aspiration:
e.q., "make the"[metkia] versus "make a"
[rmik”*a]. Syntactic constraints are invoked
during linguistic decoding to disambiguate
such "minimal-difference" cases.

as TQ) are
in which the

Several operational criteria for
terminating the feedback looping governed by
the adaptive controller are feasible. These
include the following: i) no change occurs in
the hypothesized word string, ii) no change
occurs in the hypothesized node string, iii)
no increase occurs in similarity measure, iv)
no decrease occurs in linguistic-decoder
computation time, v) insufficient positive or
negative action occurs, vi) a specified
number of feedback loops is completed, and
vii) some combination of the above. The
following <criteria were employed for the
present system.

1. In order to make another feedback
there must be at least one
rejection, i.e., one or
suppressions or dot, bar
anchors. This was considered reasonable
in that supportive action should not
cause a change in word output.

2. For computational purposes a
number of feedback loops
exceeded. A maximum  of
employed here.

loop,
hypothesis
more node
or plus

specified
cannot be
three was

it was found
output string
selection

Since
the last
additional
established
among the
feedback

that simply taking
was not optimal,
criteria were
to select the best output from
candidates, i.e., the original and
passes. It was empirically

established on training data that it would be
reasonable to take the last complete
sentence output, if any complete sentence
occurred, and to simply take the last output
where only incomplete sentences were
obtained. Thus the only outputs selected
which were not the most recently obtained
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were those in which a complete sentence

became incomplete through feedback.
Results

Evaluation was performed on a total of
95 sentence-length utterances, 23 test
utterances from one speaker under the
intra-speaker condition, and 24 test
utterances from each of three speakers under
the inter-speaker condition. Thus, one of
the training speakers was also wused for
evaluation on test sentences. These
performance results are shown in Table 1.

Performance was evaluated in percentages
at the following levels, before and after
feedback.

1. Sentences correctly decoded relative
to all sentences entered. This provides a
measure of overall sentence performance with
no other factors considered.”

2. Sentences correctly decoded relative
to those sentences outputted in complete
form. If sentences outputted in incomplete
form are considered to be system rejects, and

therefore subject to reentry, then this
percentage provides a measure of system
performance relative to system acceptance.

If this percentage were sufficiently high and
substantially higher than the first measure,
the rejection condition would become
operationally useful.

It might be mentioned that it is
probably possible to achieve the above by
making it more difficult for the system to
output complete sentences by tightening
system constraints. This would undoubtedly
occur only at the expense of an increase in

rejection rate, ceteris paribus.

3. Sentences rejected.

4. Correct words in non-rejected
sentences. This provides additional analysis
at the subsentence level where full sentences
are outputted. If enough were known on an
operational basis about the relative
importance of words according to some
linguistic/semantic referent, such an
analysis would become increasingly meaningful
with regard to information transfer. With
this in mind, it is probable that, as such
linguistic/semantic referents are brought
within operational knowledge, this measure
will become increasingly important.

5. Words correct relative to words

* In addition, percentage of sentences with

only one word in error relative to all
sentences is of interest, since there can
exist words which are minimally different
phonetically, but equally likely at some
point in the string. This is one condition
under which a very minor error in acoustic
analysis can create, without more
sophisticated language constraints, an
incorrect sentence. The percentage of time

that this happens, therefore, <can aid in
analysis of linguistic processing at the node
and word levels.

outputted, whether or not in complete
sentences. This corresponds, at the word
level, to number 2 above.

6. Words rejected.

7. Words correct relative to all words
entered. This corresponds to 1 above.

8. Words correct relative to words
outputted from those utterances in which
feedback changed the word output. This
provides a specific measure of feedback
performance.

The speaker involved in both training
and test-sentence evaluation will hereafter
be referred to as "speaker 1". As might be
expected, accuracy within the linguistic
processor was somewhat higher for this
speaker than that for the other test
speakers.

Discussion

Philosophy of Analysis

If the goal of processing is automatic
speech understanding, the performance
evaluation must be tied to the
appropriateness of consequent "actions" taken
as a result of semantic factors. However,
for the present system, whose goal is
automatic conversion of speech signals to

printed sentences in standard orthographical
form, questions arise in the analysis of
performance data concerning the referent to
be employed. For linguistic processor output
the parameters of concern are accuracy at the
word and sentence levels. Two types of
errors are considered for each level

errors of omission and errors of commission.
The first are typically manifested in terms
of word or sentence rejection by the
linguistic processor and the second by words
outputted in error. This corresponds with
human speech-perception behavior insofar as
the listener asks the speaker to repeat
himself (rejection) or misinterprets what the

speaker said (substitution, deletion and/or
insertion of words).

If one cares to «carry the analogy
further it may be reasonably hypothesized
that human listeners err in their speech
perception behavior, assuming optimal signal

conditions, in terms of two major phenomena
— those errors of omission which result when
the input will not map through the listener's
"model" and those errors of commission which
result when a wrong path is taken through the
model. From a diagnostic point of view, it
can be seen that both errors of omission and
commission arise from the same two sources —

receiver model limitations and input
corruption. Further diagnosis of the human
situation becomes exceedingly difficult and,
in fact, virtually impossible, due to the
subtleties of the communication event,
listener "set" and point of view of the

diagnostician. For example, while some small
nuance in the expression of a speaker may be
completely misinterpreted by the listener, it

is moot whether the miscommunication is due
to speaker misevaluation of listener
sophistication or to the limited

176



sophistication of the listener. It must be
noted that "miscommunication” involving human
processing necessarily involves levels of
processing which are much deeper than those
operationally involved in automatic
processing by machine at the present time.
With the exception of some trivial cases, in
which lexical items may be viewed
independently as operational variables, i.e.,
simple oppositions such as yes/no and the
like, there are presently insufficient
operational data extant concerning these
deeper levels of natural language as they may
be manifested phenomenologically.

With the above in mind, it appears to be
reasonable to set as the evaluation referent
for system" performance variations at both the
phonetic and lexical levels which are not in
violation of the model being utilized as our
"listener", i.e., the ARCS system, not
including statistical phenomena considered to
be speaker-independent.

At the node level, if an event in the
output string cannot be reasonably accounted
for, then it is considered to be an error.
In such cases it is possible to determine the
source of the error, whether it be in

segmentation or classification.

At the word level, if an input string is
accounted for and the linguistic-processor
output is incorrect relative to the known
input, then the word is considered an error
arising from the linguistic processor.
However, the processor has been designed so
as to overcome input contamination resulting
from the speaker and/or acoustic analysis.
Thus, while components of a word will be
considered in error the word itself may not
be in error; word errors and phonetic errors
may be treated independently.

The most stringent test of system
performance is made at the sentence level.
In order for a sentence to be correct, its
description at all levels of processing must

remain within the capability of the system to

overcome error. Excessiveness of error at
any level of processing will be reflected at
the sentence level, since the a priori
probability of correct sentence output s
virtually zero (1/14 million). Ideally, the
system will reject strings in which
contamination is excessive. This may be

viewed as a reject condition at the sentence
level, corresponding to the necessity for the
speaker to repeat the sentence. A sentence
may be considered in error in varying
degrees, depending on the number of words
rejected or outputted in error, in reality,
a simple counting of <correct words in.
relationship to total word content of a
sentence does not reflect the true degree of
error involved in terms of information. It
is clear that for purposes of semantics the
kind of word outputted in error should be of
primary interest; in fact, a one-word error
can be more severe than multiple-word errors
depending on the semantic weights of the
words involved. Since there are no semantic
factors incorporated/ as such, in the present
system, it is not meaningful to evaluate
performance along this dimension.

Diagnosis of System Error

Additional analysis of the performance
data beyond pure exposition is extremely
difficult at the present time. It should be

clear that in the development of a system as
complex as this, the optimization and
stabilization of performance will progress as
a function of depth into the system, i.e., as
a function of cumulative complexity.
However, these results are certainly
encouraging for the present approach.

In analyzing error in the output of the

linguistic decoder, it became apparent that a
considerable amount of the error term was
attributable to interaction between the two

major stages of processing. An additional
error component was explainable in terms of
inadequacies at one or the other stage.

For acoustic
problems arose from
exceed the

analysis the primary
intrusive phenomena which
present classification
nomenclature. Some examples of such are
glottal arrests at word boundaries (the S1 at
STS 77 and the M at STS 218 in Fig. 2) —
normally classified as stops by the system;
aspirated releases of initial vowels
normally classified as fricatives or
aspiration; voice breaks
fundamental-frequency
integration-interval interaction —
classified as rapid closures (short, shallow
dips in the short-time amplitude measure);
and partial dissimilation of vocalics when
they occur between fricatives potentially
classifiable as one fricative for
fricative-vocalic-fricative. A number  of
methods for overcoming these errors have been
investigated. Some of the techniques were
incorporated into segmentation, others into
dual classification, and still others into
linguistic processing, primarily in terms of
lexical representation. In the example
utterance, the two fricatives in "officer"
were obtained via one of these <corrective
methods at the segmentation level. It is
clear, however, that in many cases there is a
need for expanding the nomenclature used in
classification so as to allow the
identification of some of these events
uniquely. Consequently, the decoding at
later stages must be able to hypothesize
correctly ~concerning such events, without
penalizing as heavily as with "true" errors
in the input. An example of this would be
the unique classification of glottal arrests
and releases.

stop
and
and/or
normally

Some other problems arose from
false-positive conditions in the time-domain
processing during dual <classification. The

primary offender was false deletion of nodes

needed in order to traverse the correct path
in linguistic decoding. In the example
utterance d in "under" and the vowel of the

second "the" were deleted. These deletions
were the major problem preventing correct
decoding of this utterance. The opposite
condition — false insertion — rarely
occurred. It was noted that certain kinds of
errors tended to occur in pairs, primarily in
the case of adventitious rapid-closure
identification. Under this condition a

single continuant becomes three events — the
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first part of the continuant, the rapid
closure, and the final part of the
continuant. While methods have been
implemented to correct such errors, they

continue to represent a point of difficulty
for the entire system.

Within linguistic processing the primary
decoding problem takes the form of a mismatch
between word ranking and phonetic decoding.

As the system is presently employed it is
possible to rank a word by utilizing a
particular word template in which specific

errors of omission/insertion are hypothesized

and then proceed with decoding at the
phonetic level with no knowledge of the
template assumptions made. In practice,
opposing hypotheses can occur in phonetic
decoding relative to word ranking, resulting
many times in a wrong path. This problem

contributes heavily to two forms of
undesirable performance — a high reject rate
and low accuracy at the sentence level.

Another problem concerns edge effects.
Backtracking is never initiated for the last
hypothesized node of the final word of an
hypothesized sentence, and a single remaining
input node can be left wunaccounted for
without decreasing the similarity measure
{Fig. 4). These techniques were employed to
encourage sentence completion within a
reasonable processing time and are considered
temporary measures during the development of
the system. Another technique used to

encourage sentence completion was the rather
liberal setting of threshold spacing; for the
example utterance, a tighter threshold
spacing of 2.5 directly yeilded output
corresponding to passes 3 and 4.

The present method wused for lexical
representation also has some shortcomings
which reflect themselves in system error.
Lexical representation s insufficiently
flexible to account for multiple "ideal"

transcriptions. It is obvious that for any
word there exists more than one transcription
which may be considered "ideal," depending on

context. Since use is not made of long-term
phonetic context, it is not reasonable to
allow all "dependent" variations of a word
with equal probability, as this would

essentially negate the advantages obtained in
the present probabilistic processing. For
example, provision cannot be made for both
[intrists] and [intris] for the word
"interests". In fact, the concept of "ideal"
is questionable for these purposes. It may
be more appropriate to substitute a
phonologically-based, expected string for the
present "ideal" representation. Conversely,
the present lexical representation is
sufficiently constrained relative to the

method of accounting for dependent omissions
in that multiple sequentially occurring
omissions are permitted in error.
Fortunately, the penalty placed on dependent
omissions is sufficient to avoid this problem

in the vast majority of cases.

Another problem concerns some
limitations of the syntactic model. Most
obvious is the way in which the definite
article "the" is handled. While this word is
treated as a required word in certain paths.

in practice it has been found that it is not
uncommon for speakers simply to omit the word
phonetically and instead rely on prosodic
features. Some form of prosodic analysis
will be required.

Another component which will undoubtedly
be required is some mechanism to account for
fusion phenomena at word boundaries such as
the phonetic change from[didju]to[d idzu ]
in the word pair "did you".

Specific versus General Feedback Action

There are two types of
verification/rejection handled by the
adaptive controller — specific and general:

those which are
node names (e.g.,

specific concern particular
suppression prohibits the
hypothesis of a particular name at a
particular point in the string); those which
are general concern more than a single node

name (e.g., a bar anchor prohibits the
hypothesis of insertion for any_ node name at
that point in the string). Optimally, a
system would contain specific and general
actions for each hypothesis type. Because
the present system provides no specific
action types for certain situations (e.g.,

where a dot anchor prohibits any omission
hypothesis in subsequent processing), it is
not difficult to imagine a situation in which
a general suppression of the omission
hypothesis, based on the inability to find a
specific name in the data, would lead to
difficulty when another event had indeed been
missed. At the present status of system
development essentially only the general
mechanisms have been provided.

It might be noted that the application
of specific actions can be considered looser
than those which prohibit a whole class of
hypotheses. The empirical data demonstrated
the need for specific actions regarding
hypothesized insertions and omissions in that
the main action which led to increased
decoding accuracy was the specific action of
suppression, accounting for approximately 70
percent of the actions taken.

Comparison with Manual Speech Recognition

The primary source of data presently
available which may be used for purposes of
comparison is that of Klatt and Stevens
(6,7),* in which manual speech recognition
was attempted by visual examination of
' Vicens (11) described an automatic system
in which multiple-word input was limited by
utilizing a 16-word vocabulary and a
highly-constrained syntax, capable of
generating 192 sentences. In  this highly

constrained situation,
level was 90 percent

accuracy at the word
when new speakers were

used. The system contained no provision for
adaptive control of the type under
consideration here. Since this system
utilized a highly constrained vocabulary and

syntax in order to avoid all but the coarsest

phonetic distinctions, it would have to be
modified significantly in order to achieve
useful word recognition accuracy with

vocabularies of the size being employed here.
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spectrograms. On 19 sentences {158 words)
produced by five speakers using entries from
a 200-word lexicon with a syntax describing
"...questions asked of a computer program
whose data base concerned the chemical
analysis of moon rocks (12)," they reported
overall word-recognition performance of 96
percent correct for each of two
experimenters. They also employed a form of
verification/rejection akin to that described
here.

It is of interest to compare the present
performance data at earlier stages of
processing with those reported by Klatt and
Stevens. In the latter work, 658 phonetic
segments were transcribed. At the
segmentation level, 10 percent were missed
and no mention was made of adventitious
segments. At the classification level, 17
percent were incorrectly transcribed and 40
percent were transcribed only partially (in
accordance with a phonetic-feature
inventory). Thus 33 percent of the segments
were completely correct and 73 percent were
either partially or completely correct. In
the present work, 1800 segments were
transcribed from two speakers who were new to
the system. At the segmentation level, 2
percent were missed and 4 percent were
adventitious. At the classification level,
B1 percent of the segments were completely
correct, not including those missed and 90
percent were correct at the phonetic class
level (the nearest analog to the

phonetic-feature measure). Although these
measures are not exactly comparable, the
automatic acoustic analysis of the present
work appears to compare favorably with the
reported manual acoustic analysis.
Therefore, the difference between word
accuracy of these two studies appears to be
explainable in terms of the difference
between processing by the human system at the
word level using all the constraints
available to that systemm and automatic
processing with Ilimited syntactic and no
semantic constraints.

Klatt
evaluation

and Stevens' "subjective"
of their performance was that it

is not encouraging for workers in the field
of automatic speech recognition because of
the "...seeming complexity of the things we

were doing in our heads in order to recognize
a feature or word or phrase”(6). The present
writers are encouraged, however, by the
performance data being reported here, since
they were obtained using completely automatic
procedures at all levels of processing, and
since these data are based on the utterances
of several -untrained speakers using a larger
vocabulary. In addition, it is felt that
adaptive control procedures, such as those
herein described, will be significantly
helpful in achieving eventual convergence of
input and output in ARCS. These results
should also be encouraging for other workers
who are interested in pragmatic solutions for
ARCS problems.

Certainly much remains to be done in
this area and the present work can only be
veiwed as an initial probe. Feedback of
whole sentence-length strings may, in fact,
not be the optimal and only level at which
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feedback should be performed. For example,
it is likely that a combination of looping at
the word level during initial decoding would

be more appropriate when both
processing time are considered. In  such
differential looping the confirmation or
rejection of hypotheses would probably depend
on different levels of analysis, most likely
phonetic at the word level and semantic or
prosodic at the sentence level.

accuracy and
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ADAPTIVE
CONTROLLER
b [ o a d
AGOUSTIC ’ LIMGUISTIC
1 $ PROCESSOR P DECONER

Figure 1. Simplified block diagram of ARCS system with data paths.
Main data path conaista of analog speech input (1), node
string with corresponding segmentation indicators and
anchors (2), and final standard-orthographic output (3).
The adaptive-controller paths consist of hypothesized
word and node strings (a), adaptive-controller examination
of acoustic-processor information (b), confirmation,
neutral, or rejection information (c), and modified node
string with corresponding segmentation indicators and
anchors (d).
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Figure 2.

Digital sound spectrogram of example utterance,
From bottom to top are STS numbers,

the cover."
steady-state names,

amplitude in dB,
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"One tired officer forgot the part under
segmentation and auxiliary indicators,
amplitude plot,

Ist-5th node correlations.
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Figure 3. Similarity messure for example utterance bhefore Ieedback. Decoder threshold spacing
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with snchors above the node names, The next three lines represent decoder output,
hypothesized nodem, types, and words, respectively.

182



L 1]

-
-

siml lartty ik}

EH
au

w
-

simitartey  tlR)
H

15

L1 4

-
=y

Slmirarity (W)
H

23

Figure 4. Feedback similarity measures for the prepositional phrase
of the example. Above the top solid line is a description
of speaker performance (the referent). Above each graph
are time-aligned input nodes and hypothesis types; on each
graph is the hypothesized node string; below each graph is
the hypothesized word String, p1 is the original pass and
p2-p4 are the Ist-3d feedback passes. Feedback actions
were: after p1, AASWX, VX=ZX, FX=ZX; after p2, AA=IX, VX=8SX,
FX=SX{ after p3, KQ deleted, NX=VX
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Before Feedback

After Feedback

Sentences Changed
by Feedback

Measure New Spkrs Spkr 1 New Spkrs Spkr 1
A1l Sentences 23 43 18 ug
TSI P 15 53 22 55
All Sentences 22 17 13 13
Words in 77 86 79 86
Sentences Jut

Words Dut 4 §3 79 &6
K Words 8 8 5 6
All Words 68 17 75 81
o 68 68 80 82

Table 1. Linguistic-procesaor feedback performance for new speakers

and one training speaker.
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All entrles are in percent.



