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ABSTRACT

A programming language is described which is designed to
simplify the construction of computer programs to analyze
English. This system attempts to merge the best features of
pattern matchers and the phrase structure approach to
language analysis. Several practival problems which occur in
dealing with such a system are described.

INTRODUCTION

Why is it so difficult for machines to understand
natural language? Perhaps it is because machines do not
simulate sufficiently what humans do when humans process
language. Several years of experience with computer science
and linguistic approaches have taught us the scope and
limitations of syntactic and semantic parsers.(Schank,Tesler and
Weber,®  Simmons,” Winograd,”® Woods™). While extant
linguistic parsers perform satisfactorily with carefully edited
text sentences or with small dictionaries , they are unable to
deal with everyday language behavior characteristic of human
conversation. In a rationalistic quest for certainty and
attracted by an analogy from the proof theory of logicians in
which provability implied computability, computational linguists
hoped to develop formalisms for natural language grammars.
But the hope has not been realized and perhaps in principle
cannot be. (It is difficult to formalize something which can
hardly be formulated).

Linguistic parsers use morphographemic analyses,
parts-of-speech assignments and dictionaries containing
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multiple word-senses each possessing semantic features,
programs or rules for restricting word combinations. Such
parsers perform a detailed analysis of every word, valiantly
disambiguating at each step in an attempt to construct a
meaningful interpretation. While It may be sophisticated
computationally, a conventional parser is quite at a loss to
deal with the caprice of ordinary conversation. In everyday
discourse people speak colloquially and idiomatically using all
sorts of pat phrases, slang and cliches. The number of
special-case expressions is indefinitely large. Humans are
cryptic and elliptic. They lard even their written expressions
with meaningless fillers and fragments.They convey their
intentions and ideas in idiosyncratic and metaphorical ways,
blithely violating rules of 'correct' gammar and syntax. Given
these difficulties, how is it that people carry on conversations
easily most of the time while machines thus far have found it
extremely difficult to continue to make appropriate replies
indicating some degree of understanding?

It seems that people 'get the message1 without
always analyzing every single word in the input. They even
ignore some of its terms. People make individualistic and
idiosyncratic selections from highly redundant and repetitious
communications. These personal selective operations, based
on idiosyncratic intentions, produce a transformation of the
input by destroying and even distorting information. In speed
reading, for example, only a small percentage of contentive
words on each page need be looked at. These words
somehow resonate with the readers relevant conceptual-
belief structure whose processes enable him to 'understand’
not simply the language but all sorts of unmentioned aspects
about the situations and events being referred to in the
language. Normal written English text is estimated to be 5/6
redundant (Rubenstein and Haberstroh’).  Spoken
conversations in English are prooably better than 507.
redundant(Carroll'). Words can be garbled and listeners
nonetheless get the gist or drift of what is being said. They
see the "pattern” and thus can supply much of what is missing

To approximate such human achievements we
require a new perspective and a practical method which
differs from that of current linguistic approaches. This
alternate approach should incorporate those aspects of
parsers which have been found to work well, eg., detecting
embedded clauses. Also individualistic features characteristic
of an idiolect should have dominant emphasis. Parsers
represent complex and refined algorithms. While on one hand
they subject a sentence to a detailed and sometimes
overkilling analysis, on the' other, they are finicky and
oversensitive. A conventional parser may simply halt if a



word in the input sentence is not present in its dictionary. It
finds ungrammatical expressions such as double prepositions
(‘Do you want to get out of from the hospital?) quite
confusing. Parsers constitute a tight conjunction of tests
rather than a loose disjunction. A6 more and more tests are
added to the conjunction, the parser behaves like a finer and
finer filter which makes it increasingly difficult for an
expression to pass through. Parsers do not allow for the
exclusions typical of everyday human dialogues.

Finally, it is difficult to keep consistent a dictionary
of over 500 multiple-sense words classified by binary
semantic features or rules. For example, suppose a noun (Ni)
is used by some verbs as a direct object in the semantic
sense of a physical object. Then it is noticed that Ni is also
used by other verbs in the sense of a location so 'location” is
added to Ni's list of semantic features. Now Ni suddenly
qualifies as a direct object for a lot of other verbs. But some
of the resultant combinations make no sense even in an
idiolect. If a special feature is then created for Ni, then one
loses the power of general classes of semantic features.
Adding a single semantic feature can result in the propagation
of hidden inconsistencies and unwanted side-effect., as the
dictionary grows it becomes increasingly unstable and difficult
to control.

Early attempts to develop a pattern-matching
approach using special-purpose heuristics have been
described by Colby, Watt and Gilbert,> Weizenbaum" and
Colby and Enea’® The limitations of these attempts are well
known to workers in artificial intelligence. The man-machine
conversations of such programs soon becomes impoverished
and boring. Such primitive context-restricted programs often
grasp a topic well enough but too often do not understand
quite what is being said about the topic, with amusing or
disastrous consequences. This shortcoming is a consequence of
the limitations of a pattern- matching approach lacking a rich
conceptual structure into which the pattern abstracted from
the input can be matched for inferencing. These programs
also lack a subroutine structure, both pattern directed and
specific, desirable for generalizations and further analysis.

The strength of these pattern matching approaches
lies in their ability to ignore some of the input. They look for
patterns, which means the emphasis of some detail to the
exclusion of other detail. Thus they can get something out of
nearly every sentence-- sometimes more, sometimes less.

An interesting pattern-matching approach for
machine translation has been developed by Wilks." His
program constructs a pattern from English text input which is
matched against templates in an interlingual data base from
which,in turn, French output is generated without using a
generative grammar.

In the course of constructing an interactive
simulation of paranocia we were faced with the problem of
dealing with unedited and unrestricted natural language as it is
used in the doctor-patient situaton of a psychiatric
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interview.(Colby, Hilf, Weber, and Kraemer," Colby and Hilf).
This domain of discourse admittedly contains many-
psychiatricelly stereotyped expressions and is constrained in
topics (Newton's laws are rarely discussed). But it is rich
enough in verbal behavior to be a challenge to a language
understanding algorithm since a variety of human experiences
are discussed domain including the interpersonal relation which
develops between the interview participants, A look at the
contents of a thesaurus reveals that words relating to people
and their interrelations make up roughly 707 of English words.

The diagnosis of paranocia is made by psychiatrists
relying mainly on the verbal behavior of the interviewed
patient. If a paranoid model is to exhibit paranoid behavior in
a psychiatric interview, it must be capable of handling
dialogues typical of the doctor-patient context. Since the
model can communicate only through teletyped messages.the
vis-a-vis aspects of the usual psychiatric interview are
absent. Therefore the model must be able to deal with
unedited typewritten natural language input and to output
replies which are indicative of an underlying paranoid thought
process during the episode of a psychiatric interview.

In an interview there is always a who saying
something to a whom with definite intentions and expectations.
There are two situations to be taken into account, the one
being talked about and the one the participants are in.
Sometimes the latter becomes the former. Participants in
dialogues have intentions and dialogue algorithms must take
this into account. The doctor's intention is to gather certain
kinds of information while the patient's intention is to give
information and get help. A job is to be done; it is not small
talk. Our working hypothesis is that each participant in the
dialogue understands the other by matching selected
idiosyncratically- significant patterns in the input against
conceptual patterns which contain information about the
situation or event being described linguistically. This
understanding is communicated reciprocally by linguistic
responses judged appropriate to the intentons and
expectations of the participants and to the requirements of
the situation. In this paper we shall describe only our current
input-analyzing processes used to extract a pattern from
natural language input. In a later communicaton we shall
describe the inferential processes carried out at the
conceptual level once a pattern has been received by memory
from the input-analysing processes.

Studies of our 1971 model of paranocia (PARRY)
indicated that about thirty percent of the sentences were not
understood at all , that is, no concept in the sentence was
recosnized. in a somewhat larger number of cases some
concepts, but not all, were recognized. In many cases these
partially recognized sentences lead to a partial understanding
that was sufficient to gather the intention of the speaker end
thus lead to output an appropriate response. However,
misunderstandings occurred too often. For example:



DOCTOR: How old is your mother ?
PARRY: Twenty-eight

PARRY has interpreted the question as referring to his own
age and answered by giving his age. The purpose of our new
language analysis system is to significantly raise the level of
understanding by preventing such misunderstandings while not
restricting what can be said to PARRY. We do not expect
complete under- standing from this system ~ even native
speakers of the language do not completely understand the
language.

By 'understanding we mean me system can do some
or all of the following:

1) Determine the intenton of the
interviewer in  making a particular
utterance.

2) Make common logical deductions that
follow from the interviewers utterance

3) Form an idioletic internal representation
of the utterance so that questions may be
answered, commands carried out, or data
added to memory.

4} Determine references for pronouns, and
other anaphora.

5) Deduce the tone of the utterance,le.,
hostile, insulting...

6) Classify the input
rejoinder.command,...

as a question,

The approach we are taking consists of merging the
best features of pattern directed systems such as the MAD
DOCTOR? ELIZA" and parsing directed systems for example,
Winograd,™ Woods.". By merging the BNF phrase structure
approach ot analyzing English with the pattern matching
approach, with its attendant emphasis of some concepts to the
exclusion of others. The programs to accomplish this are
written in ML1SP2, an extensible version of the programming
language ML[$P,>™® and uses an interpreted version of the
pattern matcher designed for a new programming language
LISP 70.

The following is a basic description of the pattern
matcher. We shall illustrate its operation using examples of
problems common to teletyped psychiatric dialogues.

PATTERN MATCHING

Pattern directed computation involves two kind of
operations on data structures: decomposition and
recomposition. Decomposition breaks down an input stream
into components under the direction of a decompostion pattern
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("dec"). The inverse operation, recomposition, constructs an
output stream under the direction of a recomposition pattern
("I'eC“).

A rewrite rule is of the form;

dec --> rec

It defines a partial function on streams as follows: if the input
stream matches the dec, then the output stream Is generated
by the rec. The following rule (given as an example only)
could be part of a question answering function:

How are you ? -» Very well and you ?

If the input stream consists of the four tokens:

How are you ?
the output stream will consist of the five tokens:

Very well and you ?

REWRITE FUNCTIONS

A rewrite rule defines a partial function, for
example, the mapping of some particular token into some
other particular token. A broader partial function can be
defined as the union of several rewrite rules. A rewrite
function definition is of the form:

RULES OF <name> -
decl -* reel,
dec2 -» rec2,

decn -» recn;
VARIABLES

A function is difficult to define if every case must
be enumerated. Therefore, rewrite rules allow variables to
appear in patterns. The value of a variable can be either a
list or an atom. In this paper the notation:

X

where X ia any identifier, will denote the variable X. The
variables of each rule are distinct from the variables of all
other rules, even if their names are the same.

The following definition has only ihree rewrite rules,
but handles an unlimrted number of input streams:



RULES OF REPLY=
HOW ARE YOU *? - VERY WELL '?
HOW 1S sX - T HAVEN''T SEEN ;X °*,
LATELY", ,
DID :X GO TO :¥ '?
WHY DON''T YOU ASK :X YOURSELF'?;

A variable can appear more then once in a single dec pattarn,
bul it must match identical items st each appesrance.
Example:

RULES OF EQUAL =
(EQUAL X :X} = TRUE;

ELLIPSIS

To make patterns easier to read and write, the
ellipsis symbol .. can be used to stand for an unnamed
variabte. Thus:

1€ ..., COMING -~ WD, .., COULD NOT HAKE IT.

it an ellipsis (...} occurs several times on & side, it designates o
different varisble each time. The nth ellipsis in & det
designatas the same variable as the n'th allipsis in the rec.

Ellipsis is one af the principle ideas of pattern
matching. It permits imprecise mathching; that is, the emphaesis
or ignoring of items.

AUTOMATIC ORDERING OF RULES

The order of rules in 8 function defimition does not
specify the order in which the system will attempt to apply
them. This ordering operation is handied by a spacisl system
ordering function. Consider the rewrite function:

RULES DF REPLY =
1 SEE :% = 50 WHAT *7,
] SEE AMN = LOW "Iy
Both rules woulid match:

I SEE ANN

In such cases the more specific rule takes precedsnce. Thus
given:

[ SEE ANN

as the input stream , the output stresm would be:
WOl |

but giver
] SEE STARS

the output stream would be:
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S0 WHAT ?

A literel is more specific then a verigble. A varisble appearing
for the second time is mora specific than 8 variable appearing
for the first time in a dec. This is so because the second
occurence of the variable must match the same pattern as the
first occurence. The precadence funclion is itsalf written in
rewrites and so Is both extendable and changable by the user.
Currently precedsnce (s cajculated by a left to right
application of the above criteria. Therefore, the following
function defines the LISP function EQUAL:

RULES OF EQUAL =
[EQUAL X X) - T,
(EQUAL :X :¥! = NIL;

SEGMENTS

Sometimes it is desirable for a variebls to
match en indeterminate number of items. This i9 notated:

HER

Use of the double~golon {":") means that the variable (e.g, X)
will match zere or meore ftems. Example:

RULES OF APPEND=
(APPENG (1:X) {11Y)) ~ i:lx_uYh

or if the input stream wers:
(APPEND (A B} (C O E))
the output stream would be:
(ABCDE)
For increased readability the rule could alse be written:

AULES OF APPEND -
(APPENG (... (..

Another example:

RULES OF REPLY =
WHERE OID :1:X GO =
2K WENT HOME *.;

Therefare,

WHERE DID THE CARPENTER GO -
THE CARPENTER WENT HOME.

APPLICATION

Cne of the main deficiencies of the systam in which
the MAD DOCTOR was programmed was its lack of adequate
subroutining capability. Subroutines may be indicated in the
rewrite system as follows:



RULES OF LAST -
Y+ 0,
| I tK.

t
{
GX ...y » AAST (.. )

1 X
X
The "<** surrounding a pattern means that the current input
stream is to be pushed down, that the function indicated by
the first token within the brackets is to be entered with the
rest of the pattern appended to the front of the input stream,
and that the output stream is to be placed into the restored
current input stream. Note that MLISP2 functions may be
called as well as rewrite functions.

GOALS

To gain the advantage of goal directed pattern
matching and computing, as well as the full power of context
sensitive grammars, the following form may be used:

RULES OF PREPOSITIONAL_PHRASE »
<PREPOSITION>:P <NOUN_PHRASE>:N
+ (PREP_PH :P :N);

The identifer between the angled brackets {"<**} names a
rewrite function the rules of which are to be matched against
the input stream. When a match occurs the output stream of
the goal will be bound to the associated variable. Example;

RULES OF PREPDS! T1DNAL_PHRASE =
<PREPOSI T ON>2P <NOUN_PHRASE>: N
+ (PREP_PH 1P :H): '

RULES OF MNOUN_PHRASE =
TOWN « (WOUN_PH TOWNI,
PALD ALTO « (NOUN_PH PALG_ALTO};
RULES OF PREPDSTITON =
IN -+ [N,
ON = {N;
and the input stream:
IN PALU ALTD
the output stream would be:

{PREP_PH IN (NOUN_PH PALO_ALTD)}

OPTIONALS

Many other shorthands exist to simplify writing
rules. One useful feature that will be mentioned here is the
optional.

RULES OF AUXILARY PHRASE -
<AUXILARY>A  [<NEGATVE>N3 N1
(AUX PH A ["N):NI >

If the optional pattern, enclosed in square brackets {"[]"),
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occurs in the input stream it will be bound to :N. :N1 will be
bound to 2. If the <NEGATIVE> does not occur, :N1 will be
bound to 1. On the rec side of the rules if :NI is 2 then :N will
be placed in the output stream. If it is 1 then nothing is
placed in the output stream at that point. Example, given the
rule above:

DD » (AUX_PH DO
DD NOT - (AUX_PH DO NOTH

MORE EXAMPLES

We have collected a large number of dialogues using
our previous program PARRY. These dialogues form a large
body of examples of the kind of English which we can expect.
Martin Frost, a graduate student in Computer Science,
.Stanford University, has written a keyword in context
program which enables us to isolate examples centered on
particular words so that uses of thoses words in context
become more apparent. Our general approach is to build a
system which can produce desired intreptations from these
examples and to incrementally add to the rules in the system
as new cases are discovered during the running of the
program.

Following are some examples of commonly occuring
situations and examples of the kind of rules we use to handle
them.

QUESTION INTRODUCER

In docter-patient dislogues it is quite common to
introduce a question by the use of a command. The "question
introducer” is foliowed by either a <NOUN_PHRASE» or a
<DECLARATIVE_SENTENCE>. For example,

COULD YQU TELL ME YOUR NAME?

Rather than attempt a literal analysis of this guestion, which
might lead to the interpretation:

DO vOU HAYE THE ABILITY TO SPEAK YOUR NANE TG ME?
we utilize rules like:

RULES CF SENTENCE =
<QUESTION_[NTRODUCER>:0 <NGUN_PHRASE> <N
- 5N "W x )

RULES OF QUESTIDN_INTRODUCER =
COULD YOU TELL ME -,
LOULD ¥DU TELL HE =,
PLEASE TELL ME - :

Although it is conceivable that there are an infinite
number of ways to introduce a question in this manner, we
have found only about six literal strings are actually used in
our data base of dialogues. When we discover a new string
we incrementally add a rule. When we have enough examples



to dectect a more genera) farm we replace the rules for
<QUESTIONJNTRODUCER> by a more elegant and general
formulation. This approach allows us to process dialogues
before we have a complete analysis of all possible sentence
constructions, and it allows us to build a language analyzer
based on actually occurring forms.

Notice that it is possible to make more than one
analysis of any given sentence depending on what is being

looked for. A poet might be interested in the number of
syllables per word and. the patterns of stress. A "full"
analysis of English must allow for this possibility, but it it

clearly foolish to produce this kind of analysis for PARRY. Our
analysis will be partial and idiosyncratic to the needs of our
program. This is what is meant by idiolectic.

FILLERS

it is quite common for interviewers to introduce
words of fittle significance to PARRY into the sentence. For
example:

HELL, WHAT IS YOLR NAHE?

The "well" in this sentence serves no purpose in PARRY'S
analysis, although it might to a linguist interested in hesitation
phenomena. These fillers can be ignored The following rules
accomplish this:

RULES OF SENTENCE -
<F]JLLERS>;F <SENTENCE>S - :S;

RULES OF FILLERS -
WELL -
X - ;

PUNCTUATION

Interviewers use little intra-sentence punctuation in
talking to PARRY. When it is used it is often to seperate
phrases that might otherwise be ambiguous. Example:

WHY WERENT YOU VERY CLOSE, FRANK

Here the comma clearly puts "CLOSE" in a different phrase
from "FRANK". Punctuation, when used in PARRY'S rules, is
generally enclosed in optional brackets ("[]"). This has the
effect of separating phrases when punctuation is used, but not
requiring full punctuation for the system to work, Example;

RULES OF SENTENCE -
<SENTENCE>S1 C.JtC <SENTENCE CONNECTOR>SC
<SENTENCE>:S2
- (CONUNCTON  SC :S1 :S2)|

CLICHES AND IDIOMS

The English we encounter in doctor-patient

dialogues is made up of a great number of cliches and idioms,
therefore we anticipate a large number of rules devoted to
them. For example:

RULES OF TIME PHRASES -
A COUPLE OF <TIME_UNIT>T A
* (TIHE (RELATIVE PASTYREF PRESENT) :T);

RULES OF TINE UNIT -
SECONDS - WITHIN CONVERSATION),
MOVENTS - WITHIN CONVERSATION),
DAYS - (BEFORE CONVERSATION DAYS):

REPRESENTATION CORRECTION

Intermediate results are often produced which are
misleading in meaning or are in the wrong form for further
processing. We, therefore, incorporate at various points rules
which detect certain undesired intermediate results and
convert them to the desired form. Example:

RULES OF CORRECT FORM -
(QUESTION ... ..
(QUESTION. . . . . . ):

UNKNOWN WORDS

Rules can be derived to handle words which were
previously unknown to the system. For example:

RULES OF UNKNOWN_WORD -
OR". X - N\EWWIRD NAVE :X>,
THE :X <VERB PHRASE>Y *
<NEU_UORD NOWN :X>,
I X YOU » <NBJ UORO VERB :X>i

Here "NEW_WORD" is a function which adds new words to the
dictionary.

CONCLUSION

We are faced with the problems of natural language
being used to interview people in a doctor-patient context.
We have developed a language processing system which we
believe is capable of performing in these interviews at a
significantly improved level of performance compared to
systems used in the past. We have developed techniques
which can measure performance in comparison with the ideal
of a real human patient in the same context,">” We are
designing our system with the realization that a long period of
development is necessary to reach desired levels of
performance, This is a system that can work at a measured
level of performance and be improved over time with new
rules having minimum interaction with those already existing.
Our system is designed so that a complete analysis of every
word or phrase of an utterance is not neceesary.

The basis of this system is a rewrite interpreter
which will automatically merge new rules into the set of
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already existing rules so that the system will continue to
handle sentences which It handled in the past.
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ABSTRACT )

We have constructed a deductive question answer-
ing system which accepts natural language input in
Japanese. The semantic trees of aseertional input
sentences are stored in a semantic network and inter-
relationships —conditional, implicational, and so
forth— are established among them. A matching rout-
ine looks for the semantic trees which have some rela- (4)
tions to a query, and returns the mismatch information
(difference) to a deduction routine. The deduction
routine produces sub-goals to diminish this difference.
This process takes place recursively until the differ-
ence is completely resolved (success), or there is no
other possibility of matching in the semantic network

(failure). Standard problem solving techniques are
used in this process. As the result the system is
very powerful in handling deductive responses. In

this paper only the part of the logical deduction is
explained in detail.

DESCRIPTIVE TERNS: question answering, deduction,
natural language, semantic network, problem solving.

| INTRODUCTION

There are a few deductive question answering systems
using natural language, almost all of which use logical
expressions, especially the first order predicate cal-
culus expression, as an intermediate language. How-
ever systems which use formal logics have problems:

(1) Syntactic and semantic analyses of natural language
input are necessary to transform the input to logi-
cal expression without ambiguity.

(2) The axiom set must be clearly defined and must not
be contradictory. (6)

(5) Predicates and variables must be fixed beforehand.

This is a problem for the system's expansion.

Also this prevents mixing the first and higher In t

order predicate calculus systems. are

(4) Deduction using the resolution principle is cumber- publ
some. Usually question answering does not require

systems for language analysis, deduction, and lang-
uage generation.

The parsed trees of sentences are permitted to have
some ambiguities. Ambiguities are resolved in the
process of logical deduction,

During the question answering process, the deduction
ability is increased and the area which the system
can deal with is also expanded. The deduction
ability of a system depends on how many theorems
the system can use, and on how efficiently it can
deal with them. We have constructed a system in
which the available theorems increase during the
question answering process.

Facts can play the role of theorems. We think the
distinction between facts and theorems is not clear
enough. A statement can be used as a theorem at
one time and as a fact at another time. For
example,

A human is an intelligent animal,
plays the role of a theorem to answer

Is Smith intelligent ?
because Smith is an instance of a variable 'human'.
On the contrary it plays the role of a fact to the
question

Is a man an animal ?
because 'a human' is treated as an instance of a
variable 'man’.
In our system the assertions given by a user, which
correspond to facts in usual systems, can play the
role of theorems. This is accomplished by allowing
a higher concept term to be a variable to its lower
concept term. There is no distinction between
them, and both facts and theorems have the same
structures in the data base. This is the most
significant character of the system we have develop-
ed.

In order to deal with a large data base, the system
has a well organized data structure and relevant
information to a question is accessed by a techni-
que of indexing and retrieval,

The deduction process is similar to that of humans.
It allows introducing many heuristics into the
deduction process.

his paper the details of deduction subsystem alone
explained. The other two subsystems will be
ished elsewhere in the near future,

a deep deductive process. Il SYSTEM ORGANIZATION

(5) Good quality of natural language output is very .
hard to obtain from a logical expression.

A block diagram of our system is shown in Fig. 1.
internal data base of the system is divided into

semantic representations (semantic trees) of input

To avoid the above problems we have used a kind of The
two parts:
(1;
ipput sentences.
sentences
query
| |

| i [asduction
[ 7| ssntencen routing
parsing network : : mntnt;:a
admi 1 gemeration P——
Toutios r:t::: o | ' ) routins sutput
N tress of ! exscution responses
i santencea i routine

semantic network

Flg. 1 Organisation of the aystea.
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(2) network (mutual connection) of (1).

The mutual connection consists of interrelationships
such as conditional, implicational, and so forth. An
input sentence is analyzed into a semantic tree, and it
is read into the semantic network if it is an assertion
and is not in the network yet. Thus knowledge accumu-
lates in a very natural way in the question answering
process. An inverted file of keywords makes it easy
to extract information relevant to the question.

The parsing routine performs syntactic and seman-
tic analyses of an input query sentence, and produces
the parse tree. A network administration routine
accepts the tree and relates it to the semantic network
which contains sentences already accepted.

To accomplish a deduction, there are two main
parts: the execution routine and the deduction routine.
The execution routine, which plays the central role in
the deduction process, searches through the network for
sentences relevant to the current goal and matches them
one by one against it. The deduction routine manages
the global information in the problem solving process
such as goal-subgoal relationships, variable bindings
(for example the word 'man' is bound to the word
*Smith'), and so forth. This routine also directs the
execution routine to determine which sentence must be
verified first.

I KNOMEDGE STRUCTURE

3.1 Semantic Trees.

We have applied a kind of dependency analysis to
the input Japanese sentences. A noun modified by an
adjective is transformed into a kernel sentence having
another kernel sentence related to the noun. The
sentence

KINBEN MA WITO WA SEIKO SURU

( A diligent man will succeed.)
is divided into two sentences like

HITO WA SEIKO SURU

(A man will Bucceed.)
and

HITO WA KINBEN DA

(A man is diligent.)

gy

Flg. 2 Xinben na hitc wa seiko suru.
(A diligent man will succeed.)

sant

o0 nagai {long)
{elephent) sub

hana {nose)

Fig. 3 2o wa hans ga negal,
(Elephmnt has s long nose.)

The parsed tree stfueture of this sentence is shown in

Fig. 2.

Some sentences in Japanese have two possible sub-
ject phrases, that is, one which contains the reference
particle 'GA' and the other which contains 'WA*. We
consider the relational phrase with the particle 'WA' as
indicating what the sentence talks about; the phrase
with 'GA' is the subject phrase corresponding to the
predicate in the sentence.

Z0 WA HANA GA NAGAI

( Elephant has a long nose.)
is a typical example. Its literal translation is
" As for elephant the nose is long." The tree struc-
ture of it is shown in Fig, 3.

Sentences connected by AND or OK are represented in
the tree structure as shown in Fig. 4.

A sentence which contains upper concept terms
replaceable by their lower concept terms is considered
as a theorem available to prove a statement which has
the lower concept terms in it. So upper-lower concept
relationship among words plays an important role in our
system. The input sentence in the form of " A WA B DA"
meaning A is a lower concept of B, and B is an upper
concept of A, has a special structure to express the
relationship clearly. " NINGEN WA KASHIKOI DOBUTSU DA"
(A man is an intelligent animal.) is parsed as shown in
Fig. 5.

Properties of sentences are attached to the top
node of the parsed tree structure. The properties we
treated are potential, active, passive, subjenctive,
tense, and so forth. The assertion sentence is regard-
ed as true, so that a sign T is given to the property
part of the parsed tree. The signs F and U in the
property part indicate false and undetermined respect-
ively.

3.2 Semantic Network.
The network is constructed in the following way.

(1) In the case of an assertion sentence §,, it is stor-
ed in the form shown in Fig. 6a. .
simply
seiko suru
(succeed)
aub
kinben da LD hite
{didigent) _ .~ (man)
I’,”
hito (san)

Tig. 4 ¥enko de kinben na hito wa seiko suru,
(A man who is healthy and diligent will succeed.)

dobutsu
{animal }

Fig. 9 Ningen wa kashikoi dobutsu da.
{A man is ap intelligent animel.)
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schematically

) wriirt]:ncgze'r?;ta réegaittloins ssetr;treer:jc?H the same form {1) Branches in the network and trees are bi-direction-
ae Fig. 6a, but thé property part is written as F al for flexible transformation and for efficient
’ i ) h i h i .
(3) If a sentence is -If sq, then S ', it is stored search in the deducthn process
in the form shown in Fig. 6b (2) Words are not stored in nodes of the parsed trees
(4) If a sentence is 'Because. 81. S, it is stored but by a pointer to the lexical entry of the word
. ) - ’ : (Fig. 7).
in the form shown in Fig. 6c. . .
(5) If the sentences S; and S, in <1)--(4) are found in (3) The lexical entry of a word, called NLIST, contains
the semantic netwo1rk th82 are not stored newl not only lexical information about the word, but
but the stored ones ére :)sled For example they’ also a list of sentences (pointers to the entries
f(;jllowin sentences are :toréd in thexnetsvork as of the sentences in SLIST) which contains the word.
shown ingFig 6d NLIST is a kind of inverted file of keywords.
Becausé s ’ s CO The node of the network is indicated by a pointer
i 2 from a table, called SLIST, which contains informa-
If S4, then Sj. tion about the sentence. The information of
. . . whether the sentence is true (T), false (P), or un-
{?uteh's case because S, is asserted as true, 353 is also determined (U), and so forth is stored in this list.
' . (5) Different nodes in the network correspond to dif-
interr;rgtla g(e)th\/sotrrll(JCatri]gngarsed trees have the following ferent sentences. As a result, information about
) a sentence can be retrieved from a single node in
the network.
o IV EXECUTION ROUTINE
) {F) 1@} (0)
? Among many intellectual abilities of humans, we
1 jL have implemented in this study the deduction ability
o Pid \‘ J baaed on the use of "the law of substitution' and 'the
,’ s ‘\ / 52 \ P, S r“‘\ law of implication.' This is realized by the execution
I‘ 1‘1' ‘\ s l’ s \\ f s A routine and the deduction routine. The execution
- - \ ‘l’! i 2 ; routine tries to match a sentence structure against
(6&) - \\“‘_,’ another one, regarding an upper concept as a variable
{6b) over its lower concepts. The deduction routine pro-
duces subgoals and tells the execution routine which
sentence must be verified first. The execution routine
7 (ﬁ‘j searches through the network for the sentences which
{T) are equivalent to the goal sentence given by the deduc-
—t tion routine. It consists of three main parts: keyword
Jl[ search, matching, and resolving differences.
b 4 LY J\
;' ] ,"Sa\‘f \\ 4.1 Keyword Search.
t 8.1 {t B
\s t.r ‘.__,.4"! 5} The system has an inverted file of words called
= Ve NLIST. By using this file, the execution routine takes
(51‘:) (64) out the sentences which contain words in the goal sent-
ence. These selected sentences are presumed to be
Fig 6 Relations in semantic net X relevant to the current sentence.
- lol .
properties of (
u
SLIST /untuncu RETWORK yuktu {gol}
» 1 4 4 ) aub mod
2 P
) - kare
X gakke e
: ' i (he) (school)
11 [ tree structure _f. kare wa gakko & yuku
of X Re \:
\f Y
I L]
] J
NLIST l !\ /’ yogu (go)
-
ry (% K=o} & mod sub
B -4 4 a h.) |
—_—— e e al) ¥ gakko ¢ kare
l ‘|' t {mchool) {he)
1 t |
| [ ¥ gakkc ¢ kare wa yukn
laxical peinters to the
information  pantences which Fig. 8 Changs of word order.
of words contain the word

Pig. 7 Interpal dats bass structure,



4.2 Hatching Method

The matching algorithm is constructed so that two
parsed trees which are different in the sequence of
branches <Fig. 8) will be matched successfully by the
branch labels on the parsed trees. Matching between
The
causes of mismatch, named differences, are classified

two parsed trees fails for various reasons.

into the following four classes.

(1) N-difference: The words which are attached to the
corresponding node are different in the two sent-
ences. Fig. 9a shows an example, where the dif-
ference is expressed as (N (*C *D)). *C shows the

pointer to the node C.

(2) S1-differenee: One structure (first argument) has
extra branches which the other does not have.
Fig. 9b shows an example of this category, abbre-
viated as CS1 ((*R4) -B)), which shows the branch

R4 is the extra one.

(3) S2-difference: One structure (second argument) has
extra branches. Fig. 9c is an example and this

difference is shown by (s2 (*C (*R5))).

(4) SO-difference: Both structures have extra branches.

An example is shown is Fig. 9d.

The matching subroutine tries to match its first

argument against its second one. If the matching
succeeds, the subroutine returns 'success' to the ded-
uction routine. If not, it returns the differences.

(N CC 'D))

A

A
24 R2 ui R2
b G B
R R3
D E

(81 ((-R4) 'B))

{80 {{*R1 *R2} (*R4)])

Fig. 9 Ddfferences in matching.

B3

L,3 Resolving Differences.

The sxecution routine first picke up sentences
axpected tc be relevant to the given sentence by uwsing
NLIST, and then tries to match them against the given
sentence. If the sase mentence is stored in the data
bass, the sxacution routine picks it up and the matching
ends in success. [f there is no complete match, but a
difference, N-routins or S-routine ia mctivated mecord-
ing to the kind of dlfference to resolys the diffarence.
{1} Naroutine

An N-routine arises from mismetch of words, Iat
us suppoas that the asntence

TARG WA SEIKC SUREF

(Tarc will succeed.)
is what the deduction routine tells the sxecution route-
ine te prove, and the pentence

NINGEN WA SEIKO SURU

(A man will succeed.)
is stored in the date baas. The matching between these
does not succeed apnd the diffarence ie {N (*TARD
*NINGEN)). |Thie difference is transferred tg N-routins
and the routine triss to chack whether the word TARO 1l
a lower concept of NINGEN (man) by searching through
the nstwork for the asntence TTARQ WA NINGEN DA', which
peans 'TARD is a lower concept of NINGEK.' If such a
sentence is found, NINGEN ¢an be looked upon ad a
variable which can take the value TARO, and then the
difference is resclved. This is considered ae the
process of substitution., By this process the system
ean deduce specific facts from generalized knowledge.

H=rcutine basically ssarchea the mentence 'A WA B
DAY, whiech means ‘A im B', in order to reaoclve the
difference (N ("4 "E)), but meny sentences in the net-
work are in such forms as 'A WA b NA B DA', which means
*A im B modified by b', and ‘aNA A WA B DA', which weanms
‘A modified by a is B'. The differences to be reaplved
alao take the forms of (K ("(a A A) *B)) end (N (A
*(b W4 BY)). Four casea are possible,

(1) Difference : (N (*(am A &) *B)}
In the dats base : A WA B DA

In a logical repressntation,
the goal to be proved iz a{x) AA(x)=>B(x)
the fact in the natwork is A(x)*B(x)

and the differsnce is resolved inmmedliately,

(a2} Difference : (N {"A (b NA B))}
In the data base : A WA B DA
In & lugica]l representation,
the goal to be proved is  A(x}=+b{x)AB(x)
the fect in the network i= A(x)#B(x)
In this caps whather A satisfies the copndlition b or not
is produced as a subgoal.

(b1) Difference + (M (*A *B))

In the data base : A %A b NA B DA
In & logical representation,

the goal to be proved im  A{x)-»B(x)

the fact in the network is A(x}=rb{x)}sB(x)
So the differsnce ia reavlved,

{b2) Difference : (N (*A *B))

In the data bass : & NA A WA B DA
In a logical representation,

the goal to be proved is A{x)—»B(x)

the fact in the network is a(x)aA(x)-»B(x)
In this cese a subgoal is produced.
{2) S-routine

S-routine resolves 51-, 52-, and 80~ differsnces.
These differences arise from sissateh of branches.
S~routine ie given two different senteance structures,
one is called S-structure and the other ie cmlled T-
structure. Taing grammatical rulse {sspecially trans-
formational rulen), thim routivs transforms the S-struc-
ture into several transformationally equivelent struc-
tures, and metches them against the T-structure. At
present not so many transformational rules are prepered.
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Fig. 11 is an example. If the matching succeeds, the
two structures, S-structure and T-structure, are equi-
valent and the difference is resolved.

V DEDUCTION ROUTINE

The deduction routine controls the whole of the
deduction process. This routine has a global know-
ledge of the process. This knowledge contains the
goal-subgoal organization, variable binding and so forth,
The deduction routine tells the execution routine which
sentence must be verified and which sentence, if the
first trial fails, has to be verified next.

5.1 Goal Organization

The deduction method in our system takes a ques-
tion Q as a .goal and tries to verify it by means of
matching it with the sentences stored in the network.
If the trial fails, the deduction routine searches
through the network for such sentences as P-*Q.

Those sentences P's, if any, are considered as subgoals
to accomplish the previous goal. In the same manner
sub-subgoals are produced to accomplish the subgoals.
As the process advances, many goals are produced hier-
archically. An ANDOR tree structure is used to
remember the hierarchically organized relationships
among goals.

Subgoals are created in various cases.
(1) If a goal sentence G can not be determined to be
true or false, subgoals are created by means of
searching through the network for the sentences
which are antecedents of G.

In the same case of (1), the negations of conseque-
nces of G are taken as subgoals. If they are
proved to be true, the sentence G is determined to
be false.

If the matching between two parsed trees is in-
complete, subgoals to diminish the mismatches are
created.

In addition to these cases, subgoals are also
produced when a goal is divided into several subgoals.
For example 'KARE WA KINBEN DE SHOJIKI DA' (He is
diligent and honest) is divided into 'KARE WA KINBEN
DA' (He is diligent), and 'KARE WA SHOJIKI DA' (He is
honest).

The goals are tried one by one, and when there
remains no goal, the deduction process stops with a
failure message. A goal which has several subgoals
will succeed or not, depending upon whether the sub-
goals will succeed or not. A goal keeps some infor-
mation for itself. For example it has the information
of whether it is an AND-type or an OR-type. Depth of
goal shows the depth between the top-goal (that is, a
question given by a user) and the present goal. The
depth of the top-goal is 0 and the depth of the immed-
iate subgoal is 1.

The deduction routine chooses a goal, the depth
of which is the smallest of all, and tells the execu-
tion routine to verify it. The indicators such as
KOTEl (positive assertion), HITElI (negative assertion),
MATCH (to be matched) and so forth show the effects of
the goals' results to be transferred to their previous
goals. KOTEI (HITEI) shows that if this goal succeeds,
the sentence corresponding to its previous goal is
proved to be true (false). The subgoals which are
produced in order to resolve the mismatch between two
parsed trees have the indicator MATCH.

(2)

(3)

5.2 Variable Binding.

To use the law of substitution is one of most
important abilities in this system. This is carried
out by considering an upper concept as a variable over
its lower concepts. A word behaves as a constant when
it is a lower concept of another word, and as a vari-
able when it is an upper concept of another word.

We do not introduce unary predicates such as'human(x)',
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'anlmal(x)', which are usually used in the predicate
calculus system in order to restrict the range of vari-
ables.

We regard all words as variables which have their
own domains of values. We illustrate this by the
following example.

(1) HITO GA KENKO NARABA HITO WA SEIKO SURU

(If a man is healthy, the man will succeed.)
(Q) Smith WA SEIKO SURU KA ?

(Will Smith succeed ?)
The system searches through the network to find out the
sentence (1) which is expected to answer the given ques-
tion. The matching between the consequent part of (1)
and the question fails at first. The cause of mismatch
is N difference between 'Smith* and 'HITO (man)'. N
routine is called to find out that HITO is an upper
concept of Smith, which is proved by the information
'Smith is a man.'" in the network. Thus a subgoal, the
antecedent of (1), in which HITO is replaced by Smith is
produced, that is, 'ls Smith healthy ?'. As the deduc-
tion process proceeds, several such bind conditions are
produced. Each goal must be tried taking into consi-
deration the related bind conditions produced during the
former process.

The deduction routine has a stack to remember these
conditions. This stack is illustrated in Fig, 10.
Each goal has a pointer to this stack and the routine
can retrieve the corresponding bind condition of a goal.
If a goal fails, then the bind condition generated
during the trial of the goal is abandoned. On the
other hand if a goal succeeds, its condition is memoriz-
ed for use in the succeeding process.

[ '
|1 1

{(man John) Fig. 10 B5tack for

variadle binding.

L {animml Jim)

{animal John)

VI COMPARISON WITH THE SYSTEMS USING PREDICATE CALCULUS

Those systems which use predicate calculus translate
the input into a predicate calculus formula, store it
in the data base, and use a universal method of deduct-
ion such as the resolution method. In those systems
common subexpressions appearing in different sentences
are stored as many times as they appear in different
logical formulas. This is not efficient. In our
system the same subexpressions are stored only once and
their relations to the other parts of sentences are
stored by links. So these interrelationships can be
utilized in the deduction process. Especially when the
system deals with a great amount of data and only a
relatively small portion of the data has a direct relat-
ion to the given question, the quick access to these re-
lated expressions is very important in the deduction
process.

Which sentences or formulas are available for the
current problem needs to be recognized easily, and to do
this, a well organized data base is necessary. It is
tempting to try to incorporate the use of property lists
to speed up resolution. For example one may find it
useful for each object symbol ¢ to have access to a
chained list of all literals or clauses where ¢ occurs.

A difficult but more important problem is to
recognize how a meaningful unit is related to another
unit. It is desirable for the data base to contain
information about the interrelationships among the
meaningful units. In our system the deduction procedure
can retrieve from a node those sentences which have some



relation to the sentence ¢orresponding to the pode.,
Another is that disambiguation is dons not only in
the parsing phass but alec in the deduction phamse,

This is also one of the excellent features of uming
semantic structures of sentences shith permit smbigucus
structures as an internal data repressntation.

For example, the aentence 'A NO B WA ... ' may have
more than four different structurss in deeper levels, VII EXAPLES
sceording to the words A and B, That is:
KARE NO KANE the money whic¢h he haw Exmmple 1
(he) {money) Input sentences:
KYDOSHI NO KARE he, who is a teachsr HITO WA KENKO DE KINBEN NARA SEIKQ SURU.
(teacher) {(he) {If o man is healdthy and diligent, the men will succeed.)

KYONEN NO SENKYQO the #lection which wae taken
(last year) place last yeur
{election)
The parsing and translation program in predicate cal-
culus system musi choose one of thease structures at the
input and parsing stage, becruse predicate calculus
formulas never parmit asbiguous expreasiona, But it
is aimpat iwpossible to claseify each word into a
certain semantic category, and to decide which of the
sbove structures ie proper {0 the sentence sccording to
the information that the word 4 belongs to & certain
category mnd B belongs to another. Hesponses from the computer
In our syetem, 'A NO B WA .., ' is storsd as shown Jim ¥A KENKO DE KINBEN KA ? (Is Jim heslthy and diligent
in Fig. 11, The ambiguity is left in its structurs. : n
The metching routine transforms the mantence into Jim WA XENKO K& 7 {Ia Jim healthy 7)
asveral different structures by using gremmatical know- Jim WA aporteman KA 7 {Ia Jim a sportsman %)
iedge, and tries to match them one by one against the Jim WA KIMBEN KA 7 (Is Jim diligent ?)
object structyre. All of them except one correct HAL, Jim WA SEIKO SURK. (Yer, Jim will asucceed,)
structure may not match against it. Thus ambiguous These outputes except the last mare the intermediate opes
structures are resclved during the deduction process. from the computer, to which no answers are uecessary.
Expmple 2
Input sentences
Jim was killed by John.
A man~f who killed s man-E is punished,
Jim i= a man.
John i & man,
Question
Is Jehn punished 3
Responses from the c?hr
Ddd John kill a man<B ?
Yss, John is punished.
le 3
Whele bears = chlld.
An anisal which bears & child is » memeal.
If an animal is a mammel, the animal is=s
a vertebrate.
A vertebrate has a backbons.
Quasticn
Has whale a backbone ¢
Bes 8 from the computer
Iz whale o vartebrate 7
Is whale » mammal ?
Does whale bear n child 7
Yes, whale has a backbone.
In theBe examples intermediate responscs are
to show the deduction proceases, which do not
need answers from a man.

HITO WA aporteman NARA KENKO DESU.
(If & wan is = sporteman, the men is heslthy.)
Jim WA sportasmen DESU,

(Jim is a sportsman.)

Jim WA KINBEN DESU.

(Jim is d1ligent.)

Jim WA MASHIEDY HITO DEST.

(Jim is a ¢lever man.)

%gstion given to the computer
Jis WA SETKC SHIMASU KA ?

{Will Jim succesd ?)

kane{money)}

LY
20 amcd \

A
uotau'(have )
ob; r’
fane (money)

kane (monay)

(A1)

kare (he ) aub

kare
(he)

kare{he)

kare{he)

no
{a2)

kyoshi{taacher)

senkyo{elaction)

no
a3}

kyonen(last year)
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Fig. 11 (4) Seversal possible desp structures for ‘A mo B'.
(A1) the mopey which ha has.

(A2) ha, who 1s & teacher.

{AZ) the slection which took place last year.

(B) Intermal representation in our system,



