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wh ich a re to be used as " r u l e s " by a GPS-type s u p e r v i ­
s o r . I t i s shown t h a t t h i s can be done, bu t t h a t the 
" o b j e c t s " must then c o n t a i n p rocedure c l o s u r e s o r "FUN-
ARG-express ions" wh ich are l a t e r a p p l i e d . 
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Background- R e t r i e v a l o f I m p l i c i t i n f o r m a t i o n in a sem­
a n t i c da ta base is a k i n d of d e d u c t i o n . One approach to 
do ing such r e t r i e v a l has been r e s o l u t i o n - s t y l e theorem-
p r o v i n g ; a l a t e r approach has been h i g h - l e v e l p rogram­
ming languages such as P lanner1 and QA42, where non -de ­
t e r m i n i s t i c programs and p a t t e r n - d i r e c t e d i n v o c a t i o n o f 
p rocedures are a v a i l a b l e . The use o f u n i f o r m p r o o f p r o ­
cedures f o r t h i s purpose has been r e p e a t e d l y c r i t i c i z e d , 
e . g . In 3 . Users o f the h i g h - l e v e l languages have a l s o 
been w o r r i e d because t h e i r systems are very expens i ve 
to use4,2 and because the n o n - d e t e r m i n i s m i s d i f f i c u l t 
t o c o n t r o l 4 . 

There i s ano the r app roach , wh ich has r o o t s i n A . 1 . r e ­
search back to the General Problem S o l v e r 5 , where one 
has a s u p e r v i s o r wh ich a d m i n i s t r a t e s a ( r e l a t i v e l y ) f i ­
xed se t o f o p e r a t o r s , and a w o r k i n g se t o f a c t i v e ob ­
j e c t s . I n each c y c l e , the s u p e r v i s o r p i c k s an o b j e c t 
and an o p e r a t o r ( u s i n g any h e u r i s t i c i n f o r m a t i o n t h a t 
i t may h a v e ) , a p p l i e s the o p e r a t o r t o the o b j e c t , and 
o b t a i n s back a number of new o b j e c t s (none , o n e , or 
more) wh ich a re put i n t o the w o r k i n g s e t . T h i s p rocess 
i s c o n t i n u e d u n t i l some goal i s ach ieved ( e . g . , an ob ­
j e c t i s a g iven t a r g e t se t appears in the wo rk i ng s e t ) . 

T h i s approach has c e r t a i n advantages f rom an e f f i c i e n c y 
s t a n d p o i n t , The o p e r a t o r s are f i x e d p rograms, wh ich can 
be compi led or o t h e r w i s e t r a n s f o r m e d a l l the way to ma­
ch ine code l e v e l . The n o n - d e t e r m i n i s m is c o n c e n t r a t e d 
t o the s u p e r v i s o r . S t i l l , t h e r e i s room f o r p a t t e r n - d i ­
r e c t e d i n v o c a t i o n , b y l e t t i n g the s u p e r v i s o r c l a s s i f y 
o b j e c t s i n t o a number of c l a s s e s , and a s s o c i a t i n g a 
subset o f the o p e r a t o r s w i t h each c l a s s . There i s a l s o 
the n o n - d e t e r m i n i s m I m p l i e d by the s e a r c h . 

The major d i s a d v a n t a g e , o f c o u r s e , i s t h a t t h i s scheme 
is more r i g i d . For example , s i nce e v e r y t h i n g happens on 
one l e v e l , t h e r e i s l i t t l e room f o r r e c u r s i o n . I f one 
o p e r a t o r c a l l s a p r o c e d u r e , wh ich c a l l s a n o t h e r , wh ich 
wants t o b e n o n - d e t e r m i n i s t i c , then t h e r e i s n o t r i v i a l 
way to map t h a t n o n - d e t e r m i n i s m back up to the " s e a r c h 
l e v e l " o f the s u p e r v i s o r , w h i l e r e t a i n i n g the e n v i r o n -
ment o f f u n c t i o n c a l l s , v a r i a b l e b i n d i n g s , e t c . t h a t 
must be kep t a v a i l a b l e in a l l b ranches . 

An I n t e r e s t i n g q u e s t i o n is t h e r e f o r e : how harmfu l i s 
t h i s r i g i d i t y ? I s i t ve ry awkward t o "p rog ram a r o u n d " 
the l i m i t a t i o n s o f such a sys tem, o r i s I t easy? 

In t h i s paper , we t r y to answer t h a t q u e s t i o n by s t u d y ­
i n g those o p e r a t o r s wh ich co r respond to axioms in p r e ­
d i c a t e c a l c u l u s . We assume t h a t we have a data base , 
wh ich Is l i k e a l a r g e number o f ground u n i t c l a u s e s , 
p l u s a number o f o p e r a t o r s , wh ich shou ld co r respond to 
the non-g round ax ioms . We show t h a t t h e r e a re c e r t a i n 
problems i n p h r a s i n g the l a t t e r a s o p e r a t o r s , , b u t t h a t 

t h e r e is a s y s t e m a t i c way to hand le those p rob lems . We 
conc lude t h a t the search s u p e r v i s o r approach shou ld be 
c o n s i d e r e d as a s e r i o u s c a n d i d a t e f o r t he d e d u c t i v e s y s ­
tem a s s o c i a t e d w i t h a da ta base. 

Basic Idea . For the reader who might no t want to read 
the whole paper , we d i s c l o s e t h a t the idea is to pe rm i t 
the " o b j e c t s " t o c o n t a i n p rocedure c l o s u r e s 6 ' 7 , a l s o 
c a l l e d FUNARG-expressIons, I . e . l ambda-express ions t o ­
ge the r w i t h a n env i ronment o f b i n d i n g s f o r i t s f r e e va ­
r i a b l e s . The lambda-exp ress ion is as f i x e d as the set 
o f o p e r a t o r s , and can t h e r e f o r e b e c o m p i l e d , e t c , bu t 
the env i ronment Is new f o r each o b j e c t . 

A f t e r thus hav ing ske tched the background and the gene-
r a l i d e a , l e t us go I n t o the d e t a i l s o f t he p r e d i c a t e -
c a l c u l u s e n v i r o n m e n t . 

S imp les t case . Let us take a common-place axiom and 
c o n v e r t it into a p r o g r a m - l i k e o p e r a t o r . We choose the 
t r a n s i t i v i t y ax i om , 

R ( x , y ) A R ( y , z ) ) R ( x , z ) 

wh ich goes I n t o a r u l e o f the fo rm 

On a s u b - q u e s t i o n w i t h t he r e l a t i o n R, use 
l ambda (x , z ) beg in l o c a l y ; 

de te rm ine y f rom R ( x , y ) ; 
r e t u r n s u b - q u e s t i o n R ( y , z ) 
end 

Here , " d e t e r m i n e y f rom R ( y , z ) " c a l l s f o r a l o o k - u p in 
the da ta base , and u s u a l l y a c t s as a n o n - d e t e r m i n i s t i c 
ass ignment t o y . " R e t u r n s u b - q u e s t i o n " s p e c i f i e s the 
i n f o r m a t i o n wh ich i s g i v e n back t o t he s u p e r v i s o r , con­
s i s t i n g o f a r e l a t i o n (R) and an argument l i s t . The 
l a t t e r i s a l i s t o f the c u r r e n t va lues o f x and y j I t 
does n o t need to c o n t a i n the names x and y, or t h e i r 
b i n d i n g s t o t h e i r c u r r e n t v a l u e s . The s u p e r v i s o r w i l l 
then l ook up a l l o p e r a t o r s ( l ambda -exp ress i ons ) wh ich 
a re a s s o c i a t e d w i t h R, and a p p l y them to the g i v e n a r ­
gument l i s t , o f course a t whatever t ime i t chooses. 

T h i s r u l e d e s c r i b e s what has to be done when any data 
base search r o u t i n e c o n t i n u e s search a c c o r d i n g t o the 
t r a n s i t i v i t y p r o p e r t y o f the r e l a t i o n s . I t does no t 
m a t t e r i f t he search i s execu ted by a u n i f o r m theorem-
p r o v e r , a P l a n n e r - t y p e sys tem, or by a h a n d - t a i l o r e d 
proaram such as the LISP f u n c t i o n s in t he SIR system8. 
However, in a h i g h e r - l e v e l sys tem, t he system has to 
" i n t e r p r e t " the axioms o r r u l e s , I . e . f i n d o u t a t r u n ­
t ime what is to be done. A r e s o l u t i o n t heo rem-p rove r 
i s ex t reme In t h i s r e s p e c t . Our concern In t h i s paper 
i s t o f i n d o u t b e f o r e e x e c u t i o n ( w i t h i n f o r m a t i o n o n l y 
about the ax iom o r r u l e , n o t about t h e a c t u a l sub -ques ­
t i o n ) what o p e r a t i o n s w i l l be n e c e s s a r y , so t h a t we can 
w r i t e o u t the code f o r d o i n g e x a c t l y t h a t , t n p rogram­
ming systems t e r m s , we want to comp i le t he ax ioms , and 
do as many d e c i s i o n s as p o s s i b l e at c o m p l l e - t i m e . 

I f a r e s o l u t i o n t heo r em- p r ov e r c o n t a i n s the above t r a n ­
s i t i v i t y ax i om , and the ax iom 

R(a ,b ) 
and i f i t asked the " q u e s t i o n " ^ ( b . c ) , i t w i l l genera ­
t e t he s u b - q u e s t i o n M l ( a , c ) . T h i s s t e p can be c l e a r l y 
I l l u s t r a t e d I f t he t r a n s i t i v i t y ax iom I s r e w r i t t e n a s 

230 



Thus one clause (In the resolut ion sense) usual ly cor­
responds to several rules l i ke the lambda-expressions 
above. The number of rules that correspond to a clause 
Is f i n i t e . If some rules are omi t ted, then the resu l t ­
ing system is not In general complete, but inclusion of 
a l l rules is s t i l l not s u f f i c i e n t to insure complete­
ness. We shal l not be concerned about t h i s . 

Going back to the f i r s t ru le above, the reader should 
imagine that the supervisor contains one queue of sub-
questions for each re la t ion symbol, and that every sub-
question contains an argument l i s t . Every re la t ion sym­
bol is associated wi th a set of operators, w r i t t en as 
lambda-expressions l i ke the one above, which can be 
applied to the objects that queue for that re la t i on 
symbol. The operator above returns a sub-question, and 
t e l l s what object - argument l i s t i t should conta in , 
and which re la t i on it should at tend. The operators can 
be thought about as "demons", c lustered in groups wi th 
a common point of i n t e r e s t , which is named by the re­
la t ion symbol. 

L is t of problems. This organizat ion raises a number of 
questions. One problem is how one should integrate heu­
r i s t i c information into the system. We shal l not go i n ­
to that question here. Another question is how the l o ­
cal non-determintsm in the rule is to be handled. The 
answer is simple: we map the l inear ( i . e . loop- f ree) , 
non-determinist ic program into a looping, determin is t ic 
program. Each branch-point s tar ts a new loop inside the 
loops of the previous branch-points. A l l loops end at 
the end of the ru le . This is qui te s t ra igh t - fo rward . 

If the PC (predicate calculus) axioms contain funct ion 
symbols (not merely r e l a t i o n s ) , we obtain " u n i f i c a t i o n " , 
or in programming language terms: pattern-matching and 
pat tern- reconst ruc t ion . Then the convers ion to remove 
the local non-determinism involves some addi t ional prob­
lems, which however w i l l be the top ic of a l a t e r exten­
sion of th i s paper. Suf f ice it to say that every PC 
funct ion should be associated w i th one construct ion pro­
cedure and one or more matching procedures, and that 
the compiled version of the axiom must contain a ca l l 
to one of these procedures. It can be determined at 
"compilat ion t ime" which procedure shal l be ca l l ed . The 
matching procedure for " p l u s " may for example match " 1 * " 
against " p l u s ( x , l ) " and assign to " x " the value 3. 

Let us turn instead to the question of how open ques­
t ions are handled. ("Closed questions" are questions 
which can be answered wi th a t ru th -va lue , I .e. Yes/no 
quest ions; "open quest ions" are questions which have an 
I nd i v i dua l , or n- tuple of indiv iduals as possible ans­
wer.) We decide immediately that "closed questions wi th 
the r e l a t i on R" shal l be one class of object and in te r ­
es t -po in t fo r operators, and "open questions wi th the 
re la t ion R and an asked-for second argument, R(x,?)" 
shal l be another class of ob jec ts , treated wi th another 
set of operators. We shal l p rov is iona l l y denote it as 
R2(X). For example, the same t r a n s i t i v i t y axiom for R 
also ca l l s fo r the fo l low ing operator: 

On a sub-question w i th R2, use 
lambda (x) begin local y; 

determine y from R(x ,y) ; 
return sub-question Ra(y) end 
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determine z from Q(y,z).; 
return answer f ( x , z ) 
end 

Each of these operators contains a main b lock, where 
each statement except the last one makes an access to 
the data base, fo r e i t he r a closed or an open quest ion, 
(Every such statement corresponds to a l i t e r a l in the 
o r ig ina l axiom). We have t a c i t l y assumed that thosere-
references should be " immediate", i . e . only use facts 
that are e x p l i c i t l y in the data base. However, it Is 
also possible to l e t such intermediate statements make 
t h e i r own search. If we maintain the idea that the ope­
rators should be de te rmin is t i c programs, and a l l search 
should be managed by the supervisor, then the search In 
the Intermediate statement must be brought to an end 
before the execution of the operator can cont inue. It 
fo l lows that in an intermediate statement we can only 
make a search which is " s h o r t " compared to the main 
search done by the supervisor. 

Is it possible to use the la test formulat ion of the 
operator as it is7 A l l search would then be done In 
the intermediate statements (both " look up y" and " look 
up z" in the t r a n s i t i v i t y axiom, e t c . ) and the opera­
tor can return a f i n a l answer, rather than a sub-ques­
t ion for fu r ther search. This is co r rec t , but c lea r l y 
the supervisor is not used at a l l in t h i s case. 

However, given the las t formulat ion of the operators, 
we can come back to the previous formulat ion by p i c k ' 
Ing out one intermediate statement and decide that that 
is where the main search shal l be done. In the f i r s t 
axiom, the main search Is most na tu ra l l y done for "de­
termine z " . In the second axiom, our previous formula­
t ion does the main search for "determine y " , although 
In p r i nc ip le It would also be possible to determine y 
In the shallow search of an intermediate statement, and 
then ask the supervisor to do main search in order to 
prove Q(x,y) fo r the selected y. In the t h i r d axiom, 
our previous formulat ion does main search to determine 
z, although It would also be possible to do main search 
for y, and to determine z and f ( x , z ) in the remainder 
procedure. 

Conclusion from the discussion. We conclude that the 
general method to convert a pred 'cate-calcu lus axiom 
to an operator should be: 

(3) Decide which of the statements in the operator 
shal l be handled by the extensive, top- leve l search 
which is managed by the supervisor. This Is ca l led 
a con t ro l led statement. Let the statements in the 
operator be 

H , s 2 . . . . . . . . . . . . S k - 1 , S k , S k + r - . . S n 

where s. Is the con t ro l l ed statement. 

{*)) Construct a new operator where the statements are 
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Mult ip le cont ro l led statements. I t is eas i l y seen that 
the above rule in four steps can be generalized to the 
cases where there are several cont ro l led statements, 
and top- leve l search is performed for each of them. For 
example, in axiom 2 we might wish to make extensive 
search both in order to determine y from P ( x , y ) , and in 
order to prove Q(x ,y ) . We must then have two nested re­
mainder procedures. The resu l t i ng operator should have 
the form: 

On a sub-question w i th R2, use 
lambda (x) begin 

return sub-question P 2 (x ) , w i th remain­
der procedure 
lambda (y) begin 

return sub-question Q(x,y) 
/a closed sub-question/ w i th 
the remainder prodedure 
lambda () return answer y 
end 

end 

We rea l ize that "every answer" to a closed sub-question 
must be a f f i rma t i ve , i .e . as soon as it has proved 
Q(x,y) , the above operator returns y. 

Chains of sub-guestions. The operators as formulated 
above return sub-questions consist ing of a re la t i on 
symbol, an argument l i s t , and a remainder func t ion , but 
they only accept the f i r s t two items. This means that 
the supervisor is responsible fo r admin is t ra t ing the 
remainder procedures. However, in a programming system 
where procedures are permitted as arguments (to other 
procedures), the respons ib i l i t y can eas i ly be taken by 
the operators and the programming system. We shal l now 
describe how th i s can be done. 

In closed and open quest ions, we add one more argument 
9, which is the remainder procedure. The resu l t i ng ar­
gument l i s t s (x ,y ,g) for R, (x,g) for R2, e t c . , are the 
objects which our supervisor shall handle. 

We then modify the examples so that g is introduced as 
an argument and appl ied to the returned answer. Thus 
the d e f i n i t e version of the rule for axiom 3 i a : 

On a sub-question wi th R2, use 
lambda (x,g) begin local y; 

determine y from P(x .y ) ; 
return sub-question 

Q2(y, function(lambda (z) g ( f ( x , z ) ) )) 
end 

The other rules are modified s i m i l a r l y . We not ice that 
the sub-questions that t h i s rule re turns, contain two 
t ransfer var iab les : x and g. The bindings of these must 
be saved in the c losure, and retained u n t i l the remain­
der procedure is used. 

Let g' be the second argument of 0.2 in one pa r t i cu l a r 
use of the above operator. Clear ly g1 contains a re fe r ­
ence to g, which i t s e l f pfesumably is a procedure c l o ­
sure, which was set up by a previous sub-question. As 
one sub-question generates another, a chain of c losu­
res is generated, where each one refers to its prede­
cessor. When f i n a l l y an answer is found to the last sub-
quest ion, the last procedure closure is appl ied in a 
return-answer statement; i t ca l l s i ts predecessor by 
using a procedure va r i ab le , as seen in the example, the 
predecessor ca l l s i t s predecessor, and so on up the 
chain. In the o r i g i na l ( top- leve l ) q j es t i on , q is given 
as " re tu rn aeswer". 

Discussion of a p p l i c a b i l i t y of_the method. This proce­
dure works In a l l cases where the non-determinlst ic 
in te r rup t points (where another, pa ra l l e l branch is per­

mi t ted to a t t r ac t a t ten t ion) can be brought to the top-
level block of the "operators" , and not be hidden deep­
er down in recursion, in p r i n c i p l e , the t r i c k is that 
the control stack (the stack of funct ion ca l l s ) is only 
one element deep at the in te r rup t points (containing 
the ca l l from the supervisor to the opera tor ) , and then 
the control stack informat ion, plus the information of 
how far we have got ten, can be put in one addi t ional 
t ransfer var iab le . With th is method, we have no control 
stack environment, but merely a var iab le-b ind ing env i ­
ronment at the interrupt po in ts , and t h i s is exact ly 
what FUNARG (or procedure closures) can handle. 

We believe that th is method is s u f f i c i e n t l y powerful to 
handle e .g . a l l cases which may occur when PC axioms 
are mapped into ru les, and probab 1y also a broader app-
l i ca t i on . 

A questionable feature of th i s method is that one must 
in p r i nc ip le decide at "compi le-t ime" which re t r i eva ls 
are to be done by " b i g " search, and which are to be done 
by " sho r t " intermediate statement (• non-control led s ta ­
tement) search. In some appl icat ions t h i s is OK, since 
some re la t ions are only stored e x p l i c i t l y or almost ex­
p l i c i t l y ; In others it may not be acceptable. 

Requirements on the programming language. If the conver-
sion from PC axiom to operator is to be done automati­
c a l l y , then the selected programming language must of 
course be able to generate and manipulate programs in 
the same language. LISP Is then an obvious choice. How­
ever, during the execution of the search, our requi re­
ment is instead that we must be able to create a proce­
dure c losure, and send it around as data. Some simula­
t i on languages, notably Simula 671 0 have th i s f a c i l i t y , 
as well as POP-211 and ECL12. LISP1.5 systems ( a - l i s t 
systems) provide it through the FUNARG feature. Later 
LISP systems (LISP 1.6, original BBN-LISP) do not p ro­
vide i t 7 . A method for provid ing FUNARG in BBN-LISP'type 
systems without undue loss of e f f i c i ency has been pro­
posed I n 9 . 

It has been suggested that the not ion of a "remainder 
procedure", as used in t h i s paper, is rather c losely 
connected w i t h the not ion of " con t i nua t i on " , which has 
recently proved helpfu l in discussing the denotational 
semantics of programming languages13. 

Implementation. The author has par t i c ipa ted in the deve­
lopment of a program, cal led PCDB (Predicate Calculus 
Data Base), which Is organized according to the search 
supervisor p r i n c i p l e . This program was described in re ­
ference 14, and contains a compiler which accepts PC 
axioms and generates corresponding LISP programs. It a l ­
so contains a simple supervisor, elaborate data base 
handling f a c i l i t i e s , e tc . which are needed. The present 
(1972) version of PCDB le ts the supervisor administrate 
the remainder procedures in an ad hoc and not completely 
general way. A new compiler is being w r i t t e n , which w i l l 
administrate them wi th FUNARG expressions as indicated 
in th i s paper. We hope to have it working at the time of 
the conference. 

Acknowledgements. The fo l lowing people in Uppsala have 
helped w i th the PCDB work: Lennart Drugge, Anders Harald-
son, Rene" Reboh. 

Sponsor: This research was supported by IBM Svenska AB. 

233 



References 

1 . C H e w i t t 
D e s c r i p t i o n and t h e o r e t i c a l a n a l y s i s ( u s i n g schemata) 
of PLANNER, a language f o r p r o v i n g theorems and mani-
p u l a t i n g models In a robo t 
Ph.D. t h e s i s , Dept . o f ma thema t i cs , MIT, Cambr idge, 
Mass. (1972) 

2 . J . F . R u l I f s o n e t a l . 
QA4: a p r o c e d u r a l b a s i s f o r i n t u i t i v e r eason ing 
A l Cen te r , S t a n f o r d Research I n s t i t u t e (1972) 

3. D.B. Anderson and P . J . Hayes 
The l o g i c i a n ' s f o l l y 
in the (European) AlSB B u l l e t i n , B r i t i s h Computer 
S o c i e t y , 1972 

4. G . J . Sussman 
Why c o n n i v i n g is b e t t e r than p l a n n i n g 
MIT Al l a b o r a t o r y , 1972 

5 . A . Newel l e t a l . 
Repor t on a genera l p r o b l e m - s o l v i n g program 
Proc . IF IP Congress 1959, p. 256 

6 . P . J . Landin 
The mechanical e v a l u a t i o n o f e x p r e s s i o n s 
Computer J o u r n a l , V o l . 6 ( 1 9 6 4 ) , pp. 308-320 

7. J . Moses 
The F u n c t i o n of FUNCTION in L ISP, or why the FUNARG 
prob lem shou ld be c a l l e d the env i ronment p rob lem 
ACM SIGSAM b u l l e t i n No. 15 (1970) 

9. B. Raphe1 
SIR: a computer program f o r semant ic I n f o r m a t i o n r e ­
t r i e v a l 
i n M i n s k y , e d . : Semant ic i n f o r m a t i o n p r o c e s s i n g 
MIT p r e s s , 1968 

9. E. Sandewal l 
A proposed s o l u t i o n to the FUNARG problem 
ACM SIGSAM b u l l e t i n No. 17 (1971) 

10. O le-Johan Dahl e t a t . 
Common Base Language 
Norwegian Computing C e n t e r , O s l o , 1970 

1 . R.M. B u r s t a l l e t a l . 
Programming in POP-2 
Ed lnburhg Un iv . P r e s s , 1971 

2 . B . Wegbre i t e t a l . 
ECL Programmer 's Manual 
Harvard U n i v e r s i t y , Cambr idge, Mass. 1972 

3. J. Reynolds 
D e f i n i t i o n a l i n t e r p r e t e r s f o r h i ghe r o r d e r p rog ram­
ming languages 
Proceed ings of an ACM Con fe rence , Bos ton , Mass. ,1972 

4. E. Sandewall 
A programming t o o l f o r management of a p r e d i c a t e -
c a l c u l u s - o r i e n t e d da ta base 
i n Proceed ings o f the second I n t e r n a t i o n a l j o i n t 
con fe rence o n A r t i f i c i a l i n t e l l i g e n c e , B r i t i s h Com­
p u t e r S o c i e t y , London, 1971 

234 


