Session 8 Formalisms for

D-SCRIPT: A COMPUTATIONAL THEORY OF DESCRIPTIONS Artificial Intelligence

Robert

C.

Moore

Massachusetts Institute of Technology
Massachusetts

Cambridge,
Abstract

This paper describes D-SCRIPT, a language

for representing knowledge in artificial
Intelligence programs. D-SCRIPT contains a
powerful formalism for descriptions, which
permits the representation of statements that
are problematical for other systems.
Particular attention is paid to problems of
opaque contexts, time contexts, and knowledge
about knowledge. The design of a deductive
system for this language is also considered.

1. Introduction

1.1 Ways of Representing; Knowledge

Methods advocated for representing
knowledge in artificiall intelligence programs
have Included logical statements (McCarthy,
Sandewall), semantic networks (Quillian,
Schank), and procedures (Hewitt, Sussman and
McDermott), All these approaches shpre one
fundamental concept, the notion of
predication. That Is, the basic data
structure In each system Is some
representation of a predicate applied to
objects. In this respect, the various systems
are more or less equivalent. But this basic
idea must be extended to handle problems of
quantification and knowledge about knowledge.
Mere the systems do differ. We will argue,

though, that these differences result from the

descriptive apparatus used in the particular
systems being compared, rather than from an
inherent advantage of, say, procedures over
declaratives or vice versa.

Advocates of PLANNER(e.g. Winograd, p.
2153 have argued that the predicate calculus
cannot represent how a piece of knowledge
should be used. But this is true only of the
first-order predicate calculus. In a higher-
order or non-ordered declarative language,
statements could be made which would tell a
theorem prover how other statements are to be
used. PLANNER, on the other hand, has no way
of directly stating an existential
quantification, but this does not mean that

procedural languages are necessarily Incapable

of handling that problem.

Our belief, then. Is that the type of
system used to represent knowledge Is
unimportant, so long as It has sufficient
expressive power. This paper presents an
attempt at such a system, the language D-
SCRIPT. As the name implies, the most
Interesting feature of D-SCRIPT is Its
powerful formalism for descriptions, which
enables it to represent statements that are
problematical in other systems. No position
will be taken as to what kind of language D-
SCRIPT is. Since It is intended to answer
questions by making deductions from a data
base, it can be thought of as a theorem
prover. Since it operates by comparing
expressions like the data-base languages of
PLANNER and CONNIVER, It can be thought of as
a pattern-matching language. And since It Is
Turing universal and. In fact, includes the
lambda calculus. It can be thought of as a
programming language.

223

1.2 Problems In Representing Knowledge

Before presenting the details of D-
SCRIPT, we will try to give some Idea of the
type of problem It Is designed to solve. A
classic problem Is that of representing opaque
contexts. An opaque context is one which does
not allow substitution of referentially
equivalent expressions or does not allow
existential quantification. For example the
verb "want" creates an opaque context:

(1.1) John wants to marry the prettiest girl.

This sentence is ambiguous. it can mean
either:

(1.2) John wants to merry a specific girl who
also happens to bp the prettiest.

or:

(1.3) John wants to marry whoever is the
prettiest girl, although he may not know
who that is.

Under the first interpretation we can
substitute any phrase which refers to the same
person for "the prettiest girl". That is, if
the prettiest girl is named "Sally Sunshine",
from (1.2) we can infer:

U.l*) John wants to marry a specific girl who
also happens to be named Sally Sunshine.

We cannot make the corresponding inference
from (1.3). It will not be true that:

(1.5) John wants to marry whoever is named
Sally Sunshine, although he may not know
who that is.

Because of this property, (1.2) is called the
transparent reading of (1.1) and (1.3) is
called the opaque reading. It Is almost
always the case that sentences having an
opaque reading are ambiguous with the other
reading being transparent.

To illustrate blocking of existential
quantification, consider:

(1.6) John wants to marry a blonde.

Again the sentence Is ambiguous, meaning
either:

(1.7) John wants to marry a specific girl, who
also happens to be a blonde.

or:
(1.8) John has no particular girl In mind, but

he wants whoever he does marry to be a
blonde.

We can existentially quantify over the first
reading but not the second. We can Infer:

(1.9) There exists someone whom John wants to
marry.

from (1.7), but not from

Another problem
descriptive phrases
time reference. In

(1.8).

is the occurrence of
In sentences involving
the sentence:

(1.10) The President has been married since
1945.

the phrase "the President" refers to an
Individual. In the sentence:
in the White

(1.11) The President has lived

Mouse since 1800.

"the President"
turn.

Another type of sentence where the
reference of a phrase depends on time |Is
[llustrated by:

refers to each President In

(1.12) John met the President In 1960.
This sentence is ambiguous, but unlike (1.11),
each Interpretation refers to only one person.
The ambiguity Is whether "the President"
refers to the President at the time (1.12)
asserted, or the President in 19CO.
representing knowledge about knowledge
raises some interesting issues. For Instance,
in:

is

(1.13) John knows Bill's phone numher.
how is John's knowledge to be represented? In
John's mind It might be something like:

(1.14) (PHONENUM BILL 987-651(3)
So, (1.13) might be:
(1,15) (KNOWS JOHN (PHOMF-NUM BILL 987-6543))

The trouble with (1.15)
too much Information. Not only does It say
what (1.13) says, it also says what the number
La- The difficulty is to refer to a piece of
Information without stating it.

For all these types of sentences, D-
SCRIPT provides representations which allow
the correct deductions to be made. Further,
it provides separate representations for each
meaning of the ambiguous sentences, and these
representations are related In a way that
explains the ambiguity.

is that It includes

2. The D-SCRIPT Language

2.1 P-SCRIPT Expressions

D-SCRIPT contains the following types of
expressions:

1. constants

2. variables

3. forms

4. lists

A constant Is any alpha-numeric (l.e. only
letters or numbers) character string (e.g.
"FOO", "BLOCK5"). A variable Is any alpha-
numeric character string prefixed by "?" (e.g.
"?X"). A form Is any sequence of expressions
enclosed In angle-brackets (e.g. "<X Y ?Z>").
A list Is any sequence of expressions enclosed

In parentheses (e.g. "(FOO A <BAR B C>)").

D-SCRIPT observes the convention that all
functions, predicates, and operators evaluate

224

their arguments.
expressions are

The rules for evaluating
largely adapted from LISP. In
fact, D-SCRIPT variables and forms are treated
just like LISP atoms and lists, respectively.
Rather than introducing "QUOTE", however, we
use constants and lists to represent pre-
defined Items. To state our rules formally:
1. A constant evaluates to Itself.

2. A variable evaluates to the expression
which It has been assigned.

The value of a form Is the result of
applying Its first element to the values of
Its remaining elements. This will not be
defined In general, but only for those
expressions which represent meaningful
operations In D-SCRIPT. One such case
that of lambda-expressions. A lambda-
expression is represented in D-SCRIPT by a
form containing the constant "LAMBDA",
followed by a list of variables, followed
by an expression (e.g. "<LAMBDA (?X ?Y)
<TIMES ?X ?Y>>"). A form whose first
element Is a lambda-expression is evaluated
in the same way as a corresponding LISP
expression. The result is the value of the
body of the lambda-expression, with the
values of the arguments assigned to the
corresponding variab les. For Instance,
assuming "+" has the usual meaning,
"<<LAMBDA (?X) <+ 2 7?X>> 3>" has the same
value as "<+ 2 3>", which Is "5". We will
introduce other types of forms whose value
is defined when we explain the
representation of statements.

Is

A list evaluates to a form with Identical
structure, except that free variables are
replaced by their values. If "?X" has
previously been assigned the value "A",
then "(LAMBDA (?Y) CFOO ?X ?Y)) will
evaluate to "<LAMBDA C?Y) CFOO A ?Y)>".

It is worth noting that the way lambda-
expressions and lists are defined makes it
very easy to write functions which construct
complex forms. For example, consider "<LAMBDA

C?X) (FOO (BAR (GRITCH ?X)))>". The result of
applying this to "Z" is "<FO0 (BAR (GRITCII
Z))>". A comparable LISP function would have

to be built up with "COMS" 's to achieve this
result.

2.2 Representing Knowledge in D-SCRIPT

The most basic statements are those which
express simple predication. A statement of
this kind Is represented In D-SCRIPT by a form
whose first element Is a constant representing
the predicate and whose other elements are
constants representing the objects of the
predicate. For example:

is a star.
is on BlockB.

(2.1) The sun
C2.2) BlockA

could be represented as:

(2.3) <STAR SUN>
(2.1t) <ON BLOCKA BLOCKB>
such

A simple statement about a statement, as:

(2.5) John believes the sun |Is a star.
would be:
(2.5) <BEL1EVE JOHN (STAR SUN)>

The Important thing to notice about (2.6) |Is

that the embedded statement Is represented by
a list. This |Is because we need an expression
whose value Is (2.3) to be consistent with the
convention that predicates (In this case,
"believe") evaluate their arguments.

To represent more complex statements/ two
types of extensions are needed. The simpler
of these is the addition of logical
connectives. D-SCR1PT uses "OR", "AND",
"NOT", and "IMPUFS" to stand for the obvious
logical operations. As In (2.6) the embedded
statements are expressed as lists. So:

(2.7) then BlockA is on

If the sun is a star,

BlockB.

would be represented by:

(2.8) <IMPUFS (STAR SUN) (ON BLOCKA BLOCKB)>

This notation reflects the fact that in D-
SCP.tPT, logical connectives operate on the
statements themselves rather than on their
truth-values. "IMPLIES", then, is not
computed as a Boolean function, but rather is
computed by asserting that its first argument
Is true, and attempting to prove its second
argument.

The other
statements, and

extension required for
the one that is most

complex
Important

to our theory, is the use of descriptions.
There are three types of descriptions in D-
SCRIPT; existential descriptions, universal

descriptions and definite descriptions. A
description is a form whose first element is
"SOME" (existential), "EVERY" (universal), or
"THE" (definite); whose second element is a
list containing a variable; and whose third
element Is an expression whose value is a
statement. Descriptions represent the
corresponding types of natural language

descriptive phrases:

(2.9) a block <SOME (?X) (CLOCK 7?X)>
every number <FVFRY (?Y) (HUM ?Y)>
the Table <THF (?X) (TABLE ?X)> ,

Some examples of sentences containing

descriptive phrases and their representations
are:
(2.10) The king Is fat.

<FAT <THE (?X) (KING ?XI>>
(2.11) John owns a dog.

<OWN JOHN <SOME (?X) (DOG ?X)>>
(2.12) Every boy likes Santa Claus.

<LIKE <EVERY (?X) (BOY ?X)> SANTA>
Notice that when descriptions appear in
statements, they are left as forms. This Is
because, unlike embedded statements, we are
talking about the objects to which the
descriptions refer (i.e. their values) rather

than the descriptions themselves.
The notation we have used so far Is not
sufficient to express statements containing

more than one occurrence of the same
description. In the sentence:

(2.13) Every boy either loves Santa Claus or

hates him.

the phrase
"loves" and
following

"every boy" is the subject of both
"hates". We cannot use the
representation though:

(2.14) <OR (LOVE <EVERY <?X> (BOY 7X>> SANTA)
(HATE <FVERY (?X) (BOY ?X)> SANTA)>

because this means:

(2.15) Either every boy loves Santa Claus or

every boy hates Santa Claus.

which, of course, is quite different. We can

overcome this difficulty by using lambda-

expressions. We will represent (2.13) by:

(2.16) <<LAMBDA (?X> (OR (LOVE ?X SANTA)
(HATE ?X SANTA))>
<FVFRY (?Y) CBOY ?Y)>>

This can be read as something like "the
predicate X is true of every boy," where the

predicate X is "loves Santa Claus or hates
him."

Vie have a similar situation with respect
to the scope of quantifiers. it Is not clear
whether:

(2.17) <GRFATER <SOME <?X) (NUM ?X)>
<EVERY (?Y) (NUM ?Y)>>
represents:
(2.1&) For every number there is some larger
number.
or:
(2.18) There Is some number which is larger
than every number.
We will have to arbitrarily choose a rule to
disambiguate (2,17), but by using lambda-

expressions we can avoid the difficulty.

(2,18) can be represented by:

(2.20) <<LAMBDA (?X)
(CRFATER <SOME (?Y)

<FVERY (?Z) (HUM ?Z)>>

(MUM ?Y)> ?X)>

and (2.19) can be represented by:

(2.21) <<LAMBDA (?X)
(GREATER ?X <EVERY (?Y)

<SOME (?Z) (NUM ?Z)>>

(MUM ?Y)>)>

Analyzing these expressions In the same way as
(2.1C) will show that they have the correct
meaning.

It should be apparent
and universal descriptions In
exactly the same function as the quantifiers
of the predicate calculus. in view of this.
It may be asked why we have used a different
notation, one reason |Is that our notation
makes it possible to write expressions v/hose
structure more ctosely resembles the sentences
they represent. Hopefully this makes them
more Intelligible. The more important reason,
though, is that having a single expression for
a description makes It easier for an
interpreter to manipulate It.

that existential
D-SCRIPT serve

2.3 Formal Semantics of P-SCRIPT

The previous two sections outlined the
syntax and informal semantics of D-SCRIPT.
This section attempts to show how a program
could be written that would Interpret D-SCRIPT
statements In accord with their Intuitive
meaning. The details of this will be somewhat
sketchy. One reason for this Is that choosing
proof strategies and using heuristic
Information are complicated problems that we
cannot claim to have solved. Secondly,
creating a theorem prover is not our main
goal. What we are trying to do is to show the
sort of descriptive system necessary to
represent the information contained in natural
language statements. The purpose of this
section is to establish that our notation for
that system is "well-founded".

The program we have in mind would take a
statement as its Input and determine from Its
data base whether the statement is true. For
statements which are simple predications/ the
program looks for another statement in the
data base which matches the first statement.
The statement whose truth is being determined
will be called the "test statement"; the
statement in the data base to which it is
being compared will be called the "tarret
statement". To prove a complex statement, the
program would break It down into its
components and process them according to the
semantics of the operators involved.
Similarly, a complex target statenent must be
broken down to its components for processing,
but the rules are different. So, in
explaining the semantics of complex
expressions, analyses will be given for their

use both In test statements and in target
statements.

Two basic statements match If their
corresponding elements match. In general,

expressions whtch are not statements match
whenever their values are Identical, A
variable which has not been assigned a value
matches any expression, and |Is assigned that
expression's value. These rules apply to both
test statements and target statements. As an
example, suppose "5" has been assigned to
"?X", "?Y" Is unassigned, and "+" has Its
usual meaning. Then "<FOD 5 ?Y>" will match
"<FO0 ?X <+ 3 4>>" and "7" will be assigned to
"?Y".

We will not give a complete deductive
procedure for logical connectives. It Is a
well understood problem and Is not of primary
Importance in the phenomena we wish to
explain. But to suggest the kind of procedure
we have In mind, consider "AND" and "IMPLIES".
In handling these expressions the distinction
between test statements and target statements
comes through. To prove "<AND X Y" both X
and x must be proved; but in matchin
something against "<AMD X Y>", the match

succeeds if either X or V matches. "<MPLIES
XY>"1Is true If In a hypothetical state where
Xis asserted, Y can be proved. A test

statement will match a target statement
"<IMPLIES X Y>" if the test statement matches
X and X can be proved. "OR" and "NOT" are
somewhat more complicated but can be handled
In much the same way.

The really Important part of our
deductive procedure Is the treatment of
descriptions. Definite descriptions are the
simplest. "<THE <?X) <...?X...)>" evaluates
to the constant which when assigned to "?X"

makes "<...?X...>" true. If there is not such

a constant or If there is more than one, the

value of the description Is undefined. For

example. If "LESS" means "arithmetically less

than", then "<F00 3>" matches:

(2.22) <FO0 <THE (?X) (AND (LESS ?X 4)
(LESS 2 ?X))>>

This rule for evaluating definite descriptions
applies to both test statements and target
statements.

For existential and universal
descriptions, there is again a difference
between test statements and target statements.
In a test statement, an existential
description matches anything that makes the
body of the description true. That is, "<FOO
<SOME (?X) (BAR ?X)>>" matches "<F00 A>" If
"<BAR ?X>" Is true when "?X" Is assigned "A".
For the case of a target statement, the
evaluation is more difficult. If we know that
"Some bar is foo," we could simply give It a
name and continue. But giving a name would
imply that we know which bar is foo, which is
not true. Instead we can create a name and
say that if the new name were the name of the
object that is asserted to exist, then
anything which we can prove about the new name
Is true of the object. We do this by creating
a hypothetical state of the data base in
which. if the new name is "G999", we assert
"BAR G999>". The target statement then
becomes "<F00 G999>". Another way of putting
this is that "<SOME (?X> (BAR ?X)>" evaluates
to "G999", with the side effect of creating a
hypothetical state of the data base In which
"<BAR 3999>" is asserted. When the hypothesis
is discharged, the new name becomes undefined,
and we are not in danger of supposing that we
know v/hat the name of the object is.

The treatment of universal descriptions
Is the exact dual of that for existential
descriptions. In a test statement, we know
that whatever we can prove about an
arbitrarily selected member of a class is true
of every member of the class. So just as we
did for existential target statements, we set
up a hypothetdcal state, produce an arbitrary
unique name, and assert that It is a member of
the class. Analogously to what we said
before, "<EVERY (?X) (FOO ?X)>" evaluates to,
say, "G111I" with the side effect of creating a
hypothetical state In which "<F00 GIII>" s
asserted. Also in duality with existential
descriptions. In a target statement a
universal description matches anything which
makes its body true. For example, "<F0O0 A>"
matches "<F00 <EVERY (?X) (BAR ?X)>>" If "<BAR
?X>" Is true when "?X" is assigned "A".

Now we can see why lambda-expressions are
Important for representing Information in O-
SCRIPT. Evaluating existential and universal
descriptions sometimes has the side effect of
changing the data base. Later we will
Introduce other expressions which also do
this. If we have other descriptions In the
statement, we need to be able to control
whether they are evaluated In the old data
base or the new. By "lambda-fylng" a
statement we can bring one or another
description to the outside and force It to be
evaluated first. In this way we can control
the order In which expressions are evaluated.
A detailed example of this will be given in
section 3.5.

In this brief summary, we have given the

barest outlines of a deductive procedure. We
have not discussed any of the complex
Interactions among these logical operators.
But hopefully we have laid a sufficient
foundation to talk about the Issues that are
the real point of this paper.

3. Solution
Problems

to Representation
Using D-SCRIPT

3.1 Descriptions In Opaque Contex 6

In general, descriptive phrases In opaque
contexts are subject to more than one
Interpretation. Furthermore, at least one of
the Interpretations seems not to behave
according to normal rules of logical
manipulation. Looking more closely, opaoue
contexts primarily occur In the complement
constructions of verbs like "want", "believe",
"know", etc. These verbs all have the

property of describing somebody's model of the
world. When we say:

(3.1) John wants to marry Sally.

what we mean Is that in John's model of the
world, the state:
(3.2) John is married to Sally.

Is considered desirable. The ambiguity of
descriptive phrases arises from the question

of whether the descriptive phrase Is to be
evaluated In our model of the world or the
model of the subject of the sentence. To
Illustrate this, recall the sentence:

(3.3) John wants to marry the prettiest girl.
In D-SCR1PT, the opaque reading is represented
by:

(3.4) <WANT JOHN (MARRY JOHN

<THE (?X) (PRETTIFST ?X)>)>
The reason that there are
substituting other expressions for "<THE (?X)
(PRETTIEST ?X)>" is that the statement which
actually contains this description, Il.e.:

restrictions on

(3.5) <MARRY JOHN <THE (?X) (PRETTIEST ?X)>>
Is part of John's world model. If in our
program we represent John's world model by a
separate data base, then the expressions which
may be substituted are those which are
equivalent In that data base, not In the main
data base which represents our world model.

To represent the transparent reading of
(3.3), we must take the description outside
the scope of John's model. We can do this
with a lambda-expression:
(3.6) <<LAMBDA (?X)

(WANT JOHN (MARRY JOHN ?X))>
<THE (?Y) (PRFTTIFST ?Y)>>

This says

evaluating
substituting

that the statement we get by
the description In our model and
that value for "?X" In:
(3.7) <MARRY JOHN 7?7X>
Is marked as a desirable state
model.

The analysis is

In Jolin's world

analogous for existential

descriptions. The two readings of:

(3.8) John wants to marry a blonde,

can be represented by:
(3.9) <WANT JOHN (MARRY JOHN
<SOME (?X) (BLONDE ?X)>)>

for the opaque reading, and by:
(3.10) <<LAMBDA (?X)
(WANT JOHN (MARRY JOHN ?X))>
<SOME (?Y> (BLONDE ?Y)>>
for the transparent reading. (3.9) means:
(3.11) John, wants

marries.

there to be a blonde that he

and (3.10) means:

(3.12) There Is a blonde that John wants to

marry.

So the reason we can't make a "there Is..."

paraphrase of (3.9) Is that rather than being
an existential statement. It Is an assertion

abgqut an existential statement.

3.2 Descriptions in time contexts

In order to discuss the next set of
examples, we need a way to represent time.
The basic fact here Is that any predicate can
be made to vary with time. Even those that we
choose to consider eternal can be alleged to
depend on time, e.g.:

(3.13) Two used to be greater than three.
To account for this in first-order logic, we
would have to make time an explicit parameter

of every predicate symbol. Instead, we will
represent time by a coptextSTRUCTURED.ctured data
base (McDermott). By this we mean that the
data base will be broken down Into a series of
sub-data bases, or contexts, each of which
represents the state of the world at some
particular time. This can be efficiently
Implemented, as It is in CONNIVER (Sussman and
McDermott) by specifying each context by

recording the differences between It and Its
predecessor.

To use this kind of data base, we need a
special predicate "T-A-T" which takes as Its

parameters a statement and
context. "<T-A-T S t>"
True At Time T.
T" are that it

the name of a time
means statement s. Is

The formal semantics of "T-A-
attempts to deduce S, in the
time context named by t., We also need to be
able to generate references to time contexts.
For Instance, the phrase:

(3.14) when Washington was President

would be represented by the description:

(3.15) <THE (?T) (T-A-T (PRES WASHINGTON) ?T)>

Finally we need the one-place predicate "TIME"
to make quantified statements about time. We
would represent:

Three than two.

(3.16) Is always greater

by:

C3.17) <T-A-T (HRFATF.R 3 2)
<FVFRY (?T) (TIT'F ?T)>>
Given this notation for time, we can

solve the associated problems which wo raised
earlier. As in the case of opaque contexts,
the solution depends on whether a description
Is evaluated In the context in which a

statement Is made or the context which the
statement Is about. Recalling the previous
examples:

(3.18) The President has been married since

1945.
is represented by:
(3.19) <<LAMBDA (?X) (T-A-T (MARRIED ?X)

<EVERY (?T) (AFTER ?T 1945)>)>
<THE C?Y) (PRES ?Y)>>

In (3.19) the use of the lambda-expression
puts the description "<TNIF (?Y) (PRES ?Y)>"
outside the time construction, so it is
evaluated in the context in which the
statement is made. On the other hand:

(3.20) The President has
Mouse since 1800.

lived In the White

is represented by:
(3.21) <T-A-T
(LIVE-If <TME (?X) (PRES ?X)> W-H)
<EVERY (?T) (AFTER ?T 1800)>>

Here the description Is inside the time
construction and is not evaluated until the
time description has been instantiated. The

analysis is the. same for:

(3.22) John met the President in 1960.

except that in this case the time reference is

definite. One interpretation is given by:

C3.23) <T-A-T (MEET JOHN <T11E (?X) (PRES ?X)>
19G0>

and the other is given by:

(3.2d) <<LAHDDA (?X) (T-A-T (MEET JOHN ?X)
1960)>
<THE (?Y) (PRES ?Y)>
3.3 Knowledge about Knowledge

One of the questions we raised in the
beginning was how to represent:

(3.25) John knows Dili's phone number.
If we knew the number we could

(3.25) by:

represent

(3.2G) <KNOW JOHN (PHONE-NUM BILL xxx)>

where xxx is the number. We do know one

description of the number, namely "CiU's
phone number". If we substitute this Into
(3.26), however, we pet a trivial statement:

(3.27) <KNOW JOHN (PHOME-NUM BILL
<TIE (?X) (PHONF-NUM BILL ?X)>)>

which means:

John knows that
Bill's phone

(3.28) Bill's phone number is

number.

What we need to do Is to remove the occurrence
of the description from John's world model
"into our world model. Once again, we can do
this with a lambda-expression:

(3.29) <<LAMBDA (?X)
(KNOW JOHN (PHONE-NUM BILL ?X))>
<TIIF (?X) (PHONE-NUM BILL ?X)>>
This says that If we were to evaluate the

description "Bill's phone number" and stick
the result in (3.26), we would correctly
describe John's knowledge.

To see the difference between (3.27) and
(3.29), suppose we know that Bill has a phone
number, and we know that John knows that Bill

has a phone number. These facts are

represented by:

(3.30) <PHOME-MUM BILL <SOME (?X) (MUM ?X)>>
(3.31) <KNOW JOHN (PHONE-NUM BILL

<SOME (?X) (NUM ?X)>)>
Given this, we can prove (3.29) from itself.
Notice that In D-SCRIPT this is non-trvial.
Complex statements are never proved by simply
looking to see if they are in the late base.
Rather, they arc broken down to their basic

components and these components are processed
according to the semantics of the operators

combining then. In the case of "KMOW" the
semantics are to shift the proof to the data
base of the person doing the knowing. So even
to prove a statement from itself, the
semantics really have to work.

tn trying to prove (3.29) the lambda-
expression makes us first evaluate "(THE (?X)
(PHONE-NUM DILL ?X)>". We do this by trying
to find a match for "<PHONE,-NUM BILL ?X>". If
we don't know Bill's phone number wc can't do
this directly. (3.30), however, entitles us
to create a hypothetical state in which some
arbitrary constant, say "0777" is asserted to
be Dill's number. So to prove (3.29), wc
attempt to prove:
(3.32) <KNOW JOHN (PHONE-NUM BILL G777)>
with the hypothesis:
(3.33) <PIONE-NUM BILL G777>

To prove (3.32) from (3.29) we process (3.29)
much the same as before. This time, however,
We already have (5.33) in the data base; so
"<THE (?X) (PHONE-NUM BILL ?X)>" evaluates to
"0777" directly. Our proof then reduces to
proving (3.32) from itself, which reduces
again to proving (3.33) from itself in the
data base which represents John's world model.
(3.33) is a basic statement, so it can be
Inferred from Itself immediately, and the
entire proof succeeds.

Now suppose instead that we were trying
to prove (3.29) from (3.27). The proof would
be the same down to the point where we
generated the subgoal of proving (3.32). To
prove this from (3.27), we have to prove
(3.33) from:

{5.34) <PHOME=-NUM BILL
CTHUE (X} (PHOUE~wUM GILL 7X) 3>

in the context of John's world model. But
this time we camnot use (3.33) wheon we
evaluate the description, becnuse (3.33) is
asserted only in oyr werld model, and the
evaluetion s taking place In John's. What
will happen (s that (3.31) wi)1 be ysed to
rencrete another arkitrary constant (e, n,
"egsM) in John's world model, Ve will then
try to prove {(3,33) from;

{3.35) <PIIONE-NUM EILL REED>

Si?ce "z2777" does not motch "NES8Y, the proof
fails.,

- 4, Future work

In this paper we have presented a formal
Language for the representation of knowl edge.
We have shown how Information which is
difficult to express in other formalisms can
be expressed in our language. And we have
suggested how a deductive program could be

designed to answer questions in our language.
Clearly, the next step in this research is to
build that deductive program.

There arc several reasons why this would
be a worthwhile project. For one, A.l.
deductive systems seen to fell into two
extreme categories. On the one hand,
predicate-calculus theorem provers restrict
themselves to first order languages.
Procedural systems such as PLANNER, on the
other hand, use pattern matching schemes which

are general enough to process higher order
statements, but they are So general that they
say nothing about the meaning of those

statements. Implementing D-SCRIPT would
create a system somewhere In between - one

that would embody systematic knowledge about
some types of higher order statements.
Beyond this, the particular types of

knowledge we have discussed seem to be
especially important for A.l. There is still
much work to be done, but if we can program a
deductive system to treat "T-A-T" and "KNOW"
in the way we have proposed, we will have

taken a first step towards creatine programs
which can think about thinking.
Bibilography
Hewitt, C, "Description and Theoretical
Analysis (Using Schemata) of PLANNER: A

Language for Proving Theorems and

Manipulating Models In a Robot," Report
Al TR-25B, M.I.T. A.l. Laboratory, 1972.

McCarthy, J., "Programs with Common Sense," in
Semantic Information Processing. Marvin
MInsky, ed,, pp. 403-418. Cambridge,
Mass.: N. | .T. Press, 1068.

McDermott, D, V., "Assimilation of flew
Information by a Natural LanGuare-

Understandlinn System," unpublished S.N.
thesis, M.I.T., 1973.

Quillian, M. R., "Semantic Memory, " in
Semantic Information Processing. on. 227-
270.

Sandewall, F., "Formal Methods in the Design

of Question-Answering Systems,

Artificial Intelligence. Vol. 2 (1971),
pp. 129-145.

Schank, R, C. "A Conceptual Dependency
Representation for a Computer-Oriented
Semantics," Memo AlI-83, Stanford A.l.
Project, 1969.

Sussman, G. J. and D. V. McDermott, "From
PLANNER to CONNIVER - A genetic
approach," Proc. FJCC 41 (1972), pp.
1171-1179.

Winograd, T., "Procedures as a Representation
for Data In a Program for Understandinp;
Natural Language," Report Al TR-17,

M.I.T. A.l. Laboratory, 1971.

Session 8 Formalisms for

Artificial Intelligence
CONVERSION OF PREDICATE-CALCULUS AXIOMS, VIEWED AS
NON-DETERMINISTIC PROGRAMS, TO CORRESPONDING DETERMINISTIC PROGRAMS
Erik Sandewall
Computer Sciences Department
Uppsala university
Abstract: The paper considers the problem of converting there is a systematic way to handle those problems. We

axioms in predicate calculus to deterministic programs,
which are to be used as "rules" by a GPS-type supervi-
sor. It is shown that this can be done, but that the
"objects" must then contain procedure closures or "FUN-
ARG-expressions" which are later applied.

Keywords: deduction,
terministic, closure,

theorem-proving, retrieval,
FUNARC-expression.

Background- Retrieval
antic data base

of Implicit information in a sem-
is a kind of deduction. One approach to
doing such retrieval has been resolution-style theorem-
proving; a later approach has been high-level program-
ming languages such as Planner1 and QA42, where non-de-
terministic programs and pattern-directed invocation of
procedures are available. The use of uniform proof pro-
cedures for this purpose has been repeatedly criticized
e.g. In 3. Users of the high-level languages have also
been worried because their systems are very expensive

to use4,2 and because the non-determinism is difficult
to control4.
There is another approach, which has roots in A.1. re-

search back to the General Problem Solver5,
has a supervisor which administrates a

xed set of operators,
jects. In each cycle,

where one
(relatively) fi-
and a working set of active ob-
the supervisor picks an object
and an operator (using any heuristic information that
it may have), applies the operator to the object, and
obtains back a number of new objects (none, one, or
more) which are put into the working set. This process
is continued until some goal is achieved (e.g., an ob-
ject is a given target set appears in the working set).

This approach has certain advantages from an efficiency
standpoint, The operators are fixed programs, which can
be compiled or otherwise transformed all the way to ma-
chine code level. The non-determinism is concentrated

to the supervisor. Still, there is room for pattern-di-
rected invocation, by letting the supervisor classify
objects into a number of classes, and associating a

subset of the operators with each class.
the non-determinism

There
Implied by the search.

is also

The major disadvantage,
is more rigid. For example,
one level, there is little
operator calls a procedure, which calls another, which
wants to be non-deterministic, then there is no trivial
way to map that non-determinism back up to the "search
level" of the supervisor, while retaining the environ-
ment of function calls, variable bindings, etc. that
must be kept available in all branches.

is that this scheme
since everything happens on
room for recursion. |If one

of course,

An
this
the

Interesting question is therefore:
rigidity? Is it very awkward to
limitations of such a system, or

how harmful is
"program around"
is It easy?

In this paper, we try to answer that question by study-
ing those operators which correspond to axioms in pre-
dicate calculus. We assume that we have a data base,
which Is like a large number of ground unit clauses,
plus a number of operators, which should correspond to
the non-ground axioms. We show that there are certain
problems in phrasing the latter as operators,,but that

non-de-

230

conclude that the search supervisor approach should be
considered as a serious candidate for the deductive sys-
tem associated with a data base.

Basic Idea. For the reader who might not want to read
the whole paper, we disclose that the idea is to permit
the "objects" to contain procedure closures6'7, also

called FUNARG-expresslons, l.e. lambda-expressions to-
gether with an environment of bindings for its free va-
riables. The lambda-expression is as fixed as the set

of operators, and can therefore be compiled, etc, but
the environment Is new for each object.

After thus having sketched the background and the gene-

ral idea,
calculus

let us go
environment.

Into the details of the predicate-

Simplest case. Let us take a common-place axiom and

convert it into a program-like operator. We choose the
transitivity axiom,
R(x,y) A R(y,z)) R(x,z)

which goes Into a rule of the form

On a sub-question with the

lambda(x,z) begin local vy;
determine y from R(x,y);
return sub-question R(y,z)
end

relation R, use

Here, "determine y from R(y,z)" calls for a
the data base, and usually acts as a non-deterministic
assignment to y. "Return sub-question" specifies the
information which is given back to the supervisor, con-
sisting of a relation (R) and an argument list. The
latter is a list of the current values of x and yj It
does not need to contain the names x and y, or their
bindings to their current values. The supervisor will
then look up all operators (lambda-expressions) which
are associated with R, and apply them to the given ar-
gument list, of course at whatever time it chooses.

look-up in

This rule describes what has to be done when any data
base search routine continues search according to the
transitivity property of the relations. It does not
matter if the search is executed by a uniform theorem-
prover, a Planner-type system, or by a hand-tailored
proaram such as the LISP functions in the SIR system8.

However, in a higher-level system, the system has to
"interpret" the axioms or rules, Il.e. find out at run-
time what is to be done. A resolution theorem-prover

is extreme In this respect. Our concern In this paper

is to find out before execution (with information only
about the axiom or rule, not about the actual sub-ques-
tion) what operations will be necessary, so that we can
write out the code for doing exactly that, tn program-

ming systems terms, we want to compile the axioms, and
do as many decisions as possible at complle-time.
If a resolution theorem-prover contains the above tran-
sitivity axiom, and the axiom

R(a,b)
and if it asked the "question" A(b.c), it will genera-
te the sub-question MlI(a,c). This step can be clearly
Illustrated |If the transitivity axiom Is rewritten as

Rix,y} A ~R{x,2) > 'bﬁ(z;z]
If the same effact is to obtained Tn a Flannar sys-
tem or a hand-taflored program, it must be programmed
separately. In analogy to the rule above, we would wri-
te
On a sub-question with tha relation R, use
lambda {y,z) begln iocal x;
determine x from R{x,y)
return sub-question “R(x,z)
end

Thus one clause (In the resolution sense) usually cor-
responds to several rules like the lambda-expressions
above. The number of rules that correspond to a clause

Is finite. If some rules are omitted, then the result-
ing system is not In general complete, but inclusion of
all rules is still not sufficient to insure complete-

ness. We shall not be concerned about this.

Going back to the first rule above, the reader should
imagine that the supervisor contains one queue of sub-
questions for each relation symbol, and that every sub-
question contains an argument list. Every relation sym-
bol is associated with a set of operators, written as
lambda-expressions like the one above, which can be
applied to the objects that queue for that relation
symbol. The operator above returns a sub-question, and
tells what object - argument list it should contain,
and which relation it should attend. The operators can
be thought about as "demons", clustered in groups with
a common point of interest, which is named by the re-
lation symbol.

List of problems. This organization raises a number of
questions. One problem is how one should integrate heu-
ristic information into the system. We shall not go in-
to that question here. Another question is how the lo-
cal non-determintsm in the rule is to be handled. The
answer is simple: we map the linear (i.e. loop-free),
non-deterministic program into a looping, deterministic
program. Each branch-point starts a new loop inside the
loops of the previous branch-points. All loops end at
the end of the rule. This is quite straight-forward.

If the PC (predicate calculus) axioms contain function
symbols (not merely relations), we obtain "unification",
or in programming language terms: pattern-matching and
pattern-reconstruction. Then the conversion to remove
the local non-determinism involves some additional prob-
lems, which however will be the topic of a later exten-
sion of this paper. Suffice it to say that every PC
function should be associated with one construction pro-
cedure and one or more matching procedures, and that
the compiled version of the axiom must contain a call

to one of these procedures. It can be determined at
"compilation time" which procedure shall be called. The
matching procedure for "plus" may for example match "1*"
against "plus(x,l)" and assign to "x" the value 3.

Let us turn instead to the question of how open ques-
tions are handled. ("Closed questions" are questions
which can be answered with a truth-value, l.e. Yes/no
questions; "open questions" are questions which have an
Individual, or n-tuple of individuals as possible ans-
wer.) We decide immediately that "closed questions with
the relation R" shall be one class of object and inter-
est-point for operators, and "open questions with the
relation R and an asked-for second argument, R(x,?)"
shall be another class of objects, treated with another
set of operators. We shall provisionally denote it as
R2(X). For example, the same transitivity axiom for R
also calls for the following operator:

On a sub-question with R, use

lambda (x) begin local v;

determine y from R(x,y);
return sub-question Ra(y) nd

231

Exampies of non-trivial cases, Consider the PC axiom

P(xa)’) A Q(-“l‘l) b R(*»Y)

This should be represented by the following rula:

On a sub-question with R;, use

lambda (x) begin
return sub~question Pp(x), but check that
any answer to that sub-question satisfies

Yambda (y) 4{x,y}

before accepting it
end

Here the rule returns to the supervisor a relation sym-
bol, an argument list, and a remainder procedure which
is to be used later. In this case, the remainder proce-
dure is lambda (y) G{x,y). Notice alsc that the current
binding of the varlable x must be avallable to that
procedure, when it is later used. The variable x is a
transfer variable in the sense of reference’. In other

words, the remainder procedure is a procedure closure
as defined under "Basic ides above and x must be bound
in its enpvironment part.

I1f we have PC Ffunetions in the axiom, & similar situva-
tion may arise.Consider
Pix,y) A Qly,z) D R(,fix,z))
which would go into
On & sub-guestlon with Ry, use
lambda {x) begin local y,2;
determine y feom P(x,y};
return sub-question Qz2{y), and for every
answer to the sub-guestion, apply
lambda (z)} fix,2}
and return the resylt
£nd

Here we agaln return a sub-question which contains a
remainder procedure with a transfer variable [(x).

S0 in both of these examples there was an unexpected
complication: & need for oblects which 'contain'' refe~
renceés to procedures, Because of the increased com-
plexity, the mapping from PC axiom to corresponding ru-
le is far from trivial in such examples. We shall now
specify how It can be done, The method witl be develop-
ed through "refinement', i.e. we first describe the ge-
naral idea and thest modify {t unti) it becomes suffl-
clently precise.

New formulation of operators. Let us first re-write the
operators without reference to what sub-quéstion is be-
ing returned. For the three axioms that we have alrea-
dy used as examples, we obtain:

(transitivity of k)

Axlom 1

On a sub=question with Rz, use
lambda (») begin local v,z:
Tererniney From ROuy)s
determine 2z from Riy,z);
return answer 2z
end

Axiom 2 Pix,y) A Ql{x,y}) Rix,y)

On a sub-question with Rz, use
lambda (x) begin local y;
determine y from P(x,y};
determine that Q{x,y) [is in the data ba-
sel;
return answer y
eng

Axiom 3 Pix,y) A Qly,z) D Rix,f(x,2))

On & sub-question with Rz, use
lambda (x) begin local y,z;
determine y from Pix,y);

determine z from Q(y,z).;
return answer f(x,z)
end

Each of these operators contains a main block, where
each statement except the last one makes an access to
the data base, for either a closed or an open question,
(Every such statement corresponds to a literal in the
original axiom). We have tacitly assumed that thosere-
references should be "immediate", i.e. only use facts
that are explicitly in the data base. However, it Is
also possible to let such intermediate statements make
their own search. If we maintain the idea that the ope-
rators should be deterministic programs, and all search
should be managed by the supervisor, then the search In
the Intermediate statement must be brought to an end
before the execution of the operator can continue. It
follows that in an intermediate statement we can only
make a search which is "short" compared to the main
search done by the supervisor.

Is it possible to use the latest formulation of the
operator as it is7 All search would then be done In
the intermediate statements (both "look up y" and "look
up z" in the transitivity axiom, etc.) and the opera-
tor can return a final answer, rather than a sub-ques-
tion for further search. This is correct, but clearly
the supervisor is not used at all in this case.

However, given the last formulation of the operators,
we can come back to the previous formulation by pick'
Ing out one intermediate statement and decide that that
is where the main search shall be done. In the first
axiom, the main search Is most naturally done for "de-
termine z". In the second axiom, our previous formula-
tion does the main search for "determine y", although
In principle It would also be possible to determine y
In the shallow search of an intermediate statement, and
then ask the supervisor to do main search in order to
prove Q(x,y) for the selected y. In the third axiom,
our previous formulation does main search to determine
z, although It would also be possible to do main search
for y, and to determine z and f(x,z) in the remainder
procedure.

Conclusion from the discussion. We conclude that the
general method to convert a pred'cate-calculus axiom
to an operator should be:

{1} Assign a suitable order to the iiterals to the Iafy
of the imglication sign. ("Suitabie” will not be
discussed [n this paper). Change each literal } in-
to the phrase

determine vy, V2, ... v from 1"
whers the v, are varisbles Jhtch otcur In 1 byt not
in pravicus 11terals, or {if] = 0} =
"determine that 1"

{(2) Add a final stacement, such as "return success'

(for closed questiens) or "return answer y" (for

open questions). Also enclose the block by a lamb-

da-expression. The Information for this isx taken
from the literal to the right of the [mplication
slgn, in the obvicus way as exemplifled for the a~
bove axioms.

Decide which of the statements
shall be handled by the extensive, top-level search
which is managed by the supervisor. This Is called
a controlled statement. Let the statements in the

operator be

H,

in the operator

Si,Sksr -.. Sa

where s. Is the controlled statement.

{*)) Construct a new operator where the statements are

232

Bpo Bpp cue S g, B8
whire £ & [s the following statement:
return the suyb-~questlon 5. , with the provisien
that any answer to this sub=question shall be fur-
ther processed by the following remainder proce-
dure:

lambda fvi, vzs +ve vj} bagin s, 40 ... 5 209

where the v, are the variables mentioned in step
{1} which occur in L

The same examples again. Let us check thls mathod on
the three axioms that we have used above. In all cases,
we give rules which are to be used on an open sub-ques-
tion with Ra:

Axlom 1 (transitivity of R}

tambda (x) begin local y;
determine y from R{x,y);
return sub-guestion
determine 2z from R{y,z}), with the re-
mainder procedure
lambda (2} return answer 2
end

The phrase "determine 2 from R(y.zf can be mora conci-
sely axpressed as R:(y). We use that in the next two
examples:

Axiom 2 Pix,y) A Qlx,v} 3 Rix,y)

jambda (x] begin
return sub-guestion P»{x), with the re=
mainder procedure

fambda {y) begln
determine that Qi(x,y);

returnh answer y
and

=nd

Axlom 3 P(x.y) A Qly,2)) Rix,fix,z))

Tambda (x) begin local y;
atermine y from P{x,v);
return tha sub=gquestion CGa{y), with the
remainder procedure
lambda (z) begln
return answer f(x,z)
end

We see that this third formulation is equivalent to the
first formulation of the rules, although 1t contains
more strict formelations. In axiom 2, the statement
"determine that Q{x,y}" will "fail'' if the relation can
not be retrievad or provad 'n the data base, and then
control will nevar be passad on EO0 the next statement,
where the apswer v s returned to the supervisor, The
formulations sbove use both the primitives 'return sub-
quastion'' and "return answer' with the obvious meaning.

We notice also that the formulations are still locally
non-deterministic, and that they must undergo the Eri-
vial transformation to a determinlstic program with
loops. We write this out for the first example; the
othert are analoguous:

lambda {x) begin local y;
for every y In set of answers to Ra{x} go

eqin
return sub-question Ra{y] with remain-
der procedyre
larbda (2) return answar z
od
end

Multiple controlled statements. It is easily seen that
the above rule in four steps can be generalized to the
cases where there are several controlled statements,
and top-level search is performed for each of them. For
example, in axiom 2 we might wish to make extensive
search both in order to determine y from P(x,y), and in
order to prove Q(x,y). We must then have two nested re-
mainder procedures. The resulting operator should have
the form:

On a sub-question with R2, use
lambda (x) begin
return sub-question Py(x), with
der procedure
lambda (y) begin
return sub-question Q(x,y)
/a closed sub-question/ with

remain-

the remainder prodedure
lambda () return answer y
end

end

We realize that "every answer" to a closed sub-question
must be affirmative, i.e. as soon as it has proved
Q(x,y), the above operator returns vy.

Chains of sub-guestions. The operators as formulated
above return sub-questions consisting of a relation
symbol, an argument list, and a remainder function, but
they only accept the first two items. This means that
the supervisor is responsible for administrating the
remainder procedures. However, in a programming system
where procedures are permitted as arguments (to other
procedures), the responsibility can easily be taken by
the operators and the programming system. We shall now
describe how this can be done.

In closed and open questions, we add one more argument
9, which is the remainder procedure. The resulting ar-
gument lists (x,y,g) for R, (x,g) for Ry, etc., are the
objects which our supervisor shall handle.

We then modify the examples so that g is introduced as
an argument and applied to the returned answer. Thus
the definite version of the rule for axiom 3 ia:

On a sub-question with R,, use
lambda (x,g) begin local v;
determine y from P(x.y);
return sub-question
Qz(y, function(lambda (z) g(f(x,z”

end

The other rules are modified similarly. We notice that
the sub-questions that this rule returns, contain two

transfer variables: x and g. The bindings of these must
be saved in the closure, and retained until the remain-
der procedure is used.

Let g' be the second argument of 02 in one particular
use of the above operator. Clearly g' contains a refer-
ence to g, which itself pfesumably is a procedure clo-
sure, which was set up by a previous sub-question. As
one sub-question generates another, a chain of closu-

res is generated, where each one refers to its prede-
cessor. When finally an answer is found to the last sub-
question, the last procedure closure is applied in a

return-answer statement; it calls its predecessor by
using a procedure variable, as seen in the example,
predecessor calls its predecessor, and so on up the
chain. In the original (top-level) gjestion, q is given
as "return aeswer".

the

Discussion of applicability of the method. This proce-
dure works In all cases where the non-determinlstic
interrupt points (where another, parallel branch is per-

233

mitted to attract attention) can be brought to the top-
level block of the "operators”, and not be hidden deep-
er down in recursion, in principle, the trick is that
the control stack (the stack of function calls) is only
one element deep at the interrupt points (containing
the call from the supervisor to the operator), and then
the control stack information, plus the information of
how far we have gotten, can be put in one additional
transfer variable. With this method, we have no control
stack environment, but merely a variable-binding envi-
ronment at the interrupt points, and this is exactly
what FUNARG (or procedure closures) can handle.

We believe that this method is sufficiently powerful
handle e.g. all cases which may occur when PC axioms
are mapped into rules, and probab 1y also a broader app-
lication.

to

A questionable feature of this method is that one must
in principle decide at "compile-time" which retrievals
are to be done by "big" search, and which are to be done
by "short" intermediate statement (¢ non-controlled sta-
tement) search. In some applications this is OK since
some relations are only stored explicitly or almost ex-
plicitly; In others it may not be acceptable.

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati-
cally, then the selected programming language must of
course be able to generate and manipulate programs in
the same language. LISP Is then an obvious choice. How-
ever, during the execution of the search, our require-
ment is instead that we must be able to create a proce-
dure closure, and send it around as data. Some simula-
tion languages, notably Simula 67'° have this facility,
as well as POP-2"" and ECL'®. LISP1.5 systems (a-list
systems) provide it through the RINARG feature. Later
LISP systems (LISP 1.6, original BBN-LISP) do not pro-
vide it’. A method for providing FUNARG in BBN-LISP'type
systems without undue loss of efficiency has been pro-
posed In°.

It has been suggested that the notion of a "remainder
procedure”, as used in this paper, is rather closely

connected with the notion of "continuation", which has
recently proved helpful in discussing the denotational
semantics of programming Ianguages”.

Implementation. The author has participated in the deve-
lopment of a program, called PCDB (Predicate Calculus
Data Base), which Is organized according to the search
supervisor principle. This program was described in re-
ference ', and contains a compiler which accepts PC
axioms and generates corresponding LISP programs. It al-
so contains a simple supervisor, elaborate data base
handling facilities, etc. which are needed. The present
(1972) version of PCDB lets the supervisor administrate
the remainder procedures in an ad hoc and not completely
general way. A new compiler is being written, which will
administrate them with FUNARG expressions as indicated
in this paper. We hope to have it working at the time of
the conference.

Acknowledgements. The following people in Uppsala have
helped with the PCDB work: Lennart Drugge, Anders Harald-
son, Rene" Reboh.

Sponsor: This research was supported by IBM Svenska AB.

References

1

10.

.C Hewitt

Description and theoretical analysis (using schemata)
of PLANNER, a language for proving theorems and mani-
pulating models In a robot

Ph.D. thesis, Dept. of mathematics, MIT, Cambridge,
Mass. (1972)

J.F. Rullfson et al.
QA4: a procedural basis for intuitive reasoning
Al Center, Stanford Research Institute (1972)

D.B. Anderson and P.J. Hayes

The logician's folly

in the (European) AISB Bulletin, British Computer
Society, 1972

G.J. Sussman
Why conniving is better than planning
MIT Al laboratory, 1972

A. Newell et al.
Report on a general problem-solving program
Proc. IFIP Congress 1959, p. 256

P.J. Landin
The mechanical evaluation of expressions
Computer Journal, Vol. 6 (1964), pp. 308-320

J. Moses

The Function of FUNCTION in LISP, or why the FUNARG
problem should be called the environment problem
ACM SIGSAM bulletin No. 15 (1970)

B. Raphet

SIR: a computer program for semantic Information re-
trieval

in Minsky, ed.: Semantic information processing

MIT press, 1968

E. Sandewall
A proposed solution to the FUNARG problem
ACM SIGSAM bulletin No. 17 (1971)

Ole-Johan Dahl et at.
Common Base Language
Norwegian Computing Center, Oslo, 1970

R.M. Burstall et al.
Programming in POP-2
Edinburhg Univ. Press, 1971

B. Wegbreit et al.
ECL Programmer's Manual
Harvard University, Cambridge, Mass. 1972

J. Reynolds

Definitional interpreters for higher order program-
ming languages

Proceedings of an ACM Conference, Boston, Mass.,1972

E. Sandewall

A programming tool for management of a predicate-
calculus-oriented data base

in Proceedings of the second International joint
conference on Artificial intelligence, British Com-
puter Society, London, 1971

Artificial Intelligence
A Universal Modular ACTCR Formalism
for Artificial Intelligence
Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACIOR architecture and definitional method for artificial
intelligence that is conceptually based on a single kind of object: actors [or, if you will,
virtual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a list, a vector, a
hash table, a function, or a process. The architecture will efficiently run the coming
generation of PLANNER-ike artificial intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more efficient; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

FLANNER Progress

"Programs should not only work,
but they should appear to work as well."
PDP-1X

The ALANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR Intuitively, an ACICR is an active agent
which plays a role on cue according to a script" we' use the ACICR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, identifiers, demons,
processes, contexts, and data bases can all be shown to be special cases of actors. All of the
above are objects with certain useful modes of behavior. Our formalism shows how all of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

"It is vain to multiply Entities beyond need."
William of Occam
"Monotheism is the Answer."

The unification and simplification of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It will now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set-theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR-ALL, THERE-EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOMEDGE BASHD FROGRAVMIMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways. PROCEDURAL
BVBEDDNG of TRACNG BEHAVIORAL ES, and SUBSTANTIATING that ACICRS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisfied. The intention is the
QONIRACT that the actor has with the outside world. How an actor fullfllls its contract is
its om business. By a SIMPLE BJG we mean an actor which does not satisfy its intention.
We would like to eliminate simpTedebugging of actors by the METAEVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. Intuitively, the
principle of ACTOR INDUCTION states that the intentions of all actions caused by E are
in turn satisfied provided that the following condition holds:

If for each actor A

the intention of A is satisfied =>

that the intentions of all actors sent messages by A are satisfied.
Computational induction [Manna], structural induction [Burstall], and Peano induction
are all special cases of ACIOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intrinsic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for all other actors.

COVPARATVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

extended and unified. The following hierarchy of control structures can be explicated by
incrementally Increasing the power of the message sending primitive:
iterative---recursive---backtrack---+determinate- --universal

EDUCATION: The model is sufficiently natural and simple that it can be made the
conceptual basis of the model of computation for students. In particular it can be used as
the conceptual model for a generalization of Seymour Papert's "little man" model of LOGO.
The model becomes a cooperating society of "little men" each of whom can address others
with wham it is acquainted and politely request that some task be performed.

LEARNNG and MODULARITY: Actors also enable us to teach computers more easily
because they make it possible to incrementally add knowledge to procedures without having
to rewrite all the knowledge which the computer already possesses. Incremental extensions
can be incorporated and interfaced in a natural flexible manner. Protocol abstraction
[Hewitt 1969; Hart, Nilsson, and Fixes 1972] can be generalized to actors so that
procedures with an arbitrary control structure can be abstracted.

EXTENDABILITY: The model provides for only one extension mechanism: creating
new actors. However, this mechanism is sufficient to obtain any semantic extension that might
be desired.

PRIVACF and PROTECTION: Actors enable us to define effective and efficient
protection schemes. Ordinary protection falls out as an efficient intrinsic property of
actors. The protection is based on the concept of "use". Actors can be freely passed
out since they will work only for actors which have the authority to use them. Mutually
suspicious "memoryless" subsystems are easily and efficiently implemented. ACICRS are at
least as powerful a protection mechanism as domains [Schroeder, Needham, etc.], access
control lists [MULTICS], objects [Wulf 1972], and capabilities [Dennis, Plummer, Lampson].
Because actors are locally computationally universal and cannot be coerced there is reason
to believe that they are a universal protection mechanism in the sense that all other
protection mechanisms can be efficiently defined using actors. The most important issues
in privacy and protection that remain unsolved are those involving intent and trust. We
are currently considering ways in which our model can be further developed to address these
problems.

SYNCHRONIZATION: It provides at least as powerful a synchronization mechanism as
the multiple semaphore P operation with no busy waiting and guaranteed first in first out
discipline on each resource. Synchronization actors are easier to use and substantiate
than semaphores since they are directly tied to the control-data flow.

SMULTANEQUS GOALS: The synchronization problem is actually a special case of the
simultaneous goal problem. Each resource which is seized is the achievement and
maintenance of one of a number of simultaneous goals. Recently Sussman has extended the
previous theory of goal protection by making the protection guardians into a list of
predicates which must be re-evaluated every time anything changes. We have generalized
protection in our model by endowing each actor with a scheduler. We thus retain the
advantages of local intentional semantics. A scheduler actor allows us to
program BEXQUSES for violation in case of need and to allow NEGOTIATION and re-negotiation
between the actor which seeks to seize another and its scheduler. Richard Waldinger has
pointed out that the task of sorting three numbers is a very elegant simple example
illustrating the utility of incorporating these kinds of excuses for violating protection.

RESORCE ALLOCATION: Each actor has a banker who can keep track of the resources
used by the actors that are financed by the banker.

STRUCTURNG: The actor point of view raises some interesting questions concerning
the structure of programming.

SIRUICTURED

We maintain that actor communication is well-structured.
Having no goto, interrupt, semphore, etc. constructs, they do not violate "the letter
of the law." Sare readers will probably feel that some actors exhibit "undisciplined”
control flow. These distinctions can be formalized through the mathematical discipline
of comparative schematology [Patterson and Hewitt].
SIRICTURED PROGRAMMING Sare authors have advocated top down programming. We
find that our om programming style can be more accurately described as "middle out".
We typically start with specifications for a large task which we would like to program.
We refine these specifications attempting to create a program as rapidly as possible.
This initial attempt to meet the specifications has the effect of causing us to change
the specifications in two ways:
1: More specifications [features which we originally did not realize are
important] are added to the definition of the task.
2: The specifications are generalized and combined to produce a task that
is easier to implement and more suited to our real needs.

IMPLEMENTATION: Actors provide a very flexible implementation language. In fact
we are carrying out the implementation entirely in the formalism itself. By so doing we
obtain an implementation that is efficient and has an effective model of itself. The
efficiency is gained by not having to incur the interpretive overhead of embedding the
implementation in some other formalism. The model enables the formalism to answer
questions about itself and to draw conclusions as to the impact of proposed changes in the
Implementation.

ARCHTECTURE: Actors can be made the basis of the architecture of a computer which
means that all the benefits listed above can be enforced and made efficient. Programs
written for the machine are guaranteed to be syntactically properly nested. The basic unit
of execution on an actor machine is sending a message in much the same way that the basic

unit of execution on present day machines is an Instruction. On a current generation
machine in order to do an addition an add Instruction must be executed; so on an actor
machine a hardware actor must be sent the operands to be added. There are no goto,
semaphore, interrupt, etc. instructions on an ACIOR machine. An ACICR machine can be built
using the current hardware technology that is competitive with current generation machines.
"Now! Now!" cried the Queen. "Faster! Faster!"
Lewis Carroll

Current developments in hardware technology are making it economically attractive
to run many physical processors in parallel. This leads to a "swarm of bees" style of
programming. The actor formalism provides a coherent method for organizing and
controlling all these processors. Orne way to build an ACIOR machine is to put each actor
on a chip and build a decoding network so that each actor chip can address all the others.
In certain applications parallel processing can greatly speed up the processing. For
example with sufficient parallelism, garbage collection can be done 1n a time which is
proportional to the logarithm of the storage collected instead of a time proportional to
the amount of storage collected which is the best that a serial processor can do. Also the
architecture looks very promising for parallel processing In the lower levels of computer
audio and visual processing.

"All the world's a stage,

And all the men and women merely actors.
They have their exits and their entrances;
And one men in his time plays many parts.”

"If it waddles like a duck, quacks like a duck, and otherwise behaves like a duck; then
you can't tell that it isn't a duck."

Adding and Reorganizing Knowledge

Our aim is to build a firm procedural foundation for problem solving. The foundation
attempts to be a matrix in which real world problem solving knowledge can be efficiently and
naturally embedded. We envisage knowledge being embedded in a set of knowledge boxes with
interfaces between the boxes. In constructing models we need the ability to embed more
knowledge in the model without having to totally rewrite it. Certain kinds of additions can be
easily encompassed by declarative formalisms such as the quantificational calculus by simply
adding more axioms. Imperative formalisms such as actors do not automatically extend so
easily. However, we are implementing mechanisms that allow a great deal of flexibility in
adding new procedural knowledge. The mechanisms attempt to provide the following abilities;

PROCEDLRAL EMBEDDING.. They provide the means by which knowledge can easily and
naturally be embedded in processes so that it will be used as intended.

OCONSERVATME EXTENSION: They enable new knowledge boxes to be added and
interfaced between knowledge "Foxes.

MODUAR CONNECTMITY: They make it possible to reorganize the interfaces
between knowledge boxes.

MXIDUAR EQUVALENCE: They guarantee that any box can be replaced by one which
satisfies the previous interfaces.

Actors must provide interfaces so that the binding of interfaces between boxes can be
controlled by knowledge of the domain of the problem. The right kind of interface promotes
modularity because the procedures on the other side of the interface are not affected so long
as the conventions of the interface are not changed. These interfaces aid in debugging since
traps and checkpoints are conveniently placed there. More generally, formal conditions can be
stated for the interfaces and confirmed once and for all.

We claim that there is a common Intellectual core to the following (now somewhat
isolated) fields that can be characterized and investigated: digital circuit designers, data
base designers, computer architecture designers, programming language designers, computer
system architects.

"Our primary thesis is that there can and must exist a single language for
software engineering which is usable at all stages of design from the initial
conception through to the final stage in which the last bit 1s solidly 1n place on
some hardware computing system."

The time has come for the unification and integration of the facilities provided by the
above designers into an intellectually coherent manageable whole. Current systems which
separate the following intellectual capabilities with arbitrary boundaries are now obsolete.

"Know thyself".
We intend that our actors should have a useful working knowledge of themselves. That is, they
should be able to answer reasonable questions about themselves and be able to trace the
implications of proposed changes in their intentions. It might seem that having the
implementation understand itself is a rather incestuous artificial intelligence domain but we
believe that it is a good one for several reasons. The implementation of actors on a
conventional computer Is a relatively large complex useful program which is not a toy. The
implementation must adapt itself to a relatively unfavorable environment. Creating a model of
itself should aid in showing how to create useful models of other large knowledge based programs
since the implementation addresses a large number of difficult semantic issues. We have a
number of experts on the domain that are very interested 1n formalizing and extending their
knowledge. These experts are good programmers and have the time, motivations, and ability to

237

embed their knowledge and intentions in the formalism.
"The road to hell is paved with good intentions."
Once the experts put in some of their intentions they find that they have to put in a great
deal more to convince the auditor of the consistency of their intentions and procedures. In
this way we hope to make explicit all the behavioral assumptions that our implementation 1s
relying upon. The domain is closed 1n the "sense"that the questions that can reasonably be
asked do not lead to a vast body of other knowledge which would have to be formalized as well.
The domain is limited in that 1t is possible to start with a small superficial model of actors
and build up Incrementally. Any advance is immediately useful in aiding and motivating future
advances. There 1s no hidden knowledge as the formalism is being entirely implemented in
itself. The task is not complicated by unnecessary bad software engineering practices such as
the use of gotos, interrupts, or semaphores.
Intrinsic Computation
We are approaching the problem from a behavioral [procedural] as opposed to an
axiomatic approach. Our view is that objects are defined by their actors rather than by
axiomatizing the properties of the operations that can be performed on them.
"Ask not what you can do to some actor;
but what the actor can [will?] do for you."
Alan Kay has called this the INTRINSIC as opposed to the EXTRINSIC approach to defining
objects. Our model follows the following two fundamental principles of organizing behavior:
Control flow and data flow are inseparable.
Computation should be done intrinsically instead of extrinsically i.e. "Every
actor should act for himself or delegate the responsibility [pass the buck] to an actor
who will."
Although the fundamental principles are very general they have definite concrete consequences.
For example they rule out the goto construct on the grounds that it does not allow a message to
be passed to the place where control is going. Thus it violates the inseparability of control
and data flow. Also the goto defines a semantic object [the code following the tag] which is
not properly syntactically delimited thus possibly leading to programs which are not properly
syntactically nested. Similarly the classical interrupt mechanism of present day machines
violates the principle of intrinsic computation since it wrenches control away from whatever
instruction is running when the interrupt strikes.
Hierarchies

The model provides for the following orthogonal hierarchies:

SCHEDULING: Every actor has a scheduler which determines when the actor
actually acts after it 1s sent a message. The scheduler handles problems of
synchronization. Another job of the scheduler [Rulifson] is to try to cause actors to
act in an order such that their intentions will be satisfied.

INTENTIONS: Every actor has an intention which makes certain that the
prerequisites and context of the actor being sent the message are satisfied.
Intentions provide a certain amount of redundancy in the specifications of what is
supposed to happen.

MONITORING: Every actor can have monitors which look over each message sent to
the actor.

BINDING: Every actor can have a procedure for looking up the values of names
that occur within 1t.

RESOLRCE MANAGEHVENT: Every actor has a banker which monitors the use of space
and time.

Note that every actor had all of the above abilities and that each is done via an
actor!

"A slow sort of country!" said the Queen. '"Now here, you see, it

takes all the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that!"
Lewis Carroll
The previous sentence may worry the reader a bit as she [he] might envisage an infinite
chain of actions [such as banking] to be necessary in order to get anything done. We short
circuit this by only requiring that it appear that each of the above activities 1s done each
time an actor is sent a message.
"There's no use trying,"
things."

she said: "one can't believe impossible

"l daresay you haven't had much practice," said the Queen. "When |

was your age, | always did it for half-an-hour a day. Why, sometimes I've
believed as many as six impossible things before breakfast."
Lewis Carroll

Each of the activities is locally defined and executed at the point of invocation.
This allows the maxmum possible degree of parallelism. Our model contrasts strongly with
extrinsic quantlficatlonal calculus models which are forced into global noneffective statements
1n order to characterize the semantics.

"Global state considered harmful."

We consider language definition techniques [such as those used with the Vienna
Definition Language] that require the semantics be defined in terms of the global computational
state to be harmful. Formal penalties [such as the frame problem and the definition of
simultaneity] must be paid even if the definition only effectively modifies local parts of the
state. Local intrinsic models are better suited for our purposes.

238

Hardware
Procedural embedding should be carried to Its ultimate level: the architecture of the machine.
Conceptually, the only objects in the machine are actors. In practice the machine recognizes certain
actors as special cases to save speed and storage. We can easily reserve a portion of the name space
for actors implemented in hardware.
Syntactic Sugar
"What's the good of Mercator's North Poles and Equators,
Tropics, Zones and Meridian Lines?"
So the Bellman would cry: and the crew would reply
"They are merely conventional signs!"
Lewis Carroll
Thus far 1n our discussion we have discussed the semantic issues intuitively but vaguely.
We would now like to proceed with more precision. Unfortunately in order to do this it seems
necessary to introduce a formal language. The precise nature of this language 1s completely
unimportant so long as it 1s capable of expressing the semantic meanings we wish to convey. For some
years we have been constructing a series of languages to express our evolving understanding of the
above semantic issues. The latest of these is called PLANNER-73.
Meta-syntactic variables will be underlined. We shall assume that the reader 1s familiar with
advanced pattern matching languages such as SNOBOL4, CONVERT, QA4, and PLANNER-71.
We shall use (%A M%) to indicate sending the message M to the actor A. We shall use
[s1 s2 ... sn] to denote the finite sequence s1, s2, ... sn. ft sequence s is an actor where (/s %)
is element i of the sequence s. For example (%[a c b] 2%) is c. We will use () to delimit the
simultaneous synchronous transmission of more than one message so that (Al A2...An) will be
defined to be (%A1 [A2 ... An]%). The expression [%al a2 ... an%] (read as "™a] then a2 ... finally
send back an") willl be evaluated by evaluating al, a2, and an in sequence and then sending back
["returning"] the value of an as the message.
Identifiers can be created by the prefix operator =. For example if the pattern = x 1s matched
with y, then a new identifier is created and bound to v.
"But 'glory' doesn't mean 'a nice knock-down argument," Alice
objected.
"When | use a word," Humpty Dumpty said, in rather a scornful tone,
"it means just what | choose 1t to mean—neither more nor less."
"The question is," said Alice, "whether you can make words mean so
many different things."
"The question is,"
that's all."

said Humpty Dumpty, "which is to be master--

Lewis Carroll
Humpty Dumpty propounds two criteria on the rules for names:
Each actor has complete control over the names he uses.
All other actors must respect the meaning that an actor has chosen for a name.

We are encouraged to note that in addition to satisfying the criteria of Humpty Dumpty, our names also
satisfy those subsequently proposed by Bill Wulf and Mary Shaw: The default is not necessarily to
extend the scope of a name to any other actor. The right to access a name is by mutual agreement
between the creating actor and each accessing actor. An access right to an actor and one of its acquan-
tances is decoupled. It is possible to distinguish different types of access. The definition of a
name, access to a name, and allocation of storage are decoupled. The use of the prefix = does not imply
the allocation of any storage.

Ore of the simplest kinds of ACTICRS is a cell. A cell with initial contents V can be created
by evaluating (cell V). Given a cell x, we can ask it to send back its contents by evaluating
(contents xj which is an abbreviation for (x #contents). For example (contents(cell 3)) evaluates to 3.
We can ask it to change its contents to v by evaluating (x-y_). For example if we let x be (cell 3) and
evaluate (x--4), we will subsequently find" that (contents x) will evaluate to 4.

The pattern (by-reference P) matches object E_ 1f the pattern Pmatches (cell E) i.e. a "cell"
[see below] which contains E. Thus matching the pattern (by-reference =x) against E 1s the same as
binding x to (cell E) i.e. a new cell which contains the value of the expression E.We shall use =>
[read as "RECEVE MESSAGE] to mean an actor which is reminiscent of the actor LAVBDA in the lambda
calculus. For example (=> x body) 1s like (LAVBDA x body) where x 1s an identifier. An expression
(=> pattern body) is an abbreviation for (receive {[#message pattern]} body) where receive 1s a more
general actor that is capable of binding elements of the action in addition to the message.
Evaluating

(%(=> pattern body) the-message%), i.e. sending

(=> pattern body) the-message, will attempt to match the-message against pattern. If the-message
is not of the form specified by pattern, then the actor is NOT APPLICABLE to the-message. If the-message
matches pattern, then body 1s evaluated.

Evaluating (%(cases [f1 f2 e f]) arg%) will send fl_ the message arg and if it is not applicable
then it will send f2 the message arg,..., and send fn the message aro

The following abbreviations will be used to improve readability:

(rules object clauses) for
((cases clauses)object)

(let object pattern-for-message body) for
(%(=> pattern-for-message body) objects)

239

;for example (let 3=x (x+1)) is &
(Tet-reception object pattern-for-reception body)
(%(receive pattern-for-reception body) object¥)
slet 1s a specTal case of let-reception

Sending Messages and Creating Actors
The wor?d'sTEFegtre. e earth a stage,

Which God and nature do with actors fil11.
Thomas Heywood 1612
Conceptually at Teast a new actor is created every time 2 message is sent. Consider sending a
message to a target T with message M and continuation C.

{send
T
T
#message the-bod
#contiruation The transmission (%1 M%) is an abbreviation for the above
where C is defaulted to be the caller. If the target T 15 the following:
{recefve
[¥message W]

[#continuation =the-continuation]} '
the-body) then the-body Ts evaluated in an environment where the-message is bound to
M and the-continuation is bound to C.

We define an EVENT to be a quadruple of the form [C T M N) where C is the continuation
of the caller, T the target, and M the message thereby creating a new actor N. We define a
HISTORY to be a strict partial order of events with the transitive closure of the partial orderings
[read as PRECEDES] where

[} 1T wl n1le{c2 t2 m2 n2] if

{n1} intersect {c2 t2 m2} is nonvoid.

The above definition states that one action precedes another it any of the actors generated by
the first event are used in the second event. The relationscan be thought of as the “arrow
of time" which we require to be a strict partial order. HNotice that we do not require a
definition of global simultaneity; i.e. we do not require that two arbitrary events_be related
by +. We define BEHAVIOR of a history with respect to an AUDIENCE [a set of actors] E to
be the subpartial ordering of the history consisting of thpse quadruples [C T M N] where Cor T
15 an alement of the audience E. The REPERTQIRE of a configyration of actors 1s the set of al7
behaviors of the configuration defines what the configuration does as opposed to how it does it.
Two configurations of actors will be said to be EQUIVALENT if they have the same REPERTOIRE,

We can name an actor H with the name A in the body B by the notation {label {[5h<= HI}
B). More precisely, the behavior of the actor (label {[f <= (E f)]} B} is defined by the
MINIMAL BEHAVIORAL FIXED POINT of (g,;) i.e. the minimal repertoire ¥ such that (€ F} =F. In
the case where F happens Io define 2 Tunction, 1t will be the case that the repertoire F is
isomorphic the graph [set of ordered pairs] of the function defined by F and that the graph of
F is also the least {lattice-theoretic) fixed point of Park and Scott.

Many Ha Returns.

Many actors who are executing Tn para§§e1 can share the same continuation. Thay can
all send a message ["return”] to the same continuation. This property of actors s heavily
exploited in meta-evaluation and synchronization. An actor can be thought of as a kind of
virtual processor that is never "busy" [in the sense that it cannot be sent e message].

The basic mechanism of sending a message preserves all relevant information and is
entirely free of side effects. Hence it s most suitable for purposes of semantic definition
of special cases of Invocation and for debugging situations where more information needs to be
preserved, However, if fast write-once optical memories are developed then it would be
suitable to be implemented directly in hardware,

The following is an overview of what agEears to be the behavior of the progess of a
running actor R sending a target T the message M specifying C as the continuation. If C is not
explicitly specified by R then a representative of R must be constructed as the default.

t Call the banker of R to approve the expenditure of resources by the caller.
The banker will probably eventually send a message to the scheduler of T.
The scheduler will probably eventually send a message to the monitors of T.
The monitors will probably eventually send a message to the intentions of T.
The intentions of T will probably eventually send the message M to the continuation

af T.

o LY 2 Gl) vl
aw kk wh s

: The continuation of T will finally attempt to get some real work done.

There are several important things to know about the process of sending a message to an
actor:

0: Conceptually at Teast, whenaver a target 1s passed a message a new acior is
constructed which is the target instantiated with a message. Wherever -possibTé we reuse old
actors where the reuse cannot be detected by the behavior of the system.

1: Sending messages between actors 1s a universal control primitivein the semse that
control operations such as function calls, iteration, coroutine invocations, resource seizures,
scheduling, sychroniztion, and continous evaluation of expressions are special cases.

2: Actors can conduct their diajogue directly with each other; they do not have to set
up some intermediary such as ports [Krutat, Balzer, and Mitchell] or possibility lists
[McDermott and Sussman] which act as pfpes through which conversations must be conducted.

3: Sending a message to an actor is entirely free of side effects such as those in the

240

message mechanisms of the current SVALL TALK machine of Alan Kay and the port mechanism of
Krutat and Balzer. Being free of side effects allows us a maximum of parallelism and allows an
actor to be engaged in several conversations at the same time without becoming confused.

4: Sending a message to an actor makes no presupposition that the actor sent the
message will ever send back a message to the continuation. The unidirectional nature of
sending messages enables us to define iteration, monitors, coroutines, etc.straight forwardly,

5: The ACICR model is nojt an [environment-pointer, instruction-pointer] model such as
the QONTOLR model. A'continuation is a full blown actor [with all the rights and privileges];
it is not a program counter. There are no instructions [in the sense of present day machines]
in our model. Instead of instructions, an actor machine has certain primitive actors built in
hardware.

Logic
"It is behavior, not meaning, that counts."

We would like to show how actors represent formulas in the quantificational calculus
and how the rules of natural deduction follow as special cases from the mechanism of extension
worlds. We assume the existence of a function ANONYMOUS which generates a new name which has
never before been encountered. Consider a formula of the form (every phi) which means that for
every x we have that (phi x) is the case. The formula has two important uses: it can be
asserted and it can be proved. We shall use an actor >=> [read as "ACCEPT REQUEST] with the
syntax

(>=> pattern-for-request body) for procedures to be invoked by pattern directed
invocation by a command which matches pattern-for-request.

Our behavioral definitions are reminiscent of classical natural deduction except that
we have four introduction and elimination rules [PROVE, DISPROVE, ASSERT, and DENY] to give us
more flexibility in dealing with negation.

"Then Logic would take you by the throat, and force you to do it!"
Lewis Carroll
Data Bases

Data bases are actors which organize a set of actors for efficient retrieval. There
are two primitive operations on data bases: PRUT and GET. A new virgin data base can be
created by evaluating (virgin). If we evaluate (w +m (virgin)) then (contents w) will be a
virgin world. We can put an actor (at John airport) in the world (contents w) by evaluating
(put(at John airport) {[#world{contents w)]>). We could add further knowledge by evaluating

(put (at airport Boston) {[#world (contents w)]]) to record that the airport is at

Boston.

(put {city Boston) {[#world (contents w)])) to record that Boston is a city.

If the constructor EXTENSION is passed a message then it will create a world which is an
extension of its message. Eor example

(put

[(on John (flight 34))

(extension-world m*- (contents w))])
will set extension-world to a new world in which we have supposed that John is on flight #34.
The world (contents w) is unaffected by this operation. On the other hand the extension world
is affected if we do (put [(hungry John) (contents w)]). Extension worlds are very good for

modeling the following:
WCRD DIRECTED INVOCATION
The extension world machinery provides a very powerful invocation and parameter
passing mechanism for procedures. The idea is that to invoke a procedure, first grow an
extension world; then do a world directed invocation on the extension world. This
mechanism generalizes the previous pattern directed invocation of PLANNERG7 several ways.
Pattern directed invocation is a special case in which there is just one assertion in the
wish world. World Directed Invocation represents a formalization of the useful problem
solving technique known as "wishful thinking" which is invocation on the basis of a
fragment of a micro-world. Terry Winograd uses restriction lists for the same purpose in
his thesis version of the blocks world. Suppose that we want to find a bridge with a red
top which is supported by its left-leg and its right-leg both of which are of the same
color. In order to accomplish this we can call upon a genie with our wish as its message.
The genie uses whatever domain dependent knowledge it has to try to realize the wish.
(realize
(utopia
(top left-leg right-leg color-of-legs}
;"the variables in the uptopia are listed above"

{
(color top red)
(supported-by top left-leg)
'supported-by top right-leg)
;ieft-of left-leg right-leg)
[color left-leg color-of-legs)
kcolor left-leg color-of-legs)}))

LOGICAL HYPOTHETICALS are logically possible alternatives to a world.

By the Normalization Theorem for intuitionistic logic our actor definition of the
logical constant IMPLIES is sufficient to mechanize logical implication. The rules of
natural deduction are a special case of our rules for extension worlds and our procedural
definition of the logical connectives.

ALTERNATVE WCRDS are physically possible alternatives to a world.

PERCEPTUAL VIEWPOINTS can be mechanized as extension worlds. For example suppose

241

rattle-trap is the name of a world which describes my car. Then (front rattle-trap) could
be a world which describes my car from the front and (left rattle-trap) can be the
description from the left side. We can also consider a future historian's view of the
present by (vlew-from-1984 world-of-1972). Minsky [1973] considers these possibilities from
a somewhat different point of view.
The following general principles hold for the use of extension worlds:

Each independent fact should be a separate assertion. For example to record that
"the banana banl is under the table tabl" we would assert:

(banana banl)

table tabl)

under banl tabl)
instead of conglomerating [McDermott 1973] them Into one assertion:

(at
(the banl (1s banl banana))
(place
(the tabl (is tabl table))
under))

A person knowing a statement can be analyzed into the person believing the statement and
the statement being true. So we might make the following definition of knowing:

[know <=

(=> [= person = statement]
(and
(believes person statement)
(true statement)))]
Thus the statement [Moore 1973] "John knows Bill's phone number' can be represented by the
assertion:

(knows John (phone-number Bill pn0005))
where pn0005 is a new name and (phone-number Bill pn0005) is Intended to mean that the
phone number of Bill 1s pn0005. The assertion can be expanded as follows:

(believes John (phone-number Bill pn0005))

(true (phone-number Bill pn0005))

However the expansion is optional since the two assertions are not independent of the
original assertion.
"Whatever Logic is good enough to tell me Is worth writing down," said
the Tortoise. "So enter it in your book, please."
Lewis Carroll

Each assertion should have justifications[derivations] which are also assertions
and which therefore ...

Extraneous factors such as time and causality should not_ be conglomerated
[McDermott 1973] into the extension world mechanism. Facts about time and causality should
also be separate assertions. In this way we can deal more naturally and uniformly with
questions involving more than one time. For example we can answer the question "How many
times were there at most two cannibals in the boat while the missionaries and cannibals
were crossing the river?" Also we can check the consistency of two different narratives of
overlapping events such as might be generated by two people who attended the same party.
Retreival of actors from data bases takes facts about time and causality into account 1n
the retreival. Thus we still effectively avoid most of the frame problem of McCarthy. The
ability to do this is enhanced by the way we define data bases as actors.

A QGONTEXT mechanism was invented for QM to generalize the property list structure of
LISP. Rulifson explained 1t by means of examples of Its use to mechanize identifiers. By use
of the functions PUSHCONTEXT and POPJONTEXT and an EPAM discrimination net [Feigenbaum and
Simon] the context mechanism can be used to mechanize a version of tree-structured worlds, The
tree-structured worlds of PLANNER-71 were Invented to get around the problem of having only one
global data base not realizing that a context mechanism could be used to implement something
like that. The tree-structured worlds were defined directly in terms of the hash-coding
mechanism of PLANNER which had the advantage of decoupling them from the identifier structure
of PLANNER In addition by not conceiving an extension world analogue of POP_CONTEXT large
gains in efficiency over the context mechanism are possible.

Worlds can ask the actors put In them to index themselves for rapid retreival.We also
need to be able to retrieve actors from worlds. Simple retrieval can be done using patterns.
For example
(locations +m (get (at (?) (?)){[#world (contents w)]}))
will set locations to an actor which will retrieve all the actors stored in (contents w) which
match the pattern (at (?) {?)). Now (next locations) will thus retrieve either (at airport
Boston) or (at John airport). Actually* the above 1s an over simplification. We shall let
$realt1ty stand for the current world at any given point and $utopia stand for the world as we
would like to see 1t. We do not want to have to explicity store every piece of knowledge
which we have but would like to beable to derive conclusions from what is already known: We
can distinguish several different classes of procedures for deriving conclusions.

"McCarthy 1s at the airport." (put (at McCarthy airport)) If a person 1s at the
airport, then the person might take a plane from the airport,
[put-at <»
(>«> (put (at = person airport))
(put (might (take-plane-from person airport))))]
"McCarthy 1s not at the airport." (deny (at McCarthy airport)) If a person Is not at
th airport then he can't take a plane from the airport.

242

"McCarthy is not at the airport." (deny (at McCarthy airport)) If a person is not at
the airport then he can't take a plane from the airport.
[deny-at<=
(>=> (deny (at =person airport))
(put (can't (take—plane—from person airport))))]

"It is not known whether McCarthy is at the airport," (erase (at McCarthy airport)) If
it is not known whether a person is at the airport then erase whatever depends on previous
knowledge that the person is at the airport,

[erase-at <=

(>=> (erase (at -person airport))
(find (depends—on =s (at person airport))
(erase s)))]

"Get McCarthy to the airport." (achieve {(at McCarthy airport)}) To achieve a person at
a place:
Find the present location of the person.
Show that it is walkable from the present location to the car.
Show that 1t is drivable from the car to the place,
[achieve-at <=
(>=> (achieve [(at =person =place)])
(achieve
(find [(at person -present-location)]
(show {(walkable present-location car)}
(show {(drivable car place)})))))]

"Show that McCarthy is at the airport." (show {(at McCarthy airport)}) To show that a
thing is at a place show that the thing is at some intermediate and the intermediate is at the
place.

[show-at <=

(>=> (show {(at =thing =place)})
(show {(at thing 'intermediate)}
(show {(at intermediate place)})))]
The actor show-at is simply transitivity of at.
I' Anything Really Better
Than Anything Else?

CONNMER can easily be defined TrTTerms of PLAWR-73. We do this not because we
believe that the procedures of CONNMER are particularly well designed. Indeed we have given
reasons above why these procedures are deficient. Rather we formally define these procedures
to show how our model applies even to rather baroque control structures.

OONNMRR is essentially the conglomeration of the following ideas: Landin's non-
hierarchical goto-71, the pattern directed construction, matching, retrieval, and invocation of
PLANNER, Landin's streams, the context mechanism of QAA, and Balzer's and Krutar's ports.

In most cases, two procedures in CONNMER do not talk directly to each other but
instead are required to communicate through an intermediary which is called a possibilities list.
The concept of a POSSIBILITIES LIST is the major original contribution of CONNVER

"What are these

So wild and withered in their attire,

That look not like the inhabitants

0' the earth,
and yet are on't?"
Macbeth: Act 1, Scene 111
Substitution, Reduction, and Meta-evaluation
"One program's constant is another program's variable."
Alan Perils

"Programming [or problem solving in general] is the judicious postponement of
decisions and commitments!"

Edsger W. Dijkstra [1969]
"Programming languages should be designed to suppress what is constant and
emphasize what is variable."
Alan Perlis
"Each constant will eventually be a variable!"
Corollary to Murphy's Law
We never do unsubstitution [or if you wish decompilation, unsimplification, or
unevaluation]. We always save the higher level language and resubstltute. The metaphor of
substitution followed by reduction gives us a macroscopic view of a large number of
computational activities. We hope to show more precisely how all the following activities fit
within the general scheme of substitution followed by reduction:
EVALUATION [Church, McCarthy, Lnadin] can be done by substituting the message
into the code and reducing [execution].
DEDUCTION [Herbrand, Godel, Heyting. Prawltz, Robinson, Hewitt, Weyhrauch and
Milner] can be done by procedural embedding. In this paper we have extended our
previous work by defining the logical constants to be certain actors thus providing a
procedural semantics for the quantificational calculus along the lines indicated by
natural deduction.
CONFRMING the CONSSTENCY of ACTORS and their INTENTIONS [Naur, Floyd, Hewitt

243

1971, Waldlnger, Deutsch] can be done by substituting the code for the actors Into
their intentions and then meta-evaluating the code.

AUTOVATIC ACTCR GENERATION. An important corollary of the Thesis of Procedural
Embedding is that the Fundamental Technique of Artificial Intelligence is automatic
programming and procedural knowledge base construction. It can be done by the
following' "methods:

PARAMETERIZATION [Church, McCarthy, Landin, Mcintosh, Manna and
Waldinger, Hewitt] of canned procedure templates.

COMPILATION [Lombardi, Elcock, Fikes, Daniels, Wulff, Reynolds, and
Wegbreit] can be done by substituting the values of the free variables in the
code and then reducing [optimizing]. For examples we can enhance the behavior
of the lists which were behaviorally defined above to vectors which will run
more efficiently on current generation machines.

ABSTRACT IMPOSSIBILITIES REMOVAL can be done by binding the
alternatives with the code and deleting those which can never succeed, What we
have in mind are situations such as having simultaneous subgoals (on a b) and
(on b c) where we can show by meta-evaluation that the order given above can
never succeed. Gerry Sussman has designed a program which attempts to abstract
this fact from running on concrete examples. We believe that in this case and
many others it can be abstractly derived by meta-evaluation.

BEXAVALE EXPANSION [Hart, Nilsson, and Fikes 1971; Sussman 1972; Hewitt
1971] can be done by binding the high level goal oriented language to an
example problem and then reducing [executing and expanding to the paths executed]
using world directed invocation [or some generalization] to create linkages
between the variablized special cases.

ABSTRACTION [Hewitt 1969, 1971] can be done by binding
together the protocols, reducing the resulting protocol tree by identifying
indistinguishable nodes.

ABSTRACT CASE GENERATION to distinguish the methods to achieve a goal
can be done by determining the necessary pre-conditions for each method by
reducing to a decision tree which distinguishes each method.

Acknowledgements

"Everything of importance has been said before by somebody who did not

discover it."
Alfred North Whitehead

This research was sponsored by the MIT Artificial Intelligence Laboratory and Project
MC under a contract from the Office of Naval Research. We would be very appreciative of any
comments, criticisms, or suggestions that the reader might care to offer. Please address them
to:

Carl Hewitt

Room 813

545 Technology Square

M.I.T. Artificial Intelligence Laboratory
Cambridge, Massachusetts 02139

The topics discussed in this paper have been under intense investigation by a large
number of researchers for a decade. In this paper we have merely attempted to construct a
coherent manageable formalism that embraces the ideas that are currently "in the air".

We would like to acknowledge the help of the following colleagues: Bill Gosper who
knew the truth all along: "A data structure is nothing but a stupid programming language."
Alan Kay whose AEX and SMALL TALK machines have influenced our work. Alan emphasized the
crucial importance of using intentional definitions of data structures and of passing messages
to them. This paper explores the consequences of generalizing the message mechanism of SVIALL
TALK and SIMULA-67; the port mechanism of Krutar, Balzer, and Mitchell; and the previous CALL
statement of PLANNER-71 to a universal communications mechanism. Alan has been extremely
helpful in discussions both of overall philosophy and technical details. Nick Pippenger for
his very beautiful [TERATE statememt and for helping us to find a fast economical decoding net
for our ACTCR machine. John McCarthy for making the first circular definition of an effective
problem solving formalism and for emphasizing the importance of the epistemological problem for
artificial intelligence. Seymour Papert for his "little man" metaphor for computation. Allen
Newell whose kernel approach to building software systems has here perhaps been carried to near
its ultimate extreme along one dimension. David Marr whose penetrating questions led us to
further discoveries. Rudy Krutar, Bob Balzer, and Jim Mitchell who introduced the notion of a
PCRT which we have generalized into an ACTOR Robin Milner is tackling the problems of L-
values and processes from the point of view of the lambda calculus. He has enphasized the
practical as well as the theoretical implications of fixed point operators. Robin's puzzlement
over the meaning of "equality" for processes led to our definition of behavior. Edsger Dijkstra
for a pleasant afternoon discussion. Jim Mitchell has patiently explained the systems
implementation language MPS. Jeff Rulifson, Bruce Anderson, Gregg Pfister, and Julian Davies
showed us how to clean up and generalize certain aspects of PLANNER-71. Peter Landin and John
Reynolds for emphasizing the importance of continuations for defining control structures.
Warren Teitleman who cleaned up and generalized the means of integrating editors and debuggers
in higher level languages. Peter Landin, Arthur Evans, and John Reynolds for emphasizing the
importance of "functional" data structures. Danny Bobrow and Ben Wegbreit who originated an
implementation method that cuts down on some of the overhead. We have simplified their scheme

244

by eliminating the reference counts and all of their primitives, c. A. R. Hoare 1s Independently
Investigating "monitors" for data structures. Jack Dennis for sharing many of our same goals in his
CMWN BASE LANGUAGE and for his emphasis on logical clarity of language definition and the importance of
parallelism. Bill Wulff for our "." notation on the conventions of the values of cells and for being a
strong advocate of exceptional cleanliness in language. Pitts Jarvis and Richard Greenblatt have given us
valuable help and advice on systems aspects. Todd Matson, Brian Smith, Irene Grief, and Henry Baker are
aiding us 1n the implementation. Chris Reeve» Bruce Daniels, Terry Winograd, Jerry Sussman, Gene Charniak,
Gordon Benedict, Gary Peskin, and Drew McDermott for implementing previous generations of these ideas in
addition to their own. J.C.R. Licklider for emphasizing the importance of mediating procedure calls. Butler
Lampson for the notion of a banker and for the question which led to our criteria for separating an actor
from its base. Richard Weyhrauch for pointing out that logicians are also considering the possibility of
procedural semantics for logic. He is doing some very interesting research in the much abused field of
"computational logic." Terry Winograd, Donald Eastlake, Bob Frankston, Jerry Sussman, Ira Goldstein, and
others who made valuable suggestions at a seminar which we gave at M.I.T. John Shockley for helping us to
eradicate an Infestation of bugs from this document. Greg Pfister, Bruce Daniels, Seymour Papert, Bruce
Anderson, Andee Rubin, Allen Brown, Terry Winograd, Dave Waltz, Nick Horn, Ken Harrenstien, David Marr,
Ellis Cohen, Ira Goldstein, Steve Zilles, Roger Hale, and Richard Howell made valuable comments and suggestions
on previous versions of this paper.
Bibliography

Balzer, R.M., "Ports—A Method for Dynamic Interprogram Communication and Job Control"The Rand Corp., 1971.

Bishop, Peter, "Data Types for Programming Generality"M.S. June 1972. M.I.T.

Bobrow D., and Wegbreit Ben. "A Model and Stack Implementation of Multiple Environments." March 1973.

Davies, D.J.M. "POPLER: A POP-2PLANNER"' MIP-89. School of A.l. University of Edinburgh.

Deutsch L.P. "An Interactive Program Verifier" Phd. University of California at Berkeley. June, 1973
Forthcoming.

Earley, Jay. "Toward an Understanding of Data Structures" Computer Science Department, University
of California, Berkeley.

Elcock, E.W.; Foster, J.M.; Gray, P.M.D.; McGregor, H.H.; and Murray A.M. Abset, a Programming
Language Based on Sets: Motivation and Examples. Machine Intelligence 6. Edinburgh, University Press.

Fisher. D.A. "Control Structures for Programming Languages" Phd. Carnegie. 1970

Gentzen G. "Collected Papers of Gerhard Gentzen".North Holland. 1969.

Greif 1.G. "Induction in Proofs about Programs" Project M\C Technical Report 93. Feb. 1972.

Hewitt, C. and Patterson M. "Comparative Schematology" Record of Project MMC Conference on Concurrent
Systems and Parallel Computation. June 2-5, 1970. Available from ACM

Hewitt, C., Bishop P., and Steiger R. "The Democratic Ethos or How a Society of Noncoercable ACICRS
can be Incorporated into a Structured System™ SIGPLANSIGOPS Interface Meeting, Savannah, Georgia. April, 1973.

Hewitt, C, and Greif,|. "Actor Induction and Meta-Evaluation"ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. Boston, Mass- Oct, 1973. Forthcoming.

Hoare, C.A.RR. "An Axiomatic Definition of the Programming Language PASCAL" Feb. 1972.

Kay, Alan C. Private Communication.

Krutar, R. "Conversational Systems Programming (or Program Plagiarism made Easy)" First USA-Japan
Computer Conference. October 1972,

Lampson, B. "An Overview of CAL-TSS". Computer Center, University of California, Berkeley.

Liskov, B.H. "A Design Methodology for Reliable Software Systems" The Last FJCC. Dec.1972. Pt. 1, 191-199.

McDermott D.V. "Assimilation of New Information by a Natural Language-Understanding System" M.S. MIT.
Forthcoming 1973.

McDermott, D.V. and Sussman G.J. "The Conniver Reference Manual" A.l. Maxo no. 259. 1972.

Milner, R. Private Communication.

Minsky, Marvin. "Frame-Systems: A Theory for Representation of Knowledge" Forthcoming 1973.

Mitchell, J.G. "A Unified Sequential Control Structure Model" NIC 16816. Forthcoming.

Newell, A. "Some Problems of Basic Organization in Problem-Solving Programs." Self-Organizing Systems. 1962.

Papert S. and Solomon C. "NIM: A Game-Playing Program" A.l. Maxo no. 254.

Reynolds, J.C. "Definitional Interpreters for Higher-Order Programming Languages" Proceedings of AOM
National Convention 1972.

Rulifson Johns F., Derksen J.A., and Waldinger R.J. "QA4: A Procedural Calculus for Intuitive Reasoning"
Phd. Stanford. November 1972.

Scott, D. "Data Types as Lattices" Notes. Amsterdam, June 1972.

Steiger, R. "Actors". M.S. 1973. Forthcoming.

Sussman, G.J. "Teaching of Procedures-Progress Report" Oct. 1972. A.l. Maro no. 270.

Waldinger R. Private Communication.

Wag A. and Dahl 0. "Coroutine Sequencing in a Block Structured Environment" BIT 11 425-449.

Weyhrauch, R. and Milner R. "Programming Semantics and Correctness in a Mechanized Logic." First USA-Japan
Computer Conference. October 1972.

Winograd, T. "Procedures as a Representation for Data 1n a Computer Program for Understanding Natural
Language" MAC TR-B4. February 1971.

W1rth, N. "How to Live without Interrupts" or some such. Vol. 1? No. 9, pp. 489-498.

Wulf W. and Shaw M. "Global Variable Considered Harmful" Carnegie-Mellon University. Pittsburgh, Pa.
SIGPLAN Bulletin. 1973.

245

Session 8 Formalisms for
Artificial Intelligence

A MODEL FOR CONTROL STRUCTURES
FOR ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

by

Daniel G. Bobrow

Computer Science Division
Xerox Palo Alto Research Center
Palo Alto, California 94304

Ben Wegbreit

Harvard University
Center for Research in Computing Technology
Cambridge, Massachusetts 02138

Abstract

Newer programming languages for artificial intel-
ligence extend the class of available control regimes
beyond simple hierarchical control. In so doing, a key
issue is using a model that clearly exhibits the relation
between modules, processes, access environments,
and control environments. This paper presents a
model which is applicable to diverse languages and
presents a set of control primitives which provide a
concise basis on which one can define almost all known
regimes of control.

1. Introduction

Newer programming languages! for artificial
intelligence (e.g., PLANNER9" CONNIVER,'® BBN-
LISP.ly QA4.1'1 extend the nature of control regimes
available to the user. In this paper, we present an
information structure model20 which deals with control
and access contexts in a programming language; it is
based on consideration of the form of run-time data
structures which represent program control and vari-
able bindings. The model is designed to help clarify
some relationships of hierarchical function calls,
backtracking, co-routines, and multiprocess structure.
We present the model and its small set of primitive
operations, then define several control regimes in
terms of the primitives, and then consider extensions
to handle cooperating sequential processes.

2. The Basic Environment Structure

In a language which has blocks and procedures,
new nomenclature (named variables) can be introduced
either by declarations in block heads or through named
parameters to procedures. Since both define access
environments, we call the body of a procedure orblock
a uniform access module. Upon entry to an access
module, certain storage is allocated for those new
named items which are defined at entry. We call this
named allocated storage the basic frame of the module.
In addition, certain additional storage for the module
may be required for temporary intermediate results of
computation; this additional allocated storage we call
the frame extension. The total storage is called the
total frame for the module, or usually just the module
frame.

A" frame contains other information, in addition to
named variables and temporaries. It is often useful to
reference a frame by symbolic nomenclature. For this
purpose, each frame has a framename (usually the pro-
cedure name). When a module is entered, its frame
extension is initialized with two pointers (perhaps im-
plicitly); one, called A LINK, is a linked access
pointer to the frame(s) which contains the higher level
free variable and parameter bindings accessible within

246

this module. The other, called CLINK, is associated
with control and is a generalized return which points to
the calling frame. In Algol, these are called the static
and dynamic links, respectively. In LISpH the two
pointers usually reference the same frame, since bind-
ings for variables free in a module are found by
tracing up the call structure chain. (An exception is
the use of functional arguments, and we illustrate that
below.)

At the time of a call (entry to a lower module), the
caller stores in his frame extension a continuation
point for the computation. Since the continuation point
is stored in the caller, the generalized return is
simply a pointer to the last active frame.

The size of a basic frame is fixed on module entry.
It is just large enough to store the parameters and
associated information. However, during one function
activation, the required size of the frame extension
can vary widely (with a computable maximum), since
the amount of temporary storage used by this module
before calling different lower modules is quite vari-
able. Therefore, the allocation of these two frame
segments may sometimes (advantageously) be done
separately and n on contiguously. This requires a link
(BLINK) from the frame extension to the basic frame
which contains the bindings.

When a frame is exited, either by a normal exit
or by a non-local goto which skips the frame (e. g. , an
error condition), it is often useful to perform clean-up
action for the frame. Examples include: close files
opened by the frame which are no longer needed,
restore the state of more global structures which have
been temporarily modified by the frame, etc. Termi-
nal action for a frame is carried out by executing an
exit function for the frame, passing it as argument the
nominal value which the frame is returning as its
result; the value returned by the exit function is the
actual value of the frame. The variable values and the
exit function are the only components of the frame
which can be updated by the user; all the others are
fixed at the time of frame allocation. Figure 1 sum-
marizes the contents of the frame.

Figure 2a shows a sketch of an algorithm pro-
grammed in a block structure language such as Algol
60 with contourslO drawn around access modules. BI
has locals N and P, P has parameter N, and B3 locals
Q and L. Figure 2b is a snapshot of the environment
structure after the following sequence: Bl is entered;
P is called (just above P, the program continuation
point after this outer call); B3 is entered; and F is
called from within B3. For each access module there
are two separate segments — one for the basic frame
(denoted by the module name) and one for the frame
extension (denoted by the module name*). Note that
the sequence of access links (shown with dotted lines)
goes directly from P to B1* and is different from the
control chain of calls. However, each points higher

(earlier) on the stack.

A point to note about an access module is that it
has no knowledge of any module below it. If an appro-
priate value (i.e., one whose type agrees with the
stored return type) is provided, continuation in that
access module can be achieved with only a pointer to
the continued frame. No information stored outside
this frame is necessary.

Figure 3 shows two examples in which more than
one independent environment structure is maintained.
In Figure 3a, two coroutines are shown which share
common access and control environment A. Note that
the frame extension of A has been copied so that
returns from B and Q may go to different continuation
points. This is a key point in the model; whenever a
frame extension is required for conflicting purposes,
a copy is made. Since frame A is used by two pro-
cesses, if either coroutine were deleted, the basic
frame for A should not be deleted. However, one
frame extension A* could be deleted in that case, since
frame extensions are never referenced directly by
more than one process. Since the basic frame A is
shared, either process can update the variable bind-
ings in it; such changes are seen both by B and Q, In
Figure 3b, coroutine Q is shown calling a function D
with external access chain through B, but with control
to return to Q.

3. Primitive Functions

In this model for access module activation, each
frame is generally released upon exit of that module.
Only if a frame is still referenced is it retained. All
non-chained references to a frame (and to the environ-
ment structure it heads) are made through a special
protected data type called an environment descriptor,
abbreviated ed. The heads of all environment chains
are referenced only from this space of descriptors.
(The one exception is the implicit ed for the currently
active process.) The primitive functions create an ed
for a specified frame and update the contents of an ed;
create a new frame with specified contents, and allow
execution of a computation in that context; and access
and update the exit function for a frame. Note that
none of the primitives manipulate the links of existing
frames; therefore, only well-formed frame chains
exist (i.e., no ring structures).

1) environ(pos) — creates an environment descriptor
for the frame specified by pos.

2) setenv(olded, pos) -- changes the contents of an
existing environment descriptor olded to point to
the frame specified by pos. As a side effect, it
releases storage referenced only through previous
contents of olded.

3) mkframe(epos,apos, epos,bpos,bcopflg) -- creates
a new frame and returns an ed for that frame. The
frame extension is copied from the frame specified
by epos, and the ALINK and CLINK are specified
by apos and epos, respectively. The BLINK points
to the basic frame specified by bpos, or to a copy
of the basic frame if bcopflg=TRUE. In use, argu-
ments may be omitted; bcopflg is defaulted to
FALSE; apos, bpos and epos are defaulted to the
corresponding fields of the frame specified by epos.
Thus mkframe(epos) creates a new frame extension
identical to that specified by epos.

4) enveval(forrA,apos,cpos) — creates a new frame
and initiates a computation with this environment
structure. ALINK and CLINK point to frames
specified by apos and epos, respectively; and form
specifies the code to be executed, or the ex-
pression to be evaluated in this new environment.
If apos or cpos are omitted, they are defaulted to
the ALINK or CLINK of this invocation of enveval.
Thus, enveval(form) is the usual call to an

247

interpreter, and has the same effect as if the value of
form had appeared in place of the simple call to
enveval.

5) setexfn(pos,fn) — places a pointer to a user defined
function in the exitfn field of the frame pos. If the
system is using the exitfn, this will create a new
function which is the composition of the user
function (applied first) and the system function. On
frame exit, the exitfn will be called with one argu-

ment, the value returned by the frame code; the
value returned by fn will be the actual value re-
turned to the frame specified by CLINK.

6) getexfn(pos) — gets the user set function stored in

exitfn of frame pos. Returns NIL if none has been
explicitly stored there.

7) framenm(pos) -- returns the framename of frame

pos.

A frame specification (i.e. , pos, apos, bpos, epos,
epos above} is one of the following:

1. An integer N:

a. N=0 specifies the frame allocated on activation
of the function environ, setenv, etc. In the case
of environ, setenv and mkframe, the continu-
ation point is set up so that a value returned to
this frame (using enveval) is returned as a
value of the original call to environ, setenv or
mkframe.

b. N>0 specifies the frame N links down the control
link chain from the N=0 frame.

c. N<O specifies the frame INI links down the
access link chain from the N=0 frame,

2. A list of two elements (F,N) where F is a frame-
name and N is an integer. This gives the Nth
frame with name F, where a positive (negative)
value for N specifies the control (access) chain
environment.

3. The distinguished constant NIL. As an access-link
specification, NIL specifies that only global values
are to be used free. A process which returns
along a NIL control-link will halt. Doing a
setenv(ed,NIL) releases frame storage formerly
referenced only through ed, without tying up any
new storage.

4. An ed (environment descriptor). When given an ed
argument created by a prior call on environ,
environ creates a new descriptor with the same
contents as ed; setenv copies the contents of ed
into olded.

5. A list "(ed)" consisting of exactly one ed. The
contents of the listed ed are used identically to
that of an unlisted ed. However, after this value
is used in any of the functions, setenv(ed.NIL) is
done, thus releasing the frame storage formerly
referenced only through ed. This has been com-
bined into an argument form rather than allowing
the user to do a setenv explicitly because in the
call to enveval the contents are needed, so it can-
not be done before the call; it cannot be done ex-
plicitly after the enveval since control might never
return to that point.

4. Non-Primitive Control Functions

To illustrate the use of these primitive control
functions, we explain a number of control regimes
which differ from the usual nested function call-return
hierarchical structure, and define their control struc-
ture routines in terms of the primitives. We include
stack jumps, function closure, and several multipro-
cessing disciplines. In programming examples, we
use the syntax and semantics of a LISP-like system.

In an ordinary hierarchical control structure

system, if module F calls G, G calls H, and H calls J,
it is impossible for J to return to F without going back
through G and H. Consider some program in which a
search is implemented as a series of such nested
function calls. Suppose J discovered that the call to G
was inappropriate and wanted to return to F with such
a message. In a hierarchical control structure, H and
G would both have to be prepared to pass such a mes-
sage back. However, in general, the function J should
not have to know how to force intermediaries; it should
be able to pass control directly to the relevant module.
Two functions may be defined to allow such jumpbacks.
(These are implemented in BBN-LISP;19 experience
has shown them to be quite useful.) The first function,
retfrom(form,pos), evaluates form in the current con-
text, and returns its value from the frame specified by
pos to that frame's caller; in the above example, this
returns a value to G's caller, i.e., P, The second
function, retevaKform, pos), evaluates form in the con-
text of the caller of pos and returns the "value of the
form to that caller. These are easily defined in terms
of enveval:

retfrom(form,pos) = enveval{form,2,pos)
retevalform, pos) = envevalform, pos, pos)

(The second argument to retfrom establishes that the
current environment is to be used for the evaluation of
form.)

As another example of the use of retfrom, con-
sider an implementation of the LISP error protection
mechanism. The programmer "wraps a form in
errorset", i.e., errorset(form) which is defined as
cons(eval(form),NIL). This "wrapping" indicates to
the system the programmer's intent that any errors
which arise in the evaluation of form are to be handled
by the function containing the errorset. Since the
value of errorset in the non-error case is always a
list consisting of one element (the value of form), an
error can be indicated by forcing errorset to return
any non-list item. Hence, the system function error
can be defined as retfrom(NIL,(ERRORSET 1)) where
uppercase items are literal objects in LISP. This
jumps back over all intermediary calls to return NIL
as the value of the most recent occurrence of errorset
in the hierarchical calling sequence.

In the following, we employ envapply which takes
as arguments a function name and list of (already eval-
uated) arguments for that function. Envapply simply
creates the appropriate form for enveval.

envapply(fn,args,aframe, cframe) =
enveval(list(APPLY , list(QUOTE, fn),
list(QUOTE, args)), aframe, cframe)

A central notion for control structures is a pair-
ing of a function with an environment for its evaluation.
Following LISP, we call such an object a funarg.
Funargs are created by the procedure function, defined

function(fn)=list(FUNARG, fn, environ(2))

That is, in our implementation, a funarg is a list of
three elements: the indicator FUNARG, a function,
and an environment descriptor. (The argument to en-
viron makes it reference the frame which called
function.) A funarg list, being a globally valid data
structure, can be passed as an argument, returned as
a result, or assigned as the value of appropriately
typed variables. When the language evaluator gets a
form (fen arg1 arg2 ... argn) whose functional object
fen is a funarg, i.e., alist (FUNARG fn-name ed), it
creates a list, args, of (the values of) argl, arg2,
argn and does

envapply(second(fcn),args,third(fcn), 1)

The environment in this case is used exactly like the
original LISP A-list. Moses12 and Weizenbaum?®
have discussed the use of function for preserving bind-
ing contexts. Figure 4 illustrates the environment

248

structure where a functional has been passed down: the
function foo with variables X and L has been called; foo
called mapcar(X,function(fie)) and fie has been entered.
Note that along the access chain the first free L seen
in fie is bound in foo, although there is a bound vari-
able L in mapcar which occurs first in the control
chain. Since frames are retained, a funarg can be
returned to higher contexts and still work. (Burge3
gives examples of the use of funargs passed up as
values.)

In the above description, the environment pointer
is used only to save the access environment. In fact,
however, the pointer records the state of a process at
the instant of some call, having both access and
control environments. Hence, such an environment
pointer serves as part of a process handle. It is con-
venient to additionally specify an action to take when
the process is restarted and some information to be
passed to that process from the one restarting it. The
funarg can be reinterpreted to provide these features.
The function component specifies the first module to
be run in a restarted process, and the arguments
(evaluated in the caller) provided to that function can
be used to pass information. Hence, a funarg can be
used as a complete process handle. It proves con-
venient for a running process to be able to reference
its own process handle. To make this simple, we
adopt the convention that the global variable curproc
is kept updated to the current running process.

With this introduction, we now define the routines
start and resume, which allow control to pass among a
set of coordinated sequential processes, i.e., co-
routines, in which each maintains its own control and
access environment (with perhaps some sharing). A
coroutine system consists of n coroutines each of
which has a funarg handle on those other coroutines to
which it may transfer control. To initiate a process
represented by the funarg fp, use start (we use
brackets below to delimit comments):

start(fp.args) = curproc — fp;
[curproc is a global variable set to
the current process funarg] ;
envapply(second(fp),args,third(fp),third(fp))

Once the variable curproc is initialized, and any co-
routine started, resume will transfer control between
n coroutines. The control point saved is just outside
the resume, and the user specifies a function (backfn)
to be called when control returns, i.e., the process is
resumed. This function is destructively inserted in
the funarg list. The args to this function are specified
by the coroutine transferring back to this point.

resume(fnarg,args,backfn) =
second(curproc) — backfn;
[save the specified backfn for a subsequent
resume back here]
setenv(third(curproc), 2);
[environment saved is the caller of resume]
curproc — fnarg;
[set up curproc for the coroutine to be
activated]
envapply(second(fnarg),args,third(fnarg),
third (fnarg))
[activate the specified coroutine by applying
its backfn to args]

We call a funarg used in this way a process
funarg. The state of a "process" is updated by de-
structively modifying a list to change its continuation
function, and similarly directly modifying its environ-
ment descriptor in the list. A pseudo-multiprocessing
capability can be added to the system using these
process funargs if each process takes responsibility
for requesting additional time for processing from a
supervisor or by explicitly passing control as in
CONNIVER,18 A more automatic multiprocessing
control regime using interrupts is discussed later.

Backtracking is a technique by which certain en-
vironments are saved before a function return, and
later restored if needed. Control is restored in a
strictly last saved, first restored order. As an ex-
ample of its use, consider a function which returns
one (selected) value from a set of computed values but
can effectively return an alternative selection if the
first selection was inadequate. That is, the current
process can fail back to a previously specified failset
point and then redo the computation with a new
selection. A sequence of different selections can lead
to a stack of failset points, and successive fails can
restart at each in turn. Backtracking thus provides a
way of doing a depth-first search of a tree with return
to previous branch points.

We define fail and failset below. We use
push(L,a) which adds a to the front of L, and pop(L)
which removes one element and returns the first ele-
ment of L. Failist is the stack of failset points. As
defined below, fail can reverse certain changes when
returning to the previous failset point by explicit
direction at the point of failure. (To automatically un-
do certain side effects and binding changes, we could
define "undoable" functions which add to failist forms
whose evaluation will reset appropriate cells. Fail
could then eval all forms through the next ed and then
call enveval.)

failset{) = push(failist,environ(2))
[2 means environment outside failset]
fail(message) = enveval(message,list(pop(failist)))

The function select defined below returns the first
element of its argument set when first called; upon
subsequent fails back to select, successive elements
from set are returned. |If set is exhausted, failure is
propagated back. The code uses the fact that the bind-
ing environment saved by failset shares the variable
fig with the instance of select which calls failset. The
test of fig is reached in two ways: after a call on fail-
set (in which case fig is false) and after a failure (in
which case fig is true).

select(set,undolist) =
progt (fig)

s1: if null(set) then fail(undolist) [leave here and
undo as specified]
fig — false;
failsetOT

[fig is true iff we have failed to this point; then
set has been popped]
if fig then go(sl);

fig — true;
returnTpop(set));
end

Floyd,"” Hewitt,9 and Golomb and Baumert® have dis-
cussed uses for backtracking in problem solving.
Sussman'® has discussed a number of problems with
backtracking. In general, it proves to be too simple
a form of switching between environments. Use of the
multiple process feature described above provides
much more flexibility.

5.

Coordinated Sequential Processes

and Parallel Processing

It should be noted that in the model above, control
must be explicitly transferred from one active en-
vironment to another (by means of enveval
We use the term, coordinated sequential process, to
describe such a control regime. There are situations
in which a problem statement is simplified by taking a
quite different point of view - assuming parallel (co-
operating sequential) processes which synchronize only
when required (e. g., by means of Dijkstra's4 P and V
operations). Using our coordinated sequential pro-
cesses with interrupts, we can define such a control
regime.

or resume).

249

In our model of environment structures, there is
a tree formed by the control links, a dendrarchy_ of
frames. One terminal node is marked for activity by
the current control bubble (the point where the
language evaluator is operating). All other terminal
nodes are referenced by environment descriptors or
by an access link pointer of a frame in the tree. To
extend the model to multiple parallel processes in a
single processor system, k branches of the tree must
be simultaneously marked active. Then the control
bubble of the processor must be switched from one
active node to another according to some scheduling
algorithm.

To implement cooperating sequential processes in
our model, it is simplest to think of adjoining to the
set of processes a distinguished process, PS, which
acts as a supervisor or monitor. This monitor sched-
ules processes for service and maintains several
privileged data structures (e.g. , queues for sema-
phores and active processes). (A related technique is
used by Premier,')

The basic functions necessary to manipulate
parallel processes allow process activation, stopping,
continuing, synchronization and status querying. In a
single processor coordinated sequential process
model, these can all be defined by calls (through
enveval) to the monitor PS. Specifications for these
functions are;

1) process(form ,apos, cpos) -- this is similar to
enveval except that it creates a new active pro-
cess P' for the evaluation of form, and returns
to the creating process a process descriptor (pd)

which acts as a handle on P'.

In this model, the pd could be a pointer to a list which
has been placed on a "runnable" queue in PS, and
which is interpreted by PS when the scheduler in PS
gives this process a time quantum. One element of
the process descriptor gives the status of the process,
e.g., RUNNING or STOPPED. Process is defined
using environ (to obtain an environment descriptor
used as part of the pd) and enveval (to call PS),

2) stop(pd) — halts the execution of the process

specified by pd — PS removes the process from
runnable queue. The value returned is an ed of
the current environment of pd.

3)
4)
5)

continue(pd) -- returns pd to the runnable queues.
status(pd) — value is an indication of status of pd.

obtain(semaphore) — this Dijkstra P operator
transfers control to PS (by enveval) which de-
termines if a resource is available (i. e,, sema-
phore count positive). PS either hands control
back to Pl (with enveval) having decremented the
the semaphore count, or enters P1 on that sema-
phore's queue in PS's environment and switches
control to a runnable process.

release(semaphore) this Dijkstra V operator
increments the semaphore count; if the count
goes positive, one process is moved from the
semaphore queue (if any exist) onto the runnable
queue and the count is decremented. It then
hands control back to the calling process.

We emphasize that these six functions can be de-
fined in terms of the control primitives of section 3.

Scheduling of runnable processes could be done by
having each process by agreement ask for a time
resource, i.e., obtain(time), at appropriate intervals.
In this scheduling model, control never leaves a pro-
cess without its knowledge, and the monitor simply
acts as a bookkeeping mechanism. Alternatively,
ordinary time-sharing among processes on a time
quantum basis could be implemented through a timer
interrupt mechanism. Interrupts are treated as forced

calls to environ (to obtain an ed for the current state),
and then an enveval to the monitor process. The only
problem which must be handled by the system in forc-
ing the call to environ is making sure the interrupted
process is in a clean state; that is, one in which basic
communication assumptions about states of pointers,
queues, buffers, etc. are true (e.g., no pointers in
machine registers which should be traced during gar-
bage collection). This can be ensured if asynchronous
hardware interrupts perform only minimal necessary
operations, and set a software interrupt flag. Soft-
ware checks made before procedure calls, returns and
backward jumps within program will ensure that a
timely response in a clean state will occur.

The ed of the interrupted process is sufficient to
restart it, and can be saved on the runnable queue
within a process descriptor. Because timer inter-
rupts are asynchronous with other processing in such
a simulated multiprocessor system, evaluation of
forms in the dynamic environment of another running
process cannot be done consistently; however, the ed
obtained from stopping a process provides a consistent
environment. Because of this interrupt asynchrony, in
order to ensure system integrity, queue and sema-
phore management must be uninterruptible, e.g., at
the highest priority level.

Obtaining a system of cooperating sequential pro-
cesses as an extension of the primitives has a number
of desirable attributes. Most important, perhaps, it
allows the scheduler to be defined by the user. When
parallel processes are used to realize a breadth-first
search of an or-graph, there is a significant issue of
how the competing processes are to be allotted time.
Provision for a user supplied scheduler establishes a
framework in which an intelligent allocation algorithm
can be employed.

Once a multi-process supervisor is defined, a
variety of additional control structures may be readily
created. As an example, consider multiple parallel
returns — the ability to return from a single activation
of a module G several times with several (different)
values. For G to return to its caller with value given
by val and still continue to run, G simply calls
process(val, 1,2). Then the current G and the new
process proceed in parallel.

6. Conclusion

In providing linguistic facilities more complex
than hierarchical control, a key problem is finding a
model that clearly exhibits the relation between pro-
cesses, access modules, and their environment. This
paper has presented a model which is applicable to
languages as diverse as LISP, APL and PL/I and can
be used for the essential aspects of control and access
in each. The control primitives provide a small basis
on which one can define almost all known regimes of
control.

Although not stressed in this paper, there is an
implementation for the model which is perfectly
general, yet for several subcases (e.g., simple re-
cursion and backtracking) this implementation is as
efficient as existing special techniques. The main
ideas of the implementation are as follows (cf. [2] for
details). The basic frame and frame extension are
treated as potentially discontiguous segments. When
a frame extension is to be used for running, it is
copied to an open stack end if not there already, so
that ordinary nested calls can use simple stack disci-
pline for storage management. Reference counts are
combined with a count propagation technique to ensure
that only those frames are kept which are still in use.

Thus, the model provides both a linguistic frame-
work for expressing control regimes, and a practical
basis for an implementation. It is being incorporated
intoBBN-LISP.19

7. Acknowledgments

This work was supported in part by the Advanced
Research Projects Agency under Contracts DAHC 15-
71-00088 and F19628-68-0-0379, and by the U.S. Air
Force Electronics Systems Division under Contract
F19628-71-C-0173. Daniel Bobrow was at Bolt
Beranek and Newman, Cambridge, Massachusetts,
when many of the ideas in this paper were first de-
veloped.

References

[1] Bobrow, D.G., "Requirements for Advanced
Programming Systems for List Processing,"
CACM, Vol. 15, No. 6, June 1972.

[2] Bobrow, D.G. and Wegbreit, B. "A Model and
Stack Implementation of Multiple Environ-
ments," BBN Report No. 2334, Cambridge,
Mass., March 1972, to appear in CACM.

[3] Burge, W.H. "Some Examples of the Use of
Function Producing Functions," Second Sym-
posium on Symbolic and Algebraic Manipu-
lation, AC:M, 1971.

[41 Dijkstra, E.W. "Co-operating Sequential Pro-
cesses," in Genuys (Ed.), Programming
Languages, Academic Press, 1967.

[5] Dijkstra, E.W. "Recursive Programming,"
Numerische Mathematik 2 (1960), 312-318.
Also in Programming Systems and Languages,
S. Rosen (Ed.), McGraw-Hill, New York, 1967.

[6] Fenichel, R. "On Implementation of Label Vari-
ables, CACM, Vol. 14, No. 5 (May 1971),
pp. 349-350.

[7] Floyd, R.W. "Non-deterministic Algorithms,"
J_. ACM, 14 (October 1967), pp. 638-644.

[8t Golomb, S.W. and Baumert, L.D. "Backtrack
Programming," J. ACM, 12 (October 1965),
pp. 516-524.

[9! Hewitt, C. "PLANNER: A Language for Manipu-
lating Models and Proving Theorems in a
Robot," in Artificial Intelligence,
Washington, D.C., May 1969.

[10] Johnston, J.B. "The Contour Model of Block

Structured Processes," in Tou and Wegner,

Proc. Symposium on Data Structures in

Programming Languages. SIGPLAN Notices,

Vol. 6, No. 2, pp. 55-82.

[11] McCarthy, J., etal. Lisp 1.5 Programmer's
Manual, TheM.Il.T. Press, Cambridge,

Massachusetts (1962).

Moses, J. "The Function of FUNCTION in
LISP," SIGSAM Bulletin, No. 15, (July 1970),
pp. 13-27.

[12]

[13j Prenner, C,, Spitzen, J. and Wegbreit, B.
"An Implementation of Backtracking for Pro-
gramming Languages," submitted for publi-
cation, ACM-72.

[14J Prenner, C. "Multi-path Control Structures for
Programming Languages," Ph.D. Thesis,
Harvard University, May 1972.

[151 Quam, L. LISP 1.6 Reference Manual, Stanford
Al Laboratory.

250

[16]

[17]

(18]

[19]

[20]

[211

(22]

[23]

[24]

(25]

Reynolds, J. "GEDANKEN - A Simple TypelesS
Language Based on the Principle of Complete-
ness and the Reference Concept," CACM,
Vol. 13, No. 5 (May 1970), pp. 308-319.

Rulifson, J. et al. "QA4- A Language for
Writing Problem-Solving Programs," SRI
Technical Note 48, November 1970.

Sussman, G.J. "Why Conniving is Better than
Planning," FJCC 1972, pp. 1171-1179.

Teitelman, W., Bobrow, D., Murphy, D., and
Hartley, A. BBN-LISP Manual. BBN,
July 1971.

Tou, J, andWegner, P. (Eds.), SIGFLAN
Notices — Proc. Symposium on Data
Structures in Programming languages.
Vol. 6, No. 2 (February 1971)

van Wijngaarden, A. (Ed.). Report on the
Algorithmic Language ALGOL 68, MR 101,
Mathematisch Centrum, Amsterdam
(February 1969).

Wegbreit, B, "Studies in Extensible Program-
ming Languages" Ph.D. Thesis, Harvard
University, May 1970.

Wegbreit, B, "The ECL Programming System,"
Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS
Press, Montvale, N.J., pp. 253-262.

Wegner, P. "Data Structure Models for Pro-
gramming Languages," in Tou and Wegner,
pp. 55-82.

Weizenbaum, J. "The Funarg Problem
Explained," M.I.T., Cambridge, Mass.,

March 1968.
Module Nome Parameter |
BASIC
Parameter n FRAME
Size [Max | CXT
¥
I
|
+ t
i [Binding Link' [Exitfn
T Access Link Control Link FRAME
Module Name Refurn Type [Conf. Pt. EXTENSION
Size | Max USE
Framename

Temporary |

Temporory 2

FIG. 1 GENERAL FRAME STRUCTURE

> FRAME

=z

B3

P

P

FIG, 2a (from Johnston) FiG. 2b SNAPSHOT OF FRAME STRUCTURE

BLOCK B' WITH LOCALS N, P STARTING AT B1, CALL TO P, ENTER
PROCEDURE P WITH NEW B3, CALL TOP
VARIABLE N

BLOCK B3 WITH LOCALS @, L
CALLS TO P WITHIN Bl AND B3

[P TP .

CONTROL

i ACCESS

Fii, 3 CORQUTIMES SHARING
ANCESTOR MODULE A, Q IS
ACTIVE

FIG. 3b CORQUTINE Q EVALUATING FUNCTION D
IN ACCESS CONTEXT OF B*

252

1\

Tt

FOO

X
L
¥
[
LA N L} l

sutssenind

e L T T

*
H
3
H
.
.
.
4

MAPCAR

MAPCAR »

FIE : B

ACCESS CONTROL

FIE *

FIG.« APPLICATION OF A FUNCTIONAL ARGUMENT

253

