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Abstract

This paper describes a parsing system specifically

designed for spoken rather than written input. The
parser is part of a project in progress at Stanford
Research Institute to develop a computer system for

understanding speech. The approach described uses as
much heuristic knowledge as possible

mize the demands on acoustic analysis.

in order to mini-

Parsing Speech

Parsing continuous spoken English
cantly different problem

is a signifi-
than parsing written English,

There are at least two major differences between spoken
and textual input.

First, spoken input is not as easily decoded as
text input. There are difficulties associated with

establishing the boundaries of the particular words in

the acoustic stream, with accounting for the variations
of a word by different speakers, for different pronun-
ciations of a word by the same speaker, and for differ-
ent pronunciations of the same word in different con-

texts. Recognition of spoken input words
complex and much leas reliable than recognition of

input words.

is much more

written

Second, speech provides
features—intonation, stress,
example, intonation contours, the variations in pitch
and rhythm in an utterance, provide clues to the loca-
tion of phrase boundaries and to syntactic relation-
ships of the words. (Work is now being done, particu-
larly at the UNIVAC Corporation3 and at the University
of Michigan,’“6 on how to extract such information from
the acoustic signal and how to Incorporate it into a
grammar for the computer.)

information by prosodic
pause, Juncture,"? For

A Strategy for Parsing Speech

In one approach to parsing text, the parser reads
the input words, looks them up in the lexicon, and uses
their syntactic features for guidance. This approach
ie much less desirable for parsing speech because of
the problem of reliably separating and identifying the
input words using current acoustic techniques.

Because of this limitation of acoustic recognition,
we have chosen to restrict the detailed acoustic pro-
cessing to testing words that have been hypothesised by
the parser on the basis of a wide range of syntactic,
semantic, and prosodic knowledge. We expect the shift
to verification of parser-proposed words to lead to more
reliable acoustic decisions since the verification
algorithms can be tailormade for the individual words
and can take context into consideration. Moreover, by

hypothesizing words in order of their likelihood in a
particular context, we should be able to reduce the
average number of incorrect words proposed and, hence,
the potential for errors in acoustic recognition.

An early version of a system partially using this
approach has been put together by making modifications
to Terry Winograd's program.®’ Our new system is not
directly based on Winograd's program, but it reflects
his influence. It also has been influenced by the work
of Bill Woods and Ron Kaplan on parsing systems.?'9'"°

While keeping the approach mentioned above, the
new system differs from the old one in many ways. Sig-
nificantly, it uses a "best-first" parsing strategy in
place of the more conventional "depth-first" strategy.
Both strategies are designed to deal with "choice
points" in the grammar—places where there are several
alternatives for continuing the parse but not enough
information available to decide among them. With the
depth-first strategy, choice points are handled by using
"backtracking." (A single path from the choice point is
pursued until an inconsistency with the input is found.
At that time, the path is permanently abandoned. The
parser is backed up to the most recently encountered
choice point to try the next alternative.)

There are several reasons why this depth-first
method is unattractive for parsing speech. First, the
uncertainty of acoustic recognition makes it difficult
to decide conclusively whether a path should be aban-
doned. With speech, it makes more sense to deal with
the likelihood of a path than with a categorical accep-
tance or rejection. A second objection is that the
depth-first strategy makes it impossible to hypothesize
words in order of their likelihood. Before the other
alternatives at a choice point can be considered, all
possibilities for satisfying the first alternative must
be explored. This forces the testing of all words cor-
responding to the first alternative regardless of their
likelihoods. A final objection to the depth-first
strategy is that it explores many more false paths than
a strategy using heuristic knowledge to guide the parse.
Extra false paths are particularly bad for speech
because of the high cost of the acoustic tests needed
to determine that a path is a dead end and the danger
of following false paths farther than necessary due to
uncertain acoustic recognition. Research in Artificial
Intelligence has shown that substantial increases in
efficiency can result from the application of heuristic
knowledge to guide searches. Equivalent gains should
be possible if knowledge is used to guide the search for
successful parse.

*See for instance Nllsson's book and the work referenced
there."!



These considerations all support a best-first
parsing strategy. In this approach, each new path
resulting from a choice point is assigned a priority

according to its estimated likelihood of leading to a
correct parse. The paths are then added to the set of
all paths that have been generated but not yet extended
during this parse. The system follows the highest pri-
ority path from the comprehensive set until its priority
drops or it reaches a choice point. At that time the
cycle repeats. Since the new path chosen need not be

one of the successors of the previous path, the parser
will not necessarily continue along a single path until
it reaches a dead end. Instead, it will suspend a path
when there is an alternative available with a higher
estimated likelihood. resume the original at
a later time if it likely again.

It will
becomes most

The best-first method avoids the objections made
to the depth-first strategy. First, it is not
sary to decide conclusively that a path is inappro-
priate, to force a "yes or no." The gradations of
confidence in acoustic tests can be reflected in a
range of priorities. Second, words can be hypothe-

neces-

sized in order of their likelihood since there are no
constraints imposed by the parsing strategy on the
order in which paths are explored. And finally, the

number of false paths explored can potentially be
reduced by using heuristic knowledge to guide the
parse.

Of course, this potential
can be realized only if extensive knowledge is success-
fully incorporated. Winograd made a noteworthy step in
this direction by using semantics to filter out unin-
terpretable phrases as soon as they were parsed. But
more can be done; knowledge can be used to guide the
parsing rather than to act simply as a passive filter,
and a wider range of knowledge can be used. For
instance, in addition to semantics, the parser could be
guided by such things as prosodies, statistics regard-
ing vocabulary and syntactic constructs, models of the
user and the dialog.

for reducing false paths

Control Structures

The attempt to
appear foolhardy in
of existing systems.

incorporate more knowledge may
the light of the great complexity
Winograd himself has remarked

that his program was nearing the limits of comprehen-
sibility; our early system was certainly no better.
To combat this problem, we have introduced control

structures to encourage the careful,
heuristic knowledge and aid

systematic use of
clarity of the parser.

The control structures differentiate between the
priority functions that embody the special knowledge
and the other parser functions that embody the grammar.
The grammar functions alone define the possible paths,
while the heuristic functions control the order in
which the paths will be explored. In this way the
grammar is not obscured by the logic needed to assign
priorities. The division is maintained by providing
each alternative with its own priority function. This
both furthers the incorporation of knowledge and sim-
plifies the development of heuristics. We do not have
to try to build an omniscient semantics module capable
of evaluating any configuration; our system will use
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the particular semantic considerations
with other relevant
the grammar.

in conjunction
information specific to a place in

Control structures also replace GOTO's with func-
tions that give a clear and explicit form to the stan-
dard parsing operations such as listing alternatives
and identifying optional elements. We agree with
Dijkstra and others who find GOTO's particularly harm-
ful to program clarity.'?-'* Many other parsing sys-
tems have treated the program as a collection of labeled
blocks of instructions with control transferred arbi-
trarily by explicit, reference to labels. This amounts
to the unconstrained use of GOTO's whether the particu-
lar syntactic form is a multidirection branch statement,
a state transition, or a production language formalism.
The elimination of GOTO's is probably the most important
way in which the control structures reduce the complex-
ity of the parser.

Finally, there are advantages in developing the
control structures as an extension to the LISP language.
These include complete freedom in the use of procedures
for structuring the system, availability of the control
and data manipulation facilities of LISP, and compati-
bility with standard debugging and program development
aids .

Before describing the control structures that have
been added to LISP, it is useful to review the overall
parsing strategy and introduce some new terminology.

As the system attempts to understand an input, it uses
the grammar to generate a sequence of paths. Corre-
sponding to each path is a "process." The likelihood
of a path is determined by priority functions and is
reflected in the value of the priority for the process.
Priorities are positive numbers whose values are irrel-
evant except to establish an order of all the processes.
The highest priority process is run until cither its
priority drops as a result of some test or it reaches
a choice point. In either case, control is trans-
ferred to the highest priority member of the list of
processes. Parsing continues until an acceptable
interpretation of the input is found or some resource

bound is exceeded.

With this strategy in mind we can discuss the

actual control functions. The most basic of these is
ALT, which is used to list alternatives . Its syntax
is (ALT alty ...alt,), where each alt. is of the form

{altname altpriority ey e,). Altname is a unique
name for this alternative. The use of the name is
described in the section PATHS and MAPS. Altpriority
is evaluated to determine the priority to be given the
process corresponding to this alternative. Finally,

e1 ... e, specify the action for this alternative.
Actions can include calling other control functions or
procedures that include control functions. In other
words, there is complete freedom in dynamically nesting
control structures. The effect of the ALT is to replace
one process by several new ones. Each new process
independently can continue the computation started by

the original process. When one has finished its action
e. e , it can immediately go on to the statement
following the ALT.



A second control function is OPTION, which is
used to identify optional components in the grammar.
Its form is (OPTION optname optpriorities e en),
where optname is a unique name for this option,
optprlorities evaluates to a pair of priorities, and

e1 ... e, specify the optional action. The first of
the priorities is assigned to a process that will
execute €q.............. e,, and the second to a process that

will simply go directly to the successor of the OPTION.

SEQUENCE is similar to OPTION. On entry to
SEQUENCE the process Bplits into two-one which exe-
cuteseq.....ooeeee. en, and one which does not. However,
unlike OPTION, the first process reenters SEQUENCE
after completing e,. This leads to computing another
pair of priorities and spliting into one process
which executes €q.............. e, a second time and one which
does not. In this manner, the SEQUENCE statement can
be reentered an arbitrary number of times to parse an
arbitrarily long sequence of constituents satisfying

The fourth control function is OPTIONALIF. Its
form is (OPTIONALIF condition name priorities
[T P e,). If the condition is true then ey ... e
1 e | n
are optional; otherwise they are required. The name
and priorities for OPTIONALIF are like those for
OPTION and are used only if the condition is true.

The final function is PARSE, used to call the
program for a grammatical unit. Its syntax is
(PARSE unit argy....... arg¢), where unit is the name of
the function to be called for a grammatical unit and
argq...o...... arg, are optional arguments for that func-
tion. The result of PARSE is a parse tree for the
unit. PARSE also plays an important role in the
implementation as discussed below.

An_Example

Having discussed the major elements of the parser,
we will now present a sample grammar for a noun phrase
(Figure 1). Unfortunately, an example small enough to
present here cannot fully demonstrate the value of
this approach in developing a large system. But this
example can Illustrate the format of a grammar. List-
ings of a much more complete grammar are available
from the authors.

The example grammar is a LISP program called
NOUNGROUP. The first statement in it is an ALT. In
this example, the first alternative is

(ARTICLE (ARTPRESENT)
(WDTYPE ARTICLE))

Altname Is "ARTICLE," altpriority is computed by
the function ARTPRESENT, and the action for this
alternative is the call to WDTYPE. The function WDIYPE
finds in the input a word of the category specified by
its argument.

In this example, alt; looks for an initial article
In the noun group, Alt, through alts look for a
demonstrative adjective, quantifier, pronoun and thing
pronoun respectively. The last alternative, alts
(labeled NULL) allows the noun group to start directly

with an adjective or noun. The statement following

the ALT controls the parsing of optional adjectives

and the head noun. These are not allowed after a
THINGPRON, are optional after either a DEMONSTRATIVEADJ
or a QUANTIFIER, and are required in all other cases.
This is represented in the program by an OPTIONALIF
inside a COND. The final statement of NOUNGROUP looks
for modifying relative clauses or prepositional phrases.

This grammar will find constructions such as:

the big green table"

"that part"

"some narrow pieces"
"something"
"everything green"
"he," "it"

All of these except the pronouns can be followed
by a sequence of modifying phrases. Relative clauses
such as "which you dropped" and "that was picked up"
or prepositional phrases such as "on the floor" and
"under the table" are modifying phrases.

Word Verifier

Another important part of the parsing system is
the word verifier. This component testa acoustic data
for the presence of words from such terminal categories
as noun, verb, and adjective that are predicted by the
parser according to some path through the grammar. The
words in the terminal category can be thought of as
alternatives, exactly like the higher syntactic alter-
natives in the grammar, that should be considered in
order of their likelihood. The same structure of alter-
natives and priorities is here found on the level of
word verification. Estimated likelihoods can not only
order the words in the terminal category, but also
defer acoustic processing as long as higher priority
alternatives remain to be explored.

The word verifier must first establish a priority
for each candidate word and then, according to those
priorities, schedule acoustic verification. Correspon-
ding to these two operations there is a priority func-
tion and a verification function associated with each
word in the vocabulary. The tests made by the priority
function are computationally simple, although broad in
scope. The results of preliminary acoustic processing
are consulted to ensure that the word is at least feas-
ible. The frequency of occurrence of the word and the
likelihood of co-occurrence of the word with recently
used words are considered. Finally, the semantic
features of the word are compared to the semantic
restrictions of the context.

In contrast to the quick tests made by the pri-
ority function, the verification function may perform
extensive acoustic analyses to determine how well the
proposed word matches the next portion of input. The
details of this processing are beyond the scope of this
paper but have been sketched elsewhere.” Since the
verification function depends only on acoustic informa-
tion, its results are saved so that, if another process
looks for the same word in the same place, the prior
results can be used. Of course, the results of the
priority functions cannot be reused In this manner

since they are extremely dependent on context.
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(NOUNBROUP
(LANBDA NIL
(PROG W1l
(ALT CARTICLE (ARTPRESERT)
(VDTYPE ARTICLE)

)
(DEMORSTRATIVEADS C(DERMADJPRESENT)
(VDTYPE DENONSTRATIVEADJ)
(e THIS THAT THESE
TROSE)

(e A AN THE)

)
(QUANTIFIER (QNTFRPRESENT)
{YDTYPE QUANTIFIER)
(= SOME NONE MO BEITHER
MOST mANY EVERY E1THER
EACH BOTH ARY ALL)Y

)
{PRONDUN (PRONPRESENT)
(:WFS PRONOUN)
LR
(TRINGPRONOUR (TPROWPRESENT)
(VDTYPE THINGPROROUN)
(= GOMETH1RSE NOTHIND
EVERYTRING ANYTHINAG)
(OPTION THINGADS (ADJAFTERTPRON)
(MDTYPE ADJECTIVE))
{* "SOMETMING RED"}

(¢ NOUNGROUF STARTS WITH
ADJECTIVE GR nOUN)

)
(NULL CNOART)

n
(cowd
{THINGPROROUN NIL (e ADJECTIVE-NOUN NOT
ALLOWED AFTY
TRINGPRONDUN) )
(T (OPTIONALIF :g: ‘DmEI.OIﬂMTIV!lDJ QUANTIFIER)
N
(ADJECTI VENOUNPRESENT)
(= AFTER DENONSTRATIVE
ADJECTIVES aWbd
QUANTIFIERS
ADJECTIVE~NOUR ARE
OPTIONAL )
CADJNOUNY {& PARSES OPTIONAL

ADJECTIVES AND NEAD
soum)

1))
(SEQUENCE ENDINGS (ENDING)
{ALT (CLAUSE (CLAUSEAFTER)
(PARSE CLAUSE RELATIVE))
(FREPOSITION (PREPAFTER)
(PARBE PREPBROUPIN )Y

Figure

PATHS and MAPS

In the word verifier, we have seen how one pro-
cess can use information gained by another; the
results of a verification function can be used by a
subsequent process looking for the game word. The
next step is to share the syntactic structures that
are found. But the processes may have had different
contextual constraints and may need to make different
tests, problems for direct sharing. We have added
PATHS and MAPS to the parsing system to facilitate
sharing and to allow for additional tests.

This Is closely related to the well formed sub-
string facility described by Woods.®
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A path describes the flow of control through the
grammar leading to the current state of a process.
For example, at ALT statements the name of the alter-
native taken is added to the path, and when a word is
recognized in the input It also is added. The actual
structure of the path is a list of names and words with
the most recent history of the process at the front of
the list. A map is the part of the path that was
followed by a process when it successfully parsed some
grammatical unit. The function PARSE automatically
records the map before it returns, and it checks for a
map when it is called.



The control functions (ALT, OPTION, OPTIONALIF,
and SEQUENCE) consult the map and raise the priority
of the named alternative. The map thus helps to guide
the process which is parsing a constituent by con-
tributing data on alternatives successful in prior
attempts.

Nevertheless, it is still possible that the map
will fail due to differences in the context. When a
process is forced off the path specified by a map, it
simply reverts to the standard mode of parsing. This
ensures that the use of maps will not result in the
acceptance of a previously parsed constituent that
falls to meet the current constraints. The map merely
serves as heuristic knowledge to guide the reparse and
can be overridden by other considerations.

Finally, the map must take into account the fact
that there may be more than one successful parse of,
say, a noun group starting at a particular location

in the input. In its most general form a map is a
tree structure with each path through the tree corre-
sponding to a successful parse. If a branch point is

reached while following a map, the several alternative
will be given raised priorities.

It is worth noting a second use for the path as a
debugging tool. The parsing strategy causes control
to move among a large number of active processes, and
the computation leading to the current state of a pro-
cess will have been interlaced with the activity of
other processes. Standard tracing techniques are less
useful for debugging, and the path is a valuable aid
in determining how a process has reached its current
state.

Implementation

The parser will be implemented in BBN-LISP
using the multiple environment control structure
facility described by Bobrow and Wegbreit,"® Among
other things, this facility generalizes the standard
linear stack to a tree structure. Figure 2 intro-
duces some terminology for discussing such a tree.

-g—t——— Root
g Non-Terminal Section
e BrAnch Point

\-——- Terminal Section

-~ Tip

Figure 2

The root corresponds to the base of an ordinary
stack, and each tip behaves like the top of an ordin-
ary stack. In the parser there is a one-to-one cor-
respondence between the tips of the stack structure
and processes. When a process calls a function, the
variables for the function are added to the tip for
that process, and when the function returns, the var-
iables are removed. The path from the root to the
tip contains all the variables for the process. At
branch points the paths for several processes join.
Thus the variables in the path from the root to the

S
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branch point are shared by more than one process. Only
the variables in terminal sections can be modified by
the process without interfering with other processes;
the variables in nonterminal sections must not be
changed. This presents a problem when the process
wishes to return from the first (nearest the root)
function in the terminal section to the last function
in the last nonterminal section. The process cannot
use that section because it is shared. The solution is

to make a copy of it that will have the same relation
to other sections of the path as the shared section but
will be for private use of the process. To ensure that

this copying is done properly, each stack section begins
with a call of PARSE, and instead of returning in the
normal manner, PARSE makes a copy of the next section
of the tree and transfers control to it. This provides
a new terminal section for the process and returns con-
trol to the function that called PARSE originally.
Figure 3 shows the effect on the stack structure of
such a return by PARSE .

(a) (b}

In {a), process p is running io terminml stack sec=
tion B. In (b), p has "returned” from B to Al' a
copy of A, and B haa been deleted.

Figure 3

Copying is also necessary when new processes are
created. Figure 4 shows a portion of the stack before
and after an ALT statement.* When a process is killed
its terminal stack section is deleted.

(a) (b}

In (a), p, running in Section A, is about to reach an
ALT statement. In (b), p has been replaced by processes
P, through pn, each with a copy of A, corresponding to
the n alternatives of the ALT.

Figure 4

This is not quite true. In the actual system the copy
A; is not made until p; becomes the highest priority
process. Thus all the new processes which have not yet
been activated share the same terminal section.



There are two main restrictions on the parser
caused by this implementation. First, data structures
which are not intended to be global to all processes
cannot be changed except after copying. This is to
avoid interference between processes which may be
sharing the same structures. For example, if process
p in Figure 4a, has a variable X'whose value is a list,
then processes p; through pn in Figure 4b will all have
variables pointing to the same list (in LISP termin-
ology, the X's will be EQ). To change the value of X,
process p; must store a new pointer in X rather than
modify the original structure pointed to by X. While
this restriction has affected the design of the parser,
it has not been a serious problem.

The second main
only variables within
stack can be changed,

restriction on the parser, that
the terminal section of the

did present a problem. Certain
variables such as the current position in the input
are private to each process but global within the
process. The solution is to identify such variables
to the system as "process globals." On entry to PARSE,
the process globals are rebound to their old values.
Thus they are within the terminal section and can be
given new values. Before PARSE exits, it propagates
the process globals back up the stack. For example,

in going from Figure 3a to Figure 3b, the process
globals for p are propagated from section B to section
A,. By generalizing this scheme, variables can appear
to be bound at any level. Thus we can eliminate the
second restriction on the parser by identifying certain
special variables to the system.

The implementation has the prime advantage of
avoiding a special interpreter for the parsing language
Since the "language" consists of additional LISP func-
tions, the entire parser can be compiled with the
standard LISP compiler and debugged with the standard
LISP debugger. This means faster execution and easier
debugging. Of course, the biggest improvement in
efficiency relies on knowledge to guide the parser,

but compilation will give a substantial speed up in
addition.
Conclusion
The system described in this paper is part of an.

ongoing research project in speech understanding and
is intended to provide a solid basis for continuing
work. There are many other aspects to speech under-
standing besides the development of a parser system.
It has been to our benefit to be part of a speech pro-
ject at SRI that includes personnel interested in a
variety of tasks from acoustic signal processing
through semantic representation to overall system
organization,

A sizeable grammar for English has been written
using this parsing system. Although it is difficult
to characterize the scope of a grammar, it appears to
be as extensive as others we are familiar with (in
particular those of Winograd® and Woods, et al.?).
Our current efforts center on acoustic processing

These functions of course depend on the multiple
environment control facility in BBN-LISP.
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routines for use in word verification, priority func-
tions for grammatical alternatives, and semantic model-
ing of the domain of discourse.
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