
Session 8 Formalisms f o r
A r t i f i c i a l In te l l i gence

CONVERSION OF PREDICATE-CALCULUS AXIOMS, VIEWED AS

NON-DETERMINISTIC PROGRAMS, TO CORRESPONDING DETERMINISTIC PROGRAMS

E r i k Sandewall
Computer Sciences Department

Uppsala u n i v e r s i t y

A b s t r a c t : The paper c o n s i d e r s the p rob lem o f c o n v e r t i n g
axioms i n p r e d i c a t e c a l c u l u s t o d e t e r m i n i s t i c p rograms,
wh ich a re to be used as " r u l e s " by a GPS-type s u p e r v i ­
s o r . I t i s shown t h a t t h i s can be done, bu t t h a t the
" o b j e c t s " must then c o n t a i n p rocedure c l o s u r e s o r "FUN-
ARG-express ions" wh ich are l a t e r a p p l i e d .

Keywords: d e d u c t i o n , t h e o r e m - p r o v i n g , r e t r i e v a l , non -de ­
t e r m i n i s t i c , c l o s u r e , FUNARC-expression.

Background- R e t r i e v a l o f I m p l i c i t i n f o r m a t i o n in a sem­
a n t i c da ta base is a k i n d of d e d u c t i o n . One approach to
do ing such r e t r i e v a l has been r e s o l u t i o n - s t y l e theorem-
p r o v i n g ; a l a t e r approach has been h i g h - l e v e l p rogram­
ming languages such as P lanner1 and QA42, where non -de ­
t e r m i n i s t i c programs and p a t t e r n - d i r e c t e d i n v o c a t i o n o f
p rocedures are a v a i l a b l e . The use o f u n i f o r m p r o o f p r o ­
cedures f o r t h i s purpose has been r e p e a t e d l y c r i t i c i z e d ,
e . g . In 3 . Users o f the h i g h - l e v e l languages have a l s o
been w o r r i e d because t h e i r systems are very expens i ve
to use4,2 and because the n o n - d e t e r m i n i s m i s d i f f i c u l t
t o c o n t r o l 4 .

There i s ano the r app roach , wh ich has r o o t s i n A . 1 . r e ­
search back to the General Problem S o l v e r 5 , where one
has a s u p e r v i s o r wh ich a d m i n i s t r a t e s a (r e l a t i v e l y) f i ­
xed se t o f o p e r a t o r s , and a w o r k i n g se t o f a c t i v e ob ­
j e c t s . I n each c y c l e , the s u p e r v i s o r p i c k s an o b j e c t
and an o p e r a t o r (u s i n g any h e u r i s t i c i n f o r m a t i o n t h a t
i t may h a v e) , a p p l i e s the o p e r a t o r t o the o b j e c t , and
o b t a i n s back a number of new o b j e c t s (none , o n e , or
more) wh ich a re put i n t o the w o r k i n g s e t . T h i s p rocess
i s c o n t i n u e d u n t i l some goal i s ach ieved (e . g . , an ob ­
j e c t i s a g iven t a r g e t se t appears in the wo rk i ng s e t) .

T h i s approach has c e r t a i n advantages f rom an e f f i c i e n c y
s t a n d p o i n t , The o p e r a t o r s are f i x e d p rograms, wh ich can
be compi led or o t h e r w i s e t r a n s f o r m e d a l l the way to ma­
ch ine code l e v e l . The n o n - d e t e r m i n i s m is c o n c e n t r a t e d
t o the s u p e r v i s o r . S t i l l , t h e r e i s room f o r p a t t e r n - d i ­
r e c t e d i n v o c a t i o n , b y l e t t i n g the s u p e r v i s o r c l a s s i f y
o b j e c t s i n t o a number of c l a s s e s , and a s s o c i a t i n g a
subset o f the o p e r a t o r s w i t h each c l a s s . There i s a l s o
the n o n - d e t e r m i n i s m I m p l i e d by the s e a r c h .

The major d i s a d v a n t a g e , o f c o u r s e , i s t h a t t h i s scheme
is more r i g i d . For example , s i nce e v e r y t h i n g happens on
one l e v e l , t h e r e i s l i t t l e room f o r r e c u r s i o n . I f one
o p e r a t o r c a l l s a p r o c e d u r e , wh ich c a l l s a n o t h e r , wh ich
wants t o b e n o n - d e t e r m i n i s t i c , then t h e r e i s n o t r i v i a l
way to map t h a t n o n - d e t e r m i n i s m back up to the " s e a r c h
l e v e l " o f the s u p e r v i s o r , w h i l e r e t a i n i n g the e n v i r o n -
ment o f f u n c t i o n c a l l s , v a r i a b l e b i n d i n g s , e t c . t h a t
must be kep t a v a i l a b l e in a l l b ranches .

An I n t e r e s t i n g q u e s t i o n is t h e r e f o r e : how harmfu l i s
t h i s r i g i d i t y ? I s i t ve ry awkward t o "p rog ram a r o u n d "
the l i m i t a t i o n s o f such a sys tem, o r i s I t easy?

In t h i s paper , we t r y to answer t h a t q u e s t i o n by s t u d y ­
i n g those o p e r a t o r s wh ich co r respond to axioms in p r e ­
d i c a t e c a l c u l u s . We assume t h a t we have a data base ,
wh ich Is l i k e a l a r g e number o f ground u n i t c l a u s e s ,
p l u s a number o f o p e r a t o r s , wh ich shou ld co r respond to
the non-g round ax ioms . We show t h a t t h e r e a re c e r t a i n
problems i n p h r a s i n g the l a t t e r a s o p e r a t o r s , , b u t t h a t

t h e r e is a s y s t e m a t i c way to hand le those p rob lems . We
conc lude t h a t the search s u p e r v i s o r approach shou ld be
c o n s i d e r e d as a s e r i o u s c a n d i d a t e f o r t he d e d u c t i v e s y s ­
tem a s s o c i a t e d w i t h a da ta base.

Basic Idea . For the reader who might no t want to read
the whole paper , we d i s c l o s e t h a t the idea is to pe rm i t
the " o b j e c t s " t o c o n t a i n p rocedure c l o s u r e s 6 ' 7 , a l s o
c a l l e d FUNARG-expressIons, I . e . l ambda-express ions t o ­
ge the r w i t h a n env i ronment o f b i n d i n g s f o r i t s f r e e va ­
r i a b l e s . The lambda-exp ress ion is as f i x e d as the set
o f o p e r a t o r s , and can t h e r e f o r e b e c o m p i l e d , e t c , bu t
the env i ronment Is new f o r each o b j e c t .

A f t e r thus hav ing ske tched the background and the gene-
r a l i d e a , l e t us go I n t o the d e t a i l s o f t he p r e d i c a t e -
c a l c u l u s e n v i r o n m e n t .

S imp les t case . Let us take a common-place axiom and
c o n v e r t it into a p r o g r a m - l i k e o p e r a t o r . We choose the
t r a n s i t i v i t y ax i om ,

R (x , y) A R (y , z)) R (x , z)

wh ich goes I n t o a r u l e o f the fo rm

On a s u b - q u e s t i o n w i t h t he r e l a t i o n R, use
l ambda (x , z) beg in l o c a l y ;

de te rm ine y f rom R (x , y) ;
r e t u r n s u b - q u e s t i o n R (y , z)
end

Here , " d e t e r m i n e y f rom R (y , z) " c a l l s f o r a l o o k - u p in
the da ta base , and u s u a l l y a c t s as a n o n - d e t e r m i n i s t i c
ass ignment t o y . " R e t u r n s u b - q u e s t i o n " s p e c i f i e s the
i n f o r m a t i o n wh ich i s g i v e n back t o t he s u p e r v i s o r , con­
s i s t i n g o f a r e l a t i o n (R) and an argument l i s t . The
l a t t e r i s a l i s t o f the c u r r e n t va lues o f x and y j I t
does n o t need to c o n t a i n the names x and y, or t h e i r
b i n d i n g s t o t h e i r c u r r e n t v a l u e s . The s u p e r v i s o r w i l l
then l ook up a l l o p e r a t o r s (l ambda -exp ress i ons) wh ich
a re a s s o c i a t e d w i t h R, and a p p l y them to the g i v e n a r ­
gument l i s t , o f course a t whatever t ime i t chooses.

T h i s r u l e d e s c r i b e s what has to be done when any data
base search r o u t i n e c o n t i n u e s search a c c o r d i n g t o the
t r a n s i t i v i t y p r o p e r t y o f the r e l a t i o n s . I t does no t
m a t t e r i f t he search i s execu ted by a u n i f o r m theorem-
p r o v e r , a P l a n n e r - t y p e sys tem, or by a h a n d - t a i l o r e d
proaram such as the LISP f u n c t i o n s in t he SIR system8.
However, in a h i g h e r - l e v e l sys tem, t he system has to
" i n t e r p r e t " the axioms o r r u l e s , I . e . f i n d o u t a t r u n ­
t ime what is to be done. A r e s o l u t i o n t heo rem-p rove r
i s ex t reme In t h i s r e s p e c t . Our concern In t h i s paper
i s t o f i n d o u t b e f o r e e x e c u t i o n (w i t h i n f o r m a t i o n o n l y
about the ax iom o r r u l e , n o t about t h e a c t u a l sub -ques ­
t i o n) what o p e r a t i o n s w i l l be n e c e s s a r y , so t h a t we can
w r i t e o u t the code f o r d o i n g e x a c t l y t h a t , t n p rogram­
ming systems t e r m s , we want to comp i le t he ax ioms , and
do as many d e c i s i o n s as p o s s i b l e at c o m p l l e - t i m e .

I f a r e s o l u t i o n t heo r em- p r ov e r c o n t a i n s the above t r a n ­
s i t i v i t y ax i om , and the ax iom

R(a ,b)
and i f i t asked the " q u e s t i o n " ^ (b . c) , i t w i l l genera ­
t e t he s u b - q u e s t i o n M l (a , c) . T h i s s t e p can be c l e a r l y
I l l u s t r a t e d I f t he t r a n s i t i v i t y ax iom I s r e w r i t t e n a s

230

Thus one clause (In the resolut ion sense) usual ly cor­
responds to several rules l i ke the lambda-expressions
above. The number of rules that correspond to a clause
Is f i n i t e . If some rules are omi t ted, then the resu l t ­
ing system is not In general complete, but inclusion of
a l l rules is s t i l l not s u f f i c i e n t to insure complete­
ness. We shal l not be concerned about t h i s .

Going back to the f i r s t ru le above, the reader should
imagine that the supervisor contains one queue of sub-
questions for each re la t ion symbol, and that every sub-
question contains an argument l i s t . Every re la t ion sym­
bol is associated wi th a set of operators, w r i t t en as
lambda-expressions l i ke the one above, which can be
applied to the objects that queue for that re la t i on
symbol. The operator above returns a sub-question, and
t e l l s what object - argument l i s t i t should conta in ,
and which re la t i on it should at tend. The operators can
be thought about as "demons", c lustered in groups wi th
a common point of i n t e r e s t , which is named by the re­
la t ion symbol.

L is t of problems. This organizat ion raises a number of
questions. One problem is how one should integrate heu­
r i s t i c information into the system. We shal l not go i n ­
to that question here. Another question is how the l o ­
cal non-determintsm in the rule is to be handled. The
answer is simple: we map the l inear (i . e . loop- f ree) ,
non-determinist ic program into a looping, determin is t ic
program. Each branch-point s tar ts a new loop inside the
loops of the previous branch-points. A l l loops end at
the end of the ru le . This is qui te s t ra igh t - fo rward .

If the PC (predicate calculus) axioms contain funct ion
symbols (not merely r e l a t i o n s) , we obtain " u n i f i c a t i o n " ,
or in programming language terms: pattern-matching and
pat tern- reconst ruc t ion . Then the convers ion to remove
the local non-determinism involves some addi t ional prob­
lems, which however w i l l be the top ic of a l a t e r exten­
sion of th i s paper. Suf f ice it to say that every PC
funct ion should be associated w i th one construct ion pro­
cedure and one or more matching procedures, and that
the compiled version of the axiom must contain a ca l l
to one of these procedures. It can be determined at
"compilat ion t ime" which procedure shal l be ca l l ed . The
matching procedure for " p l u s " may for example match " 1 * "
against " p l u s (x , l) " and assign to " x " the value 3.

Let us turn instead to the question of how open ques­
t ions are handled. ("Closed questions" are questions
which can be answered wi th a t ru th -va lue , I .e. Yes/no
quest ions; "open quest ions" are questions which have an
I nd i v i dua l , or n- tuple of indiv iduals as possible ans­
wer.) We decide immediately that "closed questions wi th
the r e l a t i on R" shal l be one class of object and in te r ­
es t -po in t fo r operators, and "open questions wi th the
re la t ion R and an asked-for second argument, R(x,?)"
shal l be another class of ob jec ts , treated wi th another
set of operators. We shal l p rov is iona l l y denote it as
R2(X). For example, the same t r a n s i t i v i t y axiom for R
also ca l l s fo r the fo l low ing operator:

On a sub-question w i th R2, use
lambda (x) begin local y;

determine y from R(x ,y) ;
return sub-question Ra(y) end

231

determine z from Q(y,z).;
return answer f (x , z)
end

Each of these operators contains a main b lock, where
each statement except the last one makes an access to
the data base, fo r e i t he r a closed or an open quest ion,
(Every such statement corresponds to a l i t e r a l in the
o r ig ina l axiom). We have t a c i t l y assumed that thosere-
references should be " immediate", i . e . only use facts
that are e x p l i c i t l y in the data base. However, it Is
also possible to l e t such intermediate statements make
t h e i r own search. If we maintain the idea that the ope­
rators should be de te rmin is t i c programs, and a l l search
should be managed by the supervisor, then the search In
the Intermediate statement must be brought to an end
before the execution of the operator can cont inue. It
fo l lows that in an intermediate statement we can only
make a search which is " s h o r t " compared to the main
search done by the supervisor.

Is it possible to use the la test formulat ion of the
operator as it is7 A l l search would then be done In
the intermediate statements (both " look up y" and " look
up z" in the t r a n s i t i v i t y axiom, e t c .) and the opera­
tor can return a f i n a l answer, rather than a sub-ques­
t ion for fu r ther search. This is co r rec t , but c lea r l y
the supervisor is not used at a l l in t h i s case.

However, given the las t formulat ion of the operators,
we can come back to the previous formulat ion by p i c k '
Ing out one intermediate statement and decide that that
is where the main search shal l be done. In the f i r s t
axiom, the main search Is most na tu ra l l y done for "de­
termine z " . In the second axiom, our previous formula­
t ion does the main search for "determine y " , although
In p r i nc ip le It would also be possible to determine y
In the shallow search of an intermediate statement, and
then ask the supervisor to do main search in order to
prove Q(x,y) fo r the selected y. In the t h i r d axiom,
our previous formulat ion does main search to determine
z, although It would also be possible to do main search
for y, and to determine z and f (x , z) in the remainder
procedure.

Conclusion from the discussion. We conclude that the
general method to convert a pred 'cate-calcu lus axiom
to an operator should be:

(3) Decide which of the statements in the operator
shal l be handled by the extensive, top- leve l search
which is managed by the supervisor. This Is ca l led
a con t ro l led statement. Let the statements in the
operator be

H , s 2 S k - 1 , S k , S k + r - . . S n

where s. Is the con t ro l l ed statement.

{*)) Construct a new operator where the statements are

232

Mult ip le cont ro l led statements. I t is eas i l y seen that
the above rule in four steps can be generalized to the
cases where there are several cont ro l led statements,
and top- leve l search is performed for each of them. For
example, in axiom 2 we might wish to make extensive
search both in order to determine y from P (x , y) , and in
order to prove Q(x ,y) . We must then have two nested re­
mainder procedures. The resu l t i ng operator should have
the form:

On a sub-question w i th R2, use
lambda (x) begin

return sub-question P 2 (x) , w i th remain­
der procedure
lambda (y) begin

return sub-question Q(x,y)
/a closed sub-question/ w i th
the remainder prodedure
lambda () return answer y
end

end

We rea l ize that "every answer" to a closed sub-question
must be a f f i rma t i ve , i .e . as soon as it has proved
Q(x,y) , the above operator returns y.

Chains of sub-guestions. The operators as formulated
above return sub-questions consist ing of a re la t i on
symbol, an argument l i s t , and a remainder func t ion , but
they only accept the f i r s t two items. This means that
the supervisor is responsible fo r admin is t ra t ing the
remainder procedures. However, in a programming system
where procedures are permitted as arguments (to other
procedures), the respons ib i l i t y can eas i ly be taken by
the operators and the programming system. We shal l now
describe how th i s can be done.

In closed and open quest ions, we add one more argument
9, which is the remainder procedure. The resu l t i ng ar­
gument l i s t s (x ,y ,g) for R, (x,g) for R2, e t c . , are the
objects which our supervisor shall handle.

We then modify the examples so that g is introduced as
an argument and appl ied to the returned answer. Thus
the d e f i n i t e version of the rule for axiom 3 i a :

On a sub-question wi th R2, use
lambda (x,g) begin local y;

determine y from P(x .y) ;
return sub-question

Q2(y, function(lambda (z) g (f (x , z))))
end

The other rules are modified s i m i l a r l y . We not ice that
the sub-questions that t h i s rule re turns, contain two
t ransfer var iab les : x and g. The bindings of these must
be saved in the c losure, and retained u n t i l the remain­
der procedure is used.

Let g' be the second argument of 0.2 in one pa r t i cu l a r
use of the above operator. Clear ly g1 contains a re fe r ­
ence to g, which i t s e l f pfesumably is a procedure c l o ­
sure, which was set up by a previous sub-question. As
one sub-question generates another, a chain of c losu­
res is generated, where each one refers to its prede­
cessor. When f i n a l l y an answer is found to the last sub-
quest ion, the last procedure closure is appl ied in a
return-answer statement; i t ca l l s i ts predecessor by
using a procedure va r i ab le , as seen in the example, the
predecessor ca l l s i t s predecessor, and so on up the
chain. In the o r i g i na l (top- leve l) q j es t i on , q is given
as " re tu rn aeswer".

Discussion of a p p l i c a b i l i t y of_the method. This proce­
dure works In a l l cases where the non-determinlst ic
in te r rup t points (where another, pa ra l l e l branch is per­

mi t ted to a t t r ac t a t ten t ion) can be brought to the top-
level block of the "operators" , and not be hidden deep­
er down in recursion, in p r i n c i p l e , the t r i c k is that
the control stack (the stack of funct ion ca l l s) is only
one element deep at the in te r rup t points (containing
the ca l l from the supervisor to the opera tor) , and then
the control stack informat ion, plus the information of
how far we have got ten, can be put in one addi t ional
t ransfer var iab le . With th is method, we have no control
stack environment, but merely a var iab le-b ind ing env i ­
ronment at the interrupt po in ts , and t h i s is exact ly
what FUNARG (or procedure closures) can handle.

We believe that th is method is s u f f i c i e n t l y powerful to
handle e .g . a l l cases which may occur when PC axioms
are mapped into ru les, and probab 1y also a broader app-
l i ca t i on .

A questionable feature of th i s method is that one must
in p r i nc ip le decide at "compi le-t ime" which re t r i eva ls
are to be done by " b i g " search, and which are to be done
by " sho r t " intermediate statement (• non-control led s ta ­
tement) search. In some appl icat ions t h i s is OK, since
some re la t ions are only stored e x p l i c i t l y or almost ex­
p l i c i t l y ; In others it may not be acceptable.

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati­
c a l l y , then the selected programming language must of
course be able to generate and manipulate programs in
the same language. LISP Is then an obvious choice. How­
ever, during the execution of the search, our requi re­
ment is instead that we must be able to create a proce­
dure c losure, and send it around as data. Some simula­
t i on languages, notably Simula 671 0 have th i s f a c i l i t y ,
as well as POP-211 and ECL12. LISP1.5 systems (a - l i s t
systems) provide it through the FUNARG feature. Later
LISP systems (LISP 1.6, original BBN-LISP) do not p ro­
vide i t 7 . A method for provid ing FUNARG in BBN-LISP'type
systems without undue loss of e f f i c i ency has been pro­
posed I n 9 .

It has been suggested that the not ion of a "remainder
procedure", as used in t h i s paper, is rather c losely
connected w i t h the not ion of " con t i nua t i on " , which has
recently proved helpfu l in discussing the denotational
semantics of programming languages13.

Implementation. The author has par t i c ipa ted in the deve­
lopment of a program, cal led PCDB (Predicate Calculus
Data Base), which Is organized according to the search
supervisor p r i n c i p l e . This program was described in re ­
ference 14, and contains a compiler which accepts PC
axioms and generates corresponding LISP programs. It a l ­
so contains a simple supervisor, elaborate data base
handling f a c i l i t i e s , e tc . which are needed. The present
(1972) version of PCDB le ts the supervisor administrate
the remainder procedures in an ad hoc and not completely
general way. A new compiler is being w r i t t e n , which w i l l
administrate them wi th FUNARG expressions as indicated
in th i s paper. We hope to have it working at the time of
the conference.

Acknowledgements. The fo l lowing people in Uppsala have
helped w i th the PCDB work: Lennart Drugge, Anders Harald-
son, Rene" Reboh.

Sponsor: This research was supported by IBM Svenska AB.

233

References

1 . C H e w i t t
D e s c r i p t i o n and t h e o r e t i c a l a n a l y s i s (u s i n g schemata)
of PLANNER, a language f o r p r o v i n g theorems and mani-
p u l a t i n g models In a robo t
Ph.D. t h e s i s , Dept . o f ma thema t i cs , MIT, Cambr idge,
Mass. (1972)

2 . J . F . R u l I f s o n e t a l .
QA4: a p r o c e d u r a l b a s i s f o r i n t u i t i v e r eason ing
A l Cen te r , S t a n f o r d Research I n s t i t u t e (1972)

3. D.B. Anderson and P . J . Hayes
The l o g i c i a n ' s f o l l y
in the (European) AlSB B u l l e t i n , B r i t i s h Computer
S o c i e t y , 1972

4. G . J . Sussman
Why c o n n i v i n g is b e t t e r than p l a n n i n g
MIT Al l a b o r a t o r y , 1972

5 . A . Newel l e t a l .
Repor t on a genera l p r o b l e m - s o l v i n g program
Proc . IF IP Congress 1959, p. 256

6 . P . J . Landin
The mechanical e v a l u a t i o n o f e x p r e s s i o n s
Computer J o u r n a l , V o l . 6 (1 9 6 4) , pp. 308-320

7. J . Moses
The F u n c t i o n of FUNCTION in L ISP, or why the FUNARG
prob lem shou ld be c a l l e d the env i ronment p rob lem
ACM SIGSAM b u l l e t i n No. 15 (1970)

9. B. Raphe1
SIR: a computer program f o r semant ic I n f o r m a t i o n r e ­
t r i e v a l
i n M i n s k y , e d . : Semant ic i n f o r m a t i o n p r o c e s s i n g
MIT p r e s s , 1968

9. E. Sandewal l
A proposed s o l u t i o n to the FUNARG problem
ACM SIGSAM b u l l e t i n No. 17 (1971)

10. O le-Johan Dahl e t a t .
Common Base Language
Norwegian Computing C e n t e r , O s l o , 1970

1 . R.M. B u r s t a l l e t a l .
Programming in POP-2
Ed lnburhg Un iv . P r e s s , 1971

2 . B . Wegbre i t e t a l .
ECL Programmer 's Manual
Harvard U n i v e r s i t y , Cambr idge, Mass. 1972

3. J. Reynolds
D e f i n i t i o n a l i n t e r p r e t e r s f o r h i ghe r o r d e r p rog ram­
ming languages
Proceed ings of an ACM Con fe rence , Bos ton , Mass. ,1972

4. E. Sandewall
A programming t o o l f o r management of a p r e d i c a t e -
c a l c u l u s - o r i e n t e d da ta base
i n Proceed ings o f the second I n t e r n a t i o n a l j o i n t
con fe rence o n A r t i f i c i a l i n t e l l i g e n c e , B r i t i s h Com­
p u t e r S o c i e t y , London, 1971

234

