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ABSTRACT 

A programming language is described which is designed to 
simplify the construction of computer programs to analyze 
English. This system attempts to merge the best features of 
pattern matchers and the phrase structure approach to 
language analysis. Several practival problems which occur in 
dealing with such a system are described. 

INTRODUCTION 

Why is it so difficult for machines to understand 
natural language? Perhaps it is because machines do not 
simulate sufficiently what humans do when humans process 
language. Several years of experience with computer science 
and linguistic approaches have taught us the scope and 
limitations of syntactic and semantic parsers.(Schank,Tesler and 
Weber,8 Simmons,9 Winograd,13 Woods1"). While extant 
linguistic parsers perform satisfactorily with carefully edited 
text sentences or with small dictionaries , they are unable to 
deal with everyday language behavior characteristic of human 
conversation. In a rationalistic quest for certainty and 
attracted by an analogy from the proof theory of logicians in 
which provability implied computability, computational linguists 
hoped to develop formalisms for natural language grammars. 
But the hope has not been realized and perhaps in principle 
cannot be. (It is difficult to formalize something which can 
hardly be formulated). 

Linguistic parsers use morphographemic analyses, 
parts-of-speech assignments and dictionaries containing 
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multiple word-senses each possessing semantic features, 
programs or rules for restricting word combinations. Such 
parsers perform a detailed analysis of every word, valiantly 
disambiguating at each step in an attempt to construct a 
meaningful interpretation. While It may be sophisticated 
computationally, a conventional parser is quite at a loss to 
deal with the caprice of ordinary conversation. In everyday 
discourse people speak colloquially and idiomatically using all 
sorts of pat phrases, slang and cliches. The number of 
special-case expressions is indefinitely large. Humans are 
cryptic and elliptic. They lard even their written expressions 
with meaningless fillers and fragments.They convey their 
intentions and ideas in idiosyncratic and metaphorical ways, 
blithely violating rules of 'correct' grammar and syntax. Given 
these difficulties, how is it that people carry on conversations 
easily most of the time while machines thus far have found it 
extremely difficult to continue to make appropriate replies 
indicating some degree of understanding? 

It seems that people 'get the message1 without 
always analyzing every single word in the input. They even 
ignore some of its terms. People make individualistic and 
idiosyncratic selections from highly redundant and repetitious 
communications. These personal selective operations, based 
on idiosyncratic intentions, produce a transformation of the 
input by destroying and even distorting information. In speed 
reading, for example, only a small percentage of contentive 
words on each page need be looked at. These words 
somehow resonate with the readers relevant conceptual-
belief structure whose processes enable him to 'understand1 

not simply the language but all sorts of unmentioned aspects 
about the situations and events being referred to in the 
language. Normal written English text is estimated to be 5/6 
redundant (Rubenstein and Haberstroh7). Spoken 
conversations in English are prooably better than 507. 
redundant(Carroll'). Words can be garbled and listeners 
nonetheless get the gist or drift of what is being said. They 
see the "pattern" and thus can supply much of what is missing 

To approximate such human achievements we 
require a new perspective and a practical method which 
differs from that of current linguistic approaches. This 
alternate approach should incorporate those aspects of 
parsers which have been found to work well, e.g., detecting 
embedded clauses. Also individualistic features characteristic 
of an idiolect should have dominant emphasis. Parsers 
represent complex and refined algorithms. While on one hand 
they subject a sentence to a detailed and sometimes 
overkilling analysis, on the' other, they are finicky and 
oversensitive. A conventional parser may simply halt if a 
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word in the input sentence is not present in its dictionary. It 
finds ungrammatical expressions such as double prepositions 
('Do you want to get out of from the hospital?') quite 
confusing. Parsers constitute a tight conjunction of tests 
rather than a loose disjunction. A6 more and more tests are 
added to the conjunction, the parser behaves like a finer and 
finer filter which makes it increasingly difficult for an 
expression to pass through. Parsers do not allow for the 
exclusions typical of everyday human dialogues. 

Finally, it is difficult to keep consistent a dictionary 
of over 500 multiple-sense words classified by binary 
semantic features or rules. For example, suppose a noun (Ni) 
is used by some verbs as a direct object in the semantic 
sense of a physical object. Then it is noticed that Ni is also 
used by other verbs in the sense of a location so 'location1 is 
added to Ni's list of semantic features. Now Ni suddenly 
qualifies as a direct object for a lot of other verbs. But some 
of the resultant combinations make no sense even in an 
idiolect. If a special feature is then created for Ni, then one 
loses the power of general classes of semantic features. 
Adding a single semantic feature can result in the propagation 
of hidden inconsistencies and unwanted side-effect., as the 
dictionary grows it becomes increasingly unstable and difficult 
to control. 

Early attempts to develop a pattern-matching 
approach using special-purpose heuristics have been 
described by Colby, Watt and Gilbert,2 Weizenbaum" and 
Colby and Enea.3 The limitations of these attempts are well 
known to workers in artificial intelligence. The man-machine 
conversations of such programs soon becomes impoverished 
and boring. Such primitive context-restricted programs often 
grasp a topic well enough but too often do not understand 
quite what is being said about the topic, with amusing or 
disastrous consequences. This shortcoming is a consequence of 
the limitations of a pattern- matching approach lacking a rich 
conceptual structure into which the pattern abstracted from 
the input can be matched for inferencing. These programs 
also lack a subroutine structure, both pattern directed and 
specific, desirable for generalizations and further analysis. 

The strength of these pattern matching approaches 
lies in their ability to ignore some of the input. They look for 
patterns, which means the emphasis of some detail to the 
exclusion of other detail. Thus they can get something out of 
nearly every sentence-- sometimes more, sometimes less. 

An interesting pattern-matching approach for 
machine translation has been developed by Wilks.12 His 
program constructs a pattern from English text input which is 
matched against templates in an interlingual data base from 
which,in turn, French output is generated without using a 
generative grammar. 

In the course of constructing an interactive 
simulation of paranoia we were faced with the problem of 
dealing with unedited and unrestricted natural language as it is 
used in the doctor-patient situation of a psychiatric 

interview.(Colby, Hilf, Weber, and Kraemer," Colby and Hilf5). 
This domain of discourse admittedly contains many-
psychiatricelly stereotyped expressions and is constrained in 
topics (Newton's laws are rarely discussed). But it is rich 
enough in verbal behavior to be a challenge to a language 
understanding algorithm since a variety of human experiences 
are discussed domain including the interpersonal relation which 
develops between the interview participants, A look at the 
contents of a thesaurus reveals that words relating to people 
and their interrelations make up roughly 707 of English words. 

The diagnosis of paranoia is made by psychiatrists 
relying mainly on the verbal behavior of the interviewed 
patient. If a paranoid model is to exhibit paranoid behavior in 
a psychiatric interview, it must be capable of handling 
dialogues typical of the doctor-patient context. Since the 
model can communicate only through teletyped messages.the 
vis-a-vis aspects of the usual psychiatric interview are 
absent. Therefore the model must be able to deal with 
unedited typewritten natural language input and to output 
replies which are indicative of an underlying paranoid thought 
process during the episode of a psychiatric interview. 

In an interview there is always a who saying 
something to a whom with definite intentions and expectations. 
There are two situations to be taken into account, the one 
being talked about and the one the participants are in. 
Sometimes the latter becomes the former. Participants in 
dialogues have intentions and dialogue algorithms must take 
this into account. The doctor's intention is to gather certain 
kinds of information while the patient's intention is to give 
information and get help. A job is to be done; it is not small 
talk. Our working hypothesis is that each participant in the 
dialogue understands the other by matching selected 
idiosyncratically- significant patterns in the input against 
conceptual patterns which contain information about the 
situation or event being described linguistically. This 
understanding is communicated reciprocally by linguistic 
responses judged appropriate to the intentions and 
expectations of the participants and to the requirements of 
the situation. In this paper we shall describe only our current 
input-analyzing processes used to extract a pattern from 
natural language input. In a later communication we shall 
describe the inferential processes carried out at the 
conceptual level once a pattern has been received by memory 
from the input-analysing processes. 

Studies of our 1971 model of paranoia (PARRY) 
indicated that about thirty percent of the sentences were not 
understood at all , that is, no concept in the sentence was 
recosnized. in a somewhat larger number of cases some 
concepts, but not all, were recognized. In many cases these 
partially recognized sentences lead to a partial understanding 
that was sufficient to gather the intention of the speaker end 
thus lead to output an appropriate response. However, 
misunderstandings occurred too often. For example: 
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DOCTOR: How o l d is your mother ? 

PARRY: Twen ty -e i gh t 

PARRY has interpreted the question as referring to his own 
age and answered by giving his age. The purpose of our new 
language analysis system is to significantly raise the level of 
understanding by preventing such misunderstandings while not 
restricting what can be said to PARRY. We do not expect 
complete under- standing from this system ~ even native 
speakers of the language do not completely understand the 
language. 

By 'understanding we mean me system can do some 
or all of the following: 

1) Determine the intention of the 
interviewer in making a particular 
utterance. 

2) Make common logical deductions that 
follow from the interviewers utterance 

3) Form an idioletic internal representation 
of the utterance so that questions may be 
answered, commands carried out, or data 
added to memory. 

4} Determine references for pronouns, and 
other anaphora. 

5) Deduce the tone of the utterance,!.e., 
hostile, insulting... 

6) Classify the input as a question, 
rejoinder.command,... 

The approach we are taking consists of merging the 
best features of pattern directed systems such as the MAD 
DOCTOR,2 ELIZA" and parsing directed systems for example, 
Winograd,13 Woods.14. By merging the BNF phrase structure 
approach ot analyzing English with the pattern matching 
approach, with its attendant emphasis of some concepts to the 
exclusion of others. The programs to accomplish this are 
written in ML1SP2, an extensible version of the programming 
language ML[$P,5,10 and uses an interpreted version of the 
pattern matcher designed for a new programming language 
LISP 70. 

The following is a basic description of the pattern 
matcher. We shall illustrate its operation using examples of 
problems common to teletyped psychiatric dialogues. 

PATTERN MATCHING 

Pattern directed computation involves two kind of 
operations on data structures: decomposition and 
recomposition. Decomposition breaks down an input stream 
into components under the direction of a decompostion pattern 

("dec"). The inverse operation, recomposition, constructs an 
output stream under the direction of a recomposition pattern 
("rec"). 

A rewrite rule is of the form; 

dec --> r e c 

It defines a partial function on streams as follows: if the input 
stream matches the dec, then the output stream Is generated 
by the rec. The following rule (given as an example only) 
could be part of a question answering function: 

How a r e you ? -» Very we l l and you ? 

If the input stream consists of the four tokens: 

How a re you ? 

the output stream will consist of the five tokens: 

Very w e I I and you ? 

REWRITE FUNCTIONS 

A rewrite rule defines a partial function, for 
example, the mapping of some particular token into some 
other particular token. A broader partial function can be 
defined as the union of several rewrite rules. A rewrite 
function definition is of the form: 

RULES OF <name> -
decl -* r e e l , 
dec2 -» rec2 , 

decn -» r e c n ; 

VARIABLES 

A function is difficult to define if every case must 
be enumerated. Therefore, rewrite rules allow variables to 
appear in patterns. The value of a variable can be either a 
list or an atom. In this paper the notation: 

:X 

where X ia any identifier, will denote the variable X. The 
variables of each rule are distinct from the variables of all 
other rules, even if their names are the same. 

The following definition has only ihree rewrite rules, 
but handles an unlimrted number of input streams: 
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The surrounding a pattern means that the current input 
stream is to be pushed down, that the function indicated by 
the first token within the brackets is to be entered with the 
rest of the pattern appended to the front of the input stream, 
and that the output stream is to be placed into the restored 
current input stream. Note that MLISP2 functions may be 
called as well as rewrite functions. 

GOALS 

To gain the advantage of goal directed pattern 
matching and computing, as well as the full power of context 
sensitive grammars, the following form may be used: 

The identifer between the angled brackets names a 
rewrite function the rules of which are to be matched against 
the input stream. When a match occurs the output stream of 
the goal will be bound to the associated variable. Example; 

OPTIONALS 

Many other shorthands exist to simplify writing 
rules. One useful feature that will be mentioned here is the 
optional. 

RULES OF AUXILARY_PHRASE -
<AUXlLARY>iA [<NEGATIVE>:N3 N1 

(AUX_PH :A [:"N):Nl >: 

If the optional pattern, enclosed in square brackets {"[]"), 

occurs in the input stream it will be bound to :N. :N1 will be 
bound to 2. If the <NEGATIVE> does not occur, :N1 will be 
bound to 1. On the rec side of the rules if :Nl is 2 then :N will 
be placed in the output stream. If it is 1 then nothing is 
placed in the output stream at that point. Example, given the 
rule above: 

MORE EXAMPLES 

We have collected a large number of dialogues using 
our previous program PARRY. These dialogues form a large 
body of examples of the kind of English which we can expect. 
Martin Frost, a graduate student in Computer Science, 

.Stanford University, has written a keyword in context 
program which enables us to isolate examples centered on 
particular words so that uses of thoses words in context 
become more apparent. Our general approach is to build a 
system which can produce desired intreptations from these 
examples and to incrementally add to the rules in the system 
as new cases are discovered during the running of the 
program. 

Following are some examples of commonly occuring 
situations and examples of the kind of rules we use to handle 
them. 

Although it is conceivable that there are an infinite 
number of ways to introduce a question in this manner, we 
have found only about six literal strings are actually used in 
our data base of dialogues. When we discover a new string 
we incrementally add a rule. When we have enough examples 
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to dectect a more genera) farm we replace the rules for 
<QUESTIONJNTR0DUCER> by a more elegant and general 
formulation. This approach allows us to process dialogues 
before we have a complete analysis of all possible sentence 
constructions, and it allows us to build a language analyzer 
based on actually occurring forms. 

Notice that it is possible to make more than one 
analysis of any given sentence depending on what is being 
looked for. A poet might be interested in the number of 
syllables per word and. the patterns of stress. A "full" 
analysis of English must allow for this possibility, but it it 
clearly foolish to produce this kind of analysis for PARRY. Our 
analysis will be partial and idiosyncratic to the needs of our 
program. This is what is meant by idiolectic. 

F I L L E R S 

it is quite common for interviewers to introduce 
words of fitt le significance to PARRY into the sentence. For 
example: 

HELL, WHAT IS YOUR NAHE? 

The "we l l " in this sentence serves no purpose in PARRY'S 
analysis, although it might to a linguist interested in hesitation 
phenomena. These fillers can be ignored The following rules 
accomplish this: 

RULES OF SENTENCE -
<F]LLERS>;F <SENTENCE>:S - :S; 

RULES OF FILLERS -
WELL - , 
OK - ; 

PUNCTUATION 

Interviewers use little intra-sentence punctuation in 
talking to PARRY. When it is used it is often to seperate 
phrases that might otherwise be ambiguous. Example: 

WHY WEREN'T YOU VERY CLOSE, FRANK 

Here the comma clearly puts "CLOSE" in a different phrase 
from "FRANK". Punctuation, when used in PARRY'S rules, is 
generally enclosed in optional brackets ("[]"). This has the 
effect of separating phrases when punctuation is used, but not 
requiring full punctuation for the system to work, Example; 

RULES OF SENTENCE -
<SENTENCE>:S1 C.JtC <SENTENCE_CONNECTOR>:SC 

<SENTENCE>:S2 
- (CONUNCTION SC :S1 :S2)| 

CLICHES AND IDIOMS 

The English we encounter in doctor-patient 

dialogues is made up of a great number of cliches and idioms, 
therefore we anticipate a large number of rules devoted to 
them. For example: 

RULES OF TIME_PHRASES -
A COUPLE OF <TIME_UNIT>;T AGO 
* (TIHE (RELATIVE PAST)(REF PRESENT) :T); 

RULES OF TINE_UN1T -
SECONDS - WITHIN CONVERSATION), 
MOMENTS - WITHIN CONVERSATION), 
DAYS - (BEFORE CONVERSATION DAYS): 

REPRESENTATION CORRECTION 

Intermediate results are often produced which are 
misleading in meaning or are in the wrong form for further 
processing. We, therefore, incorporate at various points rules 
which detect certain undesired intermediate results and 
convert them to the desired form. Example: 

RULES OF CORRECT FORM -
(QUESTION . . . (SENTENCE . . , ) ) -

(QUESTION ): 

U N K N O W N WORDS 

Rules can be derived to handle words which were 
previously unknown to the system. For example: 

RULES OF UNKNOWN_WORD -
OR'. )X - <NEW_W0RD NAME :X>, 
THE :X <VERB_PHRASE>:Y * 

<NEU_U0RD NOUN :X>, 
I :X YOU -» <NBJ_U0R0 VERB :X>i 

Here "NEW_WORD" is a function which adds new words to the 
dictionary. 

CONCLUSION 

We are faced with the problems of natural language 
being used to interview people in a doctor-patient context. 
We have developed a language processing system which we 
believe is capable of performing in these interviews at a 
significantly improved level of performance compared to 
systems used in the past. We have developed techniques 
which can measure performance in comparison with the ideal 
of a real human patient in the same context,"'5,7 We are 
designing our system with the realization that a long period of 
development is necessary to reach desired levels of 
performance, This is a system that can work at a measured 
level of performance and be improved over time with new 
rules having minimum interaction with those already existing. 
Our system is designed so that a complete analysis of every 
word or phrase of an utterance is not neceesary. 

The basis of this system is a rewrite interpreter 
which will automatically merge new rules into the set of 
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already existing rules so that the system will continue to 
handle sentences which It handled in the past. 
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ABSTRACT 

We have constructed a deductive question answer­
i ng system which accepts natura l language input in 
Japanese. The semantic trees of aseert ional input 
sentences are stored in a semantic network and i n t e r ­
re la t i onsh ips —cond i t i ona l , imp l i ca t i ona l , and so 
f o r t h — are establ ished among them. A matching rou t ­
ine looks for the semantic trees which have some r e l a ­
t i ons to a query, and returns the mismatch in format ion 
(d i f fe rence) to a deduction rou t i ne . The deduction 
rout ine produces sub-goals to diminish t h i s d i f fe rence . 
This process takes place recurs ive ly u n t i l the d i f f e r ­
ence is completely resolved (success), or there is no 
other p o s s i b i l i t y of matching in the semantic network 
( f a i l u r e ) . Standard problem so lv ing techniques are 
used in t h i s process. As the resu l t the system is 
very powerful in handl ing deductive responses. In 
t h i s paper only the part of the l o g i c a l deduction is 
explained i n d e t a i l . 

DESCRIPTIVE TERNS: quest ion answering, deduction, 
natura l language, semantic network, problem so l v i ng . 

I INTRODUCTION 

There are a few deductive question answering systems 
using na tura l language, almost a l l of which use l o g i c a l 
expressions, espec ia l ly the f i r s t order predicate c a l ­
culus expression, as an intermediate language. How­
ever systems which use formal log ics have problems: 
(1) Syntact ic and semantic analyses of natura l language 

input are necessary to transform the input to l o g i ­
cal expression wi thout ambiguity. 

(2) The axiom set must be c lea r l y defined and must not 
be con t rad ic to ry . 

(5) Predicates and var iab les must be f ixed beforehand. 
This is a problem for the system's expansion. 
Also t h i s prevents mixing the f i r s t and higher 
order predicate calculus systems. 

(4) Deduction using the reso lu t ion p r inc ip le is cumber­
some. Usually quest ion answering does not require 
a deep deductive process. 

(5) Good qua l i t y of na tura l language output is very . 
hard to obta in from a l og i ca l expression. 

To avoid the above problems we have used a k ind of 
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semantic representat ion of natura l language sentences 
as an intermediate expression. pur systern has the 
fo l l ow ing charac te r i s t i c features. 
(1) The question answering system is a composite of sub­

systems for language ana lys is , deduction, and l ang ­
uage generat ion. 

(2) The parsed trees of sentences are permitted to have 
some ambigui t ies . Ambiguit ies are resolved in the 
process of l o g i c a l deduction, 

(3) During the question answering process, the deduction 
a b i l i t y is increased and the area which the system 
can deal w i th is also expanded. The deduction 
a b i l i t y of a system depends on how many theorems 
the system can use, and on how e f f i c i e n t l y it can 
deal wi th them. We have constructed a system in 
which the avai lab le theorems increase during the 
question answering process. 

(4) Facts can play the ro le of theorems. We th ink the 
d i s t i n c t i o n between facts and theorems is not clear 
enough. A statement can be used as a theorem at 
one time and as a fac t at another t ime. For 
example, 

A human is an i n t e l l i g e n t animal, 
plays the ro le of a theorem to answer 

Is Smith i n t e l l i g e n t ? 
because Smith is an instance of a var iable 'human'. 
On the contrary it plays the ro le of a fac t to the 
question 

Is a man an animal ? 
because 'a human' is t reated as an instance of a 
var iable 'man'. 
In our system the assert ions given by a user, which 
correspond to facts in usual systems, can play the 
ro le of theorems. This is accomplished by a l lowing 
a higher concept term to be a var iable to i t s lower 
concept term. There is no d i s t i n c t i o n between 
them, and both facts and theorems have the same 
s t ruc tures in the data base. This is the most 
s i g n i f i c a n t character of the system we have develop­
ed. 

(5) In order to deal w i th a large data base, the system 
has a wel l organized data s t ructure and relevant 
in format ion to a question is accessed by a t echn i ­
que of indexing and r e t r i e v a l , 

(6) The deduction process is s im i l a r to that of humans. 
I t al lows in t roduc ing many heur i s t i cs i n t o the 
deduction process. 

In t h i s paper the de ta i l s of deduction subsystem alone 
are explained. The other two subsystems w i l l be 
published elsewhere in the near fu tu re , 

II SYSTEM ORGANIZATION 

A block diagram of our system is shown in F i g . 1. 
The i n te rna l data base of the system is d iv ided i n t o 
two par ts : 
( 1 ; semantic representat ions (semantic t rees) of input 

sentences. 
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(2) network (mutual connection) of ( 1 ) . 
The mutual connection consis ts of i n t e r r e l a t i o n s h i p s 
such as cond i t i ona l , i m p l i c a t i o n a l , and so f o r t h . An 
input sentence is analyzed i n t o a semantic t r e e , and i t 
i s read i n t o the semantic network i f i t i s an asser t ion 
and is not in the network y e t . Thus knowledge accumu-
la tes in a very na tura l way in the question answering 
process. An inver ted f i l e of keywords makes i t easy 
to ex t rac t in format ion re levant to the quest ion. 

The parsing rout ine performs syntact ic and seman­
t i c analyses of an input query sentence, and produces 
the parse t r e e . A network admin is t ra t ion rout ine 
accepts the t ree and re l a tes i t to the semantic network 
which contains sentences already accepted. 

To accomplish a deduct ion, there are two main 
par ts : the execution rout ine and the deduction r o u t i n e . 
The execution rou t i ne , which plays the cen t ra l r o l e in 
the deduction process, searches through the network for 
sentences re levant to the current goal and matches them 
one by one against i t . The deduction rou t ine manages 
the g lobal in format ion in the problem so lv ing process 
such as goal-subgoal re la t i onsh ips , var iab le bindings 
( f o r example the word 'man' is bound to the word 
•Smi th ' ) , and so f o r t h . This rout ine also d i rec ts the 
execution rout ine to determine which sentence must be 
v e r i f i e d f i r s t . 

IIl KNOWLEDGE STRUCTURE 

3.1 Semantic Trees. 

We have appl ied a k ind of dependency analys is to 
the input Japanese sentences. A noun modif ied by an 
ad jec t i ve is transformed i n t o a kernel sentence having 
another kernel sentence re la ted to the noun. The 
sentence 

KINBEN MA WITO WA SEIKO SURU 
( A d i l i g e n t man w i l l succeed.) 

is d iv ided i n t o two sentences l i k e 
HITO WA SEIKO SURU 

( A man w i l l Bucceed.) 
and 

HITO WA KINBEN DA 
( A man is d i l i g e n t . ) 

The parsed t ree s t fueture of t h i s sentence is shown in 
Fig. 2. 

Some sentences in Japanese have two possible sub­
j e c t phrases, that i s , one which contains the reference 
p a r t i c l e 'GA' and the other which contains 'WA*. We 
consider the r e l a t i o n a l phrase w i t h the p a r t i c l e 'WA' as 
i nd i ca t i ng what the sentence t a l ks about; the phrase 
wi th 'GA' is the subject phrase corresponding to the 
predicate in the sentence. 

ZO WA HANA GA NAGAI 
( Elephant has a long nose.) 

i s a t y p i c a l example. I t s l i t e r a l t r a n s l a t i o n i s 
" As for elephant the nose is l o n g . " The t ree s t r uc ­
ture of i t is shown in F i g , 3. 

Sentences connected by AND or OK are represented in 
the tree s t ruc ture as shown in F i g . 4. 

A sentence which contains upper concept terms 
replaceable by t h e i r lower concept terms is considered 
as a theorem avai lab le to prove a statement which has 
the lower concept terms in i t . So upper-lower concept 
r e l a t i onsh ip among words plays an important ro le in our 
system. The input sentence in the form of " A WA B DA" 
meaning A is a lower concept of B, and B is an upper 
concept of A, has a spec ia l s t ruc ture to express the 
re l a t i onsh ip c l e a r l y . " NINGEN WA KASHIKOI DOBUTSU DA" 
( A man is an i n t e l l i g e n t an imal . ) is parsed as shown in 
F i g . 5. 

Proper t ies of sentences are attached to the top 
node of the parsed tree s t r u c t u r e . The proper t ies we 
t reated are p o t e n t i a l , a c t i v e , passive, sub jenct ive , 
tense, and so f o r t h . The asser t ion sentence is regard­
ed as t r ue , so that a s ign T is given to the property 
par t of the parsed t r e e . The signs F and U in the 
property par t ind icate fa lse and undetermined respect­
i v e l y . 

3.2 Semantic Network. 
The network is constructed in the fo l l ow ing way. 

(1) In the case of an asser t ion sentence S„ , i t is s t o r ­
ed in the form shown in F i g . 6a. 1'. 
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{1) Branches in the network and t rees are b i - d i r e c t i o n ­
a l fo r f l e x i b l e t ransformat ion and fo r e f f i c i e n t 
search in the deduction process. 

(2) Words are not stored in nodes of the parsed t rees 
but by a pointer to the l e x i c a l entry of the word 
( F i g . 7 ) . 

( 3 ) The l e x i c a l e n t r y o f a w o r d , c a l l e d NLIST, c o n t a i n s 
n o t o n l y l e x i c a l i n f o r m a t i o n abou t the wo rd , b u t 
a l s o a l i s t o f sen tences ( p o i n t e r s t o the e n t r i e s 
o f t he sen tences i n SLIST) wh ich c o n t a i n s t h e wo rd . 
NLIST i s a k i n d o f i n v e r t e d f i l e o f keywords . 

CO The node of the network is i n d i c a t e d by a p o i n t e r 
f rom a t a b l e , c a l l e d SLIST, wh ich c o n t a i n s i n f o r m a ­
t i o n abou t the s e n t e n c e . The i n f o r m a t i o n o f 
whether t he sentence i s t r u e ( T ) , f a l s e ( P ) , o r u n ­
de te rm ined ( U ) , and s o f o r t h i s s t o r e d i n t h i s l i s t . 

(5 ) D i f f e r e n t nodes i n t he ne twork co r respond t o d i f ­
f e r e n t s e n t e n c e s . As a r e s u l t , i n f o r m a t i o n about 
a sen tence can be r e t r i e v e d f rom a s i n g l e node in 
t he n e t w o r k . 

IV EXECUTION ROUTINE 

Among many i n t e l l e c t u a l a b i l i t i e s of humans, we 
have implemented i n t h i s s t u d y the d e d u c t i o n a b i l i t y 
baaed on the use o f " the law o f s u b s t i t u t i o n ' and ' t h e 
law o f i m p l i c a t i o n . ' T h i s i s r e a l i z e d b y t he e x e c u t i o n 
r o u t i n e and the d e d u c t i o n r o u t i n e . The e x e c u t i o n 
r o u t i n e t r i e s t o match a sen tence s t r u c t u r e a g a i n s t 
a n o t h e r one, r e g a r d i n g an upper concep t as a v a r i a b l e 
over i t s l owe r c o n c e p t s . The d e d u c t i o n r o u t i n e p r o ­
duces subgoa ls and t e l l s t he e x e c u t i o n r o u t i n e wh ich 
sentence must b e v e r i f i e d f i r s t . The e x e c u t i o n r o u t i n e 
searches t h r o u g h the network f o r t he sen tences wh ich 
are e q u i v a l e n t t o the g o a l sen tence g i v e n by t he deduc­
t i o n r o u t i n e . I t c o n s i s t s o f t h r e e main p a r t s : keyword 
s e a r c h , m a t c h i n g , and r e s o l v i n g d i f f e r e n c e s . 

4.1 Keyword Sea rch . 

The system has a n i n v e r t e d f i l e o f words c a l l e d 
NLIST. B y u s i n g t h i s f i l e , the e x e c u t i o n r o u t i n e t akes 
out t he sen tences wh ich c o n t a i n words i n the g o a l s e n t ­
ence . These s e l e c t e d sen tences a r e presumed to be 
r e l e v a n t t o the c u r r e n t s e n t e n c e . 
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(2) In the case of a negation sentence, schematical ly 
w r i t t e n as 'not S2 i t is stored in the same form 
ae F i g . 6a, but the property par t is w r i t t e n as F. 

(3) I f a sentence i s - I f s 1 , then S . ' , i t i s stored 
in the form shown in F ig . 6b. 

(4) I f a sentence is 'Because S1 , S2 . i t is stored 
in the form shown in F i g . 6c. 

(5) I f the sentences S1 and S2 in <1)--(4) are found in 
the semantic network, they are not stored newly, 
but the stored ones are used. For example the 
fo l lowing sentences are stored in the network as 
shown in F i g . 6d. 

Because S 1 , S2. 

I f S1 , then S 3 . 

In t h i s case because S1 is asserted as t r ue , S3 is also 
t r u e . 5 

The network and parsed trees have the fo l lowing 
i n t e rna l const ruc t ions. 



4.2 Hatching Method 
The matching a lgor i thm is constructed so tha t two 

parsed t rees which are d i f f e r e n t in the sequence of 
branches <F ig . 8) w i l l be matched successfu l ly by the 
branch l abe l s on the parsed t rees . Matching between 
two parsed t rees f a i l s f o r var ious reasons. The 
causes of mismatch, named d i f fe rences , are c l a s s i f i e d 
i n t o the fo l l ow ing four c lasses. 
(1) N-d i f ference: The words which are attached to the 

corresponding node are d i f f e r e n t in the two sent ­
ences. F i g . 9a shows an example, where the d i f ­
ference is expressed as (N (*C * D ) ) . *C shows the 
po in ter to the node C. 

(2) S1-d i f ferenee: One s t ruc ture ( f i r s t argument) has 
ext ra branches which the other does not have. 
F i g . 9b shows an example of t h i s category, abbre­
v ia ted as CS1 ((*R4) -B ) ) , which shows the branch 
R4 is the ext ra one. 

(3) S2-d i f ference: One s t ructure (second argument) has 
ex t ra branches. F i g . 9c is an example and t h i s 
d i f ference is shown by (s2 (*C ( *R5) ) ) . 

(4) SO-dif ference: Both s t ruc tures have ex t ra branches. 
An example is shown is F i g . 9d. 
The matching subroutine t r i e s to match i t s f i r s t 

argument against i t s second one. I f the matching 
succeeds, the subroutine returns 'success' to the ded­
uc t i on r o u t i n e . I f no t , i t re turns the d i f fe rences . 

(N CC 'D) ) 

(S1 ((•R4) 'B ) ) 
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F ig . 11 is an example. If the matching succeeds, the 
two s t ruc tu res , S-st ructure and T-s t ruc tu re , are equ i ­
valent and the d i f ference is resolved. 

V DEDUCTION ROUTINE 

The deduction rout ine cont ro ls the whole of the 
deduction process. This rout ine has a g lobal know­
ledge of the process. This knowledge contains the 
goal-subgoal o rgan iza t ion , var iab le binding and so f o r t h , 
The deduction rout ine t e l l s the execution rout ine which 
sentence must be v e r i f i e d and which sentence, if the 
f i r s t t r i a l f a i l s , has to be v e r i f i e d next. 

5.1 Goal Organizat ion 

The deduction method in our system takes a ques­
t i o n Q as a .goal and t r i e s to v e r i f y it by means of 
matching i t wi th the sentences stored in the network. 
I f the t r i a l f a i l s , the deduction rout ine searches 
through the network for such sentences as P-*Q. 
Those sentences P's, if any, are considered as subgoals 
to accomplish the previous goa l . In the same manner 
sub-subgoals are produced to accomplish the subgoals. 
As the process advances, many goals are produced h i e r ­
a r c h i c a l l y . An AND-OR tree s t ructure is used to 
remember the h i e r a r c h i c a l l y organized re la t ionsh ips 
among goals . 

Subgoals are created in var ious cases. 
(1) If a goal sentence G can not be determined to be 

true or f a l s e , subgoals are created by means of 
searching through the network for the sentences 
which are antecedents of G. 

(2) In the same case of ( 1 ) , the negations of conseque­
nces of G are taken as subgoals. If they are 
proved to be t r ue , the sentence G is determined to 
be f a l s e . 

(3) I f the matching between two parsed t rees is i n ­
complete, subgoals to diminish the mismatches are 
created. 
In add i t i on to these cases, subgoals are also 

produced when a goal is div ided i n t o several subgoals. 
For example 'KARE WA KINBEN DE SHOJIKI DA' (He is 
d i l i g e n t and honest) is div ided i n to 'KARE WA KINBEN 
DA' (He is d i l i g e n t ) , and 'KARE WA SHOJIKI DA' (He is 
honest) . 

The goals are t r i e d one by one, and when there 
remains no goa l , the deduction process stops wi th a 
f a i l u r e message. A goal which has several subgoals 
w i l l succeed or not , depending upon whether the sub-
goals w i l l succeed or not . A goal keeps some i n f o r ­
mation for i t s e l f . For example i t has the in format ion 
of whether it is an AND-type or an OR-type. Depth of 
goal shows the depth between the top-goal ( tha t i s , a 
quest ion given by a user) and the present goa l . The 
depth of the top-goal is 0 and the depth of the immed­
ia te subgoal i s 1 . 

The deduction rout ine chooses a goa l , the depth 
of which is the smal lest of a l l , and t e l l s the execu­
t i on rout ine to v e r i f y i t . The ind ica to rs such as 
KOTEI (pos i t i ve asse r t i on ) , HITEI (negative asser t i on ) , 
MATCH ( to be matched) and so f o r t h show the e f fec ts of 
the goa ls ' r e s u l t s to be t ransfer red to t h e i r previous 
goals. KOTEI (HITEI) shows that if t h i s goal succeeds, 
the sentence corresponding to i t s previous goal is 
proved to be true ( f a l s e ) . The subgoals which are 
produced in order to resolve the mismatch between two 
parsed t rees have the ind ica to r MATCH. 

5.2 Variable Bind ing. 

To use the law of s u b s t i t u t i o n is one of most 
important a b i l i t i e s i n t h i s system. This i s car r ied 
out by consider ing an upper concept as a var iab le over 
i t s lower concepts. A word behaves as a constant when 
it is a lower concept of another word, and as a v a r i ­
able when it is an upper concept of another word. 
We do not int roduce unary predicates such as'human(x) ' , 

' a n l m a l ( x ) ' , which are usual ly used in the predicate 
calculus system in order to r e s t r i c t the range of v a r i ­
ables. 

We regard a l l words as var iab les which have t h e i r 
own domains of values. We i l l u s t r a t e t h i s by the 
fo l low ing example. 
(1) HITO GA KENKO NARA-BA HITO WA SEIKO SURU 

( I f a man is heal thy, the man w i l l succeed.) 
(Q) Smith WA SEIKO SURU KA ? 

(Wi l l Smith succeed ?) 
The system searches through the network to f i nd out the 
sentence (1) which is expected to answer the given ques­
t i o n . The matching between the consequent part of (1) 
and the question f a i l s at f i r s t . The cause of mismatch 
is N d i f ference between 'Smith* and 'HITO (man)' . N 
rout ine is ca l led to f ind out that HITO is an upper 
concept of Smith, which is proved by the in format ion 
'Smith is a man.' in the network. Thus a subgoal, the 
antecedent of ( 1 ) , in which HITO is replaced by Smith is 
produced, that i s , 'Is Smith healthy ? ' . As the deduc­
t i o n process proceeds, several such bind condit ions are 
produced. Each goal must be t r i e d tak ing i n t o consi ­
derat ion the re la ted bind condit ions produced during the 
former process. 

The deduction rout ine has a stack to remember these 
condi t ions. This stack i s i l l u s t r a t e d in F i g , 10. 
Each goal has a pointer to t h i s stack and the rout ine 
can re t r i eve the corresponding bind condi t ion of a goal . 
I f a goal f a i l s , then the bind condi t ion generated 
during the t r i a l of the goal is abandoned. On the 
other hand i f a goal succeeds, i t s condi t ion is memoriz­
ed for use in the succeeding process. 

VI COMPARISON WITH THE SYSTEMS USING PREDICATE CALCULUS 

Those systems which use predicate calculus t rans late 
the input i n t o a predicate calculus formula, store i t 
in the data base, and use a un iversa l method of deduct­
ion such as the reso lu t ion method. In those systems 
common subexpressions appearing in d i f f e r e n t sentences 
are stored as many times as they appear in d i f f e ren t 
l og i ca l formulas. This is not e f f i c i e n t . In our 
system the same subexpressions are stored only once and 
t h e i r r e l a t i o n s to the other parts of sentences are 
stored by l i n k s . So these i n t e r re l a t i onsh ips can be 
u t i l i z e d in the deduction process. Especia l ly when the 
system deals wi th a great amount of data and only a 
r e l a t i v e l y small por t ion of the data has a d i rec t r e l a t ­
ion to the given quest ion, the quick access to these r e ­
la ted expressions is very important in the deduction 
process. 

Which sentences or formulas are ava i lab le fo r the 
current problem needs to be recognized e a s i l y , and to do 
t h i s , a we l l organized data base is necessary. I t is 
tempting to t r y to incorporate the use of property l i s t s 
to speed up reso lu t i on . For example one may f i nd it 
usefu l for each object symbol c to have access to a 
chained l i s t of a l l l i t e r a l s or clauses where c occurs. 

A d i f f i c u l t but more important problem is to 
recognize how a meaningful un i t is re la ted to another 
u n i t . I t is desirable fo r the data base to contain 
in format ion about the i n t e r r e l a t i o n s h i p s among the 
meaningful u n i t s . In our system the deduction procedure 
can re t r i eve from a node those sentences which have some 
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