
Session 8 Formalisms for
A r t i f i c i a l Intelligence

A MODEL FOR CONTROL STRUCTURES
FOR ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

by

Daniel G. Bobrow
Computer Science Division

Xerox Palo Alto Research Center
Palo Al to , California 94304

Ben Wegbreit
Harvard University

Center for Research in Computing Technology
Cambridge, Massachusetts 02138

Abstract

Newer programming languages for ar t i f ic ia l inte l
ligence extend the class of available control regimes
beyond simple hierarchical control. In so doing, a key
issue is using a model that clearly exhibits the relation
between modules, processes, access environments,
and control environments. This paper presents a
model which is applicable to diverse languages and
presents a set of control pr imit ives which provide a
concise basis on which one can define almost a l l known
regimes of control.

1. Introduction

Newer programming languages! for ar t i f ic ia l
intelligence (e . g . , PLANNER9^ CONNIVER,18 BBN-
LlSP.ly QA4.1 ' 1 extend the nature of control regimes
available to the user. In this paper, we present an
information structure model20 which deals with control
and access contexts in a programming language; it is
based on consideration of the form of run-t ime data
structures which represent program control and v a r i
able bindings. The model is designed to help clar i fy
some relationships of hierarchical function cal ls,
backtracking, co-routines, and multiprocess structure.
We present the model and its small set of pr imi t ive
operations, then define several control regimes in
terms of the pr imi t ives, and then consider extensions
to handle cooperating sequential processes.

2. The Basic Environment Structure

In a language which has blocks and procedures,
new nomenclature (named variables) can be introduced
either by declarations in block heads or through named
parameters to procedures. Since both define access
environments, we call the body of a procedure or block
a uniform access module. Upon entry to an access
module, certain storage is allocated for those new
named items which are defined at entry. We call this
named allocated storage the basic frame of the module.
In addition, certain additional storage for the module
may be required for temporary intermediate results of
computation; this additional allocated storage we call
the frame extension. The total storage is called the
total frame for the module, or usually just the module
frame.

A" frame contains other information, in addition to
named variables and temporaries. It is often useful to
reference a frame by symbolic nomenclature. For this
purpose, each frame has a framename (usually the pro
cedure name). When a module is entered, its frame
extension is init ial ized with two pointers (perhaps i m
pl ic i t ly) ; one, called A LINK, is a linked access
pointer to the frame(s) which contains the higher level
free variable and parameter bindings accessible within

this module. The other, called CLINK, is associated
with control and is a generalized return which points to
the calling frame. In Algol , these are called the static
and dynamic l inks, respectively. In L I S p H the two
pointers usually reference the same f rame, since bind
ings for variables free in a module are found by
tracing up the call structure chain. (An exception is
the use of functional arguments, and we i l lustrate that
below.)

At the t ime of a call (entry to a lower module), the
caller stores in his frame extension a continuation
point for the computation. Since the continuation point
is stored in the caller, the generalized return is
simply a pointer to the last active frame.

The size of a basic frame is fixed on module entry.
It is just large enough to store the parameters and
associated information. However, during one function
activation, the required size of the frame extension
can vary widely (with a computable maximum), since
the amount of temporary storage used by this module
before calling different lower modules is quite v a r i
able. Therefore, the allocation of these two frame
segments may sometimes (advantageously) be done
separately and n on contiguously. This requires a link
(BLINK) f rom the frame extension to the basic frame
which contains the bindings.

When a frame is exited, either by a normal exit
or by a non-local goto which skips the frame (e. g. , an
e r ro r condition), it is often useful to perform clean-up
action for the frame. Examples include: close f i les
opened by the frame which are no longer needed,
restore the state of more global structures which have
been temporar i ly modified by the f rame, etc. T e r m i
nal action for a frame is carried out by executing an
exit function for the f rame, passing it as argument the
nominal value which the frame is returning as its
result; the value returned by the exit function is the
actual value of the frame. The variable values and the
exit function are the only components of the frame
which can be updated by the user; a l l the others are
fixed at the t ime of frame allocation. Figure 1 sum
marizes the contents of the frame.

Figure 2a shows a sketch of an algorithm pro
grammed in a block structure language such as Algol
60 with contourslO drawn around access modules. Bl
has locals N and P, P has parameter N, and B3 locals
Q and L. Figure 2b is a snapshot of the environment
structure after the following sequence: Bl is entered;
P is called (just above P I , the program continuation
point after this outer call); B3 is entered; and F is
called f rom within B3. For each access module there
are two separate segments — one for the basic frame
(denoted by the module name) and one for the frame
extension (denoted by the module name*). Note that
the sequence of access l inks (shown with dotted lines)
goes direct ly from P to B l * and is different f rom the
control chain of calls. However, each points higher

246

(e a r l i e r) on the s tack.
A point to note about an access module is that i t

has no knowledge of any modu le below i t . I f an a p p r o
p r ia te value (i . e . , one whose type agrees w i t h the
s to red r e t u r n type) i s p rov ided , cont inuat ion in that
access module can be achieved w i t h only a po in te r to
the cont inued f r a m e . No i n f o rma t i on s tored outside
th i s f r a m e i s necessary .

F i g u r e 3 shows two examples in which mo re than
one independent env i ronment s t r uc tu re is ma in ta ined.
In F i g u r e 3a, two corout ines are shown which share
common access and con t ro l env i ronment A. Note that
the f r a m e extension of A has been copied so that
r e t u r n s f r o m B and Q may go to d i f fe ren t cont inuat ion
po in ts . Th i s is a key point in the mode l ; whenever a
f r a m e extension i s r equ i red f o r con f l i c t i ng purposes ,
a copy is made. Since f r a m e A is used by two p r o
cesses , i f e i ther corout ine were de le ted , the bas ic
f r a m e f o r A should not be de le ted. However , one
f r a m e extension A* could be deleted in that case, s ince
f r a m e extensions a re never re ferenced d i r e c t l y by
m o r e than one p rocess . Since the basic f r ame A is
sha red , e i the r process can update the var iab le b i n d
ings in i t ; such changes a re seen both by B and Q, In
F i g u r e 3b, corout ine Q is shown ca l l i ng a funct ion D
w i t h ex te rna l access chain th rough B, but w i th con t ro l
to r e t u r n to Q.

3 . P r i m i t i v e Funct ions

In th is mode l f o r access module ac t i va t i on , each
f r a m e is genera l l y re leased upon ex i t o f that modu le .
Only i f a f r a m e is s t i l l re fe renced is i t re ta ined . A l l
non-chained re fe rences to a f r a m e (and to the e n v i r o n
ment s t r u c t u r e i t heads) a re made through a spec ia l
p ro tec ted data type ca l led an env i ronment d e s c r i p t o r ,
abbrev ia ted ed. The heads of a l l env i ronment chains
a re re fe renced only f r o m th i s space o f d e s c r i p t o r s .
(The one except ion is the i m p l i c i t ed f o r the c u r r e n t l y
act ive p rocess .) The p r i m i t i v e funct ions create an ed
f o r a spec i f ied f r ame and update the contents of an ed;
create a new f r ame w i t h spec i f ied contents, and a l low
execut ion of a computat ion in that context; and access
and update the exi t funct ion f o r a f r a m e . Note that
none of the p r i m i t i v e s manipu la te the l inks of ex is t ing
f r a m e s ; t h e r e f o r e , only w e l l - f o r m e d f r ame chains
ex i s t (i . e . , n o r i n g s t r u c t u r e s) .

1) envi ron(pos) — creates an env i ronment d e s c r i p t o r
f o r the f r a m e speci f ied by pos.

2) setenv(olded, pos) -- changes the contents of an
ex is t ing env i ronment d e s c r i p t o r olded to point to
the f r a m e speci f ied by pos. As a s ide e f fec t , i t
re leases storage re fe renced only through prev ious
contents of o lded.

3) mk f rame(epos ,apos , epos,bpos,bcopf lg) - - creates
a new f r a m e and re tu rns an ed f o r that f r a m e . The
f r a m e extension i s copied f r o m the f r ame spec i f ied
by epos, and the A L I N K and C L I N K are speci f ied
by apos and epos, r espec t i ve l y . The B L I N K points
to the bas ic f r a m e spec i f i ed by bpos , or to a copy
o f the bas ic f r a m e i f bcop f l g=TRUE. In use , a r g u
ments may be om i t t ed ; bcopf lg is defaulted to
F A L S E ; apos, bpos and epos a re defaulted to the
cor respond ing f i e l ds of the f r a m e speci f ied by epos.
Thus mk f rame(epos) creates a new f r ame extension
iden t i ca l to that spec i f ied by epos.

4) enveva l (fo r rA ,apos ,cpos) — creates a new f r a m e
and i n i t i a tes a computat ion w i t h th i s env i ronment
s t r u c t u r e . A L I N K and C L I N K point to f r a m e s
spec i f ied by apos and epos, respec t i ve l y ; and f o r m
spec i f ies the code to be executed, or the ex
p ress ion to be evaluated in th is new env i ronment .
I f apos or cpos a r e o m i t t e d , they are defaulted to
the A L I N K or C L I N K of th i s invocat ion o f enveva l .
T h u s , enveva l (fo rm) is the usual ca l l to an

i n t e r p r e t e r , and has the same effect as i f the value of
f o r m had appeared in place of the s imp le ca l l to
enveva l .

5) setexfn(pos, fn) — places a po in te r to a use r def ined
funct ion in the ex i t fn f i e ld of the f rame pos. I f the
sys tem is us ing the e x i t f n , th i s w i l l c rea te a new
funct ion which is the composi t ion of the use r
func t ion (appl ied f i r s t) and the sys tem func t ion . On
f r a m e ex i t , the ex i t fn w i l l be cal led w i t h one a r g u
men t , the value re tu rned by the f r ame code; the
value re turned by fn w i l l be the actual value r e
tu rned to the f r a m e spec i f ied by C L I N K .

6) getexfn(pos) — gets the use r set funct ion s tored in
ex i t fn of f r ame pos. Returns N I L i f none has been
e x p l i c i t l y s to red the re .

7) f ramenm(pos) - - r e tu rns the f ramename of f r a m e
pos.

A f r a m e spec i f i ca t ion (i . e . , pos, apos, bpos, epos,
epos above} is one of the fo l l ow ing :

1 . An in teger N:
a. N=0 speci f ies the f r a m e al located on ac t i va t ion

of the funct ion e n v i r o n , setenv, e tc . In the case
of env i ron , setenv and m k f r a m e , the con t inu
at ion point is set up so that a value re tu rned to
th is f r ame (using enveval) is re turned as a
value o f the o r i g i n a l ca l l to e n v i r o n , setenv o r
m k f r a m e .

b. N>0 speci f ies the f r a m e N l inks down the con t ro l
l i n k chain f r o m the N=0 f r a m e .

c. N<0 spec i f ies the f r a m e INI l i nks down the
access l ink chain f r o m the N=0 f r a m e ,

2. A l i s t of two e lements (F , N) where F is a f r a m e -
name and N is an in teger . Th i s gives the Nth
f r a m e w i th name F, where a posi t ive (negative)
va lue fo r N spec i f ies the con t ro l (access) chain
env i ronment .

3. The d is t inguished constant N I L . As an a c c e s s - l i n k
spec i f i ca t ion , N I L spec i f ies that only global values
a re to be used f r e e . A process which re tu rns
a long a N I L c o n t r o l - l i n k w i l l ha l t . Doing a
se tenv(ed ,NIL) re leases f r a m e storage f o r m e r l y
re ferenced only through ed , wi thout t y i ng up any
new s torage.

4. An ed (env i ronment desc r i p t o r) . When given an ed
argument created by a p r i o r ca l l on e n v i r o n ,
env i ron creates a new desc r i p to r w i th the same
contents as ed; setenv copies the contents of ed
in to o lded.

5. A l i s t " (ed) " cons is t ing of exac t l y one ed. The
contents of the l i s t ed ed a re used iden t i ca l l y to
that of an un l is ted ed. However , a f ter th i s value
is used in any of the func t ions , se tenv(ed .NIL) is
done, thus re leas ing the f r a m e storage f o r m e r l y
re ferenced only th rough ed. Th is has been c o m
bined into an argument f o r m ra ther than a l low ing
the user to do a setenv exp l i c i t l y because in the
ca l l to enveval the contents a re needed, so i t can
not be done before the c a l l ; i t cannot be done ex
p l i c i t l y a f t e r the enveval s ince cont ro l m igh t never
r e t u r n to that point .

4 . N o n - P r i m i t i v e Con t ro l Funct ions

To i l l u s t r a t e the use of these p r i m i t i v e con t ro l
func t ions , we expla in a number of cont ro l r eg imes
wh ich d i f f e r f r o m the usual nested funct ion c a l l - r e t u r n
h i e r a r c h i c a l s t r u c t u r e , and def ine t h e i r con t ro l s t r u c
tu re rout ines in t e r m s of the p r i m i t i v e s . We inc lude
s tack j u m p s , funct ion c l osu re , and severa l m u l t i p r o
cess ing d i sc ip l i nes . In p r o g r a m m i n g examp les , we
use the syntax and semant ics of a L I S P - l i k e s y s t e m .

In an o rd ina ry h i e r a r c h i c a l con t ro l s t r u c t u r e

247

system, if module F calls G, G calls H, and H calls J,
it is impossible for J to return to F without going back
through G and H. Consider some program in which a
search is implemented as a series of such nested
function calls. Suppose J discovered that the call to G
was inappropriate and wanted to return to F with such
a message. In a hierarchical control structure, H and
G would both have to be prepared to pass such a mes
sage back. However, in general, the function J should
not have to know how to force intermediaries; it should
be able to pass control directly to the relevant module.
Two functions may be defined to allow such jumpbacks.
(These are implemented in BBN-LISP;19 experience
has shown them to be quite useful.) The f i rs t function,
ret from(form,pos), evaluates form in the current con
text, and returns its value f rom the frame specified by
pos to that frame's caller; in the above example, this
returns a value to G's caller, i . e . , P, The second
function, retevaKform, pos), evaluates form in the con
text of the caller of pos and returns the "value of the
form to that cal ler. These are easily defined in terms
of enveval:

retfrom(form,pos) = enveval{form,2,pos)
re teva l fo rm, pos) = enveval form, pos, pos)

(The second argument to retfrom establishes that the
current environment is to be used for the evaluation of
form.)

As another example of the use of re t f rom, con
sider an implementation of the LISP er ror protection
mechanism. The programmer "wraps a form in
er rorse t " , i . e . , errorset(form) which is defined as
cons(eval(form),NIL). This "wrapping" indicates to
the system the programmer's intent that any er rors
which arise in the evaluation of form are to be handled
by the function containing the errorset. Since the
value of errorset in the non-error case is always a
l ist consisting of one element (the value of form), an
er ror can be indicated by forcing errorset to return
any non-l ist i tem. Hence, the system function e r ro r
can be defined as retfrom(NIL,(ERRORSET 1)) where
uppercase items are l i tera l objects in LISP. This
jumps back over a l l intermediary calls to return NIL
as the value of the most recent occurrence of errorset
in the hierarchical calling sequence.

In the fol lowing, we employ envapply which takes
as arguments a function name and l is t of (already eval
uated) arguments for that function. Envapply simply
creates the appropriate form for enveval.

envapply(fn,args,aframe, cframe) =
enveval(list(APPLY , l ist(QUOTE, fn),

l ist(QUOTE, args)), aframe, cframe)
A central notion for control structures is a pair

ing of a function with an environment for its evaluation.
Following LISP, we call such an object a funarg.
Funargs are created by the procedure function, defined

function(fn)=list(FUNARG, fn , environ(2))
That i s , in our implementation, a funarg is a l ist of
three elements: the indicator FUNARG, a function,
and an environment descriptor. (The argument to en
viron makes it reference the frame which called
function.) A funarg l i s t , being a globally valid data
structure, can be passed as an argument, returned as
a result, or assigned as the value of appropriately
typed variables. When the language evaluator gets a
form (fen arg1 arg2 . . . argn) whose functional object
fen is a funarg, i. e. , a l ist (FUNARG fn-name ed), it
creates a l is t , args, of (the values of) a r g l , arg2,
argn and does

envapply(second(fcn),args,third(fcn), 1)
The environment in this case is used exactly l ike the
original LISP A- l i s t . Moses 12 and Weizenbaum25

have discussed the use of function for preserving bind
ing contexts. Figure 4 i l lustrates the environment

structure where a functional has been passed down: the
function foo with variables X and L has been called; foo
called mapcar(X,function(fie)) and fie has been entered.
Note that along the access chain the f i rs t free L seen
in fie is bound in foo, although there is a bound v a r i
able L in mapcar which occurs f i rs t in the control
chain. Since frames are retained, a funarg can be
returned to higher contexts and st i l l work. (Burge3

gives examples of the use of funargs passed up as
values.)

In the above description, the environment pointer
is used only to save the access environment. In fact,
however, the pointer records the state of a process at
the instant of some cal l , having both access and
control environments. Hence, such an environment
pointer serves as part of a process handle. It is con
venient to additionally specify an action to take when
the process is restarted and some information to be
passed to that process from the one restart ing i t . The
funarg can be reinterpreted to provide these features.
The function component specifies the f i rs t module to
be run in a restarted process, and the arguments
(evaluated in the caller) provided to that function can
be used to pass information. Hence, a funarg can be
used as a complete process handle. It proves con
venient for a running process to be able to reference
its own process handle. To make this simple, we
adopt the convention that the global variable curproc
is kept updated to the current running process.

With this introduction, we now define the routines
start and resume, which allow control to pass among a
set of coordinated sequential processes, i .e. , co
routines, in which each maintains its own control and
access environment (with perhaps some sharing). A
coroutine system consists of n coroutines each of
which has a funarg handle on those other coroutines to
which it may transfer control. To initiate a process
represented by the funarg fp, use start (we use
brackets below to delimit comments):

start(fp.args) = curproc — fp;
[curproc is a global variable set to
the current process funarg] ;

envapply(second(fp),args,third(fp),third(fp))
Once the variable curproc is ini t ial ized, and any co
routine started, resume wi l l transfer control between
n coroutines. The control point saved is just outside
the resume, and the user specifies a function (backfn)
to be called when control returns, i . e . , the process is
resumed. This function is destructively inserted in
the funarg l is t . The args to this function are specified
by the coroutine transferr ing back to this point.
resume(fnarg,args,backfn) =

second(curproc) — backfn;
[save the specified backfn for a subsequent
resume back here]

setenv(third(curproc), 2);
[environment saved is the caller of resume]

curproc — fnarg;
[set up curproc for the coroutine to be
activated]

envapply(second(fnarg),args,third(fnarg),
th i rd (fnarg))

[activate the specified coroutine by applying
its backfn to args]

We call a funarg used in this way a process
funarg. The state of a "process" is updated by de
structively modifying a l ist to change i ts continuation
function, and s imi la r ly directly modifying its environ
ment descriptor in the l i s t . A pseudo-multiprocessing
capability can be added to the system using these
process funargs if each process takes responsibil ity
for requesting additional t ime for processing f rom a
supervisor or by explicit ly passing control as in
CONNIVER,18 A more automatic multiprocessing
control regime using interrupts is discussed later.

248

Back t rack ing is a technique by wh ich c e r t a i n en
v i r onmen ts a re saved before a funct ion r e t u r n , and
l a t e r r e s t o r e d i f needed. C o n t r o l i s r e s t o r e d in a
s t r i c t l y l as t saved, f i r s t r es to red o r d e r . As an ex
ample of i t s use , cons ider a funct ion which r e t u r n s
one (selected) va lue f r o m a set of computed va lues but
can e f fec t i ve ly r e t u r n an a l te rna t i ve se lec t ion i f the
f i r s t se lec t ion was inadequate. That i s , the cu r ren t
process can f a i l back to a p rev ious l y spec i f ied f a i l set
point and then redo the computat ion w i t h a new
se lec t ion . A sequence of d i f fe ren t se lect ions can lead
to a s tack of f a i l se t po in ts , and successive fa i l s can
r e s t a r t a t each in t u r n . Back t rack ing thus p rov ides a
way of doing a d e p t h - f i r s t search of a t r e e w i th r e t u r n
to prev ious b ranch po in ts .

We define f a i l and fa i l se t be low. We use
push (L ,a) wh ich adds a to the f ron t of L, and pop(L)
wh ich removes one element and r e t u r n s the f i r s t e l e
ment of L. F a i l i s t is the stack of f a i l se t po in ts . As
def ined be low , f a i l can reverse ce r ta in changes when
r e t u r n i n g to the prev ious fa i l se t point by exp l i c i t
d i r ec t i on a t the point o f f a i l u r e . (To au tomat i ca l l y u n
do ce r ta i n s ide ef fects and b ind ing changes, we could
def ine "undoab le " funct ions wh ich add to f a i l i s t f o r m s
whose evaluat ion w i l l reset approp r ia te c e l l s . F a i l
could then eval a l l f o r m s th rough the next ed and then
ca l l enveval .)

fa i l se t {) = push(fa i l i s t ,env i ron (2))
[2 means env i ronment outside fa i l se t]

fa i l (message) = enveva l (message, l i s t (pop(fa i l i s t)))

The funct ion se lec t defined below re tu rns the f i r s t
e lement of i ts a rgument set when f i r s t ca l l ed ; upon
subsequent f a i l s back to se lec t , successive e lements
f r o m set a re r e t u r n e d . I f set is exhausted, f a i l u r e is
propagated back. The code uses the fact that the b i n d
ing env i ronment saved by f a i l se t shares the va r i ab le
f i g w i t h the instance of select wh ich ca l ls f a i l se t . The
tes t o f f i g is reached in two ways : a f t e r a ca l l on f a i l -
set (in which case fig is fa lse) and a f t e r a f a i l u r e (in
wh ich case f i g i s t r u e) .

se lec t (se t ,undo l i s t) =
progt (f ig)

s1 : i f nu l l (se t) then fa i l (undo l is t) [leave here and
undo as spec i f ied]

f i g — false;
fai lsetOT
[f i g is t rue i f f we have fa i led to th is point ; then

set has been popped]
i f f i g then go(s l) ;
f i g — t r u e ;
returnTpop(set)) ;
end

Floyd,"7 Hewi t t ,9 and Golomb and B a u m e r t 8 have d i s
cussed uses f o r back t rack ing in p rob lem so l v i ng .
S u s s m a n l 8 has d iscussed a number of p rob lems w i t h
back t r ack i ng . In gene ra l , i t p roves to be too s imp le
a f o r m of sw i tch ing between env i ronmen ts . Use of the
m u l t i p l e process fea ture descr ibed above prov ides
much m o r e f l e x i b i l i t y .

5. Coord inated Sequential P rocesses

and P a r a l l e l P rocess ing

I t should be noted that in the mode l above, con t ro l
mus t be e x p l i c i t l y t r a n s f e r r e d f r o m one ac t ive en
v i r o n m e n t to another (by means o f enveval o r resume) .
We use the t e r m , coord inated sequent ia l p r o c e s s , to
desc r ibe such a con t ro l r e g i m e . T h e r e a re s i tuat ions
in wh ich a p rob lem statement is s i m p l i f i e d by tak ing a
qui te d i f fe ren t point of v iew - assuming p a r a l l e l (co-
opera t ing sequent ia l) processes which synchron ize only
when r e q u i r e d (e . g. , by means of D i j k s t r a ' s 4 P and V
opera t ions) . Us ing our coord inated sequent ia l p r o
cesses w i t h i n t e r r u p t s , we can define such a con t ro l
r e g i m e .

In our mode l o f env i ronment s t r u c t u r e s , the re is
a t r e e f o r m e d by the con t ro l l i n k s , a dendrarchy_ of
f r a m e s . One t e r m i n a l node is ma rked f o r ac t i v i t y by
the c u r r e n t con t ro l bubble (the point where the
language evaluator i s operat ing) . A l l o ther t e r m i n a l
nodes are re fe renced by env i ronment d e s c r i p t o r s or
by an access l i n k po in ter of a f rame in the t r e e . To
extend the model to mu l t i p l e p a r a l l e l processes in a
s ingle p rocesso r s y s t e m , k branches of the t r e e mus t
be s imu l taneous ly ma rked ac t i ve . Then the con t ro l
bubble of the p rocessor must be swi tched f r o m one
ac t i ve node to another accord ing to some schedul ing
a l g o r i t h m .

To imp lemen t cooperat ing sequent ia l processes in
our m o d e l , i t is s imp les t to th ink of ad jo in ing to the
set of processes a d is t inguished p rocess , PS , which
acts as a s u p e r v i s o r or mon i t o r . Th is m o n i t o r sched
u les processes f o r se rv ice and main ta ins severa l
p r i v i l eged data s t r uc tu res (e . g . , queues fo r sema
phores and ac t ive processes) . (A re la ted technique is
used by P rem ie r , 1 4)

The bas ic funct ions necessary to manipu la te
p a r a l l e l processes a l low process ac t i va t i on , s topp ing,
con t inu ing , synchron iza t ion and status que ry ing . In a
s ing le p rocesso r coord inated sequent ial p rocess
m o d e l , these can al l be defined by ca l l s (through
enveval) to the mon i t o r PS. Speci f icat ions f o r these
funct ions a r e ;

1) p rocess (fo rm ,apos , cpos) - - th is i s s i m i l a r to
enveval except that i t creates a new ac t ive p r o -
cess P ' f o r the evaluat ion of f o r m , and re tu rns
to the c rea t ing process a process d e s c r i p t o r (pd)
which acts as a handle on P ' .

In th i s m o d e l , the pd could be a po in ter to a l i s t wh ich
has been placed on a " r unnab le " queue in PS, and
wh ich is i n t e rp re ted by PS when the scheduler in PS
g ives th i s process a t i m e quantum. One element of
the process d e s c r i p t o r gives the status of the p r o c e s s ,
e . g . , RUNNING or STOPPED. P rocess is defined
us ing env i ron (to obtain an env i ronment d e s c r i p t o r
used as par t of the pd) and enveval (to ca l l PS),

2) stop(pd) — hal ts the execut ion of the process
spec i f ied by pd — PS removes the process f r o m
runnable queue. The value re tu rned is an ed of
the c u r r e n t env i ronment of pd.

3) continue(pd) -- r e tu rns pd to the runnable queues.

4) status(pd) — value is an ind icat ion of status of pd.

5) obta in(semaphore) — th i s D i j k s t r a P opera to r
t r a n s f e r s con t ro l to PS (by enveval) wh ich de
t e r m i n e s i f a resource i s ava i lab le (i . e , , s e m a
phore count pos i t i ve) . PS e i the r hands con t ro l
back to PI (w i th enveval) having decremented the
the semaphore count, or enters P1 on that sema
phore 's queue in PS's env i ronment and swi tches
con t ro l to a runnable p rocess .

6) re lease(semaphore) -- th is Dijkstra V operator
i n c remen ts the semaphore count; i f the count
goes pos i t i ve , one process is moved f r o m the
semaphore queue (i f any ex is t) onto the runnable
queue and the count is decremented . I t then
hands con t ro l back to the ca l l i ng p rocess .

We emphasize that these s ix funct ions can be de
f ined in t e r m s of the con t ro l p r i m i t i v e s of sect ion 3.

Schedul ing of runnable processes could be done by
having each process by agreement ask f o r a t i m e
r e s o u r c e , i . e . , ob ta in (t ime) , a t app rop r i a te i n t e r v a l s .
In th is schedul ing m o d e l , con t ro l never leaves a p r o
cess wi thout i t s knowledge, and the m o n i t o r s i m p l y
acts as a bookkeeping mechan i sm. A l t e r n a t i v e l y ,
o r d i n a r y t i m e - s h a r i n g among processes on a t i m e
quantum basis could be imp lemented th rough a t i m e r
i n t e r r u p t m e c h a n i s m . I n t e r r u p t s a re t rea ted as fo rced

249

calls to environ (to obtain an ed for the current state),
and then an enveval to the monitor process. The only
problem which must be handled by the system in forc
ing the call to environ is making sure the interrupted
process is in a clean state; that i s , one in which basic
communication assumptions about states of pointers,
queues, buffers, etc. are true (e . g . , no pointers in
machine registers which should be traced during gar
bage collection). This can be ensured if asynchronous
hardware interrupts perform only minimal necessary
operations, and set a software interrupt f lag. Soft
ware checks made before procedure cal ls, returns and
backward jumps within program w i l l ensure that a
timely response in a clean state w i l l occur.

The ed of the interrupted process is sufficient to
restart i t , and can be saved on the runnable queue
within a process descriptor. Because t imer inter
rupts are asynchronous with other processing in such
a simulated multiprocessor system, evaluation of
forms in the dynamic environment of another running
process cannot be done consistently; however, the ed
obtained from stopping a process provides a consistent
environment. Because of this interrupt asynchrony, in
order to ensure system integri ty, queue and sema
phore management must be uninterruptible, e . g . , at
the highest pr ior i ty level.

Obtaining a system of cooperating sequential pro
cesses as an extension of the pr imit ives has a number
of desirable attributes. Most important, perhaps, it
allows the scheduler to be defined by the user. When
parallel processes are used to realize a breadth-f irst
search of an or-graph, there is a significant issue of
how the competing processes are to be allotted t ime.
Provision for a user supplied scheduler establishes a
framework in which an intelligent allocation algorithm
can be employed.

Once a multi-process supervisor is defined, a
variety of additional control structures may be readily
created. As an example, consider multiple parallel
returns — the abil i ty to return from a single activation
of a module G several times with several (different)
values. For G to return to its caller with value given
by val and st i l l continue to run, G simply calls
process(val, 1,2). Then the current G and the new
process proceed in paral lel.

6. Conclusion

In providing linguistic facil i t ies more complex
than hierarchical control, a key problem is finding a
model that clearly exhibits the relation between pro
cesses, access modules, and their environment. This
paper has presented a model which is applicable to
languages as diverse as LISP, APL and P L / I and can
be used for the essential aspects of control and access
in each. The control primit ives provide a small basis
on which one can define almost a l l known regimes of
control.

Although not stressed in this paper, there is an
implementation for the model which is perfectly
general, yet for several subcases (e .g . , simple re
cursion and backtracking) this implementation is as
efficient as existing special techniques. The main
ideas of the implementation are as follows (cf. [2] for
details). The basic frame and frame extension are
treated as potentially discontiguous segments. When
a frame extension is to be used for running, it is
copied to an open stack end if not there already, so
that ordinary nested calls can use simple stack d isc i
pline for storage management. Reference counts are
combined with a count propagation technique to ensure
that only those frames are kept which are s t i l l in use.

Thus, the model provides both a linguistic frame-
work for expressing control regimes, and a practical
basis for an implementation. It is being incorporated
intoBBN-LISP.19

7. Acknowledgments

This work was supported in part by the Advanced
Research Projects Agency under Contracts DAHC 15-
71-00088 and F19628-68-0-0379, and by the U.S. A i r
Force Electronics Systems Division under Contract
F19628-71-C-0173. Daniel Bobrow was at Bolt
Beranek and Newman, Cambridge, Massachusetts,
when many of the ideas in this paper were f i rs t de
veloped.

References

[l] Bobrow, D . G . , "Requirements for Advanced
Programming Systems for List Processing,"
CACM, Vo l . 15, No. 6, June 1972.

[2l Bobrow, D.G. and Wegbreit, B. "A Model and
Stack Implementation of Multiple Environ
ments," BBN Report No. 2334, Cambridge,
Mass., March 1972, to appear in CACM.

[3] Burge, W.H. "Some Examples of the Use of
Function Producing Functions," Second Sym
posium on Symbolic and Algebraic Manipu
lat ion, AC:M, 1971.

[41 Di jks t ra , E.W. "Co-operating Sequential P ro
cesses," in Genuys (Ed.), Programming
Languages, Academic Press, 1967.

[5] Di jkst ra, E.W. "Recursive Programming,"
Numerische Mathematik 2 (I960), 312-318.
Also in Programming Systems and Languages,
S. Rosen (Ed.), McGraw-Hi l l , New York, 1967.

[6] Fenichel, R. "On Implementation of Label Var i
ables, CACM, Vol . 14, No. 5 (May 1971),
pp. 349-350.

[7] Floyd, R.W. "Non-determinist ic Algori thms,"
J_. ACM, 14 (October 1967), pp. 638-644.

[8t Golomb, S.W. and Baumert, L .D . "Backtrack
Programming," J. ACM, 12 (October 1965),
pp. 516-524.

[9! Hewitt, C. "PLANNER: A Language for Manipu
lating Models and Proving Theorems in a
Robot," in A r t i f i c ia l Intell igence,
Washington, D .C . , May 1969.

[10] Johnston, J . B . "The Contour Model of Block
Structured Processes," in Tou and Wegner,
Proc. Symposium on Data Structures in
Programming Languages. SIGPLAN Notices,
Vol. 6, No. 2, pp. 55-82.

[11] McCarthy, J . , et a l . Lisp 1. 5 Programmer's
Manual, T h e M . I . T . Press, Cambridge,
Massachusetts (1962).

[12] Moses, J. "The Function of FUNCTION in
LISP," SIGSAM Bul let in, No. 15, (July 1970),
pp. 13-27.

[13j Prenner, C , , Spitzen, J. and Wegbreit, B.
"An Implementation of Backtracking for Pro
gramming Languages," submitted for publi
cation, ACM-72.

[14J Prenner, C. "Mul t i -path Control Structures for
Programming Languages," Ph.D. Thesis,
Harvard Universi ty, May 1972.

[151 Quam, L. LISP 1. 6 Reference Manual, Stanford
AI Laboratory.

250

[16] Reynolds, J. "GEDANKEN - A Simple TypelesS
Language Based on the Principle of Complete
ness and the Reference Concept," CACM,
Vo l . 13, No. 5 (May 1970), pp. 308-319.

[17] Rulifson, J. et a l . " Q A 4 - A Language for
Writ ing Problem-Solving Programs," SRI
Technical Note 48, November 1970.

[18] Sussman, G.J. "Why Conniving is Better than
Planning," FJCC 1972, pp. 1171-1179.

[19] Teitelman, W. , Bobrow, D. , Murphy, D . , and
Hart ley, A. BBN-LISP Manual. BBN,
July 1971.

[20] Tou, J, andWegner, P. (Eds.), SIGFLAN
Notices — Proc. Symposium on Data
Structures in Programming languages.
Vol . 6, No. 2 (February 1971)

[2 l l van Wijngaarden, A. (Ed.). Report on the
Algorithmic Language ALGOL 68, MR 101,
Mathematisch Centrum, Amsterdam
(February 1969).

[22] Wegbreit, B, "Studies in Extensible Program
ming Languages" Ph.D. Thesis, Harvard
University, May 1970.

[23] Wegbreit, B, "The ECL Programming System,"
Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS
Press, Montvale, N . J . , pp. 253-262.

[24] Wegner, P. "Data Structure Models for Pro-
gramming Languages," in Tou and Wegner,
pp. 55-82.

[25] Weizenbaum, J. "The Funarg Problem
Explained," M . I . T . , Cambridge, Mass. ,
March 1968.

251

252

253

